
Ascential DataStage
BASIC Guide
Version 7.5
June 2004
Part No. 00D-0006DS75

Published by Ascential Software Corporation.

©1997-2004 Ascential Software Corporation. All rights reserved. Ascential, DataStage, QualityStage,
AuditStage,, ProfileStage, and MetaStage ar are trademarks of Ascential Software Corporation or its affiliates
and may be registered in the United States or other jurisdictions. Windows is a trademark of Microsoft
Corporation. Unix is a registered trademark of The Open Group. Adobe and Acrobat are registered trademarks
of Adobe Systems Incorporated. Other marks are the property of the owners of those marks.

This product may contain or utilize third party components subject to the user documentation previously
provided by Ascential Software Corporation or contained herein.

Documentation Team: Mandy deBelin

Table of Contents
How to Use this Guide
Organization of This Manual ... viii
Documentation Conventions ... ix
DataStage Documentation .. x

Chapter 1. Introduction to DataStage BASIC
BASIC Terminology .. 1-2
Subroutines .. 1-3
Source Syntax ... 1-4
Statement Types .. 1-4
Statement Labels ... 1-5
Spaces or Tabs .. 1-6
Newlines and Sequential File I/O .. 1-6
Special Characters ... 1-6
Storing Programs .. 1-7
Editing Programs .. 1-7
Getting Started ... 1-8

Chapter 2. Data Types, Variables, and Operators
Types of Data ... 2-1
Constants .. 2-5
Variables ... 2-5
Expressions .. 2-11
Operators .. 2-12

Chapter 3. Compiling BASIC Programs
The BASIC Command .. 3-1
Compiler Directives .. 3-4
Warnings and Error Messages ... 3-9
Successful Compilation .. 3-9
The RUN Command ... 3-10
iii

Cataloging a BASIC Program ..3-10
Catalog Shared Memory ...3-13

Chapter 4. Locks, Transactions, and Isolation Levels
Locks ..4-1
Transactions ..4-6
Isolation Levels ..4-10

Chapter 5. Debugging Tools
RAID ..5-1
VLIST ...5-12

Chapter 6. BASIC Statements and Functions

Appendix A. Quick Reference
Compiler Directives ...A-1
Declarations ...A-3
Assignments ..A-3
Program Flow Control ...A-3
File I/O ...A-5
Sequential File I/O ...A-7
Printer and Terminal I/O ..A-8
Tape I/O ...A-10
Select Lists ...A-10
String Handling ..A-11
Data Conversion and Formatting ..A-14
NLS ...A-15
Mathematical Functions ..A-16
Relational Functions ...A-19
System ..A-20
Remote Procedure Calls ..A-21
Miscellaneous ..A-21
iv BASIC Guide

Appendix B. ASCII and Hex Equivalents

Appendix C. Correlative and Conversion Codes

Appendix D. BASIC Reserved Words

Appendix E. @Variables

Appendix F. BASIC Subroutines

Index
v

vi BASIC Guide

How to Use this Guide

This manual describes the DataStage BASIC programming language. It is
for experienced programmers and includes explanations of all BASIC
statements and functions supported by DataStage as well as information
regarding the use of BASIC with DataStage in the UNIX and Windows NT
environments. If you have never used BASIC, read Chapter 1 and
Chapter 2 before you begin. Before using any statement or function, thor-
oughly read its description in Chapter 6.

If you have previously used a BASIC programming language, you can
skim through the first two chapters to determine the difference that may
exist between DataStage BASIC and the BASIC you have used in the past.

To find particular topics you can:

• Use the Guide’s contents list (at the beginning of the Guide).

• Use the Guide’s index (at the end of the Guide).

• Use the Adobe Acrobat Reader bookmarks.

• Use the Adobe Acrobat Reader search facility (select Edit ➤

Search).

The guide contains links both to other topics within the guide, and to other
guides in the DataStage manual set. The links are shown in blue. Note that,
if you follow a link to another manual, you will jump to that manual and
lose your place in this manual. Such links are shown in italics.
How to Use this Guide vii

Organization of This Manual
This manual contains the following:

Chapter 1 covers information you should know before you begin to
use BASIC, such as initial procedures, terminology, and features that
are unique to this implementation of BASIC.

Chapter 2 describes types of data, such as constants and variables, and
types of operators.

Chapter 3 describes the DataStage BASIC compiler. The discussion
includes instructions on how to run the compiler, compiling options,
warnings and error messages, and other related commands.

Chapter 4 describes how to use locks, transaction processing, and
isolation levels to prevent data loss and other data conflicts.

Chapter 5 describes the tools available for debugging DataStage
BASIC programs. Included is an interactive debugger, RAID, and the
program listing command, VLIST.

Chapter 6 contains statements and functions in alphabetical order. At
the top of each page is the syntax for the statement or function,
followed by a detailed description of its use, often including refer-
ences to other statements or functions that can be used with it or are
helpful to know about. Examples illustrate the application of the state-
ment or function in a program.

Appendix A is a quick reference for BASIC statements and functions
grouped according to use.

Appendix B is a table of ASCII character codes and equivalents and
hexadecimal equivalents.

Appendix C describes the syntax and use of correlative and conver-
sion codes.

Appendix D lists DataStage BASIC reserved words.

Appendix E is a quick reference for DataStage BASIC @variables.

Appendix F describes subroutines you can call from DataStage BASIC
programs.
viii Ascential DataStage BASIC Guide

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates DataStage commands,
keywords, and options; BASIC statements and functions;
and SQL statements and keywords. In text, uppercase also
indicates DataStage identifiers such as filenames, account
names, schema names, and Windows NT filenames and
pathnames.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, filenames,
and pathnames.

Courier Courier indicates examples of source code and system
output.

Courier Bold In examples, courier bold indicates characters that the user
types or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets
unless indicated.

{ } Braces enclose nonoptional items from which you must
select at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

‰ A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
File ‰ Exit” means you should choose File from the menu
bar, then choose Exit from the File pull-down menu.

I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2
How to Use this Guide ix

The following conventions are also used:

• Syntax definitions and examples are indented for ease in reading.

• All punctuation marks included in the syntax—for example,
commas, parentheses, or quotation marks—are required unless
otherwise indicated.

• Syntax lines that do not fit on one line in this manual are continued
on subsequent lines. The continuation lines are indented. When
entering syntax, type the entire syntax entry, including the continu-
ation lines, on the same input line.

DataStage Documentation
DataStage documentation includes the following:

Client Guides
DataStage Designer Guide. This guide describes the DataStage
Designer, and gives a general description of how to create, design, and
develop a DataStage application.

DataStage Director Guide. This guide describes the DataStage
Director and how to validate, schedule, run, and monitor DataStage
server jobs.

DataStage Manager Guide. This guide describes how to view and edit
the contents of the Repository. It also shows how to import and export
DataStage components.

DataStage Administrator Guide. This guide describes DataStage
setup, routine housekeeping, and administration.

V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

T Text mark. For example, the text mark (T) in the following
string delimits elements 4 and 5: 1F2S3V4T5

Convention Usage
x Ascential DataStage BASIC Guide

Server Guides
DataStage Server: Server Job Developer’s Guide This guide describes
the specific tools that are used in building a server job, and supplies
programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Developer’s Guide: This
guide describes the tools that are used in building a parallel job, and it
supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Advanced Developer’s
Guide: This guide gives more specialized information about parallel
job design.

DataStage Enterprise MVS Edition: Mainframe Job Developer’s
Guide: This guide describes the specific tools that are used in building
a mainframe job, and supplies programmer’s reference information.

These guides are also available online in PDF format. You can read them
using the Adobe Acrobat Reader supplied with DataStage. See Install and
Upgrade Guide for details on installing the manuals and the Adobe Acrobat
Reader.

You can use the Acrobat search facilities to search the whole DataStage
document set. To use this feature, select Edit ➤ Search then choose the All
PDF documents in option and specify the DataStage docs directory (by
default this is C:\Program Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is particularly useful when
you have become familiar with DataStage, and need to look up specific
information.
How to Use this Guide xi

xii Ascential DataStage BASIC Guide

1
Introduction to

DataStage BASIC

DataStage BASIC is a business-oriented programming language designed
to work efficiently with the DataStage environment. It is easy for a begin-
ning programmer to use yet powerful enough to meet the needs of an
experienced programmer.

The power of DataStage BASIC comes from statements and built-in func-
tions that take advantage of the extensive database management
capabilities of DataStage. These benefits combined with other BASIC
extensions result in a development tool well-suited for a wide range of
applications.

The extensions in DataStage BASIC include the following:

• Optional statement labels (that is, statement numbers)
• Statement labels of any length
• Multiple statements allowed on one line
• Computed GOTO statements
• Complex IF statements
• Multiline IF statements
• Priority CASE statement selection
• String handling with variable length strings up to 232–1 characters
• External subroutine calls
• Direct and indirect subroutine calls
• Magnetic tape input and output
• RetrieVe data conversion capabilities
• DataStage file access and update capabilities
• File-level and record-level locking capabilities
• Pattern matching
Introduction to DataStage BASIC 1-1

• Dynamic arrays.

BASIC Terminology
DataStage BASIC programmers should understand the meanings of the
following terms:

• BASIC program
• Source code
• Object code
• Variable
• Function
• Keyword.

BASIC Program. A BASIC program is a set of statements directing the
computer to perform a series of tasks in a specified order. A BASIC state-
ment is made up of keywords and variables.

Source Code. Source code is the original form of the program written by
the programmer.

Object Code. Object code is compiler output, which can be executed by
the DataStage RUN command or called as a subroutine.

Variable. A variable is a symbolic name assigned to one or more data
values stored in memory. A variable’s value can be numeric or character
string data, the null value, or it can be defined by the programmer, or it can
be the result of operations performed by the program. Variable names can
be as long as the physical line, but only the first 64 characters are signifi-
cant. Variable names begin with an alphabetic character and can include
alphanumeric characters, periods (.), dollar signs ($), and percent signs
(%). Upper- and lowercase letters are interpreted as different; that is, REC
and Rec are different variables.

Function. A BASIC intrinsic function performs mathematical or string
manipulations on its arguments. It is referenced by its keyword name and
is followed by the required arguments enclosed in parentheses. Functions
can be used in expressions; in addition, function arguments can be expres-
sions that include functions. DataStage BASIC contains both numeric and
string functions.
1-2 BASIC Guide

• Numeric functions. BASIC can perform certain arithmetic or alge-
braic calculations, such as calculating the sine (SIN), cosine (COS),
or tangent (TAN) of an angle passed as an argument.

• String functions. A string function operates on ASCII character
strings. For example, the TRIM function deletes extra blank spaces
and tabs from a character string, and the STR function generates a
particular character string a specified number of times.

Keyword. A BASIC keyword is a word that has special significance in a
BASIC program statement. The case of a keyword is ignored; for example,
READU and readu are the same keyword. For a list of reserved words see
Appendix D.

Subroutines
A subroutine is a set of instructions that perform a specific task. It is a small
program that can be embedded in a program and accessed with a GOSUB
statement, or it can be external to the program and accessed with a CALL
statement. Common processes are often kept as external subroutines. This
lets the programmer access them from many different programs without
having to rewrite them.

When a GOSUB or CALL statement is encountered, program control
branches to the referenced subroutine. An internal subroutine must begin
with a statement label. An external subroutine must begin with a
SUBROUTINE statement.

ARETURNstatement can be used at the end of a subroutine to return
program flow to the statement following the last referenced GOSUB or
CALL statement. If there is no corresponding CALL or GOSUB statement,
the program halts and returns to the DataStage command level. If an
external subroutine ends before a RETURN statement is encountered, a
RETURN is provided automatically.

Note: If an ABORT, STOP, or CHAIN statement is encountered during
subroutine execution, program execution aborts, stops, or chains to
another BASIC program and control never returns to the calling
program.

One or more arguments separated by commas can be passed to the
subroutine as an argument list. An argument can be a constant, variable,
array variable, or expression, each representing an actual value. The
Introduction to DataStage BASIC 1-3

SUBROUTINE argument list must contain the same number of arguments
so that the subroutine can reference the values being passed to it. Argu-
ments are passed to subroutines by passing a pointer to the argument.
Therefore, arguments can also be used to return values to the calling
program.

Source Syntax
A BASIC source line has the following syntax:

[label] statement [; statement …] <Return>

You can put more than one statement on a line. Separate the statements
with semicolons.

A BASIC source line can begin with a statement label. It always ends with
a carriage return (Return). It can contain up to 256 characters and can
extend over more than one physical line.

Statement Types
BASIC statements can be used for any of the following purposes:

• Input and output control
• Program control
• Assignment (assigning a value to a variable)
• Specification (specifying the value of a constant)
• Documentation

Input statements indicate where the computer can expect data to come from
(for example, the keyboard, a particular file, and so on). Output statements
control where the data is displayed or stored.

In general, BASIC statements are executed in the order in which they are
entered. Control statements alter the sequence of execution by branching to
a statement other than the next statement, by conditionally executing
statements, or by passing control to a subroutine.

Assignment statements assign values to variables, and specification state-
ments assign names to constants.

Program documentation is accomplished by including optional comments
that explain or document various parts of the program. Comments are
1-4 BASIC Guide

part of the source code only and are not executable. They do not affect the
size of the object code. Comments must begin with one of the following:

REM * ! $*

Any text that appears between a comment symbol and a carriage return is
treated as part of the comment. Comments cannot be embedded in a
BASIC statement. If you want to put a comment on the same physical line
as a statement, you must end the statement with a semicolon (;), then add
the comment, as in the following example:

IF X THEN
A = B; REM correctly formatted comment statement
B = C

END

You cannot put comments between multiple statements on one physical
line. For example, in the second line of the following program the state-
ment B = C is part of the comment and is not executed:

IF X THEN
A = B; REM The rest of this line is a comment; B = C

END

However, you can put comments in the middle of a statement that occu-
pies more than one physical line, as in the following example:

A = 1
B = 2
IF A =

REM comment
PRINT A
REM comment

END ELSE PRINT B

Statement Labels
A statement label is a unique identifier for a program line. A statement
label consists of a string of characters followed by a colon. The colon is
optional when the statement label is completely numeric. Like variable
names, alphanumeric statement labels begin with an alphabetic character
and can include periods (.), dollar signs ($), and percent signs (%).
Upper- and lowercase letters are interpreted as different; that is, ABC and
Abc are different labels. Statement labels, like variable names, can be as
long as the length of the physical line, but only the first 64 characters are
significant. A statement label can be put either in front of a BASIC state-
Introduction to DataStage BASIC 1-5

ment or on its own line. The label must be first on the line—that is, the
label cannot begin with a space.

Spaces or Tabs
In a program line, spaces or tabs that are not part of a data item are
ignored. Therefore you can use spaces or tabs to improve the program’s
appearance and readability.

Newlines and Sequential File I/O
DataStage BASIC uses the term newline to indicate the character or char-
acter sequence that defines where a line ends in a record in a type 1 or type
19 file. The newline differs according to the operating system you are
using. On UNIX file systems, a newline consists of a single LINEFEED
character. On Windows NT file systems, a newline consists of the character
sequence RETURN + LINEFEED.

DataStage BASIC handles this difference transparently in nearly every
case, but in a few instances the operating system differences become
apparent. If you want your program to work on different operating
systems, watch sequential file I/O (that is, writing to or reading from type
1 and type 19 files, line by line or in blocks of data). In particular, be aware
of the potential differences that occur:

• When moving a pointer through a file
• When reading or writing blocks of data of a specified length

Special Characters
The DataStage BASIC character set comprises alphabetic, numeric, and
special characters. The alphabetic characters are the upper- and lowercase
letters of the alphabet. The numeric characters are the digits 0 through 9.
The special characters are as follows. Most of the special characters are not
permitted in a numeric constant or a variable name.

Space
Tab

= Equal sign or assignment symbol
+ Plus sign
1-6 BASIC Guide

Storing Programs
BASIC programs are stored as records in type 1 or type 19 files. The
program file must exist before you invoke an editor to create a new record
to hold your program. Record IDs must follow the conventions for type 1
and type 19 files.

Editing Programs
You can use the DataStage Editor or any suitable editor, such as vi on UNIX
or edit on Windows NT, to write your programs. You can edit programs in
the DataStage environment or at the operating system level.

– Minus sign
* Asterisk, multiplication symbol, or nonexecutable comment
** Exponentiation
/ Slash or division symbol
^ Up-arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
Number (pound or hash) sign or not equal to
$ Dollar sign
! Exclamation point or nonexecutable comment
[Left bracket
] Right bracket
, Comma (not permitted in numeric data)
. Period or decimal point
’ Single quotation mark or apostrophe
; Semicolon
: Colon or concatenation
& Ampersand (and)
< Less than (left angle bracket)
> Greater than (right angle bracket)
@ At sign
_ Underscore
Introduction to DataStage BASIC 1-7

Editing Programs in DataStage
On UNIX systems you can invoke vi from the DataStage system prompt
using this syntax:

VI pathname

pathname is the relative or absolute pathname of the program you want to
edit. For example, the program PAYROLL is stored as a record in the file
BP. To edit it with vi, enter:

>VI BP/PAYROLL

If you want to use vi, or any other editor, directly from DataStage, you can
create a VOC entry that invokes your chosen editor. For example, this VOC
entry calls edit from DataStage on Windows NT:

 EDIT
001 V
002 \win25\edit.com
003 PR

Editing Programs Outside DataStage
When you invoke an editor at the operating system level, remember that
the DataStage file holding the programs is implemented as a directory at
the operating system level. For example, the YEAR.END program is stored
as a record in the BP file in DataStage. Its operating system pathname is
BP\YEAR.END on Windows NT systems and BP/YEAR.END on UNIX
systems.

Getting Started
To create and use a BASIC program, follow these steps:

1. Use the CREATE.FILE command to create a type 1 or type 19
DataStage file to store your BASIC program source. The RUN
command uses the filename BP if a filename is not specified, so many
people use BP as the name of their general BASIC program file.

2. Use the DataStage Editor or some other editor to create the source for
your BASIC program as a record in the file you created in step 1.

3. Once you have created the record containing your BASIC program
source statements, use the BASIC command to compile your
program. The BASIC command creates a file to contain the object
1-8 BASIC Guide

code output by the compiler. You do not have to know the name of
the object file because the program is always referred to by the source
filename.

4. If the BASIC compiler detects any errors, use the Editor to correct the
source code and recompile using the BASIC command.

5. When your program compiles without any errors, execute it using the
RUN command. Use the RAID command to debug your program.
Introduction to DataStage BASIC 1-9

1-10 BASIC Guide

2
Data Types, Variables,

and Operators

This chapter gives an overview of the fundamental components of the
DataStage BASIC language. It describes types of data, constants,
variables, and how data is combined with arithmetic, string, relational,
and logical operators to form expressions.

Types of Data
Although many program languages distinguish different types of data,
the DataStage BASIC compiler does not. All data is stored internally as
character strings, and data typing is done contextually at run time. There
are three main types of data: character string, numeric, and unknown
(that is, the null value).

Character String Data
Character string data is represented internally as a sequence of ASCII
characters. Character strings can represent either numeric or nonnumeric
data. Their length is limited only by the amount of available memory.
Numeric and nonnumeric data can be mixed in the same character string
(for example, in an address).

In NLS mode all data is held in the DataStage internal character set. In all
DataStage I/O operations, data is converted automatically by applying
the map specified for a file or a device. One character can be more than
one byte long and can occupy zero or more positions on the screen.
DataStage BASIC provides functions so that programs can determine
Data Types, Variables, and Operators 2-1

what these characteristics are. For more information about character sets,
see the DataStage NLS Guide.

Character String Constants
In BASIC source code, character string constants are a sequence of ASCII
characters enclosed in single or double quotation marks, or backslashes
(\). These marks are not part of the character string value. The length of
character string constants is limited to the length of a statement.

Some examples of character string constants are the following:

"Emily Daniels"
'$42,368.99'
'Number of Employees'
"34 Cairo Lane"
\"Fred's Place" isn't open\

The beginning and terminating marks enclosing character string data
must match. In other words, if you begin a string with a single quotation
mark, you must end the string with a single quotation mark.

If you use either a double or a single quotation mark within the character
string, you must use the opposite kind to begin and end the string. For
example, this string should be written:

"It's a lovely day."

And this string should be written:

'Double quotation marks (") enclosing this string would
be
 wrong.'

The empty string is a special instance of character string data. It is a
character string of zero length. Two adjacent double or single quotation
marks, or backslashes, specify an empty string:

' ' or "" or \\

In your source code you can use any ASCII character in character string
constants except ASCII character 0 (NUL), which the compiler interprets
as an end-of-string character, and ASCII character 10 (linefeed), which
separates the logical lines of a program. Use CHAR(0) and CHAR(10) to
embed these characters in a string constant.
2-2 BASIC Guide

Numeric Data
All numeric data is represented internally either as floating-point
numbers with the full range of values supported by the system’s floating-
point implementation, or as integers. On most systems the range is from
10-307 through 10+307 with 15 decimal digits of precision.

Numeric Constants
Numeric constants can be represented in either fixed-point or floating-
point form. Commas and spaces are not allowed in numeric constants.

Fixed-Point Constants. Fixed-point form consists of a sequence of
digits, optionally containing a decimal point and optionally preceded by
a plus (+) or minus () sign. Some examples of valid fixed-point
constants are:

12
-132.4
+10428

Floating-Point Constants. Floating-point form, which is similar to
scientific notation, consists of a sequence of digits, optionally preceded by
a plus (+) or minus (−) sign representing the mantissa. The sequence of
digits is followed by the letter E and digits, optionally preceded by a
minus sign, representing the power of 10 exponent. The exponent must
be in the range of –307 through +307. Some examples of valid floating-
point constants are:

1.2E3
-7.3E42
-1732E-4

Use the PRECISION statement to set the maximum number of fractional
digits that can result from converting numbers to strings.

Unknown Data: The Null Value
The null value has a special run-time data type in DataStage BASIC. It
was added to DataStage BASIC for compatibility with DataStage SQL.
The null value represents data whose value is unknown.

Note: Do not confuse the null value with the empty string. The empty
string is a character string of zero length which is known to have
no value. Unlike null, whose value is defined as unknown, the
Data Types, Variables, and Operators 2-3

value of the empty string is known. You cannot use the empty
string to represent the null value, nor can you use the null value to
represent “no value.”

Like all other data in DataStage BASIC, the null value is represented
internally as a character string. The string is made up of the single byte
CHAR(128). At run time when explicit or implicit dynamic array
extractions are executed on this character, it is assigned the data type
“null.” DataStage BASIC programs can reference the null value using the
system variable @NULL. They can test whether a value is the null value
using the ISNULL and ISNULLS functions.

There is no printable representation of the null value. In this manual the
symbol λ (lambda) is sometimes used to denote the null value.

Here is an example of the difference between an empty string and the null
value. If you concatenate a string value with an empty string, the string
value is returned, but if you concatenate a string value with the null
value, null is returned.

A = @NULL
B = ""
C = "JONES"
X = C:B
Y = C:A

The resulting value of X is "JONES", but the value of Y is the null value.
When you concatenate known data with unknown data, the result is
unknown.

Programmers should also note the difference between the null value—a
special constant whose type is “null”—and the stored representation of
the null value—the special character CHAR(128) whose type is “string.”
BASIC programs can reference the stored representation of null using the
system variable @NULL.STR instead of @NULL.
2-4 BASIC Guide

Constants
Constants are data that do not change in value, data type, or length
during program execution. Constants can be character strings or numeric
strings (in either integer or floating-point form). A character string of no
characters—the empty string—can also be a constant.

Variables
Variables are symbolic names that represent stored data values. The value
of a variable can be:

• Unassigned

• A string, which can be an alphanumeric character string, a number,
or a dynamic array

• A number, which can be fixed-point (an integer) or floating-point

• The null value

• A dimensioned array (that is, a vector or matrix)

• A subroutine name

• A file

• A select list

The value of a variable can be explicitly assigned by the programmer, or it
can be the result of operations performed by the program during
execution. Variables can change in value during program execution. At
the start of program execution, all variables are unassigned. Any attempt
to use an unassigned variable produces an error message.

A variable name must begin with an alphabetic character. It can also
include one or more digits, letters, periods, dollar signs, or percent signs.
Spaces and tabs are not allowed. A variable name can be any length up to
the length of the physical line, but only the first 64 characters are
significant. A variable name cannot be any of the BASIC Reserved Words
listed in Appendix D. In DataStage, upper- and lowercase characters in a
variable name are interpreted differently.

DataStage BASIC also provides a set of system variables called
@Variables. Many of these are read-only variables. Read-only @variables
cannot be changed by the programmer.
Data Types, Variables, and Operators 2-5

Most variables in BASIC remain available only while the current program
or subroutine is running. Unnamed common variables, however, remain
available until the program returns to the system prompt. Named
common variables and @variables remain available until the user logs out
of DataStage. See the COMMON statement for information about named
and unnamed common variables.

In NLS mode you can include characters outside the ASCII character set
only as constants defined by the $DEFINE and EQUATE statements, or as
comments. Everything else, including variable names, must use the
ASCII character set. For more information about character sets, see the
DataStage NLS Guide.

Array Variables
An array is a variable that represents more than one data value. There are
two types of array: dimensioned and dynamic. Dimensioned arrays can
be either standard or fixed. Fixed arrays are provided in PICK, IN2, and
REALITY flavor accounts for compatibility with other Pick systems.

Dimensioned Arrays
Each value in a dimensioned array is called an element of the array.
Dimensioned arrays can be one- or two-dimensional.

A one-dimensional array is called a vector. Its elements are arranged
sequentially in memory. An element of a vector is specified by the
variable name followed by the index of the element enclosed in
parentheses. The index of the first element is 1. The index can be a
constant or an expression. Two examples of valid vector element
specifiers are:

A(1)
COST(35)

A two-dimensional array is called a matrix. The elements of the first row
are arranged sequentially in memory, followed by the elements of the
second row, and so on. An element of a matrix is specified by the variable
name followed by two indices enclosed in parentheses. The indices
represent the row and column position of the element. The indices of the
first element are (1,1). Indices can be constants or expressions. The indices
used to specify the elements of a matrix that has four columns and three
rows are illustrated by the following:

1,1 1,2 1,3 1,4
2-6 BASIC Guide

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

Two examples of valid matrix element specifiers are:

OBJ(3,1)
WIDGET(7,17)

Vectors are treated as matrices with a second dimension of 1. COST(35)
and COST(35,1) are equivalent specifications and can be used
interchangeably.

Both vectors and matrices have a special zero element that is used in
MATPARSE, MATREAD, and MATWRITE statements. The zero element
of a vector is specified by vector.name(0), and the zero element of a matrix
is specified by matrix.name(0,0). Zero elements are used to store fields that
do not fit in the dimensioned elements on MATREAD or MATPARSE
statements.

Dimensioned arrays are allocated either at compile time or at run time,
depending on the flavor of the account. Arrays allocated at run time are
called standard arrays. Arrays allocated at compile time are called fixed
arrays. Standard arrays are redimensionable; fixed arrays are not
redimensionable and do not have a zero element. All arrays are standard
unless the program is compiled in a PICK, IN2, or REALITY flavor
account, in which case they are fixed arrays. To use fixed arrays in
PIOPEN, INFORMATION and IDEAL flavor accounts, use the
STATIC.DIM option of the $OPTIONS statement. To use standard arrays
in PICK, IN2, and REALITY flavor accounts, use $OPTIONS −
STATIC.DIM.

Dynamic Arrays
Dynamic arrays map the structure of DataStage file records to character
string data. Any character string can be a dynamic array. A dynamic array
is a character string containing elements that are substrings separated by
delimiters. At the highest level these elements are fields separated by
field marks (F) (ASCII 254). Each field can contain values separated by
value marks (V) (ASCII 253). Each value can contain subvalues separated
by subvalue marks (S) (ASCII 252).

A common use of dynamic arrays is to store data that is either read in
from or written out to a DataStage file record. However, DataStage BASIC
includes facilities for manipulating dynamic array elements that make
Data Types, Variables, and Operators 2-7

dynamic arrays a powerful data type for processing hierarchical
information independently of DataStage files.

The number of fields, values, or subvalues in a dynamic array is limited
only by the amount of available memory. Fields, values, and subvalues
containing the empty string are represented by two consecutive field
marks, value marks, or subvalue marks, respectively.

The following character string is a dynamic array with two fields:

TOMSDICKSHARRYVBETTYSSUESMARYFJONESVSMITH

The two fields are:

TOMSDICKSHARRYVBETTYSSUESMARY

and:

JONESVSMITH

Conceptually, this dynamic array has an infinite number of fields, all of
which are empty except the first two. References made to the third or
fourth field, for example, return an empty string.

The first field has two values:

TOMSDICKSHARRY

and:

BETTYSSUESMARY

The first value has three subvalues: TOM, DICK, and HARRY. The second
value also has three subvalues: BETTY, SUE, and MARY.

The second field has two values: JONES and SMITH. Each value has one
subvalue: JONES and SMITH.

The following character string:

NAME AND ADDRESS

can be considered a dynamic array containing one field, which has one
value, which has one subvalue, all of which are: NAME AND ADDRESS.

The following character string can be considered a dynamic array
containing two fields:

JONESVSMITHVBROWNF$1.23VV$2.75

The first field has three values: JONES, SMITH, and BROWN. The second
field has three values: $1.23, an empty string, and $2.75
2-8 BASIC Guide

Intrinsic functions and operators allow individual subvalues, values, and
fields to be accessed, changed, added, and removed.

You can create a dynamic array in two ways: by treating it as a
concatenation of its fields, values, and subvalues; or by enclosing the
elements of the dynamic array in angle brackets, using the syntax:

array.name < field# , value# , subvalue# >

For example, to create the dynamic array A as:

JONESVSMITHF1.23S20V2.50S10

you can say:

A="JONES":@VM:"SMITH":@FM:1.23:@SM:20:@VM:2.50:@SM:10

or you can say:

A = ""
A<1,1> = "JONES"
A<1,2> = "SMITH"
A<2,1,1> = 1.23
A<2,1,2> = 20
A<2,2,1> = 2.50
A<2,2,2> = 10

The example has two fields. The first field has two values, and the second
field has two values. The first value of the second field has two subvalues,
and the second value of the second field also has two subvalues.

You must use the following statements to declare that the first field
contains the two values JONES and SMITH:

A = ""
A<1,1> = "JONES"
A<1,2> = "SMITH"

The statement:

A = ""
A<1> = "JONES"

declares that the first field contains only JONES with no other values or
subvalues. Similarly, the statement:

A<2,1> = 1.23
Data Types, Variables, and Operators 2-9

declares that the first value of the second field is 1.23 with no subvalues.
The statements:

A<2,2,1> = 2.50
A<2,2,2> = 10

declare that the second value of the second field has two subvalues, 2.50
and 10, respectively.

File Variables
A file variable is created by a form of the OPEN statement. Once opened,
a file variable is used in I/O statements to access the file. There are two
types of file variable: hashed file variable and sequential file variable. File
variables can be scalars or elements of a dimensioned array.

Select List Variables
Select list variables are created by a form of the SELECT statement. A
select list variable contains a select list and can be used only in
READNEXT statements. Unlike other variables, a select list variable
cannot be an element of a dimensioned array.
2-10 BASIC Guide

Expressions
An expression is part of a BASIC statement. It can comprise:

• A string or numeric constant

• A variable

• An intrinsic function

• A user-defined function

• A combination of constants, variables, operators, functions, and
other expressions

Format Expressions
A format expression formats variables for output. It specifies the size of
the field in which data is displayed or printed, the justification (left, right,
or text), the number of digits to the right of the decimal point to display,
and so on. Format expressions work like the FMT function. The syntax is:

variable format

format is a valid string expression that evaluates to:

[width] [background] justification [edit] [mask]
Either width or mask can specify the size of the display field.

background specifies the character used to pad the field (Space is the
default padding character).

You must specify justification as left, right, or text (text left-justifies output,
but breaks lines on spaces when possible).

edit specifies how to format numeric data for output, including such
things as the number of digits to display to the right of the decimal point,
the descaling factor, whether to round or truncate data, and how to
indicate positive and negative currency, handle leading zeros, and so on.

mask is a pattern that specifies how to output data.

If a format expression is applied to the null value, the result is the same as
formatting an empty string. This is because the null value has no
printable representation.
Data Types, Variables, and Operators 2-11

You can use the STATUS function to determine the result of the format
operation. The STATUS function returns the following after a format
operation:

In NLS mode, the FMT function formats an expression in characters; the
FMTDP function formats it in display positions. The effect of the format
mask can be different if the data contains double-width or multibyte
characters. For more information about display length, see the DataStage
NLS Guide.

Operators
Operators perform mathematical, string, and logical operations on
values. Operands are expressions on which operations are performed.
BASIC operators are divided into the following categories:

• Arithmetic
• String
• Relational
• Pattern matching
• IF operator
• Logical
• Assignment
• Dynamic array

Arithmetic Operators
Arithmetic operators combine operands comprising one or more
variables, constants, or intrinsic functions. Resulting arithmetic
expressions can be combined with other expressions almost indefinitely.
The syntax of arithmetic expressions is:

expression operator expression

0 The format operation is successful.

1 The variable is invalid.

2 The format expression is invalid.
2-12 BASIC Guide

Table 2-1 lists the arithmetic operators used in BASIC, in order of
evaluation.

You can use parentheses to change the order of evaluation. Operations on
expressions enclosed in parentheses are performed before those outside
parentheses.

The following expression is evaluated as 112 + 6 + 2, or 120:

(14 * 8) + 12 / 2 + 2

On the other hand, the next expression is evaluated as 14 * 20 / 4, or 280 /
4, or 70:

14 * (8 + 12) / (2 + 2)

The result of any arithmetic operation involving the null value is the null
value. Since the null value is unknown, the result of combining it with
anything must also be unknown. So in the following example, B is the
null value:

A = @NULL
B = 3 + A

The values of arithmetic expressions are internally maintained with the
full floating-point accuracy of the system.

If a character string variable containing only numeric characters is used in an arith-
metic expression, the character string is treated as a numeric variable. That is, the
numeric string is converted to its equivalent internal number and then evaluated
numerically in the arithmetic expression. For example, the following expression is
evaluated as 77:

55 + "22"

Table 2-1. Arithmetic Operators

Operator Operation Sample Expression

– Negation –X

^
**

Exponentiation X ^ Y
X ** Y

*
/

Multiplication
Division

X * Y
X / Y

+
–

Addition
Subtraction

X + Y
X – Y
Data Types, Variables, and Operators 2-13

If a character string variable containing nonnumeric characters is used in
an arithmetic expression, a warning message appears, and the string is
treated as zero. For example, the following expression is evaluated as 85,
and a message warns that the data is nonnumeric:

 "5XYZ" + 85

A BASIC program compiled in an INFORMATION or a PIOPEN flavor
account has arithmetic instructions capable of operating on multivalued
data. The following statement in a program compiled in an
INFORMATION or a PIOPEN flavor account is valid:

C = (23:@VM:46) * REUSE(2)

In a BASIC program compiled in an IDEAL, PICK, PIOPEN, REALITY, or
IN2 flavor account, arithmetic can be performed on string data only if the
string can be interpreted as a single-valued number. The previous
statement successfully compiles in PICK, PIOPEN, IN2, REALITY, and
IDEAL flavor accounts but causes a run-time error. The REUSE function
converts 2 to a string which then has to be converted back to a number for
the arithmetic operation. This is harmless. The multivalued string cannot
be converted to a number and causes a nonnumeric data warning.

The IDEAL flavor uses single-valued arithmetic because of the
performance penalty incurred by multivalued arithmetic. To perform
multivalued arithmetic in IDEAL, PICK, PIOPEN, IN2, and REALITY
flavor accounts, use the VEC.MATH option of the $OPTIONS statement.

String Operators
The concatenation operator (: or CAT) links string expressions to form
compound string expressions, as follows:

'HELLO. ' : 'MY NAME IS ' : X : ". WHAT'S YOURS?"

or:

'HELLO. ' CAT 'MY NAME IS ' CAT X CAT ". WHAT'S
YOURS?"

If, for instance, the current value of X is JANE, these string expressions both have the
following value:

 "HELLO. MY NAME IS JANE. WHAT'S YOURS?"

Multiple concatenation operations are performed from left to right.
Parenthetical expressions are evaluated before operations outside the
parentheses.
2-14 BASIC Guide

With the exception of the null value, all operands in concatenated
expressions are considered to be string values, regardless of whether they
are string or numeric expressions. However, the precedence of arithmetic
operators is higher than the concatenation operator. For example:

 "THERE ARE " : "2" + "2" : "3" : " WINDOWS."

has the value:

 "THERE ARE 43 WINDOWS."

The result of any string operation involving the null value is the null
value. Since the null value represents an unknown value, the results of
operations on that value are also unknown. But if the null value is
referenced as a character string containing only the null value (that is, as
the string CHAR(128)), it is treated as character string data. For example,
the following expression evaluates to null:

"A" : @NULL

But this expression evaluates to "A<CHAR128>":

"A" : @NULL.STR

Substring Operator
A substring is a subset of contiguous characters of a character string. For
example, JAMES is a substring of the string JAMES JONES. JAMES JON
is also a substring of JAMES JONES.

You can specify a substring as a variable name or an array element
specifier, followed by two values separated by a comma and enclosed in
square brackets. The two values specify the starting character position
and the length of the substring. The syntax is:

expression [[start,] length]
The bold brackets are part of the syntax and must be typed.

If start is 0 or a negative number, the starting position is assumed to be 1.
If start is omitted, the starting position is calculated according to the
following formula:

string.length – substring.length + 1

This lets you specify a substring consisting of the last n characters of a
string without having to calculate the string length. So the following
substring specification:
Data Types, Variables, and Operators 2-15

"1234567890" [5]

returns the substring:

67890

The following example:

A="###DHHH#KK"
PRINT A["#",4,1]

displays the following output:

DHHH

Another syntax for removing substrings from a string, similar to the
previous syntax, is:

expression [delimiter, occurrence, fields]
The bold brackets are part of the syntax and must be typed. Use this
syntax to return the substring that is located between the stated number
of occurrences of the specified delimiter. fields specifies the number of
successive fields after the specified occurrence of the delimiter that are to
be returned with the substring. The delimiter is part of the returned value
when successive fields are returned. This syntax performs the same
function as the FIELD function.

All substring syntaxes can be used with the assignment operator (=) to
replace the value normally returned by the [] operator with the value
assigned to the variable. For example:

A='12345'
A[3]=1212
PRINT "A=",A

returns the following:

A= 121212

Assigning the three-argument syntax of the [] operator provides the
same functionality as the FIELDSTORE function.

Relational Operators
Relational operators compare numeric, character string, or logical data.
The result of the comparison, either true (1) or false (0), can be used to
make a decision regarding program flow (see the IF statement). Table 2-2
lists the relational operators.
2-16 BASIC Guide

When arithmetic and relational operators are both used in an expression,
the arithmetic operations are performed first. For example, the
expression:

X + Y < (T – 1) / Z

is true if the value of X plus Y is less than the value of T minus 1 divided
by Z.

String comparisons are made by comparing the ASCII values of single
characters from each string. The string with the higher numeric ASCII
code equivalent is considered to be greater. If all the ASCII codes are the
same, the strings are considered equal.

If the two strings have different lengths, but the shorter string is
otherwise identical to the beginning of the longer string, the longer string
is considered greater.

Note: An empty string is always compared as a character string. It does
not equal numeric zero.

A space is evaluated as less than zero. Leading and trailing spaces are
significant. If two strings can be converted to numeric, then the
comparison is always made numerically.

Some examples of true comparisons are:
"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"

Table 2-2. Relational Operators

Operator Relation Example

EQ or = Equality X = Y

NE or # Inequality X # Y

>< or <> Inequality X <> Y

LT or < Less than X < Y

GT or > Greater than X > Y

LE or <= or =< or #> Less than or equal to X <= Y

GE or >= or => or #< Greater than or equal to X >= Y
Data Types, Variables, and Operators 2-17

"SMYTH" < "SMYTHE"
B$ < "9/14/93" (where B$ = "8/14/93")

The results of any comparison involving the null value cannot be
determined—that is, the result of using a relational operator to compare
any value to the null value is unknown. You cannot test for the null value
using the = (equal) operator, because the null value is not equal to any
value, including itself. The only way to test for the null value is to use the
function ISNULL or ISNULLS.

Pattern Matching Operators
The pattern matching operator,MATCH, and its synonym, MATCHES,
compare a string expression to a pattern. The syntax for a pattern match
expression is:

string MATCH[ES] pattern

The pattern is a general description of the format of the string. It can
consist of text or the special characters X, A, and N preceded by an integer
used as a repeating factor. X stands for any characters, A stands for any
alphabetic characters, and N stands for any numeric characters. For
example, 3N is the pattern for character strings made up of three numeric
characters. If the repeating factor is zero, any number of characters will
match the string. For example, 0A is the pattern for any number of
alphabetic characters, including none. If an NLS locale is defined, its
associated definitions of alphabetic and numeric determine the pattern
matching.

An empty string matches the following patterns: "0A", "0X", "0N", "...", "",
'', or \\.

BASIC uses characters rather than bytes to determine string length. In
NLS mode, MATCHES works in the same way for multibyte and single-
byte character sets. For more information about NLS and character sets
see the DataStage NLS Guide.

IF Operator
The IF operator lets you indicate a value conditional upon the truth of
another value. The IF operator has the following syntax:

variable = IF expression THEN expression ELSE expression
2-18 BASIC Guide

variable is assigned the value of the THEN expression if the IF expression
is true, otherwise it is assigned the value of the ELSE expression. The IF
operator is similar to the IF statement, but it can sometimes be more
efficient.

Logical Operators
Numeric data, string data, and the null value can function as logical data.
Numeric and string data can have a logical value of true or false. The
numeric value 0 (zero), is false; all other numeric values are true.
Character string data other than an empty string is true; an empty string
is false. The null value is neither true nor false. It has the special logical
value of null.

Logical operators perform tests on logical expressions. Logical
expressions that evaluate to zero or an empty string are false. Logical
expressions that evaluate to null are null. Expressions that evaluate to any
other value are true.

The logical operators in DataStage BASIC are:

• AND (or the equivalent &)
• OR (or the equivalent !)
• NOT

The NOT function inverts a logical value.
Data Types, Variables, and Operators 2-19

The operands of the logical operators are considered to be logical data
types. Tables 2-3, 2-4, and 2-5 show logical operation results.

Arithmetic and relational operations take precedence over logical
operations. DataStage logical operations are evaluated from left to right
(AND statements do not take precedence over OR statements).

Note: The logical value NULL takes the action of false, because the condi-
tion is not known to be true.

Table 2-3. The AND Operator

AND TRUE NULL FALSE

TRUE TRUE NULL FALSE

NULL NULL NULL FALSE

FALSE FALSE FALSE FALSE

Table 2-4. The OR Operator

OR TRUE NULL FALSE

TRUE TRUE TRUE TRUE

NULL TRUE NULL NULL

FALSE TRUE NULL FALSE

Table 2-5. The NOT Operator

NOT

TRUE FALSE

NULL NULL

FALSE TRUE
2-20 BASIC Guide

Assignment Operators
Assignment operators are used in DataStage BASIC assignment
statements to assign values to variables. Table 2-6 shows the operators
and their uses.

Table 2-7 shows some examples of assignment statements.

Dynamic Array Operations
DataStage BASIC provides a number of special functions that are
designed to perform common operations on dynamic arrays.

Table 2-6. Assignment Operators

Operator Syntax Description

= variable = expression Assigns the value of expression to variable
without any other operation specified.

+= variable += expression Adds the value of expression to the previous
value of variable and assigns the sum to
variable.

−= variable −= expression Subtracts the value of expression from the
previous value of variable and assigns the
difference to variable.

:= variable := expression Concatenates the previous value of variable
and the value of expression to form a new
value for variable.

Table 2-7. Examples of Assignment Statements

Example Interpretation

X = 5 This statement assigns the value 5 to the variable X.

X += 5 This statement is equivalent to X=X+5. It adds 5 to the value of the
variable X, changing the value of X to 10 if it was originally 5.

X −= 3 This statement is equivalent to X=X−3. It subtracts 3 from the value
of the variable X, changing the value of X to 2 if it was originally 5.

X := Y This statement is equivalent to X=X:Y. If the value of X is 'CON', and
the value of Y is 'CATENATE', then the new value of the variable X is
'CONCATENATE'.
Data Types, Variables, and Operators 2-21

Vector Functions
Vector functions process lists of data rather than single values. By using
the VEC.MATH (or V) option of the$OPTIONS statement, the arithmetic
operators (+, −, *, /) can also operate on dynamic arrays as lists of data.

The operations performed by vector functions or operators are essentially
the same as those performed by some standard functions or operators.
The difference is that standard functions process all variables as single-
valued variables, treating delimiter characters as part of the data. On the
other hand, vector functions recognize delimiter characters and process
each field, value, and subvalue individually. In fact, vector functions
process single-valued variables as if they were dynamic arrays with only
the first value defined.

Vector functions have been implemented as subroutines for compatibility
with existing DataStage BASIC programs. Each subroutine is assigned a
name made up of the function’s name preceded by a hyphen. For
example, the name of the subroutine that performs the ADDS function is
−ADDS. Because the subroutines are cataloged globally, they can be
accessed using the method described in the CALL statement.

The first column of Table 2-8 shows the functions for manipulating
dynamic arrays that are available with DataStage BASIC. The second
column shows the corresponding instructions to use for single-valued
variables. In this table, m1 and m2 represent dynamic arrays; s1 and s2
represent single-valued variables; p1, p2, and so on, represent single-
valued parameters. The value of the function is the resulting dynamic
array.

Table 2-8. Vector Functions

Vector Function Corresponding Instruction
for Single-Valued Field

ADDS (m1, m2) s1 + s2

ANDS (m1, m2) s1 AND s2

CATS (m1, m2) s1 : s2

CHARS(m1) CHAR (s1)

COUNTS (m1, p1) COUNT (s1, p1)

DIVS (m1, m2) s1 / s2

EQS (m1, m2) s1 EQ s2
2-22 BASIC Guide

When a function or operator processes two dynamic arrays, it processes
the lists in parallel. In other words, the first value of field A and the first

ISNULLS (m1) ISNULL (s1)

NES (m1, m2) s1 NE s2

LES (m1, m2) s1 LE s2

LTS (m1, m2) s1 LT s2

GES (m1, m2) s1 GE s2

GTS (m1, m2) s1 GT s2

NOTS (m1) NOT (s1)

FIELDS (m1, p1, p2, p3) FIELD (s1, p1, p2, p3)

FMTS (m1, p1) FMT (s1, p1)

ICONVS (m1, p1) ICONV (s1, p1)

IFS (m1, m2, m3) IF s1 THEN s2 ELSE s3

INDEXS (m1, p1, p2) INDEX (s1, p1, p2)

LENS (m1) LEN (s1)

MODS (m1, m2) MOD (s1, s2)

MULS (m1, m1) s1 * s2

NUMS (m1) NUM (s1)

OCONVS (m1, p1) OCONV (s1, p1)

ORS (m1, m2) s1 OR s2

SEQS (m1) SEQ (s1)

STRS (m1, p1) STR (s1, p1)

SPACES (m1) SPACE (s1)

SPLICE (m1, p1, m2) s1 : p1 : s2

SUBSTRINGS (m1, p1, p2) s1 [p1, p2]

SUBS (m1, m1) s1 – s2

TRIMS (m1) TRIM (s1)

Table 2-8. Vector Functions (Continued)

Vector Function Corresponding Instruction
for Single-Valued Field
Data Types, Variables, and Operators 2-23

value of field B are processed together, then the second value of field A
and the second value of field B are processed together, and so on.

Consider the following example:

A = 123V456S7890S2468V10F3691V33S12
B = 13V57S912F1234V8
$OPTIONS VEC.MATH
X = A + B

First, the function processing isolates the first field of each dynamic array,
which can be written as:

A <1> = 123V456S7890S2468V10
B <1> = 13V57S912

Then the first values of the first fields are isolated:

A <1, 1> = 123
B <1, 1> = 13

Then the first subvalues of the first values of the first fields are isolated
and added:

A <1, 1, 1> = 123
B <1, 1, 1> = 13

This produces the first subvalue of the first value of the first field of the
result:

X <1, 1, 1> = 136

Since there are no more subvalues in the first value of either first field, the
second values of the first fields are isolated:

A <1, 2> = 456S7890S2468
B <1, 2> = 57S912

The first subvalues of the second values of the first fields are isolated and
added:

A <1, 2, 1> = 456
B <1, 2, 1> = 57

This produces the first subvalue of the second value of the first field of the
result:

X <1, 2, 1> = 513
2-24 BASIC Guide

Next the subvalues:

A <1, 2, 2> = 7890
B <1, 2, 2> = 912

are isolated and added to produce:

X <1, 2, 2> = 8802

Then the subvalues:

A <1, 2, 3> = 2468
B <1, 2, 3> = ""

are isolated and added to produce:

X <1, 2, 3> = 2468

Since B <1, 2, 3> does not exist, it is equal to an empty string. In arithmetic
expressions an empty string equals zero.

Since there are no more subvalues in either second value of the first fields,
these values are isolated:

A <1, 3> = 10
B <1, 3> = ""

Then the subvalues:

A <1, 3, 1> = 10
B <1, 3, 1> = ""

are isolated and added to produce:

X <1, 3, 1> = 10

Since there are no more subvalues or values in either first field, the second fields of each
dynamic array are isolated and the process repeats down to the subvalue levels. The
second fields can be written as follows:

A <2> = 3691V33S12
B <2> = 1234V8

Then the first values of the second fields are isolated:

A <2, 1> = 3691
B <2, 1> = 1234

Then the first subvalues of the first values of the second fields are isolated
and added:

A <2, 1, 1> = 3691
B <2, 1, 1> = 1234
Data Types, Variables, and Operators 2-25

This produces the first subvalue of the first value of the second field of the
result:

X <2, 1, 1> = 4925

Then the second values of the second fields are isolated:

A <2, 2> = 33S12
B <2, 2> = 8

Then the first subvalues of the second values of the second fields are
isolated and added:

A <2, 2, 1> = 33
B <2, 2, 1> = 8

This produces the first subvalue of the second value of the second field of
the result:

X <2, 2, 1> = 41

Then the second subvalues of the second values of the second fields are
isolated and added:

A <2, 2, 2> = 12
B <2, 2, 2> = ""

This produces the second subvalue of the second value of the second field
of the result:

X <2, 2, 2> = 12

Since there are no more elements in either dynamic array, the result is:
X <1, 1, 1> = 136
X <1, 2, 1> = 513
X <1, 2, 2> = 8802
X <1, 2, 3> = 2468
X <1, 3, 1> = 10
X <2, 1, 1> = 4925
X <2, 2, 1> = 41
X <1, 2, 2> = 12

These elements are put into the resultant dynamic array, separated by the
delimiter mark corresponding to the highest levels that are different (for
example, X<1,1,1> and X<1,2,1> have different value levels, so they are
separated by a value mark). This yields the following:

X = 136V513S8802S2468V10F4925V41S12
2-26 BASIC Guide

REUSE Function
If two dynamic arrays are processed by the vector functions described in
the preceding section, and they contain unequal numbers of fields,
values, or subvalues, then zeros or empty strings are added to the shorter
list until the two lists are equal.

When you use the REUSE function, the last value in the shorter list is
reused until all the elements in the longer list are exhausted or until the
next higher delimiter is encountered.

Dynamic Array Operations and the Null Value
In all dynamic array operations an array reference to a null value treats
the null value as an unknown structure of the least bounding delimiter
level. For example, the extract operator (< >) extracts the requested data
element from a dynamic array. The result of extracting any element from
the null value itself is also the null value. If the requested dynamic array
element is the stored representation of the null value (CHAR(128)), the
null value is returned.

Consider the following three cases:

X is λ
Y = ^128
Z = ^128VA

X is the null value, Y is a dynamic array containing only the character
used to represent the null value (CHAR(128)), and Z is a dynamic array
containing two values, CHAR(128) and A, separated by a value mark.

If you extract all or part of the dynamic array from X, you get the null
value in all cases:

X<1> is λ
X<2> is λ
X<1,2> is λ

But if you extract all or part of the dynamic array from Y or Z, you get the
null value only when the extract operator specifically references that
element of the array:

Y<1> is λ
Y<2> = ""
Y<1,2> is λ

Z<1> = ^128VA
Z<2> = ""
Data Types, Variables, and Operators 2-27

Z<1,1> is λ
Z<1,2> = A

When the dynamic array extraction finds a string made up of only
CHAR(128) between two system delimiters or between a system
delimiter and an end-of-string character, CHAR(128) is converted to the
null value before any other operation is performed.

See the EXTRACT, INSERT, REPLACE, DELETE, REMOVE function, and
REUSE functions, and the INS, DEL, and REMOVE function statements
for details about how BASIC dynamic array operations handle the null
value.
2-28 BASIC Guide

3
Compiling BASIC

Programs

Before you can run a BASIC program, you must compile it with the DataStage
BASIC compiler. The compiler takes your source code as input and produces
executable object code.

Use the DataStage command CREATE.FILE to create a type 1 or type 19 file in
which to store the source code of your BASIC programs. You can create and edit
the source code with an operating system editor (such as vi), the DataStage Editor,
or a combination of the two.

BASIC

The BASIC Command
To compile a BASIC program, enter the BASIC command at the system prompt
using the following syntax:

BASIC filename [program |*] ... [options]
filename is the name of the type 1 or type 19 file containing the BASIC programs to
be compiled. You can compile more than one program at a time if you put all the
programs in the same file.

Compiling Programs in the Background
Use the PHANTOM command to compile BASIC programs in the background.
The output from PHANTOM processes is stored in the file named &PH&. For
example, the command:

>PHANTOM BASIC BP *
Compiling BASIC Programs 3-1

compiles all the programs in BP and puts the output in a record named
BASIC_tttt_dddd in the &PH& file (tttt and dddd are a time and date stamp).

BASIC Options
You can use the following options with the BASIC command:

A listing produced with either the −LIST or the −XREF option is saved in a file
whose name is made up of the source filename and a suffixed .L . The record ID of
the program listing in the listing file (filename.L) is the same as the record ID in the
program file (filename).

The +$ Option

The +$ option specifies the $OPTIONS options you want to turn on, or the flavor
you want the program to use. See the $OPTIONS statement for the list of options
and flavors. You must specify all options you want to turn on before the options
you want to turn off.

The –$ Option
The –$ option specifies the $OPTIONS options, or the flavor, you want to turn off.
See the $OPTIONS statement for the list of options and flavors. You must specify
all options you want to turn off after the options you want to turn on.

The –I Option
The −I option inhibits the execution of RAID or VLIST on your BASIC program.
This lets you bypass subroutines already debugged and provides security to your
subroutines.

+$option Turns on the specified $OPTIONS option, or defines a flavor.

–$option Turns off the specified $OPTIONS option or flavor.

−I Suppresses execution of RAID or VLIST on a compiler or a
BASIC program.

−LIST or −L Generates a listing of the program.

−XREF or −X Generates a cross-reference table of statement labels and vari-
able names used in the program.

−SPOOL or S Generates a listing of the program and spools it directly to the
printer rather than to a file.

−T Suppresses the symbol and line number tables that are usually
appended to the end of the object file, for run-time error
messages.
3-2 BASIC Guide

The –LIST Option
Listings produced with the −LIST option contain all source lines and all lines
inserted with the $INSERT or $INCLUDE statements. The listing is saved in a file
whose name is made up of the source filename and a suffixed .L . The record ID of
the program listing in the listing file is the same as the record ID in the program
file.

The –XREF Option
The −XREF option produces an alphabetical cross-reference listing of every label
and variable name used in the program. The listing is saved in a file whose name
is made up of the source filename and a suffixed .L . The record ID of the program
listing in the listing file is the same as the record ID in the program file.

Consider the following example:

>BASIC BP DATE.INT -XREF
Compiling: Source = 'PB/DATE.INT', Object = 'BP.O/DATE.NT'

Compilation Complete.
>ED BP.L DATE.INT
13 lines long.

----: P
0001: BP.L/DATE.INT Source Listing
0002:
0003:
0004: Cross Reference Listing
0005:
0006: Variable....... Type.......... References........................

0007:
0008: DATE Local Scalar 0003= 0004
0009:
0010: * Definition of symbol
0011: = Assignment of variable
0012: ! Dimension
0013: @ Argument to CALL

The listing shows three columns: Variable, Type, and References. Variable is the
name of the variable or symbol. Type is one of the following symbol types:

Local Scalar

Local Array

Common Scalar
Compiling BASIC Programs 3-3

References shows the numbers of all lines in the program that refer to the symbol.
Each line number can have a symbol after it to indicate what the line contains:

The –SPOOL Option
The −SPOOL option lets you direct output to a printer rather than to a file. Program
listings can be spooled for printing with this option.

The −SPOOL option is useful when the listing is very long and you need to look at
different parts of the program simultaneously.

The –T Option
The −T option suppresses the table of symbols and the table of line numbers that
are appended to the end of object files. These tables are used for handling run-time
error messages. Suppressing them results in somewhat smaller object files, but
run-time error messages do not know the line number or variable involved in the
error.

Compiler Directives
Compiler directives are BASIC statements that direct the behavior of the compiler.
Functions performed by compiler directives include: inserting source code from
one program into another program during compilation, setting compile-time
compatibility with another flavor, and specifying a condition for compiling certain

Common Array

Argument Variable used in SUBROUTINE statement

Array Arg Variable used in MAT clause

@variable One of the system @variables

Label A program label, as in GOTO FOO

Named Common Name of a named common segment

Predefined EQU Predefined equate like @FM, @VM, etc.

Equate User-defined equate

* Definition of symbol

= Assignment of variable

! Dimension of array

@ Argument to CALL statement
3-4 BASIC Guide

parts of a program. Most compiler directive statements are prefixed by a dollar
sign ($).

Including Other Programs
Two statements, $INCLUDE (synonyms are #INCLUDE and INCLUDE) and
$CHAIN, instruct the compiler to include the source code of another program in
the program currently being compiled. $INCLUDE inserts other code in your
program during compilation, returning afterward to compile the next statement in
your program $CHAIN also inserts the code of another program, but after doing
so it does not continue reading from the original file. Any program statements
following a $CHAIN statement are not compiled.

The syntax for both statements is as follows:

$INCLUDE [filename] program

$CHAIN [filename] program

If you do not specify filename, the included program must be in the same file as the
program you are compiling.

If program is in a different file, you must specify filename in the $INCLUDE state-
ment. filename must be defined in the VOC file.

The $INSERT statement is included for compatibility with Prime INFORMATION
programs. $INSERT is used, like $INCLUDE, to insert other code in your program
during compilation, returning afterward to compile the next statement in your
program.

The syntax for the $INSERT statement is as follows:

$INSERT primos.pathname

The PRIMOS pathname is converted to a valid filename using the following
conversion rules:

Any leading *> is ignored. If a full pathname is specified, the > between directory
names changes to a / to yield the following:

[pathname/] program

/ converts to ?\

? converts to ??

An ASCII NUL converts to ?0

An initial . converts to ?.
Compiling BASIC Programs 3-5

$INSERT uses the transformed argument directly as a filename of the file
containing the source to be inserted. It does not use the VOC file.

Defining and Removing Identifiers
You can define and remove identifiers with the $DEFINE and $UNDEFINE state-
ments. $DEFINE defines an identifier that controls program compilation. You can
also use it to replace the text of an identifier. $UNDEFINE removes the definition
of an identifier. You can use the identifier to control conditional compilation.

Use the $UNDEFINE statement to remove an identifier defined by a previous
$DEFINE statement from the symbol table. You can also specify conditional
compilation with the $UNDEFINE statement.

Specifying Flavor Compatibility
A $OPTIONS statement is a compiler directive used to specify compile-time
emulation of any flavor. By default the settings are the same as the flavor of the
account. A program can also specify individual options, overriding the usual
setting. This does not allow object code that has been compiled in one flavor to
execute in another. It allows only the emulation of capabilities of one flavor from
within another flavor.

Conditional Compilation
You can specify the conditions under which all or part of a BASIC program is to be
compiled, using:

• A modified version of the IF statement
• $IFDEF
• $IFNDEF

Conditional compilation with the modified IF statement is useful for customizing
large programs that are to be used by more than one kind of user. It can also reduce
the size of the object code and increase program efficiency.

You can use the compiler directives $IFDEF and $IFNDEF to control whether or
not sections of a program are compiled. Both of these compiler directives test a
given identifier to see if it is currently defined (that is, has appeared in a $DEFINE
compiler directive and has not been undefined). If the identifier that appears in a
$IFDEF is defined, all the program source lines appearing between the $IFDEF
compiler directive and the closing $ENDIF compiler directive are compiled. If the
identifier is not defined, all the lines between the $IFDEF compiler directive and
the $ENDIF compiler directive are ignored.
3-6 BASIC Guide

The $IFNDEF compiler directive is the complement to the $IFDEF compiler direc-
tive. The lines following the $IFNDEF compiler directive are included in the
compilation if the identifier is not defined. If the identifier is defined, all lines
between the $IFNDEF compiler directive and the $ENDIF compiler directive are
ignored. $IFDEF and $IFNDEF compiler directives can be nested up to 10 deep.

IF Statements
The syntax of the conditional compilation statement is the same as that of the IF
statement with the exception of the test expression, which must be one of the
following: $TRUE, $T, $FALSE, or $F. The syntaxes are as follows:

IF $TRUE THEN statements ELSE statements

IF $T THEN statements ELSE statements

IF $FALSE THEN statements ELSE statements

IF $F THEN statements ELSE statements

The conditional compilation statement can specify a variable name rather than one
of the test specifications listed previously. If it does, an EQUATE statement
equating the variable to the test specification must appear at the beginning of the
source code. For example:

EQUATE USER.A LIT "$T"
IF USER.A THEN statements ELSE statements

Consider a program that contains debugging statements in its source code. Using
the conditional compilation statement, you could create two versions of the object
code from the same source: a test version that contains the debugging statements,
and a release version without the debugging statements. The following steps
produce the two required versions of the program:

1. Include a conditional debugging statement throughout the source code:

IF TEST PRINT X,Y

2. Put the following statement in the source code before any conditional
statements:

EQUATE TEST LIT "$TRUE"

3. Compile the source code to produce object code that contains the debugging
statements (the test version).

4. Change the EQUATE statement to:

EQUATE TEST LIT "$FALSE"
Compiling BASIC Programs 3-7

5. Compile the source code to produce object code that does not contain the
debugging statements (the release version).

The $IFDEF Compiler Directive
$IFDEF uses the $IF…$ELSE…$ENDIF variation of conditional syntax. $IFDEF
tests for the definition of a compile-time symbol. If it is defined and the $ELSE
clause is omitted, the statements between $IFDEF and $ENDIF are compiled,
otherwise they are ignored. If the $ELSE clause is included, only the statements
between $IFDEF and $ELSE are compiled.

If the compile-time symbol is not defined and the $ELSE clause is included, only
the statements between $ELSE and $ENDIF are compiled.

The $ELSE compiler directive introduces the alternative clause of an $IFDEF
compiler directive. The $ENDIF compiler directive marks the end of a conditional
compilation block.

In the following example, identifier is not defined so the statements following the
$ELSE compiler directive are compiled. All the statements up to the $ENDIF
compiler directive are compiled.

$DEFINE identifier
.
.
.

$UNDEFINE identifier
$IFDEF identifier

[statements]
$ELSE

[statements]
$ENDIF

The $IFNDEF Compiler Directive

$IFNDEF tests for the definition of a compile-time symbol. If it is defined and the
$ELSE clause is omitted, the statements between $IFNDEF and $ENDIF are
ignored, otherwise they are compiled. If the $ELSE clause is included, only the
statements between $ELSE and $ENDIF are compiled.

If the compile-time symbol is not defined and the $ELSE clause is included, only
the statements between $IFNDEF and $ELSE are compiled.

The $ELSE compiler directive introduces the alternative clause of an $IFNDEF
compiler directive. The $ENDIF compiler directive marks the end of a conditional
compilation block.
3-8 BASIC Guide

In the following example the $IFNDEF compiler directive determines that identifier
is defined so that the compiler is forced to compile the statements following the
$ELSE compiler directive:

$DEFINE identifier
.
.
.

$IFNDEF identifier
[statements]

$ELSE
[statements]

$ENDIF

Warnings and Error Messages
As the compiler attempts to compile a program, various warnings and error
messages may appear, disclosing problems that exist in the source code (e.g., state-
ment format errors). When an error occurs, compilation aborts. All errors must be
corrected before compilation is successful. Warning messages do not stop
compilation.

During compilation, the compiler displays an asterisk on the screen for every 10
lines of source code successfully compiled. You can monitor the progress of the
compilation process by counting the number of asterisks on the screen at any time.
If an error is encountered, a question mark (?) rather than the asterisk (*) is
displayed for those 10 lines.

Successful Compilation
When all errors in the source code are corrected, the compiler successfully
completes the compilation by producing an object code record. The object code
record is stored in a file whose name is made up of the source filename suffixed
with .O (sourcename.O). The object code record ID is the same as the source file
record ID (program name).

For example, if source code record MAIN is stored in a file called BP, executing the
following compile statement:

>BASIC BP MAIN

compiles the source code in record MAIN in file BP, producing object code that is
stored in record MAIN in file BP.O . The compiler creates the object code file if it
does not exist.
Compiling BASIC Programs 3-9

The RUN Command
After you have successfully compiled your program, you can run it from the
DataStage system level with the RUN command. Enter the RUN command at the
system prompt. The syntax is as follows:

RUN [filename] program [options]
The RUN command appends .O to filename and executes the record containing
object code in filename.O . If filename is omitted, the default file, BP, is assumed.

program is the name of the source code of the program. options can be one or more
of the following:

For example, the following command executes the record MAIN in the BP.O file:

>RUN BP MAIN

Run-time error messages are printed on the terminal screen as they are encoun-
tered, unless the NO.WARN keyword was specified.

Note: Cataloged programs are considered executable files (that is, the RUN
command is not required). To run a cataloged program, enter its catalog
name at the system prompt.

Cataloging a BASIC Program
You must catalog a BASIC program in order to:

• Use the program as a subroutine in an I-descriptor
• Execute the program without using the RUN command

NO.WARN Suppresses all warning (nonfatal) messages.

NO.PAGE Turns off automatic paging. Programs that position the
cursor with @ functions do not need to disable
pagination.

LPTR Spools program output to the printer rather than to the
terminal screen.

KEEP.COMMON If the program is executed from within a chain, links the
unnamed common.

TRAP Causes the program to enter the interactive debugger,
RAID, whenever a nonfatal error occurs.
3-10 BASIC Guide

Catalog Space
There are three ways to catalog a program: locally, normally (standard), and
globally. Each has different implications. There is no one best way of cataloging.

Local Cataloging
Local cataloging creates a VOC entry for the program. This entry is a verb that
points to the file and record containing the object code for the cataloged program.
A locally cataloged program can be accessed only from the account in which it was
cataloged, unless you copy the VOC entry for the catalog name to another account.

Since cataloging a program locally only creates a VOC entry pointing to the object
file, you need not recatalog the program every time you recompile it.

Normal Cataloging
Normal cataloging copies the specified object record to the system catalog space
and gives it a name of the form:

*account*catalog.name

Normal cataloging also creates a VOC entry for the program. This entry is a verb
that contains the name *account*catalog in field 2. A normally cataloged program
can be accessed only from the account in which it was cataloged, unless you copy
the VOC entry for the catalog name to another account or specify the full catalog
name, including the account prefix.

Since cataloging a program normally copies the object code to the system catalog
space, you must recatalog the program every time you recompile it.

Global Cataloging
Global cataloging copies the specified object record into the system catalog space
and gives it a name in one of the following forms:

*catalog.name
−catalog.name
$catalog.name
!catalog.name

VOC entries are not created for globally cataloged programs. They are available to
all accounts on the system as soon as they are cataloged. The DataStage command
processor looks in the system catalog space for verbs or external subroutines that
have an initial *. The run machine looks in the system catalog space for verbs or
subroutines whose names begin with *, −, $, or ! .
Compiling BASIC Programs 3-11

Because cataloging a program globally copies the object code to the system catalog
space, you must recatalog the program every time you recompile it.

Note: Because the command processor interprets any line beginning with an
asterisk and containing blanks as a comment, you cannot use command
parameters when you invoke a globally cataloged program. That is, you
can use the following command to run the globally catalog program
*GLOBAL, but you cannot include arguments in the command line:

>*GLOBAL

The CATALOG Command
The CATALOG command is used to catalog a compiled BASIC program, either
locally or in the system catalog space. The syntax of the CATALOG command is as
follows:

CATALOG [filename] [[catalog.name] program.name | *] [options]
If you simply enter CATALOG at the system prompt, you are prompted for the
argument values, one at a time:

>CATALOG
Catalog name or LOCAL =LOCAL
File name =BP
Program name =MONTHLY.SALES

If you press Return at any of the prompts, CATALOG terminates without cata-
loging anything. FORCE or NOXREF cannot be specified at a prompt. You can
specify the LOCAL keyword in response to the prompt for catalog.name.

If you do not specify catalog.name, CATALOG uses the program name as the
catalog name.

Deleting Cataloged Programs
There are two commands for removing a program from the shared catalog space:
DELETE.CATALOG and DECATALOG.

DELETE.CATALOG
The DELETE.CATALOG command removes locally, normally, or globally cata-
loged programs. It has the following syntax:

DELETE.CATALOG catalog.name
3-12 BASIC Guide

catalog.name is used to determine if the program is either globally or normally cata-
loged. If it is, the program is removed from the system catalog. If the program is
not in the system catalog, the VOC file is searched for a local catalog entry. If the
program is locally cataloged, only the VOC entry is deleted, not the object code.

If a program is running when you try to delete it, the deletion does not take effect
until the program terminates.

DECATALOG
The DECATALOG command removes a locally cataloged program. It deletes the
object code and removes the catalog entry from the user’s VOC file. It has the
following syntax:

DECATALOG [filename [[program]]
This command deletes the object code of program from the “.O” portion of filename.
Use an asterisk (*) in place of program to indicate all records in the file. This
command can also be executed after building a select list of programs to be
decataloged.

Catalog Shared Memory
DataStage lets you load BASIC programs from the system catalog into shared
memory and run them from there. This reduces the amount of memory needed for
multiple users to run the same program at the same time. The program also starts
a little faster since it is already in memory and does not have to be read from a disk
file.

For example, if 21 users are running the same BASIC program at the same time
without catalog shared memory, and the program code requires 50 kilobytes of
memory, the total amount of memory used by everyone running that program is
21*50, or 1050, kilobytes. On the other hand, if the program is loaded into catalog
shared memory, all 21 users can run one copy of the program, which uses only 50
kilobytes of memory. In this example, catalog shared memory saves 1000 kilobytes,
or one megabyte, of memory.

Before users can have access to programs running from catalog shared memory,
the system administrator must explicitly choose the programs and load them into
memory.
Compiling BASIC Programs 3-13

3-14 BASIC Guide

4
Locks, Transactions, and

Isolation Levels

This chapter describes the DataStage BASIC mechanisms that prevent lost updates
and other problems caused by data conflicts among concurrent users:

• Locks
• Transactions
• Isolation levels

Locks
DataStage locks control access to records and files among concurrent users. To
provide this control, DataStage supports the following two levels of lock
granularity:

• Fine granularity (record locks)
• Coarse granularity (file locks)

The level at which you acquire a lock is known as granularity. Record locks affect a
smaller component (the record) and provide a fine level of granularity, whereas file
locks affect a larger component (the file) and provide a coarse level of granularity.

Lock compatibility determines what your process can access when other processes
have locks on records or files. Record locks allow more compatibility because they
coexist with other record locks, thus allowing more transactions to take place
concurrently. However, these “finer-grained” locks provide a lower isolation level.
File locks enforce a higher isolation level, providing more concurrency control but
less compatibility.

Lock compatibility decreases and isolation level increases as strength and granu-
larity increase. This can increase the possibility of deadlocks at high isolation
Locks, Transactions, and Isolation Levels 4-1

levels. Within each granularity level, the strength of the lock can vary. DataStage
supports the following locks in order of increasing strength:

• Shared record lock
• Update record lock
• Shared file lock
• Intent file lock
• Exclusive file lock

The locks become less compatible as the granularity, strength, and number of locks
increase. Therefore the number of lock conflicts increase, and fewer users can
access the records and files concurrently. To maximize concurrency, you should
acquire the minimum lock required to perform a BASIC statement for the shortest
period of time. The lock can always be promoted to a lock of greater strength or
escalated to a coarser level of granularity if needed.

Shared Record Lock
This lock is also called a READL lock, and is displayed as RL in the LIST.READU
output. The shared record lock affects other users as follows:

The shared record lock can be promoted or escalated as follows:

Lets other users
acquire:

Prevents other users
from acquiring: Is ignored if you already own:

Shared record lock Update record lock Shared record lock

Shared file lock Exclusive file lock Update record lock

Intent file lock Shared file lock
Intent file lock
Exclusive file lock

Promoted to... If...

Update record lock No shared record locks are owned by another user
No shared file locks are owned by another user
No intent file locks are owned by another user
4-2 BASIC Guide

In DataStage BASIC a shared record lock can be acquired with a MATREADL,
READL,READVL, or RECORDLOCK statement, and released with a CLOSE,
RELEASE, or STOP statement.

Update Record Lock
This lock is also called a READU lock, and is displayed as RU in the LIST.READU
output. The update record lock affects other users as follows:

Note: An update record lock you own is incompatible with a shared file lock you
own. Be sure to use a LOCKED clause to avoid deadlocks.

The update record lock can be escalated as follows:

In DataStage BASIC an update record lock can be acquired or escalated from a
shared record lock with a MATREADU,READU, READVU, or RECORDLOCK
statement, and released with a CLOSE, DELETE, MATWRITE, RELEASE, STOP,
WRITE, or WRITEV statement.

Escalated to... If...

Shared file lock No intent file locks are owned by another user
No update record locks are owned by another user

Intent file lock No intent file locks are owned by another user
All update record locks are owned by you

Exclusive file lock No intent file locks are owned by another user
All shared and update record locks are owned by you

Lets other users
acquire:

Prevents other users
from acquiring: Is ignored if you already own:

No locks Shared record lock
Update record lock
Shared file lock
Intent file lock
Exclusive file lock

Update record lock
Exclusive file lock

Escalated to... If...

Intent file lock All update record locks are owned by you

Exclusive file lock All shared and update record locks are owned by you
Locks, Transactions, and Isolation Levels 4-3

Shared File Lock
This lock is displayed as FS in the LIST.READU output. The shared file lock affects
other users as follows:

Note: A shared file lock you own is incompatible with an update record lock you
own. Be sure to use a LOCKED clause to avoid deadlocks.

The shared file lock can be promoted as follows:

In DataStage BASIC a shared file lock can be acquired or promoted with a FILE-
LOCK statement and released with aCLOSE, FILEUNLOCK, RELEASE, or STOP
statement.

Intent File Lock
This lock is displayed as IX in the LIST.READU output. The intent file lock affects
other users as follows:

Lets other users
acquire:

Prevents other users
from acquiring: Is ignored if you already own:

Shared record lock Update record lock Shared file lock

Shared file lock Intent file lock
Exclusive file lock

Intent file lock
Exclusive file lock

Promoted to... If...

Intent file lock No shared file locks are owned by another user

Exclusive file lock No shared file or record locks are owned by another user

Lets other users
acquire:

Prevents other users
from acquiring: Is ignored if you already own:

Shared record lock Update record lock
Shared file lock
Intent file lock
Exclusive file lock

Intent file lock
Exclusive file lock
4-4 BASIC Guide

The intent file lock can be promoted as follows:

In DataStage BASIC, an intent file lock can be acquired or promoted from a shared
file lock with a FILELOCK statement, and released with a CLOSE, FILEUNLOCK,
RELEASE, or STOP statement.

Exclusive File Lock
This lock is displayed as FX in the LIST.READU output. The exclusive file lock
affects other users as follows:

In DataStage BASIC an exclusive file lock can be acquired from a shared file lock
with a FILELOCK statement and released with a CLOSE, FILEUNLOCK,
RELEASE, or STOP statement.

Deadlocks
Deadlocks occur when two users who acquire locks incrementally try to acquire a
lock that the other user owns, and the existing lock is incompatible with the
requested lock. The following situations can lead to deadlocks:

• Lock promotion from a shared record or shared file lock to a stronger lock
• Lock escalation to file locks when two users try to escalate at the same time

You can configure DataStage to automatically identify and resolve deadlocks as
they occur through the Deadlock Daemon Administration menu, or you can
manually fix a deadlock by selecting and aborting one of the deadlocked user
processes. You use the deadlock daemon dsdlockd to identify and resolve dead-
locks. For more information, see Administering DataStage.

Promoted to... If...

Exclusive file lock No shared record locks are owned by another user

Lets other users
acquire:

Prevents other users
from acquiring: Is ignored if you already own:

No locks Shared record lock
Update record lock
Shared file lock
Intent file lock
Exclusive file lock

Exclusive file lock
Locks, Transactions, and Isolation Levels 4-5

Transactions
A transaction is a group of logically related operations on the database. In a trans-
action either the entire sequence of operations or nothing at all is applied to the
database. For example, a banking transaction that involves the transfer of funds
from one account to another involves two logically related operations: a with-
drawal and a deposit. Both operations, or neither, must be performed if the
accounts concerned are to remain reconciled.

Active Transactions
DataStage BASIC supports nested transactions. Any transaction can include:

• Read and write operations

• Other transactions or subtransactions that can contain other operations or
other transactions

When a transaction begins, it is active. If a second transaction begins before the first
transaction is committed or rolled back, the new (child) transaction becomes the
active transaction while the first (parent) transaction continues to exist but inac-
tively. The child transaction remains active until:

• It is committed or rolled back, when the parent transaction becomes active
again

• Another transaction (child) begins and becomes the active transaction

Only one transaction can be active at any time, although many transactions can
exist concurrently. Only one transaction can exist at each transaction nesting level.
The top-level transaction is at nesting level 1. When no transactions exist, the
nesting level is 0.

Transactions and Data Visibility
Transactions let you safeguard database files by caching database operations in the
active transaction until the top-level transaction is committed. At this point the
cached operations are applied to the database files, and other users can see the
result of the transaction.

When a read operation for a record occurs, the most recent image of the record is
returned to the user. This image is retrieved from the active transaction cache. If it
is not found there, the parent transactions are then searched. Finally, if it is not
found in the parent transactions, the image is retrieved from the database file.
4-6 BASIC Guide

When a child transaction is committed, the operations are adopted by the parent
transaction. When it is rolled back, the operations are discarded and do not affect
the database or the parent transaction.

Transaction Properties
Each transaction must possess properties commonly referred to as the ACID
properties:

• Atomicity
• Consistency
• Isolation
• Durability

In nested transactions, child transactions exhibit atomicity, consistency, and isola-
tion properties. They do not exhibit the durability property since the parent adopts
its operation when it is committed. The operations affect the database only when
the top-level transaction is committed. Therefore, even though a child transaction
is committed, its operations and locks can be lost if the parent transaction is rolled
back.

Atomicity
Either all the actions of a transaction occur successfully or the transaction is nulli-
fied by rolling back all operations. The transaction system ensures that all
operations performed by a successfully committed transaction are reflected in the
database, and the effects of a failed transaction are completely undone.

Consistency

A transaction moves the database from one valid state to another valid state, and
if the transaction is prematurely terminated, the database is returned to its
previous valid state.

Isolation
The actions carried out by a transaction cannot become visible to another transac-
tion until the transaction is committed. Also, a transaction should not be affected
by the actions of other concurrent transactions. DataStage provides different isola-
tion levels among concurrently executing transactions.
Locks, Transactions, and Isolation Levels 4-7

Durability
Once a transaction completes successfully, its effects cannot be altered without
running a compensating transaction. The changes made by a successful transac-
tion survive subsequent failures of the system.

Serializability
In addition to the ACID properties, SQL standards stipulate that transactions be
serializable. Serializability means that the effects of a set of concurrent transactions
should produce the same results as though the individual transactions were
executed in a serial order, and as if each transaction had exclusive use of the
system. In DataStage, serializability can be achieved by using isolation level 4 for
all transactions.

Transactions and Locks
Locks acquired either before a transaction exists or outside the active transaction
are inherited by the active transaction. Locks acquired or promoted within a trans-
action are not released. Instead they adhere to the following behavior:

• Locks acquired or promoted within a child transaction are adopted by the
parent transaction when the child is committed.

• Locks acquired within a child transaction are released when the child trans-
action is rolled back.

• Locks promoted within a child transaction are demoted to the level they
were before the start of the child transaction when the child is rolled back.

• All locks acquired, promoted, or adopted from child transactions are
released when the top-level transaction is committed or is rolled back.

Transactions and Isolation Levels
If you do not specify an isolation level for the top-level transaction, the default
isolation level 0 is used. You can change this default by using the BASIC SET
TRANSACTION ISOLATION LEVEL statement.

If an isolation level is not specified for a child transaction, the isolation level is
inherited from the parent transaction. A specified isolation level should be the
same or higher than the parent’s isolation level. Isolation levels that are lower than
the parent transaction’s isolation level are ignored, and the parent’s isolation level
is used. This occurs because a child transaction’s operations must take place under
the protection of the higher isolation level so that when it merges with the parent
transaction, its data is still valid.
4-8 BASIC Guide

Using Transactions in BASIC
The compiler enforces the creation of well-formed transactions. A well-formed
transaction occurs when data is locked before it is accessed. A BASIC transaction
must include the following three statements:

• BEGIN TRANSACTION
• At least one COMMIT or ROLLBACK statement
• END TRANSACTION

If one of these statements is omitted or out of order, the program does not compile.

The run machine also enforces the use of well-formed transactions. A transaction
starts when BEGIN TRANSACTION is executed and ends when COMMIT or
ROLLBACK is executed. Program execution then continues at the statement
following the next END TRANSACTION statement.

The following example shows transactions in a BASIC program:

BEGIN TRANSACTION ISOLATION LEVEL 1
* acquire locks and execute database operations

BEGIN TRANSACTION ISOLATION LEVEL 4
* acquire locks and execute database operations

BEGIN TRANSACTION ISOLATION LEVEL 3
COMMIT
END TRANSACTION
BEGIN TRANSACTION ISOLATION LEVEL 0
* acquire locks and execute database operations
ROLLBACK
END TRANSACTION

COMMIT
END TRANSACTION

COMMIT
END TRANSACTION

@Variables
You can use the following @Variables to track transaction activity:

• @ISOLATION
• @TRANSACTION
• @TRANSACTION.ID
• @TRANSACTION.LEVEL

@ISOLATION indicates the current transaction isolation level (0, 1, 2, 3, or 4) for
the active transaction, or the current default isolation level if no transaction exists.
Locks, Transactions, and Isolation Levels 4-9

@TRANSACTION is a numeric value that indicates transaction activity. Any
nonzero value indicates that a transaction is active. 0 indicates that no active trans-
action exists.

@TRANSACTION.ID indicates the transaction number of the active transaction.
An empty string indicates that no transaction exists.

@TRANSACTION.LEVEL indicates the transaction nesting level of the active
transaction. 0 indicates that no transaction exists.

Transaction Restrictions
Other than memory and disk space, there is no restriction on the number of nesting
levels in transactions. However, it is important to remember that having many
levels in a transaction affects system performance.

You cannot use the following statements while a transaction is active. Doing so
causes a fatal error.

• CLEARFILE
• SET TRANSACTION ISOLATION LEVEL

You cannot use the EXECUTE or PERFORM statements in a transaction to execute
most DataStage commands and SQL statements. However, you can use EXECUTE
and PERFORM to execute the following DataStage commands and SQL statements
within a transaction:

If a BASIC statement in a transaction has an ON ERROR clause and a fatal error
occurs, the ON ERROR clause is ignored.

Isolation Levels
isolation level
Setting a transaction’s isolation level helps avoid various data anomalies.
DataStage BASIC lets you set different isolation levels depending on which data
anomalies you want to avoid. Your transaction runs at the specified isolation level

CHECK.SUM INSERT SEARCH SSELECT
COUNT LIST SELECT (RetrieVe) STAT
DELETE (SQL) LIST.ITEM SELECT (SQL) SUM
DISPLAY LIST.LABEL SORT UPDATE
ESEARCH RUN SORT.ITEM
GET.LIST SAVE.LIST SORT.LABEL
4-10 BASIC Guide

because the transaction subsystem verifies that you have acquired the required
locks for that isolation level. If you have not done so, the program fails.

You can specify isolation levels with the following BASIC statements:

• BEGIN TRANSACTION
• SET TRANSACTION ISOLATION LEVEL

You can use the LOGIN entry in the VOC file to set the isolation level for a session.
Do this by including a SET.SQL command that sets the isolation level. This sets the
default isolation level for all transactions that occur during that session, including
DataStage commands and SQL statements. For example, the program might
include the statement SET.SQL ISOLATION 2 to set the isolation level to 2 each
time a user logs in to the account. This affects all SQL statements and BASIC trans-
actions that occur during this session.

Isolation Level Types
DataStage BASIC provides the following types of isolation level:

Each level provides a different degree of protection against the anomalies
described in the following section. Only level 4 provides true serializability.
However, due to performance issues, for a large system we recommend that you
use level 2 rather than 3 or 4 for most programs. DataStage provides a default of 0
for backward compatibility.

Data Anomalies
Isolation levels provide protection against the following data anomalies or
conflicts that can occur when two processes concurrently access the data:

• Lost updates occur when two processes try to update an object at the same
time. For example, Process A reads a record. Process B reads the same
record, adds 10, and rewrites it. Process A adds 20 to the record that it
previously read, and rewrites the record. Thus, Process B’s update is lost.

Level Type

0 NO.ISOLATION

1 READ.UNCOMMITTED

2 READ.COMMITTED

3 REPEATABLE.READ

4 SERIALIZABLE
Locks, Transactions, and Isolation Levels 4-11

• Dirty reads occur when one process modifies a record and a second process
reads the record before the first is committed. If the first process terminates
and is rolled back, the second process has read data that does not exist.

• Nonrepeatable reads occur when a process is unable to ensure repeatable
reads. For example, this can occur if a transaction reads a record, another
transaction updates it, then the first transaction rereads it, and gets a
different value the second time.

• Phantom writes occur when a transaction selects a set of records based on
selection criteria and another process writes a record that meets those
criteria. The first process repeats the same selection and gets a different set
of records.

Table 4-1 lists the data anomalies and the isolation levels at which they can occur.

Using the ISOMODE Configurable Parameter
The ISOMODE parameter controls the minimum locking requirements for each
DataStage system. By enforcing a minimum level of locking, the transaction
management subsystem guarantees that no transaction suffers a lost update due to
the actions of another transaction. Protection against lost updates is an important
property of serializability. You can set ISOMODE to one of the following settings:

Table 4-1. Levels at Which Anomalies Can Occur

Anomaly Level 0 Level 1 Level 2 Level 3 Level 4

Lost update No1

1. Lost updates cannot occur if ISOMODE is set to 2 or 1. If ISOMODE is 0, it is possible
for a process running at isolation level 0 to cause a lost update in your process.

No No No No

Dirty read Yes Yes No No No

Nonrepeatable read Yes Yes Yes No No

Phantom write Yes Yes Yes Yes No

Setting Description

0 Provides backward compatibility. Transactions are not required
to use well-formed writes.

1 Enforces well-formed writes in BASIC transactions. This is the
default.

2 Enforces well-formed writes in BASIC programs, whether or
not they are in a transaction.
4-12 BASIC Guide

The default ISOMODE setting 1 ensures that BASIC transactions obey the locking
rules for isolation level 1, as described in Table 4-2. This means a record cannot be
written or deleted in a transaction unless the record or file is locked for update. A
write or delete of a locked record is known as a well-formed write.

ISOMODE setting 0 provides compatibility with earlier releases that did not
enforce the requirement for well-formed writes in transactions. Since transactions
should always use well-formed writes, we recommend that you modify any trans-
actions that do not follow this rule as soon as possible, so that you can set
ISOMODE to 1.

Setting ISOMODE to 2 enforces all writes and deletes in BASIC to be well-formed.
This mode is available so that when converting an application to use transactions,
you can determine whether any programs have not yet been converted. You
should not use ISOMODE 2 permanently since many system programs are not
(and need not be) transactional.

Isolation Levels and Locks
In transactions you must consider the level of isolation you need to perform the
task, since DataStage uses locks to ensure that the isolation levels are achieved. As
the isolation level increases, the granularity of the locks required becomes coarser.
Therefore the compatibility of locks as well as the number of concurrent users
accessing the records and files decreases.

The BASIC run machine checks that the user has acquired the necessary locks to
perform a BASIC statement. If the minimum locks for the current isolation level are
not held by the user, a fatal error results.

The minimum locks required in a transaction to achieve isolation levels that ensure
successful file operation are listed in Table 4-2.

Table 4-2. Isolation Level Locking Requirements

Operation Isolation Level Minimum Lock

Read 0 NO.ISOLATION None

1 READ.UNCOMMITTED None

2 READ.COMMITTED Shared record lock (RL)

3 REPEATABLE.READ Shared record lock (RL)

4 SERIALIZABLE Shared file lock (FS)
Locks, Transactions, and Isolation Levels 4-13

In the SQL environment DataStage automatically acquires the locks it needs to
perform SQL DML (data manipulation language) statements. Lock escalation from
record locks to file locks occurs if the number of record locks acquired or promoted
within a file in a transaction associated with the SQL DML statements exceeds the
value of the configurable parameter MAXLOCK (the default value is 100). This
ensures that the record lock tables do not fill to capacity with large multirow
statements.

Example
The following example illustrates how isolation levels affect transactions. A trans-
action running at isolation level 2 deletes records for Customer 100 from the file
CUST. The transaction scans the file ORDERS for all orders placed by this customer
and deletes each order. The part of the transaction that deletes the orders does not
want to lock the ORDERS file unnecessarily.

The following program illustrates how lock escalation takes place:

OPEN "CUST" TO CUST ELSE
STOP "Cannot open CUST file"

END
OPEN "ORDERS" TO ORDERS ELSE

CLOSE CUST
STOP "Cannot open ORDERS file"

END
LOCK.COUNT = 0

** escalate record locks into file locks

Delete or
Write

0 NO.ISOLATION1 None, or update record lock (RU)1

1 READ.UNCOMMITTED Update record lock (RU)

2 READ.COMMITTED Update record lock (RU)

3 REPEATABLE.READ Update record lock (RU)

4 SERIALIZABLE Update record lock (RU) and
intent file lock (IX)

Select 4 SERIALIZABLE Intent file lock (IX)

1. Different ISOMODE settings affect the locking rules for isolation level 0.

Table 4-2. Isolation Level Locking Requirements (Continued)

Operation Isolation Level Minimum Lock
4-14 BASIC Guide

** when 10 records have been locked
LOCK.ESCALATE = 10
BEGIN TRANSACTION ISOLATION LEVEL 2

READU CUST.REC FROM CUST,100 THEN
SELECT ORDERS

GET.NEXT.RECORD:
LOOP
WHILE READNEXT ORDERS.NO DO

** if lock escalation limit has not been met
** obtain a shared record lock for the order
IF LOCK.COUNT < LOCK.ESCALATE THEN

READL ORDERS.REC FROM ORDERS,ORDERS.NO ELSE
GOTO GET.NEXT.RECORD:

END
LOCK.COUNT = LOCK.COUNT + 1

END ELSE
** if lock escalation limit has been reached
** obtain intent file lock since the file
** needs to be updated
IF LOCK.COUNT = LOCK.ESCALATE THEN

FILELOCK ORDERS,"INTENT"
END
READ ORDERS.REC FROM ORDERS,ORDERS.NO ELSE

GOTO GET.NEXT.RECORD:
END

END
IF ORDERS.REC<1> = 100 THEN

IF LOCK.COUNT < LOCK.ESCALATE THEN
** promote shared record lock to
** an exclusive record lock

READU ORDERS.REC FROM ORDERS,ORDERS.NO THEN NULL
END ELSE
** promote intent file lock to
** an exclusive file lock

IF LOCK.COUNT = LOCK.ESCALATE THEN
FILELOCK ORDERS,"EXCLUSIVE"

END
END
DELETE ORDERS,ORDERS.NO

END
REPEAT
DELETE CUST,100

END
COMMIT
END TRANSACTION
CLOSE CUST
CLOSE ORDERS
END
Locks, Transactions, and Isolation Levels 4-15

4-16 BASIC Guide

5
Debugging Tools

DataStage provides two debugging tools: RAID and VLIST. RAID is an interactive
debugger. VLIST is a diagnostic tool that lists source code followed by object code,
as well as statistics about your program.

Note: You cannot run RAID or VLIST on programs compiled with the −I option.

RAID

RAID
You can use RAID with your DataStage BASIC programs. RAID is both an object
code and a source code debugger—a powerful tool for detecting errors in
DataStage BASIC code. RAID lets you do the following:

• Set and delete breakpoints. You can suspend execution of the program at
specified lines by setting breakpoints in the source code. Once RAID
suspends program execution, you can examine the source code, change or
display variable values, set additional breakpoints, or delete breakpoints.

• Set watchpoints. You can keep track of changes to variable values by
setting watchpoints in the source code. When a variable’s value changes,
RAID can print both the old and new values and the source instruction that
caused the change.

• Step through and display source code, line by line or in segments.

• Examine object addresses.

• Display and modify variables.

• Display all the elements of an array in succession.

You can invoke RAID from the command processor, from within a BASIC
program, or by pressing the Break key while your BASIC program is executing.
Debugging Tools 5-1

Invoking RAID from the Command Processor
To invoke RAID from the command processor, enter the RAID command instead
of the RUN command. The syntax for invoking RAID from the command
processor is as follows:

RAID [filename] program [options]
filename is the name of the file in which the source code is stored. RAID appends
“.O” to filename in order to locate and operate on the object code. If you do not
specify filename, RAID assumes the BP file by default.

program is the name of the record containing the source code of the program.

options can be one or more of the following:

Use RAID the same way you use RUN. This causes RAID to be invoked just before
program execution. For example, the following command executes the file
BP.O/MAIN using the RAID debugger:

>RAID BP MAIN

When you invoke RAID from the command processor, RAID displays the first
executable source code instruction, followed by a double colon (::). Enter a RAID
command at the :: prompt. To run the program, enter R at the :: prompt. To quit
RAID, enter Q. RAID commands are discussed in detail in “RAID Commands” on
page 5-4.

NO.WARN Suppresses all warning (nonfatal) error messages. If you do
not specify NO.WARN, run-time error messages are printed
on the terminal screen as they are encountered.

NO.PAGE Turns off automatic paging. Programs that position the
cursor with @ functions need not disable pagination.

LPTR Spools program output to the printer rather than to the
terminal.

KEEP.COMMON Maintains the value of variables in unnamed common if a
CHAIN statement passes control to another BASIC program.

TRAP Causes RAID to be reentered whenever a nonfatal error
occurs.
5-2 BASIC Guide

Invoking RAID from a BASIC Program
To invoke RAID from a program, include the DEBUG statement in the program.
The syntax is as follows:

DEBUG

The DEBUG statement takes no arguments. When the run machine encounters this
statement, the program stops execution, displays a double colon (::), and prompts
you to enter a RAID command.

You can also enter the debugger while a BASIC program is running by pressing the
Break key and then selecting the break option D.

Invoking RAID Using the Break Key
To invoke RAID using the Break or Intr key, press the Break key during execution
and then select the break option D.

Referencing Variables Through RAID
Enter variable names as they appear in the BASIC source program. They are case-
sensitive, so “A” is not the same variable as “a”.

In addition to regular variable names, you can reference some special “register”
variables with RAID. DataStage BASIC object code is executed by the run machine.
When you assign a new variable, the run machine allocates memory for that vari-
able and creates a pointer to that memory location. There are special variables that
the run machine uses to hold temporary information. These are the “registers” that
can be referenced by $R0 through $Rn, and a matrix address variable referenced by
$MATRIX. An arbitrary number of these registers is available, depending on the
needs of your program. The appropriate amount is always made available. You
never have more than you need.

Note: Unreferenced variables are not carried in the symbol table of BASIC object
code. Therefore, RAID can only display the contents of variables referenced
in the current subroutine. RAID ignores all unreferenced variables, and
treats them as unknown symbols.

Registers hold intermediate values in a program. For example, for the following
statement the sum of 3 and 4 is evaluated and placed in $R0:

A=B:3+4
Debugging Tools 5-3

The object code evaluates the statement as:

A=B:$R0

The $MATRIX variable is sometimes used as a pointer to a specific element of an
array. It avoids the need to locate the element more than once in the same state-
ment. For example, in the REMOVE statement, the following statement allows for
successive system-delimited substrings in the third element of array B to be put in
variable A and a delimiter code setting put in variable C:

REMOVE A FROM B(3) SETTING C

The reference to the third element of array B is put in the $MATRIX pointer. The
object code evaluates the statement as follows:

REMOVE A FROM $MATRIX SETTING C

RAID Commands
You can enter any RAID command from the double colon (::) prompt. RAID
commands have the following general syntax:

position command qualifier

position Tells where and how often to execute the RAID command in the
program. You can provide one of the following:

line The decimal number of a line of the source code.

address The hexadecimal address of an object code instruction,
indicated by a leading 0X.

procedure The name of a procedure in the source code.

variable The name of a variable in the source code. You must
specify the variable exactly as it appears in the source
code. Variable names are case-sensitive, so “A” is not the
same as “a”. Subscript variable to indicate an element of
an array. For example, A[1,2].

n Indicates the number of times to execute the command.

qualifier Can be either of the following:

string A string of characters to search for or to replace the value
of a variable.

* Indicates a special form of the specified command.
5-4 BASIC Guide

Table 5-1 summarizes the RAID commands.

Table 5-1. RAID Commands

Command Description

line Displays the specified line of the source code.

/[string] Searches the source code for string.

B Sets a RAID breakpoint.

C Continues program execution.

D Deletes a RAID breakpoint.

G Goes to a line or address, and continues program execution.

H Displays statistics for the program.

I Displays and executes the next object code instruction.

L Displays the next line to be executed.

M Sets watchpoints.

Q Quits RAID.

R Runs the program.

S Steps through the BASIC source code.

T Displays the call stack trace.

V Enters verbose mode for the M command.

V* Prints the compiler version that generated the object code.

W Displays the current window.

X Displays the current object code instruction and address.

X* Displays local run machine registers and variables.

Z Displays the next 10 lines of source code.

$ Turns on instruction counting.

Turns on program timing.

+ Increments the current line.

− Decrements the current line.

. Displays object code instruction and address before execution.

variable/ Prints the value of variable.

variable!string Changes the value of variable to string.
Debugging Tools 5-5

line: Displaying Source Code Lines
line displays a line of the source code specified by its line number. Note that this
command displays but does not change the current executable line.

/ : Searching for a Substring
Use a slash followed by a string to search the source code for the next occurrence
of the substring string. The syntax is as follows:

/[string]
The search begins at the line following the current line. If string is found, RAID sets
the current line to the line containing string and displays that line. If you issue the
/ command without specifying string, RAID searches for the last-searched string.
This is an empty string if you have not yet specified a string during this RAID
session. If RAID encounters the end of file without finding string, it starts at the
first line and continues the search until it finds string or returns to the current line.

B: Setting Breakpoints
Use the B command to set or list RAID breakpoints. There are two syntaxes:

[address | line | procedure [: line]] :B

B*

You can set a RAID breakpoint at the current line, an object code address, a BASIC
source line number, the beginning of a specified procedure, or a BASIC source line
number within a specified procedure. RAID recognizes lines in called subroutines.
RAID executes the program up to the breakpoint and then stops and issues the ::
prompt. At that point you can issue another RAID command.

The following example sets breakpoints at line 30 and line 60 of the source code,
then runs the program. The program stops executing and displays the RAID
prompt when it reaches line 30, and again when it reaches line 60.

::30B
::60B
::R

The B* command lists all currently active breakpoints.

C: Continuing Program Execution
Use the C command to continue program execution until RAID encounters a
breakpoint, or until completion. The C command turns off verbose mode (use the
5-6 BASIC Guide

V command to enter verbose mode). If the TRAP command line option is used,
RAID is entered at every nonfatal error.

D: Deleting Breakpoints
Use the D command to delete RAID breakpoints. There are two syntaxes:

[address | line] D

D*

You can delete a RAID breakpoint at the current line, an object code address, or a
BASIC source line number. If you use the * option, this command deletes all break-
points. Some BASIC statements produce multiple run machine statements. If you
delete a breakpoint by line number, RAID tries to match the starting address of the
BASIC source number. A breakpoint set at anything other than the starting address
of a BASIC source line must be deleted by its address.

G: Continuing Program Execution from a Specified Place
Use the G command to go to the line or address specified and to execute the
program from that point. The syntax is as follows:

address | line G

H: Displaying Program Information
Use the H command to display the version of BASIC used to compile the program,
the number of constants used, the number of local variables used, the number of
subroutine arguments passed, the object code size, and what procedure RAID was
in when the program failed (main program versus subroutine).

I: Executing the Next Object Code Instruction
Use the I command to display and execute the next object code instruction. The
syntax is as follows:

[n] I

If you use the n option, RAID displays and executes the next n instructions.

L: Displaying the Next Line
Use the L command to display the next line to be executed.
Debugging Tools 5-7

M: Setting Watchpoints
Use the M command to set watchpoints. The syntaxes are as follows:

variable M [; [variable] M …]
variable =VALUE M

variable is a variable found in the symbol table.

VALUE is the value that you want to break.

The second syntax lets you set a watchpoint for a variable set to a specific value.

A watchpoint condition occurs when RAID monitors a variable until the variable’s
value changes. The program then suspends operation and displays the variable’s
old value, its new value, and the source instruction that caused the change to occur.
If no change occurs, no display appears. This command accepts up to eight vari-
ables. To continue monitoring a variable after RAID has already displayed a
change to that variable’s value, you need only enter M again, not variable M.

Q: Quitting RAID
Use the Q command to quit RAID.

R: Running the Program
Use the R command to run the program until RAID encounters a breakpoint, or
until completion. The R command is the same as the C command. The R command
turns off verbose mode (use the V command to enter verbose mode). If you specify
the TRAP command line option, RAID is entered at every nonfatal error.

S: Stepping Through the Source Code

Use the S command to execute the current line and display the next line of source
code. Use multiple S commands to step through the program. The syntax is as
follows:

[n] S [*]
If the line includes a subroutine call, RAID steps into the subroutine. If you use the
n option, RAID steps through the next n lines. If you use the * option, RAID steps
around any subroutine call, essentially treating the entire subroutine as a single
line. That is, the S* command instructs RAID to display and execute a source line.
If the line includes a subroutine call, RAID executes the subroutine and displays
the first source line occurring after the subroutine returns.
5-8 BASIC Guide

T: Displaying the Call Stack Trace
Use the T command to display the call stack trace. It displays the names of the
routines that have been called up to the current subroutine.

V: Entering Verbose Mode
Use the V command to enter verbose mode for the M command. In verbose mode
RAID displays every source code line until a watchpointed variable’s value
changes. The program then breaks and displays the variable’s old value, its new
value, and the source code line that caused the change. To use this command, you
must follow it with an M command:

::V
::variable M

The verbose mode remains on until turned off. Use the C, R, or S command to turn
off this mode.

V*: Printing the Compiler Version
Use the V* command to print the version of the compiler that generated the BASIC
object code.

W: Displaying the Current Window

Use the W command to display the current window. The syntax is as follows:

[line] W

A window comprises a group of 10 lines of source code, centered around the
current line. For example, if the current line is 4 when you issue the W command,
RAID displays the first 10 lines. The W command by itself does not change the
current line. If you use the line option, RAID changes the current line to line and
displays a window centered around that line. For example, if the current line is 14,
RAID displays the lines 9−18. Note that this command affects only the current
display lines; it does not affect the executable lines. That is, if you are stepping
through the code using the S command, RAID considers the current display line to
be the last line displayed before issuing the first S command.

X: Displaying the Current Object Code Instruction
Use the X command to display but not execute the current object code instruction
and address.
Debugging Tools 5-9

X*: Displaying the Local Run Machine Registers
Use the X command to display the contents of the local run machine registers (if
any exist) and list run machine variables. The syntaxes are as follows:

X [*]
X!

The second syntax lets you set a variable to the empty string. The value of X! is
displayed with a carriage return immediately following.

RAID displays the contents. The run machine variables are the following:

Z: Displaying Source Code
Use the Z command to display the next 10 lines of source code and establish the
last line displayed as the current line. The syntax is as follows:

[line] Z

For example, if the current line is 4 when you issue the Z command, RAID displays
lines 4−13, and line 13 becomes the current line.

The current window changes each time this command is used, since the last line
printed becomes the current line. For example, if the current line is 14 when you
issue the Z command, RAID displays lines 14−23. The current line becomes 23.

If you use the line option, the current line becomes line, and RAID displays a
window with the specified line first. Regardless of the syntax used, the last line
printed becomes the current line once you issue this command. Note that this
command affects only the current display lines. It does not affect the executable
lines.

Inmat Value set by the INMAT function

Col1 Value set by the COL1 function

Col2 Value set by the COL2 function

Tab Value set by the TABSTOP statement

Precision Value set by the PRECISION statement

Printer Printer channel, set by the PRINTER statement

Psw Value set of the last internal comparison

Lsw Value set of the last lock test

Status Value set by the STATUS function
5-10 BASIC Guide

$: Turning On Instruction Counting
Use the $ command to turn on instruction counting. RAID records the object code
instructions used by the program and the number of times each instruction was
executed into a record in your &UFD& file called profile. The instruction counting
stops when RAID encounters the next break point, a DEBUG statement, Ctrl-C, or
the end of the program.

: Turning On Program Timing
Use the # command to turn on program timing. RAID records the program name,
the number of times it is executed, and the total elapsed time spent during execu-
tion into a record of your &UFD& file called timings. The program timing stops
when RAID encounters the next break point, a DEBUG statement, Ctrl-C, or the
end of the program.

+ : Incrementing the Current Line Number

Use the + command to increment and display the current object code line number.
The syntax is as follows:

[n] +

If you use the n option, RAID adds n to the current line. However, the command
only displays valid lines. For example, if you start at line 4 and use the command
3+, the command moves to line 7 only if line 7 is a valid line for the code. If line 7
is invalid, RAID moves to the first valid line after line 7. Note that this command
does not affect the currently executed line. That is, if you are stepping through the
code using the S command, RAID considers the current line to be the line you
displayed before issuing the first S command.

– : Decrementing the Current Line Number

Use the − command to decrement and display the current line number. The syntax
is as follows:

[n] −

If you use the n option, RAID subtracts n from the current line. However, the
command only displays valid lines. For example, if you start at line 14 and use the
command 3−, the command moves to line 11 only if line 11 is a valid address for
the code. If line 11 is invalid, RAID moves backward to the first valid address
before address 11.
Debugging Tools 5-11

. : Displaying the Next Instruction To Be Executed
Use the . (period) command to display the next object code instruction and
address to be executed.

variable/ : Printing the Value of a Variable
Use a forward slash (/) after a variable name to print the value of the variable. The
syntax is as follows:

variable/

When you enter the variable/ command, RAID displays the variable’s value, and
indicates whether it is a string, a number, or the null value. To print an array
element, you must subscript the variable. If you enter just an array name, RAID
displays the length of the X and Y coordinates. Display matrix values by explicitly
displaying the first element, then press Return to display subsequent elements. For
example, after displaying an array element, pressing Return displays successive
elements in the array (i.e., 1,1 1,2 1,3 2,1 2,2 2,3, etc.). After the last element in the
array displays, the indices wrap to display 0,0 and then 1,1.

! : Changing the Value of a Variable

Use the ! (exclamation point) command to change the value of variable to string. The
syntax is as follows:

variable!string

To change an array element, you must subscript the variable. This option is not
available for debugging programs in shared memory.

VLIST
Use VLIST to display a listing of the object code of a BASIC program. The syntax
for VLIST is as follows:

VLIST [filename] program [R]

filename The name of the file containing the source code of the BASIC
program. The default filename is BP.

program The name of the program to list.

R Displays internal reference numbers for variables and constants
rather than source code names and values.
5-12 BASIC Guide

VLIST displays each line of source code followed by the lines of object code it
generated. VLIST also displays program statistics.

>VLIST BP TO.LIST
Main Program "BP.O/TO.LIST"
Compiler Version: 7.3.1.1
Object Level : 5
Machine Type : 1
Local Variables : 1
Subroutine args : 0
Unnamed Common : 0
Named Common Seg: 0
Object Size : 34
Source lines : 4

0001: FOR I = 1 TO 10
0001 0000 : 0F8 move 0 => I
0001 0006 : 098 forincr I 10 1 0020:

0002: PRINT I
0002 0014 : 130 printcrlf I

0003: NEXT I
0003 001A : 0C2 jump 0006:

0004: END
0004 0020 : 190 stop
Debugging Tools 5-13

5-14 BASIC Guide

6
BASIC Statements and

Functions

This chapter describes the BASIC statements and functions. Each statement and
function is listed on a separate page. The sample shows a typical statement or func-
tion reference page.

Statement or function
name

Statement or function
syntax

Information about using
statement or function

Example showing how to
use statement or function

XXXX statement

Syntax

STATEMENT qualifiers

Description

Information about how to use the state-
ment or function.

Example

OPEN 'DICT','FILE' TO FILE.V
ELSE GOTO OPEN.ERR:
CLEARFILE FILE.V
CLOSE FILE.V
BASIC Statements and Functions 6-1

! statement
!

Syntax

! [comment.text]

Description
Use the ! statement to insert a comment in a BASIC program. Comments explain
or document various parts of a program. They are part of the source code only and
are nonexecutable. They do not affect the size of the object code.

A comment must be a separate BASIC statement and can appear anywhere in a
program. A comment must begin with one of the following comment designators:

REM * ! $*

Any text that appears between a comment designator and the end of a physical line
is treated as part of the comment, not as part of the executable program. If a
comment does not fit on one physical line, you can continue it on the next physical
line only by starting the new line with a comment designator. If a comment
appears at the end of a physical line containing an executable statement, you must
put a semicolon (;) before the comment designator.

Example
The PRINT statement at the end of the third line is not executed because it follows
the exclamation point on the same line and is treated as part of the comment. Lines
4, 5, and 6 show how to include a comment in the same sequence of executable
statements.

001: PRINT "HI THERE"; ! Anything after the ! is a comment.
002: ! This line is also a comment and does not print.
003: IF 5<6 THEN PRINT "YES"; ! A comment; PRINT "PRINT ME"
004: IF 5<6 THEN
005: PRINT "YES"; ! A comment
006: PRINT "PRINT ME"
007: END

This is the program output:

HI THERE
YES
YES
PRINT ME
6-2 BASIC Guide

#INCLUDE statement
#INCLUDE

Syntax

#INCLUDE [filename] program

#INCLUDE program FROM filename

Description
Use the #INCLUDE statement to direct the compiler to insert the source code in the
record program and compile it with the main program. The #INCLUDE statement
differs from the $CHAIN statement in that the compiler returns to the main
program and continues compiling with the statement following the #INCLUDE
statement.

When program is specified without filename, program must be a record in the same
file as the program containing the #INCLUDE statement.

If program is a record in a different file, the filename must be specified in the
#INCLUDE statement, followed by the name of the program. The filename must
specify a type 1 or type 19 file defined in the VOC file.

You can nest #INCLUDE statements.

The #INCLUDE statement is a synonym for the $INCLUDE and INCLUDE
statements.

Example
PRINT "START"
#INCLUDE END
PRINT "FINISH"

When this program is compiled, the #INCLUDE statement inserts code from the
program END (see the example on theEND statement page). This is the program
output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH
BASIC Statements and Functions 6-3

$* statement
$*

Syntax

$* [comment.text]

Description
Use the $* statement to insert a comment in a BASIC program. Comments explain
or document various parts of a program. They are part of the source code only and
are nonexecutable. They do not affect the size of the object code.

A comment must be a separate BASIC statement and can appear anywhere in a
program. A comment must begin with one of the following comment designators:

REM * ! $*

Any text that appears between a comment designator and the end of a physical line
is treated as part of the comment, not as part of the executable program. If a
comment does not fit on one physical line, you can continue it on the next physical
line only by starting the new line with a comment designator. If a comment
appears at the end of a physical line containing an executable statement, you must
put a semicolon (;) before the comment designator.

Example
The PRINT statement at the end of the third line is not executed because it follows
the exclamation point on the same line and is treated as part of the comment. Lines
4, 5, and 6 show how to include a comment in the same sequence of executable
statements.

001: PRINT "HI THERE"; $* Anything after the $* is a comment.
002: $* This line is also a comment and does not print.
003: IF 5<6 THEN PRINT "YES"; $* A comment; PRINT "PRINT ME"
004: IF 5<6 THEN
005: PRINT "YES"; $* A comment
006: PRINT "PRINT ME"
007: END

This is the program output:

HI THERE
YES
YES
PRINT ME
6-4 BASIC Guide

$CHAIN statement
$CHAIN

Syntax

$CHAIN [filename] program

Description
Use the $CHAIN statement to direct the compiler to read source code from program
and compile it as if it were part of the current program. The $CHAIN statement
differs from the$INCLUDE, #INCLUDE, and INCLUDE statements in that the
compiler does not return to the main program. Any statements appearing after the
$CHAIN statement are not compiled or executed.

When the program name is specified without a filename, the source code to insert
must be in the same file as the current program.

If the source code to insert is in a different file, the $CHAIN statement must specify
the name of the remote file followed by the program name. filename must specify a
type 1 or type 19 file defined in the VOC file.

When statements in program generate error messages, the messages name the
program containing the $CHAIN statement.

Example
PRINT "START"
$CHAIN END
PRINT "FINISH"

When this program is compiled, the $CHAIN statement inserts code from the
program END (see the example on theEND statement page). This is the program
output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
BASIC Statements and Functions 6-5

$COPYRIGHT statement
$COPYRIGHT

Syntax
$COPYRIGHT "copyright.notice"

Description
Use the $COPYRIGHT statement to specify the copyright information that is
inserted in the copyright field of the object header code.

copyright.notice must be enclosed by single or double quotation marks.

The copyright field in the object code header is set to the empty string at the begin-
ning of compilation. It remains empty until it encounters a $COPYRIGHT
statement in the program.

If more than one $COPYRIGHT statement is included in the program, only the
information included in the last one encountered is inserted in the object code
header.

This statement is included for compatibility with existing software.
6-6 BASIC Guide

$DEFINE statement
$DEFINE

Syntax

$DEFINE identifier [replacement.text]

Description
Use the $DEFINE statement to define identifiers that control program compilation.
$DEFINE has two functions:

• Defining an identifier
• Supplying replacement text for an identifier

identifier is the symbol to be defined. It can be any valid identifier.

replacement.text is a string of characters that the compiler uses to replace identifier
everywhere it appears in the program containing the $DEFINE statement.

When used as a replacement text supplier, $DEFINE adds the specified identifier
and its associated replacement.text to the symbol table. Each time identifier is found
in the program following the $DEFINE statement in which its value was set, it is
replaced by replacement.text. If replacement.text is not specified, identifier is defined
and has a null value.

Separate replacement.text from identifier with one or more blanks. Every character
typed after this blank is added to replacement.text up to, but not including, the
Return character that terminates the replacement.text.

Note: Do not use comments when supplying replacement.text because any
comments after replacement.text are included as part of the replacement text.
Any comments added to replacement.text may cause unexpected program
behavior.

The $UNDEFINE statement removes the definition of an identifier.
BASIC Statements and Functions 6-7

$DEFINE statement
Conditional Compilation
You can use $DEFINE with the $IFDEF or $IFNDEF statement to define an identi-
fier that controls conditional compilation. The syntax is as follows:

$DEFINE identifier [replacement.text]
.
.
.

{$IFDEF | $IFNDEF} identifier

[statements]
$ELSE

[statements]
$ENDIF

The $IFDEF or $IFNDEF statement that begins the conditional compilation block
tests identifier to determine whether it is defined by a $DEFINE statement. If you
use $IFDEF and identifier is defined, the statements between the $IFDEF and the
$ELSE statements are compiled. If identifier is not defined, the statements between
the $ELSE and $ENDIF statements are compiled.

If you use $IFNDEF, on the other hand, and identifier is defined, the statements
between $ELSE and $ENDIF are compiled. If identifier is not defined, the state-
ments between the $IFDEF and $ELSE statements are compiled.

Example
In this example the identifier NAME.SUFFIX is defined to have a value of
PROGRAM.NAME[5]. When the compiler processes the next line, it finds the
symbol NAME.SUFFIX, substitutes PROGRAM.NAME[5] in its place and
continues processing with the first character of the replacement text.

$DEFINE NAME.SUFFIX PROGRAM.NAME[5]
IF NAME.SUFFIX = '.B' THEN

.

.

.
END

.

.

.

6-8 BASIC Guide

$EJECT statement
$EJECT

Syntax
$EJECT

Description
Use the $EJECT statement to begin a new page in the listing record.

This statement is a synonym for the $PAGE statement.
BASIC Statements and Functions 6-9

$IFDEF statement
$IFDEF

Syntax
$IFDEF identifier

[statements]
[[$ELSE]

[statements]]
$ENDIF

Description
Use the $IFDEF statement to test for the definition of a compile-time symbol.
$IFDEF tests to see if identifier is currently defined (that is, has appeared in a
$DEFINE statement and has not been undefined).

If identifier is currently defined and the $ELSE clause is omitted, the statements
between the $IFDEF and $ENDIF statements are compiled. If the $ELSE clause is
included, only the statements between $IFDEF and $ELSE are compiled.

If identifier is not defined and the $ELSE clause is omitted, all the lines between the
$IFDEF and $ENDIF statements are ignored. If the $ELSE clause is included, only
the statements between $ELSE and $ENDIF are compiled.

$IFDEF and $IFNDEFstatements can be nested up to 10 deep.

Example
The following example determines if the identifier “modified” is defined:

$DEFINE modified 0
$IFDEF modified

PRINT "modified is defined."
$ELSE

PRINT "modified is not defined."
$ENDIF
6-10 BASIC Guide

$IFNDEF statement
$IFNDEF

Syntax
$IFNDEF identifier

[statements]
[[$ELSE]

[statements]]
$ENDIF

Description
Use the $IFNDEF statement to test for the definition of a compile-time symbol. The
$IFNDEF statement complements the $IFDEF statement.

If identifier is currently not defined and the $ELSE clause is omitted, the statements
between the $IFNDEF and $ENDIF statements are compiled. If the $ELSE clause is
included, only the statements between $IFNDEF and $ELSE are compiled.

If identifier is defined and the $ELSE clause is omitted, all the lines between the
$IFNDEF and $ENDIF statements are ignored. If the $ELSE clause is included,
only the statements between $ELSE and $ENDIF are compiled.

$IFDEF and $IFNDEF statements can be nested up to 10 deep.

Example
The following example determines if the identifier “modified” is not defined:

$DEFINE modified 0
$IFNDEF modified

PRINT "modified is not defined."
$ELSE

PRINT "modified is defined."
$ENDIF
BASIC Statements and Functions 6-11

$INCLUDE statement
$INCLUDE

Syntax

$INCLUDE [filename] program

$INCLUDE program FROM filename

Description
Use the $INCLUDE statement to direct the compiler to insert the source code in the
record program and compile it with the main program. The $INCLUDE statement
differs from the $CHAIN statement in that the compiler returns to the main
program and continues compiling with the statement following the $INCLUDE
statement.

When program is specified without filename, program must be a record in the same
file as the program currently containing the $INCLUDE statement.

If program is a record in a different file, the filename must be specified in the
$INCLUDE statement, followed by the name of the program. The filename must
specify a type 1 or type 19 file defined in the VOC file.

You can nest $INCLUDE statements.

The $INCLUDE statement is a synonym for the #INCLUDE and INCLUDE
statements.

Example
PRINT "START"
$INCLUDE END
PRINT "FINISH"

When this program is compiled, the $INCLUDE statement inserts code from the
program END (see the example on the END statement page). This is the program
output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH
6-12 BASIC Guide

$INSERT statement
$INSERT

Syntax
$INSERT primos.pathname

Description
Use the $INSERT statement to direct the compiler to insert the source code
contained in the file specified by primos.pathname and compile it with the main
program. The difference between $INSERT and $INCLUDE (and its synonyms
#INCLUDE and INCLUDE) is that $INSERT takes a PRIMOS pathname as an
argument, whereas $INCLUDE takes a DataStage filename and record ID. The
PRIMOS pathname is converted to a pathname; any leading *> is ignored.

$INSERT is included for compatibility with Prime INFORMATION programs; the
$INCLUDE statement is recommended for general use.

If primos.pathname is the name of the program only, it is interpreted as a relative
pathname. In this case, the program must be a file in the same directory as the
program containing the $INSERT statement.

You can nest $INSERT statements.

primos.pathname is converted to a valid pathname using the following conversion
rules:

If you specify a full pathname, the > between directory names changes to a / to
yield:

[pathname/] program

$INSERT uses the transformed argument directly as a pathname of the file
containing the source to be inserted. It does not use the file definition in the VOC
file.

/ is converted to ?\

? is converted to ??

ASCII CHAR 0 (NUL) is converted to ?0

 . (period) is converted to ?.
BASIC Statements and Functions 6-13

$INSERT statement
Example
PRINT "START"
$INSERT END
PRINT "FINISH"

When this program is compiled, the $INSERT statement inserts code from the
program END (see the example on the END statement page). This is the program
output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH
6-14 BASIC Guide

$MAP statement
$MAP

Syntax
$MAP mapname

Description
In NLS mode, use the $MAP statement to direct the compiler to specify the map
for the source code. Use the $MAP statement if you use embedded literal strings
that contain non-ASCII characters.

mapname must be the name of a map that has been built and installed.

You can use only one $MAP statement during compilation.

Note: You can execute programs that contain only ASCII characters whether NLS
mode is on or off. You cannot execute programs that contain non-ASCII
characters that were compiled in NLS mode if NLS mode is switched off.

For more information, see the DataStage NLS Guide.

Example
The following example assigns a string containing the three characters alpha, beta,
and gamma to the variable GREEKABG:

$MAP MNEMONICS
.
.
.
GREEKABG = "<A*><B*><G*>"
BASIC Statements and Functions 6-15

$OPTIONS statement
$OPTIONS

Syntax

$OPTIONS [flavor] [options]

Description
Use the $OPTIONS statement to set compile-time emulation of any flavor. This
does not allow object code compiled in one flavor to execute in another flavor. You
can select individual options in a program to override the default setting.

Use the following keywords to specify flavor:

For instance, the following statement instructs the compiler to treat all BASIC
syntax as if it were running in a PICK flavor account:

$OPTIONS PICK

Another way to select compile-time emulation is to specify one of the following
keywords in field 6 of the VOC entry for the BASIC command:

INFORMATION.FORMAT
PICK.FORMAT
REALITY.FORMAT
IN2.FORMAT
PIOPEN.FORMAT

By default the VOC entry for the BASIC command corresponds with the account
flavor specified when your account was set up.

Keyword Flavor

PICK Generic Pick emulation

INFORMATION Prime INFORMATION emulation

REALITY REALITY emulation

IN2 Intertechnique emulation

DEFAULT IDEAL flavor

PIOPEN PI/open emulation
6-16 BASIC Guide

$OPTIONS statement
options are specified by the keywords listed in following table. To turn off an
option, prefix it with a minus sign (−).

Options for the $OPTIONS Statement

Option Name
Option
Letter

Description

CASE none Differentiates between uppercase and lower-
case identifiers and keywords.

COMP.PRECISION none Rounds the number at the current precision
value in any comparison.

COUNT.OVLP O For INDEX and COUNT functions, the count
overlaps.

END.WARN R Prints a warning message if there is no final
END statement.

EXEC.EQ.PERF P Compiles EXECUTE asPERFORM.

EXTRA.DELIM W For INSERT and REPLACE functions, the
compiler handles fields, values, and
subvalues that contain the empty string
differently from the way they are handled in
the IDEAL flavor. In particular, if you specify
a negative one (−1) parameter, INFORMA-
TION and IN2 flavors add another delimiter,
except when starting with an empty string.

FOR.INCR.BEF F Increments the index for FOR…NEXT loop
before instead of after the bound checking.

FORMAT.OCONV none Lets output conversion codes be used as
format masks (see the FMT function).

FSELECT none Makes the SELECT statement return the total
number of records selected to the
@SELECTED variable. Using this option can
result in slower performance for the SELECT
statement.

HEADER.BRK none Specifies the PIOPEN flavor for the I and P
options to the HEADING and FOOTING
keywords. This is the default for the PIOPEN
flavor.
BASIC Statements and Functions 6-17

$OPTIONS statement
HEADER.DATE D Displays times and dates in headings or foot-
ings in fixed format (that is, they do not
change from page to page). Dates are
displayed in 'D2−' format instead of 'D'
format. Allows page number field specifica-
tion by multiple invocations of 'P' in a single
set of quotation marks.

HEADER.EJECT H HEADING statement causes initial page
eject.

IN2.SUBSTR T Uses IN2 definitions for BASIC substring
handling (string[n,m]). If a single parameter is
specified, a length of 1 is assumed. The size of
the string expands or contracts according to
the length of the replacement string.

INFO.ABORT J ABORT syntax follows Prime INFORMA-
TION instead of PICK.

INFO.CONVERT none Specifies that the FMT, ICONV, and OCONV
functions perform PI/open style conversions.

INFO.ENTER none Specifies the PIOPEN flavor of the ENTER
statement.

INFO.INCLUDE none Processes any PRIMOS pathnames specified
with the $INSERT statement.

INFO.LOCATE L LOCATE syntax follows Prime
INFORMATION instead of REALITY. The
Pick format of the LOCATE statement is
always supported.

INFO.MARKS none Specifies that the LOWER, RAISE, and
REMOVE functions use a smaller range of
delimiters for PI/open compatibility.

INFO.MOD none Specifies the PIOPEN flavor for the MOD
function. This is the default for the PIOPEN
flavor.

Options for the $OPTIONS Statement (Continued)

Option Name
Option
Letter

Description
6-18 BASIC Guide

$OPTIONS statement
INPUTAT none Specifies the PIOPEN flavor for the INPUT @
statement. This is the default for the PIOPEN
flavor.

INPUT.ELSE Y Accepts an optional THEN…ELSE clause on
INPUT statement.

INT.PRECISION none Rounds the integer at the current precision
value in an INT function.

LOCATE.R83 none A LOCATE statement returns an “AR” or
“DR” sequence value compatible with Pick,
Prime INFORMATION, and PI/open
systems.

NO.CASE none Does not differentiate between uppercase
and lowercase in identifiers or keywords.
This is the default for the PIOPEN flavor.

NO.RESELECT U For SELECT and SSELECT statements, active
select list 0 remains active; another selection
or sort is not performed. The next READ-
NEXT statement uses select list 0.

ONGO.RANGE G If the value used in an ON GOTO or ON
GOSUB is out of range, executes the next
statement rather than the first or last branch.

PCLOSE.ALL Z The PRINTER CLOSE statement closes all
print channels.

PERF.EQ.EXEC C PERFORM compiles as EXECUTE.

PIOPEN.INCLUDE none Processes any PRIMOS pathnames specified
with the $INSERT and $INCLUDE
statements.

PIOPEN.MATREAD none Sets the elements of the matrix to empty
strings when the record ID is not found.
MATREAD, MATREADL, and MATREADU
will behave as they do on PI/open systems.

Options for the $OPTIONS Statement (Continued)

Option Name
Option
Letter

Description
BASIC Statements and Functions 6-19

$OPTIONS statement
PIOPEN.SELIDX none In the SELECTINDEX statement, removes
multiple occurrences of the same record ID in
an index with a multivalued field.

RADIANS none Calculates trigonometric operations using
radians instead of degrees.

RAW.OUTPUT none Suppresses automatic mapping of system
delimiters on output. When an application
handles terminal control directly,
RAW.OUTPUT turns off this automatic
mapping.

READ.RETAIN Q If a READ, READU, READV, READVL, or
READVU fails, the resulting variable retains
its value. The variable is not set to an empty
string.

REAL.SUBSTR K Uses REALITY flavor definitions for
substring handling (string[n,m]). If m or n is
less than 0, the starting position for substring
extraction is defined as the right side (the
end) of the string.

RNEXT.EXPL X READNEXT returns an exploded select list.

SEQ.255 N SEQ(" ") = 255 (instead of 0).

STATIC.DIM M Creates arrays at compile time, not at run
time. The arrays are not redimensioned, and
they do not have a zero element.

STOP.MSG E Causes STOP andABORT to use the ERRMSG
file to produce error messages instead of
using the specified text.

SUPP.DATA.ECHO I Causes input statements to suppress echo
from data.

TIME.MILLISECOND none Causes the SYSTEM (12) function to return
the current system time in milliseconds, and
the TIME function to return the current
system time in seconds.

Options for the $OPTIONS Statement (Continued)

Option Name
Option
Letter

Description
6-20 BASIC Guide

$OPTIONS statement
You can also set individual options by using special versions of some statements to
override the current setting. These are listed as follows:

ULT.FORMAT none Format operations are compatible with
Ult/ix. For example, FMT("","MR2") returns
an empty string, not 0.00.

USE.ERRMSG B PRINTERR prints error messages from
ERRMSG.

VAR.SELECT S SELECT TO variable creates a local select vari-
able instead of using numbered select lists,
and READLIST reads a saved select list
instead of an active numbered select list.

VEC.MATH V Uses vector arithmetic instructions for oper-
ating on multivalued data. For performance
reasons the IDEAL flavor uses single-valued
arithmetic.

WIDE.IF none Testing numeric values for true or false uses
the wide zero test. In Release 6 of UniVerse,
the WIDE.IF option is OFF by default. In
Release 7, WIDE.IF is ON by default.

Override Versions for Statements

Statement Equal to…

ABORTE ABORT with $OPTIONS STOP.MSG

ABORTM ABORT with $OPTIONS −STOP.MSG

HEADINGE HEADING with $OPTIONS HEADER.EJECT

HEADINGN HEADING with $OPTIONS −HEADER.EJECT

SELECTV SELECT with $OPTIONS VAR.SELECT

SELECTN SELECT with $OPTIONS −VAR.SELECT

STOPE STOP with $OPTIONS STOP.MSG

STOPM STOP with $OPTIONS −STOP.MSG

Options for the $OPTIONS Statement (Continued)

Option Name
Option
Letter

Description
BASIC Statements and Functions 6-21

$OPTIONS statement
The default settings for each flavor are listed in the following table:

Default Settings of $OPTIONS Options

 IDEAL PICK INFO. REALITY IN2 PIOPEN

CASE ✓

COMP.PRECISION

COUNT.OVLP ✓ ✓ ✓

END.WARN ✓ ✓ ✓

EXEC.EQ.PERF ✓ ✓

EXTRA.DELIM ✓ ✓ ✓

FOR.INCR.BEF ✓ ✓ ✓ ✓

FORMAT.OCONV ✓

FSELECT

HEADER.BRK ✓

HEADER.DATE ✓ ✓

HEADER.EJECT ✓ ✓

IN2.SUBSTR ✓ ✓ ✓

INFO.ABORT ✓

INFO.CONVERT

INFO.ENTER ✓

INFO.LOCATE ✓

INFO.MARKS ✓

INFO.MOD ✓

INPUTAT ✓

INPUT.ELSE ✓ ✓

INT.PRECISION

LOCATE.R83

NO.CASE ✓

NO.RESELECT ✓ ✓ ✓ ✓
6-22 BASIC Guide

$OPTIONS statement
Example
>ED BP OPT
4 lines long.
----: P
0001: $OPTIONS INFORMATION
0002: A='12'

NO.SMA.COMMO
N

ONGO.RANGE ✓ ✓

PCLOSE.ALL ✓ ✓ ✓

PERF.EQ.EXEC ✓ ✓

PIOPEN.INCLUDE ✓

PIOPEN.MATREA
D

PIOPEN.SELIDX ✓

RADIANS ✓

RAW.OUTPUT

READ.RETAIN ✓ ✓ ✓

REAL.SUBSTR ✓ ✓ ✓

RNEXT.EXPL ✓

SEQ.255 ✓ ✓ ✓

STATIC.DIM ✓ ✓ ✓

STOP.MSG ✓ ✓ ✓

SUPP.DATA.ECHO ✓ ✓ ✓

ULT.FORMAT

USE.ERRMSG ✓

VAR.SELECT ✓ ✓ ✓

VEC.MATH ✓ ✓

WIDE.IF ✓ ✓ ✓ ✓ ✓

Default Settings of $OPTIONS Options (Continued)

 IDEAL PICK INFO. REALITY IN2 PIOPEN
BASIC Statements and Functions 6-23

$OPTIONS statement
0003: B='14'
0004: PRINT A,B
Bottom at line 4
----: Q
>BASIC BP OPT
Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'

@EOF WARNING: Final 'END' statement not found.

Compilation Complete.
>ED BP OPT
4 lines long.
----: P
0001: $OPTIONS PICK
0002: A='12'
0003: B='14'
0004: PRINT A,B
Bottom at line 4
----: Q
>BASIC BP OPT
Compiling: Source = 'BP/OPT', Object = 'BP.O/OPT'
Compilation Complete.
6-24 BASIC Guide

$PAGE statement
$PAGE
The $PAGE statement is a synonym for the $EJECT statement.
BASIC Statements and Functions 6-25

$UNDEFINE statement
$UNDEFINE

Syntax
$UNDEFINE identifier

Description
Use the $UNDEFINE statement to remove the definition of identifiers set with the
$DEFINE statement. The $UNDEFINE statement removes the definition of identi-
fier from the symbol table if it appeared in a previous $DEFINE statement. If the
identifier was not previously defined, $UNDEFINE has no effect.

identifier is the identifier whose definition is to be deleted from the symbol table.

You can use $UNDEFINE with the $IFDEF or $IFNDEF statement to undefine an
identifier that controls conditional compilation. The syntax is as follows:

$UNDEFINE identifier
.
.
.

{$IFDEF | $IFNDEF} identifier

[statements]
$ELSE

[statements]
$ENDIF

The $IFDEF statement that begins the conditional compilation block tests identifier
to determine whether it is currently defined. Using this syntax, the $UNDEFINE
statement deletes the definition of identifier from the symbol table, and the state-
ments between the $ELSE and the $ENDIF statements are compiled.

If you use the $IFNDEF statement, on the other hand, and identifier is undefined,
the statements between $IFDEF and $ENDIF are compiled. If identifier is not
defined, the statements between $IFDEF and $ELSE are compiled.
6-26 BASIC Guide

* statement
*

Syntax

* [comment.text]

Description
Use the * statement to insert a comment in a BASIC program. Comments explain
or document various parts of a program. They are part of the source code only and
are nonexecutable. They do not affect the size of the object code.

A comment must be a separate BASIC statement, and can appear anywhere in a
program. A comment must begin with one of the following comment designators:

REM * ! $*

Any text that appears between a comment designator and the end of a physical line
is treated as part of the comment, not as part of the executable program. If a
comment does not fit on one physical line, you can continue it on the next physical
line only by starting the new line with a comment designator. If a comment
appears at the end of a physical line containing an executable statement, you must
put a semicolon (;) before the comment designator.

Example
The PRINT statement at the end of the third line is not executed because it follows
the asterisk on the same line and is treated as part of the comment. Lines 4, 5, and
6 show how to include a comment in the same sequence of executable statements.

001: PRINT "HI THERE"; * Anything after the * is a comment
002: * This line is also a comment and does not print.
003: IF 5<6 THEN PRINT "YES"; * A comment; PRINT "PRINT ME"
004: IF 5<6 THEN
005: PRINT "YES"; * A comment
006: PRINT "PRINT ME"
007: END

This is the program output:

HI THERE
YES
YES
PRINT ME
BASIC Statements and Functions 6-27

< > operator
<>

Syntax

variable < field# [,value# [,subvalue#]] >

Description
Use the < > operator (angle brackets) to extract or replace elements of a dynamic
array.

variable specifies the dynamic array containing the data to be changed.

field#, value#, and subvalue# are delimiter expressions.

Angle brackets to the left of an assignment operator change the specified data in
the dynamic array according to the assignment operator. For examples, see the
REPLACE function.

Angle brackets to the right of an assignment operator indicate that an EXTRACT
function is to be performed. For examples, see the EXTRACT function.
6-28 BASIC Guide

@ function
@

Syntax

@ (column [,row])

@ (–code [,arg])

Description
Use the @ function with the PRINT statement to control display attributes, screen
display, and cursor postioning.

Note: You can save processing time by assigning the result of a commonly used
@ function, such as @ (–1), to a variable, rather than reevaluating the func-
tion each time it is used.

column defines a screen column position.

row defines a screen row position.

–code is the terminal control code that specifies a particular screen or cursor
function.

arg specifies further information for the screen or cursor function specified in
– code.

Cursor Positioning
You position the cursor by specifying a screen column and row position using the
syntax @ (column [,row]). If you do not specify a row, the current row is the default.
The top line is row 0, the leftmost column is column 0. If you specify a column or
row value that is out of range, the effect of the function is undefined.

If you use the @ function to position the cursor, automatic screen pagination is
disabled.

Screen and Cursor Controls

You can use the @ function with terminal control codes to specify various cursor
and display operations using the syntax @ (–code [,arg]).
BASIC Statements and Functions 6-29

@ function
If you want to use mnemonics rather than the code numbers, you can use an insert
file of equate names by specifying either of the following options when you
compile your program:

$INCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H

$INCLUDE SYSCOM ATFUNCTIONS.INS.IBAS (PIOPEN flavor only)

Note: Not all terminal control codes are supported by all terminal types. If the
current terminal type does not support the code you specified, the function
returns an empty string. You can use this to test whether your program
operates correctly on a particular terminal, and whether you need to code
any alternative actions.

If you issue multiple video attributes (such as blink and reverse video) at
the same time, the result is undefined. See the description of the
@(IT$VIDEO) function for details of additive attributes.

The following table summarizes the characteristics of the terminal control codes,
and the sections following the table give more information on each equate name:

Terminal Control Codes

Integer Equate Name Function Argument

–1 IT$CS Screen clear and
home

–2 IT$CAH Cursor home

–3 IT$CLEOS Clear to end of
screen

–4 IT$CLEOL Clear to end of line

–5 IT$SBLINK Start blink

–6 IT$EBLINK Stop blink

–7 IT$SPA Start protect

–8 IT$EPA Stop protect

–9 IT$CUB Back space one
character

Number of characters to
back space

–10 IT$CUU Move up one line Number of lines to move

–11 IT$SHALF Start half-intensity
6-30 BASIC Guide

@ function
–12 IT$EHALF Stop half-intensity

–13 IT$SREV Start reverse video

–14 IT$EREV Stop reverse video

–15 IT$SUL Start underlining

–16 IT$EUL Stop underlining

–17 IT$IL Insert line Number of lines to insert

–18 IT$DL Delete line Number of lines to delete

–19 IT$ICH Insert character Number of lines to insert

–20 IT$SIRM Set insert/replace
mode

–21 IT$RIRM Reset insert/replace
mode

–22 IT$DCH Delete character Number of characters to
delete

–23 IT$AUXON Auxiliary port on

–24 IT$AUXOFF Auxiliary port off

–25 IT$TRON Transparent auxil-
iary port on

–26 IT$TROFF Transparent auxil-
iary port off

–27 IT$AUXDLY Auxiliary port delay
time

–28 IT$PRSCRN Print screen

–29 IT$E80 Enter 80-column
mode

–30 IT$E132 Enter 132-column
mode

–31 IT$RIC Reset inhibit cursor

–32 IT$SIC Set inhibit cursor

Terminal Control Codes (Continued)

Integer Equate Name Function Argument
BASIC Statements and Functions 6-31

@ function
–33 IT$CUD Cursor down Number of lines to move
cursor

–34 IT$CUF Cursor forward Number of places to
move cursor forward

–35 IT$VIDEO Set video attributes Additive attribute value

–36 IT$SCOLPR Set color pair Predefined color pairing

–37 IT$FCOLOR Set foreground color Foreground color code

–38 IT$BCOLOR Set background
color

Background color code

–39 IT$SLINEGRFX Start line graphics

–40 IT$ELINEGRFX End line graphics

–41 IT$LINEGRFXCH Line graphics
character

The required graphics
character

–42 IT$DMI Disable manual
input

–43 IT$EMI Enable manual input

–44 IT$BSCN Blank screen

–45 IT$UBS Unblank screen

–48 IT$SU Scroll up Number of lines to scroll

–49 IT$SD Scroll down Number of lines to scroll

–50 IT$SR Scroll right Number of columns to
scroll

–51 IT$SL Scroll left Number of columns to
scroll

–54 IT$SLT Set line truncate

–55 IT$RLT Reset line truncate

–56 IT$SNK Set numeric keypad

–57 IT$RNK Reset numeric
keypad

–58 IT$SBOLD Start bold

Terminal Control Codes (Continued)

Integer Equate Name Function Argument
6-32 BASIC Guide

@ function
–59 IT$EBOLD End bold

–60 IT$SSECUR Start secure mode

–61 IT$ESECUR End secure mode

–62 IT$SSCRPROT Start screen protect
mode

–63 IT$ESCRPROT End screen protect
mode

-64 IT$SLD System line display

–65 IT$SLR System line reset

–66 IT$SLS System line set

–70 IT$CHA Cursor horizontal
absolute

Column number to posi-
tion cursor

–71 IT$ECH Erase character Number of characters to
erase

–74 IT$NPC Character to substi-
tute for nonprinting
character

–75 IT$DISPLAY EDFS main display
attributes

–76 IT$MINIBUF EDFS mini-buffer
display attributes

–77 IT$LOKL Lock line The line number

–78 IT$UNLL Unlock line The line number

–79 IT$MARKSUBS Display marks

–80
through
–100

Reserved for Ardent

–101
through
–128

IT$USERFIRST

IT$USERLAST

Available for general
use

Terminal Control Codes (Continued)

Integer Equate Name Function Argument
BASIC Statements and Functions 6-33

@ function
Screen Clear and Home @(IT$CS)
Clears the screen and positions the cursor in the upper-left corner.

Cursor Home @(IT$CAH)
Moves the cursor to the upper-left corner of the screen.

Clear to End of Screen @(IT$CLEOS)

Clears the current screen line starting at the position under the cursor to the end of
that line and clears all lines below that line. The cursor does not move.

Clear to End of Line @(IT$CLEOL)
Clears the current screen line starting at the position under the cursor to the end of
that line. The cursor does not move.

Start Blink @(IT$SBLINK)
Causes any printable characters that are subsequently displayed to blink. If you
move the cursor before issuing the stop blink function, @(IT$EBLINK), the opera-
tion of the @(IT$SBLINK) code is undefined.

Stop Blink @(IT$EBLINK)

Stops blink mode. If a start blink function, @(IT$SBLINK), was not transmitted
previously, the effect of this sequence is undefined.

Start Protect @(IT$SPA)
Protects all printable characters that are subsequently displayed from update until
the characters are erased by one of the clear functions @(IT$CS), @(IT$CLEOS), or
@(IT$CLEOL). If you move the cursor before issuing the stop protect function,
@(IT$EPA), the operation of this code is undefined. The start protect function is
useful only for terminals that are in block mode.

Stop Protect @(IT$EPA)
Stops the protect mode. If a start protect string was not previously transmitted, the
effect of this sequence is undefined. The stop protect function is useful only for
terminals that are in block mode.
6-34 BASIC Guide

@ function
Back Space One Char @(IT$CUB)
Moves the cursor one position to the left without deleting any data. For m greater
than 0, the function @(IT$CUB, m) moves the cursor m positions to the left. In
moving to the left, the cursor cannot move beyond the start of the line.

Move Up One Line @(IT$CUU)
Moves the cursor up one line toward the top of the screen. For m greater than 0, the
function @(IT$CUU, m) moves the cursor up m lines. The cursor remains in the
same column, and cannot move beyond the top of the screen.

Start Half-Intensity @(IT$SHALF)

Causes all printable characters that are subsequently displayed to be displayed at
reduced intensity. If a cursor-positioning sequence is used before the stop half-
intensity function, @(IT$EHALF), the operation of this function is undefined.

Stop Half-Intensity @(IT$EHALF)
Terminates half-intensity mode. The effect of this sequence is unspecified if a start
half-intensity string was not previously transmitted.

Start Reverse Video @(IT$SREV)
Causes printable characters that are subsequently displayed to be displayed with
all pixels inverted. If a cursor-positioning sequence is used before the stop reverse
video function, @(IT$EREV), the operation of this function is undefined.

Stop Reverse Video @(IT$EREV)

Terminates reverse video mode. If a start reverse video function, @(IT$SREV), was
not previously transmitted, the effect of this sequence is undefined.

Start Underlining @(IT$SUL)
Causes all subsequent printable characters to be underlined when displayed. If a
cursor-positioning sequence is used before the stop underlining function,
@(IT$EUL), the operation of this function is undefined.
BASIC Statements and Functions 6-35

@ function
Stop Underlining @(IT$EUL)
Terminates the underlining mode established by a start underlining function,
@(IT$SUL). The effect of this sequence is unspecified if a start underlining string
was not previously transmitted.

Insert Line @(IT$IL)
Inserts a blank line at the current cursor position. For m greater than 0, the function
@(IT$IL, m) inserts m blank lines at the current cursor position. If m is omitted, the
default is 1. The effect when m is less than 1 is undefined. All lines from the current
cursor position to the end of the screen scroll down. The bottom m lines on the
screen are lost.

Delete Line @(IT$DL)

Deletes the line at the current cursor position; the function @(IT$DL, 1) has the
same effect. For m greater than 1, the lines above the current line are deleted until
m minus 1 lines have been deleted or the top of the file has been reached, which-
ever occurs first. All lines below the current cursor position scroll up. The last lines
on the screen are cleared.

Insert Character @(IT$ICH)
Inserts a space at the current cursor position. All characters from the cursor posi-
tion to the right edge of the screen are shifted over one character to the right. Any
character at the rightmost edge of the screen is lost. For m greater than 0, the func-
tion @(IT$ICH, m) inserts m spaces at the current cursor position, shifting the other
characters accordingly.

Set Insert/Replace Mode @(IT$SIRM)
Starts insert character mode. Characters sent to the terminal screen are inserted at
the current cursor position instead of overwriting the character under the cursor.
The characters under and to the right of the cursor are shifted over one character
to the right for each character transmitted, and any character at the rightmost edge
of the screen is lost.

Reset Insert/Replace Mode @(IT$RIRM)
Turns off insert character mode. Characters sent to the terminal screen overwrite
the characters at the current cursor position.
6-36 BASIC Guide

@ function
Delete Character @(IT$DCH)
Deletes the character at the current cursor position. All characters to the right of the
cursor move one space to the left, and the last character position on the line is made
blank. For m greater than 1, the function @(IT$DCH, m) deletes further characters,
to the right of the original position, until m characters have been deleted altogether
or until the end of the display has been reached, whichever occurs first.

Auxiliary Port On @(IT$AUXON)
Enables the auxiliary (printer) port on the terminal. All characters sent to the
terminal are displayed on the screen and also copied to the auxiliary port.

Auxiliary Port Off @(IT$AUXOFF)

Disables the auxiliary (printer) port on the terminal, and stops the copying of the
character stream to the auxiliary port.

Transparent Auxiliary Port On @(IT$TRON)
Places the auxiliary (printer) port on the terminal in transparent mode. All charac-
ters sent to the terminal are sent only to the auxiliary port and are not displayed on
the terminal screen.

Transparent Auxiliary Port Off @(IT$TROFF)
Disables the auxiliary (printer) port on the terminal and enables the display of the
character stream on the terminal screen.

Auxiliary Delay Time @(IT$AUXDLY)

Sets a time, in milliseconds, that an application should pause after enabling or
disabling the auxiliary port. The value of this function is an integer in the range 0
through 32,767. The function is used in conjunction with the !SLEEP$ subroutine;
for example:

PRINT @(IT$AUXON):;CALL !SLEEP$(@(IT$AUXDLY))

Print Screen @(IT$PRSCRN)
Copies the contents of the screen to the auxiliary port. The function does not work
for some terminals while echo delay is enabled.
BASIC Statements and Functions 6-37

@ function
Enter 80-Column Mode @(IT$E80)
Starts 80-column mode. On some terminals it can also clear the screen.

Enter 132-Column Mode @(IT$E132)
Starts 132-column mode. On some terminals it can also clear the screen.

Reset Inhibit Cursor @(IT$RIC)

Turns the cursor on.

Set Inhibit Cursor @(IT$SIC)
Turns the cursor off.

Cursor Down @(IT$CUD)
Moves the cursor down one line. For m greater than 0, the function @(IT$CUD, m)
moves the cursor down m lines. The cursor remains in the same column, and
cannot move beyond the bottom of the screen.

Cursor Forward @(IT$CUF)

Moves the cursor to the right by one character position without overwriting any
data. For m greater than 0, the function @(IT$CUF, m) moves the cursor m positions
to the right. The cursor cannot move beyond the end of the line.

Set Video Attributes @(IT$VIDEO)
@(IT$VIDEO)
Is an implementation of the ANSI X3.64-1979 and ISO 6429 standards for the video
attribute portion of Select Graphic Rendition. It always carries an argument m that
is an additive key consisting of one or more of the following video attribute keys:

Value Name Description

0 IT$NORMAL Normal

1 IT$BOLD Bold

2 IT$HALF Half-intensity

4 IT$STANDOUT Enhanced

4 IT$ITALIC Italic

8 IT$ULINE Underline
6-38 BASIC Guide

@ function
For example:

PRINT @(IT$VIDEO,IT$HALF+IT$ULINE+IT$REVERSE)

In this example, m is set to 74 (2 + 8 + 64) for half-intensity underline display in
reverse video. Bold, italic, fast blink, and concealed are not supported on all termi-
nals. To set the video attributes half-intensity and underline, specify the following:

@(-35,10)

In this example, 10 is an additive key composed of 2 (half-intensity) plus 8
(underline).

Set Color Pair @(IT$SCOLPR)
Sets the background and foreground colors to a combination that you have previ-
ously defined in your system terminfo file.

Set Foreground Color @(IT$FCOLOR)

Sets the color that is used to display characters on the screen. @(IT$FCOLOR, arg)
always takes an argument that specifies the foreground color to be chosen, as
follows:

16 IT$SLOWBLINK Slow blink

32 IT$FASTBLINK Fast blink

64 IT$REVERSE Reverse video

128 IT$BLANK Concealed

256 IT$PROTECT Protected

572 IT$ALTCHARSET Alternative character set

Value Name Description

0 IT$63 Black

1 IT$RED Red

2 IT$GREEN Green

3 IT$YELLOW Yellow

4 IT$BLUE Blue

Value Name Description
BASIC Statements and Functions 6-39

@ function
The color attributes are not additive. Only one foreground color at a time can be
displayed. If a terminal does not support a particular color, a request for that color
should return an empty string.

Set Background Color @(IT$BCOLOR)
Sets the background color that is used to display characters on the screen. The
@(IT$BCOLOR, arg) function always has an argument that specifies the back-

5 IT$MAGENTA Magenta

6 IT$CYAN Cyan

7 IT$WHITE White

8 IT$DARK.RED Dark red

9 IT$CERISE Cerise

10 IT$ORANGE Orange

11 IT$PINK Pink

12 IT$DARK.GREEN Dark green

13 IT$SEA.GREEN Sea green

14 IT$LIME.GREEN Lime green

15 IT$PALE.GREEN Pale green

16 IT$BROWN Brown

17 IT$CREAM Cream

18 IT$DARK.BLUE Dark blue

19 IT$SLATE.BLUE Slate blue

20 IT$VIOLET Violet

21 IT$PALE.BLUE Pale blue

22 IT$PURPLE Purple

23 IT$PLUM Plum

24 IT$DARK.CYAN Dark cyan

25 IT$SKY.BLUE Sky blue

26 IT$GREY Grey

Value Name Description
6-40 BASIC Guide

@ function
ground color to be chosen. (See “Set Foreground Color @(IT$FCOLOR)” on
page 6-39 for a list of available colors.)

Start Line Graphics @(IT$SLINEGRFX)
Switches on the line graphics mode for drawing boxes or lines on the screen.

End Line Graphics @(IT$ELINEGRFX)
Switches off the line graphics mode.

Line Graphics Character @(IT$LINEGRFXCH)

Specifies the line graphics character required. The argument can be one of the
following:

Disable Manual Input @(IT$DMI)
Locks the terminal’s keyboard.

Enable Manual Input @(IT$EMI)
Unlocks the terminal’s keyboard.

Value Token Description

0 IT$GRFX.CROSS Cross piece

1 IT$GRFX.H.LINE Horizontal line

2 IT$GRFX.V.LINE Vertical line

3 IT$GRFX.TL.CORNER Top-left corner

4 IT$GRFX.TR.CORNER Top-right corner

5 IT$GRFX.BL.CORNER Bottom-left corner

6 IT$GRFX.BR.CORNER Bottom-right corner

7 IT$GRFX.TOP.TEE Top-edge tee piece

8 IT$GRFX.LEFT.TEE Left-edge tee piece

9 IT$GRFX.RIGHT.TEE Right-edge tee piece

10 IT$GRFX.BOTTOM.TEE Bottom-edge tee piece
BASIC Statements and Functions 6-41

@ function
Blank Screen @(IT$BSCN)
Blanks the terminal’s display. Subsequent output to the screen is not visible until
the unblank screen function, @(IT$UBS), is used.

Unblank Screen @(IT$UBS)
Restores the terminal’s display after it was blanked. The previous contents of the
screen, and any subsequent updates, become visible.

Scroll Up @(IT$SU)

Moves the entire contents of the display up one line. For m greater than 0, the func-
tion @(IT$SU, m) moves the display up m lines or until the bottom of the display is
reached, whichever occurs first. For each line that is scrolled, the first line is
removed from sight and another line is moved into the last line. This function
works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires
the terminal to be set to vertical two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Scroll Down @(IT$SD)
Moves the entire contents of the display down one line. For m greater than 0, the
function @(IT$SD, m) moves the display down m lines or until the top of the
display is reached, whichever occurs first. For each line that is scrolled, the last line
is removed from sight and another line is moved into the top line. This function
works only if the terminal is capable of addressing character positions that do not
all fit on the screen, such that some lines are not displayed. This normally requires
the terminal to be set to vertical two-page mode in the initialization string. The
effect of attempting to scroll the terminal too far is undefined.

Scroll Right @(IT$SR)
Moves the entire contents of the display one column to the right. For m greater than
0, the function @(IT$SR, m) moves the display m columns to the right or until the
left edge of the display is reached, whichever occurs first. For each column
scrolled, the rightmost column is removed from sight and another leftmost column
appears. This function works only if the terminal is capable of addressing character
positions that do not fit on the screen, such that some columns are not displayed.
This normally requires the terminal to be set to horizontal two-page mode in the
6-42 BASIC Guide

@ function
initialization string. The effect of attempting to scroll the terminal too far is
undefined.

Scroll Left @(IT$SL)
Moves the entire contents of the display one column to the left. For m greater than
0, the function @(IT$SL, m) moves the display m columns to the left or until the
right edge of the display is reached, whichever happens first. For each column
scrolled, the leftmost column is removed from sight and another rightmost column
appears. This function works only if the terminal is capable of addressing character
positions that do not fit on the screen, such that some columns are not displayed.
This normally requires the terminal to be set to horizontal two-page mode in the
initialization string. The effect of attempting to scroll the terminal too far is
undefined.

Set Line Truncate @(IT$SLT)
Makes the cursor stay in the last position on the line when characters are printed
past the last position.

Reset Line Truncate @(IT$RLT)

Makes the cursor move to the first position on the next line down when characters
are printed past the last position.

Set Numeric Keypad @(IT$SNK)
Sets keys on the numeric keypad to the labelled functions instead of numbers.

Reset Numeric Keypad @(IT$RNK)
Resets keys on the numeric keypad to numbers.

Start Bold @(IT$SBOLD)

Starts bold mode; subsequently, any characters entered are shown more brightly
on the screen.

End Bold @(IT$EBOLD)
Ends bold mode; characters revert to normal screen brightness.
BASIC Statements and Functions 6-43

@ function
Start Secure Mode @(IT$SSECUR)
Characters entered in this setting are not shown on the screen. This function can be
used when entering passwords, for example.

End Secure Mode @(IT$ESECURE)
Switches off secure mode; characters appear on the screen.

Start Screen Protect Mode @(IT$SSCRPROT)

Switches on start protect mode. Characters entered in this mode are not removed
when the screen is cleared.

End Screen Protect Mode @(IT$ESCRPROT)
Switches off screen protect mode.

System Line Display @(IT$SLD)
Redisplays the user-defined characters that were sent by the system line set func-
tion, @(IT$SLS). The system line is defined as an extra line on the terminal display
but is addressable by the normal cursor positioning sequence. On most terminals
the system line normally contains a terminal status description. The number of
usable lines on the screen does not change.

System Line Reset @(IT$SLR)

Removes from the display the characters that were set by the @(IT$SLS) function
and replaces them with the default system status line. The number of usable lines
on the screen does not change.

System Line Set @(IT$SLS)
Displays the user-defined status line, and positions the cursor at the first column
of the status line. Subsequent printing characters sent to the terminal are displayed
on the status line. Issuing a system line reset function, @(IT$SLR), terminates
printing on the status line, and leaves the cursor position undefined. The charac-
ters printed between the issuing of @(IT$SLS) and @(IT$SLR) can be recalled
subsequently and displayed on the line by issuing an @(IT$SLD) function.
6-44 BASIC Guide

@ function
Cursor Horizontal Absolute @(IT$CHA)
Positions the cursor at column m of the current line. If m is omitted, the default is
0. The @(IT$CHA, m) function must have the same effect as @(m).

Erase Character @(IT$ECH)
Erases the character under the cursor and replaces it with one or more spaces,
determined by the argument m. If you do not specify m, or you specify a value for
m that is less than 2, only the character under the cursor is replaced. If you specify
an argument whose value is greater than 1, the function replaces the character
under the cursor, and m –1 characters to the right of the cursor, with spaces. The
cursor position is unchanged.

ITNPC, ITDISPLAY, and IT$MINIBUF

Reserved for EDFS attributes.

Lock Line @(IT$LOKL)
Locks line n of the screen display (top line is 0). The line cannot be modified,
moved, or deleted from the screen until it is unlocked.

Unlock Line @(IT$UNLL)
Unlocks line n of the screen display allowing it to be modified, moved, or deleted.

Display Marks @(IT$MARKSUBS)

Returns the characters used to display DataStage delimiters on screen. From left to
right, the delimiters are: item, field, value, subvalue, and text.

Allocated for Ascential @(–80) to @(–100)
These functions are reserved for Ascential.

Allocated for General Use @(–101) to @(–128)
These functions are available for any additional terminal definition strings that
you require.

Video Attributes: Points to Note
Terminals whose video attributes are described as embedded or on-screen use a
character position on the terminal screen whenever a start or stop video attribute
BASIC Statements and Functions 6-45

@ function
is received. Programs driving such terminals must not change an attribute in the
middle of a contiguous piece of text. You must leave at least one blank character
position at the point where the attribute changes. The field in the terminal defini-
tion record called xmc is used to specify the number of character positions required for
video attributes. A program can examine this field, and take appropriate action. To do
this, the program must execute GET.TERM.TYPE and examine the @SYSTEM-
.RETURN.CODE variable, or use the definition VIDEO.SPACES from the TERM
INFO.H file.

Many terminals do not clear video attributes automatically when the data on a line
is cleared or deleted. The recommended programming practice is to reposition to
the point at which a start attribute was emitted, and overwrite it with an end
attribute, before clearing the line.

On some terminals you can set up the Clear to End of Line sequence to clear both
data and video attributes. This is done by combining the strings for erase data from
active position to end of line, selecting Graphic Rendition normal, and changing all
video attributes from active position to end of line. Sending the result of the
@(IT$CLEOL) function causes both the visible data on the line to be cleared, and
all video attributes to be set to normal, after the cursor position.

Note: Where possible, you should try to ensure that any sequences that clear data
also clear video attributes. This may not be the case for all terminal types.

An exception is @(IT$CS) clear screen. The sequence associated with this
function should always clear not only all data on the screen but also reset
any video attributes to normal.

Examples
The following example displays “Demonstration” at column 5, line 20:

PRINT @(5,20):"Demonstration"

In the next example, the PRINT statement positions the cursor to home, at the top-
left corner of the screen, and clears the screen:

PRINT @(IT$CS):

The $INCLUDE statement is used to include the ATFUNCTIONS insert file of
equate names. Assignment statements are used to assign the evaluated @ functions
to variables. The variables are used in PRINT statements to produce code that
clears the screen and returns the cursor to its original position; positions the cursor
6-46 BASIC Guide

@ function
at column 5, line 20; turns on the reverse video mode; prints the string; and turns
off the reverse video mode.

$INCLUDE UNIVERSE.INCLUDE ATFUNCTIONS.H
CLS = @(IT$CS)
REVERSE.ON = @(IT$SREV)
REVERSE.OFF = @(IT$EREV)
.
.
.
PRINT CLS: @(5,20):
PRINT REVERSE.ON:"THIS IS REVERSE VIDEO":REVERSE.OFF

The next example displays any following text in yellow letters:

PRINT @(IT$FCOLOR, IT$YELLOW)

The next example displays any following text on a cyan background:

PRINT @(IT$BCOLOR, IT$CYAN)

The next example gives a yellow foreground, not a green foreground, because
color changes are not additive:

PRINT @(IT$FCOLOR, IT$BLUE):@(IT$FCOLOR, IT$YELLOW)

If you have a terminal that supports colored letters on a colored background, the
next example displays the text “Hello” in yellow on a cyan background. All subse-
quent output is in yellow on cyan until another color @ function is used. If your
color terminal cannot display colored foreground on colored background, only the
last color command is used, so that this example displays the text “Hello” in
yellow on a black background.

PRINT @(IT$BCOLOR,IT$CYAN):@(IT$FCOLOR,IT$YELLOW):"Hello"

If your color terminal cannot display colored foreground on colored background,
the previous example displays the text “Hello” in black on a cyan background.

The next example gives the same result as the previous example for a terminal that
supports colored letters on a colored background. Strings containing the @ func-
tions can be interpreted as a sequence of instructions, which can be stored for
subsequent frequent reexecution.

PRINT @(IT$FCOLOR,IT$YELLOW):@(IT$BCOLOR,IT$CYAN):"Hello"

In the last example, the screen is cleared, the cursor is positioned to the tenth
column in the tenth line, and the text “Hello” is displayed in foreground color
BASIC Statements and Functions 6-47

@ function
cyan. The foreground color is then changed to white for subsequent output. This
sequence of display instructions can be executed again, whenever it is required, by
a further PRINT SCREEN statement.

SCREEN = @(IT$CS):@(10,10):@(IT$FCOLOR,IT$CYAN):"Hello"
SCREEN = SCREEN:@(IT$FCOLOR,IT$WHITE)
PRINT SCREEN
6-48 BASIC Guide

[] operator
[]

Syntax

expression [[start,] length]

expression [delimiter, occurrence, fields]

Description
Use the [] operator (square brackets) to extract a substring from a character string.
The bold brackets are part of the syntax and must be typed.

expression evaluates to any character string.

start is an expression that evaluates to the starting character position of the
substring. If start is 0 or a negative number, the starting position is assumed to be
1. If you omit start, the starting position is calculated according to the following
formula:

string.length – substring.length + 1

This lets you specify a substring consisting of the last n characters of a string
without having to calculate the string length.

If start exceeds the number of characters in expression, an empty string results. An
empty string also results if length is 0 or a negative number. If the sum of start and
length exceeds the number of characters in the string, the substring ends with the
last character of the string.

length is an expression that evaluates to the length of the substring.

Use the second syntax to return a substring located between the specified number
of occurrences of the specified delimiter. This syntax performs the same function
as the FIELD function.

delimiter can be any string, including field mark, value mark, and subvalue mark
characters. It delimits the start and end of the substring (all that appears within the
two delimiters). If delimiter consists of more than one character, only the first char-
acter is used.

occurrence specifies which occurrence of the delimiter is to be used as a terminator.
If occurrence is less than 1, 1 is assumed.
BASIC Statements and Functions 6-49

[] operator
fields specifies the number of successive fields after the delimiter specified by occur-
rence that are to be returned with the substring. If the value of fields is less than 1, 1
is assumed. The delimiter is part of the returned value in the successive fields.

If the delimiter or the occurrence specified does not exist within the string, an
empty string is returned. If occurrence specifies 1 and no delimiter is found, the
entire string is returned.

If expression is the null value, any substring extracted from it will also be the null
value.

Examples
In the following example (using the second syntax) the fourth # is the terminator
of the substring to be extracted, and one field is extracted:

A="###DHHH#KK"
PRINT A["#",4,1]

This is the result:

DHHH

The following syntaxes specify substrings that start at character position 1:

expression [0, length]

expression [–1, length]
The following example specifies a substring of the last five characters:

"1234567890" [5]

This is the result:

67890

All substring syntaxes can be used in conjunction with the assignment operator
(=). The new value assigned to the variable replaces the substring specified by the
[] operator. For example:

A='12345'
A[3]=1212
PRINT "A=",A

returns the following:

A= 121212
6-50 BASIC Guide

[] operator
A[3] replaces the last three characters of A (345) with the newly assigned value for
that substring (1212).

The FIELDSTORE function provides the same functionality as assigning the three-
argument syntax of the [] operator.
BASIC Statements and Functions 6-51

ABORT statement
ABORT

Syntax

ABORT [expression …]

ABORTE [expression …]

ABORTM [expression …]

Description
Use the ABORT statement to terminate execution of a BASIC program and return
to the command prompt. ABORT differs from STOP in that a STOP statement
returns to the calling environment (for example, a menu, a paragraph, another
BASIC program following an EXECUTE statement, and so on), whereas ABORT
terminates all calling environments as well as the BASIC program. You can use it
as part of an IF…THEN statement to terminate processing if certain conditions
exist.

If expression is used, it is printed when the program terminates. If expression evalu-
ates to the null value, nothing is printed.

The ABORTE statement is the same as the ABORT statement except that it behaves
as if $OPTIONS STOP.MSG were in force. This causes ABORT to use the ERRMSG
file to produce error messages instead of using the specified text. If expression in the
ABORTE statement evaluates to the null value, the default error message is
printed:

Message ID is NULL: undefined error

For information about the ERRMSG file, see the ERRMSG statement.

The ABORTM statement is the same as the ABORT statement except that it
behaves as if $OPTIONS −STOP.MSG were in force. This causes ABORT to use the
specified text instead of text from the ERRMSG file.

Example
PRINT "DO YOU WANT TO CONTINUE?":
INPUT A
IF A="NO" THEN ABORT

This is the program output:

DO YOU WANT TO CONTINUE?NO
Program "TEST": Line 3, Abort.
6-52 BASIC Guide

ABS function
ABS

Syntax
ABS (expression)

Description
Use the ABS function to return the absolute value of any numeric expression. The
absolute value of an expression is its unsigned magnitude. If expression is negative,
the value returned is:

−expression

For example, the absolute value of −6 is 6.

If expression is positive, the value of expression is returned. If expression evaluates to
the null value, null is returned.

Example
Y = 100
X = ABS(43-Y)
PRINT X

This is the program output:

57
BASIC Statements and Functions 6-53

ABSS function
ABSS

Syntax
ABSS (dynamic.array)

Description
Use the ABSS function to return the absolute values of all the elements in a
dynamic array. If an element in dynamic.array is the null value, null is returned for
that element.

Example
Y = REUSE(300)
Z = 500:@VM:400:@VM:300:@SM:200:@SM:100
A = SUBS(Z,Y)
PRINT A
PRINT ABSS(A)

This is the program output:

200V100V0S-100S-200
200V100V0S100S200
6-54 BASIC Guide

ACOS function
ACOS

Syntax
ACOS (expression)

Description
Use the ACOS function to return the trigonometric arc-cosine of expression. expres-
sion must be a numeric value. The result is expressed in degrees. If expression
evaluates to the null value, null is returned. The ACOS function is the inverse of
the COS function.

Example
PRECISION 5
PRINT "ACOS(0.707106781) = ":ACOS(0.707106781):" degrees"

This is the program output:

ACOS(0.707106781) = 45 degrees
BASIC Statements and Functions 6-55

ADDS function
ADDS

Syntax
ADDS (array1, array2)

CALL −ADDS (return.array, array1, array2)

CALL !ADDS (return.array, array1, array2)

Description
Use the ADDS function to create a dynamic array of the element-by-element addi-
tion of two dynamic arrays.

Each element of array1 is added to the corresponding element of array2. The result
is returned in the corresponding element of a new dynamic array. If an element of
one array has no corresponding element in the other array, the existing element is
returned. If an element of one array is the null value, null is returned for the sum
of the corresponding elements.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A = 2:@VM:4:@VM:6:@SM:10
B = 1:@VM:2:@VM:3:@VM:4
PRINT ADDS(A,B)

This is the program output:

3V6V9S10V4
6-56 BASIC Guide

ALPHA function
ALPHA

Syntax
ALPHA (expression)

Description
Use the ALPHA function to determine whether expression is an alphabetic or
nonalphabetic string. If expression contains the characters a through z or A through
Z, it evaluates to true and a value of 1 is returned. If expression contains any other
character or an empty string, it evaluates to false and a value of 0 is returned. If
expression evaluates to the null value, null is returned.

If NLS is enabled, the ALPHA function uses the characters in the Alphabetics field
in the NLS.LC.CTYPE file. For more information, see the DataStage NLS Guide.

Example
PRINT "ALPHA('ABCDEFG') = ":ALPHA('ABCDEFG')
PRINT "ALPHA('abcdefg') = ":ALPHA('abcdefg')
PRINT "ALPHA('ABCDEFG.') = ":ALPHA('ABCDEFG.')
PRINT "ALPHA('SEE DICK') = ":ALPHA('SEE DICK')
PRINT "ALPHA('4 SCORE') = ":ALPHA('4 SCORE')
PRINT "ALPHA('') = ":ALPHA('')

This is the program output:

ALPHA('ABCDEFG') = 1
ALPHA('abcdefg') = 1
ALPHA('ABCDEFG.') = 0
ALPHA('SEE DICK') = 0
ALPHA('4 SCORE') = 0
ALPHA('') = 0
BASIC Statements and Functions 6-57

ANDS function
ANDS

Syntax
ANDS (array1, array2)

CALL −ANDS (return.array, array1, array2)

CALL !ANDS (return.array, array1, array2)

Description
Use the ANDS function to create a dynamic array of the logical AND of corre-
sponding elements of two dynamic arrays.

Each element of the new dynamic array is the logical AND of the corresponding
elements of array1 and array2. If an element of one dynamic array has no corre-
sponding element in the other dynamic array, a false (0) is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If both corresponding elements of array1 and array2 are the null value, null is
returned for those elements. If one element is the null value and the other is 0 or an
empty string, a false is returned for those elements.

Example
A = 1:@SM:4:@VM:4:@SM:1
B = 1:@SM:1-1:@VM:2
PRINT ANDS(A,B)

This is the program output:

1S0V1S0
6-58 BASIC Guide

ASCII function
ASCII

Syntax
ASCII (expression)

Description
Use the ASCII function to convert each character of expression from its EBCDIC
representation value to its ASCII representation value. If expression evaluates to the
null value, null is returned.

The ASCII function and the EBCDIC function perform complementary operations.

Example
X = EBCDIC('ABC 123')
Y = ASCII(X)
PRINT "EBCDIC", "ASCII", " Y "
PRINT "------", "-----", "---"
FOR I = 1 TO LEN (X)
PRINT SEQ(X[I,1]) , SEQ(Y[I,1]),Y[I,1]
NEXT I

This is the program output:

EBCDIC ASCII Y
------ ----- ---
193 65 A
194 66 B
195 67 C
64 32
241 49 1
242 50 2
243 51 3
BASIC Statements and Functions 6-59

ASIN function
ASIN

Syntax
ASIN (expression)

Description
Use the ASIN function to return the trigonometric arc-sine of expression. expression
must be a numeric value. The result is expressed in degrees. If expression evaluates
to the null value, null is returned. The ASIN function is the inverse of the SIN
function.

Example
PRECISION 5
PRINT "ASIN(0.707106781) = ":ASIN(0.707106781):" degrees"

This is the program output:

ASIN(0.707106781) = 45 degrees
6-60 BASIC Guide

ASSIGNED function
ASSIGNED

Syntax
ASSIGNED (variable)

Description
Use the ASSIGNED function to determine if variable is assigned a value.
ASSIGNED returns 1 (true) if variable is assigned a value, including common vari-
ables and the null value. It returns 0 (false) if variable is not assigned a value.

PICK Flavor
When you run in a PICK flavor account, all common variables are initially unas-
signed. ASSIGNED returns 0 (false) for common variables until the program
explicitly assigns them a value.

Example
A = "15 STATE STREET"
C = 23
X = ASSIGNED(A)
Y = ASSIGNED(B)
Z = ASSIGNED(C)
PRINT X,Y,Z

This is the program output:

1 0 1
BASIC Statements and Functions 6-61

assignment statements
Assignment Statements

Syntax
variable = expression

=
variable += expression

variable −= expression

variable := expression

Description
Use assignment statements to assign a value to a variable. The variable can be
currently unassigned (that is, one that has not been assigned a value by an assign-
ment statement, a READ statement, or any other statement that assigns values to
variables) or have an old value that is to be replaced. The assigned value can be a
constant or an expression. It can be any data type (that is, numeric, character string,
or the null value).

Use the operators += , −= , and := to alter the value of a variable. The += operator
adds the value of expression to variable. The −= operator subtracts the value of
expression from variable. The := operator concatenates the value of expression to the
end of variable.

Use the system variable @NULL to assign the null value to a variable:

variable = @NULL

Use the system variable @NULL.STR to assign a character string containing only
the null value (more accurately, the character used to represent the null value) to a
variable:

variable = @NULL.STR

Example
EMPL=86
A="22 STAGECOACH LANE"
X='$4,325'
B=999
PRINT "A= ":A,"B= ":B,"EMPL= ":EMPL
B+=1
PRINT "X= ":X,"B= ":B
6-62 BASIC Guide

assignment statements
This is the program output:

A= 22 STAGECOACH LANE B= 999 EMPL= 86
X= $4,325 B= 1000
BASIC Statements and Functions 6-63

ATAN function
ATAN

Syntax
ATAN (expression)

Description
Use the ATAN function to return the trigonometric arc-tangent of expression. expres-
sion must be a numeric value. The result is expressed in degrees. If expression
evaluates to the null value, null is returned. The ATAN function is the inverse of
the TAN function.

Examples
The following example prints the numeric value 135 and the angle, in degrees, that
has an arc-tangent of 135:

PRINT 135, ATAN(135)

The next example finds what angle has an arc-tangent of 1:

X = ATAN(1)
PRINT 1, X

This is the program output:

135 89.5756
1 45
6-64 BASIC Guide

AUTHORIZATION statement
AUTHORIZATION

Syntax
AUTHORIZATION "username"

Description
Use the AUTHORIZATION statement to specify or change the effective run-time
user of a program. After an AUTHORIZATION statement is executed, any SQL
security checking acts as if username is running the program.

username is a valid login name on the machine where the program is run. username
must be a constant. username is compiled as a character string whose user identifi-
cation (UID) number is looked up in the /etc/passwd file at run time.

An AUTHORIZATION statement changes only the user name that is used for SQL
security checking while the program is running. It does not change the actual user
name, nor does it change the user’s effective UID at the operating system level. If
a program does not include an AUTHORIZATION statement, it runs with the user
name of the user who invokes it.

You can change the effective user of a program as many times as you like. The user-
name specified by the most recently executed AUTHORIZATION statement
remains in effect for subsequent EXECUTE and PERFORM statements as well as
for subroutines.

When a file is opened, the effective user’s permissions are stored in the file vari-
able. These permissions apply whenever the file variable is referenced, even if a
subsequent AUTHORIZATION statement changes the effective user name.

The effective user name is stored in the system variable @AUTHORIZATION.

A program using the AUTHORIZATION statement must be compiled on the
machine where the program is to run. To compile the AUTHORIZATION state-
ment, SQL DBA privilege is required. If the user compiling the program does not
have DBA privilege, the program will not be compiled. You cannot run the
program on a machine different from the one where it was compiled. If you try, the
program terminates with a fatal error message.

Example
AUTHORIZATION "susan"
OPEN "","SUES.FILE" TO FILE.S ELSE PRINT "CAN'T OPEN SUES.FILE"
AUTHORIZATION "bill"
BASIC Statements and Functions 6-65

AUTHORIZATION statement
OPEN "","BILLS.FILE" TO FILE.B ELSE PRINT "CAN'T OPEN
BILLS.FILE"
FOR ID = 5000 TO 6000

READ SUE.ID FROM FILE.S, ID THEN PRINT ID ELSE NULL
READ BILL.ID FROM FILE.B, ID THEN PRINT ID ELSE NULL

NEXT ID
6-66 BASIC Guide

AUXMAP statement
AUXMAP

Syntax

AUXMAP { ON | OFF | expression }

Description
In NLS mode, use the AUXMAP statement to associate an auxiliary device with a
terminal.

AUXMAP ON causes subsequent PRINT statements directed to print channel 0 to
use the auxiliary map. If no auxiliary map is defined, the terminal map is used.
AUXMAP OFF causes subsequent PRINT statements to use the terminal map. OFF
is the default. If expression evaluates to true, AUXMAP is turned on. If expression
evaluates to false, AUXMAP is turned off.

A program can access the map for an auxiliary device only by using the AUXMAP
statement. Other statements used for printing to the terminal channel, such as
CRC32, PRINT, or INPUTERR, use the terminal map.

If NLS is not enabled and you execute the AUXMAP statement, the program
displays a run-time error message. For more information, see the DataStage NLS
Guide.
BASIC Statements and Functions 6-67

BEGIN CASE statement
Use the BEGIN CASE statement to begin a set of CASE statements. For details, see
the statement.
6-68 BASIC Guide

BEGIN TRANSACTION statement
BEGIN TRANSACTION

Syntax

BEGIN TRANSACTION [ISOLATION LEVEL level]

[statements]

Description
Use the BEGIN TRANSACTION statement to indicate the beginning of a
transaction.

The ISOLATION LEVEL clause sets the transaction isolation level for the duration
of that transaction. The isolation level reverts to the original value at the end of the
transaction.

level is an expression that evaluates to one of the following:

• An integer from 0 through 4
• One of the following keywords

Examples
The following examples both start a transaction at isolation level 3:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE.READ

BEGIN TRANSACTION ISOLATION LEVEL 3

Integer Keyword Effect on This Transaction

0 NO.ISOLATION Prevents lost updates.1

1. Lost updates are prevented if the ISOMODE configurable parameter is set to 1 or 2.

1 READ.UNCOMMITTED Prevents lost updates.

2 READ.COMMITTED Prevents lost updates and dirty reads.

3 REPEATABLE.READ Prevents lost updates, dirty reads, and
nonrepeatable reads.

4 SERIALIZABLE Prevents lost updates, dirty reads, nonre-
peatable reads, and phantom writes.
BASIC Statements and Functions 6-69

BITAND function
BITAND

Syntax
BITAND (expression1, expression2)

Description
Use the BITAND function to perform the bitwise AND comparison of two integers
specified by numeric expressions. The bitwise AND operation compares two inte-
gers bit by bit. It returns a bit of 1 if both bits are 1; otherwise it returns a bit of 0.

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITAND operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit
nonportable.

Example
PRINT BITAND(6,12)
* The binary value of 6 = 0110
* The binary value of 12 = 1100

This results in 0100, and the following output is displayed:

4

6-70 BASIC Guide

BITNOT function
BITNOT

Syntax

BITNOT (expression [,bit#])

Description
Use the BITNOT function to return the bitwise negation of an integer specified by
any numeric expression.

bit# is an expression that evaluates to the number of the bit to invert. If bit# is
unspecified, BITNOT inverts each bit. It changes each bit of 1 to a bit of 0 and each
bit of 0 to a bit of 1. This is equivalent to returning a value equal to the following:

(−expression)−1

If expression evaluates to the null value, null is returned. If bit# evaluates to the null
value, the BITNOT function fails and the program terminates with a run-time error
message.

Noninteger values are truncated before the operation is performed.

The BITNOT operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit
nonportable.

Example
PRINT BITNOT(6),BITNOT(15,0),BITNOT(15,1),BITNOT(15,2)

This is the program output:

−7 14 13 11
BASIC Statements and Functions 6-71

BITOR function
BITOR

Syntax
BITOR (expression1, expression2)

Description
Use the BITOR function to perform the bitwise OR comparison of two integers
specified by numeric expressions. The bitwise OR operation compares two inte-
gers bit by bit. It returns the bit 1 if the bit in either or both numbers is 1; otherwise
it returns the bit 0.

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit
nonportable.

Example
PRINT BITOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

This results in 1110, and the following output is displayed:

14
6-72 BASIC Guide

BITRESET function
BITRESET

Syntax
BITRESET (expression, bit#)

Description
Use the BITRESET function to reset to 0 the bit number of the integer specified by
expression. Bits are counted from right to left. The number of the rightmost bit is 0.
If the bit is 0, it is left unchanged.

If expression evaluates to the null value, null is returned. If bit# evaluates to the null
value, the BITRESET function fails and the program terminates with a run-time
error message.

Noninteger values are truncated before the operation is performed.

Example
PRINT BITRESET(29,0),BITRESET(29,3)
* The binary value of 29 = 11101
* The binary value of 28 = 11100
* The binary value of 21 = 10101

PRINT BITRESET(2,1),BITRESET(2,0)
* The binary value of 2 = 10
* The binary value of 0 = 0

This is the program output:

28 21
0 2
BASIC Statements and Functions 6-73

BITSET function
BITSET

Syntax
BITSET (expression, bit#)

Description
Use the BITSET function to set to 1 the bit number of the integer specified by expres-
sion. The number of the rightmost bit is 0. If the bit is 1, it is left unchanged.

If expression evaluates to the null value, null is returned. If bit# evaluates to the null
value, the BITSET function fails and the program terminates with a run-time error
message.

Noninteger values are truncated before the operation is performed.

Example
PRINT BITSET(20,0),BITSET(20,3)
* The binary value of 20 = 10100
* The binary value of 21 = 10101
* The binary value of 28 = 11100

PRINT BITSET(2,0),BITSET(2,1)
* The binary value of 2 = 10
* The binary value of 3 = 11

This is the program output:

21 28
3 2
6-74 BASIC Guide

BITTEST function
BITTEST

Syntax
BITTEST (expression, bit#)

Description
Use the BITTEST function to test the bit number of the integer specified by expres-
sion. The function returns 1 if the bit is set; it returns 0 if it is not. Bits are counted
from right to left. The number of the rightmost bit is 0.

If expression evaluates to the null value, null is returned. If bit# evaluates to null, the
BITTEST function fails and the program terminates with a run-time error message.

Noninteger values are truncated before the operation is performed.

Example
PRINT BITTEST(11,0),BITTEST(11,1),BITTEST(11,2),BITTEST(11,3)
* The binary value of 11 = 1011

This is the program output:

1 1 0 1
BASIC Statements and Functions 6-75

BITXOR function
BITXOR

Syntax
BITXOR (expression1, expression2)

Description
Use the BITXOR function to perform the bitwise XOR comparison of two integers
specified by numeric expressions. The bitwise XOR operation compares two inte-
gers bit by bit. It returns a bit 1 if only one of the two bits is 1; otherwise it returns
a bit 0.

If either expression1 or expression2 evaluates to the null value, null is returned.

Noninteger values are truncated before the operation is performed.

The BITXOR operation is performed on a 32-bit twos-complement word.

Note: Differences in hardware architecture can make the use of the high-order bit
nonportable.

Example
PRINT BITXOR(6,12)
* Binary value of 6 = 0110
* Binary value of 12 = 1100

This results in 1010, and the following output is displayed:

10
6-76 BASIC Guide

BREAK statement
BREAK

Syntax

BREAK [KEY] {ON | OFF | expression}

Description
Use the BREAK statement to enable or disable the Intr, Quit, and Susp keys on the
keyboard.

When the BREAK ON statement is in effect, pressing Intr, Quit, or Susp causes
operations to pause.

When the BREAK OFF statement is in effect, pressing Intr, Quit, or Susp has no
effect. This prevents a break in execution of programs that you do not want
interrupted.

When expression is used with the BREAK statement, the value of expression deter-
mines the status of the Intr, Quit, and Susp keys. If expression evaluates to false (0,
an empty string, or the null value), the Intr, Quit, and Susp keys are disabled. If
expression evaluates to true (not 0, an empty string, or the null value), the Intr, Quit,
and Susp keys are enabled.

A counter is maintained for the BREAK statement. It counts the number of
executed BREAK ON and BREAK OFF commands. When program control
branches to a subroutine, the value of the counter is maintained; it is not set back
to 0. For each BREAK ON statement executed, the counter decrements by 1; for
each BREAK OFF statement executed, the counter increments by 1. The counter
cannot go below 0. The Intr, Quit, and Susp keys are enabled only when the value
of the counter is 0. The following example illustrates the point:

Counters and the BREAK Statement

Statement from Command Counter Key Status

— — 0 ON

Main program BREAK OFF +1 OFF

Subroutine BREAK OFF +2 OFF

Subroutine BREAK ON +1 OFF

Main program BREAK ON 0 ON
BASIC Statements and Functions 6-77

BREAK statement
Examples
The following example increases the counter by 1:

BREAK KEY OFF

The following example decreases the counter by 1:

BREAK KEY ON

The following example disables the Intr, Quit, and Susp keys if QTY is false, 0, an
empty string, or the null value; it enables them if QTY is true, not 0, not an empty
string, or not the null value:

BREAK QTY ;*
6-78 BASIC Guide

BSCAN statement
BSCAN

Syntax

BSCAN ID.variable [,rec.variable] [FROM [file.variable[,record]

[USING indexname] [RESET] [BY seq]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the BSCAN statement to scan the leaf nodes of a B-tree file (type 25) or of a
secondary index. The record ID returned by the current scan operation is assigned
to ID.variable. If you specify rec.variable, the contents of the record whose ID is
ID.variable is assigned to it.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement). If the file
is neither accessible nor open, the program terminates with a run-time error
message.

record is an expression that evaluates to a record ID of a record in the B-tree file. If
the USING clause is used, record is a value in the specified index. record specifies
the relative starting position of the scan.

record need not exactly match an existing record ID or value. If it does not, the scan
finds the next or previous record ID or value, depending on whether the scan is in
ascending or descending order. For example, depending on how precisely you
want to specify the starting point at or near the record ID or value SMITH, record
can evaluate to SMITH, SMIT, SMI, SM, or S.

If you do not specify record, the scan starts at the leftmost slot of the leftmost leaf,
or the rightmost slot of the rightmost leaf, depending on the value of the seq expres-
sion. The scan then moves in the direction specified in the BY clause.

indexname is an expression that evaluates to the name of a secondary index associ-
ated with the file.

RESET resets the internal B-tree scan pointer. If the scanning order is ascending, the
pointer is set to the leftmost slot of the leftmost leaf; if the order is descending, the
pointer is set to the rightmost slot of the rightmost leaf. If you do not specify seq,
the scan is done in ascending order. If you specify record in the FROM clause,
RESET is ignored.
BASIC Statements and Functions 6-79

BSCAN statement
seq is an expression that evaluates to A or D; it specifies the direction of the scan.
"A", the default, specifies ascending order. "D" specifies descending order.

If the BSCAN statement finds a valid record ID, or a record ID and its associated
data, the THEN statements are executed; the ELSE statements are ignored. If the
scan does not find a valid record ID, or if some other error occurs, any THEN state-
ments are ignored, and the ELSE statements are executed.

Any file updates executed in a transaction (that is, between a BEGIN TRANSAC-
TION statement and a COMMIT statement) are not accessible to the BSCAN
statement until after the COMMIT statement has been executed.

The STATUS function returns the following values after the BSCAN statement is
executed:

If NLS is enabled, the BSCAN statement retrieves record IDs in the order deter-
mined by the active collation locale; otherwise, BSCAN uses the default order,
which is simple byte ordering that uses the standard binary value for characters;
the Collate convention as specified in the NLS.LC.COLLATE file for the current
locale is ignored. For more information about collation, see the DataStage NLS
Guide.

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable
and rec.variable are set to empty strings.

1 The scan returned an existing record ID, or a record ID that matches the
record ID specified by record.

2 The scan returned a record ID that does not match record. ID.variable is either
the next or the previous record ID in the B-tree, depending on the direction of
the scan.

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has
no active secondary indexes.

4 indexname does not exist.

5 seq does not evaluate to A or D.

6 The index specified by indexname needs to be built.

10 An internal error was detected.
6-80 BASIC Guide

BSCAN statement
Example
The following example shows how you might indicate that the ELSE statements
were executed because the contents of the leaf nodes were exhausted:

BSCAN ID,REC FROM FILE,MATCH USING "PRODUCT" BY "A" THEN
PRINT ID,REC

END ELSE
ERR = STATUS()
BEGIN CASE

CASE ERR = 0
PRINT "Exhausted leaf node contents."

CASE ERR = 3
PRINT "No active indices, or file is not type 25."

CASE ERR = 4
PRINT "Index name does not exist."

CASE ERR = 5
PRINT "Invalid BY clause value."

CASE ERR = 6
PRINT "Index must be built."

CASE ERR = 10
PRINT "Internal error detected."

END CASE
GOTO EXIT.PROGRAM:

END
BASIC Statements and Functions 6-81

BYTE function
BYTE

Syntax
BYTE (expression)

Description
In NLS mode, use the BYTE function to generate a byte from the numeric value of
expression. BYTE returns a string containing a single byte.

If expression evaluates to a value in the range 0 to 255, a single-byte character is
returned. If expression evaluates to a value in the range 0x80 to 0xF7, a byte that is
part of a multibyte character is returned.

If NLS is not enabled, BYTE works like the CHAR function. For more information,
see the DataStage NLS Guide.

Example
When NLS is enabled, the BYTE and CHAR functions return the following:

BYTE(32) Returns a string containing a single space.

CHAR(32) Returns a string containing a single space.

BYTE(230) Returns a string containing the single byte 0xe6.

CHAR(230) Returns a string containing the multibyte characters æ (small liga-
ture Æ).
6-82 BASIC Guide

BYTELEN function
BYTELEN

Syntax
BYTELEN (expression)

Description
In NLS mode, use the BYTELEN function to generate the number of bytes
contained in the ASCII string value in expression.

The bytes in expression are counted, and the count is returned. If expression evalu-
ates to the null value, null is returned.

If NLS is not enabled, BYTELEN works like the LEN function. For more informa-
tion, see the DataStage NLS Guide.
BASIC Statements and Functions 6-83

BYTETYPE function
BYTETYPE

Syntax
BYTETYPE (value)

Description
In NLS mode, use the BYTETYPE function to determine the function of a byte in
value.

If value is from 0 to 255, the BYTETYPE function returns a number that corresponds
to the following:

If value evaluates to the null value, null is returned.

BYTETYPE behaves the same whether NLS is enabled or not. For more informa-
tion, see the DataStage NLS Guide.

–1 value is out of bounds

0 Trailing byte of a 2-, 3-, or > 3-byte character

1 Single-byte character

2 Leading byte of a 2-byte character

3 Leading byte of a 3-byte character

4 Reserved for the leading byte of a 4-byte character

5 System delimiter
6-84 BASIC Guide

BYTEVAL function
BYTEVAL

Syntax

BYTEVAL (expression [, n])

Description
In NLS mode, use the BYTEVAL function to examine the bytes contained in the
internal string value of expression. The BYTEVAL function returns a number from
0 through 255 as the byte value of n in expression. If you omit n, 1 is assumed.

If an error occurs, the BYTEVAL function returns a number that corresponds to the
following conditions:

BYTEVAL behaves the same whether NLS is enabled or not. For more information,
see the DataStage NLS Guide.

–1 expression is the empty string or
expression has fewer than n bytes or
n is less than 1.

null value expression is the null value.
BASIC Statements and Functions 6-85

CALL statement
CALL

Syntax

CALL name [([MAT] argument [, [MAT] argument …])]
variable = 'name'
CALL @variable [([MAT] argument [, [MAT] argument …])]

Description
Use the CALL statement to transfer program control from the calling program to
an external subroutine or program that has been compiled and cataloged.

Locally cataloged subroutines can be called directly. Specify name using the exact
name under which it was cataloged. For more details, see The CATALOG
Command on page 3-12.

External subroutines can be called directly or indirectly. To call a subroutine indi-
rectly, the name under which the subroutine is cataloged must be assigned to a
variable or to an element of an array. This variable name or array element specifier,
prefixed with an at sign (@), is used as the operand of the CALL statement.

The first time a CALL is executed, the system searches for the subroutine in a cata-
loged library and changes a variable that contains the subroutine name to contain
its location information instead. This procedure eliminates the need to search the
catalog again if the same subroutine is called later in the program. For indirect
calls, the variable specified in the CALL as the @variable is used; for direct calls, an
internal variable is used. With the indirect method, it is best to assign the subrou-
tine name to the variable only once in the program, not every time the indirect
CALL statement is used.

arguments are variables, arrays, array variables, expressions, or constants that
represent actual values. You can pass one or more arguments from the calling
program to a subroutine. The number of arguments passed in a CALL statement
must equal the number of arguments specified in the SUBROUTINE statement
that identifies the subroutine. If multiple arguments are passed, they must be sepa-
rated by commas. If an argument requires more than one physical line, use a
comma at the end of the line to indicate that the list continues.

If argument is an array, it must be preceded by the MAT keyword, and the array
should be named and dimensioned in both the calling program and the subroutine
before using this statement. If the array is not dimensioned in the subroutine, it
6-86 BASIC Guide

CALL statement
must be declared using the MAT keyword in the SUBROUTINE statement. Other
arguments can be passed at the same time regardless of the size of the array.

The actual values of arguments are not passed to the subroutine. Instead, a pointer
to the location of each argument is passed. Passing a pointer instead of the values
is more efficient when many values need to be passed to the subroutine. This
method of passing arguments is called passing by reference; passing actual values is
called passing by value.

All scalar and matrix variables are passed to subroutines by reference. If you want
to pass variables by value, enclose them in parentheses. When data is passed by
value, the contents of the variable in the main program do not change as a result of
manipulations to the data in the subroutine. When data is passed by reference, the
memory location of the variable is changed by manipulations in both the main
program and the subroutines. Constants are passed to subroutines by value.

When an array is passed to an external subroutine as an argument in a CALL state-
ment, any dimensions assigned to the array in the subroutine are ignored. The
dimensions of the original array as it exists in the calling program are maintained.
Therefore, it is a common and acceptable practice to dimension the array in the
subroutine with subscripts or indices of one. For example, you could dimension
the arrays in the subroutine as follows:

DIM A (1), B (1, 1), C (1, 1)

When the corresponding array arguments are passed from the calling program to
the subroutine at run time, arrays A, B, and C inherit the dimensions of the arrays
in the calling program. The indices in the DIMENSION statement are ignored.

A better way to declare array arguments in a subroutine is to use the MAT
keyword of the SUBROUTINE statement in the first line of the subroutine. The
following example tells the subroutine to expect the three arrays A, B, and C:

SUBROUTINE X(MAT A, MAT B, MAT C)

When a RETURN statement is encountered in the subroutine, or when execution
of the subroutine ends without encountering a RETURN statement, control returns
to the statement following the CALL statement in the calling program. For more
details, see the RETURN statement.

Examples
The following example calls the local subroutine SUB. It has no arguments.
BASIC Statements and Functions 6-87

CALL statement
CALL SUB

The following example calls the local subroutine QTY.ROUTINE with three
arguments:

CALL QTY.ROUTINE(X,Y,Z)

The following example calls the subroutine cataloged as *PROGRAM.1 with six
arguments. The argument list can be expressed on more than one line.

AAA="*PROGRAM.1"
CALL @AAA(QTY,SLS,ORDER,ANS,FILE.O,SEQ)

The following example calls the subroutine *MA with three arguments. Its index
and three arguments are passed.

STATE.TAX(1,2)='*MA'
CALL @STATE.TAX(1,2)(EMP.NO,GROSS,NET)

The following example calls the subroutine cataloged as *SUB and two matrices
are passed to two subroutine matrices. A third, scalar, argument is also passed.

GET.VALUE="*SUB"
DIM QTY(10)
DIM PRICE(10)
CALL @GET.VALUE(MAT QTY,MAT PRICE,COST)

The following example shows the SUBROUTINE statement in the subroutine SUB
that is called by the preceding example. The arrays Q and P need not be dimen-
sioned in the subroutine.

SUBROUTINE SUB(MAT Q,MAT P,C)
6-88 BASIC Guide

CASE statement
Syntax
BEGIN CASE

CASE expression
statements

[CASE expression
statements

.

.

.]
END CASE

Description
Use the CASE statement to alter the sequence of instruction execution based on the
value of one or more expressions. If expression in the first CASE statement is true,
the following statements up to the next CASE statement are executed. Execution
continues with the statement following the END CASE statement.

If the expression in a CASE statement is false, execution continues by testing the
expression in the next CASE statement. If it is true, the statements following the
CASE statement up to the next CASE or END CASE statement are executed. Execu-
tion continues with the statement following the END CASE statement.

If more than one CASE statement contains a true expression, only the statements
following the first such CASE statement are executed. If no CASE statements are
true, none of the statements between the BEGIN CASE and END CASE statements
are executed.

If an expression evaluates to the null value, the CASE statement is considered false.

Use the ISNULL function with the CASE statement when you want to test whether
the value of a variable is the null value. This is the only way to test for the null
value since null cannot be equal to any value, including itself. The syntax is:

CASE ISNULL (expression)

Use an expression of the constant "1" to specify a default CASE to be executed if
none of the other CASE expressions evaluate to true.

CASE BEGIN CASE
BASIC Statements and Functions 6-89

CASE statement
Examples
In the following example NUMBER is equal to 3. CASE 1 is always true, therefore
control is transferred to subroutine 30. Once the subroutine RETURN is executed,
control proceeds to the statement following the END CASE statement.

NUMBER=3
BEGIN CASE

CASE NUMBER=1
GOTO 10

CASE 1
GOSUB 30

CASE NUMBER<3
GOSUB 20

END CASE
PRINT 'STATEMENT FOLLOWING END CASE'
GOTO 50
10*
PRINT 'LABEL 10'
STOP
20*
PRINT 'LABEL 20'
RETURN
30*
PRINT 'LABEL 30'
RETURN
50*

This is the program output:

LABEL 30
STATEMENT FOLLOWING END CASE

In the following example, control proceeds to the statement following the END
CASE because 'NAME' does not meet any of the conditions:

NAME="MICHAEL"
BEGIN CASE

CASE NAME[1,2]='DA'
PRINT NAME
GOTO 10

CASE NAME[1,2]='RI'
PRINT NAME
GOSUB 20
6-90 BASIC Guide

CASE statement
CASE NAME[1,2]='BA'
PRINT NAME
GOSUB 30

END CASE
PRINT 'NO MATCH'
STOP

This is the program output:

NO MATCH
BASIC Statements and Functions 6-91

CATS function
CATS

Syntax
CATS (array1, array2)

CALL −CATS (return.array, array1, array2)

CALL !CATS (return.array, array1, array2)

Description
Use the CATS function to create a dynamic array of the element-by-element
concatenation of two dynamic arrays.

Each element of array1 is concatenated with the corresponding element of array2.
The result is returned in the corresponding element of a new dynamic array. If an
element of one dynamic array has no corresponding element in the other dynamic
array, the existing element is returned. If an element of one dynamic array is the
null value, null is returned for the concatenation of the corresponding elements.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A="A":@VM:"B":@SM:"C"
B="D":@SM:"E":@VM:"F"
PRINT CATS(A,B)

This is the program output:

ADSEVBFSC
6-92 BASIC Guide

CHAIN statement
CHAIN

Syntax
CHAIN command

Description
Use the CHAIN statement to terminate execution of a BASIC program and to
execute the value of command. command is an expression that evaluates to any valid
DataStage command. If command evaluates to the null value, the CHAIN statement
fails and the program terminates with a run-time error message.

Local variables belonging to the current program are lost when you chain from one
program to another. Named and unnamed common variables are retained.

CHAIN differs from the EXECUTE or PERFORM statements in that CHAIN does
not return control to the calling program. If a program chains to a proc, any nested
calling procs are removed.

PICK, IN2, and REALITY Flavors
Unnamed common variables are lost when a chained program is invoked in a
PICK, IN2, or REALITY flavor account. If you want to save the values of variables
in unnamed common, use the KEEP.COMMON keyword to the RUN command at
execution.

Example
The following program clears the screen, initializes the common area, and then
runs the main application:

PRINT @(-1)
PRINT "INITIALIZING COMMON, PLEASE WAIT"
GOSUB INIT.COMMON
CHAIN "RUN BP APP.MAIN KEEP.COMMON"
BASIC Statements and Functions 6-93

CHANGE function
CHANGE

Syntax

CHANGE (expression, substring, replacement [,occurrence [,begin]])

Description
Use the CHANGE function to replace a substring in expression with another
substring. If you do not specify occurrence, each occurrence of the substring is
replaced.

occurrence specifies the number of occurrences of substring to replace. To change all
occurrences, specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it
defaults to 1.

If substring is an empty string, the value of expression is returned. If replacement is
an empty string, all occurrences of substring are removed.

If expression evaluates to the null value, null is returned. If substring, replacement,
occurrence, or begin evaluates to the null value, the CHANGE function fails and the
program terminates with a run-time error message.

The CHANGE function behaves like the EREPLACE function except when
substring evaluates to an empty string.

Example
A = "AAABBBCCCDDDBBB"
PRINT CHANGE (A,"BBB","ZZZ")
PRINT CHANGE (A,"","ZZZ")
PRINT CHANGE (A,"BBB","")

This is the program output:

AAAZZZCCCDDDZZZ
AAABBBCCCDDDBBB
AAACCCDDD
6-94 BASIC Guide

CHAR function
CHAR

Syntax
CHAR (expression)

Description
Use the CHAR function to generate an ASCII character from the numeric value of
expression.

If expression evaluates to the null value, null is returned. If expression evaluates to
128, CHAR(128) is returned, not the null value. CHAR(128) is the equivalent of the
system variable @NULL.STR.

The CHAR function is the inverse of the SEQ function.

If NLS mode is enabled, and if expression evaluates to a number from 129 through
247, the CHAR function generates Unicode characters from x0081 through x00F7.
These values correspond to the equivalent ISO 8859-1 (Latin 1) multibyte charac-
ters. The evaluation of numbers from 0 through 127, 128, and 248 through 255
remains the same whether NLS is enabled or not.

The UNICHAR function is the recommended method for generating Unicode
characters. FFor more information, see the DataStage NLS Guide.

Note: In order to run programs using the CHAR function in NLS mode, you must
first recompile them in NLS mode.

Example
X = CHAR(38)
Y = CHAR(32)
PRINT X:Y:X

CHAR(38) is an ampersand (&). CHAR(32) is a space. This is the program output:

& &
BASIC Statements and Functions 6-95

CHARS function
CHARS

Syntax
CHARS (dynamic.array)

CALL −CHARS (return.array, dynamic.array)

CALL !CHARS (return.array, dynamic.array)

Description
Use the CHARS function to generate a dynamic array of ASCII characters from the
decimal numeric value of each element of dynamic.array.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If any element in the dynamic array is the null value, null is returned for that
element. If any element in the dynamic array evaluates to 128, CHAR(128) is
returned, not the null value. CHAR(128) is the equivalent of the system variable
@NULL.STR.

If NLS mode is enabled, and if any element in the dynamic array evaluates to a
number from 129 through 247, the CHARS function generates Unicode characters
from x0081 through x00F7. These values correspond to the equivalent ISO 8859-1
(Latin 1) multibyte characters. The evaluation of numbers from 0 through 127, 128,
and 248 through 255 remains the same whether NLS is enabled or not.

The UNICHARS function is the recommended method for generating a dynamic
array of Unicode characters. For more information, see the DataStage NLS Guide.

Example
X = CHARS(38:@VM:32:@VM:38)
PRINT X

The dynamic array X comprises three elements: CHAR(38) (an ampersand (&)),
CHAR(32) (a space), and another CHAR(38). The program prints a dynamic array
of these elements separated by value marks:

&V V&
6-96 BASIC Guide

CHECKSUM function
CHECKSUM

Syntax
CHECKSUM (string)

Description
Use the CHECKSUM function to return a cyclical redundancy code (a checksum
value).

If string is the null value, null is returned.

Example
A = "THIS IS A RECORD TO BE SENT VIA SOME PROTOCOL"
REC = A:@FM:CHECKSUM(A)
PRINT REC

This is the program output:

THIS IS A RECORD TO BE SENT VIA SOME PROTOCOLF30949
BASIC Statements and Functions 6-97

CLEAR statement
CLEAR

Syntax

CLEAR [COMMON]

Description
Use the CLEAR statement at the beginning of a program to set all assigned and
unassigned values of variables outside of the common area of the program to 0.
This procedure avoids run-time errors for unassigned variables. If you use the
CLEAR statement later in the program, any values assigned to noncommon vari-
ables (including arrays) are lost.

Use the COMMON option to reset the values of all the variables in the unnamed
common area to 0. Variables outside the common area or in the named common
area are unaffected.

Example
A=100
PRINT "The value of A before the CLEAR statement:"
PRINT A
CLEAR
PRINT "The value of A after the CLEAR statement:"
PRINT A
PRINT
*
COMMON B,C,D
D="HI"
PRINT "The values of B, C, and D"
PRINT B,C,D
CLEAR COMMON
PRINT B,C,D

This is the program output:

The value of A before the CLEAR statement: 100
The value of A after the CLEAR statement: 0
The values of B, C, and D
0 0 HI
0 0 0
6-98 BASIC Guide

CLEARDATA statement
CLEARDATA

Syntax
CLEARDATA

Description
Use the CLEARDATA statement to flush all data that has been loaded in the input
stack by the DATA statement. No expressions or spaces are allowed with this state-
ment. Use the CLEARDATA statement when an error is detected, to prevent data
placed in the input stack from being used incorrectly.

Example
The following program is invoked from a paragraph. A list of filenames and record
IDs is passed to it from the paragraph with DATA statements. If a file cannot be
opened, the CLEARDATA statement clears the data stack since the DATA state-
ments would no longer be valid to the program.

TEN:
INPUT FILENAME
IF FILENAME="END" THEN STOP
OPEN FILENAME TO FILE ELSE

PRINT "CAN'T OPEN FILE ":FILENAME
PRINT "PLEASE ENTER NEW FILENAME "
CLEARDATA
GOTO TEN:

END
TWENTY:
INPUT RECORD
READ REC FROM FILE,RECORD ELSE GOTO TEN:
PRINT REC<1>
GOTO TEN:

TEST.FILE.
0 records listed.
BASIC Statements and Functions 6-99

CLEARFILE statement
CLEARFILE

Syntax

CLEARFILE [file.variable] [ON ERROR statements] [LOCKED statements]

Description
Use the CLEARFILE statement to delete all records in an open dictionary or data
file. You cannot use this statement to delete the file itself. Each file to be cleared
must be specified in a separate CLEARFILE statement.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement).

The CLEARFILE statement fails and the program terminates with a run-time error
message if:

• The file is neither accessible nor open.

• file.variable evaluates to the null value.

• A distributed file contains a part file that cannot be accessed, but the
CLEARFILE statement clears those part files still available.

• A transaction is active. That is, you cannot execute this statement between
a BEGIN TRANSACTION (or TRANSACTION START) statement and the
COMMIT (or TRANSACTION START) or ROLLBACK statement that ends
the transaction.

The ON ERROR Clause

The ON ERROR clause is optional in the CLEARFILE statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the CLEARFILE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.
6-100 BASIC Guide

CLEARFILE statement
• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number. If a CLEARFILE statement is used when any portion of a file is
locked, the program waits until the file is released. The ON ERROR clause is not
supported if the CLEARFILE statement is within a transaction.

The LOCKED Clause
The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the CLEARFILE statement from processing. The
LOCKED clause is executed if one of the following conflicting Locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
• Update record lock
• Shared record lock

If the CLEARFILE statement does not include a LOCKED clause, and a conflicting
lock exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Example
OPEN "","TEST.FILE" ELSE PRINT "NOT OPEN"
EXECUTE "LIST TEST.FILE"
CLEARFILE
CHAIN "LIST TEST.FILE"

This is the program output:

LIST TEST.FILE 11:37:45am 03-22-94 PAGE 1
TEST.FILE
ONE
TWO
THREE
3 records listed.
LIST TEST.FILE 11:37:46am 03-22-94 PAGE 1
TEST.FILE.
0 records listed.
BASIC Statements and Functions 6-101

CLEARPROMPTS statement
CLEARPROMPTS

Syntax
CLEARPROMPTS

CALL !CLEAR.PROMPTS

Description
Use the CLEARPROMPTS statement to clear the value of the in-line prompt. Once
a value is entered for an in-line prompt, the prompt continues to have that value
until a CLEARPROMPTS statement is executed, unless the in-line prompt control
option A is specified. CLEARPROMPTS clears all values that have been entered for
in-line prompts.

For information about in-line prompts, see the ILPROMPT function.
6-102 BASIC Guide

CLEARSELECT statement
CLEARSELECT

Syntax

CLEARSELECT [ALL | list.number]

Description
Use the CLEARSELECT statement to clear an active select list. This statement is
normally used when one or more select lists have been generated but are no longer
needed. Clearing select lists prevents remaining select list entries from being used
erroneously.

Use the keyword ALL to clear all active select lists. Use list.number to specify a
numbered select list to clear. list.number must be a numeric value from 0 through
10. If neither ALL nor list.number is specified, select list 0 is cleared.

If list.number evaluates to the null value, the CLEARSELECT statement fails and
the program terminates with a run-time error message.

PICK, REALITY, and IN2 Flavors

PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead
of numbered select lists. In those accounts, and in programs that use the
VAR.SELECT option of the $OPTIONS statement, the syntax of CLEARSELECT is:

CLEARSELECT [ALL | list.variable]

Example
The following program illustrates the use of CLEARSELECT to clear a partially
used select list. The report is designed to display the first 40-odd hours of lessons.
A CLEARSELECT is used so that all the selected records are not printed. Once the
select list is cleared, the READNEXT ELSE clause is executed.

OPEN 'SUN.SPORT' TO FILE ELSE STOP "CAN'T OPEN FILE"
HOURS=0
*
EXECUTE 'SSELECT SUN.SPORT BY START BY INSTRUCTOR'
*
START:
READNEXT KEY ELSE

PRINT 'FIRST WEEK', HOURS
STOP
BASIC Statements and Functions 6-103

CLEARSELECT statement
END
READ MEMBER FROM FILE,KEY ELSE GOTO START:
HOURS=HOURS+MEMBER<4>

PRINT MEMBER<1>,MEMBER<4>
IF HOURS>40 THEN

CLEARSELECT

GOTO START:

END
GOTO START:
END

This is the program output:

14 records selected to Select List #0
4309 1
6100 4
3452 3
6783 12
5390 9
4439 4
6203 14
FIRST WEEK 47
6-104 BASIC Guide

CLOSE statement
CLOSE

Syntax

CLOSE [file.variable] [ON ERROR statements]

Description
Use the CLOSE statement after opening and processing a file. Any file locks or
record locks are released.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed. If the file is neither accessible nor open, or if file.variable evaluates to the
null value, the CLOSE statement fails and the program terminates with a run-time
error message.

The ON ERROR Clause

The ON ERROR clause is optional in the CLOSE statement. The ON ERROR clause
lets you specify an alternative for program termination when a fatal error is
encountered during processing of the CLOSE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.
BASIC Statements and Functions 6-105

CLOSE statement
Example
CLEAR
OPEN '','EX.BASIC' TO DATA ELSE STOP
READ A FROM DATA, 'XYZ' ELSE STOP
A<3>='*'
WRITE A ON DATA, 'XYZ'
CLOSE DATA
6-106 BASIC Guide

CLOSESEQ statement
CLOSESEQ

Syntax

CLOSESEQ file.variable [ON ERROR statements]

Description
Use the CLOSESEQ statement after opening and processing a file opened for
sequential processing. CLOSESEQ makes the file available to other users.

file.variable specifies a file previously opened with an OPENSEQ statement. If the
file is neither accessible nor open, the program terminates with a run-time error
message. If file.variable is the null value, the CLOSESEQ statement fails and the
program terminates with a run-time error message.

The ON ERROR Clause

The ON ERROR clause is optional in the CLOSESEQ statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the CLOSESEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.
BASIC Statements and Functions 6-107

CLOSESEQ statement
Example
In this example, the CLOSESEQ statement closes FILE.E, making it available to
other users:

OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
READSEQ A FROM FILE THEN PRINT A ELSE STOP
CLOSESEQ FILE
END
6-108 BASIC Guide

COL1 function
COL1

Syntax
COL1 ()

Description
Use the COL1 function after the execution of a FIELD function to return the
numeric value for the character position that immediately precedes the selected
substring (see the FIELD function). Although the COL1 function takes no argu-
ments, parentheses are required to identify it as a function.

The value obtained from COL1 is local to the program or subroutine executing the
FIELD function. Before entering a subroutine, the current value of COL1 in the
main program is saved. The value of COL1 in the subroutine is initialized as 0.
When control is returned to the calling program, the saved value of COL1 is
restored.

If no FIELD function precedes the COL1 function, a value of 0 is returned. If the
delimiter expression of the FIELD function is an empty string or the null value, or
if the string is not found, the COL1 function returns a 0 value.

Examples
The FIELD function in the following example returns the substring CCC. COL1()
returns 8, the position of the delimiter ($) that precedes CCC.

SUBSTRING=FIELD("AAABBBCCC",'$',3)
POS=COL1()

In the following example, the FIELD function returns a substring of 2 fields with
the delimiter (.) that separates them: 4.5. COL1() returns 6, the position of the
delimiter that precedes 4.

SUBSTRING=FIELD("1.2.3.4.5",'.',4,2)
POS=COL1()
BASIC Statements and Functions 6-109

COL2 function
COL2

Syntax
COL2 ()

Description
Use the COL2 function after the execution of a FIELD function to return the
numeric value for the character position that immediately follows the selected
substring (see the FIELD function). Although the COL2 function takes no argu-
ments, parentheses are required to identify it as a function.

The value obtained from COL2 is local to the program or subroutine executing the
FIELD function. Before entering a subroutine, the current value of COL2 in the
main program is saved. The value of COL2 in the subroutine is initialized as 0.
When control is returned to the calling program, the saved value of COL2 is
restored.

If no FIELD function precedes the COL2 function, a value of 0 is returned. If the
delimiter expression of the FIELD function is an empty string or the null value, or
if the string is not found, the COL2 function returns a 0 value.

Examples
The FIELD function in the following example returns the substring 111. COL2()
returns 4, the position of the delimiter (#) that follows 111.

SUBSTRING=FIELD("111#222#3","#",1)
P=COL2()

In the following example, the FIELD function returns a substring of two fields with
the delimiter (&) that separates them: 7&8. COL2() returns 5, the position of the
delimiter that follows 8.

SUBSTRING=FIELD("&7&8&B&","&",2,2)
S=COL2()

In the next example, FIELD() returns the whole string, because the delimiter (.) is
not found. COL2() returns 6, the position after the last character of the string.

SUBSTRING=FIELD("9*8*7",".",1)
Y=COL2()
6-110 BASIC Guide

COL2 function
In the next example, FIELD() returns an empty string, because there is no tenth
occurrence of the substring in the string. COL2() returns 0 because the substring
was not found.

SUBSTRING=FIELD("9*8*7","*",10)
O=COL2()
BASIC Statements and Functions 6-111

COMMIT statement
COMMIT

Syntax

COMMIT [WORK] [THEN statements] [ELSE statements]

Description
Use the COMMIT statement to commit all file I/O changes made during a trans-
action. The WORK keyword is provided for compatibility with SQL syntax
conventions; it is ignored by the compiler.

A transaction includes all statements between a BEGIN TRANSACTION state-
ment and the COMMIT or ROLLBACK statement that ends the transaction. Either
a COMMIT or a ROLLBACK statement ends the current transaction.

The COMMIT statement can either succeed or fail.

When a subtransaction commits, it makes the results of its database operations
accessible to its parent transaction. The subtransaction commits to the database
only if all of its predecessors up to the top-level transaction are committed.

If a top-level transaction succeeds, all changes to files made during the active trans-
action are committed to disk.

If a subtransaction fails, all its changes are rolled back and do not affect the parent
transaction. If the top-level transaction fails, none of the changes made during the
active transaction are committed, and the database remains unaffected by the
failed transaction. This ensures that the database is maintained in a consistent
state.

If the COMMIT statement succeeds, the THEN statements are executed; any ELSE
statements are ignored. If COMMIT fails, any ELSE statements are executed. After
the THEN or the ELSE statements are executed, control is transferred to the state-
ment following the next END TRANSACTION statement.

All Locks obtained during a transaction remain in effect for the duration of the
active transaction; they are not released by a RELEASE,WRITE, WRITEV, or
MATWRITE statement that is part of the transaction. The parent transaction
adopts the acquired or promoted locks. If a subtransaction rolls back, any locks
that have been acquired or promoted within that transaction are demoted or
released.
6-112 BASIC Guide

COMMIT statement
The COMMIT statement that ends the top-level transaction releases locks set
during that transaction. Locks obtained outside the transaction are not affected by
the COMMIT statement.

If no transaction is active, the COMMIT statement generates a run-time warning,
and the ELSE statements are executed.

Example
This example begins a transaction that applies locks to rec1 and rec2. If no errors
occur, the COMMIT statement ensures that the changes to rec1 and rec2 are written
to the file. The locks on rec1 and rec2 are released, and control is transferred to the
statement following the END TRANSACTION statement.

BEGIN TRANSACTION
READU data1 FROM file1,rec1 ELSE ROLLBACK

READU data2 FROM file2,rec2, ELSE ROLLBACK
.
.
.

WRITE new.data1 ON file1,rec1 ELSE ROLLBACK
WRITE new.data2 ON file2,rec2 ELSE ROLLBACK
COMMIT WORK

END TRANSACTION

The update record lock on rec1 is not released on completion of the first WRITE
statement but on completion of the COMMIT statement.
BASIC Statements and Functions 6-113

COMMON statement
COMMON

Syntax

COM[MON] [/name/] variable [,variable …]

Description
Use the COMMON statement to provide a storage area for variables. Variables in
the common area are accessible to main programs and external subroutines. Corre-
sponding variables can have different names in the main program and in external
subroutines, but they must be defined in the same order. The COMMON statement
must precede any reference to the variables it names.

A common area can be either named or unnamed. An unnamed common area is
lost when the program completes its execution and control returns to the
DataStage command level. A named common area remains available for as long as
the user remains in the DataStage environment.

The common area name can be of any length, but only the first 31 characters are
significant.

Arrays can be dimensioned and named with a COMMON statement. They can be
redimensioned later with a DIMENSION statement, but the COMMON statement
must appear before the DIMENSION statement. When an array is dimensioned in
a subroutine, it takes on the dimensions of the array in the main program regard-
less of the dimensions stated in the COMMON statement. For a description of
dimensioning array variables in a subroutine, see the CALL statement.

When programs share a common area, use the $INCLUDE statement to define the
common area in each program.

Example
Program:

COMMON NAME, ADDRESS (15, 6), PHONE

Subroutine:

COMMON A, B (15, 6), C

In this example the variable pairs NAME and A, ADDRESS and B, PHONE and C
are stored in the same memory location.
6-114 BASIC Guide

COMPARE function
COMPARE

Syntax

COMPARE (string1, string2 [, justification])

Description
Use the COMPARE function to compare two strings and return a numeric value
indicating the result.

string1, string2 specify the strings to be compared.

justification is either L for left-justified comparison or R for right-justified compar-
ison. (Any other value causes a run-time warning, and 0 is returned.)

The comparison can be left-justified or right-justified. A right-justified comparison
compares numeric substrings within the specified strings as numbers. The
numeric strings must occur at the same character position in each string. For
example, a right-justified comparison of the strings AB100 and AB99 indicates that
AB100 is greater than AB99 since 100 is greater than 99. A right-justified compar-
ison of the strings AC99 and AB100 indicates that AC99 is greater since C is greater
than B.

If neither L nor R is specified, the default comparison is left-justified.

The following list shows the values returned:

If NLS is enabled, the COMPARE function uses the sorting algorithm and the
Collate convention specified in the NLS.LC.COLLATE file in order to compare the
strings. For more information about collation, see the DataStage NLS Guide.

Examples
In the following example, the strings AB99 and AB100 are compared with the
right-justified option and the result displayed. In this case the result displayed is
–1.

PRINT COMPARE('AB99','AB100','R')

–1 string1 is less than string2.

0 string1 equals string2 or the justification expression is not valid.

1 string1 is greater than string2.
BASIC Statements and Functions 6-115

COMPARE function
An example in NLS mode follows. It compares the strings anilno and anillo,
returning the result as 1. It sets the locale to Spanish and compares the strings
again. In this case, the result displayed is –1.

$INCLUDE UNIVERSE.INCLUDE UVNLSLOC.H
x=SETLOCALE(UVLC$ALL, 'OFF')
PRINT COMPARE('anilno', 'anillo', 'L')
x=SETLOCALE(UVLC$ALL, 'ES-SPANISH')
PRINT COMPARE('anilno', 'anillo', 'L')

This is the program output:

1
-1
6-116 BASIC Guide

CONTINUE statement
CONTINUE
The CONTINUE statement is a loop-controlling statement. For syntax details, see
the statement and the LOOP statement.
BASIC Statements and Functions 6-117

CONVERT function
CONVERT

Syntax
CONVERT (expression1, expression2, variable)

Description
Use the CONVERT function to return a copy of variable with every occurrence of
specified characters in variable replaced with other specified characters. Every time
a character to be converted appears in variable, it is replaced by the replacement
character.

expression1 specifies a list of characters to be converted. expression2 specifies the
corresponding replacement characters. The first character of expression2 replaces
all instances of the first character of expression1, the second character of expression2
replaces all instances of the second character of expression1, and so on.

If expression2 contains more characters than expression1, the extra characters are
ignored. If expression1 contains more characters than expression2, the characters
with no corresponding expression2 characters are deleted from the result.

If variable is the null value, null is returned. If either expression1 or expression2 is the
null value, the CONVERT function fails and the program terminates with a run-
time error message.

The CONVERT function works similarly to the CONVERT statement.

Example
A="NOW IS THE TIME"
PRINT A
A=CONVERT('TI','XY',A)
PRINT A
A=CONVERT('XY','T',A)
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOW S THE TME
6-118 BASIC Guide

CONVERT statement
CONVERT statement

Syntax
CONVERT expression1 TO expression2 IN variable

Description
Use the CONVERT statement to replace every occurrence of specific characters in
a string with other characters. Every time the character to be converted appears in
the string, it is replaced by the replacement character.

expression1 specifies a list of characters to be converted. expression2 specifies a list
of replacement characters. The first character of expression2 replaces all instances of
the first character of expression1, the second character of expression2 replaces all
instances of the second character of expression1, and so on.

If expression2 contains more characters than expression1, the extra characters are
ignored. If expression1 contains more characters than expression2, the characters
with no corresponding expression2 characters are deleted from the variable.

If variable is the null value, null is returned. If either expression1 or expression2 eval-
uates to the null value, the CONVERT statement fails and the program terminates
with a run-time error message.

Example
A="NOW IS THE TIME"
PRINT A
CONVERT 'TI' TO 'XY' IN A
PRINT A
CONVERT 'XY' TO 'T' IN A
PRINT A

This is the program output:

NOW IS THE TIME
NOW YS XHE XYME
NOW S THE TME
BASIC Statements and Functions 6-119

COS function
COS

Syntax
COS (expression)

Description
Use the COS function to return the trigonometric cosine of an angle. expression is
an angle expressed as a numeric value in degrees. The COS function is the inverse
of the ACOS function.

Values outside the range of 0 to 360 degrees are interpreted as modulo 360.
Numbers greater than 1E17 produce a warning message and 0 is returned. If expres-
sion evaluates to the null value, null is returned.

Example
PRINT "COS(45) = " : COS(45)
END

This is the program output:

COS(45) = 0.7071
6-120 BASIC Guide

COSH function
COSH

Syntax
COSH (expression)

Description
Use the COSH function to return the hyperbolic cosine of expression. expression
must be a numeric value.

If expression evaluates to the null value, null is returned.

Example
PRINT "COSH(2) = ":COSH(2)

This is the program output:

COSH(2) = 3.7622
BASIC Statements and Functions 6-121

COUNT function
COUNT

Syntax
COUNT (string, substring)

Description
Use the COUNT function to return the number of times a substring is repeated in
a string value.

string is an expression that evaluates to the string value to be searched. substring is
an expression that evaluates to the substring to be counted. substring can be a char-
acter string, a constant, or a variable.

If substring does not appear in string, a 0 value is returned. If substring is an empty
string, the number of characters in string is returned. If string is the null value, null
is returned. If substring is the null value, the COUNT function fails and the
program terminates with a run-time error message.

By default, each character in string is matched to substring only once. Therefore,
when substring is longer than one character and a match is found, the search
continues with the character following the matched substring. No part of the
matched string is recounted toward another match. For example, the following
statement counts two occurrences of substring TT and assigns the value 2 to vari-
able C:

C = COUNT ('TTTT', 'TT')

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavors, the COUNT function continues the search
with the next character regardless of whether it is part of the matched string. For
example, the following statement counts three occurrences of substring TT:

C = COUNT ('TTTT', 'TT')

Use the COUNT.OVLP option of the $OPTIONS statement to get this behavior in
IDEAL and INFORMATION flavor accounts.

Example
A=COUNT('ABCAGHDALL','A')
PRINT "A= ",A
*
Z='S#FF##G#JJJJ#'
6-122 BASIC Guide

COUNT function
Q=COUNT(Z,'#')
PRINT "Q= ",Q

*
Y=COUNT('11111111','11')
PRINT "Y= ",Y

This is the program output:

A= 3
Q= 5
Y= 4
BASIC Statements and Functions 6-123

COUNTS function
COUNTS

Syntax
COUNTS (dynamic.array, substring)

CALL −COUNTS (return.array, dynamic.array, substring)

CALL !COUNTS (return.array, dynamic.array, substring)

Description
Use the COUNTS function to count the number of times a substring is repeated in
each element of a dynamic array. The result is a new dynamic array whose
elements are the counts corresponding to the elements in dynamic.array.

dynamic.array specifies the dynamic array whose elements are to be searched.

substring is an expression that evaluates to the substring to be counted. substring
can be a character string, a constant, or a variable.

Each character in an element is matched to substring only once. Therefore, when
substring is longer than one character and a match is found, the search continues
with the character following the matched substring. No part of the matched
element is recounted toward another match.

If substring does not appear in an element, a 0 value is returned. If substring is an
empty string, the number of characters in the element is returned. If substring is the
null value, the COUNTS function fails and the program terminates with a run-time
error message.

If any element in dynamic.array is the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavors, the COUNTS function continues the search
with the next character regardless of whether it is part of the matched string. Use
the COUNT.OVLP option of the $OPTIONS statement to get this behavior in
IDEAL and INFORMATION flavor accounts.
6-124 BASIC Guide

COUNTS function
Example
ARRAY="A":@VM:"AA":@SM:"AAAAA"
PRINT COUNTS(ARRAY, "A")
PRINT COUNTS(ARRAY, "AA")

This is the program output:

1V2S5
0V1S2
BASIC Statements and Functions 6-125

CREATE statement
CREATE

Syntax

CREATE file.variable {THEN statements [ELSE statements] | ELSE statements}

Description
Use the CREATE statement after an OPENSEQ statement to create a record in a
type 1 or type 19 file or to create a UNIX or DOS file. CREATE creates the record or
file if the OPENSEQ statement fails. An OPENSEQ statement for the specified
file.variable must be executed before the CREATE statement to associate the path-
name or record ID of the file to be created with the file.variable. If file.variable is the
null value, the CREATE statement fails and the program terminates with a run-
time error message.

Use the CREATE statement when OPENSEQ cannot find a record or file to open
and the next operation is to be a NOBUF, READSEQ, or READBLK. You need not
use the CREATE statement if the first file operation is aWRITESEQ, since
WRITESEQ creates the record or file if it does not exist.

If the record or file is created, the THEN statements are executed, and the ELSE
statements are ignored. If no THEN statements are specified, program execution
continues with the next statement.

If the record or file is not created, the ELSE statements are executed; any THEN
statements are ignored.

File Buffering

Normally DataStage uses buffering for sequential input and output operations.
Use the NOBUF statement after an OPENSEQ statement to turn off buffering and
cause all writes to the file to be performed immediately. For more information
about file buffering, see the NOBUF statement.

Example
In the following example, RECORD4 does not yet exist. When OPENSEQ fails to
open RECORD4 to the file variable FILE, the CREATE statement creates RECORD4
in the type 1 file FILE.E and opens it to the file variable FILE.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE
ELSE CREATE FILE ELSE ABORT

WEOFSEQ FILE
WRITESEQ 'HELLO, UNIVERSE' TO FILE ELSE STOP
6-126 BASIC Guide

CRC32 function
CRC32

Syntax
CRC32 (string)

Description
Use the CRC32 function to return a 16-bit cyclical redundancy code.

If string is the null value, null is returned.

Example
This example uses the CRC function to return a number that is a cyclic
redundancy code for the specified string:

MyString = "This is any arbitrary string value"
CheckValue = CRC32(MyString) ;* returns 36235
BASIC Statements and Functions 6-127

CRT statement
Syntax

CRT [print.list]

Description
Use the CRT statement to print data on the screen, regardless of whether a
PRINTER ON statement has been executed. The syntax for print.list is the same as
for PRINT statements.

print.list can contain any BASIC expression. The elements of the list can be numeric
or character strings, variables, constants, or literal strings; the null value, however,
cannot be output. The list can consist of a single expression or a series of expres-
sions separated by commas (,) or colons (:) for output formatting. If no print.list
is designated, a blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use
multiple commas together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression
following the colon is printed immediately after the expression preceding the
colon. To print a list without a LINEFEED and RETURN, end the print.list with a
colon (:).

The CRT statement works similarly to the DISPLAY statement.

If NLS is enabled, the CRT statement uses the terminal map in order to print. For
more information about maps and devices, see the DataStage NLS Guide.

Example
CRT "This can be used to print something on the"
CRT "terminal while"
CRT "the PRINTER ON statement is in effect."

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.
6-128 BASIC Guide

DATA statement
DATA

Syntax

DATA expression [,expression …]

Description
Use the DATA statement to place values in an input stack. These values can be
used as responses to INPUT statements executed later in the program or in a
subroutine (see the INPUT statement). The values can also serve as responses to
DataStage commands that request input.

Expressions used in DATA statements can be numeric or character string data. The
null value cannot be stored in the input stack. If expression evaluates to null, the
DATA statement fails and the program terminates with a run-time error message.

Put a comma at the end of each line of a DATA statement to indicate that more data
expressions follow on the next line.

The order in which expressions are specified in the DATA statement is the order in
which the values are accessed by subsequent INPUT statements: first-in, first-out.
When all DATA values have been exhausted, the INPUT statement prompts the
user for a response at the terminal.

The DATA statement must be executed before an INPUT statement that is to use
expression for input.

You can store up to 512 characters in a data stack.

You can list the current data in the stack from your program by accessing the
@DATA.PENDING variable with the statement:

PRINT @DATA.PENDING

Example
In the following example, the INPUT NBR statement uses the first value placed in
the input stack by the DATA statement, 33, as the value of NBR. The INPUT
DESCR statement uses the second value, 50, as the value of DESCR. The INPUT
PRICE statement uses the third value, 21, as the value of PRICE.

X=33; Y=50; Z=21
DATA X,Y,Z
X=Y+Z
*

BASIC Statements and Functions 6-129

DATA statement
INPUT NBR
INPUT DESCR
INPUT PRICE
INPUT QTY
PRINT NBR,DESCR,PRICE,QTY

This is the program output:

?33
?50
?21
?2
33 50 21 2

The value of NBR is the value of X when the DATA statement is executed, not the
current value of X (namely, Y+Z). The INPUT QTY statement has no corre-
sponding value in the input stack, so it prompts the user for input.
6-130 BASIC Guide

DATE function
DATE

Syntax
DATE ()

Description
Use the DATE function to return the numeric value of the internal system date.
Although the DATE function takes no arguments, parentheses are required to
identify it as a function.

The internal format for the date is based on a reference date of December 31, 1967,
which is day 0. All dates thereafter are positive numbers representing the number
of days elapsed since day 0. All dates before day 0 are negative numbers repre-
senting the number of days before day 0. For example:

Example
PRINT DATE()
PRINT OCONV(DATE(),"D2/")

This is the program output:

9116
12/15/92

Internal Formats for Dates

Date Internal Representation

December 10, 1967 −21

November 15, 1967 −46

February 15, 1968 46

January 1, 1985 6575
BASIC Statements and Functions 6-131

DCFLUSH function
DCFLUSH

Syntax
DCFLUSH (file.variable, opt)

Description
Use the DCFLUSH function to flush the disk cache file buffers.

file.variable is the file descriptor of an open uniVerse file.

opt is the flush mode. If opt is set to 1, the disk cache file buffer is flushed directly
to disk, otherwise it is flushed from the disk cache to the operating system file
buffer for later flushing to disk by the operating system.

DCFLUSH will wait until the file has been flushed either to disk or to the operating
system buffer, and then returns 0.
6-132 BASIC Guide

DCOUNT function
DCOUNT

Syntax
DCOUNT (string, delimiter)

Description
Use the DCOUNT function to return the number of delimited fields in a data
string.

string is an expression that evaluates to the data string to be searched.

delimiter is an expression that evaluates to the delimiter separating the fields to be
counted. delimiter can be a character string of 0, 1, or more characters.

DCOUNT differs from COUNT in that it returns the number of values separated
by delimiters rather than the number of occurrences of a character string. Two
consecutive delimiters in string are counted as one field. If delimiter evaluates to an
empty string, a count of 1 plus the number of characters in the string is returned.
If string evaluates to an empty string, 0 is returned.

If string evaluates to the null value, null is returned. If delimiter evaluates to the null
value, the DCOUNT function fails and the program terminates with a run-time
error message.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavors, the DCOUNT function continues the search
with the next character regardless of whether it is part of the matched delimiter
string. Use the COUNT.OVLP option of the $OPTIONS statement to get this
behavior in IDEAL and INFORMATION flavor accounts.

Example
REC="88.9.B.7"
Q=DCOUNT(REC,'.')
PRINT "Q= ",Q
REC=34:@VM:55:@VM:88:@VM:"FF":@VM:99:@VM:"PP"
R=DCOUNT(REC,@VM)
PRINT "R= ",R

This is the program output:

Q= 4
R= 6
BASIC Statements and Functions 6-133

DEBUG statement
DEBUG

Syntax
DEBUG

Description
Use the DEBUG statement to invoke RAID, the interactive BASIC debugger. The
DEBUG statement takes no arguments. When this statement is encountered,
program execution stops and the double colon (::) prompt appears, waiting for a
RAID command. The following table summarizes the RAID commands:

RAID Commands

Command Action

line Displays the specified line of the source code.

/[string] Searches the source code for string.

B Set a RAID breakpoint.

C Continue program execution.

D Delete a RAID breakpoint.

G Go to a specified line or address and continue program
execution.

H Display statistics for the program.

I Display and execute the next object code instruction.

L Print the next line to be executed.

M Set watchpoints.

Q Quit RAID.

R Run the program.

S Step through the BASIC source code.

T Display the call stack trace.

V Enter verbose mode for the M command.

V* Print the compiler version that generated the object code.

W Display the current window.

X Display the current object code instruction and address.
6-134 BASIC Guide

DEBUG statement
X* Display local run machine registers and variables.

Z Display the next 10 lines of source code.

$ Turn on instruction counting.

Turn on program timing.

+ Increment the current line or address.

− Decrement the current line or address.

. Display the last object code instruction executed.

variable/ Print the value of variable.

variable!string Change the value of variable to string.

RAID Commands (Continued)

Command Action
BASIC Statements and Functions 6-135

DEFFUN statement
DEFFUN

Syntax

DEFFUN function [([MAT] argument [, [MAT] argument …])]
[CALLING call.ID]

Description
Use the DEFFUN statement to define a user-written function. You must declare a
user-defined function before you can use it in a program. The DEFFUN statement
provides the compiler with information such as the function name and the number
and type of arguments. You can define a user-written function only once in a
program. A subsequent DEFFUN statement for an already defined user-written
function causes a fatal error.

function is the name of the user-written function.

arguments supply up to 254 arguments in the DEFFUN statement. To pass an array,
you must precede the array name with the keyword MAT. An extra argument is
hidden so that the user-defined function can use it to return a value. An extra argu-
ment is retained by the user-written function so that a value is returned by a
RETURN (value) statement (for more information see the RETURN(value) state-
ment). If the RETURN (value) statement specifies no value, an empty string is
returned. The extra argument is reported by the MAP and MAKE.MAP.FILE
commands.

call.ID is an expression that evaluates to the name by which the function is called
if it is not the same as the function name. It can be a quoted string (the call ID itself)
or a variable that evaluates to the call ID. If you do not use the CALLING clause,
the user-defined function is presumed to be defined in the VOC file and cataloged
without any prefix.

Examples
The following example defines a user-written function called MYFUNC with the
arguments or formal parameters A, B, and C:

FUNCTION MYFUNC(A, B, C)
Z = ...
RETURN (Z)
END
6-136 BASIC Guide

DEFFUN statement
The next example declares the function MYFUNC. It uses the function with the
statement T = MYFUNC (X, Y, Z). The actual parameters held in X, Y, and Z are
referenced by the formal parameters A, B, and C, so the value assigned to T can be
calculated.

DEFFUN MYFUNC(X, Y, Z)
T = MYFUNC(X, Y, Z)
END
BASIC Statements and Functions 6-137

DEL statement
DEL

Syntax

DEL dynamic.array < field# [,value# [,subvalue#]] >

Description
Use the DEL statement to delete a field, value, or subvalue from a dynamic array.
The DEL statement works similarly to the DELETE function.

dynamic.array is an expression that evaluates to a dynamic array. If dynamic.array
evaluates to the null value, null is returned.

field# is an expression that evaluates to the field in dynamic.array. value# is an
expression that evaluates to the value in the field. subvalue# is an expression that
evaluates to the subvalue in the value. These expressions are called delimiter
expressions. The numeric values of the delimiter expressions specify which field,
value, or subvalue to delete. The entire position is deleted, including its delimiter
characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted.
If subvalue# is equal to 0 and value# and field# are greater than 0, the specified value
in the specified field is deleted. If all three delimiter expressions are greater than 0,
only the specified subvalue is deleted.

If any delimiter expression is the null value, the DEL statement fails and the
program terminates with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter
expression is greater than 0, the 0 delimiter is treated as if it were equal to 1. The
delimiter expressions are, from highest to lowest: field, value, and subvalue.

If the DEL statement references a subelement of a higher element whose value is
the null value, the dynamic array is unchanged. Similarly, if all delimiter expres-
sions are 0, the original string is returned.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.
6-138 BASIC Guide

DEL statement
The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=R
DEL Q<1,0,0>

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

Q=R
DEL Q<4,1,1>

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

Q=R
DEL Q<2,2,0>

The next example deletes field 3 entirely and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FSUBV3SSUBV4:

Q=R
DEL Q<3,0,0>

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

Q=R
DEL Q<4,1,2>
BASIC Statements and Functions 6-139

DELETE function
DELETE

Syntax

DELETE (dynamic.array, field#[,value#[,subvalue#]])

Description
Use the DELETE function to erase the data contents of a specified field, value, or
subvalue and its corresponding delimiter from a dynamic array. The DELETE
function returns the contents of the dynamic array with the specified data removed
without changing the actual value of the dynamic array.

dynamic.array is an expression that evaluates to the array in which the field, value,
or subvalue to be deleted can be found. If dynamic.array evaluates to the null value,
null is returned.

field# is an expression that evaluates to the field in the dynamic array; value# is an
expression that evaluates to the value in the field; subvalue# is an expression that
evaluates to the subvalue in the value. The numeric values of the delimiter expres-
sions specify which field, value, or subvalue to delete. The entire position is
deleted, including its delimiting characters.

value# and subvalue# are optional. If they are equal to 0, the entire field is deleted.
If subvalue# is equal to 0 and value# and field# are greater than 0, the specified value
in the specified field is deleted. If all three delimiter expressions are greater than 0,
only the specified subvalue is deleted.

If any delimiter expression is the null value, the DELETE function fails and the
program terminates with a run-time error message.

If a higher-level delimiter expression has a value of 0 when a lower-level delimiter
is greater than 0, the 0 delimiter is treated as if it were equal to 1. The delimiter
expressions are, from highest to lowest: field, value, and subvalue.

If the DELETE function references a subelement of a higher element whose value
is the null value, the dynamic array is unchanged. Similarly, if all delimiter expres-
sions are 0, the original string is returned.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.
6-140 BASIC Guide

DELETE function
The first example deletes field 1 and sets Q to VAL1VSUBV1SSUBV2FFSUBV3SSUBV4:

R="FLD1":@FM:"VAL1":@VM:"SUBV1":@SM:"SUBV2":@FM:@FM:"SUBV3":@SM:"SUBV4"
Q=DELETE (R,1)

The next example deletes the first subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV4:

Q=DELETE (R,4,1,1)

The next example deletes the second value in field 2 and sets the value of Q to
FLD1FVAL1FFSUBV3SSUBV4:

Q=DELETE (R,2,2)

The next example deletes field 3 entirely and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FSUBV3SSUBV4:

Q=DELETE (R,3,0,0)

The next example deletes the second subvalue in field 4 and sets the value of Q to
FLD1FVAL1VSUBV1SSUBV2FFSUBV3:

Q=DELETE (R,4,1,2)
BASIC Statements and Functions 6-141

DELETE statements
DELETE

Syntax

DELETE [file.variable,] record.ID [ON ERROR statements]
[LOCKED statements]
[THEN statements] [ELSE statements]

DELETEU [file.variable,] record.ID [ON ERROR statements]
[LOCKED statements]
[THEN statements] [ELSE statements]

Description
Use the DELETE statements to delete a record from a DataStage file. If you specify
a file variable, the file must be open when the DELETE statement is encountered
(see the OPEN statement).

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record to be deleted.

If the file does not exist or is not open, the program terminates and a run-time error
results. If you do not specify a file variable, the most recently opened default file is
used (see the OPEN statement for more information on default files). If you specify
both a file variable and a record ID, you must use a comma to separate them.

If the file is an SQL table, the effective user of the program must have SQL DELETE
privilege to delete records in the file. For information about the effective user of a
program, see the AUTHORIZATION statement.

The record is deleted, and any THEN statements are executed. If the deletion fails,
the ELSE statements are executed; any THEN statements are ignored.

If a record is locked, it is not deleted, and an error message is produced. The ELSE
statements are not executed.

If either file.variable or record.ID evaluates to the null value, the DELETE statement
fails and the program terminates with a run-time error message.

The DELETEU Statement
Use the DELETEU statement to delete a record without releasing the update record
lock set by a previous READU statement (see the READ statements).
6-142 BASIC Guide

DELETE statements
The file must have been previously opened with an OPEN statement. If a file vari-
able was specified in the OPEN statement, it can be used in the DELETEU
statement. You must place a comma between the file variable and the record ID
expression. If no file variable is specified in the DELETEU statement, the statement
applies to the default file. See the OPEN statement for a description of the default
file.

The ON ERROR Clause
The ON ERROR clause is optional in the DELETE statement. Its syntax is the same
as that of the ELSE clause. The ON ERROR clause lets you specify an alternative
for program termination when a fatal error is encountered during processing of the
DELETE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the DELETE statement from processing. The LOCKED
clause is executed if one of the following conflicting Locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
BASIC Statements and Functions 6-143

DELETE statements
• Update record lock
• Shared record lock

If the DELETE statement does not include a LOCKED clause, and a conflicting lock
exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Releasing the Record Lock
A record lock held by a DELETEU statement can be released explicitly with a
RELEASE statement or implicitly with a WRITE, WRITEV, MATWRITE, or
DELETE statement. The record lock is released when you return to the command
prompt.

Examples
OPEN "","MLIST" TO MALIST ELSE STOP
PRINT "FILE BEFORE DELETE STATEMENT:"
EXECUTE "COUNT MLIST"
PRINT
DELETE MALIST, "JONES"
PRINT "FILE AFTER DELETE STATMENT:"
EXECUTE "LIST MLIST"

This is the program output:

FILE BEFORE DELETE STATEMENT:

3 records listed.

FILE AFTER DELETE STATMENT:

2 records listed.

In the following example, the data portion of the SUBSIDIARIES files is opened to
the file variable SUBS. If the file cannot be opened an appropriate message is
printed. The record MADRID is read and then deleted from the file. An update
record lock had been set and is maintained by the DELETEU statement.

OPEN "","SUBSIDIARIES" TO SUBS
READU REC FROM SUBS, 'MADRID'

ELSE STOP 'Sorry, cannot open Subsidiaries file'
DELETEU SUBS, "MADRID"
6-144 BASIC Guide

DELETELIST statement
DELETELIST

Syntax
DELETELIST listname

Description
Use the DELETELIST statement to delete a select list saved in the &SAVEDLISTS&
file.

listname can evaluate to the form:

record.ID

or:

record.ID account.name

record.ID is the name of a select list in the &SAVEDLISTS& file. If you specify
account.name, the &SAVEDLISTS& file of the specified account is used instead of
the local &SAVEDLISTS& file.

If listname evaluates to the null value, the DELETELIST statement fails and the
program terminates with a run-time error message.
BASIC Statements and Functions 6-145

DELETEU statement
DELETEU
Use the DELETEU statement to maintain an update record lock while performing
the DELETE statement.
6-146 BASIC Guide

DIMENSION statement
DIMENSION

Syntax

DIM[ENSION] matrix (rows, columns) [, matrix (rows, columns) …]

DIM[ENSION] vector (subscript) [, vector (subscript) …]

Description
Use the DIMENSION statement to define the dimensions of an array variable
before referencing the array in the program. For a matrix (a two-dimensional
array), use the DIMENSION statement to set the maximum number of rows and
columns available for the elements of the array. For a vector (a one-dimensional
array), use the DIMENSION statement to set the maximum value of the subscript
(the maximum elements) in the array.

matrix and vector can be any valid variable name. The maximum dimension can be
any valid numeric expression. When specifying the two dimensions of a matrix,
you must use a comma to separate the row and column expressions. These expres-
sions are called indices.

You can use a single DIMENSION statement to define multiple arrays. If you
define more than one array with a DIMENSION statement, you must use commas
to separate the array definitions.

The DIMENSION statement declares only the name and size of the array. It does
not assign values to the elements of the array. Assignment of values to the elements
is done with the MAT, MATPARSE, MATREAD, MATREADU, and Assignment
Statements.

The DIMENSION statement in an IDEAL or INFORMATION flavor account is
executed at run time. The advantage of the way DataStage handles this statement
is that the amount of memory allocated is not determined until the DIM statement
is executed. This means that arrays can be redimensioned at run time.

When redimensioning an array, you can change the maximum number of
elements, rows, columns, or any combination thereof. You can even change the
dimensionality of an array (that is, from a one-dimensional to a two-dimensional
array or vice versa).

The values of the array elements are affected by redimensioning as follows:

• Common elements (those with the same indices) are preserved.
BASIC Statements and Functions 6-147

DIMENSION statement
• New elements (those that were not indexed in the original array) are initial-
ized as unassigned.

• Abandoned elements (those that can no longer be referenced in the altered
array) are lost, and the memory space is returned to the operating system.

The DIMENSION statement fails if there is not enough memory available for the
array. When this happens, the INMAT function is set to a value of 1.

An array variable that is passed to a subroutine in its entirety as an argument in a
CALL statement cannot be redimensioned in the subroutine. Each array in a
subroutine must be dimensioned once. The dimensions declared in the subroutine
DIMENSION statement are ignored, however, when an array is passed to the
subroutine as an argument (for more information, see the CALL statement).

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavor accounts, arrays are created at compile time, not
run time. Arrays are not redimensionable, and they do not have a zero element. To
get the same characteristics in an INFORMATION or IDEAL flavor account, use
the STATIC.DIM option of the $OPTIONS statement.

Examples
DIM ARRAY(2,2)
ARRAY(1,1)="KK"
ARRAY(1,2)="GG"
ARRAY(2,1)="MM"
ARRAY(2,2)="NN"

In the next example warning messages are printed for the unassigned elements in
the matrix. The elements are assigned empty strings as their values.

DIM ARRAY(2,3)
*
PRINT
FOR X=1 TO 2

FOR Y=1 TO 3
PRINT "ARRAY(":X:",":Y:")", ARRAY(X,Y)

NEXT Y
NEXT X
DIM S(3,2)
S(1,1)=1
S(1,2)=2
6-148 BASIC Guide

DIMENSION statement
S(2,1)=3
S(2,2)=4
S(3,1)=5
S(3,2)=6

In the next example the common elements are preserved. Those elements that
cannot be referenced in the new matrix (S(3,1), S(3,2)) are lost.

DIM S(2,2)
*
PRINT
FOR X=1 TO 2
FOR Y=1 TO 2
PRINT "S(":X:",":Y:")", S(X,Y)
NEXT Y
NEXT X

This is the program output:

ARRAY(1,1) KK
ARRAY(1,2) GG
ARRAY(1,3) Program 'DYNAMIC.DIMENSION':
Line 12, Variable previously undefined, empty string used.

ARRAY(2,1) MM
ARRAY(2,2) NN
ARRAY(2,3) Program 'DYNAMIC.DIMENSION':
Line 12, Variable previously undefined, empty string used.

S(1,1) 1
S(1,2) 2
S(2,1) 3
S(2,2) 4
BASIC Statements and Functions 6-149

DISPLAY statement
DISPLAY

Syntax

DISPLAY [print.list]

Description
Use the DISPLAY statement to print data on the screen, regardless of whether a
PRINTER ON statement has been executed. The syntax for print.list is the same as
forPRINT statements.

The elements of the list can be numeric or character strings, variables, constants, or
literal strings; the null value, however, cannot be output. The list can consist of a
single expression or a series of expressions separated by commas (,) or colons (:)
for output formatting. If no print.list is designated, a blank line is output.

Expressions separated by commas are printed at preset tab positions. You can use
multiple commas together to cause multiple tabulation between expressions.

Expressions separated by colons are concatenated. That is, the expression
following the colon is printed immediately after the expression preceding the
colon. To print a list without a LINEFEED and RETURN, end the print list with a
colon (:).

The DISPLAY statement works similarly to the CRC32 statement.

Example
DISPLAY "This can be used to print something on the
DISPLAY "terminal while"
DISPLAY "the PRINTER ON statement is in effect."

The program output on the terminal is:

This can be used to print something on the
terminal while
the PRINTER ON statement is in effect.
6-150 BASIC Guide

DIV function
DIV

Syntax
DIV (dividend, divisor)

Description
Use the DIV function to calculate the value of the quotient after dividend is divided
by divisor.

The dividend and divisor expressions can evaluate to any numeric value. The only
exception is that divisor cannot be 0. If either dividend or divisor evaluates to the null
value, null is returned.

Example
X=100; Y=25
Z = DIV (X,Y)
PRINT Z

This is the program output:

4

BASIC Statements and Functions 6-151

DIVS function
DIVS

Syntax
DIVS (array1, array2)

CALL −DIVS (return.array, array1, array2)

CALL !DIVS (return.array, array1, array2)

Description
Use the DIVS function to create a dynamic array containing the result of the
element-by-element division of two dynamic arrays.

Each element of array1 is divided by the corresponding element of array2 with the
result being returned in the corresponding element of a new dynamic array. If
elements of array1 have no corresponding elements in array2, array2 is padded with
ones and the array1 elements are returned. If an element of array2 has no corre-
sponding element in array1, 0 is returned. If an element of array2 is 0, a run-time
error message is printed and a 0 is returned. If either element of a corresponding
pair is the null value, null is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A=10:@VM:15:@VM:9:@SM:4
B=2:@VM:5:@VM:9:@VM:2
PRINT DIVS(A,B)

This is the program output:

5V3V1S4V0
6-152 BASIC Guide

DOWNCASE function
DOWNCASE

Syntax
DOWNCASE (expression)

Description
Use the DOWNCASE function to change all uppercase letters in expression to
lowercase. If expression evaluates to the null value, null is returned.

DOWNCASE is equivalent to OCONV("MCL").

If NLS is enabled, the DOWNCASE function uses the conventions specified by the
Ctype category for the Lowercase field of the NLS.LC.CTYPE file to change the
letters in expression. For more information about the NLS.LC.CTYPE, see the
DataStage NLS Guide.

Example
A="DOWN CASE DOES THIS: "
PRINT A:DOWNCASE(A)
B="Down Case Does This: "
PRINT B:DOWNCASE(B)

This is the program output:

DOWN CASE DOES THIS: down case does this:
Down Case Does This: down case does this:
BASIC Statements and Functions 6-153

DQUOTE function
DQUOTE

Syntax
DQUOTE (expression)

Description
Use the DQUOTE function to enclose an expression in double quotation marks. If
expression evaluates to the null value, null is returned.

Example
PRINT DQUOTE(12 + 5) : " IS THE ANSWER."
END

This is the program output:

"17" IS THE ANSWER.
6-154 BASIC Guide

DSAttachJob Function
Attaches to a job in order to run it in job control sequence. A handle is returned
which is used for addressing the job. There can only be one handle open for a
particular job at any one time.
DSAttachJob

Syntax
JobHandle = DSAttachJob (JobName, ErrorMode)

JobHandle is the name of a variable to hold the return value which is subsequently
used by any other function or routine when referring to the job. Do not assume
that this value is an integer.

JobName is a string giving the name of the job to be attached to.

ErrorMode is a value specifying how other routines using the handle should report
errors. It is one of:

DSJ.ERRFATAL Log a fatal message and abort the controlling
job (default).

DSJ.ERRWARNINGLog a warning message but carry on.

DSJ.ERRNONE No message logged - caller takes full
responsibility (failure of DSAttachJob itself
will be logged, however).

Remarks
A job cannot attach to itself.

The JobName parameter can specify either an exact version of the job in the form
job%Reln.n.n, or the latest version of the job in the form job. If a controlling job is
itself released, you will get the latest released version of job. If the controlling job
is a development version, you will get the latest development version of job.

Example
This is an example of attaching to Release 11 of the job Qsales:

Qsales_handle = DSAttachJob ("Qsales%Rel1",
➥ DSJ.ERRWARN)
BASIC Statements and Functions 6-155

DSCheckRoutine Function
Checks if a BASIC routine is cataloged, either in the VOC as a callable item, or in
the catalog space.

Syntax
Found = DSCheckRoutine(RoutineName)

RoutineName is the name of BASIC routine to check.

Found Boolean. @False if RoutineName not findable, else @True.

Example
rtn$ok = DSCheckRoutine(“DSU.DSSendMail”)

If(NOT(rtn$ok)) Then

* error handling here

End.
6-156 BASIC Guide

DSDetachJob Function
Gives back a JobHandle acquired by DSAttachJob if no further control of a job is
required (allowing another job to become its controller). It is not necessary to call
this function, otherwise any attached jobs will always be detached automatically
when the controlling job finishes.
DSDetachJob

Syntax
ErrCode = DSDetachJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the following:

DSJE.BADHANDLE Invalid JobHandle.

The only possible error is an attempt to close DSJ.ME. Otherwise, the call always
succeeds.

Example
The following command detaches the handle for the job qsales:

Deterr = DSDetachJob (qsales_handle)
BASIC Statements and Functions 6-157

DSExecute Subroutine
Executes a DOS or DataStage Engine command from a before/after subroutine.
DSExecute

Syntax
Call DSExecute (ShellType, Command, Output, SystemReturnCode)

ShellType (input) specifies the type of command you want to execute and is either
NT or UV (for DataStage Engine).

Command (input) is the command to execute. Command should not prompt for
input when it is executed.

Output (output) is any output from the command. Each line of output is separated
by a field mark, @FM. Output is added to the job log file as an information
message.

SystemReturnCode (output) is a code indicating the success of the command. A
value of 0 means the command executed successfully. A value of 1 (for a DOS
command) indicates that the command was not found. Any other value is a
specific exit code from the command.

Remarks
Do not use DSExecute from a transform; the overhead of running a command for
each row processed by a stage will degrade performance of the job.

Obtains information reported at the end of execution of certain parallel stages. The
information collected, and available to be interrogated, is specified at design time.
For example, transformer stage information is specified in the Triggers tab of the
Transformer stage Properties dialog box.
DSGetProjectInfo

Syntax
Result = DSGetCustInfo (JobHandle, StageName, CustInfoName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it may be
DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be DSJ.ME to
refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.
6-158 BASIC Guide

DSGetCustInfo function
InfoType specifies the information required and can be one of:

DSJ.CUSTINFOVALUE

DSJ.CUSTINFODESC

Result depends on the specified InfoType, as follows:

• DSJ.CUSTINFOVALUE String - the value of the specified custinfo item.

• DSJ.CUSTINFODESC String - description of the specified custinfo item.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known
stage in the job.

DSJE.BADCUSTINFO CustInfoName does not refer to a known
custinfo item.
BASIC Statements and Functions 6-159

DSGetJobInfo Function
Provides a method of obtaining information about a job, which can be used gener-
ally as well as for job control. It can refer to the current job or a controlled job,
depending on the value of JobHandle.
DSGetJobInfo

Syntax
Result = DSGetJobInfo (JobHandle, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it may be
DSJ.ME to refer to the current job.

InfoType specifies the information required and can be one of:

DSJ.JOBSTATUS

DSJ.JOBNAME

DSJ.JOBCONTROLLER

DSJ.JOBSTARTTIMESTAMP

DSJ.JOBWAVENO

DSJ.PARAMLIST

DSJ.STAGELIST

DSJ.USERSTATUS

DSJ.JOBCONTROL

DSJ.JOBPID

DSJ.JPBLASTTIMESTAMP

DSJ.JOBINVOCATIONS

DSJ.JOBINTERIMSTATUS

DSJ.JOBINVOCATIONID

DSJ.JOBDESC

DSJ.STAGELIST2

DSJ.JOBELAPSED

Result depends on the specified InfoType, as follows:
6-160 BASIC Guide

DSGetJobInfo Function
• DSJ.JOBSTATUS Integer. Current status of job overall. Possible statuses
that can be returned are currently divided into two categories:

Firstly, a job that is in progress is identified by:

DSJS.RESET Job finished a reset run.

DSJS.RUNFAILED Job finished a normal run with a fatal
error.

DSJS.RUNNING Job running - this is the only status that
 means the job is actually running.

Secondly, jobs that are not running may have the following statuses:

DSJS.RUNOK Job finished a normal run with no
warnings.

DSJS.RUNWARN Job finished a normal run with
warnings.

DSJS.STOPPED Job was stopped by operator
intervention (can't tell run type).

DSJS.VALFAILED Job failed a validation run.

DSJS.VALOK Job finished a validation run with no
warnings.

DSJS.VALWARN Job finished a validation run with
warnings.

• DSJ.JOBNAME String. Actual name of the job referenced by the job
handle.

• DSJ.JOBCONTROLLER String. Name of the job controlling the job refer-
enced by the job handle. Note that this may be several job names separated
by periods if the job is controlled by a job which is itself controlled, etc.

• DSJ.JOBSTARTTIMESTAMP String. Date and time when the job started
on the server in the form YYYY-MM-DD HH:MM:SS.

• DSJ.JOBWAVENO Integer. Wave number of last or current run.

• DSJ.PARAMLIST. Returns a comma-separated list of parameter names.

• DSJ.STAGELIST. Returns a comma-separated list of active stage names.
BASIC Statements and Functions 6-161

DSGetJobInfo Function
• DSJ.USERSTATUS String. Whatever the job's last call of
DSSetUserStatus last recorded, else the empty string.

• DSJ.JOBCONTROL Integer. Current job control status, i.e., whether a stop
request has been issued for the job.

• DSJ. JOBPID Integer. Job process id.

• DSJ.JOBLASTTIMESTAMP String. Date and time when the job last
finished a run on the server in the form YYYY-MM-DD HH:MM:SS.

• DSJ.JOBINVOCATIONS. Returns a comma-separated list of Invocation
IDs.

• DSJ.JOBINTERIMSTATUS. Returns the status of a job after it has run all
stages and controlled jobs, but before it has attempted to run an after-job
subroutine. (Designed to be used by an after-job subroutine to get the
status of the current job).

• DSJ.JOBINVOCATIONID. Returns the invocation ID of the specified job
(used in the DSJobInvocationId macro in a job design to access the invoca-
tion ID by which the job is invoked).

• DSJ.JOBDESC String. Description of the job (as derived from job
properties).

• DSJ.STAGELIST2. Returns a comma-separated list of passive stage names.

• DSJ.JOBELAPSED String. The elapsed time of the job in seconds.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

Remarks
When referring to a controlled job, DSGetJobInfo can be used either before or
after a DSRunJob has been issued. Any status returned following a successful call
to DSRunJob is guaranteed to relate to that run of the job.

Examples
The following command requests the job status of the job qsales:
6-162 BASIC Guide

DSGetJobInfo Function
q_status = DSGetJobInfo(qsales_handle, DSJ.JOBSTATUS)

The following command requests the actual name of the current job:

whatname = DSGetJobInfo (DSJ.ME, DSJ.JOBNAME)
BASIC Statements and Functions 6-163

DSGetLinkInfo Function
Provides a method of obtaining information about a link on an active stage, which
can be used generally as well as for job control. This routine may reference either
a controlled job or the current job, depending on the value of JobHandle.
DSGetLinkInfo

Syntax
Result = DSGetLinkInfo (JobHandle, StageName, LinkName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it can be
DSJ.ME to refer to the current job.

StageName is the name of the active stage to be interrogated. May also be DSJ.ME
to refer to the current stage if necessary.

LinkName is the name of a link (input or output) attached to the stage. May also be
DSJ.ME to refer to current link (e.g. when used in a Transformer expression or
transform function called from link code).

InfoType specifies the information required and can be one of:

DSJ.LINKLASTERR

DSJ.LINKNAME

DSJ.LINKROWCOUNT

DSJ.LINKSQLSTATE

DSJ.LINKDBMSCODE

DSJ.LINKDESC

DSJ.LINKSTAGE

DSJ.INSTROWCOUNT

Result depends on the specified InfoType, as follows:

• DSJ.LINKLASTERR String – last error message (if any) reported from the
link in question.

• DSJ.LINKNAME String – returns the name of the link, most useful when
used with JobHandle = DSJ.ME and StageName = DSJ.ME and LinkName =
DSJ.ME to discover your own name.

• DSJ.LINKROWCOUNT Integer – number of rows that have passed down
a link so far.
6-164 BASIC Guide

DSGetLinkInfo Function
• DSJ.LINKSQLSTATE – the SQL state for the last error occurring on this
link.

• DSJ.LINKDBMSCODE – the DBMS code for the last error occurring on
this link.

• DSJ.LINKDESC – description of the link.

• DSJ.LINKSTAGE – name of the stage at the other end of the link.

• DSJ.INSTROWCOUNT – comma-separated list of rowcounts, one per
instance (parallel jobs)

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.BADSTAGE StageName does not refer to a known stage
in the job.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADLINK LinkName does not refer to a known link
for the stage in question.

Remarks
When referring to a controlled job, DSGetLinkInfo can be used either before or
after a DSRunJob has been issued. Any status returned following a successful call
to DSRunJob is guaranteed to relate to that run of the job.

Example
The following command requests the number of rows that have passed down the
order_feed link in the loader stage of the job qsales:

link_status = DSGetLinkInfo(qsales_handle, "loader", ➥
"order_feed", DSJ.LINKROWCOUNT)
BASIC Statements and Functions 6-165

DSGetLogEntry Function
Reads the full event details given in EventId.
DSGetLogEntry

Syntax
EventDetail = DSGetLogEntry (JobHandle, EventId)

JobHandle is the handle for the job as derived from DSAttachJob.

EventId is an integer that identifies the specific log event for which details are
required. This is obtained using the DSGetNewestLogId function.

EventDetail is a string containing substrings separated by \. The substrings are as
follows:

Substring1 Timestamp in form YYYY-MM-DD HH:MM:SS

Substring2 User information

Substring3 EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADVALUE Error accessing EventId.

Example
The following command reads full event details of the log event identified by
LatestLogid into the string LatestEventString:

LatestEventString =
➥ DSGetLogEntry(qsales_handle,latestlogid)
6-166 BASIC Guide

DSGetLogSummary Function
Returns a list of short log event details. The details returned are determined by the
setting of some filters. (Care should be taken with the setting of the filters, other-
wise a large amount of information can be returned.)
DSGetLogSummary

Syntax
SummaryArray = DSGetLogSummary (JobHandle, EventType, StartTime,
EndTime, MaxNumber)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

StartTime is a string in the form YYYY-MM-DD HH:MM:SS or YYYY-MM-DD.

EndTime is a string in the form YYYY-MM-DD HH:MM:SS or YYYY-MM-DD.

MaxNumber is an integer that restricts the number of events to return. 0 means no
restriction. Use this setting with caution.

SummaryArray is a dynamic array of fields separated by @FM. Each field
comprises a number of substrings separated by \, where each field represents a
separate event, with the substrings as follows:

Substring1 EventId as per DSGetLogEntry

Substring2 Timestamp in form YYYY-MM-DD
HH:MM:SS

Substring3 EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal log event:
BASIC Statements and Functions 6-167

DSGetLogSummary Function
DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.

DSJE.BADTIME Invalid StartTime or EndTime.

DSJE.BADVALUE Invalid MaxNumber.

Example
The following command produces an array of reject link active events recorded
for the qsales job between 18th August 1998, and 18th September 1998, up to a
maximum of MAXREJ entries:

RejEntries = DSGetLogSummary (qsales_handle,
➥ DSJ.LOGREJECT, "1998-08-18 00:00:00", "1998-09-18
➥ 00:00:00", MAXREJ)
6-168 BASIC Guide

DSGetNewestLogId Function
Gets the ID of the most recent log event in a particular category, or in any category.
DSGetNewestLogId

Syntax
EventId = DSGetNewestLogId (JobHandle, EventType)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

EventId is an integer that identifies the specific log event. EventId can also be
returned as an integer, in which case it contains an error code as follows:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.

Example
The following command obtains an ID for the most recent warning message in the
log for the qsales job:

Warnid = DSGetNewestLogId (qsales_handle,
➥ DSJ.LOGWARNING)
BASIC Statements and Functions 6-169

DSGetParamInfo Function
Provides a method of obtaining information about a parameter, which can be used
generally as well as for job control. This routine may reference either a controlled
job or the current job, depending on the value of JobHandle.
DSGetParamInfo

Syntax
Result = DSGetParamInfo (JobHandle, ParamName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it may be
DSJ.ME to refer to the current job.

ParamName is the name of the parameter to be interrogated.

InfoType specifies the information required and may be one of:

DSJ.PARAMDEFAULT

DSJ.PARAMHELPTEXT

DSJ.PARAMPROMPT

DSJ.PARAMTYPE

DSJ.PARAMVALUE

DSJ.PARAMDES.DEFAULT

DSJ.PARAMLISTVALUES

DSJ.PARAMDES.LISTVALUES

DSJ.PARAMPROMPT.AT.RUN

Result depends on the specified InfoType, as follows:

• DSJ.PARAMDEFAULT String – Current default value for the parameter in
question. See also DSJ.PARAMDES.DEFAULT.

• DSJ.PARAMHELPTEXT String – Help text (if any) for the parameter in
question.

• DSJ.PARAMPROMPT String – Prompt (if any) for the parameter in
question.

• DSJ.PARAMTYPE Integer – Describes the type of validation test that
should be performed on any value being set for this parameter. Is one of:

DSJ.PARAMTYPE.STRING
6-170 BASIC Guide

DSGetParamInfo Function
DSJ.PARAMTYPE.ENCRYPTED

DSJ.PARAMTYPE.INTEGER

DSJ.PARAMTYPE.FLOAT (the parameter may contain periods and E)

DSJ.PARAMTYPE.PATHNAME

DSJ.PARAMTYPE.LIST (should be a string of Tab-separated strings)

DSJ.PARAMTYPE.DATE (should be a string in form YYYY-MM-DD)

DSJ.PARAMTYPE.TIME (should be a string in form HH:MM)

• DSJ.PARAMVALUE String – Current value of the parameter for the
running job or the last job run if the job is finished.

• DSJ.PARAMDES.DEFAULT String – Original default value of the param-
eter - may differ from DSJ.PARAMDEFAULT if the latter has been
changed by an administrator since the job was installed.

• DSJ.PARAMLISTVALUES String – Tab-separated list of allowed values
for the parameter. See also DSJ.PARAMDES.LISTVALUES.

• DSJ.PARAMDES.LISTVALUES String – Original Tab-separated list of
allowed values for the parameter – may differ from DSJ.PARAM-
LISTVALUES if the latter has been changed by an administrator since the
job was installed.

• DSJ.PROMPT.AT.RUN String – 1 means the parameter is to be prompted
for when the job is run; anything else means it is not (DSJ.PARAMDE-
FAULT String to be used directly).

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADPARAM ParamName is not a parameter
name in the job.

DSJE.BADTYPE InfoType was unrecognized.

Remarks
When referring to a controlled job, DSGetParamInfo can be used either before or
after a DSRunJob has been issued. Any status returned following a successful call
to DSRunJob is guaranteed to relate to that run of the job.
BASIC Statements and Functions 6-171

DSGetParamInfo Function
Example
The following command requests the default value of the quarter parameter for
the qsales job:

Qs_quarter = DSGetparamInfo(qsales_handle, "quarter",
➥ DSJ.PARAMDEFAULT)
6-172 BASIC Guide

DSGetProjectInfo Function
Provides a method of obtaining information about the current project.
DSGetProjectInfo

Syntax
Result = DSGetProjectInfo (InfoType)

InfoType specifies the information required and can be one of:

DSJ.JOBLIST

DSJ.PROJECTNAME

DSJ.HOSTNAME

Result depends on the specified InfoType, as follows:

• DSJ.JOBLIST String - comma-separated list of names of all jobs known to
the project (whether the jobs are currently attached or not).

• DSJ.PROJECTNAME String - name of the current project.

• DSJ.HOSTNAME String - the host name of the server holding the current
project.

Result may also return an error condition as follows:

DSJE.BADTYPE InfoType was unrecognized.
BASIC Statements and Functions 6-173

DSGetStageInfo Function
Provides a method of obtaining information about a stage, which can be used
generally as well as for job control. It can refer to the current job, or a controlled job,
depending on the value of JobHandle.
DSGetStageInfo

Syntax
Result = DSGetStageInfo (JobHandle, StageName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it may be
DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be DSJ.ME to
refer to the current stage if necessary.

InfoType specifies the information required and may be one of:

DSJ.LINKLIST

DSJ.STAGELASTERR

DSJ.STAGENAME

DSJ.STAGETYPE

DSJ.STAGEINROWNUM

DSJ.VARLIST

DSJ.STAGESTARTTIMESTAMP

DSJ.STAGEENDTIMESTAMP

DSJ.STAGEDESC

DSJ.STAGEINST

DSJ.STAGECPU

DSJ.LINKTYPES

DSJ.STAGEELAPSED

DSJ.STAGEPID

DSJ.STAGESTATUS

DSJ.CUSTINFOLIST

Result depends on the specified InfoType, as follows:
6-174 BASIC Guide

DSGetStageInfo Function
• DSJ.LINKLIST – comma-separated list of link names in the stage.

• DSJ.STAGELASTERR String – last error message (if any) reported from
any link of the stage in question.

• DSJ.STAGENAME String – most useful when used with JobHandle =
DSJ.ME and StageName = DSJ.ME to discover your own name.

• DSJ.STAGETYPE String – the stage type name (e.g. "Transformer",
"BeforeJob").

• DSJ. STAGEINROWNUM Integer – the primary link's input row number.

• DSJ.VARLIST – comma-separated list of stage variable names.

• DSJ.STAGESTARTTIMESTAMP – date/time that stage started executing
in the form YYY-MM-DD HH:MM:SS.

• DSJ.STAGEENDTIMESTAMP – date/time that stage finished executing
in the form YYY-MM-DD HH:MM:SS.

• DSJ.STAGEDESC – stage description.

• DSJ.STAGEINST – comma-separated list of instance ids (parallel jobs).

• DSJ.STAGECPU – list of CPU times in seconds.

• DSJ.LINKTYPES – comma-separated list of link types.

• DSJ.STAGEELAPSED – elapsed time in seconds.

• DSJ.STAGEPID – comma-separated list of process ids.

• DSJ.STAGESTATUS – stage status.

• DSJ.CUSTINFOLIST – custom information generated by stages (parallel
jobs).

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known
stage in the job.
BASIC Statements and Functions 6-175

DSGetStageInfo Function
Remarks
When referring to a controlled job, DSGetStageInfo can be used either before or
after a DSRunJob has been issued. Any status returned following a successful call
to DSRunJob is guaranteed to relate to that run of the job.

Example
The following command requests the last error message for the loader stage of the
job qsales:

stage_status = DSGetStageInfo(qsales_handle, "loader", ➥
DSJ.STAGELASTERR)
6-176 BASIC Guide

DSGetVarInfo Function
Provides a method of obtaining information about variables used in transformer
stages.
DSGetProjectInfo

Syntax
Result = DSGetVarInfo (JobHandle, StageName, VarName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or it may be
DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be DSJ.ME to
refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.VARVALUE

DSJ.VARDESCRIPTION

Result depends on the specified InfoType, as follows:

• DSJ.VARVALUE String - the value of the specified variable.

• DSJ.VARDESCRIPTION String - description of the specified variable.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was not recognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADVAR VarName was not recognized.

DSJE.BADSTAGE StageName does not refer to a known
stage in the job.
BASIC Statements and Functions 6-177

DSLogEvent Function
Logs an event message to a job other than the current one. (Use DSLogInfo,
DSLogFatal, or DSLogWarn to log an event to the current job.)
DSLogEvent

Syntax
ErrCode = DSLogEvent (JobHandle, EventType, EventMsg)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

EventMsg is a string containing the event message.

ErrCode is 0 if there is no error. Otherwise it contains one of the following errors:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType (particularly note that
you cannot place a fatal message in
another job’s log).

Example
The following command, when included in the msales job, adds the message
“monthly sales complete” to the log for the qsales job:

Logerror = DsLogEvent (qsales_handle, DSJ.LOGINFO,
➥ "monthly sales complete")
6-178 BASIC Guide

DSLogFatal Function
Logs a fatal error message in a job's log file and aborts the job.
DSLogFatal

Syntax
Call DSLogFatal (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is automatically
prefixed with the name of the current stage and the calling before/after
subroutine.

CallingProgName (input) is the name of the before/after subroutine that calls the
DSLogFatal subroutine.

Remarks
DSLogFatal writes the fatal error message to the job log file and aborts the job.
DSLogFatal never returns to the calling before/after subroutine, so it should be
used with caution. If a job stops with a fatal error, it must be reset using the
DataStage Director before it can be rerun.

In a before/after subroutine, it is better to log a warning message (using
DSLogWarn) and exit with a nonzero error code, which allows DataStage to stop
the job cleanly.

DSLogFatal should not be used in a transform. Use DSTransformError instead.

Example
Call DSLogFatal("Cannot open file", "MyRoutine")
BASIC Statements and Functions 6-179

DSLogInfo Function
Logs an information message in a job's log file.
DSLogInfo

Syntax
Call DSLogInfo (Message, CallingProgName)

Message (input) is the information message you want to log. Message is
automatically prefixed with the name of the current stage and the calling
program.

CallingProgName (input) is the name of the transform or before/after subroutine
that calls the DSLogInfo subroutine.

Remarks
DSLogInfo writes the message text to the job log file as an information message
and returns to the calling routine or transform. If DSLogInfo is called during the
test phase for a newly created routine in the DataStage Manager, the two
arguments are displayed in the results window.

Unlimited information messages can be written to the job log file. However, if a
lot of messages are produced the job may run slowly and the DataStage Director
may take some time to display the job log file.

Example
Call DSLogInfo("Transforming: ":Arg1, "MyTransform")
6-180 BASIC Guide

DSLogToController Function
This routine may be used to put an info message in the log file of the job controlling
this job, if any. If there isn't one, the call is just ignored.

Syntax
Call DSLogToController(MsgString)

MsgString is the text to be logged. The log event is of type Information.

Remarks
If the current job is not under control, a silent exit is performed.

Example
Call DSLogToController(“This is logged to parent”)
BASIC Statements and Functions 6-181

DSLogWarn Function
Logs a warning message in a job's log file.
DSLogWarn

Syntax
Call DSLogWarn (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is automatically
prefixed with the name of the current stage and the calling before/after
subroutine.

CallingProgName (input) is the name of the before/after subroutine that calls the
DSLogWarn subroutine.

Remarks
DSLogWarn writes the message to the job log file as a warning and returns to the
calling before/after subroutine. If the job has a warning limit defined for it, when
the number of warnings reaches that limit, the call does not return and the job is
aborted.

DSLogWarn should not be used in a transform. Use DSTransformError instead.

Example
If InputArg > 100 Then

Call DSLogWarn("Input must be =< 100; received
":InputArg,"MyRoutine")

End Else
* Carry on processing unless the job aborts

End
6-182 BASIC Guide

DSMakeJobReport Function
Generates a report describing the complete status of a valid attached job.

Syntax
ReportText = DSMakeJobReport(JobHandle, ReportLevel, LineSeparator)

JobHandle is the string as returned from DSAttachJob.

ReportLevel specifies the type of report and is one of the following:

• 0 – basic report. Text string containing start/end time, time elapsed and
status of job.

• 1 – stage/link detail. As basic report, but also contains information about
individual stages and links within the job.

• 2 – text string containing full XML report.

LineSeparator is the string used to separate lines of the report. Special values
recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows NT, else LF.

Remarks
If a bad job handle is given, or any other error is encountered, information is
added to the ReportText.

Example
h$ = DSAttachJob(“MyJob”, DSJ.ERRNONE)

rpt$ = DSMakeJobReport(h$,0,”CRLF”)
BASIC Statements and Functions 6-183

DSMakeMsg Function
Insert arguments into a message template. Optionally, it will look up a template ID
in the standard DataStage messages file, and use any returned message template
instead of that given to the routine.

Syntax
FullText = DSMakeMsg(Template, ArgList)

FullText is the message with parameters substituted

Template is the message template, in which %1, %2 etc. are to be substituted with
values from the equivalent position in ArgList. If the template string starts with a
number followed by "\", that is assumed to be part of a message id to be looked
up in the DataStage message file.

Note: If an argument token is followed by "[E]", the value of that argument is
assumed to be a job control error code, and an explanation of it will be inserted in
place of "[E]". (See the DSTranslateCode function.)

ArgList is the dynamic array, one field per argument to be substituted.

Remarks
This routine is called from job control code created by the JobSequence Generator.
It is basically an interlude to call DSRMessage which hides any runtime includes.

It will also perform local job parameter substitution in the message text. That is, if
called from within a job, it looks for substrings such as "#xyz#" and replaces them
with the value of the job parameter named "xyz".

Example
t$ = DSMakeMsg(“Error calling DSAttachJob(%1)<L>%2”,

➥jb$:@FM:DSGetLastErrorMsg())
6-184 BASIC Guide

DSPrepareJob Function
Used to ensure that a compiled job is in the correct state to be run or validated.

Syntax
JobHandle = DSPrepareJob(JobHandle)

JobHandle is the handle, as returned from DSAttachJob(), of the job to be
prepared.

JobHandle is either the original handle or a new one. If returned as 0, an error
occurred and a message is logged.

Example
h$ = DSPrepareJob(h$)
BASIC Statements and Functions 6-185

DSRunJob Function
Starts a job running. Note that this call is asynchronous; the request is passed to the
run-time engine, but you are not informed of its progress.
DSRunJob

Syntax
ErrCode = DSRunJob (JobHandle, RunMode)

JobHandle is the handle for the job as derived from DSAttachJob.

RunMode is the name of the mode the job is to be run in and is one of:

DSJ.RUNNORMAL (Default) Standard job run.

DSJ.RUNRESET Job is to be reset.

DSJ.RUNVALIDATE Job is to be validated only.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the following
negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATE Job is not in the right state (compiled,
not running).

DSJE.BADTYPE RunMode is not a known mode.

Remarks
If the controlling job is running in validate mode, then any calls of DSRunJob will
act as if RunMode was DSJ.RUNVALIDATE, regardless of the actual setting.

A job in validate mode will run its JobControl routine (if any) rather than just
check for its existence, as is the case for before/after routines. This allows you to
examine the log of what jobs it started up in validate mode.

After a call of DSRunJob, the controlled job’s handle is unloaded. If you require
to run the same job again, you must use DSDetachJob and DSAttachJob to set a
new handle. Note that you will also need to use DSWaitForJob, as you cannot
attach to a job while it is running.

Example
The following command starts the job qsales in standard mode:
6-186 BASIC Guide

DSRunJob Function
RunErr = DSRunJob(qsales_handle, DSJ.RUNNORMAL)
BASIC Statements and Functions 6-187

DSSendMail Function
This routine is an interface to a sendmail program that is assumed to exist some-
where in the search path of the current user (on the server). It hides the different
call interfaces to various sendmail programs, and provides a simple interface for
sending text. For example:

Syntax
Reply = DSSendMail(Parameters)

Parameters is a set of name:value parameters, separated by either a mark character
or "\n".

Currently recognized names (case-insensitive) are:

"From" Mail address of sender, e.g. Me@SomeWhere.com

Can only be left blank if the local template file does not contain a
"%from%" token.

"To" Mail address of recipient, e.g. You@ElseWhere.com

Can only be left blank if the local template file does not contain a
"%to%" token.

"Subject" Something to put in the subject line of the message.

Refers to the "%subject%" token. If left as "", a standard subject line
will be created, along the lines of "From DataStage job: jobname"

"Server" Name of host through which the mail should be sent.

May be omitted on systems (such as Unix) where the SMTP host
name can be and is set up externally, in which case the local
template file presumably will not contain a "%server%" token.

"Body" Message body.

Can be omitted. An empty message will be sent. If used, it must be
the last parameter, to allow for getting multiple lines into the
message, using "\n" for line breaks. Refers to the "%body%" token.

Note: The text of the body may contain the tokens "%report% or
%fullreport% anywhere within it, which will cause a report on the
current job status to be inserted at that point. A full report contains
stage and link information as well as job status.

Reply. Possible replies are:
6-188 BASIC Guide

DSSendMail Function
DSJE.NOERROR (0) OK

DSJE.NOPARAM Parameter name missing - field does not look like
'name:value'

DSJE.NOTEMPLATE Cannot find template file

DSJE.BADTEMPLATE Error in template file

Remarks
The routine looks for a local file, in the current project directory, with a well-
known name. That is, a template to describe exactly how to run the local sendmail
command.

Example
code = DSSendMail("From:me@here\nTo:You@there\nSubject:Hi
ya\nBody:Line1\nLine2")
BASIC Statements and Functions 6-189

DSSetJobLimit Function
By default a controlled job inherits any row or warning limits from the controlling
job. These can, however, be overridden using the DSSetJobLimit function.
DSSetJobLimit

Syntax
ErrCode = DSSetJobLimit (JobHandle, LimitType, LimitValue)

JobHandle is the handle for the job as derived from DSAttachJob.

LimitType is the name of the limit to be applied to the running job and is one of:

DSJ.LIMITWARN Job to be stopped after LimitValue
warning events.

DSJ.LIMITROWS Stages to be limited to LimitValue rows.

LimitValue is an integer specifying the value to set the limit to. Set this to 0 to
specify unlimited warnings.

ErrCode is 0 if DSSetJobLimit is successful, otherwise it is one of the following
negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATE Job is not in the right state (compiled,
not running).

DSJE.BADTYPE LimitType is not a known limiting
condition.

DSJE.BADVALUE LimitValue is not appropriate for the
limiting condition type.

Example
The following command sets a limit of 10 warnings on the qsales job before it is
stopped:

LimitErr = DSSetJobLimit(qsales_handle,
➥ DSJ.LIMITWARN, 10)
6-190 BASIC Guide

DSSetParam Function
Specifies job parameter values before running a job. Any parameter not set will be
defaulted.
DSSetParam

Syntax
ErrCode = DSSetParam (JobHandle, ParamName, ParamValue)

JobHandle is the handle for the job as derived from DSAttachJob.

ParamName is a string giving the name of the parameter.

ParamValue is a string giving the value for the parameter.

ErrCode is 0 if DSSetParam is successful, otherwise it is one of the following
negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATE Job is not in the right state (compiled,
not running).

DSJE.BADPARAM ParamName is not a known parameter of
the job.

DSJE.BADVALUE ParamValue is not appropriate for that
parameter type.

Example
The following commands set the quarter parameter to 1 and the startdate
parameter to 1/1/97 for the qsales job:

paramerr = DSSetParam (qsales_handle, "quarter", "1")

paramerr = DSSetParam (qsales_handle, "startdate",
➥ "1997-01-01")
BASIC Statements and Functions 6-191

DSSetUserStatus Subroutine
Applies only to the current job, and does not take a JobHandle parameter. It can be
used by any job in either a JobControl or After routine to set a termination code for
interrogation by another job. In fact, the code may be set at any point in the job, and
the last setting is the one that will be picked up at any time. So to be certain of
getting the actual termination code for a job the caller should use DSWaitForJob
and DSGetJobInfo first, checking for a successful finishing status.

Note: This routine is defined as a subroutine not a function because there are no
possible errors.

DSSetUserStatus

Syntax
Call DSSetUserStatus (UserStatus)

UserStatus String is any user-defined termination message. The string will be
logged as part of a suitable "Control" event in the calling job’s log, and stored for
retrieval by DSGetJobInfo, overwriting any previous stored string.

This string should not be a negative integer, otherwise it may be indistinguishable
from an internal error in DSGetJobInfo calls.

Example
The following command sets a termination code of “sales job done”:

Call DSSetUserStatus("sales job done")
6-192 BASIC Guide

DSStopJob Function
This routine should only be used after a DSRunJob has been issued. It immedi-
ately sends a stop request to the run-time engine. The call is asynchronous. If you
need to know that the job has actually stopped, you must call DSWaitForJob or use
the Sleep statement and poll for DSGetJobStatus. Note that the stop request gets
sent regardless of the job's current status.
DSStopJob

Syntax
ErrCode = DSStopJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the following:

DSJE.BADHANDLE Invalid JobHandle.

Example
The following command requests that the qsales job is stopped:

stoperr = DSStopJob(qsales_handle)
BASIC Statements and Functions 6-193

DSTransformError Function
Logs a warning message to a job log file. This function is called from transforms
only.
DSTransformError

Syntax
Call DSTransformError (Message, TransformName)

Message (input) is the warning message you want to log. Message is automatically
prefixed with the name of the current stage and the calling transform.

TransformName (input) is the name of the transform that calls the
DSTransformError subroutine.

Remarks
DSTransformError writes the message (and other information) to the job log file
as a warning and returns to the transform. If the job has a warning limit defined
for it, when the number of warnings reaches that limit, the call does not return
and the job is aborted.

In addition to the warning message, DSTransformError logs the values of all
columns in the current rows for all input and output links connected to the
current stage.

Example
Function MySqrt(Arg1)
If Arg1 < 0 Then

Call DSTransformError("Negative value:"Arg1, "MySqrt")
Return("0") ;*transform produces 0 in this case

End
Result = Sqrt(Arg1) ;* else return the square root

Return(Result)
6-194 BASIC Guide

DSTranslateCode Function
Converts a job control status or error code into an explanatory text message.

Syntax
Ans = DSTranslateCode(Code)

Code is:

If Code > 0, it's assumed to be a job status.

If Code < 0, it's assumed to be an error code.

(0 should never be passed in, and will return "no error")

Ans is the message associated with the code.

Remarks
If Code is not recognized, then Ans will report it.

Example
code$ = DSGetLastErrorMsg()

ans$ = DSTranslateCode(code$)
BASIC Statements and Functions 6-195

DSWaitForFile Function
Suspend a job until a named file either exists or does not exist.

Syntax
Reply = DSWaitForFile(Parameters)

Parameters is the full path of file to wait on. No check is made as to whether this is
a reasonable path (for example, whether all directories in the path exist). A path
name starting with "-", indicates a flag to check the non-existence of the path. It is
not part of the path name.

Parameters may also end in the form " timeout:NNNN" (or "timeout=NNNN")
This indicates a non-default time to wait before giving up. There are several
possible formats, case-insensitive:

nnn number of seconds to wait (from now)

nnnS ditto

nnnM number of minutes to wait (from now)

nnnH number of hours to wait (from now)

nn:nn:nn wait until this time in 24HH:MM:SS. If this or nn:nn time has
passed, will wait till next day.

The default timeout is the same as "12H".

The format may optionally terminate "/nn", indicating a poll delay time in
seconds. If omitted, a default poll time is used.

Reply may be:

DSJE.NOERROR (0) OK - file now exists or does not exist, depending on
flag.

DSJE.BADTIME Unrecognized Timeout format

DSJE.NOFILEPATH File path missing

DSJE.TIMEOUT Waited too long

Examples
Reply = DSWaitForFile("C:\ftp\incoming.txt timeout:2H")

(wait 7200 seconds for file on C: to exist before it gives up.)
6-196 BASIC Guide

DSWaitForFile Function
Reply = DSWaitForFile("-incoming.txt timeout=15:00")

(wait until 3 pm for file in local directory to NOT exist.)

Reply = DSWaitForFile("incoming.txt timeout:3600/60")

(wait 1 hour for a local file to exist, looking once a minute.)
BASIC Statements and Functions 6-197

DSWaitForJob Function
This function is only valid if the current job has issued a DSRunJob on the given
JobHandle(s). It returns if the/a job has started since the last DSRunJob has since
finished.
DSWaitForJob

Syntax
ErrCode = DSWaitForJob (JobHandle)

JobHandle is the string returned from DSAttachJob. If commas are contained, it's a
comma-delimited set of job handles, representing a list of jobs that are all to be
waited for.

ErrCode is 0 if no error, else possible error values (<0) are:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.WRONGJOB Job for this JobHandle was not run from within this
job.

ErrCode is >0 => handle of the job that finished from a multi-job wait.

Remarks
DSWaitForJob will wait for either a single job or multiple jobs.

Example
To wait for the return of the qsales job:

WaitErr = DSWaitForJob(qsales_handle)
6-198 BASIC Guide

DTX function
DTX

Syntax

DTX (number [,size])

Description
Use the DTX function to convert a decimal integer to its hexadecimal equivalent.

size indicates the minimum size which the hexadecimal character string should
have. This field is supplemented with zeros if appropriate.

If number evaluates to the null value, null is returned. If size is the null value, the
DTX function fails and the program terminates with a run-time error message.

Example
X = 25
Y = DTX (X)
PRINT Y
Y = DTX (X,4)
PRINT Y
END

This is the program output:

19
0019
BASIC Statements and Functions 6-199

EBCDIC function
EBCDIC

Syntax
EBCDIC (expression)

Description
Use the EBCDIC function to convert each character of expression from its ASCII
representation value to its EBCDIC representation value. The EBCDIC and ASCII
functions perform complementary operations. Data that is not represented in
ASCII code produces undefined results.

If expression evaluates to the null value, the EBCDIC function fails and the program
terminates with a run-time error message.

Example
X = 'ABC 123'
Y = EBCDIC(X)
PRINT "ASCII", "EBCDIC", " X "
PRINT "------", "-----", "---"
FOR I = 1 TO LEN (X)
PRINT SEQ(X[I,1]) , SEQ(Y[I,1]),X[I,1]
NEXT I

This is the program output:

ASCII EBCDIC X
------ ----- ---
65 193 A
66 194 B
67 195 C
32 64
49 241 1
50 242 2
51 243 3
6-200 BASIC Guide

ECHO statement
ECHO

Syntax

ECHO {ON | OFF | expression}

Description
Use the ECHO statement to control the display of input characters on the screen.

If ECHO ON is specified, subsequent input characters are displayed, or echoed, on
the screen. If ECHO OFF is specified, subsequent input characters are assigned to
the INPUT statement variables but are not displayed on the screen.

The ability to turn off character display is useful when the keyboard is to be used
for cursor movement or for entering password information. If expression evaluates
to true, ECHO is turned ON. If expression evaluates to false, ECHO is turned OFF.
If expression evaluates to the null value, it is treated as false, and ECHO is turned
OFF.

Example
PROMPT ""
ECHO OFF
PRINT "ENTER YOUR PASSWORD"
INPUT PWORD
ECHO ON

This is the program output:

ENTER YOUR PASSWORD
BASIC Statements and Functions 6-201

END statement
END

Syntax
END

Description
Use the END statement to terminate a BASIC program or a section of an IF, READ,
or OPEN statement.

An END statement is the last statement in a BASIC program; it indicates the logical
end of the program. When an END statement that is not associated with an IF,
READ, or OPEN statement is encountered, execution of the program terminates.
You can use comments after the END statement.

You can also use the END statement with conditional statements in the body of a
program. In this case END indicates the end of a multistatement conditional
clause.

INFORMATION and REALITY Flavors
In INFORMATION and REALITY flavors a warning message is printed if there is
no final END statement. The END.WARN option of the $OPTIONS statement
prints the warning message in IDEAL, IN2, PICK, and PIOPEN flavors under the
same conditions.

Example
A="YES"
IF A="YES" THEN

PRINT "THESE TWO LINES WILL PRINT ONLY"
PRINT "WHEN THE VALUE OF 'A' IS 'YES'."

END
*
PRINT
PRINT "THIS IS THE END OF THE PROGRAM"
END ; * END IS THE LAST STATEMENT EXECUTED

This is the program output:

THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
6-202 BASIC Guide

END CASE statement
END CASE
Use the END CASE statement to end a set of statements
BASIC Statements and Functions 6-203

END TRANSACTION statement
END TRANSACTION
Use the END TRANSACTION statement to specify where processing is to
continue after a transaction ends.
6-204 BASIC Guide

ENTER statement
ENTER

Syntax
ENTER subroutine

variable = 'subroutine'
ENTER @variable

Description
Use the ENTER statement to transfer program control from the calling program to
an external subroutine without returning to the calling program. The subroutine
must have been compiled and cataloged.

The ENTER statement is similar to the CALL statement, except that with the
ENTER statement, program flow does not return from the entered program to the
calling program (see the CALL statement). The ENTER statement also does not
accept arguments.

In the PIOPEN flavor, the ENTER statement is a synonym for the CALL statement.
It takes arguments and returns control to the calling program.

External subroutines can be entered directly or indirectly. To enter a subroutine
indirectly, assign the name of the cataloged subroutine to a variable or to an
element of an array. Use the name of this variable or array element, prefixed with
an at sign (@), as the operand of the ENTER statement.

If subroutine evaluates to the null value, the ENTER statement fails and the
program terminates with a run-time error message.

Example
The following program transfers control to the cataloged program PROGRAM2:

ENTER PROGRAM2
BASIC Statements and Functions 6-205

EOF(ARG.) function
EOF(ARG.)

Syntax
EOF(ARG.)

Description
Use the EOF(ARG.) function to check if the command line argument pointer is past
the last command line argument. ARG. is part of the syntax of the EOF(ARG.) func-
tion and must be specified. EOF(ARG.) returns 1 (true) if the pointer is past the last
command line argument, otherwise it returns 0 (false).

The arg# argument of the GET(ARG.) and SEEK(ARG.) statements affect the value
of the EOF(ARG.) function.
6-206 BASIC Guide

EQS function
EQS

Syntax
EQS (array1, array2)

CALL −EQS (return.array, array1, array2)

CALL !EQS (return.array, array1, array2)

Description
Use the EQS function to test if elements of one dynamic array are equal to the
elements of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
two elements are equal, a 1 is returned in the corresponding element of a dynamic
array. If the two elements are not equal, a 0 is returned. If an element of one
dynamic array has no corresponding element in the other dynamic array, a 0 is
returned. If either element of a corresponding pair is the null value, null is returned
for that element.

If you use the subroutine syntax, the resulting dynamic array returns as
return.array.

Example
A=1:@VM:45:@SM:3:@VM:"one"
B=0:@VM:45:@VM:1
PRINT EQS(A,B)

This is the program output:

0V1S0V0
BASIC Statements and Functions 6-207

EQUATE statement
EQUATE

Syntax

EQU[ATE] symbol TO expression [,symbol TO expression …]

EQU[ATE] symbol LIT[ERALLY] string [,symbol LIT string …]

Description
In an EQUATE statement, symbol represents the value of expression or string. You
can use the two interchangeably in the program. When the program is compiled,
each occurrence of symbol is replaced by the value of expression or string. The value
is compiled as object code and does not have to be reassigned each time the
program is executed.

You can define multiple symbols in a single EQUATE statement. symbol cannot be
a number.

You can define symbol only once. Any subsequent EQUATE state generates a
compiler error because the compiler interprets the symbol before the statement is
parsed.

If you use TO as a connector, the object can be any BASIC expression. If you use
LIT or LITERALLY as a connector, the object must be a literal string.

RAID does not recognize EQUATE symbols. You must use the object value in
RAID sessions.

There is no limit on the number of EQUATE statements allowed by the BASIC
compiler, except that of memory.

If symbol is the same as the name of a BASIC function, the function is disabled in
the program. If a statement exists with the same name as a disabled function, the
statement is also disabled.

Examples
In the following example, A is made equivalent to the string JANE:

JANE="HI"
EQUATE A TO "JANE"
6-208 BASIC Guide

EQUATE statement
Next, B is made equivalent to the variable JANE:

EQUATE B LIT "JANE"
PRINT "A IS EQUAL TO ":A
PRINT "B IS EQUAL TO ":B

This is the program output:

A IS EQUAL TO JANE
B IS EQUAL TO HI

In the next example COST is made equivalent to the value of the expression
PRICE*QUANTITY:

EQUATE COST LIT "PRICE * QUANTITY"
PRICE=3;QUANTITY=7
PRINT "THE TOTAL COST IS $": COST

This is the program output:

THE TOTAL COST IS $21

The next example shows an EQUATE statement with multiple symbols:

EQUATE C TO "5",
D TO "7",
E LIT "IF C=5 THEN PRINT 'YES'"

PRINT "C+D=": C+D
E

This is the program output:

C+D=12
YES
BASIC Statements and Functions 6-209

EREPLACE function
EREPLACE

Syntax

EREPLACE (expression, substring, replacement [,occurrence [,begin]])

Description
Use the EREPLACE function to replace substring in expression with another
substring. If you do not specify occurrence, each occurrence of substring is replaced.

occurrence specifies the number of occurrences of substring to replace. To replace all
occurrences, specify occurrence as a number less than 1.

begin specifies the first occurrence to replace. If begin is omitted or less than 1, it
defaults to 1.

If substring is an empty string, replacement is prefixed to expression. If replacement is
an empty string, all occurrences of substring are removed.

If expression evaluates to the null value, null is returned. If substring, replacement,
occurrence, or begin evaluates to the null value, the EREPLACE function fails and
the program terminates with a run-time error message.

The EREPLACE function behaves like the CHANGE function except when
substring evaluates to an empty string.

Example
A = "AAABBBCCCDDDBBB"
PRINT EREPLACE (A,"BBB","ZZZ")
PRINT EREPLACE (A,"","ZZZ")
PRINT EREPLACE (A,"BBB","")

This is the program output:

AAAZZZCCCDDDZZZ
ZZZAAABBBCCCDDDBBB
AAACCCDDD
6-210 BASIC Guide

ERRMSG statement
ERRMSG

Syntax

ERRMSG message.ID [,message.ID …]

Description
Use the ERRMSG statement to print a formatted error message from the ERRMSG
file.

message.ID is an expression evaluating to the record ID of a message to be printed
on the screen. Additional expressions are evaluated as arguments that can be
included in the error message.

If message.ID evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

A standard Pick ERRMSG file is supplied with DataStage. Users can construct a
local ERRMSG file using the following syntax in the records. Each field must start
with one of these codes shown in the following table:

Example
>ED ERRMSG 1
7 lines long.
----: P
0001: HBEGINNING OF ERROR MESSAGE

ERRMSG File Codes

Code Action

A[(n)] Display next argument left-justified; n specifies field length.

D Display system date.

E [string] Display record ID of message in brackets; string displayed after ID.

H [string] Display string.

L [(n)] Output a newline; n specifies number of newlines.

R [(n)] Display next argument right-justified; n specifies field length.

S [(n)] Output n blank spaces from beginning of line.

T Display system time.
BASIC Statements and Functions 6-211

ERRMSG statement
0002: L
0003: HFILE NAMED "
0004: A

0005: H" NOT FOUND.
0006: L
0007: H END OF MESSAGE
Bottom at line 7
----: Q
OPEN 'SUN.SPORT' TO test
THEN PRINT "File Opened" ELSE ERRMSG "1", "SUN.SPORT"

This is the program output:

BEGINNING OF ERROR MESSAGE
FILE NAMED "SUN.SPORT" NOT FOUND.
END OF MESSAGE
6-212 BASIC Guide

EXCHANGE function
EXCHANGE

Syntax
EXCHANGE (string, xx, yy)

Description
Use the EXCHANGE function to replace one character with another or to delete all
occurrences of the specified character.

string is an expression evaluating to the string whose characters are to be replaced
or deleted. If string evaluates to the null value, null is returned.

xx is an expression evaluating to the character to be replaced, in hexadecimal
notation.

yy is an expression evaluating to the replacement character, also in hexadecimal
notation.

If yy is FF, all occurrences of xx are deleted. If xx or yy consist of fewer than two
characters, no conversion is done. If xx or yy is the null value, the EXCHANGE
function fails and the program terminates with a run-time error message.

Note: 0x80 is treated as @NULL.STR, not as @NULL.

If NLS is enabled, EXCHANGE uses only the first two bytes of xx and yy in order
to evaluate the characters. Note how the EXCHANGE function evaluates the
following characters:

For more information about character values, see the DataStage NLS Guide.

Example
In the following example, 41 is the hexadecimal value for the character A and 2E is
the hexadecimal value for the period character (.):

PRINT EXCHANGE('ABABC','41','2E')

Bytes… Evaluated as…

00 through FF 00 through FF

00 through FA Unicode characters 0000 through FA

FB through FE System delimiters
BASIC Statements and Functions 6-213

EXCHANGE function
This is the program output:

.B.BC
6-214 BASIC Guide

EXECUTE statement
EXECUTE

Syntax

EXECUTE commands [CAPTURING variable] [PASSLIST [dynamic.array]]
[RTNLIST [variable]] [{SETTING | RETURNING} variable]

EXECUTE commands [,IN < expression] [,OUT > variable]
[,SELECT[(list)] < dynamic.array] [,SELECT[(list)] > variable]
[,PASSLIST [(dynamic.array)]] [,STATUS > variable]

EXECUTE commands [,//IN. < expression] [,//OUT. > variable]
[,//SELECT.[(list)] < dynamic.array] [,//SELECT.[(list)] > variable]
[,//PASSLIST.[(dynamic.array)]] [,//STATUS. > variable]

Description
Use the EXECUTE statement to execute DataStage commands from within the
BASIC program and then return execution to the statement following the
EXECUTE statement.

EXECUTE creates a new environment for the executed command. This new envi-
ronment is initialized with the values of the current prompt, current printer state,
Break key counter, the values of in-line prompts, KEYEDITs, KEYTRAPs, and
KEYEXITs. If any of these values change in the new environment, the changes are
not passed back to the calling environment. In the new environment, stacked
@Variables are either initialized to 0 or set to reflect the new environment.
Nonstacked @variables are shared between the EXECUTE and calling
environments.

commands can be sentences, paragraphs, verbs, procs, menus, or BASIC programs.
You can specify multiple commands in the EXECUTE statement in the same way
they are specified in a UniVerse paragraph. Each command or line must be sepa-
rated by a field mark (ASCII CHAR 254).

The EXECUTE statement has two main syntaxes. The first syntax requires options
to be separated by spaces. The second and third syntaxes require options to be
separated by commas. In the third syntax, the "//" preceding the keywords and
the periods following them are optional; the compiler ignores these marks. Except
for the slashes and periods, the second and third syntaxes are the same.
BASIC Statements and Functions 6-215

EXECUTE statement
In the first syntax the CAPTURING clause assigns the output of the executed
commands to variable. The PASSLIST clause passes the current active select list or
expression to the commands for use as select list 0. The RTNLIST option assigns
select list 0, created by the commands, to variable. If you do not specify variable, the
RTNLIST clause is ignored. Using the SETTING or RETURNING clause causes the
@SYSTEM.RETURN.CODE of the last executed command to be placed in variable.

In the second syntax the executed commands use the value of expression in the IN
clause as input. When the IN clause is used, the DATA queue is passed back to the
calling program, otherwise data is shared between environments. The OUT clause
assigns the output of the commands to variable. The SELECT clauses let you supply
the select list stored in expression as a select list to the commands, or to assign a
select list created by the commands to variable. If list is not specified, select list 0 is
used. The PASSLIST clause passes the currently active select list to the commands.
If you do not specify list, select list 0 in the current program’s environment is
passed as select list 0 in the executed command’s environment. The STATUS clause
puts the @SYSTEM.RETURN.CODE of the last executed command in variable.

The EXECUTE statement fails and the program terminates with a run-time error
message if:

• dynamic.array or expression in the IN clause evaluates to the null value.
• The command expression evaluates to the null value.

In transactions you can use only the following DataStage commands and SQL
statements with EXECUTE:

CHECK.SUM INSERT SEARCH SSELECT
COUNT LIST SELECT (RetrieVe) STAT
DELETE (SQL) LIST.ITEM SELECT (SQL) SUM
DISPLAY LIST.LABEL SORT UPDATE
ESEARCH RUN SORT.ITEM

INFORMATION Flavor
In INFORMATION flavor accounts, the EXECUTE statement without any options
is the same as the PERFORM statement. In this case executed commands keep the
same environment as the BASIC program that called them. Use the
EXEC.EQ.PERF option of the $OPTIONS statement to cause EXECUTE to behave
like PERFORM in other flavors.
6-216 BASIC Guide

EXECUTE statement
Example
The following example performs a nested SELECT, demonstrating the use of the
CAPTURING, RTNLIST, and PASSLIST keywords:

CMD = "SELECT VOC WITH TYPE = V"
EXECUTE CMD RTNLIST VERBLIST1
CMD = "SELECT VOC WITH NAME LIKE ...LIST..."
EXECUTE CMD PASSLIST VERBLIST1 RTNLIST VERBLIST2
CMD = "LIST VOC NAME"
EXECUTE CMD CAPTURING RERUN PASSLIST VERBLIST2
PRINT RERUN

The program first selects all VOC entries that define verbs, passing the select list to
the variable VERBLIST1. Next, it selects from VERBLIST1 all verbs whose names
contain the string LIST and passes the new select list to VERBLIST2. The list in
VERBLIST2 is passed to the LIST command, whose output is captured in the vari-
able RERUN, which is then printed.
BASIC Statements and Functions 6-217

EXIT statement
EXIT

Syntax
EXIT

Description
Use the EXIT statement to quit execution of a FOR…NEXT loop or a
LOOP…REPEAT loop and branch to the statement following the NEXT or
REPEAT statement of the loop. The EXIT statement quits exactly one loop. When
loops are nested and the EXIT statement is executed in an inner loop, the outer loop
remains in control.

Example
COUNT = 0
LOOP
WHILE COUNT < 100 DO

INNER = 0
LOOP
WHILE INNER < 100 DO

COUNT += 1
INNER += 1
IF INNER = 50 THEN EXIT

REPEAT
PRINT "COUNT = ":COUNT

REPEAT

This is the program output:

COUNT = 50
COUNT = 100
6-218 BASIC Guide

EXP function
EXP

Syntax
EXP (expression)

Description
Use the EXP function to return the value of "e" raised to the power designated by
expression. The value of "e" is approximately 2.71828. expression must evaluate to a
numeric value.

If expression is too large or small, a warning message is printed and 0 is returned. If
expression evaluates to the null value, null is returned.

The formula used by the EXP function to perform the calculations is

value of EXP function = 2.71828**(expression)

Example
X=5
PRINT EXP(X-1)

This is the program output:

54.5982
BASIC Statements and Functions 6-219

EXTRACT function
EXTRACT

Syntax

EXTRACT (dynamic.array, field# [,value# [,subvalue#]])

variable < field# [,value# [,subvalue#]] >

Description
Use the EXTRACT function to access the data contents of a specified field, value,
or subvalue from a dynamic array. You can use either syntax shown to extract data.
The first syntax uses the EXTRACT keyword, the second uses angle brackets.

dynamic.array is an expression that evaluates to the array in which the field, value,
or subvalue to be extracted is to be found. If dynamic.array evaluates to the null
value, null is returned.

field# specifies the field in the dynamic array; value# specifies the value in the field;
subvalue# specifies the subvalue in the value. These arguments are called delimiter
expressions. The numeric values of the delimiter expressions determine whether a
field, a value, or a subvalue is to be extracted. value# and subvalue# are optional.

Angle brackets used as an EXTRACT function appear on the right side of an
assignment statement. Angle brackets on the left side of the assignment statement
indicate that a REPLACE function is to be performed (for examples, see the
REPLACE function).

The second syntax uses angle brackets to extract data from dynamic arrays. variable
specifies the dynamic array containing the data to be extracted. field#, value#, and
subvalue# are delimiter expressions.

Here are the five outcomes that can result from the different uses of delimiter
expressions:

Case 1: If field#, value#, and subvalue# are omitted or evaluate to 0, an empty
string is returned.

Case 2: If value# and subvalue# are omitted or evaluate to 0, the entire field is
extracted.

Case 3: If subvalue# is omitted or specified as 0 and value# and field# evaluate
to nonzero, the entire specified value in the specified field is
extracted.
6-220 BASIC Guide

EXTRACT function
If a higher-level delimiter expression has a value of 0 when a lower-level delimiter
is greater than 0, a 1 is assumed. The delimiter expressions are from highest to
lowest: field, value, and subvalue.

If the EXTRACT function references a subelement of an element whose value is the
null value, null is returned.

Example
In the following example a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S:

VAR=1:@FM:4:@VM:9:@SM:3:@SM:5:@FM:1:@VM:0:@SM:7:@SM:3
Z=EXTRACT(VAR,1,0,0)
PRINT Z
*
Z=VAR<1,1,1>
PRINT Z
*
Z=EXTRACT(VAR,2,1,1)
PRINT Z
*
Z=VAR<3,2,3>
PRINT Z
*
Z=EXTRACT(VAR,10,0,0)
PRINT Z
*
Z=EXTRACT(VAR,2,2,0)
PRINT Z
*

This is the program output:

1
1
4

Case 4: If field#, value#, and subvalue# are all specified and are all nonzero, the
specified subvalue is extracted.

Case 5: If field#, value#, or subvalue# evaluates to the null value, the EXTRACT
function fails and the program terminates with a run-time error
message.
BASIC Statements and Functions 6-221

EXTRACT function
3
9S3S5
6-222 BASIC Guide

FADD function
FADD

Syntax
FADD (number1, number2)

CALL !FADD (return.array, number1, number2)

Description
Use the FADD function to perform floating-point addition on two numeric values.
If either number evaluates to the null value, null is returned. If either number1 or
number2 evaluates to the null value, null is returned. return.array equates to
number1 plus number2.

This function is provided for compatibility with existing software. You can also use
the + operator to perform floating-point addition.

Example
PRINT FADD(.234,.567)

This is the program output:

0.801
BASIC Statements and Functions 6-223

FDIV function
FDIV

Syntax
FDIV (number1, number2)

CALL !FDIV (return.array, number1, number2)

Description
Use the FDIV function to perform floating-point division on two numeric values.
number1 is divided by number2. return.array equates to number1 divided by
number2. If number2 is 0, a run-time error message is produced and a 0 is returned
for the function. If either number evaluates to the null value, null is returned.

This function is provided for compatibility with existing software. You can also use
the / operator to perform floating-point division.

Example
PRINT FDIV(.234,.567)

This is the program output:

0.4127
6-224 BASIC Guide

FFIX function
FFIX

Syntax
FFIX (number)

Description
Use the FFIX function to convert a floating-point number to a numeric string with
fixed precision. If number evaluates to the null value, null is returned.

This function is provided for compatibility with existing software.
BASIC Statements and Functions 6-225

FFLT function
FFLT

Syntax
FFLT (number)

Description
Use the FFLT function to round a number to a string with a precision of 13. The
number also converts to scientific notation when required for precision. If number
evaluates to the null value, null is returned.
6-226 BASIC Guide

FIELD function
FIELD

Syntax

FIELD (string, delimiter, occurrence [,num.substr])

Description
Use the FIELD function to return one or more substrings located between specified
delimiters in string.

delimiter evaluates to any character, including field mark, value mark, and
subvalue marks. It delimits the start and end of the substring. If delimiter evaluates
to more than one character, only the first character is used. Delimiters are not
returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator.
If occurrence is less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of
num.substr is an empty string or less than 1, 1 is assumed. When more than one
substring is returned, delimiters are returned along with the successive substrings.

If either delimiter or occurrence is not in the string, an empty string is returned,
unless occurrence specifies 1. If occurrence is 1 and delimiter is not found, the entire
string is returned. If delimiter is an empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128)
(that is, @NULL.STR), it is treated like any other character in a string. If delimiter,
occurrence, or num.substr evaluate to the null value, the FIELD function fails and the
program terminates with a run-time error message.

The FIELD function works identically to the GROUP function.

Examples
D=FIELD("###DHHH#KK","#",4)
PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth
occurrence of the delimiter # is DHHH.

REC="ACADABA"
E=FIELD(REC,"A",2)
PRINT "E= ",E
BASIC Statements and Functions 6-227

FIELD function
The variable E is set to "C".

VAR="?"
Z=FIELD("A.1234$$$$&&",VAR,3)
PRINT "Z= ",Z

Z is set to an empty string since "?" does not appear in the string.

Q=FIELD("+1+2+3ABAC","+",2,2)
PRINT "Q= ",Q

Q is set to "1+2" since two successive fields were specified to be returned after the
second occurrence of "+".

This is the program output:

D= DHHH
E= C
Z=
Q= 1+2
6-228 BASIC Guide

FIELDS function
FIELDS

Syntax

FIELDS (dynamic.array, delimiter, occurrence [,num.substr])

CALL −FIELDS (return.array, dynamic.array, delimiter, occurrence, num.substr)

CALL !FIELDS (return.array, dynamic.array, delimiter, occurrence, num.substr)

Description
Use the FIELDS function to return a dynamic array of substrings located between
specified delimiters in each element of dynamic.array.

delimiter evaluates to any character, including value and subvalue characters. It
marks the start and end of the substring. If delimiter evaluates to more than one
character, the first character is used.

occurrence specifies which occurrence of the delimiter is to be used as a terminator.
If occurrence is less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of
num.substr is an empty string or less than 1, 1 is assumed. In this case delimiters are
returned along with the successive substrings. If delimiter or occurrence does not
exist in the string, an empty string is returned, unless occurrence specifies 1. If occur-
rence is 1 and the specified delimiter is not found, the entire element is returned. If
occurrence is 1 and delimiter is an empty string, an empty string is returned.

If dynamic.array is the null value, null is returned. If any element in dynamic.array is
the null value, null is returned for that element. If delimiter, occurrence, or num.substr
evaluates to the null value, the FIELDS function fails and the program terminates
with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A="000-P-0":@VM:"-H--O-":@SM:"N-I-T":@VM:"BC":@SM:"-L-"
PRINT FIELDS(A,"-",2)

This is the program output:

PVHSIVSL
BASIC Statements and Functions 6-229

FIELDSTORE function
FIELDSTORE

Syntax
FIELDSTORE (string, delimiter, start, n, new.string)

Description
Use the FIELDSTORE function to modify character strings by inserting, deleting,
or replacing fields separated by specified delimiters.

string is an expression that evaluates to the character string to be modified.

delimiter evaluates to any single ASCII character, including field, value, and
subvalue marks.

start evaluates to a number specifying the starting field position. Modification
begins at the field specified by start. If start is greater than the number of fields in
string, the required number of empty fields is generated before the FIELDSTORE
function is executed.

n specifies the number of fields of new.string to insert in string. n determines how
the FIELDSTORE operation is executed. If n is positive, n fields in string are
replaced with the first n fields of new.string. If n is negative, n fields in string are
replaced with all the fields in new.string. If n is 0, all the fields in new.string are
inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If delimiter, start, n, or
new.string is null, the FIELDSTORE function fails and the program terminates with
a run-time error message.

Example
Q='1#2#3#4#5'
*
TEST1=FIELDSTORE(Q,"#",2,2,"A#B")
PRINT "TEST1= ",TEST1
*
TEST2=FIELDSTORE(Q,"#",2,-2,"A#B")
PRINT "TEST2= ",TEST2
*
TEST3=FIELDSTORE(Q,"#",2,0,"A#B")
PRINT "TEST3= ",TEST3
*
TEST4=FIELDSTORE(Q,"#",1,4,"A#B#C#D")
6-230 BASIC Guide

FIELDSTORE function
PRINT "TEST4= ",TEST4
*

TEST5=FIELDSTORE(Q,"#",7,3,"A#B#C#D")
PRINT "TEST5= ",TEST5

This is the program output:

TEST1= 1#A#B#4#5
TEST2= 1#A#B#4#5
TEST3= 1#A#B#2#3#4#5
TEST4= A#B#C#D#5
TEST5= 1#2#3#4#5##A#B#C
BASIC Statements and Functions 6-231

FILEINFO function
FILEINFO

Syntax
FILEINFO (file.variable, key)

file.variable is the file variable of an open file.

key is a number that indicates the particular information required. These key
numbers are described in the table “Keys and Values Supplied to the FILEINFO
Function.”

Description
Use the FILEINFO function to return information about the specified file’s config-
uration, such as the specified file’s parameters, its modulus and load, its operating
system filename, and its VOC name. The information returned depends on the file
type and the value of the key.

If the first argument is not a file variable, all keys except 0 return an empty string.
A warning message is also displayed. A fatal error results if an invalid key is
supplied.

Equate Names for Keys
An insert file of equate names is provided to let you use mnemonics rather than
key numbers. The insert file, called FILEINFO.INS.IBAS, is located in the
INCLUDE directory in the UV account directory. It is referenced in PIOPEN flavor
accounts through a VOC file pointer called SYSCOM. Use the $INCLUDE state-
ment to insert this file if you want to use equate names, as shown in the example.
The following table lists the symbolic name, value, and description:

Keys and Values Supplied to the FILEINFO Function

Symbolic Name Value Description

FINFO$IS.FILEVAR 0 1 if file.variable is a valid file vari-
able; 0 otherwise.

FINFO$VOCNAME 1 VOC name of the file.

FINFO$PATHNAME 2 Pathname of the file.
6-232 BASIC Guide

FILEINFO function
FINFO$TYPE 3 File type as follows:
1 Static hashed
3 Dynamic hashed
4 Type 1
5 Sequential
7 Distributed and Multivolume

FINFO$HASHALG 4 Hashing algorithm: 2 for GENERAL,
3 for SEQ.NUM.

FINFO$MODULUS 5 Current modulus.

FINFO$MINMODULUS 6 Minimum modulus.

FINFO$GROUPSIZE 7 Group size, in 1-KB units.

FINFO$LARGERECORDSIZE 8 Large record size.

FINFO$MERGELOAD 9 Merge load parameter.

FINFO$SPLITLOAD 10 Split load parameter.

FINFO$CURRENTLOAD 11 Current loading of the file (%).

FINFO$NODENAME 12 Empty string, if the file resides on
the local system, otherwise the name
of the node where the file resides.

FINFO$IS.AKFILE 13 1 if secondary indexes exist on the
file; 0 otherwise.

FINFO$CURRENTLINE 14 Current line number.

FINFO$PARTNUM 15 For a distributed file, returns list of
currently open part numbers.

FINFO$STATUS 16 For a distributed file, returns list of
status codes showing whether the
last I/O operation succeeded or
failed for each part. A value of –1
indicates the corresponding part file
is not open.

Keys and Values Supplied to the FILEINFO Function (Continued)

Symbolic Name Value Description
BASIC Statements and Functions 6-233

FILEINFO function
FINFO$RECOVERYTYPE 17 1 if the file is marked as recoverable,
0 if it is not. Returns an empty string
if recoverability is not supported on
the file type (e.g., type 1 and type 19
files).

FINFO$RECOVERYID 18 Always returns an empty string.

FINFO$IS.FIXED.MODULUS 19 Always returns 0.

FINFO$NLSMAP 20 If NLS is enabled, the file map name,
otherwise an empty string. If the
map name is the default specified in
the uvconfig file, the returned string
is the map name followed by the
name of the configurable parameter
in parentheses.

FINFO$MAXKEYSIZE 21 Returns the maximum character size
of key which can be written to the
specified file. The maximum char-
acter size is affected by its separation
value, which cannot be greater than
half the separartion value. For
example, if the separation value is 4,
each group is comprised of 2048
bytes, meaning the largest key
cannot exceed 1024 bytes. The
maximum size of any key, regardless
of separation size is 2048 bytes.

FINFO$DISKCACHEMODE 22 0 - The file is not in the disk cache.
1 - The file is in the disk cache in
standard read/write mode.
2 - The file is in the disk cache in
read-only mode.

FINFO$PRECACHE 23 1 - The file has been preloadedinto
the disk cache, otherwise 0.

FINFO$WRITEDEFER 24 1 - The file has been write deferred in
the the disk cache, otherwise 0.

Keys and Values Supplied to the FILEINFO Function (Continued)

Symbolic Name Value Description
6-234 BASIC Guide

FILEINFO function
Value Returned by the STATUS Function
If the function executes successfully, the value returned by the STATUS function is
0. If the function fails to execute, STATUS returns a nonzero value. The following
table lists the key, file type, and returned value for key:

FILEINFO Values Returned by File Type

Key Dynamic Directory Distributed Sequential

0 1 = file open
0 = file closed

1 = file open
0 = file closed

Dynamic array of
codes:
1 = file open
0 = file closed

1 = file open
0 = file closed

1 VOC name VOC name VOC name VOC name

2 File’s pathname Pathname of
file

Dynamic array of
complete pathnames in
VOC record order
(pathname as used in
VOC for unavailable
files)

File’s
pathname

3 3 4 7 5

4 2 = GENERAL
3 = SEQ.NUM

Empty string Dynamic array of
codes:
2 = GENERAL
3 = SEQ.NUM

Empty string

5 Current
modulus

1 Dynamic array of the
current modulus of
each part file

6 Minimum
modulus

Empty string Dynamic array of the
minimum modulus of
each part file

Empty string

7 Group size in
disk records

Empty string Dynamic array of the
group size of each part
file

Empty string

8 Large record
size

Empty string Dynamic array of the
large record size of each
part file

Empty string
BASIC Statements and Functions 6-235

FILEINFO function
9 Merge load
value

Empty string Dynamic array of the
merge load % of each
part file

Empty string

10 Split load value Empty string Dynamic array of the
split load value of each
part file 1

Empty string

11 Current load
value

Empty string Dynamic array of the
current load value of
each part file 1

Empty string

12 Local file:
empty string
Remote file:
node name

Empty string Dynamic array of
values where value is:
Local file = empty
string
Remote file = node
name

Empty string

13 1 = indexes
2 = no indexes

0 1 = common indexes
present
2 = none present

Empty string

15 Empty string Empty string Dynamic array of codes
in VOC record order.
Code is: empty string if
part file not open; part
number if file is open.

Empty string

16 Empty string Empty string Dynamic array of codes
in VOC record order for
each part file:
 0 = I/O operation OK
–1 = part file unavail-
able
>0 = error code

Empty string

1. The values returned for distributed files are dynamic arrays with the appropriate value
for each part file. The individual values depend on the file type of the part file. For
example, if the part file is a hashed file, some values, such as minimum modulus, have
an empty value in the dynamic array for that part file.

FILEINFO Values Returned by File Type (Continued)

Key Dynamic Directory Distributed Sequential
6-236 BASIC Guide

FILEINFO function
Note: The first time that an I/O operation fails for a part file in a distributed file,
the FILEINFO function returns an error code for that part file. For any
subsequent I/O operations on the distributed file with the same unavail-
able part file, the FILEINFO function returns –1.

NLS Mode
The FILEINFO function determines the map name of a file by using the value of
FINFO$NLSMAP. NLS uses the insert file called FILEINFO.H. For more informa-
tion about maps, see the DataStage NLS Guide.

Examples
In the following example, the file containing the key equate names is inserted with
the $INCLUDE statement. The file FILMS is opened and its file type displayed.

$INCLUDE SYSCOM FILEINFO.INS.IBAS
OPEN '','FILMS' TO FILMS
 ELSE STOP 'CANT OPEN FILE'
PRINT FILEINFO(FILMS,FINFO$TYPE)

In the next example, the file FILMS is opened and its file type displayed by speci-
fying the numeric key:

OPEN '','FILMS' TO FILMS
 ELSE STOP 'CANT OPEN FILE'
PRINT FILEINFO(FILMS,3)
BASIC Statements and Functions 6-237

FILELOCK statement
FILELOCK

Syntax

FILELOCK [file.variable] [, lock.type]

[ON ERROR statements] [LOCKED statements]

Description
Use the FILELOCK statement to acquire a lock on an entire file. This prevents other
users from updating the file until the program releases it. A FILELOCK statement
that does not specify lock.type is equivalent to obtaining an update record lock on
every record of the file.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement). If the file
is neither accessible nor open, the program terminates with a run-time error
message. If file.variable evaluates to the null value, the FILELOCK statement fails
and the program terminates with a run-time error message.

lock.type is an expression that evaluates to one of the following keywords:

• SHARED (to request an FS lock)
• INTENT (to request an IX lock)
• EXCLUSIVE (to request an FX lock)

The ON ERROR Clause
The ON ERROR clause is optional in the FILELOCK statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the FILELOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.
6-238 BASIC Guide

FILELOCK statement
A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number. If a FILELOCK statement is used when any portion of a file is locked,
the program waits until the file is released.

The LOCKED Clause
The LOCKED clause is optional, but recommended. The LOCKED clause handles
a condition caused by a conflicting lock (set by another user) that prevents the
FILELOCK statement from processing. The LOCKED clause is executed if one of
the following conflicting locks exists:

If the FILELOCK statement does not include a LOCKED clause and a conflicting
lock exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Releasing Locks
A shared, intent, or exclusive file lock can be released by a FILEUNLOCK,
RELEASE, or STOP statement.

This requested lock… Conflicts with…

Shared file lock Exclusive file lock
Intent file lock
Update record lock

Intent file lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock

Exclusive file lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock
Shared record lock
BASIC Statements and Functions 6-239

FILELOCK statement
Locks acquired or promoted within a transaction are not released when previous
statements are processed.

Examples
OPEN '','SUN.MEMBER' TO DATA ELSE STOP "CAN'T OPEN FILE"
FILELOCK DATA LOCKED STOP 'FILE IS ALREADY LOCKED'
FILEUNLOCK DATA
OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
FILELOCK LOCKED STOP 'FILE IS ALREADY LOCKED'
PRINT "The file is locked."
FILEUNLOCK

This is the program output:

The file is locked.

The following example acquires an intent file lock:

FILELOCK fvar, "INTENT" LOCKED
owner = STATUS()
PRINT "File already locked by":owner
STOP

END
6-240 BASIC Guide

FILEUNLOCK statement
FILEUNLOCK

Syntax

FILEUNLOCK [file.variable] [ON ERROR statements]

Description
Use the FILEUNLOCK statement to release a file lock set by the FILELOCK
statement.

file.variable specifies a file previously locked with a FILELOCK statement. If
file.variable is not specified, the default file with the FILELOCK statement is
assumed (for more information on default files, see the OPEN statement). If
file.variable evaluates to the null value, the FILEUNLOCK statement fails and the
program terminates with a run-time error message.

The FILEUNLOCK statement releases only file locks set with the FILELOCK state-
ment. Update record locks must be released with one of the other unlocking
statements (for example, WRITE, WRITEV, and so on).

The ON ERROR Clause

The ON ERROR clause is optional in the FILEUNLOCK statement. The ON
ERROR clause lets you specify an alternative for program termination when a fatal
error is encountered during processing of the FILEUNLOCK statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.
BASIC Statements and Functions 6-241

FILEUNLOCK statement
If the ON ERROR clause is used, the value returned by the STATUS function is the
error number. The ON ERROR clause is not supported if the FILEUNLOCK state-
ment is within a transaction.

Example
In the following example, the first FILEUNLOCK statement unlocks the default
file. The second FILEUNLOCK statement unlocks the file variable FILE.

OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN SUN.MEMBER"
FILELOCK

.

.

.
FILEUNLOCK
OPEN 'EX.BASIC' TO FILE ELSE STOP
FILELOCK FILE

.

.

.
FILEUNLOCK FILE
6-242 BASIC Guide

FIND statement
FIND

Syntax

FIND element IN dynamic.array [,occurrence] SETTING fmc [,vmc [,smc]]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the FIND statement to locate an element in dynamic.array. The field, value, and
subvalue positions of element are put in the variables fmc, vmc, and smc respectively.

element evaluates to a character string. FIND succeeds only if the string matches an
element in its entirety. If element is found in dynamic.array, any THEN statements
are executed. If element is not found, or if dynamic.array evaluates to the null value,
fmc, vmc, and smc are unchanged, and the ELSE statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, the FIND
statement fails and the program terminates with a run-time error message.

Example
A="THIS":@FM:"IS":@FM:"A":@FM:"DYNAMIC":@FM:"ARRAY"
FIND "IS" IN A SETTING FM,VM,SM ELSE ABORT
PRINT "FM=",FM
PRINT "VM=",VM
PRINT "SM=",SM

This is the program output:

FM= 2
VM= 1
SM= 1
BASIC Statements and Functions 6-243

FINDSTR statement
FINDSTR

Syntax

FINDSTR substring IN dynamic.array [,occurrence]
SETTING fmc [,vmc [,smc]]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the FINDSTR statement to locate substring in dynamic.array. The field, value,
and subvalue positions of substring are placed in the variables fmc, vmc, and smc
respectively.

FINDSTR succeeds if it finds substring as part of any element in dynamic array. If
substring is found in dynamic.array, any THEN statements are executed. If substring
is not found, or if dynamic.array evaluates to the null value, fmc, vmc, and smc are
unchanged, and the ELSE statements are executed.

If occurrence is unspecified, it defaults to 1. If occurrence is the null value, FINDSTR
fails and the program terminates with a run-time error message.

Example
A="THIS":@FM:"IS":@FM:"A":@FM:"DYNAMIC":@FM:"ARRAY"
FINDSTR "IS" IN A SETTING FM,VM,SM ELSE ABORT
PRINT "FM=",FM
PRINT "VM=",VM
PRINT "SM=",SM

This is the program output:

FM= 1
VM= 1
SM= 1
6-244 BASIC Guide

FIX function
FIX

Syntax

FIX (number [,precision [,mode]])

Description
Use the FIX function to convert a numeric value to a floating-point number with a
specified precision. FIX lets you control the accuracy of computation by elimi-
nating excess or unreliable data from numeric results. For example, a bank
application that computes the interest accrual for customer accounts does not need
to deal with credits expressed in fractions of cents. An engineering application
needs to throw away digits that are beyond the accepted reliability of
computations.

number is an expression that evaluates to the numeric value to be converted.

precision is an expression that evaluates to the number of digits of precision in the
floating-point number. If you do not specify precision, the precision specified by the
PRECISION statement is used. The default precision is 4.

mode is a flag that specifies how excess digits are handled. If mode is either 0 or not
specified, excess digits are rounded off. If mode is anything other than 0, excess
digits are truncated.

If number evaluates to the null value, null is returned.

Examples
The following example calculates a value to the default precision of 4:

REAL.VALUE = 37.73629273
PRINT FIX (REAL.VALUE)

This is the program output:

37.7363

The next example calculates the same value to two digits of precision. The first
result is rounded off, the second is truncated:

PRINT FIX (REAL.VALUE, 2)
PRINT FIX (REAL.VALUE, 2, 1)
BASIC Statements and Functions 6-245

FIX function
This is the program output:

37.74
37.73
6-246 BASIC Guide

FLUSH statement
FLUSH

Syntax

FLUSH file.variable {THEN statements [ELSE statements] | ELSE statements}

Description
The FLUSH statement causes all the buffers for a sequential I/O file to be written
immediately. Normally, sequential I/O uses UNIX "stdio" buffering for
input/output operations, and writes are not performed immediately.

file.variable specifies a file previously opened for sequential processing. If file.vari-
able evaluates to the null value, the FLUSH statement fails and the program
terminates with a run-time error message.

After the buffer is written to the file, the THEN statements are executed, and the
ELSE statements are ignored. If THEN statements are not present, program execu-
tion continues with the next statement.

If the file cannot be written to or does not exist, the ELSE statements are executed;
any THEN statements are ignored.

See the OPENSEQ and WRITESEQ statements for more information on sequential
file processing.

Example
OPENSEQ 'FILE.E', 'RECORD1' TO FILE THEN

PRINT "'FILE.E' OPENED FOR SEQUENTIAL PROCESSING"
END ELSE STOP
WEOFSEQ FILE
*
WRITESEQ 'NEW LINE' ON FILE THEN

FLUSH FILE THEN
PRINT "BUFFER FLUSHED"

END ELSE PRINT "NOT FLUSHED"
ELSE ABORT
*
CLOSESEQ FILE
END
BASIC Statements and Functions 6-247

FMT function
FMT

Syntax
FMT (expression, format)

expression format

Description
Use the FMT function or a format expression to format data for output. Any BASIC
expression can be formatted for output by following it with a format expression.

expression evaluates to the numeric or string value to be formatted.

format is an expression that evaluates to a string of formatting codes. The syntax of
the format expression is:

[width] [fill] justification [edit] [mask]
The format expression specifies the width of the output field, the placement of
background or fill characters, line justification, editing specifications, and format
masking.

If expression evaluates to the null value, null is returned. If format evaluates to null,
the FMT function and the format operation fail.

width is an integer that specifies the size of the output field in which the value is to
be justified. If you specify mask, you need not specify width. If you do not specify
mask, width is required.

fill specifies the character to be used to pad entries when filling out the output field.
fill is specified as a single character. The default fill character is a space. If you want
to use a numeric character or the letter L, R, T, or Q as a fill character, you must
enclose it in single quotation marks.

justification is required in one of the following forms.

Decimal notation:

L Left justification − Break on field length.

R Right justification − Break on field length.

T Text justification − Left justify and break on space.

U Left justification – Break on field length.
6-248 BASIC Guide

FMT function
Exponential notation:

edit can be any of the following:

Q Right justification − Break on field length.

QR Right justification − Break on field length.

QL Left justification

n[m] Used with L, R, or T justification, n is the number of digits to display
to the right of the decimal point, and m descales the value by m minus
the current precision. Each can be a number from 0 through 9. You
must specify n in order to specify m. If you do not specify m, m = 0 is
assumed. If you do not specify n, n = m = 0 is assumed. Remember to
account for the precision when you specify m. The default precision
is 4.

If you specify 0 for n, the value is rounded to the nearest integer. If the
formatted value has fewer decimal places than n, output is padded
with zeros to the nth decimal place. If the formatted value has more
decimal places than n, the value is rounded to the nth decimal place.

If you specify 0 for m, the value is descaled by the current precision
(0 − current precision).

nEm Used with Q, QR, or QL justification, n is the number of fractional
digits, and m specifies the exponent. Each can be a number from 0
through 9.

n.m Used with Q, QR, or QL justification, n is the number of digits
preceding the decimal point, and m the number of fractional digits.
Each can be a number from 0 through 9.

$ Prefixes a dollar sign to the value.

F Prefixes a franc sign to the value.

, Inserts commas after every thousand.

Z Suppresses leading zeros. Returns an empty string if the value is 0.
When used with the Q format, only the trailing fractional zeros are
suppressed, and a 0 exponent is suppressed.

E Surrounds negative numbers with angle brackets (< >).

C Appends cr to negative numbers.

D Appends db to positive numbers.
BASIC Statements and Functions 6-249

FMT function
Note: The E, M, C, D and N options define numeric representations for monetary
use, using prefixes or suffixes. In NLS mode, these options override the
Numeric and Monetary categories.

mask lets literals be intermixed with numerics in the formatted output field. The
mask can include any combination of literals and the following three special
format mask characters:

If you want to use numeric characters or any of the special characters as literals,
you must escape the character with a backslash (\).

A #, %, or * character followed by digits causes the background fill character to be
repeated n times. Other characters followed by digits cause those characters to
appear in the output data n times.

mask can be enclosed in parentheses () for clarity. If mask contains parentheses, you
must include the whole mask in another set of parentheses. For example:

((###) ###-####)

You must specify either width or mask in the FMT function. You can specify both in
the same function. When you specify width, the string is formatted according to the
following rules:

If string is smaller than width n, it is padded with fill characters.

B Appends db to negative numbers.

N Suppresses a minus sign on negative numbers.

M Appends a minus sign to negative numbers.

T Truncates instead of rounding.

Y In NLS mode, prefixes the yen/yuan character to the value, that is,
the Unicode value 00A5. Returns a status code of 2 if you use Y with
the MR or ML code. If NLS is disabled or if the Monetary category is
not used, Y prefixes the byte value 0xA5.

#n Data is displayed in a field of n fill characters. A blank is the default
fill character. It is used if the format string does not specify a fill char-
acter after the width parameter.

%n Data is displayed in a field of n zeros.

*n Data is displayed in a field of n asterisks.
6-250 BASIC Guide

FMT function
If string is larger than width n, a text mark (CHAR(251)) is inserted every nth char-
acter and each field is padded with the fill character to width.

The STATUS function reflects the result of edit as follows:

See the STATUS function for more information.

REALITY Flavor
In REALITY flavor accounts, you can use conversion codes in format expressions.

Examples

0 The edit code is successful.

1 The string expression is invalid.

2 The edit code is invalid.

Format Expression Formatted Value

Z=FMT("236986","R##-##-##") Z= 23-69-86

X="555666898"
X=FMT(X,"20*R2$,")

X= *****$555,666,898.00

Y="DAVID"
Y=FMT(Y,"10.L")

Y= DAVID.....

V="24500"
V=FMT(V,"10R2$Z")

V= $24500.00

R=FMT(77777,"R#10") R= 77777

B="0.12345678E1"
B=FMT(B,"9*Q")

B= *1.2346E0

PRINT 233779 "R" 233779

PRINT 233779 "R0" 233779

PRINT 233779 "R00" 2337790000

PRINT 233779 "R2" 233779.00

PRINT 233779 "R20" 2337790000.00
BASIC Statements and Functions 6-251

FMT function
PRINT 233779 "R24" 233779.00

PRINT 233779 "R26" 2337.79

PRINT 2337.79 "R" 2337.79

PRINT 2337.79 "R0" 2338

PRINT 2337.79 "R00" 23377900

PRINT 2337.79 "R2" 2337.79

PRINT 2337.79 "R20" 23377900.00

PRINT 2337.79 "R24" 2337.79

PRINT 2337.79 "R26" 23.38

Format Expression Formatted Value
6-252 BASIC Guide

FMTDP function
FMTDP

Syntax

FMTDP (expression, format [, mapname])

Description
In NLS mode, use the FMTDP function to format data for output in display posi-
tions rather than character lengths.

expression evaluates to the numeric or string value to be formatted. Any unmap-
pable characters in expression are assumed to have a display length of 1.

format is an expression that evaluates to a string of formatting codes. The syntax of
the format expression is:

[width] [fill] justification [edit] [mask]
The format expression specifies the width of the output field, the placement of
background or fill characters, line justification, editing specifications, and format
masking. For complete syntax details, see the FMT function.

If format has a display length greater than 1, and there is only one display position
left to fill, FMTDP enters the extra fill character. The returned string can occupy
more display positions than you intended.

mapname is the name of an installed map. If mapname is not installed, the display
positions of the characters in expression are used. If any unmappable characters
exist in expression, the display length is 1, that is, the unmapped character displays
as a single unmappable character. If mapname is omitted, the map associated with
the channel activated by the PRINTER ON statement is used; otherwise, the map
associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps
associated with the terminal, auxiliary printer, print channel 0, or the operating
system, respectively. If you specify mapname as NONE, the string is not mapped.

If you execute FMTDP when NLS is disabled, the behavior is the same as for FMT.
For more information about display length, see the DataStage NLS Guide.
BASIC Statements and Functions 6-253

FMTS function
FMTS

Syntax
FMTS (dynamic.array, format)

CALL −FMTS (return.array, dynamic.array, format)

CALL !FMTS (return.array, dynamic.array, format)

Description
Use the FMTS function to format elements of dynamic.array for output. Each
element of the array is acted upon independently and is returned as an element in
a new dynamic array.

format is an expression that evaluates to a string of formatting codes. The syntax of
the format expression is:

[width] [background] justification [edit] [mask]
The format expression specifies the width of the output field, the placement of
background or fill characters, line justification, editing specifications, and format
masking. For complete syntax details, see the FMT function.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to
null, the FMTS function fails and the program terminates with a run-time error
message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-254 BASIC Guide

FMTSDP function
FMTSDP

Syntax

FMTSDP (dynamic.array, format [, mapname])

Description
In NLS mode, use the FMTSDP function to format elements of dynamic.array for
output in display positions rather than character lengths. Each element of the array
is acted upon independently and is returned as an element in a new dynamic array.
Any unmappable characters in dynamic.array are assumed to have a display length
of 1.

format is an expression that evaluates to a string of formatting codes. The syntax of
the format expression is:

[width] [background] justification [edit] [mask]
The format expression specifies the width of the output field, the placement of
background or fill characters, line justification, editing specifications, and format
masking. For complete syntax details, see the FMT function.

If format has a display length greater than 1, and there is only one display position
left to fill, FMTSDP enters the extra fill character. The returned string can occupy
more display positions than you intend.

mapname is the name of an installed map. If mapname is not installed, the display
positions of the characters in dynamic.array are used. If any unmappable characters
exist in dynamic.array, the display length is 1, that is, the unmapped character
displays as a single unmappable character. If mapname is omitted, the map associ-
ated with the channel activated by the PRINTER ON statement is used; otherwise,
the map associated with the terminal channel (or print channel 0) is used.

You can also specify mapname as CRT, AUX, LPTR, and OS. These use the maps
associated with the terminal, auxiliary printer, print channel 0, or the operating
system, respectively. If you specify mapname as NONE, the string is not mapped.

If dynamic.array evaluates to the null value, null is returned. If format evaluates to
null, the FMTSDP function fails and the program terminates with a run-time error
message.

Note: If you execute FMTSDP when NLS is disabled, the behavior is the same as
for FMTS.
BASIC Statements and Functions 6-255

FMTSDP function
For more information about display length, see the DataStage NLS Guide.
6-256 BASIC Guide

FMUL function
FMUL

Syntax
FMUL (number1, number2)

CALL !FMUL (return.array, number1, number2)

Description
Use the FMUL function to perform floating-point multiplication on two numeric
values. If either number evaluates to the null value, null is returned. return.array
equates to number1 multiplied by number2.

This function is provided for compatibility with existing software. You can also use
the * operator to perform floating-point multiplication.

Example
PRINT FMUL(.234,.567)

This is the program output:

0.1327
BASIC Statements and Functions 6-257

FOLD function
FOLD

Syntax

FOLD (string, length)

CALL !FOLD (subdivided.string, string, length)

Description
Use the FOLD function to divide a string into a number of substrings separated by
field marks.

string is separated into substrings of length less than or equal to length. string is
separated on blanks, if possible, otherwise it is separated into substrings of the
specified length.

subdivided.string contains the result of the FOLD operation.

If string evaluates to the null value, null is returned. If length is less than 1, an empty
string is returned. If length is the null value, the FOLD function fails and the
program terminates with a run-time error message.

Examples
PRINT FOLD("THIS IS A FOLDED STRING.",5)

This is the program output:

THISFIS AFFOLDEFDFSTRINFG.

In the following example, the blanks are taken as substring delimiters, and as no
substring exceeds the specified length of six characters, the output would be:

REDFMORANGEFMYELLOWFMGREENFMBLUEFMINDIGOFMVIOLET

The field mark replaces the space in the string:

A="RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET"
CALL !FOLD (RESULT,A,6)
PRINT RESULT
6-258 BASIC Guide

FOLDDP function
FOLDDP

Syntax

FOLDDP (string, length [, mapname])

Description
In NLS mode, use the FOLDDP function to divide a string into a number of
substrings separated by field marks. The division is in display positions rather
than character lengths.

string is separated into substrings of display length less than or equal to length.
string is separated on blanks, if possible, otherwise it is separated into substrings
of the specified length.

If string evaluates to the null value, null is returned. If length is less than 1, an empty
string is returned. If length is the null value, the FOLDDP function fails and the
program terminates with a run-time error message.

If you execute FOLDDP when NLS is disabled, the behavior is the same as for
FOLD. For more information about display length, see the DataStage NLS Guide.
BASIC Statements and Functions 6-259

FOOTING statement
FOOTING

Syntax

FOOTING [ON print.channel] footing

Description
Use the FOOTING statement to specify the text and format of the footing to print
at the bottom of each page of output.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). Logical print channel –1
prints the data on the screen, regardless of whether a PRINTER ON statement has
been executed.

footing is an expression that evaluates to the footing text and the control characters
that specify the footing’s format. You can use the following format control charac-
ters, enclosed in single quotation marks, in the footing expression:

C[n] Prints footing line centered in a field of n blanks. If n is not specified,
centers the line on the page.

D Prints current date formatted as dd mmm yyyy.

G Inserts gaps to format footings.

I Resets page number, time, and date for PIOPEN flavor only.

Q Allows the use of the] ^ and \ characters.

R[n] Inserts the record ID left-justified in a field of n blanks.

S Left-justified, inserted page number.

T Prints current time and date formatted as dd mmm yyyy hh:mm:ss.
Time is in 12-hour format with “am” or “pm” appended.

\ Prints current time and date formatted as dd mmm yyyy hh:mm:ss.
Time is in 12-hour format with “am” or “pm” appended. Do not put
the backslash inside single quotation marks.

L Starts a new line.

] Starts a new line. Do not put the right bracket inside single quotation
marks.
6-260 BASIC Guide

FOOTING statement
Two single quotation marks (' ') print one single quotation mark in footing text.

When the program is executed, the format control characters produce the specified
results. You can specify multiple options in a single set of quotation marks.

If either print.channel or footing evaluates to the null value, the FOOTING statement
fails and the program terminates with a run-time error message.

Pagination begins with page 1 and increments automatically on generation of each
new page or upon encountering the PAGE statement.

Output to a terminal or printer is paged automatically. Use the N option in either
a HEADING or a FOOTING statement to turn off automatic paging.

Using] ^ and \ in Footings
The characters] ^ and \ are control characters in headings and footings. To use
these characters as normal characters, you must use the Q option and enclose the
control character in double or single quotation marks. You only need to specify Q
once in any heading or footing, but it must appear before any occurrence of the
characters] ^ and \.

Formatting the Footing Text
The control character G (for gap) can be used to add blanks to text in footings to
bring the width of a line up to device width. If G is specified once in a line, blanks
are added to that part of the line to bring the line up to the device width. If G is
specified at more than one point in a line, the blank characters are distributed as
evenly as possible to those points.

P[n] Prints current page number right-justified in a field of n blanks. The
default value for n is 4.

^ Prints current page number right-justified in a field of n blanks. The
default value for n is 4. Do not put the caret (^) inside single quota-
tion marks.

N Suppresses automatic paging.
BASIC Statements and Functions 6-261

FOOTING statement
See the following examples, in which the vertical bars represent the left and right
margins:

The minimum gap size is 0 blanks. If a line is wider than the device width even
when all the gaps are 0, the line wraps, and all gaps remain 0.

If NLS is enabled, FOOTING calculates gaps using varying display positions
rather than character lengths. For more information about display length, see the
DataStage NLS Guide.

Left-Justified Inserted Page Number
The control character S (for sequence number) is left-justified at the point where
the S appears in the line. Only one character space is reserved for the number. If the
number of digits exceeds 1, any text to the right is shifted right by the number of
extra characters required.

For example, the statement:

FOOTING "This is page 'S' of 100000"

results in footings such as:

This is page 3 of 100000
This is page 333 of 100000
This is page 3333 of 100000

INFORMATION Flavor

Page Number Field. In an INFORMATION flavor account the default width of
the page number field is the length of the page number. Use the n argument to P to
set the field width of the page number. You can also include multiple P characters
to specify the width of the page field, or you can include spaces in the text that

Specification Result

"Hello there" |Hello there |

"'G'Hello there" | Hello there|

"'G'Hello there'G'" | Hello there |

"Hello'G'there" |Hello there|

"'G'Hello'G'there'G'" | Hello there |
6-262 BASIC Guide

FOOTING statement
immediately precedes a P option. For example, 'PPP' prints the page number right-
justified in a field of three blanks.

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the
default field of four.

Date Format. In an INFORMATION flavor account the default date format is mm-
dd-yy, and the default time format is 24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE
option of the $OPTIONS statement to cause HEADING, FOOTING, and PAGE
statements to behave as they do in INFORMATION flavor accounts.

PIOPEN Flavor

Right-Justified Overwriting Page Number. The control character P (for page) is
right-justified at the point at which the P appears in the line. Only one character
space is reserved for the number. If the number of digits exceeds 1, literal charac-
ters to the left of the initial position are overwritten. Normally you must enter a
number of spaces to the left of the P to allow for the maximum page number to
appear without overwriting other literal characters. For example, the statement:

FOOTING "This is page 'P' of 100000"

results in footings such as:

This is page 3 of 100000
This is pag333 of 100000
This is pa3333 of 100000

Resetting the Page Number and the Date. The control character I (for initialize)
resets the page number to 1, and resets the date.
BASIC Statements and Functions 6-263

FOR statement
Syntax

FOR variable = start TO end [STEP increment]

[loop.statements]

[CONTINUE | EXIT]

[{WHILE | UNTIL} expression]

[loop.statements]

[CONTINUE | EXIT]

NEXT [variable]
FOR…NEXT

Description
Use the FOR statement to create a FOR…NEXT program loop. A program loop is
a series of statements that execute repeatedly until the specified number of repeti-
tions have been performed or until specified conditions are met.

variable is assigned the value of start, which is the initial value of the counter. end is
the end value of the counter.

The loop.statements that follow the FOR clause execute until the NEXT statement is
encountered. Then the counter is adjusted by the amount specified by the STEP
clause.

At this point a check is performed on the value of the counter. If it is less than or
equal to end, program execution branches back to the statement following the FOR
clause and the process repeats. If it is greater than end, execution continues with the
statement following the NEXT statement.

The WHILE condition specifies that as long as the WHILE expression evaluates to
true, the loop continues to execute. When the WHILE expression evaluates to false,
the loop ends, and program execution continues with the statement following the
NEXT statement. If a WHILE or UNTIL expression evaluates to the null value, the
condition is false.

The UNTIL condition specifies that the loop continues to execute only as long as
the UNTIL expression evaluates to false. When the UNTIL expression evaluates to

FOR WHILE…UNTIL
6-264 BASIC Guide

FOR statement
true, the loop ends and program execution continues with the statement following
the NEXT statement.

expression can also contain a conditional statement. As expression you can use any
statement that takes a THEN or an ELSE clause, but without the THEN or ELSE
clause. When the conditional statement would execute the ELSE clause, expression
evaluates to false; when the conditional statement would execute the THEN
clause, expression evaluates to true. The LOCKED clause is not supported in this
context.

You can use multiple WHILE and UNTIL clauses in a FOR…NEXT loop.

Use the CONTINUE statement within FOR…NEXT to transfer control to the next
iteration of the loop, from any point in the loop.

Use the EXIT statement within FOR…NEXT to terminate the loop from any point
within the loop.

If STEP is not specified, increment is assumed to be 1. If increment is negative, the
end value of the counter is less than the initial value. Each time the loop is
processed, the counter is decreased by the amount specified in the STEP clause.
Execution continues to loop until the counter is less than end.

The body of the loop is skipped if start is greater than end, and increment is not
negative. If start, end, or increment evaluates to the null value, the FOR statement
fails and the program terminates with a run-time error message.

Nested Loops
You can nest FOR…NEXT loops. That is, you can put a FOR…NEXT loop inside
another FOR…NEXT loop. When loops are nested, each loop must have a unique
variable name as its counter. The NEXT statement for the inside loop must appear
before the NEXT statement for the outside loop.

If you omit the variables in the NEXT statement, the NEXT statement corresponds
to the most recent FOR statement. If a NEXT statement is encountered without a
previous FOR statement, an error occurs during compilation.

INFORMATION Flavor
In an INFORMATION flavor account the FOR variable is checked to see if it
exceeds end before increment is added to it. That means that the value of the FOR
variable does not exceed end at the termination of the loop. In IDEAL, PICK, IN2,
and REALITY flavors the increment is made before the bound checking. In this
BASIC Statements and Functions 6-265

FOR statement
case it is possible for variable to exceed end. Use the FOR.INCR.BEF option of the
$OPTIONS statement to get IDEAL flavor behavior in an INFORMATION flavor
account.

Examples
In the following example, the loop is executed 100 times or until control is trans-
ferred by one of the statements in the loop:

FOR VAR=1 TO 100
NEXT VAR

Here are more examples of FOR…NEXT loops:

Source Code Program Output

FOR X=1 TO 10
PRINT "X= ",X

NEXT X

X= 1
X= 2
X= 3
X= 4
X= 5
X= 6
X= 7
X= 8
X= 9
X= 10

FOR TEST=1 TO 10 STEP 2
PRINT "TEST= ":TEST

NEXT TEST

TEST= 1
TEST= 3
TEST= 5
TEST= 7
TEST= 9

FOR SUB=50 TO 20 STEP -10
PRINT 'VALUE IS ',SUB

NEXT

VALUE IS 50
VALUE IS 40
VALUE IS 30
VALUE IS 20
6-266 BASIC Guide

FOR statement
FOR A=1 TO 4
FOR B=1 TO A

PRINT "A:B= ",A:B
NEXT B

NEXT A

A:B= 11
A:B= 21
A:B= 22
A:B= 31
A:B= 32
A:B= 33
A:B= 41
A:B= 42
A:B= 43
A:B= 44

PRINT 'LOOP 1 :'
SUM=0
FOR A=1 TO 10 UNTIL SUM>20

SUM=SUM+A*A
PRINT "SUM= ",SUM

NEXT

LOOP 1 :
SUM= 1
SUM= 5
SUM= 14
SUM= 30

PRINT 'LOOP 2 :'
*
Y=15
Z=0
FOR X=1 TO 20 WHILE Z<Y

Z=Z+X
PRINT "Z= ",Z

NEXT X

LOOP 2 :
Z= 1
Z= 3
Z= 6
Z= 10
Z= 15

Source Code Program Output
BASIC Statements and Functions 6-267

FORMLIST statement
FORMLIST

Syntax

FORMLIST [variable] [TO list.number] [ON ERROR statements]

Description
The FORMLIST statement is the same as the SELECT statement.
6-268 BASIC Guide

FSUB function
FSUB

Syntax
FSUB (number1, number2)

CALL !FSUB (result, number1, number2)

Description
Use the FSUB function to perform floating-point subtraction on two numeric
values. number2 is subtracted from number1. If either number evaluates to the null
value, null is returned. result equates to number1 minus number2.

This function is provided for compatibility with existing software. You can also use
the − operator to perform floating-point subtraction.

Example
PRINT FSUB(.234,.567)

This is the program output:

-0.333
BASIC Statements and Functions 6-269

FUNCTION statement
FUNCTION

Syntax

FUNCTION [name] [([MAT] variable [, [MAT] variable …])]

Description
Use the FUNCTION statement to identify a user-written function and to specify
the number and names of the arguments to be passed to it. The FUNCTION state-
ment must be the first noncomment line in the user-written function. A user-
written function can contain only one FUNCTION statement.

name is specified for documentation purposes; it need not be the same as the func-
tion name or the name used to reference the function in the calling program. name
can be any valid variable name.

variable is an expression that passes values between the calling programs and the
function. variables are the formal parameters of the user-written function. When
actual parameters are specified as arguments to a user-written function, the actual
parameters are referenced by the formal parameters so that calculations performed
in the user-written function use the actual parameters.

Separate variables by commas. Up to 254 variables can be passed to a user-written
function. To pass an array, you must precede the array name with the keyword
MAT. When a user-written function is called, the calling function must specify the
same number of variables as are specified in the FUNCTION statement.

An extra variable is hidden so that the user-written function can use it to return a
value. An extra variable is retained by the user-written function so that a value is
returned by the RETURN (value) statement. This extra variable is reported by the
MAP and MAKE.MAP.FILE commands. If you use the RETURN statement in a
user-written function and you do not specify a value to return, an empty string is
returned by default.

The program that calls a user-written function must contain a DEFFUN statement
that defines the user-written function before it uses it. The user-written function
must be cataloged in either a local catalog or the system catalog, or it must be a
record in the same object file as the calling program.

If the user-defined function recursively calls itself within the function, a DEFFUN
statement must precede it in the user-written function.
6-270 BASIC Guide

FUNCTION statement
Examples
The following user-defined function SHORT compares the length of two argu-
ments and returns the shorter:

FUNCTION SHORT(A,B)
AL = LEN(A)
BL = LEN(B)
IF AL < BL THEN RESULT = A ELSE RESULT = B
RETURN(RESULT)

The following example defines a function called MYFUNC with the arguments or
formal parameters A, B, and C. It is followed by an example of the DEFFUN state-
ment declaring and using the MYFUNC function. The actual parameters held in X,
Y, and Z are referenced by the formal parameters A, B, and C so that the value
assigned to T can be calculated.

FUNCTION MYFUNC(A, B, C)
Z = ...
RETURN (Z)

.

.

.
END

DEFFUN MYFUNC(X, Y, Z)
T = MYFUNC(X, Y, Z)
END
BASIC Statements and Functions 6-271

GES function
GES

Syntax
GES (array1, array2)

CALL −GES (return.array, array1, array2)

CALL !GES (return.array, array1, array2)

Description
Use the GES function to test if elements of one dynamic array are greater than or
equal to corresponding elements of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
element from array1 is greater than or equal to the element from array2, a 1 is
returned in the corresponding element of a new dynamic array. If the element from
array1 is less than the element from array2, a 0 is returned. If an element of one
dynamic array has no corresponding element in the other dynamic array, the unde-
fined element is evaluated as empty, and the comparison continues.

If either element of a corresponding pair is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-272 BASIC Guide

GET statements
GET

Syntax

GET[X] read.var[,length] [SETTING read.count] FROM device

[UNTIL eop.char.list] [RETURNING last.char.read]
[WAITING seconds] [THEN statements] [ELSE statements]

Description
Use GET statements to read a block of data from an input stream associated with
a device, such as a serial line or terminal. The device must be opened with the
OPENDEV or OPENSEQ statement. Once the device has been opened, the GET
statements read data from the device. The GET statements do not perform any pre-
or postprocessing of the data stream, nor do they control local echo characteristics.
These aspects of terminal control are handled either by the application or by the
device driver. The behavior of certain devices can be managed through the
TTYSET/TTYGET interface.

Note: The WAITING clause is not supported on Windows NT.

Use the GETX statement to return the characters in ASCII hexadecimal format. For
example, the sequence of 8-bit character “abcde” is returned as the character string
“6162636465”. However, the value returned in the last.char.read variable is in stan-
dard ASCII character form.

read.var is the variable into which the characters read from device are stored. If no
data is read, read.var is set to the empty string.

length is the expression evaluating to the number of characters read from the data
stream; if length and timeout are not specified, the default length is 1. If length is not
specified, but an eop.char.list value is included, no length limit is imposed on the
input.

read.count is the variable that records the actual count of characters read and stored
in read.var. This may differ from length when a timeout condition occurs or when a
recognized end-of-packet character is detected.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ
statement. This is the handle to the I/O device that supplies the data stream for the
operation of the GET statements.
BASIC Statements and Functions 6-273

GET statements
eop.char.list is an expression that evaluates to a recognized end-of-packet delim-
iters. The GET operation terminates if a valid end-of-packet character is
encountered in the data stream before the requested number of characters is read.

last.char.read is a variable that stores the last character read by the GET operation.
If no data is read, read.var is set to the empty string. If the input terminated due to
the maximum number of characters being read or because of a timeout condition,
an empty string is returned.

seconds specifies the number of seconds the program should wait before the GET
operation times out.

Terminating Conditions
GET statements read data from the device’s input stream until the first terminating
condition is encountered. The following table lists the possible terminating
conditions:

GET Statements Terminating Conditions

Condition Description

Requested read length has
been satisfied

The read is fully satisfied. read.var contains the
characters read, and last.char.read contains an
empty string. Program control passes to the
THEN clause if present. The default requested
read length is one character unless an end-of-
packet value has been selected (in which case, no
length limit is used).

Recognized end-of-packet
character has been
processed

The read is terminated by a special application-
defined character in the data stream. The data
read to this point, excluding the end-of-packet
character, is stored in read.var. The end-of-packet
character is stored in last.char.read. Program
control passes to the THEN clause if present. This
terminating condition is only possible if the
UNTIL clause has been specified. If there is no
UNTIL clause, no end-of-packet characters are
recognized.
6-274 BASIC Guide

GET statements
Note: Under all termination conditions, read.count is set to the number of charac-
ters read from the input data stream.

THEN and ELSE Clauses
For GET statements, the THEN and ELSE clauses are optional. They have different
meanings and produce different results, depending on the conditions specified for
terminal input.

The following rules apply only if the THEN or ELSE clauses are specified:

• If the UNTIL clause is used without a WAITING clause or an expected
length, the GET statement behaves normally. The program waits indefi-
nitely until a termination character is read, then executes the THEN clause.
The ELSE clause is never executed.

Timeout limit has expired The read could not be satisfied within the speci-
fied time limitation. If no characters have been
read, read.var and last.char.read are set to the
empty string, and read.count is set to 0. The
system status code is set to 0 and may be checked
with the STATUS function. Control passes to the
ELSE clause if present. This condition is only
possible if the WAITING clause is specified. In
the absence of a WAITING clause, the applica-
tion waits until one of the other terminating
conditions is met.

Device input error An unrecoverable error occurred on the device.
Unrecoverable errors can include EOF conditions
and operating system reported I/O errors. In this
case, the data read to this point is stored in
read.var, and the empty string is stored in
last.char.read. If no characters have been read,
read.var and last.char.read are set to the empty
string, and read.count is set to 0. The system
status code is set to a nonzero value and may
checked with the STATUS function. Control
passes to the ELSE clause if present.

GET Statements Terminating Conditions (Continued)

Condition Description
BASIC Statements and Functions 6-275

GET statements
• If the WAITING clause is used, the GET statement behaves normally, and
the ELSE clause is executed only if the number of seconds for timeout has
elapsed. If the input terminates for any other reason, it executes the THEN
clause.

• If the WAITING clause is not used and there is a finite number of characters
to expect from the input, then only the type-ahead buffer is examined for
input. If the type-ahead buffer contains the expected number of characters,
it executes the THEN clause; otherwise it executes the ELSE clause. If the
type-ahead feature is turned off, the ELSE clause is always executed.

• In a special case, the ELSE clause is executed if the line has not been
attached before executing the GET statement.

In summary, unless the WAITING clause is used, specifying the THEN and ELSE
clauses causes the GET statement to behave like an INPUTIF…FROM statement.
The exception to this is the UNTIL clause without a maximum length specified, in
which case the GET statement behaves normally and the ELSE clause is never
used.

Example
The following code fragment shows how the GET statement reads a number of
data buffers representing a transaction message from a device:

DIM SAVEBUFFER(10)
SAVELIMIT = 10
OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
I = 1
LOOP

GET BUFFER,128 FROM TTYLINE UNTIL CHAR(10) WAITING 10
ELSE

IF STATUS()
THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,

"IM SAVEBUFFER(10)
SAVELIMIT = 10
OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
I = 1
LOOP

GET BUFFER,128 FROM TTYLINE UNTIL CHAR(10)
WAITING 10

ELSE
IF STATUS()
6-276 BASIC Guide

GET statements
THEN PRINT "UNRECOVERABLE ERROR DETECTED ON DEVICE,":
ELSE PRINT "DEVICE TIMEOUT HAS OCCURRED, ":
PRINT "TRANSACTION CANNOT BE COMPLETED."
STOP

END
WHILE BUFFER # "QUIT" DO

IF I > SAVELIMIT
THEN

SAVELIMIT += 10
DIM SAVEBUFFER(SAVELIMIT)

END
SAVEBUFFER(I) = BUFFER
I += 1

REPEAT
BASIC Statements and Functions 6-277

GETX statement
GETX
Use the GETX statement to read a block of data from an input stream and return
the characters in ASCII hexadecimal format. For details, see the GET statements.
6-278 BASIC Guide

GET(ARG.) statement
GET(ARG.)

Syntax

GET(ARG. [,arg#]) variable [THEN statements] [ELSE statements]

Description
Use the GET(ARG.) statement to retrieve the next command line argument. The
command line is delimited by blanks, and the first argument is assumed to be the
first word after the program name. When a cataloged program is invoked, the
argument list starts with the second word in the command line.

Blanks in quoted strings are not treated as delimiters and the string is treated as a
single argument. For example, "54 76" returns 54 76.

arg# specifies the command line argument to retrieve. It must evaluate to a number.
If arg# is not specified, the next command line argument is retrieved. The retrieved
argument is assigned to variable.

THEN and ELSE statements are both optional. The THEN clause is executed if the
argument is found. The ELSE clause is executed if the argument is not found. If the
argument is not found and no ELSE clause is present, variable is set to an empty
string.

If no arg# is specified or if arg# evaluates to 0, the argument to the right of the last
argument retrieved is assigned to variable. The GET statement fails if arg# evaluates
to a number greater than the number of command line arguments or if the last
argument has been assigned and a GET with no arg# is used. To move to the begin-
ning of the argument list, set arg# to 1.

If arg# evaluates to the null value, the GET statement fails and the program termi-
nates with a run-time error message.

Example
In the following example, the command is:

RUN BP PROG ARG1 ARG2 ARG3

and the program is:

A=5;B=2
GET(ARG.)FIRST
GET(ARG.,B)SECOND
GET(ARG.)THIRD
BASIC Statements and Functions 6-279

GET(ARG.) statement
GET(ARG.,1)FOURTH
GET(ARG.,A-B)FIFTH
PRINT FIRST

PRINT SECOND
PRINT THIRD
PRINT FOURTH
PRINT FIFTH

This is the program output:

ARG1
ARG2
ARG3
ARG1
ARG3

If the command line is changed to RUN PROG, the system looks in the file PROG
for the program with the name of the first argument. If PROG is a cataloged
program, the command line would have to be changed to PROG ARG1 ARG2
ARG3 to get the same results.
6-280 BASIC Guide

GETLIST statement
GETLIST

Syntax

GETLIST listname [TO list.number] [SETTING variable]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the GETLIST statement to activate a saved select list so that a READNEXT
statement can use it.

listname is an expression that evaluates to the form:

record.ID

or:

record.ID account.name

record.ID is the record ID of a select list in the &SAVEDLISTS& file. If account.name
is specified, the &SAVEDLISTS& file of that account is used instead of the one in
the local account.

If listname evaluates to the null value, the GETLIST statement fails and the program
terminates with a run-time error message.

The TO clause puts the list in a select list numbered 0 through 10. If list.number is
not specified, the list is saved as select list 0.

The SETTING clause assigns the count of the elements in the list to variable. The
system variable @SELECTED is also assigned this count whether or not the
SETTING clause is used. If the list is retrieved successfully, even if the list is empty,
the THEN statements execute; if not, the ELSE statements execute.

PICK, REALITY, and IN2 Flavors
PICK, REALITY, and IN2 flavor accounts store select lists in list variables instead
of numbered select lists. In those accounts, and in programs that use the
VAR.SELECT option of the $OPTIONS statement, the syntax of the GETLIST state-
ment is:

GETLIST listname [TO list.variable] [SETTING variable]

{THEN statements [ELSE statements] | ELSE statements}
BASIC Statements and Functions 6-281

GETLOCALE function
GETLOCALE

Syntax
 GETLOCALE (category)

Description
In NLS mode use the GETLOCALE function to return the names of specified cate-
gories of the current locale. The GETLOCALE function also returns the details of
any saved locale that differs from the current one.

category is one of the following tokens that are defined in the DataStage include file
UVNLSLOC.H:

If the GETLOCALE function fails, it returns one of the following error tokens:

For more information about locales, see the DataStage NLS Guide.

UVLC$ALL The names of all the current locale categories as a
dynamic array. The elements of the array are separated
by field marks. The categories are in the order Time,
Numeric, Monetary, Ctype, and Collate.

UVLC$SAVED A dynamic array of all the saved locale categories.

UVLC$TIME The setting of the Time category.

UVLC$NUMERIC The setting of the Numeric category.

UVLC$MONETARY The setting of the Monetary category.

UVLC$CTYPE The setting of the Ctype category.

UVLC$COLLATE The setting of the Collate category.

LCE$NO.LOCALES DataStage locales are not enabled.

LCE$BAD.CATEGORY Category is invalid.
6-282 BASIC Guide

GETREM function
GETREM

Syntax
 GETREM (dynamic.array)

Description
Use the GETREM function after the execution of a REMOVE Statement statement,
a REMOVE function, or a REVREMOVE statement, to return the numeric value for
the character position of the pointer associated with dynamic.array.

dynamic.array evaluates to the name of a variable containing a dynamic array.

The returned value is an integer. The integer returned is one-based, not zero-based.
If no REMOVE statements have been executed on dynamic.array, 1 is returned. At
the end of dynamic.array, GETREM returns the length of dynamic array plus 1. The
offset returned by GETREM indicates the first character of the next dynamic array
element to be removed.

Example
DYN = "THIS":@FM:"HERE":@FM:"STRING"
REMOVE VAR FROM DYN SETTING X
PRINT GETREM(DYN)

This is the program output:

5

BASIC Statements and Functions 6-283

GOSUB statement
GOSUB

Syntax

GOSUB statement.label [:]

GO SUB statement.label [:]

Description
Use the GOSUB statement to transfer program control to an internal subroutine
referenced by statement.label. A colon (:) is optional in GOSUB statements, even
though it is required after nonnumeric statement labels at the beginning of
program lines.

Use the RETURN statement at the end of the internal subroutine referenced by the
GOSUB statement, to transfer program control to the statement following the
GOSUB statement.

Use the RETURN TO statement at the end of an internal subroutine to transfer
control to a location in the program other than the line following the GOSUB state-
ment. In this case, use statement.label to refer to the target location.

Be careful with the RETURN TO statement, because all other GOSUBs or CALLs
active when the GOSUB is executed remain active, and errors can result.

A program can call a subroutine any number of times. A subroutine can also be
called from within another subroutine; this process is called nesting subroutines.
You can nest up to 256 GOSUB calls.

Subroutines can appear anywhere in the program but should be readily distin-
guishable from the main program. To prevent inadvertent entry into the
subroutine, precede it with a STOP, END, or GOTO statement that directs program
control around the subroutine.

Example
VAR='ABKL1234'
FOR X=1 TO LEN(VAR)

Y=VAR[X,1]
GOSUB 100

NEXT X
STOP
100*
IF Y MATCHES '1N' THEN RETURN TO 200
6-284 BASIC Guide

GOSUB statement
PRINT 'ALPHA CHARACTER IN POSITION ',X
RETURN
200*

PRINT 'NUMERIC CHARACTER IN POSITION ',X
STOP

This is the program output:

ALPHA CHARACTER IN POSITION 1
ALPHA CHARACTER IN POSITION 2
ALPHA CHARACTER IN POSITION 3
ALPHA CHARACTER IN POSITION 4
NUMERIC CHARACTER IN POSITION 5
BASIC Statements and Functions 6-285

GOTO statement
GOTO

Syntax

GO[TO] statement.label [:]

GO TO statement.label [:]

Description
Use the GOTO statement to transfer program control to the statement specified by
statement.label. A colon (:) is optional in GOTO statements.

If the statement referenced is an executable statement, that statement and those
that follow are executed. If it is a nonexecutable statement, execution proceeds at
the first executable statement encountered after the referenced statement.

Example
X=80
GOTO 10
STOP
*
10*
IF X>20 THEN GO 20 ELSE STOP
*
20*
PRINT 'AT LABEL 20'
GO TO CALCULATE:
STOP
*
CALCULATE:
PRINT 'AT LABEL CALCULATE'

This is the program output:

AT LABEL 20
AT LABEL CALCULATE
6-286 BASIC Guide

GROUP function
GROUP

Syntax

GROUP (string, delimiter, occurrence [,num.substr])

Description
Use the GROUP function to return one or more substrings located between speci-
fied delimiters in string.

delimiter evaluates to any character, including field mark, value mark, and
subvalue marks. It delimits the start and end of the substring. If delimiter evaluates
to more than one character, only the first character is used. Delimiters are not
returned with the substring.

occurrence specifies which occurrence of the delimiter is to be used as a terminator.
If occurrence is less than 1, 1 is assumed.

num.substr specifies the number of delimited substrings to return. If the value of
num.substr is an empty string or less than 1, 1 is assumed. When more than one
substring is returned, delimiters are returned along with the successive substrings.

If either delimiter or occurrence is not in the string, an empty string is returned,
unless occurrence specifies 1. If occurrence is 1 and delimiter is not found, the entire
string is returned. If delimiter is an empty string, the entire string is returned.

If string evaluates to the null value, null is returned. If string contains CHAR(128)
(that is, @NULL.STR), it is treated like any other character in a string. If delimiter,
occurrence, or num.substr evaluates to the null value, the GROUP function fails and
the program terminates with a run-time error message.

The GROUP function works identically to the FIELD function.

Examples
D=GROUP("###DHHH#KK","#",4)
PRINT "D= ",D

The variable D is set to DHHH because the data between the third and fourth
occurrence of the delimiter # is DHHH.

REC="ACADABA"
E=GROUP(REC,"A",2)
PRINT "E= ",E
BASIC Statements and Functions 6-287

GROUP function
The variable E is set to "C".

VAR="?"
Z=GROUP("A.1234$$$$&&",VAR,3)
PRINT "Z= ",Z

Z is set to an empty string since "?" does not appear in the string.

Q=GROUP("+1+2+3ABAC","+",2,2)
PRINT "Q= ",Q

Q is set to "1+2" since two successive fields were specified to be returned after the
second occurrence of "+".

This is the program output:

D= DHHH
E= C
Z=
Q= 1+2
6-288 BASIC Guide

GROUPSTORE statement
GROUPSTORE

Syntax

GROUPSTORE new.string IN string USING start, n [,delimiter]

Description
Use the GROUPSTORE statement to modify character strings by inserting,
deleting, or replacing fields separated by specified delimiters.

new.string is an expression that evaluates to the character string to be inserted in
string.

string is an expression that evaluates to the character string to be modified.

delimiter evaluates to any single ASCII character, including field, value, and
subvalue marks. If you do not specify delimiter, the field mark is used.

start evaluates to a number specifying the starting field position. Modification
begins at the field specified by start. If start is greater than the number of fields in
string, the required number of empty fields is generated before the GROUPSTORE
statement is executed.

n specifies the number of fields of new.string to insert in string. n determines how
the GROUPSTORE operation is executed. If n is positive, n fields in string are
replaced with the first n fields of new.string. If n is negative, n fields in string are
replaced with all the fields in new.string. If n is 0, all the fields in new.string are
inserted in string before the field specified by start.

If string evaluates to the null value, null is returned. If new.string, start, n, or delim-
iter is null, the GROUPSTORE statement fails and the program terminates with a
run-time error message.

Example
Q='1#2#3#4#5'
GROUPSTORE "A#B" IN Q USING 2,2,"#"
PRINT "TEST1= ",Q
*
Q='1#2#3#4#5'
GROUPSTORE "A#B" IN Q USING 2,-2,"#"
PRINT "TEST2= ",Q
*
Q='1#2#3#4#5'
BASIC Statements and Functions 6-289

GROUPSTORE statement
GROUPSTORE "A#B" IN Q USING 2,0,"#"
PRINT "TEST3= ",Q
*

Q='1#2#3#4#5'
GROUPSTORE "A#B#C#D" IN Q USING 1,4,"#"
PRINT "TEST4= ",Q
*
Q='1#2#3#4#5'
GROUPSTORE "A#B#C#D" IN Q USING 7,3,"#"
PRINT "TEST5= ",Q

This is the program output:

TEST1= 1#A#B#4#5
TEST2= 1#A#B#4#5
TEST3= 1#A#B#2#3#4#5
TEST4= A#B#C#D#5
TEST5= 1#2#3#4#5##A#B#C
6-290 BASIC Guide

GTS function
GTS

Syntax
GTS (array1, array2)

CALL −GTS (return.array, array1, array2)

CALL !GTS (return.array, array1, array2)

Description
Use the GTS function to test if elements of one dynamic array are greater than
elements of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
element from array1 is greater than the element from array2, a 1 is returned in the
corresponding element of a new dynamic array. If the element from array1 is less
than or equal to the element from array2, a 0 is returned. If an element of one
dynamic array has no corresponding element in the other dynamic array, the unde-
fined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for
that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
BASIC Statements and Functions 6-291

HEADING statement
HEADING

Syntax

HEADING [ON print.channel] heading

HEADINGE [ON print.channel] heading

HEADINGN [ON print.channel] heading

Description
Use the HEADING statement to specify the text and format of the heading to print
at the top of each page of output.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). Logical print channel –1
prints the data on the screen, regardless of whether a PRINTER ON statement has
been executed.

heading is an expression that evaluates to the heading text and the control charac-
ters that specify the heading’s format. You can use the following format control
characters, enclosed in single quotation marks, in the heading expression:

C[n] Prints heading line centered in a field of n blanks. If n is not specified,
centers the line on the page.

D Prints current date formatted as dd mmm yyyy.

T Prints current time and date formatted as dd mmm yyyy hh:mm:ss.
Time is in 12-hour format with “am” or “pm” appended.

\ Prints current time and date formatted as dd mmm yyyy hh:mm:ss.
Time is in 12-hour format with “am” or “pm” appended. Do not put
the backslash inside single quotation marks.

G Inserts gaps to format headings.

I Resets page number, time, and date for PIOPEN flavor only.

Q Allows the use of the] ^ and \ characters.

R[n] Inserts the record ID left-justified in a field of n blanks.

L Starts a new line.
6-292 BASIC Guide

HEADING statement
Two single quotation marks (' ') print one single quotation mark in heading text.

When the program is executed, the format control characters produce the specified
results. You can specify multiple options in a single set of quotation marks.

If either print.channel or heading evaluates to the null value, the HEADING state-
ment fails and the program terminates with a run-time error message.

Pagination begins with page 1 and increments automatically on generation of each
new page or upon encountering the PAGE statement.

Output to a terminal or printer is paged automatically. Use the N option in either
a HEADING or a FOOTING statement to turn off automatic paging.

HEADINGE and HEADINGN Statements
The HEADINGE statement is the same as the HEADING statement with the
$OPTIONS HEADER.EJECT selected. HEADINGE causes a page eject with the
HEADING statement. Page eject is the default for INFORMATION flavor
accounts.

The HEADINGN statement is the same as the HEADING statement with the
$OPTIONS −HEADER.EJECT selected. HEADINGN suppresses a page eject with
the HEADING statement. The page eject is suppressed in IDEAL, PICK, REALITY,
and IN2 flavor accounts.

Using] ^ and \ in Headings
The characters] ^ and \ are control characters in headings and footings. To use
these characters as normal characters, you must use the Q option and enclose the
control character in double or single quotation marks. You only need to specify Q

] Starts a new line. Do not put the right bracket inside single quotation
marks.

N Suppresses automatic paging.

P[n] Prints current page number right-justified in a field of n blanks. The
default value for n is 4.

S Left-justified, inserted page number.

^ Prints current page number right-justified in a field of n blanks. The
default value for n is 4. Do not put the caret inside single quotation
marks.
BASIC Statements and Functions 6-293

HEADING statement
once in any heading or footing, but it must appear before any occurrence of the
characters] ^ and \.

Formatting the Heading Text
The control character G (for gap) can be used to add blanks to text in headings to
bring the width of a line up to device width. If G is specified once in a line, blanks
are added to that part of the line to bring the line up to the device width. If G is
specified at more than one point in a line, the space characters are distributed as
evenly as possible to those points. See the following examples, in which the vertical
bars represent the left and right margins:

The minimum gap size is 0 blanks. If a line is wider than the device width even
when all the gaps are 0, the line wraps, and all gaps remain 0.

If NLS is enabled, HEADING calculates gaps using varying display positions
rather than character lengths. For more information about display length, see the
DataStage NLS Guide.

Left-Justified Inserted Page Number
The control character S (for sequence number) is left-justified at the point where
the S appears in the line. Only one character space is reserved for the number. If the
number of digits exceeds 1, any text to the right is shifted right by the number of
extra characters required. For example, the statement:

HEADING "This is page 'S' of 100000"

results in headings such as:

This is page 3 of 100000
This is page 333 of 100000
This is page 3333 of 100000

Specification Result

"Hello there" |Hello there |

"'G'Hello there" | Hello there|

"'G'Hello there'G'" | Hello there |

"Hello'G'there" |Hello there|

"'G'Hello'G'there'G'" | Hello there |
6-294 BASIC Guide

HEADING statement
INFORMATION Flavor

Page Number Field. In an INFORMATION flavor account the default width of
the page number field is the length of the page number. Use the n argument to P to
set the field width of the page number. You can also include multiple P characters
to specify the width of the page field, or you can include blanks in the text that
immediately precedes a P option. For example, 'PPP' prints the page number right-
justified in a field of three blanks.

Note: In all other flavors, 'PPP' prints three identical page numbers, each in the
default field of four.

Date Format. In an INFORMATION flavor account the default date format is mm-
dd-yy, and the default time format is 24-hour style.

In PICK, IN2, REALITY, and IDEAL flavor accounts, use the HEADER.DATE
option of the $OPTIONS statement to cause HEADING, FOOTING, and PAGE
statements to behave as they do in INFORMATION flavor accounts.

PIOPEN Flavor

Right-Justified Overwriting Page Number. The control character P (for page) is
right-justified at the point at which the P appears in the line. Only one character
space is reserved for the number. If the number of digits exceeds 1, literal charac-
ters to the left of the initial position are overwritten. Normally you must enter a
number of blanks to the left of the P to allow for the maximum page number to
appear without overwriting other literal characters. For example, the statement:

HEADING "This is page 'P' of 100000"

results in headings such as:

This is page 3 of 100000
This is pag333 of 100000
This is pa3333 of 100000

Resetting the Page Number and the Date. The control character I (for initialize)
resets the page number to 1, and resets the date.
BASIC Statements and Functions 6-295

HEADING statement
Example
HEADING "'C' LIST PRINTED: 'D'"
FOR N=1 TO 10

PRINT "THIS IS ANOTHER LINE"
NEXT

This is the program output:

 LIST PRINTED: 04 Jun 1994
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
THIS IS ANOTHER LINE
6-296 BASIC Guide

HUSH statement
HUSH

Syntax

HUSH { ON | OFF | expression} [SETTING status]

Description
Use the HUSH statement to suppress the display of all output normally sent to a
terminal during processing. HUSH also suppresses output to a COMO file or
TANDEM display.

SETTING status sets the value of a variable to the value of the HUSH state before
the HUSH statement was executed. It can be used instead of the STATUS function
to save the state so that it can be restored later. STATUS has a value of 1 if the
previous state was HUSH ON or a value of 0 if the previous state was HUSH OFF.

You might use this statement when you are transmitting information over phone
lines or when you are sending data to a hard-copy terminal. Both these situations
result in slower transmission speeds. The unnecessary data display makes the task
even slower.

HUSH acts as a toggle. If it is used without a qualifier, it changes the current state.

Do not use this statement to shut off output display unless you are sure the display
is unnecessary. When you use HUSH ON, all output is suppressed including error
messages and requests for information.

Value Returned by the STATUS Function

The previous state is returned by the STATUS function. If terminal output was
suppressed prior to execution of the HUSH statement, the STATUS function
returns a 1. If terminal output was enabled before execution of the HUSH state-
ment, the STATUS function returns a 0.

Example
In the following example, terminal output is disabled with the HUSH statement
and the previous state was saved in the variable USER.HUSH.STATE.
BASIC Statements and Functions 6-297

HUSH statement
After executing some other statements, the program returns the user’s process to
the same HUSH state as it was in previous to the execution of the first HUSH
statement:

HUSH ON
USER.HUSH.STATE = STATUS()
...
HUSH USER.HUSH.STATE

The example could have been written as follows:

HUSH ON SETTING USER.HUSH.STATE
.
.
.

HUSH USER.HUSH.STATE
6-298 BASIC Guide

ICHECK function
ICHECK

Syntax

ICHECK (dynamic.array [, file.variable] ,key [,column#])

Description
Use the ICHECK function to check if data you intend to write to an SQL table
violates any SQL integrity constraints. ICHECK verifies that specified data and
primary keys satisfy the defined SQL integrity constraints for an SQL table.

dynamic.array is an expression that evaluates to the data you want to check against
any integrity constraints.

file.variable specifies an open file. If file.variable is not specified, the default file vari-
able is assumed (for more information on default files, see the OPEN statement).

key is an expression that evaluates to the primary key you want to check against
any integrity constraints.

column# is an expression that evaluates to the number of the column in the table
whose data is to be checked. If you do not specify column#, all columns in the file
are checked. Column 0 specifies the primary key (record ID).

If dynamic.array, file.variable, key, or column# evaluates to the null value, the ICHECK
function fails and the program terminates with a run-time error message.

You might use the ICHECK function to limit the amount of integrity checking that
is done and thus improve performance. If you do this, however, you are assuming
responsibility for data integrity. For example, you might want to use ICHECK with
a program that changes only a few columns in a file. To do this, turn off the
OPENCHK configurable parameter, open the file with the OPEN statement rather
than the OPENCHECK statement, and use the ICHECK function before you write
the updated record to verify, for each column you are updating, that you are not
violating the table’s integrity checks.

If the ON UPDATE clause of a referential constraint specifies an action, ICHECK
always validates data being written to the referenced table; it does not check the
referencing table. Therefore, ICHECK can succeed, but when the actual write is
done, it can have a constraint failure while attempting to update the referencing
table. If the referential constraint does not have an ON UPDATE clause, or if these
clauses specify NO ACTION, the referencing table is checked to ensure that no row
in it contains the old value of the referenced column.
BASIC Statements and Functions 6-299

ICHECK function
ICHECK does not check triggers when it checks other SQL integrity constraints.
Therefore, a write that fires a trigger can fail even if the ICHECK succeeds.

ICHECK returns a dynamic array of three elements separated by field marks:

error.codeFcolumn#Fconstraint

If the record violates more than one integrity constraint, ICHECK returns a
dynamic array only for the first constraint that causes a failure.

The ICHECK function is advisory only. That is, if two programs try to write the
same data to the same column defined as UNIQUE (see error 5), an ICHECK in the

error.code A code that indicates the type of failure. Error codes can be any of the
following:

0 No failure

1 SINGLEVALUED failure

2 NOT NULL failure

3 NOT EMPTY failure

4 ROWUNIQUE failure (including single-column association
KEY)

5 UNIQUE (column constraint) failure

6 UNIQUE (table constraint) failure

7 Association KEY ROWUNIQUE failure when association has
multiple KEY fields.

8 CHECK constraint failure

9 Primary key has too many parts

10 Referential constraint failure

11 Referential constraint failure that occurs when a numeric column
references a nonnumeric column in the referenced table.

column# The number of the column where the failure occurred. If any part of
a primary key fails, 0 is returned. If the violation involves more than
one column, -1 is returned.

constraint This element is returned only when error.code is 7 or 8. For code 7, the
association name is returned. For code 8, the name of the CHECK
constraint is returned if it has a name; otherwise, the CHECK
constraint itself is returned.
6-300 BASIC Guide

ICHECK function
first program may pass. If the second program writes data to the file before the first
program writes its ICHECKed data, the first program’s write fails even though the
ICHECK did not fail.
BASIC Statements and Functions 6-301

ICONV function
ICONV

Syntax
ICONV (string, conversion)

Description
Use the ICONV function to convert string to a specified internal storage format.
string is an expression that evaluates to the string to be converted.

conversion is an expression that evaluates to one or more valid conversion codes,
separated by value marks (ASCII 253).

string is converted to the internal format specified by conversion. If multiple codes
are used, they are applied from left to right. The first conversion code converts the
value of string. The second conversion code converts the output of the first conver-
sion, and so on.

If string evaluates to the null value, null is returned. If conversion evaluates to the
null value, the ICONV function fails and the program terminates with a run-time
error message.

The STATUS function reflects the result of the conversion:

For information about converting strings to an external format, see the OCONV
function.

Examples

The following are examples of date conversions:

0 The conversion is successful.

1 string is invalid. An empty string is returned, unless string is the null value, in
which case null is returned.

2 conversion is invalid.

3 Successful conversion of possibly invalid data.

Source Line Converted Value

DATE=ICONV("02-23-85","D") 6264

DATE=ICONV("30/9/67","DE") -92
6-302 BASIC Guide

ICONV function
The following is an example of a time conversion:

The following are examples of hex, octal, and binary conversions:

The following are examples of masked decimal conversions:

DATE=ICONV("6-10-85","D") 6371

DATE=ICONV("19850625","D") 6386

DATE=ICONV("85161","D") 6371

Source Line Converted Value

TIME=ICONV("9AM","MT") 32400

Source Line Converted Value

HEX=ICONV("566D61726B","MX0C") Vmark

OCT=ICONV("3001","MO") 1537

BIN=ICONV(1111,"MB") 15

Source Lines Converted Value

X=4956.00
X=ICONV(X,"MD2")

495600

X=563.888
X=ICONV(X,"MD0")

-564

X=ICONV(1988.28,"MD24") 19882800

Source Line Converted Value
BASIC Statements and Functions 6-303

ICONVS function
ICONVS

Syntax
ICONVS (dynamic.array, conversion)

CALL −ICONVS (return.array, dynamic.array, conversion)

CALL !ICONVS (return.array, dynamic.array, conversion)

Description
Use the ICONVS function to convert each element of dynamic.array to a specified
internal storage format.

conversion is an expression that evaluates to one or more valid conversion codes,
separated by value marks (ASCII 253).

Each element of dynamic.array is converted to the internal format specified by
conversion and is returned in a dynamic array. If multiple codes are used, they are
applied from left to right. The first conversion code converts the value of each
element of dynamic.array. The second conversion code converts the value of each
element of the output of the first conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If an element of
dynamic.array is the null value, null is returned for that element. If conversion eval-
uates to the null value, the ICONV function fails and the program terminates with
a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

The STATUS function reflects the result of the conversion:

For information about converting elements in a dynamic array to an external
format, see the OCONVS function.

0 The conversion is successful.

1 An element of dynamic.array is invalid. An empty string is returned, unless
dynamic.array is the null value, in which case null is returned.

2 conversion is invalid.

3 Successful conversion of possibly invalid data.
6-304 BASIC Guide

IF statement
IF

Syntax

IF expression {THEN statements [ELSE statements] | ELSE statements}
IF expression
{THEN statements

[ELSE statements] |
ELSE statements}

IF expression {THEN
statements

END [ELSE
statements

END] | ELSE
statements

END}
IF expression
{THEN

statements
END
[ELSE

statements
END] |
ELSE

statements
END }

Description
Use the IF statement to determine program flow based on the evaluation of expres-
sion. If the value of expression is true, the THEN statements are executed. If the
value of expression is false, the THEN statements are ignored and the ELSE state-
ments are executed. If expression is the null value, expression evaluates to false. If no
ELSE statements are present, program execution continues with the next execut-
able statement.
BASIC Statements and Functions 6-305

IF statement
The IF statement must contain either a THEN clause or an ELSE clause. It need not
include both.

Use the ISNULL function with the IF statement when you want to test whether the
value of a variable is the null value. This is the only way to test for the null value
since null cannot be equal to any value, including itself. The syntax is:

IF ISNULL (expression) …

You can write IF…THEN statements on a single line or separated onto several
lines. Separating statements onto several lines can improve readability. Either way,
the statements are executed identically.

You can nest IF…THEN statements. If the THEN or ELSE statements are written
on more than one line, you must use an END statement as the last statement of the
THEN or ELSE statements.

Conditional Compilation
You can specify the conditions under which all or part of a BASIC program is to be
compiled, using a modified version of the IF statement. The syntax of the condi-
tional compilation statement is the same as that of the IF statement except for the
test expression, which must be one of the following: $TRUE, $T, $FALSE, or $F.

Example
X=10
IF X>5 THEN PRINT 'X IS GREATER THAN 5';Y=3
*
IF Y>5 THEN STOP ELSE Z=9; PRINT 'Y IS LESS THAN 5'
*
IF Z=9 THEN PRINT 'Z EQUALS 9'
ELSE PRINT 'Z DOES NOT EQUAL 9' ; STOP
*
IF Z=9 THEN

GOTO 10
END ELSE

STOP
END
*
10*
IF Y>4

THEN
PRINT 'Y GREATER THAN 4'
6-306 BASIC Guide

IF statement
END
ELSE

PRINT 'Y IS LESS THAN 4'
END

This is the program output:

X IS GREATER THAN 5
Y IS LESS THAN 5
Z EQUALS 9
Y IS LESS THAN 4
BASIC Statements and Functions 6-307

IFS function
IFS

Syntax
IFS (dynamic.array, true.array, false.array)

CALL −IFS (return.array, dynamic.array, true.array, false.array)

CALL !IFS (return.array, dynamic.array, true.array, false.array)

Description
Use the IFS function to return a dynamic array whose elements are chosen individ-
ually from one of two dynamic arrays based on the contents of a third dynamic
array.

Each element of dynamic.array is evaluated. If the element evaluates to true, the
corresponding element from true.array is returned to the same element of a new
dynamic array. If the element evaluates to false, the corresponding element from
false.array is returned. If there is no corresponding element in the correct response
array, an empty string is returned for that element. If an element is the null value,
that element evaluates to false.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-308 BASIC Guide

ILPROMPT function
ILPROMPT

Syntax
ILPROMPT (in.line.prompt)

Description
Use the ILPROMPT function to evaluate a string containing in-line prompts.

in.line.prompt is an expression that evaluates to a string containing in-line prompts.
In-line prompts have the following syntax:

<<[control,] … text [,option]>>

control is an option that specifies the characteristics of the prompt. Separate
multiple control options with commas. Possible control options are:

A Always prompts when the sentence containing the control option is
executed. If this option is not specified, the input value from a
previous execution of this prompt is used.

Cn Uses the word in the nth position in the command line as the input
value. (The verb is in position 1.)

F(filename) record.ID [,fm [,vm [,sm]]])

Finds input value in record.ID in filename. Optionally, extract a value
(vm) or subvalue (sm) from the field (fm).

In Uses the word in the nth position in the command line as the input
value, but prompts if word n was not entered.

P Saves the input from an in-line prompt. BASIC uses the input for all
in-line prompts with the same prompt text until the saved input is
overwritten by a prompt with the same prompt text and with a
control option of A, C, I, or S, or until control returns to the command
prompt. The P option saves the input from an in-line prompt in the
current paragraph, or in other paragraphs.

R Repeats the prompt until Return is pressed.

R(string) Repeats the prompt until Return is pressed, and inserts string
between each entry.
BASIC Statements and Functions 6-309

ILPROMPT function
text is the prompt text to display. If you want to include quotation marks (single or
double) or backslashes as delimiters within the prompt text, you must enclose the
entire text string in a set of delimiters different from the delimiters you are using
within the text string. For example, to print the following prompt text:

'P'RINTER OR 'T'ERMINAL

you must specify the prompt text as

\'P'RINTER OR 'T'ERMINAL\

or

"'P'RINTER OR 'T'ERMINAL"

option can be any valid ICONV conversion or matching pattern (see the MATCH
operator). A conversion must be in parentheses.

If in.line.prompt evaluates to the null value, the ILPROMPT function fails and the
program terminates with a run-time error.

If the in-line prompt has a value, that value is substituted for the prompt. If the in-
line prompt does not have a value, the prompt is displayed to request an input
value when the sentence is executed. The value entered at the prompt is then
substituted for the in-line prompt.

Once a value has been entered for a particular prompt, the prompt will continue to
have that value until a CLEARPROMPTS statement is executed, unless the control
option A is specified. CLEARPROMPTS clears all values entered for in-line
prompts.

You can enclose prompts within prompts.

Sn Takes the nth word from the command but uses the most recent
command entered at the command prompt to execute the paragraph,
rather than an argument in the paragraph. Use this option in nested
paragraphs.

@(CLR) Clears the screen.

@(BELL) Rings the terminal bell.

@(TOF) Positions the prompt at the top left of the screen.

@(col, row) Prompts at this column and row number on the terminal.
6-310 BASIC Guide

ILPROMPT function
Example
A="This is your number. - <<number>>"
PRINT ILPROMPT(A)
PRINT ILPROMPT("Your number is <<number>>, and your letter is

<<letter>>.")

This is the program output:

number=5
This is your number. - 5
letter=K
Your number is 5, and your letter is K.
BASIC Statements and Functions 6-311

INCLUDE statement
INCLUDE

Syntax

INCLUDE [filename] program

INCLUDE program FROM filename

Description
Use the INCLUDE statement to direct the compiler to insert the source code in the
record program and compile it along with the main program. The INCLUDE state-
ment differs from the $CHAIN statement in that the compiler returns to the main
program and continues compiling with the statement following the INCLUDE
statement.

When program is specified without filename, program must be a record in the same
file as the program currently containing the INCLUDE statement.

If program is a record in a different file, the name of the file in which it is located
must be specified in the INCLUDE statement, followed by the name of the
program. The filename must specify a type 1 or type 19 file defined in the VOC file.

You can nest INCLUDE statements.

The INCLUDE statement is a synonym for the $INCLUDE and #INCLUDE
statements.

Example
PRINT "START"
INCLUDE END
PRINT "FINISH"

When this program is compiled, the INCLUDE statement inserts code from the
program END (see the example on the END statement page). This is the program
output:

START
THESE TWO LINES WILL PRINT ONLY
WHEN THE VALUE OF 'A' IS 'YES'.

THIS IS THE END OF THE PROGRAM
FINISH
6-312 BASIC Guide

INDEX function
INDEX

Syntax
INDEX (string, substring, occurrence)

Description
Use the INDEX function to return the starting character position for the specified
occurrence of substring in string.

string is an expression that evaluates to any valid string. string is examined for the
substring expression.

occurrence specifies which occurrence of substring is to be located.

When substring is found and if it meets the occurrence criterion, the starting char-
acter position of the substring is returned. If substring is an empty string, 1 is
returned. If the specified occurrence of the substring is not found, or if string or
substring evaluate to the null value, 0 is returned.

If occurrence evaluates to the null value, the INDEX function fails and the program
terminates with a run-time error message.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavor accounts, the search continues with the next
character regardless of whether it is part of the matched substring. Use the
COUNT.OVLP option of the $OPTIONS statement to get this behavior in IDEAL
and INFORMATION flavor accounts.

Example
Q='AAA11122ABB1619MM'
P=INDEX(Q,1,4)
PRINT "P= ",P
*
X='XX'
Y=2
Q='P1234XXOO1299XX00P'
TEST=INDEX(Q,X,Y)
PRINT "TEST= ",TEST
*
Q=INDEX("1234",'A',1)
PRINT "Q= ",Q
BASIC Statements and Functions 6-313

INDEX function
* The substring cannot be found.
*
POS=INDEX('222','2',4)

PRINT "POS= ",POS
* The occurrence (4) of the substring does not exist.

This is the program output:

P= 12
TEST= 14
Q= 0
POS= 0
6-314 BASIC Guide

INDEXS function
INDEXS

Syntax
INDEXS (dynamic.array, substring, occurrence)

CALL −INDEXS (return.array, dynamic.array, substring, occurrence)

CALL !INDEXS (return.array, dynamic.array, substring, occurrence)

Description
Use the INDEXS function to return a dynamic array of the starting column posi-
tions for a specified occurrence of a substring in each element of dynamic.array.

Each element is examined for substring.

occurrence specifies which occurrence of substring is to be located.

When substring is found, and if it meets the occurrence criterion, the starting
column position of the substring is returned. If substring is an empty string, 1 is
returned. If the specified occurrence of substring cannot be found, 0 is returned.

If dynamic.array evaluates to the null value, 0 is returned. If any element of
dynamic.array is null, 0 is returned for that element. If occurrence is the null value,
the INDEXS function fails and the program terminates with a run-time error
message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
BASIC Statements and Functions 6-315

INDICES function
INDICES

Syntax

INDICES (file.variable [,indexname])

Description
Use the INDICES function to return information about the secondary key indexes
in a file.

file.variable specifies an open file.

indexname is the name of a secondary index in the specified file.

If only file.variable is specified, a dynamic array is returned that contains the index
names of all secondary indexes for the file. The index names are separated by field
marks. If file.variable has no indexes, an empty string is returned.

If indexname is specified, information is returned in a dynamic array for indexname.
Field 1 of the dynamic array contains the following information:

Field 1 of Dynamic Arrays

Value Value can be… Description

Value 1 D
I
A
S
C

SQL

Data descriptor index.
I-descriptor index.
A-descriptor index.
S-descriptor index.
A- or S-descriptor index with
correlative in field 8.
SQL index.

Value 2 1
empty

Index needs rebuilding.
Index does not need rebuilding.

Value 3 1
empty

Empty strings are not indexed.
Empty strings are indexed.

Value 4 1
empty

Automatic updating enabled.
Automatic updating disabled.

Value 5 pathname
empty

Full pathname of the index file.
File is a distributed file.

Value 6 1
empty

Updates are pending.
No updates pending.
6-316 BASIC Guide

INDICES function
If Value 1 of Field 1 is D, A, or S, Field 2 contains the field location (that is, the field
number), and Field 6 contains either S (single-valued field) or M (multivalued
field).

If Value 1 of Field 1 is I or SQL, the other fields of the dynamic array contain the
following information, derived from the I-descriptor in the file dictionary:

Value 7 L
R

Left-justified.
Right-justified.

Value 8 N
U

Nonunique.
Unique.

Value 9 part numbers Subvalued list of distributed file
part numbers.

Value 10 1Index needs building
emptyNo build needed

Subvalued list corresponding to
subvalues in Value 9.

Value 11 1Empty strings not indexed
emptyEmpty strings indexed

Subvalued list corresponding to
subvalues in Value 9.

Value 12 1Updating enabled
emptyUpdating disabled

Subvalued list corresponding to
subvalues in Value 9.

Value 13 index pathnames Subvalued list of pathnames for
indexes on distributed file part
files, corresponding to
subvalues in Value 9.

Value 14 1Updates pending
emptyNo updates pending

Subvalued list corresponding to
subvalues in Value 9.

Value 15 LLeft-justified
RRight-justified

Subvalued list corresponding to
subvalues in Value 9.

Value 16 NNonunique
UUnique

Subvalued list corresponding to
subvalues in Value 9.

Value 17 collate name Name of the Collate convention
of the index.

Field Value can be…

Field 2 I-type expression

Field 1 of Dynamic Arrays (Continued)

Value Value can be… Description
BASIC Statements and Functions 6-317

INDICES function
If Value 1 of Field 1 is C, the other fields of the dynamic array contain the following
information, derived from the A- or S-descriptor in the file dictionary:

If either file.variable or indexname is the null value, the INDICES function fails and
the program terminates with a run-time error message.

Any file updates executed in a transaction (that is, between a BEGIN TRANSAC-
TION statement and a COMMIT statement) are not accessible to the INDICES
function until after the COMMIT statement has been executed.

If NLS is enabled, the INDICES function reports the name of the current Collate
convention (as specified in the NLS.LC.COLLATE file) in force when the index was
created. See Value 17 in Field 1 for the name of the Collate convention of the index.
For more information about the collate convention, see the DataStage NLS Guide.

Field 3 Output conversion code

Field 4 Column heading

Field 5 Width, justification

Field 6 S – single-valued field
M – multivalued field

Field 7 Association name

Fields 8−15 Empty

Fields 16−19 Compiled I-descriptor data

Field 20 Compiled I-descriptor code

Field Value can be…

Field 2 Field number (location of field)

Field 3 Column heading

Field 4 Association code

Fields 5−6 Empty

Field 7 Output conversion code

Field 8 Correlative code

Field 9 L or R (justification)

Field 10 Width of display column

Field Value can be…
6-318 BASIC Guide

INMAT function
INMAT

Syntax

INMAT ([array])

Description
Use the INMAT function to return the number of array elements that have been
loaded after the execution of a MATREAD, MATREADL, MATREADU, or
MATPARSE statement, or to return the modulo of a file after the execution of an
OPEN statement. You can also use the INMAT function after a DIM statement to
determine whether the DIM statement failed due to lack of available memory. If a
preceding DIM statement fails, INMAT returns a value of 1.

If the matrix assignment exceeds the number of elements specified in its dimen-
sioning statement, the zero element is loaded by the MATREAD, MATREADL,
MATREADU, or MATPARSE statement. If the array dimensioning is too small and
the zero element has been loaded, the INMAT function returns a value of 0.

If array is specified, the INMAT function returns the current dimensions of the
array. If array is the null value, the INMAT function fails and the program termi-
nates with a run-time error message.

Example
DIM X(6)
D='123456'
MATPARSE X FROM D,''
Y=INMAT()
PRINT 'Y= ':Y
*
DIM X(5)
A='CBDGFH'
MATPARSE X FROM A,''
C=INMAT()
PRINT 'C= ':C
*
OPEN '','VOC' TO FILE ELSE STOP
T=INMAT()
PRINT 'T= ':T
BASIC Statements and Functions 6-319

INMAT function
This is the program output:

Y= 6
C= 0
T= 23
6-320 BASIC Guide

INPUT statement
INPUT

Syntax

INPUT variable [,length] [:] [_]

INPUT @ (col, row) [, | :] variable [,length] [:] [format] [_]

INPUTIF @ (col, row) [, | :] variable [,length] [:] [format] [_]

[THEN statements] [ELSE statements]

Description
Use the INPUT statement to halt program execution and prompt the user to enter
a response. Data entered at the terminal or supplied by a DATA statement in
response to an INPUT statement is assigned to variable. Input supplied by a DATA
statement is echoed to the terminal. If the response is a RETURN with no preceding
data, an empty string is assigned to variable.

The INPUT statement has two syntaxes. The first syntax displays a prompt and
assigns the input to variable. The second syntax specifies the location of the input
field on the screen and lets you display the current value of variable. Both the
current value and the displayed input can be formatted.

Use the INPUTIF statement to assign the contents of the type-ahead buffer to a
variable. If the type-ahead buffer is empty, the ELSE statements are executed,
otherwise any THEN statements are executed.

Use the @ expression to specify the position of the input field. The prompt is
displayed one character to the left of the beginning of the field, and the current
value of variable is displayed as the value in the input field. The user can edit the
displayed value or enter a new value. If the first character typed in response to the
prompt is an editing key, the user can edit the contents of the field. If the first char-
acter typed is anything else, the field’s contents are deleted and the user can enter
a new value. Editing keys are defined in the terminfo files; they can also be defined
by the KEYEDIT statement. Calculations are based on display length rather than
character length.

col and row are expressions that specify the column and row positions of the input
prompt. The prompt is positioned one character to the left of the input field.
Because the prompt character is positioned to the left of the col position, you must
set the prompt to the empty string if you want to use column 0. Otherwise, the
screen is erased before the prompt appears.
BASIC Statements and Functions 6-321

INPUT statement
length specifies the maximum number of characters allowed as input. When the
maximum number of characters is entered, input is terminated. If the @ expression
is used, the newline is suppressed.

If length evaluates to less than 0 (for example, −1), the input buffer is tested for the
presence of characters. If characters are present, variable is set to 1, otherwise it is
set to 0. No input is performed.

If you use the underscore (_) with the length expression, the user must enter the
RETURN manually at the terminal when input is complete. Only the specified
number of characters is accepted.

Use a format expression to validate input against a format mask and to format the
displayed input field. The syntax of the format expression is the same as that for
the FMT function. If you specify a length expression together with a format expres-
sion, length checking is performed. If input does not conform to the format mask,
an error message appears at the bottom of the screen, prompting the user for the
correct input.

The colon (:) suppresses the newline after input is terminated. This allows
multiple input prompts on a single line.

The default prompt character is a question mark. Use the PROMPT statement to
reassign the prompt character.

The INPUT statement prints only the prompt character on the screen. To print a
variable name or prompt text along with the prompt, precede the INPUT statement
with a PRINT statement.

The INPUT statement lets the user type ahead when entering a response. Users
familiar with a sequence of prompts can save time by entering data at their own
speed, not waiting for all prompts to be displayed. Responses to a sequence of
INPUT prompts are accepted in the order in which they are entered.

If col, row, length, or format evaluate to the null value, the INPUT statement fails and
the program terminates with a run-time error message. If variable is the null value
and the user types the TRAP key, null is retained as the value of variable.

If NLS is enabled, INPUT @ displays the initial value of an external multibyte char-
acter set through the mask as best as possible. If the user enters a new value, mask
disappears, and an input field of the approximate length (not including any
inserted characters) is entered. For details about format and mask, see the
FMTDPfunction.
6-322 BASIC Guide

INPUT statement
Only backspace and kill are supported for editing functions when using a format
mask with input. When the user finishes the input, the new value is redisplayed
through the mask in the same way as the original value. For more information
about NLS in BASIC programs, see the DataStage NLS Guide.

PICK Flavor
In a PICK flavor account, the syntax of the INPUT and INPUT @ statements
includes THEN and ELSE clauses:

INPUT variable [,length] [:] [_] [THEN statements] [ELSE statements]

INPUT @ (col, row) [, | :] variable [,length] [:] [format] [_]

[THEN statements] [ELSE statements]

To use THEN and ELSE clauses with INPUT statements in other flavors, use the
INPUT.ELSE option of the $OPTIONS statement.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavors, values supplied by aDATA statement are not
echoed. To suppress echoing input from DATA statements in IDEAL and INFOR-
MATION flavors, use the SUPP.DATA.ECHO option of the $OPTIONS statement.

Examples
In the following examples of program output, bold type indicates words the user
types. In the first example the value entered is assigned to the variable NAME:

Source Lines Program Output

INPUT NAME
PRINT NAME

? Dave
Dave
BASIC Statements and Functions 6-323

INPUT statement
In the next example the value entered is assigned to the variable CODE. Only the
first seven characters are recognized. A RETURN and a LINEFEED automatically
occur.

In the next example the user can enter more than two characters. The program
waits for a RETURN to end input, but only the first two characters are assigned to
the variable YES.

In the next example the colon inhibits the automatic LINEFEED after the RETURN:

In the next example the input buffer is tested for the presence of characters. If char-
acters are present, VAR is set to 1, otherwise it is set to 0. No input is actually done.

Source Lines Program Output

INPUT CODE, 7
PRINT CODE

? 1234567
1234567

Source Lines Program Output

INPUT YES, 2_
PRINT YES

? 1234
12

Source Lines Program Output

INPUT YES, 2_:
PRINT "=",YES

? HI THERE =HI

Source Lines Program Output

INPUT VAR, -1
PRINT VAR

0

6-324 BASIC Guide

INPUT statement
In the next example the PRINT statement puts INPUT NAME before the input
prompt:

In the next example the contents of X are displayed at column 5, row 5 in a field of
10 characters. The user edits the field, replacing its original contents (CURRENT)
with new contents (NEW). The new input is displayed. If the PRINT statement
after the INPUT statement were not used, X would be printed immediately
following the input field on the same line, since INPUT with the @ expression does
not execute a LINEFEED after a RETURN.

Source Lines Program Output

PRINT "INPUT NAME":
INPUT NAME
PRINT NAME

INPUT NAME? Dave
Dave

Source Lines Program Output

PRINT @(-1)
X = "CURRENT"
INPUT @(5,5) X,10
PRINT
PRINT X

 ?NEW_______
NEW
BASIC Statements and Functions 6-325

INPUTCLEAR statement
INPUTCLEAR

Syntax
INPUTCLEAR

Description
Use the INPUTCLEAR statement to clear the type-ahead buffer. You can use this
statement before input prompts so input is not affected by unwanted characters.

Example
PRINT "DO YOU WANT TO CONTINUE (Y/N)?"
INPUTCLEAR
INPUT ANSWER, 1
6-326 BASIC Guide

INPUTDISP statement
INPUTDISP

Syntax

INPUTDISP [@(col, row) [, | :]] variable [format]

Description
Use the INPUTDISP statement with an @ expression to position the cursor at a
specified location and define a format for the variable to print. The current contents
of variable are displayed as the value in the defined field. Calculations are based on
display length rather than character length.

col specifies the column position, and row specifies the row position.

format is an expression that defines how the variable is to be displayed in the
output field. The syntax of the format expression is the same as that for the FMT
function.

Example
PRINT @(-1)
X = "CURRENT LINE"
INPUTDISP @(5,5),X"10T"

The program output on a cleared screen is:

CURRENT
 LINE
BASIC Statements and Functions 6-327

INPUTDP statement
INPUTDP

Syntax

INPUTDP variable [, length] [:] [_] [THEN statements] [ELSE statements]

Description
In NLS mode, use the INPUTDP statement to let the user enter data. The INPUTDP
statement is similar to the INPUT, INPUTIF, and INPUTDISPstatements, but it
calculates display positions rather than character lengths.

variable contains the input from a user prompt.

length specifies the maximum number of characters in display length allowed as
input. INPUTDP calculates the display length of the input field based on the
current terminal map. When the specified number of characters is entered, an auto-
matic newline is executed.

The colon (:) executes the RETURN, suppressing the newline. This allows
multiple input prompts on a single line.

If you use the underscore (_), the user must enter the RETURN manually when
input is complete, and the newline is not executed.

For more information about display length, see the DataStage NLS Guide.
6-328 BASIC Guide

INPUTERR statement
INPUTERR

Syntax

INPUTERR [error.message]

Description
Use the INPUTERR statement to print a formatted error message on the bottom
line of the terminal. error.message is an expression that evaluates to the error
message text. The message is cleared by the next INPUT statement or is over-
written by the next INPUTERR or PRINTERR statement. INPUTERR clears the
type-ahead buffer.

error.message can be any BASIC expression. The elements of the expression can be
numeric or character strings, variables, constants, or literal strings. The null value
cannot be output. The expression can be a single expression or a series of expres-
sions separated by commas (,) or colons (:) for output formatting. If no error
message is designated, a blank line is printed. If error.message evaluates to the null
value, the default error message is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default
tabstop setting is 10 characters. For information about changing the default setting,
see the TABSTOP statement. Multiple commas can be used together to cause
multiple tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following
the colon is printed immediately after the expression preceding the colon.
BASIC Statements and Functions 6-329

INPUTIF statement
INPUTIF
Use the INPUTIF statement to assign the contents of the type-ahead buffer to a
variable. For details, see the INPUT statement.
6-330 BASIC Guide

INPUTNULL statement
INPUTNULL

Syntax
INPUTNULL character

Description
Use the INPUTNULL statement to define a character to be recognized as an empty
string when it is input in response to an INPUT statement. If the only input to the
INPUT statement is character, that character is recognized as an empty string. char-
acter replaces the default value of the INPUT variable with an empty string. If
character evaluates to the null value, the INPUTNULL statement fails and the
program terminates with a run-time error message.

You can also assign an empty string to the variable used in theINPUT @ statement
before executing the INPUT @. In this case entering a RETURN leaves the variable
set to the empty string.

Note: Although the name of this statement is INPUTNULL, it does not define
character to be recognized as the null value. It defines it to be recognized as
an empty string.
BASIC Statements and Functions 6-331

INPUTTRAP statement
INPUTTRAP

Syntax

INPUTTRAP [trap.chars] {GOTO | GOSUB} label [,label …]

Description
Use the INPUTTRAP statement to branch to a program label or subroutine when
a trap character is input. Execution is passed to the statement label which corre-
sponds to the trap number of the trap character. If the trap number is larger than
the number of labels, execution is passed to the statement specified by the last label
in the list.

trap.chars is an expression that evaluates to a string of characters, each of which
defines a trap character. The first character in the string is defined as trap one.
Additional characters are assigned consecutive trap numbers. Each trap character
corresponds to one of the labels in the label list. If trap.chars evaluates to the null
value, the INPUTTRAP statement fails and the program terminates with a run-
time error message.

Using GOTO causes execution to be passed to the specified statement label.
Control is not returned to the INPUTTRAP statement except by the use of another
trap. Using GOSUB causes execution to be passed to the specified subroutine, but
control can be returned to the INPUTTRAP statement by a RETURN (value) state-
ment. Control is returned to the statement following the INPUTTRAP statement,
not the INPUT @ statement that received the trap.
6-332 BASIC Guide

INS statement
INS

Syntax

INS expression BEFORE dynamic.array < field# [,value# [,subvalue#]] >

Description
Use the INS statement to insert a new field, value, or subvalue into the specified
dynamic.array.

expression specifies the value of the new element to be inserted.

dynamic.array is an expression that evaluates to the dynamic array to be modified.

field#, value#, and subvalue# specify the type and position of the new element to be
inserted and are called delimiter expressions.

There are three possible outcomes of the INS statement, depending on the delim-
iter expressions specified.

Case 1: If both value# and subvalue# are omitted or are 0, INS inserts a new
field with the value of expression into the dynamic array.

• If field# is positive and less than or equal to the number of
fields in dynamic.array, the value of expression followed by a
field mark is inserted before the field specified by field#.

• If field# is −1, a field mark followed by the value of expression is
appended to the last field in dynamic.array.

• If field# is positive and greater than the number of fields in
dynamic.array, the proper number of field marks followed by
the value of expression are appended so that the value of field#
is the number of the new field.

Case 2: If value# is nonzero and subvalue# is omitted or is 0, INS inserts a new
value with the value of expression into the dynamic array.

• If value# is positive and less than or equal to the number of
values in the field, the value of expression followed by a value
mark is inserted before the value specified by value#.

• If value# is −1, a value mark followed by the value of expression
is appended to the last value in the field.
BASIC Statements and Functions 6-333

INS statement
If all delimiter expressions are 0, the original string is returned.

In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if expression is an empty
string and the new element is appended to the end of the dynamic array, the end
of a field, or the end of a value, the dynamic array, field, or value is left unchanged.
Additional delimiters are not appended. Use the EXTRA.DELIM option of the
$OPTIONS statements to make the INS statement append a delimiter to the
dynamic array, field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If
dynamic.array evaluates to the null value, it remains unchanged by the insertion. If
the INS statement references a subelement of an element whose value is the null
value, the dynamic array is unchanged.

If any delimiter expression is the null value, the INS statement fails and the
program terminates with a run-time error message.

INFORMATION and IN2 Flavors
In INFORMATION and IN2 flavor accounts, if expression is an empty string and the
new element is appended to the end of the dynamic array, the end of a field, or the

• If value# is positive and greater than the number of values in
the field, the proper number of value marks followed by the
value of expression are appended to the last value in the speci-
fied field so that the number of the new value in the field is
value#.

Case 3: If field#, value#, and subvalue# are all specified, INS inserts a new
subvalue with the value of expression into the dynamic array.

• If subvalue# is positive and less than or equal to the number of
subvalues in the value, the value of expression following by a
subvalue mark is inserted before the subvalue specified by
subvalue#.

• If subvalue# is −1, a subvalue mark followed by expression is
appended to the last subvalue in the value.

• If subvalue# is positive and greater than the number of
subvalues in the value, the proper number of subvalue marks
followed by the value of expression are appended to the last
subvalue in the specified value so that the number of the new
subvalue in the value is subvalue#.
6-334 BASIC Guide

INS statement
end of a value, a delimiter is appended to the dynamic array, field, or value. Use
the −EXTRA.DELIM option of the $OPTIONS statement to make the INS statement
work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.

The first example inserts the character # before the first field and sets Q to
#FFF1V2V3S6F9F5F7V3:

R=@FM:@FM:1:@VM:2:@VM:3:@SM:6:@FM:9:@FM:5:@FM:7:@VM:3
Q=R
INS "#" BEFORE Q<1,0,0>

The next example inserts a # before the third value of field 3 and sets the value of
Q to FF1V2V#V3S6F9F5F7V3:

Q=R
INS "#" BEFORE Q<3,3,0>

The next example inserts a value mark followed by a # after the last value in the
field and sets Q to FF1V2V3S6F9V#F5F7V3:

Q=R
INS "#" BEFORE Q<4,-1,0>

The next example inserts a # before the second subvalue of the second value of field
3 and sets Q to FF1V2S#V3S6F9F5F7V3:

Q=R
INS "#" BEFORE Q<3,2,2>
BASIC Statements and Functions 6-335

INSERT function
INSERT

Syntax
INSERT (dynamic.array, field#, value#, subvalue#, expression)

INSERT (dynamic.array, field# [,value# [,subvalue#]] ; expression)

Description
Use the INSERT function to return a dynamic array that has a new field, value, or
subvalue inserted into the specified dynamic array.

dynamic.array is an expression that evaluates to a dynamic array.

field#, value#, and subvalue# specify the type and position of the new element to be
inserted and are called delimiter expressions. value# and subvalue# are optional, but
if either is omitted, a semicolon (;) must precede expression, as shown in the
second syntax line.

expression specifies the value of the new element to be inserted.

There are three possible outcomes of the INSERT function, depending on the
delimiter expressions specified.

Case 1: If both value# and subvalue# are omitted or are 0, INSERT inserts a
new field with the value of expression into the dynamic array.

• If field# is positive and less than or equal to the number of
fields in dynamic.array, the value of expression followed by a
field mark is inserted before the field specified by field#.

• If field# is −1, a field mark followed by the value of expression is
appended to the last field in dynamic.array.

• If field# is positive and greater than the number of fields in
dynamic.array, the proper number of field marks followed by
the value of expression are appended so that the value of field#
is the number of the new field.

Case 2: If value# is nonzero and subvalue# is omitted or is 0, INSERT inserts a
new value with the value of expression into the dynamic array.

• If value# is positive and less than or equal to the number of
values in the field, the value of expression followed by a value
mark is inserted before the value specified by value#.
6-336 BASIC Guide

INSERT function
In IDEAL, PICK, PIOPEN, and REALITY accounts, if expression is an empty string
and the new element is appended to the end of the dynamic array, the end of a
field, or the end of a value, the dynamic array, field, or value is left unchanged.
Additional delimiters are not appended. Use the EXTRA.DELIM option of the
$OPTIONS statement to make the INSERT function append a delimiter to the
dynamic array, field, or value.

If expression evaluates to the null value, null is inserted into dynamic.array. If
dynamic.array evaluates to the null value, it remains unchanged by the insertion. If
any delimiter expression is the null value, the INSERT function fails and the
program terminates with a run-time error message.

INFORMATION and IN2 Flavors
In INFORMATION and IN2 flavor accounts, if expression is an empty string and the
new element is appended to the end of the dynamic array, the end of a field, or the
end of a value, a delimiter is appended to the dynamic array, field, or value. Use

• If value# is −1, a value mark followed by the value of expression
is appended to the last value in the field.

• If value# is positive and greater than the number of values in
the field, the proper number of value marks followed by the
value of expression are appended to the last value in the speci-
fied field so that the number of the new value in the field is
value#.

Case 3: If field#, value#, and subvalue# are all specified, INSERT inserts a new
subvalue with the value of expression into the dynamic array.

• If subvalue# is positive and less than or equal to the number of
subvalues in the value, the value of expression following by a
subvalue mark is inserted before the subvalue specified by
subvalue#.

• If subvalue# is −1, a subvalue mark followed by expression is
appended to the last subvalue in the value.

• If subvalue# is positive and greater than the number of
subvalues in the value, the proper number of subvalue marks
followed by the value of expression are appended to the last
subvalue in the specified value so that the number of the new
subvalue in the value is subvalue#.
BASIC Statements and Functions 6-337

INSERT function
the −EXTRA.DELIM option of the $OPTIONS statement to make the INSERT func-
tion work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.

The first example inserts the character # before the first field and sets Q to
#FFF1V2V3S6F9F5F7V:

R=@FM:@FM:1:@VM:2:@VM:3:@SM:6:@FM:9:@FM:5:@FM:7:@VM:3
Q=INSERT(R,1,0,0,"#")

The next example inserts a # before the third value of field 3 and sets the value of
Q to FF1V2V#V3S6F9F5F7V3:

Q=INSERT(R,3,3;"#")

The next example inserts a value mark followed by a # after the last value in the
field and sets Q to FF1V2V3S6F9V#F5F7V3:

Q=INSERT(R,4,-1,0,"#")

The next example inserts a # before the second subvalue of the second value of field
3 and sets Q to FF1V2S#V3S6F9F5F7V3:

Q=INSERT(R,3,2,2;"#")
6-338 BASIC Guide

INT function
INT

Syntax
INT (expression)

Description
Use the INT function to return the integer portion of an expression.

expression must evaluate to a numeric value. Any arithmetic operations specified
are calculated using the full accuracy of the system. The fractional portion of the
value is truncated, not rounded, and the integer portion remaining is returned.

If expression evaluates to the null value, null is returned.

Example
PRINT "123.45 ", INT(123.45)
PRINT "454.95 ", INT(454.95)

This is the program output:

123.45 123
454.95 454
BASIC Statements and Functions 6-339

ISNULL function
ISNULL

Syntax
ISNULL (variable)

Description
Use the ISNULL function to test whether a variable is the null value. If variable is
the null value, 1 (true) is returned, otherwise 0 (false) is returned. This is the only
way to test for the null value since the null value is not equal to any value,
including itself.

Example
X = @NULL
Y = @NULL.STR
PRINT ISNULL(X), ISNULL(Y)

This is the program output:

1 0
6-340 BASIC Guide

ISNULLS function
ISNULLS

Syntax
ISNULLS (dynamic.array)

CALL –ISNULLS (return.array, dynamic.array)

Description
Use the ISNULLS function to test whether any element of dynamic.array is the null
value. A dynamic array is returned, each of whose elements is either 1 (true) or 0
(false). If an element in dynamic.array is the null value, 1 is returned, otherwise 0 is
returned. This is the only way to test for the null value since the null value is not
equal to any value, including itself.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
DA = ""
FOR I = 1 TO 7

DA := I:@FM
IF I = 5 THEN DA := @NULL.STR:@FM

NEXT I
PRINT ISNULLS(DA)

This is the program output:

0F0F0F0F0F1F0F0F0
BASIC Statements and Functions 6-341

ITYPE function
ITYPE

Syntax
ITYPE (i.type)

Description
Use the ITYPE function to return the value resulting from the evaluation of an
I-descriptor expression in a DataStage file dictionary.

i.type is an expression evaluating to the contents of the compiled I-descriptor. The
I-descriptor must have been compiled before the ITYPE function uses it, otherwise
you get a run-time error message.

i.type can be set to the I-descriptor to be evaluated in several ways. One way is to
read the I-descriptor from a file dictionary into a variable, then use the variable as
the argument to the ITYPE function. If the I-descriptor references a record ID, the
current value of the system variable @ID is used. If the I-descriptor references field
values in a data record, the data is taken from the current value of the system vari-
able @RECORD.

To assign field values to @RECORD, read a record from the data file into
@RECORD before invoking the ITYPE function.

If i.type evaluates to the null value, the ITYPE function fails and the program termi-
nates with a run-time error message.

Example
This is the SUN.MEMBER file contents:

AW
F1: ACCOUNTING
TRX
F1: MARKETING
JXA
F1: SALES

This is the DICT.ITME contents:

DEPARTMENT
F1:D
2:1
3:
4:
6-342 BASIC Guide

ITYPE function
5:10L
6:L

This is the program source code:

OPEN 'SUN.MEMBER' TO FILE ELSE STOP
OPEN 'DICT','SUN.MEMBER' TO D.FILE ELSE STOP
*
READ ITEM.ITYPE FROM D.FILE, 'DEPARTMENT' ELSE STOP
*
EXECUTE 'SELECT SUN.MEMBER'
LOOP
READNEXT @ID DO
*

READ @FRECORD FROM FILE, @ID THEN
*
PRINT @ID: "WORKS IN DEPARTMENT" ITYPE(ITEM.ITYPE)
END

REPEAT
STOP
END

This is the program output:

3 records selected to Select List #0
FAW WORKS IN DEPARTMENT ACCOUNTING
TRX WORKS IN DEPARTMENT MARKETING
JXA WORKS IN DEPARTMENT SALES
BASIC Statements and Functions 6-343

KEYEDIT statement
KEYEDIT

Syntax

KEYEDIT (function, key) [,(function, key)] …

Description
Use the KEYEDIT statement to assign specific keyboard keys to the editing func-
tions of the INPUT @ statement, and to the !EDIT.INPUT and !GET.KEY
subroutines. KEYEDIT supports the following editing functions:

• Left arrow (<—)
• Enter (Return)
• Back space
• Right arrow (—>)
• Insert character
• Delete character
• Insert mode on
• Insert mode off
• Clear field
• Erase to end-of-line
• Insert mode toggle

In addition to the supported editing functions, two codes exist to designate the Esc
and function keys.

function is an expression that evaluates to a numeric code assigned to a particular
editing function.

Code Function

1 Function key

2 Left arrow (<—)

3 Return key

4 Back space

5 Esc key

6 Right arrow (—>)

7 Insert character

8 Delete character
6-344 BASIC Guide

KEYEDIT statement
key is an expression evaluating to a decimal value that designates the keyboard key
to assign to the editing function. There are three key types, described in the
following table:

If either function or key evaluates to the null value or an empty string, the KEYEDIT
statement fails, the program terminates, and a run-time error message is produced.

To define key, you must know the ASCII value generated by the keyboard on the
terminal being used. Once you know the ASCII code sequence generated by a
particular keyboard key, you can use one of the following three methods for
deriving the numeric key value.

Defining Control Keys
A control key is one whose ASCII value falls within the range of 1 through 31.
Generally keys of this type consist of pressing a keyboard key while holding down
the Ctrl key. The key value is the ASCII code value, i.e., Ctrl-A is 1, Ctrl-M is 13, etc.

9 Insert mode ON

10 Insert mode OFF

11 Clear from current position to end-of-line

12 Erase entire line

13 Insert mode toggle

Type Decimal Value Description

Control 1 through 31 Single character control codes ASCII 1 through
31.

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127
(see “Defining Escape Keys”).

Function 160 through
2,139,062,303

Consists of the characters defined by the
FUNCTION key followed by the ASCII value 0
through 127. You can specify up to four ASCII
values for complex keys (see “Defining Func-
tion Keys”).

Code Function
BASIC Statements and Functions 6-345

KEYEDIT statement
Defining Escape Keys
An escape key is one which consists of pressing the Esc key followed by a single
ASCII value. The Esc key can be defined by issuing a KEYEDIT statement using a
function value of 5 and the ASCII value of the escape character for the key param-
eter, e.g., KEYEDIT (5,27).

The key value for an escape key is derived by adding the ASCII value of the char-
acter following the Esc key and 32. The constant 32 is added to ensure that the final
key value falls within the range of 32 to 159, i.e., Esc-a is 33 (1+32), Esc-z is 122
(90+32), Esc-p is 144 (112+32), and so on.

Defining Function Keys
A function key is similar to an escape key but consists of a function key followed
by one or more ASCII values. The function key can be defined by issuing a
KEYEDIT statement using a function value of 1 and the ASCII value of the function
character for the key parameter, e.g., KEYEDIT(1,1).

Deriving the key value for a function key depends on the number of characters in
the sequence the keyboard key generates. Because the KEYEDIT statement recog-
nizes function keys that generate character sequences up to five characters long,
the following method can be used to derive the key value.

Assume that keyboard key F7 generates the following character sequence:

Ctrl-A] 6 ~ <Return>

This character sequence is to be assigned to the Clear Field functionality of the
INPUT @ statement. It can be broken into five separate characters, identified as
follows:

Character ASCII Value Meaning

Ctrl-A 1 The preamble character (defines the function key)

] 93 The first character

6 54 The second character

~ 126 The third character

<Return> 10 The fourth character
6-346 BASIC Guide

KEYEDIT statement
First you define the function key value. Do this by issuing the KEYEDIT statement
with a function value of 1 and with a key value defined as the ASCII value of the
preamble character, i.e., KEYEDIT (1, 1).

Once you define the function key, the following formula is applied to the
remaining characters in the sequence:

ASCII value * (2(8*(character position – 1))

Using the example above:

The results of each calculation are then added together. Finally, the constant 160 is
added to insure that the final key parameter value falls within the range of 160
through 2,139,062,303. For our example above, this would yield 176,043,613 + 160,
or 176,043,773. To complete this example and assign this key to the Clear Field
functionality, use the following KEYEDIT statement:

KEYEDIT (11, 176043773)

Historically, key values falling in the range of 160 through 287 included an implied
Return, as there was no method for supporting multiple character sequences. With
the support of multiple character sequences, you must now include the Return in
the calculation for proper key recognition, with one exception. For legacy key
values that fall within the range of 160 through 287, a Return is automatically
appended to the end of the character sequence, yielding an internal key parameter
of greater value.

Key ASCII Formula Intermediate Result Final Result

] 93 * (2(8*(1-1)) = 93 * (20) = 93 * 1 = 93

6 54 * (2(8*(2-1)) = 54 * (28) = 54 * 256 = 13,824

~ 126 * (2(8*(3-1)) = 126 * (216) = 126 * 65,536 = 8,257,536

<cr> 10 * (2(8*(4-1)) = 10 * (224) = 10 * 16,777,216 = 167,772,160

176,043,613

+ 160

========

176,043,773
BASIC Statements and Functions 6-347

KEYEDIT statement
A function key generates the character sequence:

Ctrl-A B <Return>

Before supporting multiple character sequences, this function key would have
been defined as:

KEYEDIT (1, 1), (11, 225)

(1,1) defined the preamble of the function key, and (11, 225) defined the Clear-to-
end-of-line key. The 225 value was derived by adding 160 to B (ASCII 65). The
<Return> (ASCII 10) was implied. This can be shown by using the SYSTEM(1050)
function to return the internal trap table contents:

The value 2785 is derived as follows:

(65 * 1) + (10 * 256) + 160 = 65 + 2560 + 160 = 2785.

Defining Unsupported Keys
You can use the KEYEDIT statement to designate keys that are recognized as
unsupported by the !EDIT.INPUT subroutine. When the !EDIT.INPUT subroutine
encounters an unsupported key, it sounds the terminal bell.

An unsupported key can be any of the three key types:

• Control key
• Escape key
• Function key

Define an unsupported key by assigning any negative decimal value for the func-
tion parameter.

The key parameter is derived as described earlier.

See the !EDIT.INPUT or !GET.KEY subroutine for more information.

Type Value Key

0 1 3 10

1 1 3 13

2 1 1 1

3 1 11 2785
6-348 BASIC Guide

KEYEDIT statement
Retrieving Defined Keys
The SYSTEM(1050) function returns a dynamic array of defined KEYEDIT,
KEYEXIT and KEYTRAP keys. Field marks (ASCII 254) delimit the elements of the
dynamic array. Each field in the dynamic array has the following structure:

key.typeVfunction.parameterVkey.parameter

key.type is one of the following values:

function.parameter and key.parameter are the values passed as parameters to the
associated statement, except for the INPUTNULL value.

Example
The following example illustrates the use of the KEYEDIT statement and the
SYSTEM(1050) function:

KEYEDIT (1,1), (2,21), (3,13), (4,8), (6,6), (12,176043773)
KEYTRAP (1,2)
keys.dfn=SYSTEM(1050)
PRINT "#","Type","Value","Key"
XX=DCOUNT(keys.dfn,@FM)
FOR I=1 TO XX
print I-1,keys.dfn<I,1>,keys.dfn<I,2>,keys.dfn<I,3>
NEXT I

The program output is:

Type Value Key
0 1 3 10
1 1 3 13
2 1 4 8
3 1 1 1
4 1 2 21

Value Description

1 A KEYEDIT value

2 A KEYTRAP value

3 A KEYEXIT value

4 The INPUTNULL value

5 An unsupported value
BASIC Statements and Functions 6-349

KEYEDIT statement
5 1 6 6
6 1 12 176043773
7 2 1 2
6-350 BASIC Guide

KEYEXIT statement
KEYEXIT

Syntax

KEYEXIT (value, key) [, (value, key)] …

Description
Use the KEYEXIT statement to specify exit traps for the keys assigned specific
functions by the KEYEDIT statement. When an exit trap key is typed, the variable
being edited with the INPUT@ statement or the !EDIT.INPUT subroutine remains
in its last edited state. Use the KEYTRAP statement to restore the variable to its
initial state.

value is an expression that specifies a user-defined trap number for each key
assigned by the KEYEDIT statement.

key is a decimal value that designates the specific keyboard key assigned to the
editing function. There are three key types, described in the following table:

See the KEYEDITstatement for how to derive the decimal value of control, escape,
and function keys.

If either the value or key expression evaluates to the null value or an empty string,
the KEYEXIT statement fails, the program terminates, and a run-time error
message is produced.

KEYEXIT sets the STATUS function to the trap number of any trap key typed by
the user.

Type Decimal Value Description

Control 1 through 31 Single character control codes ASCII 1 through
31.

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127.

Function 160 through
2,139,062,303

Consists of the characters defined by the func-
tion key followed by the ASCII value 0 through
127. A maximum of four ASCII values can be
specified for complex keys.
BASIC Statements and Functions 6-351

KEYEXIT statement
Examples
The following example sets up Ctrl-B as an exit trap key. The STATUS function is
set to 1 when the user types the key.

KEYEXIT (1,2)

The next example sets up Ctrl-K as an exit trap key. The STATUS function is set to
2 when the user types the key.

KEYEXIT (2,11)
6-352 BASIC Guide

KEYIN function
KEYIN

Syntax
KEYIN ()

Description
Use the KEYIN function to read a single character from the input buffer and return
it. All special character handling (such as case inversion, erase, kill, and so on) is
disabled. UNIX special character handling (processing of interrupts, XON/XOFF,
conversion of CR to LF, and so on) still takes place.

Calculations are based on display length rather than character length.

No arguments are required with the KEYIN function; however, parentheses are
required.
BASIC Statements and Functions 6-353

KEYTRAP statement
KEYTRAP

Syntax

KEYTRAP (value, key) [, (value, key)] …

Description
Use the KEYTRAP statement to specify traps for the keys assigned specific func-
tions by the KEYEDIT statement. When a trap key is typed, the variable being
edited with the INPUT @ statement or the !EDIT.INPUT subroutine is restored to
its initial state. Use the KEYEXIT statement to leave the variable in its last edited
state.

value is an expression that evaluates to a user-defined trap number for each key
assigned by the KEYEDIT statement.

key is a decimal value which designates the specific keyboard key assigned to the
editing function. There are three key types, described in the following table:

See the KEYEDIT statement for how to derive the decimal value of control, escape,
and function keys.

If either the value or key expression evaluates to the null value or an empty string,
the KEYEXIT statement fails, the program terminates, and a run-time error
message is produced.

KEYTRAP sets the STATUS function to the trap number of any trap key typed by
the user.

Type Decimal Value Description

Control 1 through 31 Single character control codes ASCII 1 through
31.

Escape 32 through 159 Consists of the characters defined by the Esc
key followed by the ASCII value 0 through 127.

Function 160 through
2,139,062,303

Consists of the characters defined by the func-
tion key followed by the ASCII value 0 through
127. A maximum of four ASCII values may be
specified for complex keys.
6-354 BASIC Guide

KEYTRAP statement
Examples
The following example sets up Ctrl-B as a trap key. The STATUS function is set to
1 when the user types the key.

KEYTRAP (1, 2)

The next example defines function key values for the F1, F2, F3, and F4 keys on a
Wyse 50 terminal:

KEYEDIT (1,1)
KEYTRAP (1,224), (2,225), (3,226), (4,227)
PRINT @(-1)
VALUE = "KEY"
INPUT @ (10,10):VALUE
X=STATUS()
BEGIN CASE

CASE X = 1
 PRINT "FUNCTION KEY 1"
CASE X =2
 PRINT "FUNCTION KEY 2"
CASE X =3
 PRINT "FUNCTION KEY 3"
CASE X =4
 PRINT "FUNCTION KEY 4"

END CASE
PRINT VALUE
STOP
END
BASIC Statements and Functions 6-355

LEFT function
LEFT

Syntax
LEFT (string, n)

Description
Use the LEFT function to extract a substring comprising the first n characters of a
string, without specifying the starting character position. It is equivalent to the
following substring extraction operation:

string [1, length]
If string evaluates to the null value, null is returned. If n evaluates to the null value,
the LEFT function fails and the program terminates with a run-time error message.

Example
PRINT LEFT("ABCDEFGH",3)

This is the program output:

ABC
6-356 BASIC Guide

LEN function
LEN

Syntax
LEN (string)

Description
Use the LEN function to return the number of characters in string. Calculations are
based on character length rather than display length.

string must be a string value. The characters in string are counted, and the count is
returned.

The LEN function includes all blank spaces, including trailing blanks, in the
calculation.

If string evaluates to the null value, 0 is returned.

If NLS is enabled, use the LENDP function to return the length of a string in
display positions rather than character length. FFor more information about
display length, see the DataStage NLS Guide.

Example
P="PORTLAND, OREGON"
PRINT "LEN(P)= ",LEN(P)
*
NUMBER=123456789
PRINT "LENGTH OF NUMBER IS ",LEN(NUMBER)

This is the program output:

LEN(P)= 16
LENGTH OF NUMBER IS 9
BASIC Statements and Functions 6-357

LENDP function
LENDP

Syntax

LENDP (string [,mapname])

Description
In NLS mode, use the LENDP function to return the number of display positions
occupied by string when using the specified map. Calculations are based on
display length rather than character length.

string must be a string value. The display length of string is returned.

mapname is the name of an installed map. If mapname is not installed, the character
length of string is returned.

If mapname is omitted, the map associated with the channel activated by PRINTER
ON is used, otherwise it uses the map for print channel 0. You can also specify
mapname as CRT, AUX, LPTR, and OS. These values use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respec-
tively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in string have a display length of 1.

The LENDP function includes all blank spaces, including trailing blanks, in the
calculation.

If string evaluates to the null value, 0 is returned.

If you use the LENDP function with NLS disabled, the program behaves as if the
LEN function is used. See the LEN function to return the length of a string in char-
acter rather than display positions.

For more information about display length, see the DataStage NLS Guide.
6-358 BASIC Guide

LENS function
LENS

Syntax
LENS (dynamic.array)

CALL −LENS (return.array, dynamic.array)

CALL !LENS (return.array, dynamic.array)

Description
Use the LENS function to return a dynamic array of the number of display posi-
tions in each element of dynamic.array. Calculations are based on character length
rather than display length.

Each element of dyamic.array must be a string value. The characters in each element
of dynamic.array are counted, and the counts are returned.

The LENS function includes all blank spaces, including trailing blanks, in the
calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of
dynamic.array is null, 0 is returned for that element.

If NLS is enabled, use the LENSDP function to return a dynamic array of the
number of characters in each element of dynamic.array in display positions. For
more information about display length, see the DataStage NLS Guide.
BASIC Statements and Functions 6-359

LENSDP function
LENSDP

Syntax

LENSDP (dynamic.array [, mapname])

CALL −LENSDP (return.array, dynamic.array [,mapname])

CALL !LENSDP (return.array, dynamic.array [,mapname])

Description
In NLS mode, use the LENSDP function to return a dynamic array of the number
of display positions occupied by each element of dynamic.array. Calculations are
based on display length rather than character length.

Each element of dynamic.array must be a string value. The display lengths of each
element of dynamic.array are counted, and the counts are returned.

mapname is the name of an installed map. If mapname is not installed, the character
length of string is returned.

If mapname is omitted, the map associated with the channel activated by PRINTER
ON is used, otherwise it uses the map for print channel 0. You can also specify
mapname as CRT, AUX, LPTR, and OS. These values use the maps associated with
the terminal, auxiliary printer, print channel 0, or the operating system, respec-
tively. If you specify mapname as NONE, the string is not mapped.

Any unmappable characters in dynamic.array have a display length of 1.

The LENSDP function includes all blank spaces, including trailing blanks, in the
calculation.

If dynamic.array evaluates to the null value, 0 is returned. If any element of
dynamic.array is null, 0 is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If you use the LENSDP function with NLS disabled, the program behaves as if the
LENS function is used. See the LENS function to return the length of a string in
character length rather than display length.

For more information about display length, see the DataStage NLS Guide.
6-360 BASIC Guide

LES function
LES

Syntax
LES (array1, array2)

CALL −LES (return.array, array1, array2)

CALL !LES (return.array, array1, array2)

Description
Use the LES function to test if elements of one dynamic array are less than or equal
to the elements of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
element from array1 is less than or equal to the element from array2, a 1 is returned
in the corresponding element of a new dynamic array. If the element from array1 is
greater than the element from array2, a 0 is returned. If an element of one dynamic
array has no corresponding element in the other dynamic array, the undefined
element is evaluated as empty, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for
that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
BASIC Statements and Functions 6-361

LET statement
LET

Syntax

[LET] variable = expression

Description
Use the LET statement to assign the value of expression to variable. See “assignment
statements” for more information about assigning values to variables.

Example
LET A=55
LET B=45
LET C=A+B
LET D="55+45="
LET E=D:C
PRINT E

This is the program output:

55+45=100
6-362 BASIC Guide

LN function
LN

Syntax
LN (expression)

Description
Use the LN function to calculate the natural logarithm of the value of an expres-
sion, using base "e". The value of "e" is approximately 2.71828. expression must
evaluate to a numeric value greater than 0.

If expression is 0 or negative, 0 is returned and a warning is printed. If expression
evaluates to the null value, null is returned.

Example
PRINT LN(6)

This is the program output:

1.7918
BASIC Statements and Functions 6-363

LOCALEINFO function
LOCALEINFO

Syntax
LOCALEINFO (category)

Description
In NLS mode, use the LOCALEINFO function to retrieve the settings of the current
locale.

category is one of the following tokens that are defined in the DataStage include file
UVNLSLOC.H:

If the specified category is set to OFF, LOCALEINFO returns the string OFF.

If the LOCALEINFO function fails to execute, LOCALEINFO returns one of the
following:

For more information about locales, see the DataStage NLS Guide.

Example
The following example shows the contents of the multivalued DAYS field when
the locale FR-FRENCH is current. Information for LCT$DAYS is contained in the
UVNLSLOC.H file in the INCLUDE directory in the UV account directory.

category.info = LOCALEINFO(LC$TIME)
PRINT category.info<LCT$DAYS>

This is the program output:

UVLC$TIME
UVLC$NUMERIC
UVLC$MONETARY
UVLC$CTYPE
UVLC$COLLATE

Each token returns a dynamic array containing the data
being used by the specified category. The meaning of the
data depends on the category; field 1 is always the name
of the category or the value OFF. OFF means that locale
support is disabled for a category. The elements of the
array are separated by field marks.

UVLC$WEIGHTS Returns the weight table.

UVLC$INDEX Returns information about the hooks defined for the
locale.

LCE$NO.LOCALES NLS locales are not in force.

LCE$BAD.CATEGORY Category is invalid.
6-364 BASIC Guide

LOCALEINFO function
lundi}mardi}mercredi}jeudi}vendredi}samedi}dimanche
BASIC Statements and Functions 6-365

LOCATE statement
LOCATE

Syntax (IDEAL, REALITY)

LOCATE expression IN dynamic.array [< field# [,value#] >] [,start] [BY seq]
SETTING variable
 {THEN statements [ELSE statements] | ELSE statements}

Syntax (PICK)

LOCATE (expression, dynamic.array [,field# [,value#]] ; variable [;seq])

 {THEN statements [ELSE statements] | ELSE statements}

Syntax (INFORMATION)

LOCATE expression IN dynamic.array < field# [,value# [,subvalue#]] >

 [BY seq] SETTING variable

 {THEN statements [ELSE statements] | ELSE statements}

Description
Use a LOCATE statement to search dynamic.array for expression and to return a
value indicating one of the following:

• Where expression was found in dynamic.array
• Where expression should be inserted in dynamic.array if it was not found

The search can start anywhere in dynamic.array.

expression evaluates to the string to be searched for in dynamic.array. If expression or
dynamic.array evaluate to the null value, variable is set to 0 and the ELSE statements
are executed. If expression and dynamic.array both evaluate to empty strings, variable
is set to 1 and the THEN statements are executed.

field#, value#, and subvalue# are delimiter expressions, specifying:

• Where the search is to start in dynamic.array
• What kind of element is being searched for

start evaluates to a number specifying the field, value, or subvalue from which to
start the search.
6-366 BASIC Guide

LOCATE statement
In the IDEAL and PICK syntaxes the delimiter expressions specify the level of the
search, and start specifies the starting position of the search. In INFORMATION
syntax the delimiter expressions specify the starting position of the search.

If any delimiter expression or start evaluates to the null value, the LOCATE state-
ment fails and the program terminates with a run-time error message.

variable stores the index of expression. variable returns a field number, value number,
or a subvalue number, depending on the delimiter expressions used. variable is set
to a number representing one of the following:

• The index of the element containing expression, if such an element is found

• An index that can be used in an INSERT function to create a new element
with the value specified by expression

During the search, fields are processed as single-valued fields even if they contain
value or subvalue marks. Values are processed as single values, even if they
contain subvalue marks.

The search stops when one of the following conditions is met:

• A field containing expression is found.
• The end of the dynamic array is reached.
• A field that is higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or descending
ASCII sequences listed below, you can use the BY seq expression to end the search.
The search ends at the place where expression should be inserted to maintain the
ASCII sequence, rather than at the end of the list of specified elements.

Use the following values for seq to describe the ASCII sequence being searched:

seq does not reorder the elements in dynamic.array; it specifies the terminating
conditions for the search. If a seq expression is used and the elements are not in the
sequence indicated by seq, an element with the value of expression may not be
found. If seq evaluates to the null value, the statement fails and the program
terminates.

“AL” or “A” Ascending, left-justified (standard alphanumeric sort)

“AR” Ascending, right-justified

“DL” or “D” Descending, left-justified (standard alphanumeric sort)

“DR” Descending, right-justified
BASIC Statements and Functions 6-367

LOCATE statement
The ELSE statements are executed if expression is not found. The format of the ELSE
statement is the same as that used in the IF…THEN statement.

Use the INFO.LOCATE option of the $OPTIONS statement to use the INFORMA-
TION syntax in other flavors.

If NLS is enabled, the LOCATE statement with a BY seq expression uses the Collate
convention as specified in the NLS.LC.COLLATE file to determine the sort order
for characters with ascending or descending sequences. The Collate convention
defines rules for casing, accents, and ordering. For more information about how
NLS calculates the order, see the DataStage NLS Guide.

IDEAL, REALITY, and PICK Syntax
The following sections describe the three possible outcomes from the different uses
of delimiter expressions in the IDEAL, REALITY, and PICK versions of the
LOCATE statement.

If a field, value, or subvalue containing expression is found, variable returns the
index of the located field, value, or subvalue relative to the start of dynamic.array,
field#, or value#, respectively (not the start of the search). If a field, value, or
subvalue containing expression is not found, variable is set to the number of fields,
values, or subvalues in the array plus 1, and the ELSE statements are executed.

INFORMATION Syntax
When you use the INFORMATION flavor syntax of LOCATE, three outcomes can
result depending on how the delimiter expressions are used. The results are
described as case 1, case 2, and case 3.

Case 1: If field# and value# are omitted, the search starts at the first field in
dynamic.array.

Case 2: If only field# is specified and it is greater than 0, the search starts at
the first value in the field indicated by field#. If field# is less than or
equal to 0, both field# and value# are ignored.

Case 3: If both field# and value# are specified, the search starts at the first
subvalue in the value specified by value#, in the field specified by
field#. If field# is greater than 0, but value# is less than or equal to 0,
LOCATE behaves as though only field# is specified.

Case 1: If both value# and subvalue# are omitted or are both less than or equal
to 0, the search starts at the field indicated by field#.
6-368 BASIC Guide

LOCATE statement
If a field, value, or subvalue containing expression is found, variable is set to the
index of the located field relative to the start of dynamic.array, the field, or the value,
respectively (not the start of the search).

If no field containing expression is found, variable is set to the number of the field at
which the search terminated, and the ELSE statements are executed. If no value or
subvalue containing expression is found, variable is set to the number of values or
subvalues plus 1, and the ELSE statements are executed.

If field#, value#, or subvalue# is greater than the number of fields in dynamic.array,
variable is set to the value of field#, value#, or subvalue#, respectively, and the ELSE
statements are executed.

Examples
The examples show the IDEAL and REALITY flavor LOCATE statement. A field
mark is shown by F, a value mark is shown by V, and a subvalue mark is shown by S.

Q='X':@SM:"$":@SM:'Y':@VM:'Z':@SM:4:@SM:2:@VM:'B':@VM
PRINT "Q= ":Q

LOCATE "$" IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
PRINT "WHERE= ",WHERE

LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
PRINT "HERE= ", HERE

NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM
PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
NUM= 128
LOCATE NUM IN NUMBERS <2> BY "AR" SETTING X ELSE
NUMBERS = INSERT(NUMBERS,X,0,0,NUM)
PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
END

This is the program output:

Case 2: If subvalue# is omitted or is less than or equal to 0, the search starts at
the value indicated by value#, in the field indicated by field#. If field#
is less than or equal to 0, field# defaults to 1.

Case 3: If field#, value#, and subvalue# are all specified and are all nonzero,
the search starts at the subvalue indicated by subvalue#, in the value
specified by value#, in the field specified by field#. If field# or value#
are less than or equal to 0, they default to 1.
BASIC Statements and Functions 6-369

LOCATE statement
Q= XS$SYVZS4S2VBV

ERROR
WHERE= 5

HERE= 2

BEFORE INSERT, NUMBERS= 122F123F126F130F

AFTER INSERT, NUMBERS= 122F128F123F126F130F
6-370 BASIC Guide

LOCK statement
LOCK

Syntax

LOCK expression [THEN statements] [ELSE statements]

Description
Use the LOCK statement to protect specified user-defined resources or events
against unauthorized use or simultaneous data file access by different users.

There are 64 public semaphore locks in the DataStage system. They are task
synchronization tools but have no intrinsic definitions. You must define the
resource or event associated with each semaphore, ensuring that there are no
conflicts in definition or usage of these semaphores throughout the entire system.

expression evaluates to a number in the range of 0 through 63 that specifies the lock
to be set. A program can reset a lock any number of times and with any frequency
desired. If expression evaluates to the null value, the LOCK statement fails and the
program terminates with a run-time error message.

If program B tries to set a lock already set by program A, execution of program B
is suspended until the first lock is released by program A; execution of program B
then continues.

The ELSE clause provides an alternative to this procedure. When a LOCK state-
ment specifies a lock that has already been set, the ELSE clause is executed rather
than program execution being suspended.

Program termination does not automatically release locks set in the program. Each
LOCK statement must have a corresponding UNLOCK statement. If a program
locks the same semaphore more than once during its execution, a single UNLOCK
statement releases that semaphore.

The UNLOCK statement can specify the expression used in the LOCK statement
to be released. If no expression is used in the UNLOCK statement, all locks set by
the program are released.

Alternatively, locks can be released by logging off the system or by executing either
the QUIT command or the CLEAR.LOCKS command.

You can check the status of locks with the LIST.LOCKS command; this lists the
locks on the screen. The unlocked state is indicated by 0. The locked state is indi-
cated by a number other than 0 (including both positive and negative numbers).
The number is the unique signature of the user who has set the lock.
BASIC Statements and Functions 6-371

LOCK statement
Note: The LOCK statement protects user-defined resources only. The READL,
READU, READL, READVU, MATREADL, and MATREADU statements
use a different method of protecting files and records.

Example
The following example sets lock 60, executes the LIST.LOCKS command, then
unlocks all locks set by the program:

LOCK 60 ELSE PRINT "ALREADY LOCKED"
EXECUTE "LIST.LOCKS"
UNLOCK

The program displays the LIST.LOCKS report. Lock 60 is set by user 4.

 0:-- 1:-- 2:-- 3:-- 4:-- 5:-- 6:-- 7:--
 8:-- 9:-- 10:-- 11:-- 12:-- 13:-- 14:-- 15:--
16:-- 17:-- 18:-- 19:-- 20:-- 21:-- 22:-- 23:--
24:-- 25:-- 26:-- 27:-- 28:-- 29:-- 30:-- 31:--
32:-- 33:-- 34:-- 35:-- 36:-- 37:-- 38:-- 39:--
40:-- 41:-- 42:-- 43:-- 44:-- 45:-- 46:-- 47:--
48:-- 49:-- 50:-- 51:-- 52:-- 53:-- 54:-- 55:--
56:-- 57:-- 58:-- 59:-- 60:4 61:-- 62:-- 63:--
6-372 BASIC Guide

LOOP statement
LOOP

Syntax
LOOP

[loop.statements]

[CONTINUE | EXIT]

[{WHILE | UNTIL} expression [DO]]

[loop.statements]

[CONTINUE | EXIT]
REPEAT

LOOP…REPEAT

Description
Use the LOOP statement to start a LOOP…REPEAT program loop. A program
loop is a series of statements that executes for a specified number of repetitions or
until specified conditions are met.

Use the WHILE clause to indicate that the loop should execute repeatedly as long
as the WHILE expression evaluates to true (1). When the WHILE expression eval-
uates to false (0), repetition of the loop stops, and program execution continues
with the statement following the REPEAT statement.

Use the UNTIL clause to put opposite conditions on the LOOP statement. The
UNTIL clause indicates that the loop should execute repeatedly as long as the
UNTIL expression evaluates to false (0). When the UNTIL expression evaluates to
true (1), repetition of the loop stops, and program execution continues with the
statement following the REPEAT statement.

If a WHILE or UNTIL expression evaluates to the null value, the condition is false.

expression can also contain a conditional statement. Any statement that takes a
THEN or an ELSE clause can be used as expression, but without the THEN or ELSE
clause. When the conditional statement would execute the ELSE clause, expression
evaluates to false; when the conditional statement would execute the THEN
clause, expression evaluates to true. A LOCKED clause is not supported in this
context.

You can use multiple WHILE and UNTIL clauses in a LOOP…REPEAT loop. You
can also nest LOOP…REPEAT loops. If a REPEAT statement is encountered
without a previous LOOP statement, an error occurs during compilation.
BASIC Statements and Functions 6-373

LOOP statement
Use the CONTINUE statement within LOOP…REPEAT to transfer control to the
next iteration of the loop from any point in the loop.

Use the EXIT statement within LOOP…REPEAT to terminate the loop from any
point within the loop.

Although it is possible to exit the loop by means other than the conditional WHILE
and UNTIL statements (for example, by using GOTO or GOSUB in the DO state-
ments), it is not recommended. Such a programming technique is not in keeping
with good structured programming practice.

Examples

Source Lines Program Output

X=0
LOOP
UNTIL X>4 DO

PRINT "X= ",X
X=X+1

REPEAT

X= 0
X= 1
X= 2
X= 3
X= 4

A=20
LOOP

PRINT "A= ", A
A=A-1

UNTIL A=15 REPEAT

A= 20
A= 19
A= 18
A= 17
A= 16

Q=3
LOOP

PRINT "Q= ",Q
WHILE Q DO

Q=Q-1
REPEAT

Q= 3
Q= 2
Q= 1
Q= 0

EXECUTE "SELECT VOC FIRST 5"
MORE=1
LOOP

READNEXT ID
ELSE MORE=0

WHILE MORE DO
PRINT ID

REPEAT

5 record(s)
selected to
SELECT list #0.
LOOP
HASH.TEST
QUIT.KEY
P
CLEAR.LOCKS
6-374 BASIC Guide

LOOP statement
EXECUTE "SELECT VOC FIRST 5"
LOOP
WHILE READNEXT ID DO

PRINT ID
REPEAT

5 record(s)
selected to
SELECT list #0.
LOOP
HASH.TEST
QUIT.KEY
P
CLEAR.LOCKS

Source Lines Program Output
BASIC Statements and Functions 6-375

LOWER function
LOWER

Syntax
LOWER (expression)

Description
Use the LOWER function to return a value equal to expression, except that system
delimiters which appear in expression are converted to the next lower-level delim-
iter: field marks are changed to value marks, value marks are changed to subvalue
marks, and so on. If expression evaluates to the null value, null is returned.

The conversions are:

PIOPEN Flavor

In PIOPEN flavor, the delimiters that can be lowered are CHAR(255) through
CHAR(252). All other characters are left unchanged. You can obtain PIOPEN
flavor for the LOWER function by:

• Compiling your program in a PIOPEN flavor account
• Specifying the $OPTIONS INFO.MARKS statement

Examples
In the following examples an item mark is shown by I, a field mark is shown by F,
a value mark is shown by V, a subvalue mark is shown by S, and a text mark is
shown by T. CHAR(250) is shown as Z.

The following example sets A to DDFEEV123V77:

A= LOWER('DD':IM'EE':FM:123:FM:777)

IM CHAR(255) to FM CHAR(254)

FM CHAR(254) to VM CHAR(253)

VM CHAR(253) to SM CHAR(252)

SM CHAR(252) to TM CHAR(251)

TM CHAR(251) to CHAR(250)

CHAR(250) to CHAR(249)

CHAR(249) to CHAR(248)
6-376 BASIC Guide

LOWER function
The next example sets B to 1F2S3V4T5:

B= LOWER(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 999Z888:

C= LOWER(999:TM:888)
BASIC Statements and Functions 6-377

LTS function
LTS

Syntax
LTS (array1, array2)

CALL −LTS (return.array, array1, array2)

CALL !LTS (return.array, array1, array2)

Description
Use the LTS function to test if elements of one dynamic array are less than elements
of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
element from array1 is less than the element from array2, a 1 is returned in the corre-
sponding element of a new dynamic array. If the element from array1 is greater
than or equal to the element from array2, a 0 is returned. If an element of one
dynamic array has no corresponding element in the other dynamic array, the unde-
fined element is evaluated as an empty string, and the comparison continues.

If either of a corresponding pair of elements is the null value, null is returned for
that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-378 BASIC Guide

MAT statement
MAT

Syntax
MAT array = expression

MAT array1 = MAT array2

Description
Use the MAT statement to assign one value to all of the elements in the array or to
assign all the values of one array to the values of another array.

Use the first syntax to assign the same value to all array elements. Use any valid
expression. The value of expression becomes the value of each array element.

Use the second syntax to assign values from the elements of array2 to the elements
of array1. Both arrays must previously be named and dimensioned. The dimen-
sioning of the two arrays can be different. The values of the elements of the new
array are assigned in consecutive order, regardless of whether the dimensions of
the arrays are the same or not. If array2 has more elements than in array1, the extra
elements are ignored. If array2 has fewer elements, the extra elements of array1 are
not assigned.

Note: Do not use the MAT statement to assign individual elements of an array.

Examples

Source Lines Program Output

DIM ARRAY(5)
QTY=10
MAT ARRAY=QTY
FOR X=1 TO 5

PRINT "ARRAY(":X:")=",ARRAY(X)
NEXT X

ARRAY(1)= 10
ARRAY(2)= 10
ARRAY(3)= 10
ARRAY(4)= 10
ARRAY(5)= 10

DIM ONE(4,1)
MAT ONE=1
DIM TWO(2,2)
MAT TWO = MAT ONE
FOR Y=1 TO 4

PRINT "ONE(":Y:",1)=",ONE(Y,1)
NEXT Y

ONE(1,1)= 1
ONE(2,1)= 1
ONE(3,1)= 1
ONE(4,1)= 1
BASIC Statements and Functions 6-379

MAT statement
The following example sets all elements in ARRAY to the empty string:

MAT ARRAY=''

DIM ONE(4,1)
MAT ONE=1
DIM TWO(2,2)
MAT TWO = MAT ONE
FOR X=1 TO 2

FOR Y=1 TO 2
PRINT "TWO(":X:",":Y:")=",TWO(X,Y)

NEXT Y
NEXT X

TWO(1,1)= 1
TWO(1,2)= 1
TWO(2,1)= 1
TWO(2,2)= 1

Source Lines Program Output
6-380 BASIC Guide

MATBUILD statement
MATBUILD

Syntax

MATBUILD dynamic.array FROM array [,start [,end]] [USING delimiter]

Description
Use the MATBUILD statement to build a dynamic array from a dimensioned array.

dynamic.array is created by concatenating the elements of array beginning with start
and finishing with end. If start and end are not specified or are out of range, they
default to 1 and the size of the array respectively.

array must be named and dimensioned in a DIMENSION or COMMON statement
before it is used in this statement.

delimiter specifies characters to be inserted between fields of the dynamic array. If
delimiter is not specified, it defaults to a field mark. To specify no delimiter, specify
USING without delimiter.

If an element of array is the null value, the dynamic array will contain CHAR(128)
for that element. If start, end, or delimiter is the null value, the MATBUILD state-
ment fails and the program terminates with a run-time error.

Overflow Elements

PICK, IN2, and REALITY flavor dimensioned arrays contain overflow elements in
the last element. INFORMATION and IDEAL flavor dimensioned arrays contain
overflow elements in element 0.

In PICK, IN2, and REALITY flavor accounts, if end is not specified, dynamic.array
contains the overflow elements of array. In IDEAL and INFORMATION flavor
accounts, to get the overflow elements you must specify end as less than or equal
to 0, or as greater than the size of array.

REALITY flavor accounts use only the first character of delimiter, and if USING is
specified without a delimiter, delimiter defaults to a field mark rather than an
empty string.
BASIC Statements and Functions 6-381

MATCH operator
MATCH

Syntax

string MATCH[ES] pattern

Description
Use the MATCH operator or its synonym MATCHES to compare a string expres-
sion with a pattern.

pattern is a general description of the format of string. It can consist of text or the
special characters X, A, and N preceded by an integer used as a repeating factor.
For example, nN is the pattern for strings of n numeric characters.

The following table lists the pattern codes and their definitions:

If n is longer than nine digits, it is used as text in a pattern rather than as a repeating
factor for a special character. For example, the pattern "1234567890N" is treated as
a literal string, not as a pattern of 1,234,567,890 numeric characters.

If the string being evaluated matches the pattern, the expression evaluates as true
(1); otherwise, it evaluates as false (0). If either string or pattern is the null value,
the match evaluates as false.

A tilde (~) placed immediately before pattern specifies a negative match. That is,
it specifies a pattern or a part of a pattern that does not match the expression or a

Pattern Matching Codes

Pattern Definition

… Any number of any characters (including none).

0X Any number of any characters (including none).

nX n number of any characters.

0A Any number of alphabetic characters (including none).

nA n number of alphabetic characters.

0N Any number of numeric characters (including none).

nN n number of numeric characters.

'text' Exact text; any literal string (quotation marks required).

"text" Exact text; any literal string (quotation marks required).
6-382 BASIC Guide

MATCH operator
part of the expression. The match is true only if string and pattern are of equal
length and differ in at least one character. An example of a negative match pattern
is:

"'A'~'X'5N

This pattern returns a value of true if the expression begins with the letter A, which
is not followed by the letter X, and which is followed by any five numeric charac-
ters. Thus AB55555 matches the pattern, but AX55555, A55555, AX5555, and A5555
do not.

You can specify multiple patterns by separating them with value marks (ASCII
CHAR(253)). The following expression is true if the address is either 16 alphabetic
characters or 4 numeric characters followed by 12 alphabetic characters; otherwise,
it is false:

ADDRESS MATCHES "16A": CHAR(253): "4N12A"

 An empty string matches the following patterns: "0A", "0X", "0N", "…", "", '', or \\.

If NLS is enabled, the MATCH operator uses the current values for alphabetic and
numeric characters specified in the NLS.LC.CTYPE file. For more information
about the NLS.LC.CTYPE file, see the DataStage NLS Guide.
BASIC Statements and Functions 6-383

MATCHFIELD function
MATCHFIELD

Syntax
MATCHFIELD (string, pattern, field)

Description
Use the MATCHFIELD function to check a string against a match pattern (see the
MATCH operator for information about pattern matching).

field is an expression that evaluates to the portion of the match string to be
returned.

If string matches pattern, the MATCHFIELD function returns the portion of string
that matches the specified field in pattern. If string does not match pattern, or if
string or pattern evaluates to the null value, the MATCHFIELD function returns an
empty string. If field evaluates to the null value, the MATCHFIELD function fails
and the program terminates with a run-time error.

pattern must contain specifiers to cover all characters contained in string. For
example, the following statement returns an empty string because not all parts of
string are specified in the pattern:

MATCHFIELD ("XYZ123AB", "3X3N", 1)

To achieve a positive pattern match on string above, the following statement might
be used:

MATCHFIELD ("XYZ123AB", "3X3N0X", 1)

This statement returns a value of "XYZ".
6-384 BASIC Guide

MATCHFIELD function
Examples

In the following example the string does not match the pattern:

In the following example the entire string does not match the pattern:

Source Lines Program Output

Q=MATCHFIELD("AA123BBB9","2A0N3A0N",3)
PRINT "Q= ",Q

Q= BBB

ADDR='20 GREEN ST. NATICK, MA.,01234'
ZIP=MATCHFIELD(ADDR,"0N0X5N",3)
PRINT "ZIP= ",ZIP

ZIP= 01234

INV='PART12345 BLUE AU'
COL=MATCHFIELD(INV,"10X4A3X",2)
PRINT "COL= ",COL

COL= BLUE

Source Lines Program Output

XYZ=MATCHFIELD('ABCDE1234',"2N3A4N",1)
PRINT "XYZ= ",XYZ

XYZ=

Source Lines Program Output

ABC=MATCHFIELD('1234AB',"4N1A",2)
PRINT "ABC= ",ABC

ABC=
BASIC Statements and Functions 6-385

MATPARSE statement
MATPARSE

Syntax

MATPARSE array FROM dynamic.array [,delimiter]

MATPARSE array [,start [,end]] FROM dynamic.array [USING delimiter]
 [SETTING elements]

Description
Use the MATPARSE statement to separate the fields of dynamic.array into consecu-
tive elements of array.

array must be named and dimensioned in a DIMENSION or COMMON statement
before it is used in this statement.

start specifies the starting position in array. If start is less than 1, it defaults to 1.

end specifies the ending position in array. If end is less than 1 or greater than the
length of array, it defaults to the length of array.

delimiter is an expression evaluating to the characters used to delimit elements in
dynamic.array. Use a comma or USING to separate delimiter from dynamic.array.
delimiter can have no characters (an empty delimiter), one character, or more than
one character with the following effects:

• An empty delimiter (a pair of quotation marks) parses dynamic.array so that
each character becomes one element of array (see the second example). The
default delimiter is a field mark. This is different from the empty delimiter.
To use the default delimiter, omit the comma or USING following
dynamic.array.

• A single character delimiter parses dynamic.array into fields delimited by
that character by storing the substrings that are between successive delim-
iters as elements in the array. The delimiters are not stored in the array (see
the first example).

• A multicharacter delimiter parses dynamic.array by storing as elements both
the substrings that are between any two successive delimiters and the
substrings consisting of one or more consecutive delimiters in the
following way: dynamic.array is searched until any of the delimiter charac-
ters are found. All of the characters up to but not including the delimiter
character are stored as an element of array. The delimiter character and any
6-386 BASIC Guide

MATPARSE statement
identical consecutive delimiter characters are stored as the next element.
The search then continues as at the start of dynamic.array (see the third
example).

• If delimiter is a system delimiter and a single CHAR(128) is extracted from
dynamic.array, the corresponding element in array is set to the null value.

The characters in a multicharacter delimiter expression can be different or the
same. A delimiter expression of /: might be used to separate hours, minutes,
seconds and month, day, year in the formats 12:32:16 and 1/23/85. A delimiter
expression of two spaces " " might be used to separate tokens on a command line
that contain multiple blanks between tokens.

The SETTING clause sets the variable elements to the number of elements in array.
If array overflows, elements is set to 0. The value of elements is the same as the value
returned by the INMAT function after a MATPARSE statement.

If all the elements of array are filled before MATPARSE reaches the end of
dynamic.array, MATPARSE puts the unprocessed part of dynamic.array in the zero
element of array for IDEAL, INFORMATION, or PIOPEN flavor accounts, or in the
last element of array for PICK, IN2, or REALITY flavor accounts.

Use the INMAT function after a MATPARSE statement to determine the number of
elements loaded into the array. If there are more delimited fields in dynamic.array
than elements in array, INMAT returns 0; otherwise, it returns the number of
elements loaded.

If start is greater than end or greater than the length of array, no action is taken, and
INMAT returns 0.

If start, end, dynamic.array, or delimiter evaluates to the null value, the MATPARSE
statement fails and the program terminates with a run-time error message.
BASIC Statements and Functions 6-387

MATPARSE statement
Examples

Source Lines Program Output

DIM X(4)
Y='1#22#3#44#5#66#7'
MATPARSE X FROM Y, '#'
FOR Z=0 TO 4
PRINT "X(":Z:")",X(Z)
NEXT Z
PRINT

X(0) 5#66#7
X(1) 1
X(2) 22
X(3) 3
X(4) 44

DIM Q(6)
MATPARSE Q FROM 'ABCDEF', ''
FOR P=1 TO 6
PRINT "Q(":P:")",Q(P)
NEXT P
PRINT

Q(1) A
Q(2) B
Q(3) C
Q(4) D
Q(5) E
Q(6) F

DIM A(8,2)
MATPARSE A FROM 'ABCDEFGDDDHIJCK', 'CD'
FOR I = 1 TO 8
FOR J = 1 TO 2
PRINT "A(":I:",":J:")=",A(I,J)," ":
NEXT J
PRINT
NEXT I
END

A(1,1)= AB A(1,2)= C
A(2,1)= A(2,2)= D
A(3,1)= EFG A(3,2)= DDD
A(4,1)= HIJ A(4,2)= C
A(5,1)= K A(5,2)=
A(6,1)= A(6,2)=
A(7,1)= A(7,2)=
A(8,1)= A(8,2)=
6-388 BASIC Guide

MATREAD statements
MATREAD

Syntax

MATREAD array FROM [file.variable,] record.ID [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

{ MATREADL | MATREADU } array FROM [file.variable,] record.ID

[ON ERROR statements] [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the MATREAD statement to assign the contents of the fields of a record from
a DataStage file to consecutive elements of array. The first field of the record
becomes the first element of array, the second field of the record becomes the
second element of array, and so on. The array must be named and dimensioned in
a DIMENSION or COMMON statement before it is used in this statement.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information about default files, see the OPEN statement). If the
file is neither accessible nor open, the program terminates with a run-time error
message.

If record.ID exists, array is set to the contents of the record, and the THEN state-
ments are executed; any ELSE statements are ignored. If no THEN statements are
specified, program execution continues with the next sequential statement. If
record.ID does not exist, the elements of array are not changed, and the ELSE state-
ments are executed; any THEN statements are ignored.

If either file.variable or record.ID evaluates to the null value, the MATREAD state-
ment fails and the program terminates with a run-time error. If any field in the
record is the null value, null becomes an element in array. If a value or a subvalue
in a multivalued field is the null value, it is read into the field as the stored repre-
sentation of null (CHAR(128)).

If the file is an SQL table, the effective user of the program must have SQL SELECT
privilege to read records in the file. For information about the effective user of a
program, see the AUTHORIZATION statement.

A MATREAD statement does not set an update record lock on the specified record.
That is, the record remains available for update to other users. To prevent other
BASIC Statements and Functions 6-389

MATREAD statements
users from updating the record until it is released, use a MATREADL or
MATREADU statement.

If the number of elements in array is greater than the number of fields in the record,
the extra elements in array are assigned empty string values. If the number of fields
in the record is greater than the number of elements in the array, the extra values
are stored in the zero element of array for IDEAL or INFORMATION flavor
accounts, or in the last element of array for PICK, IN2, or REALITY flavor accounts.
The zero element of an array can be accessed with a 0 subscript as follows:

MATRIX (0)

or:

MATRIX (0, 0)

Use the INMAT function after a MATREAD statement to determine the number of
elements of the array that were actually used. If the number of fields in the record
is greater than the number of elements in the array, the value of the INMAT func-
tion is set to 0.

If NLS is enabled, MATREAD and other BASIC statements that perform I/O oper-
ations always map external data to the internal character set using the appropriate
map for the input file. For details, see the READ statement.

The ON ERROR Clause

The ON ERROR clause is optional in MATREAD statements. Its syntax is the same
as that of the ELSE clause. The ON ERROR clause lets you specify an alternative
for program termination when a fatal error is encountered during processing of the
MATREAD statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:
6-390 BASIC Guide

MATREAD statements
• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended. Its syntax is the same as that
of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the MATREAD statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

If a MATREAD statement does not include a LOCKED clause, and a conflicting
lock exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Releasing Locks. A shared record lock can be released with a CLOSE, RELEASE,
or STOP statement. An update record lock can be released with a CLOSE, DELETE,
MATWRITE, RELEASE, STOP, WRITE, or WRITEV statement.

Locks acquired or promoted within a transaction are not released when the
previous statements are processed.

In this
statement… This requested lock…

Conflicts with
these locks…

MATREADL Shared record lock Exclusive file lock
Update record lock

MATREADU Update record lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock
Shared record lock
BASIC Statements and Functions 6-391

MATREAD statements
MATREADL and MATREADU Statements
Use the MATREADL syntax to acquire a shared record lock and then perform a
MATREAD. This lets other programs read the record with no lock or a shared
record lock.

Use the MATREADU syntax to acquire an update record lock and then perform a
MATREAD. The update record lock prevents other users from updating the record
until the user who set it releases it.

An update record lock can be acquired when no shared record lock exists, or
promoted from a shared record lock owned by you if no other shared record locks
exist.

Example
DIM ARRAY(10)
OPEN 'SUN.MEMBER' TO SUN.MEMBER ELSE STOP
MATREAD ARRAY FROM SUN.MEMBER, 6100 ELSE STOP
*
FOR X=1 TO 10

PRINT "ARRAY(":X:")",ARRAY(X)
NEXT X
*
PRINT
*
DIM TEST(4)
OPEN '','SUN.SPORT' ELSE STOP 'CANNOT OPEN SUN.SPORT'
MATREAD TEST FROM 851000 ELSE STOP
*
FOR X=0 TO 4
PRINT "TEST(":X:")",TEST(X)
NEXT X

This is the program output:

ARRAY(1) MASTERS
ARRAY(2) BOB
ARRAY(3) 55 WESTWOOD ROAD
ARRAY(4) URBANA
ARRAY(5) IL
ARRAY(6) 45699
ARRAY(7) 1980
ARRAY(8) SAILING
6-392 BASIC Guide

MATREAD statements
ARRAY(9)
ARRAY(10) II
TEST(0) 6258
TEST(1) 6100
TEST(2) HARTWELL
TEST(3) SURFING
TEST(4) 4
BASIC Statements and Functions 6-393

MATREADL statement
MATREADL
Use the MATREADL statement to set a shared record lock and perform the
MATREAD statement. For details, see the MATREAD statement.
6-394 BASIC Guide

MATREADU statement
MATREADU
Use the MATREADU statement to set an update record lock and perform the
MATREAD statement. For details, see the MATREAD statement.
BASIC Statements and Functions 6-395

MATWRITE statements
MATWRITE

Syntax

MATWRITE[U] array ON | TO [file.variable,] record.ID

[ON ERROR statements] [LOCKED statements]

[THEN statements] [ELSE statements]

Description
Use the MATWRITE statement to write data from the elements of a dimensioned
array to a record in a DataStage file. The elements of array replace any data stored
in the record. MATWRITE strips any trailing empty fields from the record.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement). If the file
is neither accessible nor open, the program terminates with a run-time message,
unless ELSE statements are specified.

If the file is an SQL table, the effective user of the program must have SQL INSERT
and UPDATE privileges to read records in the file. For information about the effec-
tive user of a program, see the AUTHORIZATION statement.

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened
with the OPENCHECK statement, all SQL integrity constraints are checked for
every MATWRITE to an SQL table. If an integrity check fails, the MATWRITE
statement uses the ELSE clause. Use the ICHECK function to determine what
specific integrity constraint caused the failure.

The system searches the file for the record specified by record.ID. If the record is not
found, MATWRITE creates a new record.

If NLS is enabled, MATWRITE and other BASIC statements that perform I/O oper-
ations always map internal data to the external character set using the appropriate
map for the output file. For details, see the WRITE statement. For more informa-
tion about maps, see the DataStage NLS Guide.

The ON ERROR Clause
The ON ERROR clause is optional in the MATWRITE statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered while the MATWRITE is being processed.
6-396 BASIC Guide

MATWRITE statements
If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the MATWRITE statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
• Update record lock
• Shared record lock

If the MATWRITE statement does not include a LOCKED clause, and a conflicting
lock exists, the program pauses until the lock is released.

When updating a file, MATWRITE releases the update record lock set with a
MATREADU statement. To maintain the update record lock set with the
MATREADU statement, use MATWRITEU instead of MATWRITE.

The new values are written to the record, and the THEN clauses are executed. If no
THEN statements are specified, execution continues with the statement following
the MATWRITE statement.
BASIC Statements and Functions 6-397

MATWRITE statements
If either file.variable or record.ID evaluates to the null value, the MATWRITE state-
ment fails and the program terminates with a run-time error message. Null
elements of array are written to record.ID as the stored representation of the null
value, CHAR(128).

The MATWRITEU Statement
Use the MATWRITEU statement to update a record without releasing the update
record lock set by a previous MATREADU statement (see the MATREAD state-
ment). To release the update record lock set by a MATREADU statement and
maintained by a MATWRITEU statement, you must use a RELEASE or
MATWRITE statement. If you do not explicitly release the lock, the record remains
locked until the program executes the STOP statement. When more than one
program or user could modify the same record, use a MATREADU statement to
lock the record before doing the MATWRITE or MATWRITEU.

IDEAL and INFORMATION Flavors
In IDEAL and INFORMATION flavor accounts, if the zero element of the array has
been assigned a value by a MATREAD or MATREADU statement, the zero
element value is written to the record as the n+1 field, where n is the number of
elements dimensioned in the array. If the zero element is assigned an empty string,
only the assigned elements of the array are written to the record; trailing empty
fields are ignored. The new record is written to the file (replacing any existing
record) without regard for the size of the array.

It is generally good practice to use the MATWRITE statement with arrays that have
been loaded with either a MATREAD or a MATREADU statement.

After executing a MATWRITE statement, you can use the STATUS function to
determine the result of the operation as follows (see the STATUS function for more
information):

Example
DIM ARRAY(5)
OPEN 'EX.BASIC' TO EX.BASIC ELSE STOP 'CANNOT OPEN'
MATREADU ARRAY FROM EX.BASIC, 'ABS' ELSE STOP

 0 The record was locked before the MATWRITE operation.

−2 The record was unlocked before the MATWRITE operation.

−3 The record failed an SQL integrity check.
6-398 BASIC Guide

MATWRITE statements
ARRAY(1)='Y = 100'
MATWRITE ARRAY TO EX.BASIC, 'ABS'
PRINT 'STATUS()= ',STATUS()

This is the program output:

STATUS()= 0
BASIC Statements and Functions 6-399

MATWRITEU statement
MATWRITEU
Use the MATWRITEU statement to maintain an update record lock and perform
the MATWRITE statement. For details, see the MATWRITE statement.
6-400 BASIC Guide

MAXIMUM function
MAXIMUM

Syntax
MAXIMUM (dynamic.array)

CALL !MAXIMUM (result, dynamic.array)

Description
Use the MAXIMUM function to return the element with the highest numeric value
in dynamic.array. Nonnumeric values, except the null value, are treated as 0. If
dynamic.array evaluates to the null value, null is returned. Any element that is the
null value is ignored, unless all elements of dynamic.array are null, in which case
null is returned.

result is the variable that contains the largest element found in dynamic.array.

dynamic.array is the array to be tested.

Examples
A=1:@VM:"ZERO":@SM:20:@FM:-25
PRINT "MAX(A)=",MAXIMUM(A)

This is the program output:

MAX(A)=20

In the following example, the !MAXIMUM subroutine is used to obtain the
maximum value contained in array A. The nonnumeric value, Z, is treated as 0.

A=1:@VM:25:@VM:'Z':@VM:7
CALL !MAXIMUM (RESULT,A)
PRINT RESULT

This is the program output:

0

BASIC Statements and Functions 6-401

MINIMUM function
MINIMUM

Syntax
MINIMUM (dynamic.array)

CALL !MINIMUM (result, dynamic.array)

Description
Use the MINIMUM function to return the element with the lowest numeric value
in dynamic.array. Nonnumeric values, except the null value, are treated as 0. If
dynamic.array evaluates to the null value, null is returned. Any element that is the
null value is ignored, unless all elements of dynamic.array are null, in which case
null is returned.

result is the variable that contains the smallest element found in dyamic.array.

dynamic.array is the array to be tested.

Examples
A=1:@VM:"ZERO":@SM:20:@FM:-25
PRINT "MIN(A)=",MINIMUM(A)

This is the program output:

MIN(A)=-25

In the following example, the !MINIMUM subroutine is used to obtain the
minimum value contained in array A. The nonnumeric value, Q, is treated as 0.

A=2:@VM:19:@VM:6:@VM:'Q'
CALL !MINIMUM (RESULT,A)
PRINT RESULT

This is the program output:

0

6-402 BASIC Guide

MOD function
MOD

Syntax
MOD (dividend, divisor)

Description
Use the MOD function to calculate the value of the remainder after integer division
is performed on the dividend expression by the divisor expression.

The MOD function calculates the remainder using the following formula:

MOD (X, Y) = X − (INT (X / Y) * Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot
be 0. If divisor is 0, a division by 0 warning message is printed, and 0 is returned. If
either dividend or divisor evaluates to the null value, null is returned.

The MOD function works like the REM function.

Example
X=85; Y=3
PRINT 'MOD (X,Y)= ',MOD (X,Y)

This is the program output:

MOD (X,Y)= 1
BASIC Statements and Functions 6-403

MODS function
MODS

Syntax
MODS (array1, array2)

CALL −MODS (return.array, array1, array2)

CALL !MODS (return.array, array1, array2)

Description
Use the MODS function to create a dynamic array of the remainder after the integer
division of corresponding elements of two dynamic arrays.

The MODS function calculates each element according to the following formula:

XY.element = X − (INT (X / Y) * Y)

X is an element of array1 and Y is the corresponding element of array2. The
resulting element is returned in the corresponding element of a new dynamic
array. If an element of one dynamic array has no corresponding element in the
other dynamic array, 0 is returned. If an element of array2 is 0, 0 is returned. If either
of a corresponding pair of elements is the null value, null is returned for that
element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A=3:@VM:7
B=2:@SM:7:@VM:4
PRINT MODS(A,B)

This is the program output:

1S0V3
6-404 BASIC Guide

MULS function
MULS

Syntax
MULS (array1, array2)

CALL −MULS (return.array, array1, array2)

CALL !MULS (return.array, array1, array2)

Description
Use the MULS function to create a dynamic array of the element-by-element multi-
plication of two dynamic arrays.

Each element of array1 is multiplied by the corresponding element of array2 with
the result being returned in the corresponding element of a new dynamic array. If
an element of one dynamic array has no corresponding element in the other
dynamic array, 0 is returned. If either of a corresponding pair of elements is the null
value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A=1:@VM:2:@VM:3:@SM:4
B=4:@VM:5:@VM:6:@VM:9
PRINT MULS(A,B)

This is the program output:

4V10V18S0V0
BASIC Statements and Functions 6-405

NAP statement
NAP

Syntax

NAP [milliseconds]

Description
Use the NAP statement to suspend the execution of a BASIC program, pausing for
a specified number of milliseconds.

milliseconds is an expression evaluating to the number of milliseconds for the
pause. If milliseconds is not specified, a value of 1 is used. If milliseconds evaluates
to the null value, the NAP statement is ignored.
6-406 BASIC Guide

NEG function
NEG

Syntax
NEG (number)

Description
Use the NEG function to return the arithmetic inverse of the value of the argument.

number is an expression evaluating to a number.

Example
In the following example, A is assigned the value of 10, and B is assigned the value
of NEG(A), which evaluates to –10:

A = 10
B = NEG(A)
BASIC Statements and Functions 6-407

NEGS function
NEGS

Syntax
NEGS (dynamic.array)

CALL −NEGS (return.array, dynamic.array)

Description
Use the NEGS function to return the negative values of all the elements in a
dynamic array. If the value of an element is negative, the returned value is positive.
If dynamic.array evaluates to the null value, null is returned. If any element is null,
null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-408 BASIC Guide

NES function
NES

Syntax
NES (array1, array2)

CALL −NES (return.array, array1, array2)

CALL !NES (return.array, array1, array2)

Description
Use the NES function to test if elements of one dynamic array are equal to the
elements of another dynamic array.

Each element of array1 is compared with the corresponding element of array2. If the
two elements are equal, a 0 is returned in the corresponding element of a new
dynamic array. If the two elements are not equal, a 1 is returned. If an element of
one dynamic array has no corresponding element in the other dynamic array, a 1
is returned. If either of a corresponding pair of elements is the null value, null is
returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
BASIC Statements and Functions 6-409

NEXT statement
NEXT

Syntax

NEXT [variable]

Description
Use the NEXT statement to end a FOR…NEXT loop, causing the program to
branch back to the FOR statement and execute the statements that follow it.

Each FOR statement must have exactly one corresponding NEXT statement.

variable is the name of the variable given as the index counter in the statement. If
the variable is not named, the most recently named index counter variable is
assumed.

Example
FOR I=1 TO 10

PRINT I:" ":
NEXT I
PRINT

This is the program output:

1 2 3 4 5 6 7 8 9 10
6-410 BASIC Guide

NOBUF statement
NOBUF

Syntax

NOBUF file.variable {THEN statements [ELSE statements] | ELSE statements}

Description
Use the NOBUF statement to turn off buffering for a file previously opened for
sequential processing. Normally DataStage uses buffering for sequential input and
output operations. The NOBUF statement turns off this buffering and causes all
writes to the file to be performed immediately. It eliminates the need for FLUSH
operations but also eliminates the benefits of buffering. The NOBUF statement
must be executed after a successful OPENSEQ or CREATE statement and before
any input or output operation is performed on the record.

If the NOBUF operation is successful, the THEN statements are executed; the ELSE
statements are ignored. If THEN statements are not present, program execution
continues with the next statement.

If the specified file cannot be accessed or does not exist, the ELSE statements are
executed; the THEN statements are ignored. If file.variable evaluates to the null
value, the NOBUF statement fails and the program terminates with a run-time
error message.

Example
In the following example, if RECORD1 in FILE.E can be opened, buffering is
turned off:

OPENSEQ 'FILE.E', 'RECORD1' TO DATA THEN NOBUF DATA
ELSE ABORT
BASIC Statements and Functions 6-411

NOT function
NOT

Syntax
NOT (expression)

Description
Use the NOT function to return the logical complement of the value of expression.
If the value of expression is true, the NOT function returns a value of false (0). If the
value of expression is false, the NOT function returns a value of true (1).

A numeric expression that evaluates to 0 is a logical value of false. A numeric
expression that evaluates to anything else, other than the null value, is a logical
true.

An empty string is logically false. All other string expressions, including strings
that include an empty string, spaces, or the number 0 and spaces, are logically true.

If expression evaluates to the null value, null is returned.

Example
X=5; Y=5
PRINT NOT(X-Y)
PRINT NOT(X+Y)

This is the program output:

1
0

6-412 BASIC Guide

NOTS function
NOTS

Syntax
NOTS (dynamic.array)

CALL −NOTS (return.array, dynamic.array)

CALL !NOTS (return.array, dynamic.array)

Description
Use the NOTS function to return a dynamic array of the logical complements of
each element of dynamic.array. If the value of the element is true, the NOTS function
returns a value of false (0) in the corresponding element of the returned array. If the
value of the element is false, the NOTS function returns a value of true (1) in the
corresponding element of the returned array.

A numeric expression that evaluates to 0 has a logical value of false. A numeric
expression that evaluates to anything else, other than the null value, is a logical
true.

An empty string is logically false. All other string expressions, including strings
which consist of an empty string, spaces, or the number 0 and spaces, are logically
true.

If any element in dynamic.array is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
X=5; Y=5
PRINT NOTS(X-Y:@VM:X+Y)

This is the program output:

1V0
BASIC Statements and Functions 6-413

NULL statement
NULL

Syntax
NULL

Description
Use the NULL statement when a statement is required but no operation is to be
performed. For example, you can use it with the ELSE clause if you do not want
any operation performed when the ELSE clause is executed.

Note: This statement has nothing to do with the null value.

Example
OPEN '','SUN.MEMBER' TO FILE ELSE STOP
FOR ID=5000 TO 6000

READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL
NEXT ID
6-414 BASIC Guide

NUM function
NUM

Syntax
NUM (expression)

Description
Use the NUM function to determine whether expression is a numeric or nonnu-
meric string. If expression is a number, a numeric string, or an empty string, it
evaluates to true and a value of 1 is returned. If expression is a nonnumeric string,
it evaluates to false and a value of 0 is returned.

A string that contains a period used as a decimal point (.) evaluates to numeric. A
string that contains any other character used in formatting numeric or monetary
amounts, for example, a comma (,) or a dollar sign ($) evaluates to nonnumeric.

If expression evaluates to the null value, null is returned.

If NLS is enabled, NUM uses the Numeric category of the current locale to deter-
mine the decimal separator. For more information about locales, see the DataStage
NLS Guide.

Example
X=NUM(2400)
Y=NUM("Section 4")
PRINT "X= ",X,"Y= ",Y

This is the program output:

X= 1 Y= 0
BASIC Statements and Functions 6-415

NUMS function
NUMS

Syntax
NUMS (dynamic.array)

CALL −NUMS (return.array, dynamic.array)

CALL !NUMS (return.array, dynamic.array)

Description
Use the NUMS function to determine whether the elements of a dynamic array are
numeric or nonnumeric strings. If an element is numeric, a numeric string, or an
empty string, it evaluates to true, and a value of 1 is returned to the corresponding
element in a new dynamic array. If the element is a nonnumeric string, it evaluates
to false, and a value of 0 is returned.

The NUMS of a numeric element with a decimal point (.) evaluates to true; the
NUMS of a numeric element with a comma (,) or dollar sign ($) evaluates to
false.

If dynamic.array evaluates to the null value, null is returned. If an element of
dynamic.array is null, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If NLS is enabled, NUMS uses the Numeric category of the current locale to deter-
mine the decimal separator. For more information about locales, see the DataStage
NLS Guide.
6-416 BASIC Guide

OCONV function
OCONV

Syntax
OCONV (string, conversion)

Description
Use the OCONV function to convert string to a specified format for external
output. The result is always a string expression.

string is converted to the external output format specified by conversion.

conversion must evaluate to one or more conversion codes separated by value
marks (ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the left-
most conversion code is applied to string, the next conversion code to the right is
then applied to the result of the first conversion, and so on.

If string evaluates to the null value, null is returned. If conversion evaluates to the
null value, the OCONV function fails and the program terminates with a run-time
error message.

The OCONV function also allows PICK flavor exit codes.

The STATUS function reflects the result of the conversion:

For information about converting strings to an internal format, see the ICONV
function.

0 The conversion is successful.

1 An invalid string is passed to the OCONV function; the original string is
returned as the value of the conversion. If the invalid string is the null value,
null is returned.

2 The conversion code is invalid.

3 Successful conversion of possibly invalid data.
BASIC Statements and Functions 6-417

OCONV function
Examples
The following examples show date conversions:

The following examples show time conversions:

The following examples show hex, octal, and binary conversions:

Source Line Converted Value

DATE=OCONV('9166',"D2") 3 Feb 93

DATE=OCONV(9166,'D/E') 3/2/1993

DATE=OCONV(9166,'DI')1

1. For IN2, PICK, and REALITY flavor accounts.

3/2/1993

DATE=OCONV('9166',"D2-") 2-3-93

DATE=OCONV(0,'D') 31 Dec 1967

Source Line Converted Value

TIME=OCONV(10000,"MT") 02:46

TIME=OCONV("10000","MTHS") 02:46:40am

TIME=OCONV(10000,"MTH") 02:46am

TIME=OCONV(10000,"MT.") 02.46

TIME=OCONV(10000,"MTS") 02:46:40

Source Line Converted Value

HEX=OCONV(1024,"MX") 400

HEX=OCONV('CDE',"MX0C") 434445

OCT=OCONV(1024,"MO") 2000

OCT=OCONV('CDE',"MO0C") 103104105

BIN=OCONV(1024,"MB") 10000000000
6-418 BASIC Guide

OCONV function
The following examples show masked decimal conversions:

BIN=OCONV('CDE',"MB0C") 010000110100010001000101

Source Line Converted Value

X=OCONV(987654,"MD2") 9876.54

X=OCONV(987654,"MD0") 987654

X=OCONV(987654,"MD2,$") $9,876.54

X=OCONV(987654,"MD24$") $98.77

X=OCONV(987654,"MD2-Z") 9876.54

X=OCONV(987654,"MD2,D") 9,876.54

X=OCONV(987654,"MD3,$CPZ") $987.654

X=OCONV(987654,"MD2,ZP12#") ####9,876.54

Source Line Converted Value
BASIC Statements and Functions 6-419

OCONVS function
OCONVS

Syntax
OCONVS (dynamic.array, conversion)

CALL −OCONVS (return.array, dynamic.array, conversion)

CALL !OCONVS (return.array, dynamic.array, conversion)

Description
Use the OCONVS function to convert the elements of dynamic.array to a specified
format for external output.

The elements are converted to the external output format specified by conversion
and returned in a dynamic array. conversion must evaluate to one or more conver-
sion codes separated by value marks (ASCII 253).

If multiple codes are used, they are applied from left to right as follows: the left-
most conversion code is applied to the element, the next conversion code to the
right is then applied to the result of the first conversion, and so on.

If dynamic.array evaluates to the null value, null is returned. If any element of
dynamic.array is null, null is returned for that element. If conversion evaluates to the
null value, the OCONVS function fails and the program terminates with a run-
time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

The STATUS function reflects the result of the conversion:

For information about converting elements in a dynamic array to an internal
format, see the ICONVS function.

0 The conversion is successful.

1 An invalid element is passed to the OCONVS function; the original element
is returned. If the invalid element is the null value, null is returned for that
element.

2 The conversion code is invalid.
6-420 BASIC Guide

ON statement
Syntax

ON expression GOSUB statement.label [:] [,statement.label [:] …]

ON expression GO[TO] statement.label [:] [,statement.label [:] …]

Description
Use the ON statement to transfer program control to one of the internal subrou-
tines named in the GOSUB clause or to one of the statements named in the GOTO
clause.

Using the GOSUB Clause

Use ON GOSUB to transfer program control to one of the internal subroutines
named in the GOSUB clause. The value of expression in the ON clause determines
which of the subroutines named in the GOSUB clause is to be executed.

During execution, expression is evaluated and rounded to an integer. If the value of
expression is 1 or less than 1, the first subroutine named in the GOSUB clause is
executed; if the value of expression is 2, the second subroutine is executed; and so
on. If the value of expression is greater than the number of subroutines named in the
GOSUB clause, the last subroutine is executed. If expression evaluates to the null
value, the ON statement fails and the program terminates with a run-time error
message.

statement.label can be any valid label defined in the program. If a nonexistent state-
ment label is given, an error message is issued when the program is compiled. You
must use commas to separate statement labels. You can use a colon with the state-
ment labels to distinguish them from variable names.

A RETURN statement in the subroutine returns program flow to the statement
following the ON GOSUB statement.

The ON GOSUB statement can be written on more than one line. A comma is
required at the end of each line of the ON GOSUB statement except the last.

Using ON GOSUB in a PICK Flavor Account
If the value of expression is less than 1, the next statement is executed; if the value
of expression is greater than the number of subroutines named in the GOSUB

ON ON GOSUB ON GOTO
BASIC Statements and Functions 6-421

ON statement
clause, execution continues with the next statement rather than the last subroutine.
To get this characteristic in other flavors, use the ONGO.RANGE option of the
$OPTIONS statement.

Using the GOTO Clause
Use ON GOTO to transfer program control to one of the statements named in the
GOTO clause. The value of expression in the ON clause determines which of the
statements named in the GOTO clause is to be executed. During execution, expres-
sion is evaluated and rounded to an integer.

If the value of expression is 1 or less than 1, control is passed to the first statement
label named in the GOTO clause; if the value of expression is 2, control is passed to
the second statement label; and so on. If the value of expression is greater than the
number of statements named in the GOTO clause, control is passed to the last
statement label. If expression evaluates to the null value, the ON statement fails and
the program terminates with a run-time error message.

statement.label can be any valid label defined in the program. If a nonexistent state-
ment label is given, an error message is issued when the program is compiled. You
must use commas to separate statement labels. You can use a colon with the state-
ment labels to distinguish them from variable names.

Using ON GOTO in a PICK Flavor Account
If the value of expression is less than 1, control is passed to the next statement; if the
value of expression is greater than the number of the statements named in the
GOTO clause, execution continues with the next statement rather than the last
statement label. To get this characteristic with other flavors, use the
ONGO.RANGE option of the $OPTIONS statement.
6-422 BASIC Guide

ON statement
Examples

Source Lines Program Output

FOR X=1 TO 4
ON X GOSUB 10,20,30,40
PRINT 'RETURNED FROM SUBROUTINE'
NEXT X
STOP
10 PRINT 'AT LABEL 10'
RETURN
20 PRINT 'AT LABEL 20'
RETURN
30 PRINT 'AT LABEL 30'
RETURN
40 PRINT 'AT LABEL 40'
RETURN

AT LABEL 10
RETURNED FROM SUBROUTINE
AT LABEL 20
RETURNED FROM SUBROUTINE
AT LABEL 30
RETURNED FROM SUBROUTINE
AT LABEL 40
RETURNED FROM SUBROUTINE

VAR=1234
Y=1
10*
X=VAR[Y,1]
IF X='' THEN STOP
ON X GOTO 20,30,40
20*
PRINT 'AT LABEL 20'
Y=Y+1
GOTO 10
30*
PRINT 'AT LABEL 30'
Y=Y+1
GOTO 10
40*
PRINT 'AT LABEL 40'
Y=Y+1
GOTO 10

AT LABEL 20
AT LABEL 30
AT LABEL 40
AT LABEL 40
BASIC Statements and Functions 6-423

OPEN statement
OPEN

Syntax

OPEN [dict,] filename [TO file.variable] [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the OPEN statement to open a DataStage file for use by BASIC programs. All
file references in a BASIC program must be preceded by either an OPEN statement
or an OPENCHECK statement for that file. You can open several DataStage files at
the same point in a program, but you must use a separate OPEN statement for each
file.

dict is an expression that evaluates to a string specifying whether to open the file
dictionary or the data file. Use the string DICT to open the file dictionary, or use
PDICT to open an associated Pick-style dictionary. Any other string opens the data
file. By convention an empty string or the string DATA is used when you are
opening the data file. If the dict expression is omitted, the data file is opened. If dict
is the null value, the data file is opened.

filename is an expression that evaluates to the name of the file to be opened. If the
file exists, the file is opened, and the THEN statements are executed; the ELSE
statements are ignored. If no THEN statements are specified, program execution
continues with the next statement. If the file cannot be accessed or does not exist,
the ELSE statements are executed; any THEN statements are ignored. If filename
evaluates to the null value, the OPEN statement fails and the program terminates
with a run-time error message.

Use the TO clause to assign the opened file to file.variable. All statements that read,
write to, delete, or clear that file must refer to it by the name of the file variable. If
you do not assign the file to a file variable, an internal default file variable is used.
File references that do not specify a file variable access the default file variable,
which contains the most recently opened file. The file opened to the current default
file variable is assigned to the system variable @STDFIL.

Default file variables are not local to the program from which they are executed.
When a subroutine is called, the current default file variable is shared with the
calling program.

When opening an SQL table, the OPEN statement enforces SQL security. The
permissions granted to the program’s effective user ID are loaded when the file is
6-424 BASIC Guide

OPEN statement
opened. If no permissions have been granted, the OPEN statement fails, and the
ELSE statements are executed.

All writes to an SQL table opened with the OPEN statement are subject to SQL
integrity checking unless the OPENCHK configurable parameter has been set to
FALSE. Use the OPENCHECK statement instead of the OPEN statement to enable
automatic integrity checking for all writes to a file, regardless of whether the
OPENCHK configurable parameter is true or false.

Use the INMAT function after an OPEN statement to determine the modulo of the
file.

The ON ERROR Clause
The ON ERROR clause is optional in the OPEN statement. Its syntax is the same as
that of the ELSE clause. The ON ERROR clause lets you specify an alternative for
program termination when a fatal error is encountered while the OPEN statement
is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.
BASIC Statements and Functions 6-425

OPEN statement
The STATUS Function
The file type is returned if the file is opened successfully. If the file is not opened
successfully, the following values may return:

Examples
OPEN "SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
OPEN "FOOBAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
PRINT "ALL FILES OPEN OK"

This is the program output:

CAN'T OPEN FOOBAR

Value Description

–1 Filename not found in the VOC file.

–21

1. A generic error that can occur for various reasons.

Null filename or file.

–3 Operating system access error that occurs when you do not have
permission to access a DataStage file in a directory. For example,
this may occur when trying to access a type 1 or type 30 file.

–41 Access error when you do not have operating system permissions
or if DATA.30 is missing for a type 30 file.

–5 Read error detected by the operating system.

–6 Unable to lock file header.

–7 Invalid file revision or wrong byte-ordering for the platform.

–81 Invalid part file information.

–91 Invalid type 30 file information in a distributed file.

–10 A problem occurred while the file was being rolled forward during
warmstart recovery. Therefore, the file is marked “inconsistent.”

–11 The file is a view, therefore it cannot be opened by a BASIC
program.

–12 No SQL privileges to open the table.

–131 Index problem.

–14 Cannot open the NFS file.
6-426 BASIC Guide

OPEN statement
The following example opens the same file as in the previous example. The OPEN
statement includes an empty string for the dict argument.

OPEN "","SUN.MEMBER" TO DATA ELSE STOP "CAN'T OPEN SUN.MEMBER"
OPEN "","FOO.BAR" TO FOO ELSE STOP "CAN'T OPEN FOOBAR"
PRINT "ALL FILES OPEN OK"
BASIC Statements and Functions 6-427

OPENCHECK statement
OPENCHECK

Syntax

OPENCHECK [dict,] filename [TO file.variable]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the OPENCHECK statement to open an SQL table for use by BASIC programs,
enforcing SQL integrity checking. All file references in a BASIC program must be
preceded by either an OPENCHECK statement or an OPEN statement for that file.

The OPENCHECK statement works like the OPEN statement, except that SQL
integrity checking is enabled if the file is an SQL table. All field integrity checks for
an SQL table are stored in the security and integrity constraints area (SICA). The
OPENCHECK statement loads the compiled form of these integrity checks into
memory, associating them with the file variable. All writes to the file are subject to
SQL integrity checking.

The STATUS Function
The file type is returned if the file is opened successfully. If the file is not opened
successfully, the following values may return:

Value Description

–1 Filename not found in the VOC file.

–21 Null filename or file.

–3 Operating system access error that occurs when you do not have
permission to access a DataStage file in a directory. For example,
this may occur when trying to access a type 1 or type 30 file.

–41 Access error when you do not have operating system permissions
or if DATA.30 is missing for a type 30 file.

–5 Read error detected by the operating system.

–6 Unable to lock file header.

–7 Invalid file revision or wrong byte-ordering for the platform.

–81 Invalid part file information.

–91 Invalid type 30 file information in a distributed file.
6-428 BASIC Guide

OPENCHECK statement
–10 A problem occurred while the file was being rolled forward during
warmstart recovery. Therefore, the file is marked “inconsistent.”

–11 The file is a view, therefore it cannot be opened by a BASIC
program.

–12 No SQL privileges to open the table.

–131 Index problem.

–14 Cannot open the NFS file.

1. A generic error that can occur for various reasons.

Value Description
BASIC Statements and Functions 6-429

OPENDEV statement
OPENDEV

Syntax

OPENDEV device TO file.variable [LOCKED statements]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the OPENDEV statement to open a device for sequential processing.
OPENDEV also sets a record lock on the opened device or file. See the READSEQ
and WRITESEQ statements for more details on sequential processing.

device is an expression that evaluates to the record ID of a device definition record
in the &DEVICE& file. If device evaluates to the null value, the OPENDEV state-
ment fails and the program terminates with a run-time error message. For more
information, see “Devices on Windows NT.”

The TO clause assigns a file.variable to the device being opened. All statements used
to read to or write from that device must refer to it by the assigned file.variable.

If the device exists and is not locked, the device is opened and any THEN state-
ments are executed; the ELSE statements are ignored. If no THEN statements are
specified, program execution continues with the next statement.

If the device is locked, the LOCKED statements are executed; THEN statements
and ELSE statements are ignored.

If the device does not exist or cannot be opened, the ELSE statements are executed;
any THEN statements are ignored. The device must have the proper access permis-
sions for you to open it.

If NLS is enabled, you can use OPENDEV to open a device that uses a map defined
in the &DEVICE& file. If there is no map defined in the &DEVICE& file, the default
mapname is the name in the NLSDEFDEVMAP parameter in the uvconfig file. For
more information about maps, see the DataStage NLS Guide.

Devices on Windows NT
On Windows NT systems, you may need to change to block size defined for a
device in the &DEVICE& file before you can use OPENDEV to reference the
6-430 BASIC Guide

OPENDEV statement
device. On some devices there are limits to the type of sequential processing that
is available once you open the device. The following table summarizes the limits:

The LOCKED Clause

The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the OPENDEV statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
• Update record lock
• Shared record lock

If the OPENDEV statement does not include a LOCKED clause, and a conflicting
lock exists, the program pauses until the lock is released.

Device Type Block Size Processing Available

4 mm DAT drive No change needed. No limits.

8 mm DAT drive No change needed. No limits.

1/4-inch cartridge
drive, 60 MB or
150 MB

Specify the block size as
512 bytes or a multiple of
512 bytes.

Use READBLK and
WRITEBLK to read or write
data in blocks of 512 bytes. Use
SEEK only to move the file
pointer to the beginning or the
end of the file. You can use
WEOF to write an end-of-file
(EOF) mark only at the begin-
ning of the data or after a write.

1/4-inch 525
cartridge drive

No change needed. No limits.

Diskette drive Specify the block size as
512 bytes or a multiple of
512 bytes.

Use SEEK only to move the file
pointer to the beginning of the
file. Do not use WEOF.
BASIC Statements and Functions 6-431

OPENDEV statement
Example
The following example opens TTY30 for sequential input and output operations:

OPENDEV 'TTY30' TO TERM THEN PRINT 'TTY30 OPENED'
ELSE ABORT

This is the program output:

TTY30 OPENED
6-432 BASIC Guide

OPENPATH statement
OPENPATH

Syntax

OPENPATH pathname [TO file.variable] [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

Description
The OPENPATH statement is similar to the OPEN statement, except that the path-
name of the file is specified. This file is opened without reference to the VOC file.
The file must be a hashed DataStage file or a directory (types 1 and 19).

pathname specifies the relative or absolute pathname of the file to be opened. If the
file exists, it is opened and the THEN statements are executed; the ELSE statements
are ignored. If pathname evaluates to the null value, the OPENPATH statement fails
and the program terminates with a run-time error message.

If the file cannot be accessed or does not exist, the ELSE statements are executed;
any THEN statements are ignored.

Use the TO clause to assign the file to a file.variable. All statements used to read,
write, delete, or clear that file must refer to it by the assigned file.variable name. If
you do not assign the file to a file.variable, an internal default file variable is used.
File references that do not specify file.variable access the most recently opened
default file. The file opened to the default file variable is assigned to the system
variable @STDFIL.

The ON ERROR Clause
The ON ERROR clause is optional in the OPENPATH statement. Its syntax is the
same as that of the ELSE clause. The ON ERROR clause lets you specify an alter-
native for program termination when a fatal error is encountered during
processing of the OPENPATH statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.
BASIC Statements and Functions 6-433

OPENPATH statement
• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The STATUS Function
You can use the STATUS function after an OPENPATH statement to find the cause
of a file open failure (that is, for an OPENPATH statement in which the ELSE clause
is used). The following values can be returned if the OPENPATH statement is
unsuccessful:

 Value Description

–1 Filename not found in the VOC file.

–21 Null filename or file.

–3 Operating system access error that occurs when you do not have
permission to access a DataStage file in a directory. For example,
this may occur when trying to access a type 1 or type 30 file.

–41 Access error when you do not have operating system permissions
or if DATA.30 is missing for a type 30 file.

–5 Read error detected by the operating system.

–6 Unable to lock file header.

–7 Invalid file revision or wrong byte-ordering for the platform.

–81 Invalid part file information.

–91 Invalid type 30 file information in a distributed file.

–10 A problem occurred while the file was being rolled forward during
warmstart recovery. Therefore, the file is marked “inconsistent.”

–11 The file is a view, therefore it cannot be opened by a BASIC
program.

–12 No SQL privileges to open the table.
6-434 BASIC Guide

OPENPATH statement
Example
The following example opens the file SUN.MEMBER. The pathname specifies the
file.

OPENPATH '/user/members/SUN.MEMBER' ELSE ABORT

–131 Index problem.

–14 Cannot open the NFS file.

1. A generic error that can occur for various reasons.

 Value Description
BASIC Statements and Functions 6-435

OPENSEQ statement
OPENSEQ

Syntax

OPENSEQ filename, record.ID TO file.variable [USING dynamic.array]
 [ON ERROR statements] [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

OPENSEQ pathname TO file.variable [USING dynamic.array]
 [ON ERROR statements] [LOCKED statements]
 {THEN statements [ELSE statements] | ELSE statements}

Description
Use the OPENSEQ statement to open a file for sequential processing. All sequen-
tial file references in a BASIC program must be preceded by an OPENSEQ or
OPENDEV statement for that file. Although you can open several files for sequen-
tial processing at the same point in the program, you must issue a separate
OPENSEQ statement for each. See the READSEQ and WRITESEQ statements for
more details on sequential processing.

Note: Performing multiple OPENSEQ operations on the same file results in
creating only one update record lock. This single lock can be released by a
CLOSESEQ or RELEASE statement.

The first syntax is used to open a record in a type 1 or type 19 file.

The second syntax specifies a pathname to open a UNIX or DOS file. The file can
be a disk file, a pipe, or a special device.

filename specifies the name of the type 1 or type 19 file containing the record to be
opened.

record.ID specifies the record in the file to be opened. If the record exists and is not
locked, the file is opened and the THEN statements are executed; the ELSE state-
ments are ignored. If no THEN statements are specified, program execution
continues with the next statement. If the record or the file itself cannot be accessed
or does not exist, the ELSE statements are executed; any THEN statements are
ignored.

pathname is an explicit pathname for the file, pipe, or device to be opened. If the file
exists and is not locked, it is opened and the THEN statements are executed; the
6-436 BASIC Guide

OPENSEQ statement
ELSE statements are ignored. If the pathname does not exist, the ELSE statements
are executed; any THEN statements are ignored.

If the file does not exist, the OPENSEQ statement fails. The file can also be explic-
itly created with the CREATE statement.

OPENSEQ sets an update record lock on the specified record or file. This lock is
reset by a CLOSESEQ statement. This prevents any other program from changing
the record while you are processing it.

If filename, record.ID, or pathname evaluate to the null value, the OPENSEQ state-
ment fails and the program terminates with a run-time error message.

The TO clause is required. It assigns the record, file, or device to file.variable. All
statements used to sequentially read, write, delete, or clear that file must refer to it
by the assigned file variable name.

If NLS is enabled, you can use the OPENSEQ filename, record.ID statement to open
a type 1 or type 19 file that uses a map defined in the .uvnlsmap file in the directory
containing the type 1 or type 19 file. If there is no .uvnlsmap file in the directory, the
default mapname is the name in the NLSDEFDIRMAP parameter in the uvconfig
file.

Use the OPENSEQ pathname statement to open a UNIX pipe, file, or a file specified
by a device that uses a map defined in the .uvnlsmap file in the directory holding
pathname. If there is no .uvnlsmap file in the directory, the default mapname is the
name in the NLSDEFSEQMAP parameter in the uvconfig file, or you can use the
SET.SEQ.MAP command to assign a map.

For more information about maps, see the DataStage NLS Guide.

File Buffering
Normally DataStage uses buffering for sequential input and output operations.
Use the NOBUF statement after an OPENSEQ statement to turn off buffering and
cause all writes to the file to be performed immediately. For more information
about file buffering, see the NOBUF statement.

The USING Clause
You can optionally include the USING clause to control whether the opened file is
included in the rotating file pool. The USING clause supplements OPENSEQ
processing with a dynamic array whose structure emulates an &DEVICE& file
BASIC Statements and Functions 6-437

OPENSEQ statement
record. Field 17 of the dynamic array controls inclusion in the rotating file pool
with the following values:

• Y removes the opened file.
• N includes the opened file.

The ON ERROR Clause
The ON ERROR clause is optional in the OPENSEQ statement. Its syntax is the
same as that of the ELSE clause. The ON ERROR clause lets you specify an alter-
native for program termination when a fatal error is encountered while the
OPENSEQ statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended. Its syntax is the same as that
of the ELSE clause. The LOCKED clause handles a condition caused by a
conflicting lock (set by another user) that prevents the OPENSEQ statement from
processing. The LOCKED clause is executed if one of the following conflicting
locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
6-438 BASIC Guide

OPENSEQ statement
• Update record lock
• Shared record lock

If the OPENSEQ statement does not include a LOCKED clause, and a conflicting
lock exists, the program pauses until the lock is released.

Use the STATUS function after an OPENSEQ statement to determine whether the
file was successfully opened.

The STATUS Function
The file type is returned if the file is opened successfully. If the file is not opened
successfully, the following values may return:

1 A generic error that can occur for various reasons.

Value Description

–1 Filename not found in the VOC file.

–21 Null filename or file.

–3 Operating system access error that occurs when you do not have
privileges to access a DataStage file in a directory. For example, this
may occur when trying to access a type 1 or type 30 file.

–41 Access error when you do not have operating system permissions or
if DATA.30 is missing for a type 30 file.

–5 Read error detected by the operating system.

–6 Unable to lock file header.

–7 Invalid file revision or wrong byte-ordering for the platform.

–81 Invalid part file information.

–91 Invalid type 30 file information in a distributed file.

–10 A problem occurred while the file was being rolled forward during
warmstart recovery. Therefore, the file is marked “inconsistent.”

–11 The file is a view, therefore it cannot be opened by a BASIC program.

–12 No SQL privileges to open the table.

–131 Index problem.

–14 Cannot open the NFS file.
BASIC Statements and Functions 6-439

OPENSEQ statement
Examples
The following example reads RECORD1 from the nonhashed file FILE.E:

OPENSEQ 'FILE.E', 'RECORD1' TO FILE THEN
PRINT "'FILE.E' OPENED FOR PROCESSING"
END ELSE ABORT

READSEQ A FROM FILE THEN PRINT A ELSE STOP

The next example writes the record read from FILE.E to the file /usr/depta/file1:

OPENSEQ '/usr/depta/file1' TO OUTPUT THEN
PRINT "usr/depta/file1 OPENED FOR PROCESSING"

END ELSE ABORT
WRITESEQ A ON OUTPUT ELSE PRINT "CANNOT WRITE TO OUTPUT"

.

.

.
CLOSESEQ FILE
CLOSESEQ OUTPUT
END

This is the program output:

FILE.E OPENED FOR PROCESSING
HI THERE

.

.

.
/usr/depta/file1 OPENED FOR PROCESSING

The next example includes the USING clause to remove an opened file from the
rotating file pool:

DEVREC = "1"@FM
FOR I = 2 TO 16

DEVREC = DEVREC:I:@FM
NEXT I
DEVREC=DEVREC:'Y'
*
OPENSEQ 'SEQTEST', 'TESTDATA' TO TESTFILE USING DEVREC
THEN PRINT "OPENED 'TESTDATA' OK...."
ELSE PRINT "COULD NOT OPEN TESTDATA"
CLOSESEQ TESTFILE
6-440 BASIC Guide

OPENSEQ statement
This is the program output:

OPENED 'TESTDATA' OK
BASIC Statements and Functions 6-441

ORS function
ORS

Syntax
ORS (array1, array2)

CALL −ORS (return.array, array1, array2)

CALL !ORS (return.array, array1, array2)

Description
Use the ORS function to create a dynamic array of the logical OR of corresponding
elements of two dynamic arrays.

Each element of the new dynamic array is the logical OR of the corresponding
elements of array1 and array2. If an element of one dynamic array has no corre-
sponding element in the other dynamic array, a false is assumed for the missing
element.

If both corresponding elements of array1 and array2 are the null value, null is
returned for those elements. If one element is the null value and the other is 0 or an
empty string, null is returned. If one element is the null value and the other is any
value other than 0 or an empty string, a true is returned.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A="A":@SM:0:@VM:4:@SM:1
B=0:@SM:1-1:@VM:2
PRINT ORS(A,B)

This is the program output:

1S0V1S1
6-442 BASIC Guide

PAGE statement
PAGE

Syntax

PAGE [ON print.channel] [page#]

Description
Use the PAGE statement to print headings, footings, and page advances at the
appropriate places on the specified output device. You can specify headings and
footings before execution of the PAGE statement (see the HEADING and
FOOTING statements). If there is no heading or footing, PAGE clears the screen.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). Logical print channel –1
prints the data on the screen, regardless of whether a PRINTER ON statement has
been executed.

page# is an expression that specifies the next page number. If a heading or footing
is in effect when the page number is specified, the heading or footing on the current
page contains a page number equal to one less than the value of page#.

If either print.channel or page# evaluates to the null value, the PAGE statement fails
and the program terminates with a run-time error message.

Example
In the following example the current value of X provides the next page number:

PAGE ON 5 X
BASIC Statements and Functions 6-443

PERFORM statement
PERFORM

Syntax
PERFORM command

Description
Use the PERFORM statement to execute a DataStage sentence, paragraph, menu,
or command from within the BASIC program, then return execution to the state-
ment following the PERFORM statement. The commands are executed in the same
environment as the BASIC program that called them; that is, unnamed common
variables, @variables, and in-line prompts retain their values, and select lists and
the DATA stack remain active. If these values change, the new values are passed
back to the calling program.

You can specify multiple commands in the PERFORM statement in the same way
you specify them in the body of a DataStage paragraph. Each command or line
must be separated by a field mark (ASCII CHAR(254)).

If command evaluates to the null value, the PERFORM statement fails and the
program terminates with a run-time error message.

You cannot use the PERFORM statement within a transaction to execute most
DataStage commands and SQL statements. However, you can use PERFORM to
execute the following DataStageDataStage commands and SQL statements within
a transaction:

CHECK.SUM INSERT SEARCH SSELECT
COUNT LIST SELECT (RetrieVe) STAT
DELETE (SQL) LIST.ITEM SELECT (SQL) SUM
DISPLAY LIST.LABEL SORT UPDATE
ESEARCH RUN SORT.ITEM
GET.LIST SAVE.LIST SORT.LABEL

REALITY Flavor
In a REALITY flavor account PERFORM can take all the clauses of the EXECUTE
statement. To get these PERFORM characteristics in other flavor accounts, use the
PERF.EQ.EXEC option of the $OPTIONS statement.
6-444 BASIC Guide

PERFORM statement
Example
In the following example multiple commands are separated by field marks:

PERFORM 'RUN BP SUB'
FM=CHAR(254)
COMMAND = 'SSELECT EM':FM
COMMAND := 'RUN BP PAY':FM
COMMAND := 'DATA 01/10/85'

PERFORM COMMAND
A = 'SORT EM '
A := 'WITH PAY.CODE EQ'
A := '10 AND WITH DEPT'
A := 'EQ 45'
PERFORM A
BASIC Statements and Functions 6-445

PRECISION statement
PRECISION

Syntax
PRECISION expression

Description
Use the PRECISION statement to control the maximum number of decimal places
that are output when the system converts a numeric value from internal binary
format to an ASCII character string value.

expression specifies a number from 0 through 9. Any fractional digits in the result
of such a conversion that exceed the precision setting are rounded off.

If you do not include a PRECISION statement, a default precision of 4 is assumed.
Precisions are stacked so that a BASIC program can change its precision and call a
subroutine whose precision is the default unless the subroutine executes a PRECI-
SION statement. When the subroutine returns to the calling program, the calling
program has the same precision it had when it called the subroutine.

Trailing fractional zeros are dropped during output. Therefore, when an internal
number is converted to an ASCII string, the result might appear to have fewer
decimal places than the precision setting allows. However, regardless of the preci-
sion setting, the calculation always reflects the maximum accuracy of which the
computer is capable (that is, slightly more than 17 total digits, including integers).

If expression evaluates to the null value, the PRECISION statement fails and the
program terminates with a run-time error message.

Example
A = 12.123456789
PRECISION 8
PRINT A
PRECISION 4
PRINT A

This is the program output:

12.12345679
12.1235
6-446 BASIC Guide

PRINT statement
PRINT

Syntax

PRINT [ON print.channel] [print.list]

Description
Use the PRINT statement to send data to the screen, a line printer, or another print
file.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). If print.channel evaluates to
the null value, the PRINT statement fails and the program terminates with a run-
time error message. Logical print channel –1 prints the data on the screen, regard-
less of whether a PRINTER ON statement has been executed.

You can specifyHEADING, FOOTING, PAGE, and PRINTER CLOSE statements
for each logical print channel. The contents of the print files are printed in order by
logical print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric
or character strings, variables, constants, or literal strings; the null value, however,
cannot be printed. The list can consist of a single expression or a series of expres-
sions separated by commas (,) or colons (:) for output formatting. If no print.list
is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default
tabstop setting is 10 characters. Calculations for tab characters are based on char-
acter length rather than display length. For information about changing the default
setting, see the TABSTOP statement. Use multiple commas together for multiple
tabulations between expressions.

Expressions separated by colons are concatenated. That is, the expression
following the colon is printed immediately after the expression preceding the
colon. To print a list without a LINEFEED and RETURN, end print.list with a colon
(:).

If NLS is enabled, calculations for the PRINT statement are based on character
length rather than display length. If print.channel has a map associated with it, data
is mapped before it is output to the device. For more information about maps, see
the DataStage NLS Guide.
BASIC Statements and Functions 6-447

PRINT statement
Examples
A=25;B=30
C="ABCDE"
PRINT A+B
PRINT
PRINT "ALPHA ":C
PRINT "DATE ":PRINT "10/11/93"
*
PRINT ON 1 "FILE 1"
* The string "FILE 1" is printed on print file 1.

This is the program output:

55
ALPHA ABCDE
DATE 10/11/93

The following example clears the screen:

PRINT @(–1)

The following example prints the letter X at location column 10, row 5:

PRINT @(10,5) 'X'
6-448 BASIC Guide

PRINTER statement
PRINTER

Syntax

PRINTER { ON | OFF | RESET }
PRINTER CLOSE

PRINTER CLOSE [ON print.channel]

Description
Use the PRINTER statement to direct output either to the screen or to a printer. By
default, all output is sent to the screen unless a PRINTER ON is executed or the P
option to the RUN command is used. See the SETPTR command for more details
about redirecting output.

PRINTER ON sends output to the system line printer via print channel 0. The
output is stored in a buffer until a PRINTER CLOSE statement is executed or the
program terminates; the output is then printed (see the PRINTER CLOSE
statement).

PRINTER OFF sends output to the screen via print channel 0. When the program
is executed, the data is immediately printed on the screen.

The PRINTER ON or PRINTER OFF statement must precede the PRINT statement
that starts the print file.

Use the PRINTER RESET statement to reset the printing options. PRINTER RESET
removes the header and footer, resets the page count to 1, resets the line count to 1,
and restarts page waiting.

Note: Use TPRINT to set a delay before printing. See also the TPARM statement.

The PRINTER CLOSE Statement

Use the PRINTER CLOSE statement to print all output data stored in the printer
buffer.

You can specify print channel –1 through 255 with the ON clause. If you omit the
ON clause from a PRINTER CLOSE statement, print channel 0 is closed. Only data
directed to the printer specified by the ON clause is printed. Therefore, there must
be a corresponding PRINTER CLOSE ON print.channel for each ON clause speci-
fied in a PRINT statement. All print channels are closed when the program stops.
Logical print channel –1 prints the data on the screen, regardless of whether a
PRINTER ON statement has been executed.
BASIC Statements and Functions 6-449

PRINTER statement
If print.channel evaluates to the null value, the PRINTER CLOSE statement fails
and the program terminates with a run-time error message.

In PICK, IN2, and REALITY flavor accounts, the PRINTER CLOSE statement
closes all print channels.

Example
PRINTER ON
PRINT "OUTPUT IS PRINTED ON PRINT FILE 0"
PRINTER OFF
PRINT "OUTPUT IS PRINTED ON THE TERMINAL"
*
PRINT ON 1 "OUTPUT WILL BE PRINTED ON PRINT FILE 1"
PRINT ON 2 "OUTPUT WILL BE PRINTED ON PRINT FILE 2"

This is the program output:

OUTPUT IS PRINTED ON THE TERMINAL
6-450 BASIC Guide

PRINTERR statement
PRINTERR

Syntax

PRINTERR [error.message]

Description
Use the PRINTERR statement to print a formatted error message on the bottom
line of the terminal. The message is cleared by the next INPUT @ statement or is
overwritten by the next PRINTERR or INPUTERR statement. PRINTERR clears
the type-ahead buffer.

error.message is an expression that evaluates to the error message text. The elements
of the expression can be numeric or character strings, variables, constants, or literal
strings. The null value cannot be an element because it cannot be output. The
expression can be a single expression or a series of expressions separated by
commas (,) or colons (:) for output formatting. If no error message is designated,
a blank line is printed. If error.message evaluates to the null value, the default
message is printed:

Message ID is NULL: undefined error

Expressions separated by commas are printed at preset tab positions. The default
tabstop setting is 10 characters. For information about changing the default setting,
see the TABSTOP statement. Use multiple commas together to cause multiple
tabulations between expressions.

Expressions separated by colons are concatenated: that is, the expression following
the colon is printed immediately after the expression preceding the colon.

See also the INPUTERR statement.

REALITY Flavor
In a REALITY flavor account the PRINTERR statement prints a formatted error
message from the ERRMSG file on the bottom line of the terminal. REALITY
syntax is:

 PRINTERR [dynamic.array] [FROM file.variable]
dynamic.array must contain a record ID and any arguments to the message, with
each element separated from the next by a field mark. If dynamic.array does not
specify an existing record ID, a warning message states that no error message can
be found.
BASIC Statements and Functions 6-451

PRINTERR statement
If dynamic.array evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

The FROM clause lets you read the error message from an open file. If file.variable
evaluates to the null value, the PRINTERR statement fails and the program termi-
nates with a run-time error message.

This statement is similar to the STOP statement on a Pick system except that it does
not terminate the program upon execution. You can use it wherever you can use a
STOP or ABORT statement.

To use the REALITY version of the PRINTERR statement in PICK, IN2, INFOR-
MATION, and IDEAL flavor accounts, use the USE.ERRMSG option of the
$OPTIONS statement.

DataStage provides a standard Pick ERRMSG file. You can construct a local
ERRMSG file using the following syntax in the records. Each field must start with
one of these codes, as shown in the following table:

ERRMSG File Codes

Code Action

A[(n)] Display next argument left-justified; n specifies field length.

D Display system date.

E [string] Display record ID of message in brackets; string displayed after ID.

H [string] Display string.

L [(n)] Output newline; n specifies number of newlines.

R [(n)] Display next argument right-justified; n specifies field length.

S [(n)] Output n blank spaces from beginning of line.

T Display system time.
6-452 BASIC Guide

PROCREAD statement
PROCREAD

Syntax
PROCREAD variable

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the PROCREAD statement to assign the contents of the primary input buffer
to a variable. Your BASIC program must be called by a proc. If your program was
not called from a proc, the ELSE statements are executed; otherwise the THEN
statements are executed.

If variable evaluates to the null value, the PROCREAD statement fails and the
program terminates with a run-time error message.
BASIC Statements and Functions 6-453

PROCWRITE statement
PROCWRITE

Syntax
PROCWRITE string

Description
Use the PROCWRITE statement to write string to the primary input buffer. Your
program must be called by a proc.

If string evaluates to the null value, the PROCWRITE statement fails and the
program terminates with a run-time error message.
6-454 BASIC Guide

PROGRAM statement
PROGRAM

Syntax

PROG[RAM] [name]

Description
Use the PROGRAM statement to identify a program. The PROGRAM statement is
optional; if you use it, it must be the first noncomment line in the program.

name can be specified for documentation purposes; it need not be the same as the
actual program name.

Example
PROGRAM BYSTATE
BASIC Statements and Functions 6-455

PROMPT statement
PROMPT

Syntax
PROMPT character

Description
Use the PROMPT statement to specify the character to be displayed on the screen
when user input is required. If no PROMPT statement is issued, the default prompt
character is the question mark (?).

If character evaluates to more than one character, only the first character is signifi-
cant; all others are ignored.

The prompt character becomes character when the PROMPT statement is executed.
Although the value of character can change throughout the program, the prompt
character remains the same until a new PROMPT statement is issued or the
program ends.

Generally, data the user enters in response to the prompt appears on the screen. If
the source of the input is something other than the keyboard (for example, a DATA
statement), the data is displayed on the screen after the prompt character. Use
PROMPT " " to prevent any prompt from being displayed. PROMPT " " also
suppresses the display of input from DATA statements.

If character evaluates to the null value, no prompt appears.

Examples

Source Lines Program Output

PROMPT "HELLO"
PRINT "ENTER ANSWER ":
INPUT ANS
PROMPT "-"
PRINT "ENTER ANSWER ":
INPUT ANS
PROMPT ""
PRINT "ENTER ANSWER ":
INPUT ANS
END

ENTER ANSWER HANSWER
ENTER ANSWER -YES
ENTER ANSWER NO
6-456 BASIC Guide

PWR function
PWR

Syntax
PWR (expression, power)

Description
Use the PWR function to return the value of expression raised to the power speci-
fied by power.

The PWR function operates like exponentiation (that is, PWR(X,Y) is the same as
X**Y).

A negative value cannot be raised to a noninteger power. If it is, the result of the
function is PWR(−X,Y) and an error message is displayed.

If either expression or power is the null value, null is returned.

On overflow or underflow, a warning is printed and 0 is returned.

Example
A=3
B=PWR(5,A)
PRINT "B= ",B

This is the program output:

B= 125
BASIC Statements and Functions 6-457

QUOTE function
QUOTE

Syntax
QUOTE (expression)

Description
Use the QUOTE function to enclose an expression in double quotation marks. If
expression evaluates to the null value, null is returned, without quotation marks.

Example
PRINT QUOTE(12 + 5) : " IS THE ANSWER."
END

This is the program output:

"17" IS THE ANSWER.
6-458 BASIC Guide

RAISE function
RAISE

Syntax
RAISE (expression)

Description
Use the RAISE function to return a value equal to expression, except that system
delimiters in expression are converted to the next higher-level delimiter: value
marks are changed to field marks, subvalue marks are changed to value marks,
and so on. If expression evaluates to the null value, null is returned.

The conversions are:

PIOPEN Flavor
In PIOPEN flavor, the delimiters that can be raised are CHAR(255) through
CHAR(252). All other characters are left unchanged. You can obtain PIOPEN
flavor for the RAISE function by:

• Compiling your program in a PIOPEN flavor account
• Specifying the $OPTIONS INFO.MARKS statement

Examples
In the following examples an item mark is shown by I, a field mark is shown by F,
a value mark is shown by V, and a subvalue mark is shown by S.

The following example sets A to DDIEEI123I777:

A= RAISE('DD':FM'EE':FM:123:FM:777)

IM CHAR(255) to IM CHAR(255)

FM CHAR(254) to IM CHAR(255)

VM CHAR(253) to FM CHAR(254)

SM CHAR(252) to VM CHAR(253)

TM CHAR(251) to SM CHAR(252)

CHAR(250) to CHAR(251)

CHAR(249) to CHAR(250)

CHAR(248) to CHAR(249)
BASIC Statements and Functions 6-459

RAISE function
The next example sets B to 1I2F3I4V5:

B= RAISE(1:IM:2:VM:3:FM:4:SM:5)

The next example sets C to 999S888:

C= RAISE(999:TM:888)
6-460 BASIC Guide

RANDOMIZE statement
RANDOMIZESyntax
RANDOMIZE (expression)

Description
Use the RANDOMIZE statement with an expression to make the RND function
generate the same sequence of random numbers each time the program is run. If
no expression is supplied, or if expression evaluates to the null value, the internal
time of day is used (the null value is ignored). In these cases the sequence is
different each time the program is run.

Example
RANDOMIZE (0)
FOR N=1 TO 10
 PRINT RND(4):' ':
NEXT N
PRINT
*
RANDOMIZE (0)
FOR N=1 TO 10

PRINT RND(4):' ':
NEXT
PRINT
*
RANDOMIZE (3)
FOR N=1 TO 10

PRINT RND(4):' ':
NEXT N
PRINT

This is the program output:

0 2 1 2 0 2 1 2 1 1
0 2 1 2 0 2 1 2 1 1
2 0 1 1 2 1 0 1 2 3
BASIC Statements and Functions 6-461

READ statements
Syntax

READ dynamic.array FROM[file.variable,] record.ID[ON ERROR statements]
{THEN statements[ELSE statements]|ELSE statements}

{READL |READU}dynamic.arrayFROM[file.variable,]record.ID

[ON ERROR statements] [LOCKED statements]
{THEN statements[ELSE statements]|ELSE statements}

READVdynamic.arrayFROM[file.variable,]record.ID, field#

[ON ERROR statements]
{THEN statements[ELSE statements]|ELSE statements}

{READVL |READVU}dynamic.array FROM[file.variable,]record.ID, field#

[ON ERROR statements] [LOCKED statements]
{THEN statements[ELSE statements]|ELSE statements}

Description
Use READ statements to assign the contents of a record from a DataStage file to
dynamic.array.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement). If the file

READ READU READV READVL READVU

Uses for READ Statements

Use this statement… To do this…

READ Read a record.

READL Acquire a shared record lock and read a record.

READU Acquire an update record lock and read a record.

READV Read a field.

READVL Acquire a shared record lock and read a field.

READVU Acquire an update record lock and read a field.
6-462 BASIC Guide

READ statements
is neither accessible nor open, the program terminates with a run-time error
message.

If record.ID exists on the specified file, dynamic.array is set to the contents of the
record, and the THEN statements are executed; any ELSE statements are ignored.
If no THEN statements are specified, program execution continues with the next
statement. If record.ID does not exist, dynamic.array is set to an empty string, and
the ELSE statements are executed; any THEN statements are ignored.

If file.variable, record.ID, or field# evaluate to the null value, the READ statement
fails and the program terminates with a run-time error message.

Tables. If the file is a table, the effective user of the program must have SQL
SELECT privilege to read records in the file. For information about the effective
user of a program, see the AUTHORIZATION statement.

Distributed Files. If the file is a distributed file, use the STATUS function after a
READ statement to determine the results of the operation, as follows:

NLS Mode. If NLS is enabled, READ and other BASIC statements that perform
I/O operations map external data to the internal character set using the appro-
priate map for the input file.

If the file contains unmappable characters, the ELSE statements are executed.

The results of the READ statements depend on all of the following:

• The inclusion of the ON ERROR clause
• The setting of the NLSREADELSE parameter in the uvconfig file
• The location of the unmappable character

The values returned by the STATUS function are as follows:

3 The unmappable character is in the record ID.

4 The unmappable character is in the record’s data.1

For more information about maps, see the DataStage NLS Guide.

−1 The partitioning algorithm does not evaluate to an integer.

−2 The part number is invalid.

1. 4 is returned only if the NLSREADELSE parameter is set to 1. If NLSREADELSE is 0,
no value is returned, data is lost, and you see a run-time error message.
BASIC Statements and Functions 6-463

READ statements
The ON ERROR Clause
The ON ERROR clause is optional in the READ statement. Its syntax is the same as
that of the ELSE clause. The ON ERROR clause lets you specify an alternative for
program termination when a fatal error is encountered during processing of the
READ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
You can use the LOCKED clause only with the READL, READU, READVL, and
READVU statements. Its syntax is the same as that of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the READ statement from being processed. The
LOCKED clause is executed if one of the following conflicting locks exists:

In this statement… This requested lock… Conflicts with…

READL
READVL

Shared record lock Exclusive file lock
Update record lock
6-464 BASIC Guide

READ statements
If a READ statement does not include a LOCKED clause, and a conflicting lock
exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Releasing Locks. A shared record lock can be released with a CLOSE, RELEASE,
or STOP statement. An update record lock can be released with a CLOSE, DELETE,
MATWRITE, RELEASE, STOP, WRITE, or WRITEV statement.

Locks acquired or promoted within a transaction are not released when the
previous statements are processed.

All record locks are released when you return to the command prompt.

READL and READU Statements
Use the READL syntax to acquire a shared record lock and then read the record.
This allows other programs to read the record with no lock or a shared record lock.

Use the READU statement to acquire an update record lock and then read the
record. The update record lock prevents other users from updating the record until
the user who owns it releases it.

An update record lock can only be acquired when no shared record lock exists. It
can be promoted from a shared record lock owned by the user requesting the
update record lock if no shared record locks exist.

To prevent more than one program or user from modifying the same record at the
same time, use READU instead of READ.

READV, READVL, and READVU Statements
Use the READV statement to assign the contents of a field in a DataStage file record
to dynamic.array.

READU
READVU

Update record lock Exclusive file lock
Intent file lock
Shared file lock
Update record lock
Shared record lock

In this statement… This requested lock… Conflicts with…
BASIC Statements and Functions 6-465

READ statements
Use the READVL statement to acquire a shared record lock and then read a field
from the record. The READVL statement conforms to all the specifications of the
READL and READV statements.

Use the READVU statement to acquire an update record lock and then read a field
from the record. The READVU statement conforms to all the specifications of the
READU and READV statements.

You can specify field# only with the READV, READVL, and READVU statements.
It specifies the index number of the field to be read from the record. You can use a
field# of 0 to determine whether the record exists. If the field does not exist,
dynamic.array is assigned the value of an empty string.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavor accounts, if record.ID or field# does not exist,
dynamic.array retains its value and is not set to an empty string. The ELSE state-
ments are executed; any THEN statements are ignored. To specify PICK, IN2, and
REALITY flavor READ statements in an INFORMATION or IDEAL flavor
account, use the READ.RETAIN option of the $OPTIONS statement.

Examples
OPEN '','SUN.MEMBER' TO FILE ELSE STOP
FOR ID=5000 TO 6000

READ MEMBER FROM FILE, ID THEN PRINT ID ELSE NULL
NEXT ID

OPEN '','SUN.SPORT' ELSE STOP 'CANT OPEN "SUN.SPORT"'
READ ID FROM "853333" ELSE

PRINT 'CANT READ ID "853333" ON FILE "SUN.SPORT"'
END

X="6100"
READ PERSON FROM FILE,X THEN PRINT PERSON<1> ELSE

PRINT "PERSON ":X:" NOT ON FILE"
END

The next example locks the record N in the file SUN.MEMBER, reads field 3
(STREET) from it, and prints the value of the field:

OPEN '','SUN.MEMBER' TO FILE ELSE STOP
FOR N=5000 TO 6000

READVU STREET FROM FILE,N,3 THEN PRINT STREET ELSE NULL
6-466 BASIC Guide

READ statements
RELEASE
NEXT

OPEN "DICT","MYFILE" TO DICT.FILE ELSE STOP
OPEN "","MYFILE" ELSE STOP ; *USING DEFAULT FILE VARIABLE
READU ID.ITEM FROM DICT.FILE,"@ID" ELSE

PRINT "NO @ID"
STOP

END

This is the program output:

5205
5390
CANT READ ID "853333" ON FILE "SUN.SPORT"
MASTERS
4646 TREMAIN DRIVE
670 MAIN STREET
BASIC Statements and Functions 6-467

READBLK statement
READBLK

Syntax
READBLK variable FROM file.variable, blocksize

{ THEN statements [ELSE statements] | ELSE statements }

Description
Use the READBLK statement to read a block of data of a specified length from a
file opened for sequential processing and assign it to a variable. The READBLK
statement reads a block of data beginning at the current position in the file and
continuing for blocksize bytes and assigns it to variable. The current position is reset
to just beyond the last byte read.

file.variable specifies a file previously opened for sequential processing.

If the data can be read from the file, the THEN statements are executed; any ELSE
statements are ignored. If the file is not readable or if the end of file is encountered,
the ELSE statements are executed and the THEN statements are ignored. If the
ELSE statements are executed, variable is set to an empty string.

If either file.variable or blocksize evaluates to the null value, the READBLK statement
fails and the program terminates with a run-time error message.

Note: A newline in UNIX files is one byte long, whereas in Windows NT it is two
bytes long. This means that for a file with newlines, the same READBLK
statement may return a different set of data depending on the operating
system the file is stored under.

In the event of a timeout, READBLK returns no bytes from the buffer, and the
entire I/O operation must be retried.

The difference between the READSEQ statement and the READBLK statement is
that the READBLK statement reads a block of data of a specified length, whereas
the READSEQ statement reads a single line of data.

On Windows NT systems, if you use READBLK to read data from a 1/4-inch
cartridge drive (60 or 150 MB) that you open with the OPENDEV statement, you
must use a block size of 512 bytes or a multiple of 512 bytes.

For more information about sequential file processing, see the OPENSEQ,
READSEQ, and WRITESEQ statements.
6-468 BASIC Guide

READBLK statement
If NLS is enabled and file.variable has a map associated with it, the data is mapped
accordingly. For more information about maps, see the DataStage NLS Guide.

Example
OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
READBLK VAR1 FROM FILE, 15 THEN PRINT VAR1
PRINT
READBLK VAR2 FROM FILE, 15 THEN PRINT VAR2

This is the program output:

FIRST LINE
SECO

ND LINE
THIRD L
BASIC Statements and Functions 6-469

READL statement
READL
Use the READL statement to acquire a shared record lock and perform the READ
statement. For details, see the READ statement.
6-470 BASIC Guide

READLIST statement
READLIST

Syntax

READLIST dynamic.array [FROM list.number]
{ THEN statements [ELSE statements] | ELSE statements }

Description
Use the READLIST statement to read the remainder of an active select list into a
dynamic array.

list.number is an expression that evaluates to the number of the select list to be read.
It can be from 0 through 10. If you do not use the FROM clause, select list 0 is used.

READLIST reads all elements in the active select list. If a READNEXT statement is
used on the select list before the READLIST statement, only the elements not read
by the READNEXT statement are stored in dynamic.array. READLIST empties the
select list.

If one or more elements are read from list.number, the THEN statements are
executed. If there are no more elements in the select list or if a select list is not
active, the ELSE statements are executed; any THEN statements are ignored.

If list.number evaluates to the null value, the READLIST statement fails and the
program terminates with run-time error message.

In IDEAL and INFORMATION flavor accounts, use the VAR.SELECT option of the
$OPTIONS statement to get READLIST to behave as it does in PICK flavor
accounts.

PICK, REALITY, and IN2 Flavors
In PICK, REALITY, and IN2 flavor accounts, the READLIST statement has the
following syntax:

READLIST dynamic.array FROM listname [SETTING variable]
{THEN statements [ELSE statements] | ELSE statements}

In these flavors the READLIST statement reads a saved select list from the
&SAVEDLISTS& file without activating a select list. In PICK and IN2 flavor
accounts, READLIST lets you access a saved select list without changing the
currently active select list if there is one.
BASIC Statements and Functions 6-471

READLIST statement
The select list saved in listname in the &SAVEDLISTS& file is put in dynamic.array.
The elements of the list are separated by field marks.

listname can be of the form

record.ID

or

record.ID account.name

record.ID specifies the record ID of the list in &SAVEDLISTS&, and account.name
specifies the name of another DataStage account in which to look for the
&SAVEDLISTS& file.

The SETTING clause assigns the count of the elements in the list to variable.

If the list is retrieved successfully (the list must not be empty), the THEN state-
ments are executed; if not, the ELSE statements are executed. If listname evaluates
to the null value, the READLIST statement fails and the program terminates with
a run-time error message.

In PICK, REALITY, and IN2 flavor accounts, use the −VAR.SELECT option of the
$OPTIONS statement to get READLIST to behave as it does in IDEAL flavor
accounts.
6-472 BASIC Guide

READNEXT statement
READNEXT

Syntax

READNEXT dynamic.array [,value [,subvalue]] [FROM list]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the READNEXT statement to assign the next record ID from an active select
list to dynamic.array.

list specifies the select list. If none is specified, select list 0 is used. list can be a
number from 0 through 10 indicating a numbered select list, or the name of a select
list variable.

The BASIC SELECT statement or the DataStage GET.LIST, FORM.LIST, SELECT, or
SSELECT commands create an active select list; these commands build the list of
record IDs. The READNEXT statement reads the next record ID on the list speci-
fied in the FROM clause and assigns it to the dynamic.array.

When the select list is exhausted, dynamic.array is set to an empty string, and the
ELSE statements are executed; any THEN statements are ignored.

If list evaluates to the null value, the READNEXT statement fails and the program
terminates with a run-time error message.

A READNEXT statement with value and subvalue specified accesses an exploded
select list. The record ID is stored in dynamic.array, the value number in value, and
the subvalue number in subvalue. If only dynamic.array is specified, it is set to a
multivalued field consisting of the record ID, value number, and subvalue number,
separated by value marks.

INFORMATION Flavor
In INFORMATION flavor accounts READNEXT returns an exploded select list.
Use the RNEXT.EXPL option of the $OPTIONS statement to return exploded select
lists in other flavors.

Example
OPEN '','SUN.MEMBER' ELSE STOP "CAN'T OPEN FILE"
SELECT TO 1
10: READNEXT MEM FROM 1 THEN PRINT MEM ELSE GOTO 15:
BASIC Statements and Functions 6-473

READNEXT statement
GOTO 10:
*
15: PRINT

OPEN '','SUN.SPORT' TO FILE ELSE STOP
SELECT FILE
COUNT=0
20*
READNEXT ID ELSE
PRINT 'COUNT= ',COUNT
STOP
END
COUNT=COUNT+1
GOTO 20

This is the program output:

4108
6100
3452
5390
7100
4500
2430
2342
6783
5205
4439
6203
7505
4309
1111
COUNT= 14
6-474 BASIC Guide

READSEQ statement
READSEQ

Syntax

READSEQ variable FROM file.variable [ON ERROR statements]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the READSEQ statement to read a line of data from a file opened for sequential
processing. Sequential processing lets you process data one line at a time.
DataStage keeps a pointer at the current position in the file. The OPENSEQ state-
ment sets this pointer to the first byte of the file, and it is advanced by READSEQ,
READBLK, WRITESEQ, and WRITEBLK statements.

Each READSEQ statement reads data from the current position in the file up to a
newline and assigns it to variable. The pointer is then set to the position following
the newline. The newline is discarded.

file.variable specifies a file previously opened for sequential processing. The FROM
clause is required. If the file is neither accessible nor open, or if file.variable evalu-
ates to the null value, the READSEQ statement fails and the program terminates
with a run-time error message.

If data is read from the file, the THEN statements are executed, and the ELSE state-
ments are ignored. If the file is not readable, or the end of file is encountered, the
ELSE statements are executed; any THEN statements are ignored.

In the event of a timeout, READSEQ returns no bytes from the buffer, and the
entire I/O operation must be retried.

READSEQ affects the STATUS function in the following way:

If NLS is enabled, the READSEQ and other BASIC statements that perform I/O
operations always map external data to the internal character set using the appro-
priate map for the input file if the file has a map associated with it. For more
information about maps, see the DataStage NLS Guide.

0 The read is successful.

1 The end of file is encountered.

2 A timeout ended the read.

−1 The file is not open for a read.
BASIC Statements and Functions 6-475

READSEQ statement
The ON ERROR Clause
The ON ERROR clause is optional in the READSEQ statement. Its syntax is the
same as that of the ELSE clause. The ON ERROR clause lets you specify an alter-
native for program termination when a fatal error is encountered during
processing of the READSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

Example
OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
FOR N=1 TO 3

READSEQ A FROM FILE THEN PRINT A
NEXT N
CLOSESEQ FILE

This is the program output:

FIRST LINE
SECOND LINE
THIRD LINE
6-476 BASIC Guide

READT statement
READT

Syntax

READT [UNIT (mtu)] variable

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the READT statement to read the next tape record from a magnetic tape unit
and assign its contents to a variable.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if
no unit is specified.

mtu is an expression that evaluates to a code made up of three decimal digits, as
shown in the following table:

The mtu expression is read from right to left. Therefore, if mtu evaluates to a one-
digit code, it represents the tape unit number. If mtu evaluates to a two-digit code,
the rightmost digit represents the unit number and the digit to its left is the track
number; and so on.

If either mtu or variable evaluates to the null value, the READT statement fails and
the program terminates with a run-time error message.

Each tape record is read and processed completely before the next record is read.
The program waits for the completion of data transfer from the tape before
continuing.

If the next tape record exists, variable is set to the contents of the record, and the
THEN statements are executed. If no THEN statements are specified, program
execution continues with the next statement.

mtu Codes

Code Available Options

m (mode) 0 = No conversion
1 = EBCDIC conversion
2 = Invert high bit
3 = Invert high bit and EBCDIC conversion

t (tracks) 0 = 9 tracks. Only 9-track tapes are supported.

u (unit number) 0 through 7
BASIC Statements and Functions 6-477

READT statement
Before a READT statement is executed, a tape drive unit must be attached
(assigned) to the user. Use the ASSIGN command to assign a tape unit to a user. If
no tape unit is attached or if the unit specification is incorrect, the ELSE statements
are executed and the value assigned to variable is empty. Any THEN statements are
ignored.

The largest tape record that the READT statement can read is system-dependent.
If a tape record is larger than the system maximum, only the bytes up to the
maximum are assigned to variable.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it
returns 0.

If NLS is enabled, the READT and other BASIC statements that perform I/O oper-
ations always map external data to the internal character set using the appropriate
map for the input file if the file has a map associated with it. For more information
about maps, see the DataStage NLS Guide.

PIOPEN Flavor
If you have a program that specifies the syntax UNIT ndmtu, the nd elements are
ignored by the compiler and no errors are reported.

Examples
The following example reads a tape record from tape drive 0:

READT RECORD ELSE PRINT "COULD NOT READ FROM TAPE"

The next example reads a record from tape drive 3, doing an EBCDIC conversion
in the process:

READT UNIT(103) RECORD ELSE PRINT "COULD NOT READ"
6-478 BASIC Guide

READU statement
Use the READU statement to set an update record lock and perform the READ
statement. For details, see the READ statement.
BASIC Statements and Functions 6-479

READV statement
Use the READV statement to read the contents of a specified field of a record in a
DataStage file. For details, see the READ statement.
6-480 BASIC Guide

READVL statement
READVL
Use the READVL statement to set a shared record lock and perform the READV
statement. For details, see the READ statement.
BASIC Statements and Functions 6-481

READVU statement
Use the READVU statement to set an update record lock and read the contents of
a specified field of a record in a DataStage file. For details, see the READ statement.
6-482 BASIC Guide

REAL function
REAL

Syntax
REAL (number)

Description
Use the REAL function to convert number into a floating-point number without
loss of accuracy. If number evaluates to the null value, null is returned.
BASIC Statements and Functions 6-483

RECORDLOCK statements
RECORDLOCK

Syntax

RECORDLOCKL file.variable, record.ID [ON ERROR statements]
 [LOCKED statements]

RECORDLOCKU file.variable, record.ID [ON ERROR statements]
 [LOCKED statements]

Description
Use RECORDLOCK statements to acquire a record lock on a record without
reading the record.

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be
locked.

The RECORDLOCKL Statement
The RECORDLOCKL statement lets other users lock the record using
RECORDLOCK or any other statement that sets a shared record lock, but cannot
gain exclusive control over the record with FILELOCK, or any statement that sets
an update record lock.

The RECORDLOCKU Statement

The RECORDLOCKU statement prevents other users from accessing the record
using a FILELOCK statement or any statement that sets either a shared record lock
or an update record lock. You can reread a record after you have locked it; you are
not affected by your own locks.

RECORDLOCK RECORDLOCKL RECORDLOCKU

Use this statement…
To acquire this lock without
reading the record…

RECORDLOCKL Shared record lock

RECORDLOCKU Update record lock
6-484 BASIC Guide

RECORDLOCK statements
The ON ERROR Clause
The ON ERROR clause is optional in RECORDLOCK statements. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered while a RECORDLOCK statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the RECORDLOCK statement from processing. The
LOCKED clause is executed if one of the following conflicting locks exists:

In this statement… This requested lock…
Conflicts with
these locks…

RECORDLOCKL Shared record lock Exclusive file lock
Update record lock

RECORDLOCKU Update record lock Exclusive file lock
Intent file lock
Shared file lock
Update recordlock
Shared record lock
BASIC Statements and Functions 6-485

RECORDLOCK statements
If the RECORDLOCK statement does not include a LOCKED clause, and a
conflicting lock exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

Releasing Locks
A shared record lock can be released with a CLOSE, RELEASE, or STOP statement.
An update record lock can be released with a CLOSE,DELETE, MATWRITE,
RELEASE, STOP, WRITE, or WRITEV statement.

Locks acquired or promoted within a transaction are not released when the
previous statements are processed.

All record locks are released when you return to the command prompt.

Example
In the following example, the file EMPLOYEES is opened. Record 23694 is locked.
If the record was already locked, the program terminates, and an appropriate
message is displayed. The RECORDLOCKL statement allows other users to read
the record with READL or lock it with another RECORDLOCKL, but prevents any
other user from gaining exclusive control over the record.

OPEN '','EMPLOYEES' TO EMPLOYEES ELSE STOP 'Cannot open file'
RECORDLOCKL EMPLOYEES,'23694'
 LOCKED STOP 'Record previously locked by user ':STATUS()
6-486 BASIC Guide

RECORDLOCKED function
RECORDLOCKED

Syntax
RECORDLOCKED (file.variable, record.ID)

Description
Use the RECORDLOCKED function to return the status of a record lock.

file.variable is a file variable from a previous OPEN statement.

record.ID is an expression that evaluates to the record ID of the record that is to be
checked.

An insert file of equate names is provided to let you use mnemonics (see the
following table). The insert file is called RECORDLOCKED.INS.IBAS, and is
located in the INCLUDE directory in the DataStage engine directory. In PIOPEN
flavor accounts, the VOC file has a file pointer called SYSCOM. SYSCOM refer-
ences the INCLUDE directory in the DataStage engine directory.

To use the insert file, specify $INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
when you compile the program.

If you have locked the file, the RECORDLOCKED function indicates only that you
have the file lock for that record. It does not indicate any update record or shared
record lock that you also have on the record.

RECORDLOCKED.INS.IBAS File Equate Names

Equate Name Value Meaning

LOCK$MY.FILELOCK 3 This user has a FILELOCK.

LOCK$MY.READL 2 This user has a shared record lock.

LOCK$MY.READU 1 This user has an update record lock.

LOCK$NO.LOCK 0 The record is not locked.

LOCK$OTHER.READL –1 Another user has a shared record lock.

LOCK$OTHER.READU –2 Another user has an update record lock.

LOCK$OTHER.FILELOCK –3 Another user has a FILELOCK.
BASIC Statements and Functions 6-487

RECORDLOCKED function
Value Returned by the STATUS Function
Possible values returned by the STATUS function, and their meanings, are as
follows:

Examples
The following program checks to see if there is an update record lock or FILELOCK
held by the current user on the record. If the locks are not held by the user, the ELSE
clause reminds the user that an update record lock or FILELOCK is required on the
record. This example using the SYSCOM file pointer, only works in PI/open flavor
accounts.

$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
OPEN '','EMPLOYEES' TO EMPLOYEES
 ELSE STOP 'CANNOT OPEN FILE'
 .
 .
 .
IF RECORDLOCKED(EMPLOYEES,RECORD.ID) >= LOCK$MY.READU THEN
 GOSUB PROCESS.THIS.RECORD:
ELSE PRINT 'Cannot process record : ':RECORD.ID :', READU or
FILELOCK required.'

The next program checks to see if the record lock is held by another user and prints
a message where the STATUS function gives the terminal number of the user who
holds the record lock:

$INCLUDE SYSCOM RECORDLOCKED.INS.IBAS
OPEN '','EMPLOYEES' TO EMPLOYEES
ELSE STOP 'CANNOT OPEN FILE'
 .
 .
 .
IF RECORDLOCKED(EMPLOYEES,RECORD.ID) < LOCK$NO.LOCK THEN
 PRINT 'Record locked by user' : STATUS()
END

> 0 A positive value is the terminal number of the owner of the lock (or the first
terminal number encountered, if more than one user has locked records in
the specified file).

< 0 A negative value is –1 times the terminal number of the remote user who
has locked the record or file.
6-488 BASIC Guide

RELEASE statement
RELEASE

Syntax

RELEASE [file.variable [,record.ID]] [ON ERROR statements]

Description
Use the RELEASE statement to unlock, or release, locks set by a FILELOCK,
MATREADL, MATREADU, READL, READU, READVL, READVU, and
OPENSEQ statement. These statements lock designated records to prevent concur-
rent updating by other users. If you do not explicitly release a lock that you have
set, it is unlocked automatically when the program terminates.

file.variable specifies an open file. If file.variable is not specified and a record ID is
specified, the default file is assumed (for more information on default files, see the
OPEN statement). If the file is neither accessible nor open, the program terminates
with a run-time error message.

record.ID specifies the lock to be released. If it is not specified, all locks in the spec-
ified file (that is, either file.variable or the default file) are released. If either
file.variable or record.ID evaluates to the null value, the RELEASE statement fails
and the program terminates with a run-time error message.

When no options are specified, all locks in all files set by any FILELOCK, READL,
READU, READVL, READVU, WRITEU, WRITEVU, MATREADL, MATREADU,
MATWRITEU, or OPENSEQ statements during the current login session are
released.

A RELEASE statement within a transaction is ignored.

The ON ERROR Clause

The ON ERROR clause is optional in the RELEASE statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the RELEASE statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.
BASIC Statements and Functions 6-489

RELEASE statement
• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

Examples
The following example releases all locks set in all files by the current program:

RELEASE

The next example releases all locks set in the NAMES file:

RELEASE NAMES

The next example releases the lock set on the record QTY in the PARTS file:

RELEASE PARTS, "QTY"
6-490 BASIC Guide

REM function
REM function

Syntax
REM (dividend, divisor)

Description
Use the REM function to calculate the remainder after integer division is
performed on the dividend expression by the divisor expression.

The REM function calculates the remainder using the following formula:

REM (X, Y) = X − (INT (X / Y) * Y)

dividend and divisor can evaluate to any numeric value, except that divisor cannot
be 0. If divisor is 0, a division by 0 warning message is printed, and 0 is returned. If
either dividend or divisor evaluates to the null value, null is returned.

The REM function works like the MOD function.

Example
X=85; Y=3
PRINT 'REM (X,Y)= ',REM (X,Y)

This is the program output:

REM (X,Y)= 1
BASIC Statements and Functions 6-491

REM statement
REM

Syntax

REM [comment.text]

Description
Use the REM statement to insert a comment in a BASIC program. Comments
explain or document various parts of a program. They are part of the source code
only and are nonexecutable. They do not affect the size of the object code.

A comment must be a separate BASIC statement, and can appear anywhere in a
program. A comment must be one of the following comment designators:

REM * ! $*

Any text that appears between a comment designator and the end of a physical line
is treated as part of the comment. If a comment does not fit on one physical line, it
can be continued on the next physical line only by starting the new line with a
comment designator. If a comment appears at the end of a physical line containing
an executable statement, you must treat it as if it were a new statement and put a
semicolon (;) after the executable statement, before the comment designator.

Example
PRINT "HI THERE"; REM This part is a comment.
REM This is also a comment and does not print.
REM
IF 5<6 THEN PRINT "YES"; REM A comment; PRINT "PRINT ME"
REM BASIC thinks PRINT "PRINT ME" is also part
REM of the comment.
IF 5<6 THEN

PRINT "YES"; REM Now it doesn't.
PRINT "PRINT ME"

END

This is the program output:

HI THERE
YES
YES
PRINT ME
6-492 BASIC Guide

REMOVE function
REMOVE function

Syntax
REMOVE (dynamic.array, variable)

Description
Use the REMOVE function to successively extract and return dynamic array
elements that are separated by system delimiters, and to indicate which system
delimiter was found. When a system delimiter is encountered, the value of the
extracted element is returned. The REMOVE function is more efficient than the
EXTRACT function for extracting successive fields, values, and so on, for multi-
value list processing.

dynamic.array is the dynamic array from which to extract elements.

variable is set to a code corresponding to the system delimiter which terminates the
extracted element. The contents of variable indicate which system delimiter was
found, as follows:

The REMOVE function extracts one element each time it is executed, beginning
with the first element in dynamic.array. The operation can be repeated until all
elements of dynamic.array are extracted. The REMOVE function does not change
the dynamic array.

As each successive element is extracted from dynamic.array, a pointer associated
with dynamic.array is set to the beginning of the next element to be extracted. Thus
the pointer is advanced every time the REMOVE function is executed.

0 End of string

1 Item mark ASCII CHAR(255)

2 Field mark ASCII CHAR(254)

3 Value mark ASCII CHAR(253)

4 Subvalue mark ASCII CHAR(252)

5 Text mark ASCII CHAR(251)

6 ASCII CHAR(250) (Not available in the PIOPEN flavor)

7 ASCII CHAR(249) (Not available in the PIOPEN flavor)

8 ASCII CHAR(248) (Not available in the PIOPEN flavor)
BASIC Statements and Functions 6-493

REMOVE function
The pointer is reset to the beginning of dynamic.array whenever dynamic.array is
reassigned. Therefore, dynamic.array should not be assigned a new value until all
elements have been extracted (that is, until variable is 0).

If dynamic.array evaluates to the null value, null is returned and variable is set to 0
(end of string). If an element in dynamic.array is the null value, null is returned for
that element, and variable is set to the appropriate delimiter code.

Unlike the EXTRACT function, the REMOVE function maintains a pointer into the
dynamic array. (The EXTRACT function always starts processing at the beginning
of the dynamic array, counting field marks, value marks, and subvalue marks until
it finds the correct element to extract.)

See the REMOVE Statement for the statement equivalent of this function.

Examples
The first example sets the variable FIRST to the string MIKE and the variable X to
2 (field mark). The second example executes the REMOVE function and PRINT
statement until all the elements have been extracted, at which point A = 0. Printed
lines are 12, 4, 5, 7654, and 00.

Source Lines Program Output

FM=CHAR(254)
NAME='MIKE':FM:'JOHN':FM
X=REMOVE(NAME,FIRST)
PRINT 'FIRST = ':FIRST, 'X = ':X

FIRST = 2 X = MIKE

VM=CHAR(253)
A = 1
Z=12:VM:4:VM:5:VM:7654:VM:00
FOR X=1 TO 20 UNTIL A=0

A = REMOVE(Z,Y)
PRINT 'Y = ':Y, 'A = ':A

NEXT X

Y = 3 A = 12
Y = 3 A = 4
Y = 3 A = 5
Y = 3 A = 7654
Y = 0 A = 0
6-494 BASIC Guide

REMOVE statement
REMOVE Statement

Syntax
REMOVE element FROM dynamic.array SETTING variable

Description
Use the REMOVE statement to successively extract dynamic array elements that
are separated by system delimiters. When a system delimiter is encountered, the
extracted element is assigned to element. The REMOVE statement is more efficient
than the EXTRACT function for extracting successive fields, values, and so on, for
multivalue list processing.

dynamic.array is the dynamic array from which to extract elements.

variable is set to a code value corresponding to the system delimiter terminating the
element just extracted. The delimiter code settings assigned to variable are as
follows:

The REMOVE statement extracts one element each time it is executed, beginning
with the first element in dynamic.array. The operation can be repeated until all
elements of dynamic.array are extracted. The REMOVE statement does not change
the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated
with dynamic.array is set to the beginning of the next element to be extracted. Thus,
the pointer is advanced every time the REMOVE statement is executed.

0 End of string

1 Item mark ASCII CHAR(255)

2 Field mark ASCII CHAR(254)

3 Value mark ASCII CHAR(253)

4 Subvalue mark ASCII CHAR(252)

5 Text mark ASCII CHAR(251)

6 ASCII CHAR(250) – Not supported in the PIOPEN flavor

7 ASCII CHAR(249) – Not supported in the PIOPEN flavor

8 ASCII CHAR(248) – Not supported in the PIOPEN flavor
BASIC Statements and Functions 6-495

REMOVE statement
The pointer is reset to the beginning of dynamic.array whenever dynamic.array is
reassigned. Therefore, dynamic.array should not be assigned a new value until all
elements have been extracted (that is, until variable = 0).

If an element in dynamic.array is the null value, null is returned for that element.

Unlike the EXTRACT function, the REMOVE statement maintains a pointer into
the dynamic array. (The EXTRACT function always starts processing at the begin-
ning of the dynamic array, counting field marks, value marks, and subvalue marks
until it finds the correct element to extract.)

See the REMOVE function for the function equivalent of this statement.

Examples
The first example sets the variable FIRST to the string MIKE and the variable X to
2 (field mark). The second example executes the REMOVE and PRINT statements
until all the elements have been extracted, at which point A = 0. Printed lines are
12, 4, 5, 7654, and 00.

Source Lines Program Output

FM=CHAR(254)
NAME='MIKE':FM:'JOHN':FM
REMOVE FIRST FROM NAME SETTING X
PRINT 'X= ':X, 'FIRST= ':FIRST

X= 2 FIRST= MIKE

VM=CHAR(253)
A=1
Z=12:VM:4:VM:5:VM:7654:VM:00
FOR X=1 TO 20 UNTIL A=0

REMOVE Y FROM Z SETTING A
PRINT 'Y= ':Y, 'A= ':A

NEXT X

Y= 12 A= 3
Y= 4 A= 3
Y= 5 A= 3
Y= 7654 A= 3
Y= 0 A= 0
6-496 BASIC Guide

REPEAT statement
REPEAT
The REPEAT statement is a loop-controlling statement. For syntax details, see the
LOOP statement.
BASIC Statements and Functions 6-497

REPLACE function
REPLACE

Syntax

REPLACE (expression, field#, value#, subvalue# { , | ; } replacement)

REPLACE (expression [,field# [,value#]] ; replacement)

variable < field# [,value# [,subvalue#]] >

Description
Use the REPLACE function to return a copy of a dynamic array with the specified
field, value, or subvalue replaced with new data.

expression specifies a dynamic array.

The expressions field#, value#, and subvalue# specify the type and position of the
element to be replaced. These expressions are called delimiter expressions.

replacement specifies the value that the element is given.

The value# and subvalue# are optional. However, if either subvalue# or both value#
and subvalue# are omitted, a semicolon (;) must precede replacement, as shown in
the second syntax.

You can use angle brackets to replace data in dynamic arrays. Angle brackets to the
left of an assignment operator change the specified data in the dynamic array
according to the assignment operator. Angle brackets to the right of an assignment
operator indicate that an EXTRACT function is to be performed (for examples, see
the EXTRACT function).

variable specifies the dynamic array containing the data to be changed.

The three possible results of delimiter expressions are described as case 1, case 2,
and case 3.

Case 1: Both value# and subvalue# are omitted or are specified as 0. A field is
replaced by the value of replacement.

• If field# is positive and less than or equal to the number of
fields in the dynamic array, the field specified by field# is
replaced by the value of replacement.
6-498 BASIC Guide

REPLACE function
• If field# is negative, a new field is created by appending a field
mark and the value of replacement to the last field in the
dynamic array.

• If field# is positive and greater than the number of fields in the
dynamic array, a new field is created by appending the proper
number of field marks, followed by the value of replacement;
thus, the value of field# is the number of the new field.

Case 2: subvalue# is omitted or is specified as 0, and value# is nonzero. A value
in the specified field is replaced with the value of replacement.

• If value# is positive and less than or equal to the number of
values in the field, the value specified by the value# is replaced
by the value of replacement.

• If value# is negative, a new value is created by appending a
value mark and the value of replacement to the last value in the
field.

• If value# is positive and greater than the number of values in
the field, a value is created by appending the proper number
of value marks, followed by the value of replacement, to the
last value in the field; thus, the value of value# is the number
of the new value in the specified field.

Case 3: field#, value#, and subvalue# are all specified and are nonzero. A
subvalue in the specified value of the specified field is replaced with
the value of replacement.

• If subvalue# is positive and less than or equal to the number of
subvalues in the value, the subvalue specified by the
subvalue# is replaced by the value of replacement.

• If subvalue# is negative, a new subvalue is created by
appending a subvalue mark and the subvalue of replacement
to the last subvalue in the value.

• If the subvalue# is positive and greater than the number of
subvalues in the value, a new subvalue is created by
appending the proper number of subvalue marks followed by
the value of replacement to the last subvalue in the value; thus,
the value of the expression subvalue# is the number of the new
subvalue in the specified value.
BASIC Statements and Functions 6-499

REPLACE function
In IDEAL, PICK, PIOPEN, and REALITY flavor accounts, if replacement is an empty
string and an attempt is made to append the new element to the end of the
dynamic array, field, or value, the dynamic array, field, or value is left unchanged;
additional delimiters are not appended. Use the EXTRA.DELIM option of the
$OPTIONS statement to make the REPLACE function append a delimiter to the
dynamic array, field, or value.

If replacement is the null value, the stored representation of null (CHAR(128)) is
inserted into dynamic.array. If dynamic.array evaluates to the null value, it remains
unchanged by the replacement. If the REPLACE statement references a subele-
ment of an element whose value is the null value, the dynamic array is unchanged.

INFORMATION and IN2 Flavors
In INFORMATION and IN2 flavor accounts, if expression is an empty string and the
new element is appended to the end of the dynamic array, the end of a field, or the
end of a value, a delimiter is appended to the dynamic array, field, or value. Use
the −EXTRA.DELIM option of the $OPTIONS statement to make the REPLACE
function work as it does in IDEAL, PICK, and REALITY flavor accounts.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.

The first example replaces field 1 with # and sets Q to #FAVBVDSEFDFFF:

R=@FM:"A":@VM:"B":@VM:"D":@SM:"E":@FM:"D":@FM:@FM:"F"
Q=R
Q=REPLACE(Q,1;"#")

The next example replaces the first subvalue of the third value in field 2 with # and
sets Q to FAVBV#SEFDFFF:

Q=R
Q<2,3,1>="#"

The next example replaces field 4 with # and sets Q to FAVBVDSEFDF#FF:

Q=R
Q=REPLACE(Q,4,0,0;"#")

The next example replaces the first value in fields 1 through 4 with # and sets Q to
#F#VBVDSEF#F#FF:
6-500 BASIC Guide

REPLACE function
Q=R
FOR X=1 TO 4
Q=REPLACE(Q,X,1,0;"#")
NEXT

The next example appends a value mark and # to the last value in field 2 and sets
Q to FAVBVDSEV#FDFFF:

Q=R
Q=REPLACE(Q,2,-1;"#")
BASIC Statements and Functions 6-501

RETURN statement
RETURN

Syntax

RETURN [TO statement.label]

Description
Use the RETURN statement to terminate a subroutine and return control to the
calling program or statement.

If the TO clause is not specified, the RETURN statement exits either an internal
subroutine called by a GOSUB statement or an external subroutine called by a
CALL statement. Control returns to the statement that immediately follows the
CALL or GOSUB statement.

Use a RETURN statement to terminate an internal subroutine called with a GOSUB
statement to ensure that the program proceeds in the proper sequence.

Use a RETURN statement or an END statement to terminate an external subrou-
tine called with a CALL statement. When you exit an external subroutine called by
CALL, all files opened by the subroutine are closed, except files that are open to
common variables.

Use the TO clause to exit only an internal subroutine; control passes to the specified
statement label. If you use the TO clause and statement.label does not exist, an error
message appears when the program is compiled.

Note: Using the TO clause can make program debugging and modification
extremely difficult. Be careful when you use the RETURN TO statement,
because all other GOSUBs or CALLs active at the time the GOSUB is
executed remain active, and errors can result.

If the RETURN or RETURN TO statement does not have a place to return to,
control is passed to the calling program or to the command language.

Example
In the following example, subroutine XYZ prints the message “THIS IS THE
EXTERNAL SUBROUTINE” and returns to the main program:

20: GOSUB 80:
25: PRINT "THIS LINE WILL NOT PRINT"
6-502 BASIC Guide

RETURN statement
30: PRINT "HI THERE"
40: CALL XYZ

60: PRINT "BACK IN MAIN PROGRAM"
70: STOP
80: PRINT "THIS IS THE INTERNAL SUBROUTINE"
90: RETURN TO 30:
END

This is the program output:

THIS IS THE INTERNAL SUBROUTINE
HI THERE
THIS IS THE EXTERNAL SUBROUTINE
BACK IN MAIN PROGRAM
BASIC Statements and Functions 6-503

RETURN (value) statement
RETURN (value)

Syntax
RETURN (expression)

Description
Use the RETURN (value) statement to return a value from a user-written function.

expression evaluates to the value you want the user-written function to return. If
you use a RETURN (value) statement in a user-written function and you do not
specify expression, an empty string is returned by default.

You can use the RETURN (value) statement only in user-written functions. If you
use one in a program or subroutine, an error message appears.
6-504 BASIC Guide

REUSE function
REUSE

Syntax
REUSE (expression)

Description
Use the REUSE function to specify that the value of the last field, value, or
subvalue be reused in a dynamic array operation.

expression is either a dynamic array or an expression whose value is considered to
be a dynamic array.

When a dynamic array operation processes two dynamic arrays in parallel, the
operation is always performed on corresponding subvalues. This is true even for
corresponding fields, each of which contains a single value. This single value is
treated as the first and only subvalue in the first and only value in the field.

A dynamic array operation isolates the corresponding fields, values, and
subvalues in a dynamic array. It then operates on them in the following order:

1. The subvalues in the values

2. The values in the fields

3. The fields of each dynamic array

A dynamic array operation without the REUSE function adds zeros or empty
strings to the shorter array until the two arrays are equal. (The DIVS function is an
exception. If a divisor element is absent, the divisor array is padded with ones, so
that the dividend value is returned.)

The REUSE function reuses the last value in the shorter array until all elements in
the longer array are exhausted or until the next higher delimiter is encountered.

After all subvalues in a pair of corresponding values are processed, the dynamic
array operation isolates the next pair of corresponding values in the corresponding
fields and repeats the procedure.

After all values in a pair of corresponding fields are processed, the dynamic array
operation isolates the next pair of corresponding fields in the dynamic arrays and
repeats the procedure.

If expression evaluates to the null value, the null value is replicated, and null is
returned for each corresponding element.
BASIC Statements and Functions 6-505

REUSE function
Example
B = (1:@SM:6:@VM:10:@SM:11)
A = ADDS(REUSE(5),B)
PRINT "REUSE(5) + 1:@SM:6:@VM:10:@SM:11 = ": A
*
PRINT "REUSE(1:@SM:2) + REUSE(10:@VM:20:@SM:30) = ":
PRINT ADDS(REUSE(1:@SM:2),REUSE(10:@VM:20:@SM:30))
*
PRINT "(4:@SM:7:@SM:8:@VM:10)*REUSE(10) = ":
PRINT MULS((4:@SM:7:@SM:8:@VM:10),REUSE(10))

This is the program output:

REUSE(5) + 1:@SM:6:@VM:10:@SM:11 = 6S11V15S16
REUSE(1:@SM:2) + REUSE(10:@VM:20:@SM:30) = 11S12V22S32
(4:@SM:7:@SM:8:@VM:10)*REUSE(10) = 40S70S80V100
6-506 BASIC Guide

REVREMOVE statement
REVREMOVE statement

Syntax
REVREMOVE element FROM dynamic.array SETTING variable

Description
Use the REVREMOVE statement to successively extract dynamic array elements
that are separated by system delimiters. The elements are extracted from right to
left, in the opposite order from those extracted by the REMOVE Statement. When
a system delimiter is encountered, the extracted element is assigned to element.

dynamic.array is an expression that evaluates to the dynamic array from which to
extract elements.

variable is set to a code value corresponding to the system delimiter terminating the
element just extracted. The delimiter code settings assigned to variable are as
follows:

The REVREMOVE statement extracts one element each time it is executed, begin-
ning with the last element in dynamic.array. The operation can be repeated until all
elements of dynamic.array are extracted. The REVREMOVE statement does not
change the dynamic array.

As each element is extracted from dynamic.array to element, a pointer associated
with dynamic.array moves back to the beginning of the element just extracted.

The pointer is reset to the beginning of dynamic.array whenever dynamic.array is
reassigned. Therefore, dynamic.array should not be assigned a new value until all
elements have been extracted (that is, until variable = 0).

0 End of string

1 Item mark ASCII CHAR(255)

2 Field mark ASCII CHAR(254)

3 Value mark ASCII CHAR(253)

4 Subvalue mark ASCII CHAR(252)

5 Text mark ASCII CHAR(251)

6 ASCII CHAR(250)

7 ASCII CHAR(249)

8 ASCII CHAR(248)
BASIC Statements and Functions 6-507

REVREMOVE statement
If an element in dynamic.array is the null value, null is returned for that element.

Use REVREMOVE with the REMOVE statement. After a REMOVE statement,
REVREMOVE returns the same string as the preceding REMOVE, setting the
pointer to the delimiter preceding the extracted element. Thus, a subsequent
REMOVE statement extracts the same element yet a third time.

If no REMOVE statement has been performed on dynamic.array or if the leftmost
dynamic array element has been returned, element is set to the empty string and
variable indicates end of string (that is, 0).

Example
DYN = "THIS":@FM:"HERE":@FM:"STRING"
REMOVE VAR FROM DYN SETTING X
PRINT VAR
REVREMOVE NVAR FROM DYN SETTING X
PRINT NVAR
REMOVE CVAR FROM DYN SETTING X
PRINT CVAR

The program output is:

THIS
THIS
THIS
6-508 BASIC Guide

REWIND statement
REWIND

Syntax

REWIND [UNIT (mtu)]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the REWIND statement to rewind a magnetic tape to the beginning-of-tape
position.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if
no unit is specified. If the UNIT clause is used, mtu is an expression that evaluates
to a code made up of three decimal digits. Although the mtu expression is a func-
tion of the UNIT clause, the REWIND statement uses only the third digit (the u).
Its value must be in the range of 0 through 7. If mtu evaluates to the null value, the
REWIND statement fails and the program terminates with a run-time error
message.

Before a REWIND statement is executed, a tape drive unit must be attached to the
user. Use the ASSIGN command to assign a tape unit to a user. If no tape unit is
attached or if the unit specification is incorrect, the ELSE statements are executed.

The STATUS function returns 1 if REWIND takes the ELSE clause, otherwise it
returns 0.

PIOPEN Flavor
If you have a program that specifies the syntax UNIT ndmtu, the nd elements are
ignored by the compiler and no errors are reported.

Example
REWIND UNIT(002) ELSE PRINT "UNIT NOT ATTACHED"
BASIC Statements and Functions 6-509

RIGHT function
RIGHT

Syntax
RIGHT (string, n)

Description
Use the RIGHT function to extract a substring comprising the last n characters of a
string. It is equivalent to the following substring extraction operation:

string [length]
If you use this function, you need not calculate the string length.

If string evaluates to the null value, null is returned. If n evaluates to the null value,
the RIGHT function fails and the program terminates with a run-time error
message.

Example
PRINT RIGHT("ABCDEFGH",3)

This is the program output:

FGH
6-510 BASIC Guide

RND function
RND

Syntax
RND (expression)

Description
Use the RND function to generate any positive or negative random integer or 0.

expression evaluates to the total number of integers, including 0, from which the
random number can be selected. That is, if n is the value of expression, the random
number is generated from the numbers 0 through (n − 1).

If expression evaluates to a negative number, a random negative number is gener-
ated. If expression evaluates to 0, 0 is the random number. If expression evaluates to
the null value, the RND function fails and the program terminates with a run-time
error message.

See the RANDOMIZESyntax statement for details on generating repeatable
sequences of random numbers.

Example
A=20
PRINT RND(A)
PRINT RND(A)
PRINT RND(A)
PRINT RND(A)

This is the program output:

10
3
6
10
BASIC Statements and Functions 6-511

ROLLBACK statement
ROLLBACK

Syntax

ROLLBACK [WORK] [THEN statements] [ELSE statements]

Description
Use the ROLLBACK statement to cancel all file I/O changes made during a trans-
action. The WORK keyword provides compatibility with SQL syntax conventions;
it is ignored by the compiler.

A transaction includes all statements executed since the most recent BEGIN
TRANSACTION statement. The ROLLBACK statement rolls back all changes
made to files during the active transaction. If a subtransaction rolls back, none of
the changes resulting from the active subtransaction affect the parent transaction.
If the top-level transaction rolls back, none of the changes made are committed to
disk, and the database remains unaffected by the transaction.

Use the ROLLBACK statement in a transaction without a COMMIT statement to
review the results of a possible change. Doing so does not affect the parent trans-
action or the database. Executing a ROLLBACK statement ends the current
transaction. After the transaction ends, execution continues with the statement
following the next END TRANSACTION statement.

If no transaction is active, the ROLLBACK statement generates a run-time
warning, and the ELSE statements are executed.

Example
This example begins a transaction that applies locks to rec1 and rec2. If errors occur
(such as a failed READU or a failed WRITE), the ROLLBACK statements ensure
that no changes are written to the file.

BEGIN TRANSACTION
READU data1 FROM file1,rec1 ELSE ROLLBACK
READU data2 FROM file2,rec2 ELSE ROLLBACK

.

.

.
WRITE new.data1 ON file1,rec1 ELSE ROLLBACK
WRITE new.data2 ON file2,rec2 ELSE ROLLBACK
COMMIT WORK

END TRANSACTION
6-512 BASIC Guide

ROLLBACK statement
The update record lock on rec1 is not released on successful completion of the first
WRITE statement.
BASIC Statements and Functions 6-513

RPC.CALL function
RPC.CALL

Syntax
RPC.CALL (connection.ID, procedure, #args, MAT arg.list, #values,

MAT return.list)

Description
Use the RPC.CALL function to make requests of a connected server. The request is
packaged and sent to the server using the C client RPC library. RPC.CALL returns
the results of processing the remote request: 1 for success, 0 for failure.

connection.ID is the handle of the open server connection on which to issue the RPC
request. The RPC.CONNECT function gets the connection.ID.

procedure is a string identifying the operation requested of the server.

#args is the number of elements of arg.list to pass to the RPC server.

arg.list is a two-dimensional array (matrix) containing the input arguments to pass
to the RPC server. The elements of this array represent ordered pairs of values. The
first value is the number of the argument to the server operation, the second value
is an argument-type declarator. (Data typing generalizes the RPC interface to work
with servers that are data-type sensitive.)

#values is the number of values returned by the server.

return.list is a dimensioned array containing the results of the remote operation
returned by RPC.CALL. Like arg.list, the results are ordered pairs of values.

RPC.CALL builds an RPC packet from #args and arg.list. Functions in the C client
RPC library transmit the packet to the server and wait for the server to respond.
When a response occurs, the RPC packet is separated into its elements and stored
in the array return.list.

Use the STATUS function after an RPC.CALL function is executed to determine the
result of the operation, as follows:

81001 Connection closed, reason unspecified.

81002 connection.ID does not correspond to a valid bound connection.

81004 Error occurred while trying to store an argument in the transmission
packet.

81005 Procedure access denied because of a mismatch of RPC versions.
6-514 BASIC Guide

RPC.CALL function
Example
The following example looks for jobs owned by fred. The server connection was
made using the RPC.CONNECT function.

args (1,1) = "fred"; args (1,2) = UVRPC.STRING
IF (RPC.CALL (server.handle, "COUNT.USERS", 1, MAT args,

return.count, MAT res)) ELSE
PRINT "COUNT.JOBS request failed, error code is: " STATUS()
GOTO close.connection:

END

81008 Error occurred because of a bad parameter in arg.list.

81009 Unspecified RPC error.

81010 #args does not match expected argument count on remote machine.

81015 Timeout occurred while waiting for response from server.
BASIC Statements and Functions 6-515

RPC.CONNECT function
RPC.CONNECT

Syntax
RPC.CONNECT (host, server)

Description
Use the RPC.CONNECT function to establish a connection to a server process.
Once the host and server are identified, the local daemon tries to connect to the
remote server. If the attempt succeeds, RPC.CONNECT returns a connection ID. If
it fails, RPC.CONNECT returns 0. The connection ID is a nonzero integer used to
refer to the server in subsequent calls to RPC.CALL and RPC.DISCONNECT.

host is the name of the host where the server resides.

UNIX. This is defined in the local /etc/hosts file.

Windows NT. This is defined in the system32\drivers\etc\hosts file.

server is the name, as defined in the remote /etc/services file, of the RPC server class
on the target host.

If host is not in the /etc/hosts file, or if server is not in the remote /etc/services file, the
connection attempt fails.

Use the STATUS function after an RPC.CONNECT function is executed to deter-
mine the result of the operation, as follows:

81005 Connection failed because of a mismatch of RPC versions.

81007 Connection refused because the server cannot accept more clients.

81009 Unspecified RPC error.

81011 Host is not in the local /etc/hosts file.

81012 Remote dsrpcd cannot start service because it could not fork the
process.

81013 Cannot open the remote dsrpcservices file.

81014 Service not found in the remote dsrpcservices file.

81015 Connection attempt timed out.
6-516 BASIC Guide

RPC.CONNECT function
Example
The following example connects to a remote server called MONITOR on HOST.A:

MAT args(1,2), res(1,2)
server.handle = RPC.CONNECT ("HOST.A", "MONITOR")
IF (server.handle = 0) THEN

PRINT "Connection failed, error code is: ": STATUS()
STOP

END
BASIC Statements and Functions 6-517

RPC.DISCONNECT function
RPC.DISCONNECT

Syntax
RPC.DISCONNECT (connection.ID)

Description
Use the RPC.DISCONNECT function to end an RPC session.

connection.ID is the RPC server connection you want to close.

RPC.DISCONNECT sends a request to end a connection to the server identified by
connection.ID. When the server gets the request to disconnect, it performs any
required termination processing. If the call is successful, RPC.DISCONNECT
returns 1. If an error occurs, RPC.DISCONNECT returns 0.

Use the STATUS function after an RPC.DISCONNECT function is executed to
determine the result of the operation, as follows:

Example
The following example closes the connection to a remote server called MONITOR
on HOST.A:

MAT args(1,2), res(1,2)
server.handle = RPC.CONNECT ("HOST.A", "MONITOR")
IF (server.handle = 0) THEN

PRINT "Connection failed, error code is: ": STATUS()
STOP

END
.
.
.

close.connection:
IF (RPC.DISCONNECT (server.handle)) ELSE

PRINT "Bizarre disconnect error, result code is: " STATUS()
END

81001 The connection was closed, reason unspecified.

81002 connection.ID does not correspond to a valid bound connection.

81009 Unspecified RPC error.
6-518 BASIC Guide

SADD function
SADD

Syntax
SADD (string.number.1, string.number.2)

Description
Use the SADD function to add two string numbers and return the result as a string
number. You can use this function in any expression where a string or string
number is valid, but not necessarily where a standard number is valid, because
string numbers can exceed the range of numbers that standard arithmetic opera-
tors can handle.

Either string number can evaluate to any valid number or string number.

If either string number contains nonnumeric data, an error message is generated,
and 0 replaces the nonnumeric data. If either string number evaluates to the null
value, null is returned.

Example
A = 88888888888888888
B = 77777777777777777
X = "88888888888888888"
Y = "77777777777777777"
PRINT A + B
PRINT SADD(X,Y)

This is the program output:

166666666666667000
166666666666666665
BASIC Statements and Functions 6-519

SCMP function
SCMP

Syntax
SCMP (string.number.1, string.number.2)

Description
Use the SCMP function to compare two string numbers and return one of the
following three numbers: −1 (less than), 0 (equal), or 1 (greater than). If
string.number.1 is less than string.number.2, the result is 1. If they are equal, the
result is 0. If string.number.1 is greater than string.number.2, the result is 1. You can
use this function in any expression where a string or string number is valid.

Either string number can be a valid number or string number. Computation is
faster with string numbers.

If either string number contains nonnumeric data, an error message is generated
and 0 is used instead of the nonnumeric data. If either string number evaluates to
the empty string, null is returned.

Example
X = "123456789"
Y = "123456789"
IF SCMP(X,Y) = 0 THEN PRINT "X is equal to Y"

ELSE PRINT "X is not equal to Y"
END

This is the program output:

X is equal to Y
6-520 BASIC Guide

SDIV function
SDIV

Syntax

SDIV (string.number.1, string.number.2 [,precision])

Description
Use the SDIV function to divide string.number.1 by string.number.2 and return the
result as a string number. You can use this function in any expression where a
string or string number is valid, but not necessarily where a standard number is
valid, because string numbers can exceed the range of numbers which standard
arithmetic operators can handle. Either string number can be a valid number or a
string number.

precision specifies the number of places to the right of the decimal point. The
default precision is 14.

If either string number contains nonnumeric data, an error message is generated
and 0 is used for that number. If either string number evaluates to the null value,
null is returned.

Example
X = "1"
Y = "3"
Z = SDIV (X,Y)
ZZ = SDIV (X,Y,20)
PRINT Z
PRINT ZZ

This is the program output:

0.33333333333333
0.33333333333333333333
BASIC Statements and Functions 6-521

SEEK statement
SEEK

Syntax

SEEK file.variable [, offset [, relto]]
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the SEEK statement to move the file pointer by an offset specified in bytes,
relative to the current position, the beginning of the file, or the end of the file.

file.variable specifies a file previously opened for sequential access.

offset is the number of bytes before or after the reference position. A negative offset
results in the pointer being moved before the position specified by relto. If offset is
not specified, 0 is assumed.

Note: On Windows NT systems, line endings in files are denoted by the character
sequence RETURN + LINEFEED rather than the single LINEFEED used in
UNIX files. The value of offset should take into account this extra byte on
each line in Windows NT file systems.

The permissible values of relto and their meanings follow:

If relto is not specified, 0 is assumed.

If the pointer is moved, the THEN statements are executed and the ELSE state-
ments are ignored. If the THEN statements are not specified, program execution
continues with the next statement.

If the file cannot be accessed or does not exist, the ELSE statements are executed;
any THEN statements are ignored.

If file.variable, offset, or relto evaluates to the null value, the SEEK statement fails and
the program terminates with a run-time error message.

Note: On Windows NT systems, if you use the OPENDEV statement to open a
1/4-inch cartridge tape (60 MB or 150 MB) for sequential processing, you

0 Relative to the beginning of the file

1 Relative to the current position

2 Relative to the end of the file
6-522 BASIC Guide

SEEK statement
can move the file pointer only to the beginning or the end of the data. For
diskette drives, you can move the file pointer only to the start of the data.

Seeking beyond the end of the file and then writing creates a gap, or hole, in the
file. This hole occupies no physical space, and reads from this part of the file return
as ASCII CHAR 0 (neither the number nor the character 0).

For more information about sequential file processing, see the OPENSEQ,
READSEQ, and WRITESEQ statements.

Example
The following example reads and prints the first line of RECORD4. Then the SEEK
statement moves the pointer five bytes from the front of the file, then reads and
prints the rest of the current line.

OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
READSEQ B FROM FILE THEN PRINT B
SEEK FILE,5, 0 THEN READSEQ A FROM FILE
THEN PRINT A ELSE ABORT

This is the program output:

FIRST LINE
 LINE
BASIC Statements and Functions 6-523

SEEK(ARG.) statement
SEEK(ARG.)

Syntax

SEEK(ARG. [,arg#]) [THEN statements] [ELSE statements]

Description
Use the SEEK(ARG.) statement to move the command line argument pointer to the
next command line argument from left to right, or to a command line argument
specified by arg#. The command line is delimited by blanks, and the first argument
is assumed to be the first word after the program name. When a cataloged program
is invoked, the argument list starts with the second word in the command line.

Blanks in quoted strings are not treated as delimiters. A quoted string is treated as
a single argument.

arg# specifies the command line argument to move to. It must evaluate to a
number. If arg# is not specified, the pointer moves to the next command line argu-
ment. SEEK(ARG.) works similarly to GET(ARG.) except that SEEK(ARG.) makes
no assignments.

THEN and ELSE statements are both optional. The THEN clause is executed if the
argument is found. The ELSE clause is executed if the argument is not found. The
SEEK(ARG.) statement fails if arg# evaluates to a number greater than the number
of command line arguments or if the last argument has been assigned and a
SEEK(ARG.) with no arg# is used. To move to the beginning of the argument list,
set arg# to 1.

If arg# evaluates to the null value, the SEEK(ARG.) statement fails and the program
terminates with a run-time error message.

Example
If the command line is:

RUN BP PROG ARG1 ARG2 ARG3

and the program is:

A=5;B=2
SEEK(ARG.)
SEEK(ARG.,B)
SEEK(ARG.)
6-524 BASIC Guide

SEEK(ARG.) statement
SEEK(ARG.,A-B)
SEEK(ARG.,1)

the system pointer moves as follows:

ARG2
ARG2
ARG3
ARG3
ARG1
BASIC Statements and Functions 6-525

SELECT statements
SELECT

Syntax

SELECT [variable] [TO list.number] [ON ERROR statements]
SELECT TO

SELECTN [variable] [TO list.number] [ON ERROR statements]

SELECTV [variable] TO list.variable [ON ERROR statements]

Description
Use a SELECT statement to create a numbered select list of record IDs from a
DataStage file or a dynamic array. A subsequent READNEXT statement can access
this select list, removing one record ID at a time from the list. READNEXT instruc-
tions can begin processing the select list immediately.

variable can specify a dynamic array or a file variable. If it specifies a dynamic array,
the record IDs must be separated by field marks (ASCII 254). If variable specifies a
file variable, the file variable must have previously been opened. If variable is not
specified, the default file is assumed (for more information on default files, see the
OPEN statement). If the file is neither accessible nor open, or if variable evaluates
to the null value, the SELECT statement fails and the program terminates with a
run-time error message.

If the file is an SQL table, the effective user of the program must have SQL SELECT
privilege to read records in the file. For information about the effective user of a
program, see the AUTHORIZATION statement.

You must use a file lock with the SELECT statement when it is within a transaction
running at isolation level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list.number is an integer
from 0 through 10. If no list.number is specified, select list 0 is used.

The record IDs of all the records in the file, in their stored order, form the list. Each
record ID is one entry in the list.

The SELECT statement does not process the entire file at once. It selects record IDs
group by group. The @SELECTED variable is set to the number of elements in the
group currently being processed.

You often want a select list with the record IDs in an order different from their
stored order or with a subset of the record IDs selected by some specific criteria. To
6-526 BASIC Guide

SELECT statements
do this, use the SELECT or SSELECT commands in a BASIC EXECUTE statement.
Processing the list by READNEXT is the same, regardless of how the list is created.

Use the SELECTV statement to store the select list in a named list variable instead
of to a numbered select list. list.variable is an expression that evaluates to a valid
variable name. This is the default behavior of the SELECT statement in PICK,
REALITY, and IN2 flavor accounts. You can also use the VAR.SELECT option of
the $OPTIONS statement to make the SELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

The ON ERROR Clause
The ON ERROR clause is optional in the SELECT statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the SELECT statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

PICK, REALITY, and IN2 Flavors
In a PICK, REALITY, or IN2 flavor account, the SELECT statement has the
following syntax:

SELECT[V] [variable] TO list.variable
BASIC Statements and Functions 6-527

SELECT statements
SELECTN [variable] TO list.number

You can use either the SELECT or the SELECTV statement to create a select list and
store it in a named list variable. The only useful thing you can do with a list vari-
able is use a READNEXT statement to read the next element of the select list.

Use the SELECTN statement to store the select list in a numbered select list.
list.number is an expression that evaluates to a number from 0 through 10. You can
also use the −VAR.SELECT option of the $OPTIONS statement to make the
SELECT statement act as it does in IDEAL and INFORMATION flavor accounts.

Example
The following example opens the file SUN.MEMBER to the file variable
MEMBER.F, then creates an active select list of record IDs. The READNEXT state-
ment assigns the first record ID in the select list to the variable @ID, then prints it.
Next, the file SUN.SPORT is opened to the file variable SPORT.F, and a select list
of its record IDs is stored as select list 1. The READNEXT statement assigns the first
record ID in the select list to the variable A, then prints DONE.

OPEN '','SUN.MEMBER' TO MEMBER.F ELSE PRINT "NOT OPEN"
SELECT
READNEXT @ID THEN PRINT @ID
*
OPEN '','SUN.SPORT' TO SPORT.F ELSE PRINT "NOT OPEN"
SELECT TO 1
READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

4108
DONE
6-528 BASIC Guide

SELECTE statement
SELECTE

Syntax
SELECTE TO list.variable

Description
Use the SELECTE statement to assign the contents of select list 0 to list.variable.
list.variable is activated in place of select list 0 and can be read with the READNEXT
statement.
BASIC Statements and Functions 6-529

SELECTINDEX statement
SELECTINDEX

Syntax

SELECTINDEX index [,alt.key] FROM file.variable [TO list.number]

Description
Use the SELECTINDEX statement to create select lists from secondary indexes.

file.variable specifies an open file.

index is an expression that evaluates to the name of an indexed field in the file. index
must be the name of the field that was used in the CREATE.INDEX command
when the index was built.

list.number is an expression that evaluates to the select list number. It can be a
number from 0 through 10. The default list number is 0.

alt.key is an expression that evaluates to an alternate key value contained in the
index. If alt.key is specified, a select list is created of the record IDs referenced by
alt.key. If alt.key is not specified, a select list is created of all of the index’s alternate
keys.

If the field is not indexed, the select list is empty, and the value of the STATUS func-
tion is 1; otherwise the STATUS function is 0. If index, alt.key, or file.variable
evaluates to the null value, the SELECTINDEX statement fails and the program
terminates with a run-time error message.

PIOPEN Flavor

In a PIOPEN flavor account, the SELECTINDEX statement creates a select list from
the secondary indexes without duplicate keys. To implement this functionality in
other flavors, use the PIOPEN.SELIDX option with the $OPTIONS statement.

Example
In the following example, the first SELECTINDEX selects all data values to list 1.
The second SELECTINDEX selects record IDs referenced by STOREDVAL to list 2.

OPEN "", "DB" TO FV ELSE STOP "OPEN FAILED"
SELECTINDEX "F1" FROM FV TO 1
EOV = 0
LOOP
6-530 BASIC Guide

SELECTINDEX statement
SELECTINDEX "F1" FROM FV TO 1

UNTIL EOV DO
SELECTINDEX "F1", STOREDVAL FROM FV TO 2
EOK = 0
LOOP
READNEXT KEY FROM 2 ELSE EOK=1
UNTIL EOK DO
PRINT "KEY IS ":KEY:" STOREDVAL IS ":STOREDVAL
REPEAT
REPEAT
END
BASIC Statements and Functions 6-531

SELECTINFO function
SELECTINFO

Syntax
SELECTINFO (list, key)

Description
Use the SELECTINFO function to determine whether a select list is active, or to
determine the number of items it contains.

list is an expression evaluating to the number of the select list for which you require
information. The select list number must be in the range of 0 through 10.

key specifies the type of information you require. You can use equate names for the
keys as follows:

Equate Names
An insert file of equate names is provided for the SELECTINFO keys. To use the
equate names, specify the directive $INCLUDE SYSCOM INFO_KEYS.INS.IBAS
when you compile your program.

Example
In the following example, the insert file containing the equate name is inserted by
the $INCLUDE statement. The conditional statement tests if select list 0 is active.

$INCLUDE SYSCOM INFO_KEYS.INS.IBAS
IF SELECTINFO(0,IK$SLACTIVE)

 THEN PRINT 'SELECT LIST ACTIVE'
 ELSE PRINT 'SELECT LIST NOT ACTIVE'

END

IK$SLACTIVE Returns 1 if the select list specified is active, and returns 0 if
the select list specified is not active.

IK$SLCOUNT Returns the number of items in the select list. 0 is returned if
the select list is not active or is an empty select list.
6-532 BASIC Guide

SEND statement
SEND

Syntax

SEND output [:] TO device
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the SEND statement to write a block of data to a device. The SEND statement
can be used to write data to a device that has been opened for I/O using the
OPENDEV or OPENSEQ statement.

output is an expression evaluating to a data string that will be written to device. If
the optional colon is used after output, the terminating newline is not generated.

device is a valid file variable resulting from a successful OPENDEV or OPENSEQ
statement. This is the handle to the I/O device that supplies the data stream for the
operation of the SEND statement.

The SEND syntax requires that either a THEN or an ELSE clause, or both, be spec-
ified. If data is successfully sent, the SEND statement executes the THEN clause. If
data cannot be sent, it executes the ELSE clause.

The data block specified by output is written to the device followed by a newline.
Upon successful completion of the SEND operation, program control is passed to
the THEN clause if specified. If an error occurs during the SEND operation,
program control is passed to the ELSE clause if specified.

Example
The following code fragment shows how the SEND statement is used to write a
series of messages on a connected device:

OPENDEV "TTY10" TO TTYLINE ELSE STOP "CANNOT OPEN TTY10"
LOOP

INPUT MESSAGE
WHILE MESSAGE # "QUIT" DO

SEND MESSAGE TO TTYLINE
ELSE

STOP "ERROR WRITING DATA TO TTY10"
END

REPEAT
BASIC Statements and Functions 6-533

SENTENCE function
SENTENCE

Syntax
SENTENCE ()

Description
Use the SENTENCE function to return the stored sentence that invoked the current
process. Although the SENTENCE function uses no arguments, parentheses are
required to identify it as a function. The SENTENCE function is a synonym for the
@SENTENCE system variable.

A PERFORM statement in a program updates the system variable, @SENTENCE,
with the command specified in the PERFORM statement.

Example
PRINT SENTENCE()

This is the program output:

RUN BP TESTPROGRAM
6-534 BASIC Guide

SEQ function
SEQ

Syntax
SEQ (expression)

Description
Use the SEQ function to convert an ASCII character to its numeric string
equivalent.

expression evaluates to the ASCII character to be converted. If expression evaluates
to the null value, null is returned.

The SEQ function is the inverse of the CHAR function.

In NLS mode, use the UNISEQ function to return Unicode values in the range
x0080 through x00F8.

Using the SEQ function to convert a character outside its range results in a run-
time message, and the return of an empty string.

For more information about these ranges, see the DataStage NLS Guide.

PICK, IN2, and REALITY Flavors
In PICK, IN2, and REALITY flavors SEQ(" ") is 255 instead of 0. In IDEAL and
INFORMATION flavor accounts, use the SEQ.255 option of the $OPTIONS state-
ment to cause SEQ(" ") to be interpreted as 255.

Example
G="T"
A=SEQ(G)
PRINT A, A+1
PRINT SEQ("G")

This is the program output:

84 85
71
BASIC Statements and Functions 6-535

SEQS function
SEQS

Syntax
SEQS (dynamic.array)

CALL −SEQS (return.array, dynamic.array)

CALL !SEQS (return.array, dynamic.array)

Description
Use the SEQS function to convert a dynamic array of ASCII characters to their
numeric string equivalents.

dynamic.array specifies the ASCII characters to be converted. If dynamic.array eval-
uates to the null value, null is returned. If any element of dynamic.array is the null
value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

In NLS mode, you can use the UNISEQS function to return Unicode values in the
range x0080 through x00F8.

Using the SEQS function to convert a character outside its range results in a run-
time message, and the return of an empty string.

For more information about these ranges, see the DataStage NLS Guide.

Example
G="T":@VM:"G"
A=SEQS(G)
PRINT A
PRINT SEQS("G")

This is the program output:

84V71
71
6-536 BASIC Guide

SET TRANSACTION ISOLATION LEVEL statement
SET TRANSACTION ISOLATION LEVEL

Syntax
SET TRANSACTION ISOLATION LEVEL level

Description
Use the SET TRANSACTION ISOLATION LEVEL statement to set the default
transaction isolation level you need for your program.

Note: The isolation level you set with this statement remains in effect until
another such statement is issued. This affects all activities in the session,
including DataStage commands and SQL transactions.

The SET TRANSACTION ISOLATION LEVEL statement cannot be executed
while a transaction exists. Attempting to do so results in a run-time error message,
program failure, and the rolling back of all uncommitted transactions started in the
execution environment.

level has the following syntax:

{n | keyword | expression}
level is an expression that evaluates to 0 through 4, or one of the following
keywords:

Effects of ISOLATION LEVELs on Transactions

Integer Keyword Effect on This Transaction

0 NO.ISOLATION Prevents lost updates.1

1. Lost updates are prevented if the ISOMODE configurable parameter is set to 1 or 2.

1 READ.UNCOMMITTED Prevents lost updates.

2 READ.COMMITTED Prevents lost updates and dirty reads.

3 REPEATABLE.READ Prevents lost updates, dirty reads, and
nonrepeatable reads.

4 SERIALIZABLE Prevents lost updates, dirty reads, nonre-
peatable reads, and phantom writes.
BASIC Statements and Functions 6-537

SET TRANSACTION ISOLATION LEVEL statement
Examples
The following example sets the default isolation level to 3 then starts a transaction
at isolation level 4. The isolation level is reset to 3 after the transaction finishes.

SET TRANSACTION ISOLATION LEVEL REPEATABLE.READ
PRINT "We are at isolation level 3."
BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE

PRINT "We are at isolation level 4."
COMMIT WORK

END TRANSACTION
PRINT "We are at isolation level 3"

The next example uses an expression to set the transaction level:

PRINT "Enter desired transaction isolation level:":
INPUT TL

SET TRANSACTION LEVEL TL
BEGIN TRANSACTION

.

.

.
END TRANSACTION
6-538 BASIC Guide

SETLOCALE function
SETLOCALE

Syntax
SETLOCALE (category, value)

Description
In NLS mode, use the SETLOCALE function to enable or disable a locale for a spec-
ified category or change its setting.

category is one of the following tokens that are defined in the UVNLSLOC.H file:

value specifies either a dynamic array whose elements are separated by field marks
or the string OFF. An array can have one or five elements:

• If the array has one element, all categories are set or unset to that value.

• If the array has five elements, it specifies the following values in this order:
TIME, NUMERIC, MONETARY, CTYPE, and COLLATE.

The MD, MR, and ML conversions require both Numeric and Monetary categories
to be set in order for locale information to be used.

UVLC$ALL Sets or disables all categories as specified in value. value is
the name of a locale, OFF, or DEFAULT. value can also be a
dynamic array whose elements correspond to the
categories.

UVLC$TIME Sets or disables the Time category. value is the name of a
locale, OFF, or DEFAULT.

UVLC$NUMERIC Sets or disables the Numeric category. value is the name of
a locale, OFF, or DEFAULT.

UVLC$MONETARY Sets or disables the Monetary category. value is the name of
a locale, OFF, or DEFAULT.

UVLC$CTYPE Sets or disables the Ctype category. value is the name of a
locale, OFF, or DEFAULT.

UVLC$COLLATE Sets or disables the Collate category. value is the name of a
locale, OFF, or DEFAULT.

UVLC$SAVE Saves the current locale state, overwriting any previous
saved locale. value is ignored.

UVLC$RESTORE Restores the saved locale state. value is ignored.
BASIC Statements and Functions 6-539

SETLOCALE function
The STATUS function returns 0 if SETLOCALE is successful, or one of the
following error tokens if it fails:

The error tokens are defined in the UVNLSLOC.H file.

For more information about locales, see the DataStage NLS Guide.

Examples
The following example sets all the categories in the locale to FR-FRENCH:

status = SETLOCALE(UVLC$ALL,"FR-FRENCH")

The next example saves the current locale. This is the equivalent of executing the
SAVE.LOCALE command.

status = SETLOCALE(UVLC$SAVE,"")

The next example sets the Monetary category to DE-GERMAN:

status = SETLOCALE(UVLC$MONETARY,"DE-GERMAN")

The next example disables the Monetary category. DataStage behaves as though
there were no locales for the Monetary category only.

status = SETLOCALE(UVLC$MONETARY,"OFF")

The next example completely disables locale support for all categories:

status = SETLOCALE(UVLC$ALL,"OFF")

The next example restores the locale setting saved earlier:

status = SETLOCALE(UVLC$RESTORE,"")

LCE$NO.LOCALES DataStage locales are disabled.

LCE$BAD.LOCALE value is not the name of a locale that is currently loaded,
or the string OFF.

LCE$BAD.CATEGORY You specified an invalid category.

LCE$NULL.LOCALE value has more than one field and a category is missing.
6-540 BASIC Guide

SETREM statement
SETREM

Syntax
SETREM position ON dynamic.array

Description
Use the SETREM statement to set the remove pointer in dynamic.array to the posi-
tion specified by position.

position is an expression that evaluates to the number of bytes you want to move
the pointer forward. If it is larger than the length of dynamic.array, the length of
dynamic.array is used. If it is less than 0, 0 is used.

dynamic.array must be a variable that evaluates to a string. If it does not evaluate to
a string, an improper data type warning is issued.

If the pointer does not point to the first character after a system delimiter, subse-
quent REMOVE Statement and REVREMOVE statement act as follows:

• A REMOVE statement returns a substring, starting from the pointer and
ending at the next delimiter.

• A REVREMOVE statement returns a substring, starting from the previous
delimiter and ending at the pointer.

If NLS is enabled and you use a multibyte character set, use GETREM to ensure
that position is at the start of a character. For more information about locales, see the
DataStage NLS Guide.

Example
DYN = "THIS":@FM:"HERE":@FM:"STRING"
REMOVE VAR FROM DYN SETTING X
A = GETREM(DYN)
REMOVE VAR FROM DYN SETTING X
PRINT VAR
SETREM A ON DYN
REMOVE VAR FROM DYN SETTING X
PRINT VAR

The program output is:

HERE
HERE
BASIC Statements and Functions 6-541

SIN function
SIN

Syntax
SIN (expression)

Description
Use the SIN function to return the trigonometric sine of an expression. expression
represents the angle expressed in degrees. Numbers greater than 1E17 produce a
warning message, and 0 is returned. If expression evaluates to the null value, null is
returned.

Example
PRINT SIN(45)

This is the program output:

0.7071
6-542 BASIC Guide

SINH function
SINH

Syntax
SINH (expression)

Description
Use the SINH function to return the hyperbolic sine of expression. expression must
be numeric and represents the angle expressed in degrees. If expression evaluates to
the null value, null is returned.

Example
PRINT "SINH(2) = ":SINH(2)

This is the program output:

SINH(2) = 3.6269
BASIC Statements and Functions 6-543

SLEEP statement
SLEEP

Syntax

SLEEP [seconds]

Description
Use the SLEEP statement to suspend execution of a BASIC program, pausing for a
specified number of seconds.

seconds is an expression evaluating to the number of seconds for the pause. If
seconds is not specified, a value of 1 is used. If seconds evaluates to the null value, it
is ignored and 1 is used.

Example
In the following example the program pauses for three seconds before executing
the statement after the SLEEP statement. The EXECUTE statement clears the
screen.

PRINT "STUDY THE FOLLOWING SENTENCE CLOSELY:"
PRINT
PRINT
PRINT "There are many books in the"
PRINT "the library."
SLEEP 3
EXECUTE 'CS'
PRINT "DID YOU SEE THE MISTAKE?"

This is the program output:

STUDY THE FOLLOWING SENTENCE CLOSELY:

There are many books in the
the library.
DID YOU SEE THE MISTAKE?
6-544 BASIC Guide

SMUL function
SMUL

Syntax
SMUL (string.number.1, string.number.2)

Description
Use the SMUL function to multiply two string numbers and return the result as a
string number. You can use this function in any expression where a string or string
number is valid, but not necessarily where a standard number is valid, because
string numbers can exceed the range of numbers that standard arithmetic opera-
tors can handle.

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated
and 0 is used for that number. If either string number evaluates to the null value,
null is returned.

Example
X = "5436"
Y = "234"
Z = SMUL (X,Y)
PRINT Z

This is the program output:

1272024
BASIC Statements and Functions 6-545

SOUNDEX function
SOUNDEX

Syntax
SOUNDEX (expression)

Description
The SOUNDEX function evaluates expression and returns the most significant letter
in the input string followed by a phonetic code. Nonalphabetic characters are
ignored. If expression evaluates to the null value, null is returned.

This function uses the soundex algorithm (the same as the one used by the SAID
keyword in RetrieVe) to analyze the input string. The soundex algorithm returns
the first letter of the alphabetic string followed by a one- to three-digit phonetic
code.

Example

Source Lines Program Output

DATA "MCDONALD", "MACDONALD", "MACDOUGALL"
FOR I=1 TO 3

INPUT CUSTOMER
PHONETIC.CODE=SOUNDEX(CUSTOMER)
PRINT PHONETIC.CODE

NEXT

?MCDONALD
M235
?MACDONALD
M235
?MACDOUGALL
M232
6-546 BASIC Guide

SPACE function
SPACE

Syntax
SPACE (expression)

Description
Use the SPACE function to return a string composed of blank spaces. expression
specifies the number of spaces in the string. If expression evaluates to the null value,
the SPACE function fails and the program terminates with a run-time error
message.

There is no limit to the number of blank spaces that can be generated.

Example
PRINT "HI":SPACE(20):"THERE"
*
*
VAR=SPACE(5)
PRINT "TODAY IS":VAR:OCONV(DATE(),"D")

This is the program output:

HI THERE
TODAY IS 18 JUN 1992
BASIC Statements and Functions 6-547

SPACES function
SPACES

Syntax
SPACES (dynamic.array)

CALL −SPACES (return.array, dynamic.array)

CALL !SPACES (return.array, dynamic.array)

Description
Use the SPACES function to return a dynamic array with elements composed of
blank spaces. dynamic.array specifies the number of spaces in each element. If
dynamic.array or any element of dynamic.array evaluates to the null value, the
SPACES function fails and the program terminates with a run-time error message.

There is no limit to the number of blank spaces that can be generated except avail-
able memory.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.
6-548 BASIC Guide

SPLICE function
SPLICE

Syntax
SPLICE (array1, expression, array2)

CALL −SPLICE (return.array, array1, expression, array2)

CALL !SPLICE (return.array, array1, expression, array2)

Description
Use the SPLICE function to create a dynamic array of the element-by-element
concatenation of two dynamic arrays, separating concatenated elements by the
value of expression.

Each element of array1 is concatenated with expression and with the corresponding
element of array2. The result is returned in the corresponding element of a new
dynamic array. If an element of one dynamic array has no corresponding element
in the other dynamic array, the element is returned properly concatenated with
expression. If either element of a corresponding pair is the null value, null is
returned for that element. If expression evaluates to the null value, null is returned
for the entire dynamic array.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A="A":@VM:"B":@SM:"C"
B="D":@SM:"E":@VM:"F"
C='-'
PRINT SPLICE(A,C,B)

This is the program output:

A-DS-EVB-FSC-
BASIC Statements and Functions 6-549

SQRT function
SQRT

Syntax
SQRT (expression)

Description
Use the SQRT function to return the square root of expression. expression must eval-
uate to a numeric value that is greater than or equal to 0. If expression evaluates to
a negative value, the result of the function is SQRT(−n) and an error message is
printed. If expression evaluates to the null value, null is returned.

Example
A=SQRT(144)
PRINT A
*
PRINT "SQRT(45) IS ":SQRT(45)

This is the program output:

12
SQRT(45) IS 6.7082
6-550 BASIC Guide

SQUOTE function
SQUOTE

Syntax
SQUOTE (expression)

CALL !SQUOTE (quoted.expression, expression)

Description
Use the SQUOTE function to enclose an expression in single quotation marks. If
expression evaluates to the null value, null is returned, without quotation marks.

quoted.expression is the quoted string.

expression is the input string.

Example
PRINT SQUOTE(12 + 5) : " IS THE ANSWER."
END

This is the program output:

'17' IS THE ANSWER.
BASIC Statements and Functions 6-551

SSELECT statements
SSELECT

Syntax

SSELECT [variable] [TO list.number] [ON ERROR statements]

SSELECTN [variable] [TO list.number] [ON ERROR statements]

SSELECTV [variable] TO list.variable [ON ERROR statements]

Description
Use an SSELECT statement to create a numbered select list of record IDs in sorted
order from a DataStage file or a dynamic array. You can then access this select list
by a subsequent READNEXT statement which removes one record ID at a time
from the list.

variable can specify a dynamic array or a file variable. If it specifies a dynamic array,
the record IDs must be separated by field marks (ASCII 254). If variable specifies a
file variable, the file variable must have previously been opened. If variable is not
specified, the default file is assumed (for more information on default files, see the
OPEN statement). If the file is neither accessible nor open, or if variable evaluates
to the null value, the SSELECT statement fails and the program terminates with a
run-time error message.

If the file is an SQL table, the effective user of the program must have SQL SELECT
privilege to read records in the file. For information about the effective user of a
program, see the AUTHORIZATION statement.

You must use a file lock with the SSELECT statement when it is within a transac-
tion running at isolation level 4 (serializable). This prevents phantom reads.

The TO clause specifies the select list that is to be used. list.number is an integer
from 0 through 10. If no list.number is specified, select list 0 is used.

The record IDs of all the records in the file form the list. The record IDs are listed
in ascending order. Each record ID is one entry in the list.

You often want a select list with the record IDs in an order different from their
stored order or with a subset of the record IDs selected by some specific criteria. To
do this, use the SELECT or SSELECT commands in a BASIC EXECUTE statement.
Processing the list by READNEXT is the same, regardless of how the list is created.

Use the SSELECTV statement to store the select list in a named list variable instead
of to a numbered select list. list.variable is an expression that evaluates to a valid
6-552 BASIC Guide

SSELECT statements
variable name. This is the default behavior of the SSELECT statement in PICK,
REALITY, and IN2 flavor accounts. You can also use the VAR.SELECT option of
the $OPTIONS statement to make the SSELECT statement act as it does in PICK,
REALITY, and IN2 flavor accounts.

In NLS mode when locales are enabled, the SSELECT statements use the Collate
convention of the current locale to determine the collating order. For more infor-
mation about locales, see the DataStage NLS Guide.

The ON ERROR Clause
The ON ERROR clause is optional in SSELECT statements. The ON ERROR clause
lets you specify an alternative for program termination when a fatal error is
encountered during processing of a SSELECT statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

PICK, REALITY, and IN2 Flavors
In a PICK, REALITY, or IN2 flavor account, the SSELECT statement has the
following syntax:

SSELECT[V] [variable] TO list.variable

SSELECTN [variable] TO list.number
BASIC Statements and Functions 6-553

SSELECT statements
You can use either the SSELECT or the SSELECTV statement to create a select list
and store it in a named list variable. The only useful thing you can do with a list
variable is use a READNEXT statement to read the next element of the select list.

Use the SSELECTN statement to store the select list in a numbered select list.
list.number is an expression that evaluates to a number from 0 through 10. You can
also use the −VAR.SELECT option of the $OPTIONS statement to make the
SSELECT statement act as it does in IDEAL and INFORMATION flavor accounts.

Example
The following example opens the file SUN.MEMBER to the file variable
MEMBER.F, then creates an active sorted select list of record IDs. The READNEXT
statement assigns the first record ID in the select list to the variable @ID, then
prints it. Next, the file SUN.SPORT is opened to the file variable SPORT.F, and a
sorted select list of its record IDs is stored as select list 1. The READNEXT state-
ment assigns the first record ID in the select list to the variable A, then prints
DONE.

OPEN '','SUN.MEMBER' ELSE PRINT "NOT OPEN"
SSELECT
READNEXT @ID THEN PRINT @ID
*
OPEN '','SUN.SPORT' ELSE PRINT "NOT OPEN"
SSELECT TO 1
READNEXT A FROM 1 THEN PRINT "DONE" ELSE PRINT "NOT"

This is the program output:

0001
DONE
6-554 BASIC Guide

SSUB function
SSUB

Syntax
SSUB (string.number.1, string.number.2)

Description
Use the SSUB function to subtract string.number.2 from string.number.1 and return
the result as a string number. You can use this function in any expression where a
string or string number is valid, but not necessarily where a standard number is
valid, because string numbers can exceed the range of numbers that standard
arithmetic operators can handle.

Either string number can be any valid number or string number.

If either string number contains nonnumeric data, an error message is generated,
and 0 replaces the nonnumeric data. If either string number evaluates to the null
value, null is returned.

Example
X = "123456"
Y = "225"
Z = SSUB (X,Y)
PRINT Z

This is the program output:

123231
BASIC Statements and Functions 6-555

STATUS function
STATUS

Syntax
STATUS ()

Description
Use the STATUS function to determine the results of the operations performed by
certain statements and functions.

The parentheses must be used with the STATUS function to distinguish it from
potential user-named variables called STATUS. However, no arguments are
required with the STATUS function.

The following sections describe STATUS function values.

After a BSCAN statement:

After a DELETE statement: After a DELETE statement with an ON ERROR
clause, the value returned is the error number.

After a FILEINFO function: After a successful execution of the FILEINFO func-
tion, STATUS returns 0. If the function fails to execute, STATUS returns a nonzero
value. For complete information, see the FILEINFO function.

0 The scan proceeded beyond the leftmost or rightmost leaf node. ID.variable
and rec.variable are set to empty strings.

1 The scan returned an existing record ID, or a record ID that matches record.

2 The scan returned a record ID that does not match record. ID.variable is either
the next or the previous record ID in the B-tree, depending on the direction of
the scan.

3 The file is not a B-tree (type 25) file, or, if the USING clause is used, the file has
no active secondary indexes.

4 indexname does not exist.

5 seq does not evaluate to A or D.

6 The index specified by indexname needs to be built.

10 An internal error was detected.
6-556 BASIC Guide

STATUS function
After a FILELOCK statement: After a FILELOCK statement with a LOCKED
clause, the value returned is the terminal number of the user who has a conflicting
lock.

After anFMT function:

After a GET or GETX statement:

After an ICONV or OCONV function:

After an INPUT @ statement: A 0 is returned if the statement was completed by
a Return. The trap number is returned if the statement was completed by one of
the trapped keys (see the INPUT @ and KEYTRAP statements).

After a MATWRITE, WRITE, WRITEU, WRITEV, or WRITEVU statement:

0 The conversion is successful.

1 The string expression passed as an argument is invalid.
If NLS is enabled: the data supplied cannot be converted.

2 The conversion code passed as an argument to the function is invalid.

0 The timeout limit expired.

Any nonzero value A device input error occurred.

0 The conversion is successful.

1 The string expression passed as an argument to the function is not convertible
using the conversion code passed. An empty string is returned as the value of
the function.

2 The conversion code passed as an argument to the function is invalid. An
empty string is returned as the value of the function.

3 Successful conversion of a possibly invalid date.

0 The record was locked before the operation.

3 In NLS mode, the unmappable character is in the record ID.

4 In NLS mode, the unmappable character is in the record’s data.

−2 The record was unlocked before the operation.

−3 The record failed an SQL integrity check.

−4 The record failed a trigger program.
BASIC Statements and Functions 6-557

STATUS function
After an OPEN, OPENCHECK, OPENPATH, or OPENSEQ statement: The file
type is returned if the file is opened successfully. If the file is not opened success-
fully, the following values may return:

After a READ statement: If the file is a distributed file, the STATUS function
returns the following:

–6 Failed to write to a published file while the subsystem was shut down.

 Value Description

–1 The filename was not found in the VOC file.

–21

1. A generic error that can occur for various reasons.

The filename or file is null.

–3 An operating system access error occurs when you do not have
permission to access a DataStage file in a directory. For example,
this error may occur when trying to access a type 1 or type 30 file.

–41 An access error appears when you do not have operating system
permissions or if DATA.30 is missing for a type 30 file.

–5 The operating system detected a read error.

–6 The lock file header cannot be unlocked.

–7 Invalid file revision or wrong byte-ordering exists for the platform.

–81 Invalid part file information exists.

–91 Invalid type 30 file information exists in a distributed file.

–10 A problem occurred while the file was being rolled forward during
warmstart recovery. Therefore, the file is marked “inconsistent.”

–11 The file is a view; therefore it cannot be opened by a BASIC program.

–12 No SQL privileges exist to open the table.

–131 An index problem exists.

–14 The NFS file cannot be opened.

−1 The partitioning algorithm does not evaluate to an integer.

−2 The part number is invalid.
6-558 BASIC Guide

STATUS function
After a READBLK statement:

After a READL, READU, READVL, or READVU statement: If the statement
includes the LOCKED clause, the returned value is the terminal number, as
returned by the WHO command, of the user who set the lock.

NLS mode: The results depend on the following:

• The existence of the ON ERROR clause
• The setting of the NLSREADELSE parameter in the uvconfig file
• The location of the unmappable character.

After a READSEQ statement:

After a READT, REWIND, WEOF, or WRITET statement: If the statement takes
the ELSE clause, the returned value is 1. Otherwise the returned value is 0.

After an RPC.CALL, RPC.CONNECT, or RPC.DISCONNECT function:

0 The read is successful.

1 The end of file is encountered, or the number of bytes passed in was less than
or equal to 0.

2 A timeout ended the read.

−1 The file is not open for a read.

3 The unmappable character is in the record ID.

4 The unmappable character is in the record’s data.

0 The read is successful.

1 The end of file is encountered, or the number of bytes passed in was less than
or equal to 0.

2 A timeout ended the read.

−1 The file is not open for a read.

81001 A connection was closed for an unspecified reason.

81002 connection.ID does not correspond to a valid bound connection.

81004 Error occurred while trying to store an argument in the transmission
packet.

81005 Procedure access denied because of a mismatch of RPC versions.
BASIC Statements and Functions 6-559

STATUS function
After a SETLOCALE function: The STATUS function returns 0 if SETLOCALE is
successful, or one of the following error tokens if it fails:

Example

81007 Connection refused because the server cannot accept more clients.

81008 Error occurred because of a bad parameter in arg.list.

81009 An unspecified RPC error occurred.

81010 #args does not match the expected argument count on the remote
machine.

81011 Host was not found in the local /etc/hosts file.

81012 Remote dsrpcd cannot start the service because it could not fork the
process.

81013 The remote dsrpcservices file cannot be opened.

81014 Service was not found in the remote dsrpcservices file.

81015 A timeout occurred while waiting for a response from the server.

LCE$NO.LOCALES DataStage locales are disabled.

LCE$BAD.LOCALE The specified locale name is not currently loaded, or the
string OFF.

LCE$BAD.CATEGORY You specified an invalid category.

LCE$NULL.LOCALE The specified locale has more than one field and a cate-
gory is missing.

Source Lines Program Output

OPEN '','EX.BASIC' TO FILE ELSE STOP
PRINT 'STATUS() IS ':STATUS()

Q=123456
Q=OCONV(Q,"MD2")
PRINT 'STATUS() IS ':STATUS()

Q='ASDF'
Q=OCONV(Q,"D2/")
PRINT 'STATUS() IS ':STATUS()

STATUS() IS 1
STATUS() IS 0
STATUS() IS 1
6-560 BASIC Guide

STATUS statement
STATUS

Syntax
STATUS dynamic.array FROM file.variable

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the STATUS statement to determine the status of an open file. The STATUS
statement returns the file status as a dynamic array and assigns it to dynamic.array.

The following table lists the values of the dynamic array returned by the STATUS
statement:

STATUS Statement Values

Field Stored Value Description

1 Current position in the file Offset in bytes from beginning of the file.

2 End of file reached 1 if EOF, 0 if not.

3 Error accessing file 1 if error, 0 if not.

4 Number of bytes available
to read

5 File mode Permissions (convert to octal).
Windows NT. This is the UNIX owner-
group-other format as converted from the
full Windows NT ACL format by the C
run-time libraries.

6 File size In bytes.

7 Number of hard links 0 if no links.
Windows NT. The value is always 1 on
non-NTFS partitions, > 0 on NTFS
partitions.

8 User ID of owner UNIX. The number assigned in /etc/passwd.
Windows NT. It is a pseudo user ID based
on the user name and domain of the user.

9 Group ID of owner UNIX. The number assigned in /etc/passwd.
Windows NT. It is always 0.
BASIC Statements and Functions 6-561

STATUS statement
10 I-node number Unique ID of file on file system; on
Windows NT the value is the Pelican
internal version of the i-node for a file. For
dynamic files, the i-node number is the
number of the directory holding the
components of the dynamic file.

11 Device on which i-node
resides

Number of device. The value is an inter-
nally calculated value on Windows NT.

12 Device for special char-
acter or block

Number of device. The value is the drive
number of the disk containing the file on
Windows NT.

13 Time of last access Time in internal format.

14 Date of last access Date in internal format.

15 Time of last modification Time in internal format.

16 Date of last modification Date in internal format.

17 Time and date of last
status change

Time and date in internal format. On
Windows NT it is the time the file was
created.

18 Date of last status change Date in internal format. On Windows NT it
is the date the file was created.

19 Number of bytes left in
output queue (applicable
to terminals only)

20 Operating system
filename

The internal pathname used to access the
file.

21 File type For file types 1–19, 25, or 30.

22 DataStage file modulo For file types 2–18 only.

23 DataStage file separation For file types 2–18 only.

24 Part numbers of part files
belonging to a distributed
file

Multivalued list. If file is a part file, this
field contains the part number, and field 25
is empty.

STATUS Statement Values (Continued)

Field Stored Value Description
6-562 BASIC Guide

STATUS statement
file.variable specifies an open file. If file.variable evaluates to the null value, the
STATUS statement fails and the program terminates with a run-time error
message.

If the STATUS array is assigned to dynamic.array, the THEN statements are
executed and the ELSE statements are ignored. If no THEN statements are present,
program execution continues with the next statement. If the attempt to assign the
array fails, the ELSE statements are executed; any THEN statements are ignored.

Example
OPENSEQ '/etc/passwd' TO test THEN PRINT "File Opened" ELSE
ABORT
STATUS stat FROM test THEN PRINT stat

25 Pathnames of part files
belonging to a distributed
file

Multivalued list. If file is a part file, this
field is empty.

26 Filenames of part files
belonging to a distributed
file

Multivalued list. If file is a part file, this
field is empty.

27 Full pathname The full pathname of the file. On Windows
NT, the value begins with the UNC share
name, if available; if not, the drive letter.

28 Integer from 1 through 7 SQL file privileges:
1 write-only
2 read-only
3 read/write
4 delete-only
5 delete/write
6 delete/read
7 delete/read/write

29 1 if this is an SQL table, 0 if not. If the file is
a view, the STATUS statement fails. (No
information on a per-column basis is
returned.)

30 User name User name of the owner of the file.

STATUS Statement Values (Continued)

Field Stored Value Description
BASIC Statements and Functions 6-563

STATUS statement
field5 = stat<5,1,1>
field6 = stat<6,1,1>
field8 = stat<8,1,1>
PRINT "permissions:": field5
PRINT "filesize:": field6
PRINT "userid:": field8
CLOSESEQ test

This is the program output:

File Opened
0F0F0F4164F33188F4164F1F0F2F2303F

0F6856F59264F6590F42496F6588F42496F6588
F0F/etc/passwdF0F0F0

permissions:33188
filesize:4164
userid:0
6-564 BASIC Guide

STOP statement
STOP

Syntax

STOP [expression]

STOPE [expression]

STOPM [expression]

Description
Use the STOP statement to terminate program execution and return system control
to the calling environment, which can be a menu, a paragraph, another BASIC
program, or the DataStage command processor.

When expression is specified, its value is displayed before the STOP statement is
executed. If expression evaluates to the null value, nothing is printed.

To stop all processes and return to the command level, use the ABORT statement.

Use the ERRMSG statement if you want to display a formatted error message from
the ERRMSG file when the program stops.

STOPE and STOPM Statements
The STOPE statement uses the ERRMSG file for error messages instead of using
text specified by expression. The STOPM statement uses text specified by expression
rather than messages in the ERRMSG file. If expression in the STOPE statement
evaluates to the null value, the default error message is printed:

Message ID is NULL: undefined error

PICK, IN2, and REALITY Flavors

In PICK, IN2, and REALITY flavor accounts, the STOP statement uses the
ERRMSG file for error messages instead of using text specified by expression. Use
the STOP.MSG option of the $OPTIONS statement to get this behavior in IDEAL
and INFORMATION flavor accounts.

Example
PRINT "1+2=":1+2
STOP "THIS IS THE END"
BASIC Statements and Functions 6-565

STOP statement
This is the program output:

1+2=3
THIS IS THE END
6-566 BASIC Guide

STORAGE statement
STORAGE

Syntax
STORAGE arg1 arg2 arg3

Description
The STORAGE statement performs no function. It is provided for compatibility
with other Pick systems.
BASIC Statements and Functions 6-567

STR function
STR

Syntax
STR (string, repeat)

Description
Use the STR function to produce a specified number of repetitions of a particular
character string.

string is an expression that evaluates to the string to be generated.

repeat is an expression that evaluates to the number of times string is to be repeated.
If repeat does not evaluate to a value that can be truncated to a positive integer, an
empty string is returned.

If string evaluates to the null value, null is returned. If repeat evaluates to the null
value, the STR function fails and the program terminates with a run-time error
message.

Example
PRINT STR('A',10)
*
X=STR(5,2)
PRINT X
*
X="HA"
PRINT STR(X,7)

This is the program output:

AAAAAAAAAA
55
HAHAHAHAHAHAHA
6-568 BASIC Guide

STRS function
STRS

Syntax
STRS (dynamic.array, repeat)

CALL −STRS (return.array, dynamic.array, repeat)

CALL !STRS (return.array, dynamic.array, repeat)

Description
Use the STRS function to produce a dynamic array containing the specified
number of repetitions of each element of dynamic.array.

dynamic.array is an expression that evaluates to the strings to be generated.

repeat is an expression that evaluates to the number of times the elements are to be
repeated. If it does not evaluate to a value that can be truncated to a positive
integer, an empty string is returned for dynamic.array.

If dynamic.array evaluates to the null value, null is returned. If any element of
dynamic.array is the null value, null is returned for that element. If repeat evaluates
to the null value, the STRS function fails and the program terminates with a run-
time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
ABC="A":@VM:"B":@VM:"C"
PRINT STRS(ABC,3)

This is the program output:

AAAVBBBVCCC
BASIC Statements and Functions 6-569

SUBR function
SUBR

Syntax

SUBR (name, [argument [,argument …]])

Description
Use the SUBR function to return the value of an external subroutine. The SUBR
function is commonly used in I-descriptors.

name is an expression that evaluates to the name of the subroutine to be executed.
This subroutine must be cataloged in either a local catalog or the system catalog,
or it must be a record in the same object file as the calling program. If name evalu-
ates to the null value, the SUBR function fails and the program terminates with a
run-time error message.

argument is an expression evaluating to a variable name whose value is passed to
the subroutine. You can pass up to 254 variables to the subroutine.

Subroutines called by the SUBR function must have a special syntax. The
SUBROUTINE statement defining the subroutine must specify a dummy variable
as the first parameter. The value of the subroutine is the value of the dummy vari-
able when the subroutine finishes execution. Because the SUBROUTINE statement
has this dummy parameter, the SUBR function must specify one argument less
than the number of parameters in the SUBROUTINE statement. In other words,
the SUBR function does not pass any argument to the subroutine through the first
dummy parameter. The first argument passed by the SUBR function is referenced
in the subroutine by the second parameter in the SUBROUTINE statement, and so
on.

Example
The following example uses the globally cataloged subroutine *TEST:

OPEN "","SUN.MEMBER" TO FILE ELSE STOP "CAN'T OPEN DD"
EXECUTE "SELECT SUN.MEMBER"
10*
READNEXT KEY ELSE STOP
READ ITEM FROM FILE,KEY ELSE GOTO 10
X=ITEM<7> ;* attribute 7 of file contains year
Z=SUBR("*TEST",X)
PRINT "YEARS=", Z
GOTO 10
6-570 BASIC Guide

SUBR function
This is the subroutine TEST:

SUBROUTINE TEST(RESULT,X)
DATE=OCONV(DATE(),"D2/")
YR=FIELD(DATE,'/',3)
YR='19':YR
RESULT=YR-X
RETURN

This is the program output:

15 records selected to Select List #0
YEARS= 3
YEARS= 5
YEARS= 2
YEARS= 6
YEARS= 1
YEARS= 0
YEARS= 0
YEARS= 1
YEARS= 4
YEARS= 6
YEARS= 1
YEARS= 2
YEARS= 7
YEARS= 1
YEARS= 0
BASIC Statements and Functions 6-571

SUBROUTINE statement
SUBROUTINE

Syntax

SUBROUTINE [name] [([MAT] variable [, [MAT] variable …])]

Description
Use the SUBROUTINE statement to identify an external subroutine. The SUBROU-
TINE statement must be the first noncomment line in the subroutine. Each external
subroutine can contain only one SUBROUTINE statement.

An external subroutine is a separate program or set of statements that can be
executed by other programs or subroutines (called calling programs) to perform a
task. The external subroutine must be compiled and cataloged before another
program can call it.

The SUBROUTINE statement can specify a subroutine name for documentation
purposes; it need not be the same as the program name or the name by which it is
called. The CALL statement must reference the subroutine by its name in the
catalog, in the VOC file, or in the object file.

variables are variable names used in the subroutine to pass values between the
calling programs and the subroutine. To pass an array, you must precede the array
name with the keyword MAT. When an external subroutine is called, the CALL
statement must specify the same number of variables as are specified in the
SUBROUTINE statement. See the CALL statement for more information.

Example
The following SUBROUTINE statements specify three variables, EM, GROSS, and
TAX, the values of which are passed to the subroutine by the calling program:

SUBROUTINE ALONE(EM, GROSS, TAX)

SUBROUTINE STATE(EM,GROSS,TAX)
6-572 BASIC Guide

SUBS function
SUBS

Syntax
SUBS (array1, array2)

CALL −SUBS (return.array, array1, array2)

CALL !SUBS (return.array, array1, array2)

Description
Use the SUBS function to create a dynamic array of the element-by-element
subtraction of two dynamic arrays.

Each element of array2 is subtracted from the corresponding element of array1 with
the result being returned in the corresponding element of a new dynamic array.

If an element of one dynamic array has no corresponding element in the other
dynamic array, the missing element is evaluated as 0. If either of a corresponding
pair of elements is the null value, null is returned for that element.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A=2:@VM:4:@VM:6:@SM:18
B=1:@VM:2:@VM:3:@VM:9
PRINT SUBS(A,B)

This is the program output:

1V2V3S18V-9
BASIC Statements and Functions 6-573

SUBSTRINGS function
SUBSTRINGS

Syntax
SUBSTRINGS (dynamic.array, start, length)

CALL −SUBSTRINGS (return.array, dynamic.array, start, length)

CALL !SUBSTRINGS (return.array, dynamic.array, start, length)

Description
Use the SUBSTRINGS function to create a dynamic array each of whose elements
are substrings of the corresponding elements of dynamic.array.

start indicates the position of the first character of each element to be included in
the substring. If start is 0 or a negative number, the starting position is assumed to
be 1. If start is greater than the number of characters in the element, an empty string
is returned.

length specifies the total length of the substring. If length is 0 or a negative number,
an empty string is returned. If the sum of start and length is larger than the element,
the substring ends with the last character of the element.

If an element of dynamic.array is the null value, null is returned for that element. If
start or length evaluates to the null value, the SUBSTRINGS function fails and the
program terminates with a run-time error message.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

Example
A="ABCDEF":@VM:"GH":@SM:"IJK"
PRINT SUBSTRINGS(A,3,2)

This is the program output:

CDVSK
6-574 BASIC Guide

SUM function
SUM

Syntax
SUM (dynamic.array)

Description
Use the SUM function to calculate the sum of numeric data. Only elements at the
lowest delimiter level of a dynamic array are summed. The total is returned as a
single element at the next highest delimiter level.

The delimiters from highest to lowest are field, value, and subvalue.

There are seven levels of delimiters from CHAR(254) to CHAR(248): field mark,
value mark, subvalue mark, text mark, CHAR(250), CHAR(249), and CHAR(248).

The SUM function removes the lowest delimiter level from a dynamic array. In a
dynamic array that contains fields, values, and subvalues, the SUM function sums
only the subvalues, returning the sums as values. In a dynamic array that contains
fields and values, the SUM function sums only the values, returning the sums as
fields. In a dynamic array that contains only fields, the SUM function sums the
fields, returning the sum as the only field of the array. SUM functions can be
applied repeatedly to raise multilevel data to the highest delimiter level or to a
single value.

Nonnumeric values, except the null value, are treated as 0. If dynamic.array evalu-
ates to the null value, null is returned. Any element that is the null value is ignored,
unless all elements of dynamic.array are null, in which case null is returned.

Examples
In the following examples a field mark is shown by F, a value mark is shown by V,
and a subvalue mark is shown by S.

Source Lines Program Output

X=20:@VM:18:@VM:9:@VM:30:@VM:80
PRINT "SUM(X)=",SUM(X)

SUM(X)= 157

X=17:@FM:18:@FM:15
Y=10:@FM:20
PRINT "SUM(X)+SUM(Y)= ",SUM(X)+SUM(Y)

SUM(X)+SUM(Y)= 80
BASIC Statements and Functions 6-575

SUM function
X=3:@SM:4:@SM:10:@VM:3:@VM:20
Y=SUM(X)
PRINT "Y= ",Y
Z=SUM(Y)
PRINT "Z= ",Z

Y= 17V3V20
Z= 40

Source Lines Program Output
6-576 BASIC Guide

SUMMATION function
SUMMATION

Syntax
SUMMATION (dynamic.array)

CALL !SUMMATION (result , dynamic.array)

Description
Use the SUMMATION function to return the sum of all the elements in
dynamic.array. Nonnumeric values, except the null value, are treated as 0.

result is a variable containing the result of the sum.

dynamic.array is the dynamic array whose elements are to be added together.

Example
A=1:@VM:"ZERO":@SM:20:@FM:-25
PRINT "SUMMATION(A)=",SUMMATION(A)

This is the program output:

SUMMATION(A)=-4
BASIC Statements and Functions 6-577

SYSTEM function
SYSTEM

Syntax
SYSTEM (expression)

Description
Use the SYSTEM function to check on the status of a system function. Use the
SYSTEM function to test whether NLS is on when you run a program, and to
display information about NLS settings.

expression evaluates to the number of the system function you want to check. If
expression evaluates to the null value, the SYSTEM function fails and the program
terminates with a run-time error message.

The following table lists the values for expression and their meanings. Values 100
through 107 (read-only) for the SYSTEM function contain NLS information. See the
include file UVNLS.H for their tokens.

SYSTEM Function Values

Value Action

1 Checks to see if the PRINTER ON statement has turned the printer
on. Returns 1 if the printer is on and 0 if it is not.

2 Returns the page width as defined by the terminal characteristic
settings.

3 Returns the page length as defined by the terminal characteristic
settings.

4 Returns the number of lines remaining on the current page.

5 Returns the current page number.

6 Returns the current line number.

7 Returns the terminal code for the type of terminal the system
believes you are using.

8,n Checks whether the tape is attached. Returns the current block size
if it is and −1 if it is not. n is the number of the tape unit. If it is not
specified, tape unit 0 is assumed.

9 Returns the current CPU millisecond count.

10 Checks whether the DATA stack is active. Returns 1 if it is active
and 0 if it is not.
6-578 BASIC Guide

SYSTEM function
11 Checks whether select list 0 is active. Returns 1 if select list 0 is
active and 0 if it is not.

12 By default, returns the current system time in seconds (local time).
If the TIME.MILLISECOND option is set (see $OPTIONS), returns
the current system time in milliseconds.

13 Not used. Returns 0.

14 Not used. Returns 0.

15 Not used. Returns 0.

16 Returns 1 if running from a proc, otherwise returns 0.

17 Not used. Returns 0.

18 Returns the terminal number.

19 Returns the login name.

20 Not used. Returns 0.

21 Not used. Returns 0.

22 Not used. Returns 0.

23 Checks whether the Break key is enabled. Returns 1 if the Break
key is enabled and 0 if it is not.

24 Checks whether character echoing is enabled. Returns 1 if char-
acter echoing is enabled and 0 if it is not.

25 Returns 1 if running from a phantom process, otherwise returns 0.

26 Returns the current prompt character.

27 Returns the user ID of the person using the routine.

28 Returns the effective user ID of the person using the routine.
Windows NT. This is the same value as 27.

29 Returns the group ID of the person using the routine.
Windows NT. This value is 0.

30 Returns the effective group ID of the person using the routine.
Windows NT. This value is 0.

31 Returns the DataStage serial number.

32 Returns the location of the UV account directory.

SYSTEM Function Values (Continued)

Value Action
BASIC Statements and Functions 6-579

SYSTEM function
33 Returns the last command on the command stack.

34 Returns data pending.

35 Returns the number of users currently in DataStage.

36 Returns the maximum number of DataStage users.

37 Returns the number of UNIX users; on Windows NT systems
returns same value as 35.

38 Returns the pathname of the temporary directory.

42 Returns an empty string. On Windows NT systems returns the
current value of the telnet client’s IP address, or an empty string if
the process evaluating the SYSTEM function is not the main telnet
process.

43 Returns 1 if db suspension is on, returns 0 if it is not.

50 Returns the field number of the last READNEXT statement when
reading an exploded select list.

60 Returns the current value of the DataStage configurable parameter
TXMODE. The value can be either 1 or 0.

61 Returns the status of the transaction log daemon. 1 indicates the
daemon is active; 0 indicates it is inactive.

91 Returns 0; on Windows NT, returns 1.

99 Returns the system time in the number of seconds since midnight
Greenwich Mean Time (GMT), January 1, 1970.

100 Returns 1 if NLS is enabled, otherwise returns 0.

101 Returns the value of the NLSLCMODE parameter, otherwise
returns 0.

102 Reserved for future NLS extensions.

103 Returns the terminal map name assigned to the current terminal
print channel, otherwise returns 0.

104 Returns the auxiliary printer map name assigned to the current
terminal print channel, otherwise returns 0.

SYSTEM Function Values (Continued)

Value Action
6-580 BASIC Guide

SYSTEM function
105 Returns a dynamic array, with field marks separating the
elements, containing the current values of the uvconfig file parame-
ters for NLS maps, otherwise returns 0. See the UVNLS.H include
file for a list of tokens that define the field order.

106 Returns the current map name used for sequential I/O. Token is
NLS$SEQMAP unless overridden by a SET.SEQ.MAP command.

107 Returns the current map name for GCI string arguments unless
overridden by a SET.GCI.MAP command.

1001 Returns the DataStage flavor: 1 for IDEAL, 2 for PICK, 4 for
INFORMATION, 8 for REALITY, 16 for IN2, and 64 for PIOPEN.

1017 Returns the user’s supplementary UNIX groups in a dynamic
array.

1021 Returns the GCI error number.

1200,
hostname

Returns the link number associated with hostname. If there is an
internal error adding hostname, 0 returns. hostname is an expression
that contains the host name from a file opened remotely. It refers to
the host name portion of the file’s pathname. For example, in the
pathname ORION!/u1/filename, hostname is ORION.

1201,
hostname

Returns the RPC connection number associated with hostname. The
REMOTE.B interface program uses this number. If there is an
internal error adding hostname, or if RPC has not yet opened, 0
returns. If the RPC connection was opened but is now closed, –1
returns.

1202,
hostname

Returns the timeout associated with hostname. If there is no
timeout associated with hostname, 0 returns.

1203 Returns the last RPC connection error number. This number is in
the range 81000 through 81999. 81015 indicates that a timeout
occurred. These error numbers correspond to error messages in the
SYS.MESSAGE file.

SYSTEM Function Values (Continued)

Value Action
BASIC Statements and Functions 6-581

SYSTEM function
Examples
The first example returns the number of lines left to print on a page, with the
maximum defined by the TERM command. The second example returns the
current page number.

The next example sets a 30-second timeout for the network connection to the
system ORION:

TIMEOUT SYSTEM(1200, "ORION"), 30

Source Lines Program Output

Q=4
PRINT 'SYSTEM(Q)',SYSTEM(Q)

SYSTEM(Q) 20

PRINT 'X=',SYSTEM(5) X= 0
6-582 BASIC Guide

TABSTOP statement
TABSTOP

Syntax
TABSTOP expression

Description
Use the TABSTOP statement to set the current tabstop width for PRINT state-
ments. The initial tabstop setting is 10.

If expression evaluates to the null value, the TABSTOP statement fails and the
program terminates with a run-time error message.

Example
A="FIRST"
B="LAST"
PRINT A,B
TABSTOP 15
PRINT A,B

This is the program output:

FIRST LAST
FIRST LAST
BASIC Statements and Functions 6-583

TAN function
TAN

Syntax
TAN (expression)

Description
Use the TAN function to return the trigonometric tangent of expression. expression
represents an angle expressed in degrees.

Trying to take the tangent of a right angle results in a warning message, and a
return value of 0. Numbers greater than 1E17 produce a warning message, and 0
is returned. If expression evaluates to the null value, null is returned.

Example
PRINT TAN(45)

This is the program output:

1

6-584 BASIC Guide

TANH function
TANH

Syntax
TANH (expression)

Description
Use the TANH function to return the hyperbolic tangent of expression. expression
must be numeric and represents the angle expressed in degrees. If expression eval-
uates to the null value, null is returned.

Example
PRINT TANH(45)

This is the program output:

1

BASIC Statements and Functions 6-585

TERMINFO function
TERMINFO

Syntax
TERMINFO (argument)

Description
Use the TERMINFO function to access the device-independent terminal handler
string defined for the current terminal type. The TERMINFO function returns a
dynamic array containing the terminal characteristics for the terminal type set by
TERM or SET.TERM.TYPE.

argument can be 0 or 1, depending on whether the terminal characteristics are
returned as stored, or converted to printable form. If argument is 0, the function
returns the terminal characteristics in the form usable by BASIC applications for
device-independent terminal handling with the TPARM function and the TPRINT-
statement. If argument is 1, the function returns characteristics in terminfo source
format. Boolean values are returned as Y = true and N = false. The terminfo files
contain many unprintable control characters that may adversely affect your
terminal.

If argument evaluates to the null value, the TERMINFO function fails and the
program terminates with a run-time error message.

The easiest way to access the terminfo characteristics is by including the BASIC file
UNIVERSE.INCLUDE TERMINFO in your program. The syntax is:

$INCLUDE UNIVERSE.INCLUDE TERMINFO

The file contains lines that equate each dynamic array element returned by
TERMINFO with a name, so that each element can be easily accessed in your
program. Once this file has been included in your program, you can use the
defined names to access terminal characteristics. The following table lists the
contents of this file:

TERMINFO EQUATEs

terminfo$ = terminfo(0)
EQU TERMINAL.NAME TO terminfo$<1>
EQU COLUMNS TO terminfo$<2>
EQU LINES TO terminfo$<3>
EQU CARRIAGE.RETURN TO terminfo$<4>
EQU LINE.FEED TO terminfo$<5>
6-586 BASIC Guide

TERMINFO function
EQU NEWLINE TO terminfo$<6>
EQU BACKSPACE TO terminfo$<7>
EQU BELL TO terminfo$<8>
EQU SCREEN.FLASH TO terminfo$<9>
EQU PADDING.CHARACTER TO terminfo$<10>
EQU PAD.BAUD.RATE TO terminfo$<11>
EQU HARD.COPY TO terminfo$<12>
EQU OVERSTRIKES TO terminfo$<13>
EQU ERASES.OVERSTRIKE TO terminfo$<14>
EQU AUTOMATIC.RIGHT.MARGIN TO terminfo$<15>
EQU RIGHT.MARGIN.EATS.NEWLINE TO terminfo$<16>
EQU AUTOMATIC.LEFT.MARGIN TO terminfo$<17>
EQU UNABLE.TO.PRINT.TILDE TO terminfo$<18>
EQU ERASE.SCREEN TO terminfo$<19>
EQU ERASE.TO.END.OF.SCREEN TO terminfo$<20>
EQU ERASE.TO.BEGINNING.OF.SCREEN TO terminfo$<21>
EQU ERASE.LINE TO terminfo$<22>
EQU ERASE.TO.END.OF.LINE TO terminfo$<23>
EQU ERASE.TO.BEGINNING.OF.LINE TO terminfo$<24>
EQU ERASE.CHARACTERS TO terminfo$<25>
EQU MOVE.CURSOR.TO.ADDRESS TO terminfo$<26>
EQU MOVE.CURSOR.TO.COLUMN TO terminfo$<27>
EQU MOVE.CURSOR.TO.ROW TO terminfo$<28>
EQU MOVE.CURSOR.RIGHT TO terminfo$<29>
EQU MOVE.CURSOR.LEFT TO terminfo$<30>
EQU MOVE.CURSOR.DOWN TO terminfo$<31>
EQU MOVE.CURSOR.UP TO terminfo$<32>
EQU MOVE.CURSOR.RIGHT.PARM TO terminfo$<33>
EQU MOVE.CURSOR.LEFT.PARM TO terminfo$<34>
EQU MOVE.CURSOR.DOWN.PARM TO terminfo$<35>
EQU MOVE.CURSOR.UP.PARM TO terminfo$<36>
EQU MOVE.CURSOR.TO.HOME TO terminfo$<37>
EQU MOVE.CURSOR.TO.LAST.LINE TO terminfo$<38>
EQU CURSOR.SAVE TO terminfo$<39>
EQU CURSOR.RESTORE TO terminfo$<40>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-587

TERMINFO function
EQU INSERT.CHARACTER TO terminfo$<41>
EQU INSERT.CHARACTER.PARM TO terminfo$<42>
EQU INSERT.MODE.BEGIN TO terminfo$<43>
EQU INSERT.MODE.END TO terminfo$<44>
EQU INSERT.PAD TO terminfo$<45>
EQU MOVE.INSERT.MODE TO terminfo$<46>
EQU INSERT.NULL.SPECIAL TO terminfo$<47>
EQU DELETE.CHARACTER TO terminfo$<48>
EQU DELETE.CHARACTER.PARM TO terminfo$<49>
EQU INSERT.LINE TO terminfo$<50>
EQU INSERT.LINE.PARM TO terminfo$<51>
EQU DELETE.LINE TO terminfo$<52>
EQU DELETE.LINE.PARM TO terminfo$<53>
EQU SCROLL.UP TO terminfo$<54>
EQU SCROLL.UP.PARM TO terminfo$<55>
EQU SCROLL.DOWN TOterminfo$<56>
EQU SCROLL.DOWN.PARM TOterminfo$<57>
EQU CHANGE.SCROLL.REGION TOterminfo$<58>
EQU SCROLL.MODE.END TOterminfo$<59>
EQU SCROLL.MODE.BEGIN TOterminfo$<60>
EQU VIDEO.NORMAL TO terminfo$<61>
EQU VIDEO.REVERSE TO terminfo$<62>
EQU VIDEO.BLINK TO terminfo$<63>
EQU VIDEO.UNDERLINE TO terminfo$<64>
EQU VIDEO.DIM TO terminfo$<65>
EQU VIDEO.BOLD TO terminfo$<66>
EQU VIDEO.BLANK TO terminfo$<67>
EQU VIDEO.STANDOUT TO terminfo$<68>
EQU VIDEO.SPACES TO terminfo$<69>
EQU MOVE.VIDEO.MODE TO terminfo$<70>
EQU TAB TO terminfo$<71>
EQU BACK.TAB TO terminfo$<72>
EQU TAB.STOP.SET TO terminfo$<73>
EQU TAB.STOP.CLEAR TO terminfo$<74>
EQU CLEAR.ALL.TAB.STOPS TO terminfo$<75>

TERMINFO EQUATEs (Continued)
6-588 BASIC Guide

TERMINFO function
EQU TAB.STOP.INITIAL TO terminfo$<76>
EQU WRITE.PROTECT.BEGIN TO terminfo$<77>
EQU WRITE.PROTECT.END TO terminfo$<78>
EQU SCREEN.PROTECT.BEGIN TO terminfo$<79>
EQU SCREEN.PROTECT.END TO terminfo$<80>
EQU WRITE.PROTECT.COLUMN TO terminfo$<81>
EQU PROTECT.VIDEO.NORMAL TO terminfo$<82>
EQU PROTECT.VIDEO.REVERSE TO terminfo$<83>
EQU PROTECT.VIDEO.BLINK TO terminfo$<84>
EQU PROTECT.VIDEO.UNDERLINE TO terminfo$<85>
EQU PROTECT.VIDEO.DIM TO terminfo$<86>
EQU PROTECT.VIDEO.BOLD TO terminfo$<87>
EQU PROTECT.VIDEO.BLANK TO terminfo$<88>
EQU PROTECT.VIDEO.STANDOUT TO terminfo$<89>
EQU BLOCK.MODE.BEGIN TO terminfo$<90>
EQU BLOCK.MODE.END TO terminfo$<91>
EQU SEND.LINE.ALL TO terminfo$<92>
EQU SEND.LINE.UNPROTECTED TO terminfo$<93>
EQU SEND.PAGE.ALL TO terminfo$<94>
EQU SEND.PAGE.UNPROTECTED TO terminfo$<95>
EQU SEND.MESSAGE.ALL TO terminfo$<96>
EQU SEND.MESSAGE.UNPROTECTED TO terminfo$<97>
EQU TERMINATE.FIELD TO terminfo$<98>
EQU TERMINATE.LINE TO terminfo$<99>
EQU TERMINATE.PAGE TO terminfo$<100>
EQU STORE.START.OF.MESSAGE TO terminfo$<101>
EQU STORE.END.OF.MESSAGE TO terminfo$<102>
EQU LINEDRAW.BEGIN TO terminfo$<103>
EQU LINEDRAW.END TO terminfo$<104>
EQU MOVE.LINEDRAW.MODE TO terminfo$<105>
EQU LINEDRAW.CHARACTER TO terminfo$<106>
EQU LINEDRAW.UPPER.LEFT.CORNER TO terminfo$<107>
EQU LINEDRAW.UPPER.RIGHT.CORNER TO terminfo$<108>
EQU LINEDRAW.LOWER.LEFT.CORNER TO terminfo$<109>
EQU LINEDRAW.LOWER.RIGHT.CORNER TO terminfo$<110>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-589

TERMINFO function
EQU LINEDRAW.LEFT.VERTICAL TO terminfo$<111>
EQU LINEDRAW.CENTER.VERTICAL TO terminfo$<112>
EQU LINEDRAW.RIGHT.VERTICAL TO terminfo$<113>
EQU LINEDRAW.UPPER.HORIZONTAL TO terminfo$<114>
EQU LINEDRAW.CENTER.HORIZONTAL TO terminfo$<115>
EQU LINEDRAW.LOWER.HORIZONTAL TO terminfo$<116>
EQU LINEDRAW.UPPER.TEE TO terminfo$<117>
EQU LINEDRAW.LOWER.TEE TO terminfo$<118>
EQU LINEDRAW.LEFT.TEE TO terminfo$<119>
EQU LINEDRAW.RIGHT.TEE TO terminfo$<120>
EQU LINEDRAW.CROSS TO terminfo$<121>
EQU CURSOR.NORMAL TO terminfo$<122>
EQU CURSOR.VISIBLE TO terminfo$<123>
EQU CURSOR.INVISIBLE TO terminfo$<124>
EQU SCREEN.VIDEO.ON TO terminfo$<125>
EQU SCREEN.VIDEO.OFF TO terminfo$<126>
EQU KEYCLICK.ON TO terminfo$<127>
EQU KEYCLICK.OFF TO terminfo$<128>
EQU KEYBOARD.LOCK.ON TO terminfo$<129>
EQU KEYBOARD.LOCK.OFF TO terminfo$<130>
EQU MONITOR.MODE.ON TO terminfo$<131>
EQU MONITOR.MODE.OFF TO terminfo$<132>
EQU PRINT.SCREEN TO terminfo$<133>
EQU PRINT.MODE.BEGIN TO terminfo$<134>
EQU PRINT.MODE.END TO terminfo$<135>
EQU HAS.STATUS.LINE TO terminfo$<136>
EQU STATUS.LINE.WIDTH TO terminfo$<137>
EQU STATUS.LINE.BEGIN TO terminfo$<138>
EQU STATUS.LINE.END TO terminfo$<139>
EQU STATUS.LINE.DISABLE TO terminfo$<140>
EQU HAS.FUNCTION.LINE TO terminfo$<141>
EQU FUNCTION.LINE.BEGIN TO terminfo$<142>
EQU FUNCTION.LINE.END TO terminfo$<143>
EQU KEY.BACKSPACE TO terminfo$<144>
EQU KEY.MOVE.CURSOR.RIGHT TO terminfo$<145>

TERMINFO EQUATEs (Continued)
6-590 BASIC Guide

TERMINFO function
EQU KEY.MOVE.CURSOR.LEFT TO terminfo$<146>
EQU KEY.MOVE.CURSOR.DOWN TO terminfo$<147>
EQU KEY.MOVE.CURSOR.UP TO terminfo$<148>
EQU KEY.MOVE.CURSOR.TO.HOME TO terminfo$<149>
EQU KEY.MOVE.CURSOR.TO.LAST.LINE TO terminfo$<150>
EQU KEY.INSERT.CHARACTER TO terminfo$<151>
EQU KEY.INSERT.MODE.ON TO terminfo$<152>
EQU KEY.INSERT.MODE.END TO terminfo$<153>
EQU KEY.INSERT.MODE.TOGGLE TO terminfo$<154>
EQU KEY.DELETE.CHARACTER TO terminfo$<155>
EQU KEY.INSERT.LINE TO terminfo$<156>
EQU KEY.DELETE.LINE TO terminfo$<157>
EQU KEY.ERASE.SCREEN TO terminfo$<158>
EQU KEY.ERASE.END.OF.LINE TO terminfo$<159>
EQU KEY.ERASE.END.OF.SCREEN TO terminfo$<160>
EQU KEY.BACK.TAB TO terminfo$<161>
EQU KEY.TAB.STOP.SET TO terminfo$<162>
EQU KEY.TAB.STOP.CLEAR TO terminfo$<163>
EQU KEY.TAB.STOP.CLEAR.ALL TO terminfo$<164>
EQU KEY.NEXT.PAGE TO terminfo$<165>
EQU KEY.PREVIOUS.PAGE TO terminfo$<166>
EQU KEY.SCROLL.UP TO terminfo$<167>
EQU KEY.SCROLL.DOWN TO terminfo$<168>
EQU KEY.SEND.DATA TO terminfo$<169>
EQU KEY.PRINT TO terminfo$<170>
EQU KEY.FUNCTION.0 TO terminfo$<171>
EQU KEY.FUNCTION.1 TO terminfo$<172>
EQU KEY.FUNCTION.2 TO terminfo$<173>
EQU KEY.FUNCTION.3 TO terminfo$<174>
EQU KEY.FUNCTION.4 TO terminfo$<175>
EQU KEY.FUNCTION.5 TO terminfo$<176>
EQU KEY.FUNCTION.6 TO terminfo$<177>
EQU KEY.FUNCTION.7 TO terminfo$<178>
EQU KEY.FUNCTION.8 TO terminfo$<179>
EQU KEY.FUNCTION.9 TO terminfo$<180>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-591

TERMINFO function
EQU KEY.FUNCTION.10 TO terminfo$<181>
EQU KEY.FUNCTION.11 TO terminfo$<182>
EQU KEY.FUNCTION.12 TO terminfo$<183>
EQU KEY.FUNCTION.13 TO terminfo$<184>
EQU KEY.FUNCTION.14 TO terminfo$<185>
EQU KEY.FUNCTION.15 TO terminfo$<186>
EQU KEY.FUNCTION.16 TO terminfo$<187>
EQU LABEL.KEY.FUNCTION.0 TO terminfo$<188>
EQU LABEL.KEY.FUNCTION.1 TO terminfo$<189>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<190>
EQU LABEL.KEY.FUNCTION.3 TO terminfo$<191>
EQU LABEL.KEY.FUNCTION.4 TO terminfo$<192>
EQU LABEL.KEY.FUNCTION.5 TO terminfo$<193>
EQU LABEL.KEY.FUNCTION.6 TO terminfo$<194>
EQU LABEL.KEY.FUNCTION.7 TO terminfo$<195>
EQU LABEL.KEY.FUNCTION.8 TO terminfo$<196>
EQU LABEL.KEY.FUNCTION.9 TO terminfo$<197>
EQU LABEL.KEY.FUNCTION.10 TO terminfo$<198>
EQU LABEL.KEY.FUNCTION.11 TO terminfo$<199>
EQU LABEL.KEY.FUNCTION.12 TO terminfo$<200>
EQU LABEL.KEY.FUNCTION.13 TO terminfo$<201>
EQU LABEL.KEY.FUNCTION.14 TO terminfo$<202>
EQU LABEL.KEY.FUNCTION.15 TO terminfo$<203>
EQU LABEL.KEY.FUNCTION.16 TO terminfo$<204>
EQU KEYEDIT.FUNCTION TO terminfo$<205>
EQU KEYEDIT.ESCAPE TO terminfo$<206>
EQU KEYEDIT.EXIT TO terminfo$<207>
EQU KEYEDIT.BACKSPACE TO terminfo$<208>
EQU KEYEDIT.MOVE.BACKWARD TO terminfo$<209>
EQU KEYEDIT.MOVE.FORWARD TO terminfo$<210>
EQU KEYEDIT.INSERT.CHARACTER TO terminfo$<211>
EQU KEYEDIT.INSERT.MODE.BEGIN TO terminfo$<212>
EQU KEYEDIT.INSERT.MODE.END TO terminfo$<213>
EQU KEYEDIT.INSERT.MODE.TOGGLE TO terminfo$<214>
EQU KEYEDIT.DELETE.CHARACTER TO terminfo$<215>

TERMINFO EQUATEs (Continued)
6-592 BASIC Guide

TERMINFO function
EQU KEYEDIT.ERASE.END.OF.FIELD TO terminfo$<216>
EQU KEYEDIT.ERASE.FIELD TO terminfo$<217>
EQU AT.NEGATIVE.1 TO terminfo$<218>
EQU AT.NEGATIVE.2 TO terminfo$<219>
EQU AT.NEGATIVE.3 TO terminfo$<220>
EQU AT.NEGATIVE.4 TO terminfo$<221>
EQU AT.NEGATIVE.5 TO terminfo$<222>
EQU AT.NEGATIVE.6 TO terminfo$<223>
EQU AT.NEGATIVE.7 TO terminfo$<224>
EQU AT.NEGATIVE.8 TO terminfo$<225>
EQU AT.NEGATIVE.9 TO terminfo$<226>
EQU AT.NEGATIVE.10 TO terminfo$<227>
EQU AT.NEGATIVE.11 TO terminfo$<228>
EQU AT.NEGATIVE.12 TO terminfo$<229>
EQU AT.NEGATIVE.13 TO terminfo$<230>
EQU AT.NEGATIVE.14 TO terminfo$<231>
EQU AT.NEGATIVE.15 TO terminfo$<232>
EQU AT.NEGATIVE.16 TO terminfo$<233>
EQU AT.NEGATIVE.17 TO terminfo$<234>
EQU AT.NEGATIVE.18 TO terminfo$<235>
EQU AT.NEGATIVE.19 TO terminfo$<236>
EQU AT.NEGATIVE.20 TO terminfo$<237>
EQU AT.NEGATIVE.21 TO terminfo$<238>
EQU AT.NEGATIVE.22 TO terminfo$<239>
EQU AT.NEGATIVE.23 TO terminfo$<240>
EQU AT.NEGATIVE.24 TO terminfo$<241>
EQU AT.NEGATIVE.25 TO terminfo$<242>
EQU AT.NEGATIVE.26 TO terminfo$<243>
EQU AT.NEGATIVE.27 TO terminfo$<244>
EQU AT.NEGATIVE.28 TO terminfo$<245>
EQU AT.NEGATIVE.29 TO terminfo$<246>
EQU AT.NEGATIVE.30 TO terminfo$<247>
EQU AT.NEGATIVE.31 TO terminfo$<248>
EQU AT.NEGATIVE.32 TO terminfo$<249>
EQU AT.NEGATIVE.33 TO terminfo$<250>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-593

TERMINFO function
EQU AT.NEGATIVE.34 TO terminfo$<251>
EQU AT.NEGATIVE.35 TO terminfo$<252>
EQU AT.NEGATIVE.36 TO terminfo$<253>
EQU AT.NEGATIVE.37 TO terminfo$<254>
EQU AT.NEGATIVE.38 TO terminfo$<255>
EQU AT.NEGATIVE.39 TO terminfo$<256>
EQU AT.NEGATIVE.40 TO terminfo$<257>
EQU AT.NEGATIVE.41 TO terminfo$<258>
EQU AT.NEGATIVE.42 TO terminfo$<259>
EQU AT.NEGATIVE.43 TO terminfo$<260>
EQU AT.NEGATIVE.44 TO terminfo$<261>
EQU AT.NEGATIVE.45 TO terminfo$<262>
EQU AT.NEGATIVE.46 TO terminfo$<263>
EQU AT.NEGATIVE.47 TO terminfo$<264>
EQU AT.NEGATIVE.48 TO terminfo$<265>
EQU AT.NEGATIVE.49 TO terminfo$<266>
EQU AT.NEGATIVE.50 TO terminfo$<267>
EQU AT.NEGATIVE.51 TO terminfo$<268>
EQU AT.NEGATIVE.52 TO terminfo$<269>
EQU AT.NEGATIVE.53 TO terminfo$<270>
EQU AT.NEGATIVE.54 TO terminfo$<271>
EQU AT.NEGATIVE.55 TO terminfo$<272>
EQU AT.NEGATIVE.56 TO terminfo$<273>
EQU AT.NEGATIVE.57 TO terminfo$<274>
EQU AT.NEGATIVE.58 TO terminfo$<275>
EQU AT.NEGATIVE.59 TO terminfo$<276>
EQU AT.NEGATIVE.60 TO terminfo$<277>
EQU AT.NEGATIVE.61 TO terminfo$<278>
EQU AT.NEGATIVE.62 TO terminfo$<279>
EQU AT.NEGATIVE.63 TO terminfo$<280>
EQU AT.NEGATIVE.64 TO terminfo$<281>
EQU AT.NEGATIVE.65 TO terminfo$<282>
EQU AT.NEGATIVE.66 TO terminfo$<283>
EQUAT.NEGATIVE.67 TO terminfo$<284>
EQUAT.NEGATIVE.68 TO terminfo$<285>

TERMINFO EQUATEs (Continued)
6-594 BASIC Guide

TERMINFO function
EQU AT.NEGATIVE.69 TO terminfo$<286>
EQU AT.NEGATIVE.70 TO terminfo$<287>
EQU AT.NEGATIVE.71 TO terminfo$<288>
EQU AT.NEGATIVE.72 TO terminfo$<289>
EQU AT.NEGATIVE.73 TO terminfo$<290>
EQU AT.NEGATIVE.74 TO terminfo$<291>
EQU AT.NEGATIVE.75 TO terminfo$<292>
EQU AT.NEGATIVE.76 TO terminfo$<293>
EQU AT.NEGATIVE.77 TO terminfo$<294>
EQUAT.NEGATIVE.78 TO terminfo$<295>
EQU AT.NEGATIVE.79 TO terminfo$<296>
EQU AT.NEGATIVE.80 TO terminfo$<297>
EQU AT.NEGATIVE.81 TO terminfo$<298>
EQU AT.NEGATIVE.82 TO terminfo$<299>
EQU AT.NEGATIVE.83 TO terminfo$<300>
EQU AT.NEGATIVE.84 TO terminfo$<301>
EQU AT.NEGATIVE.85 TO terminfo$<302>
EQU AT.NEGATIVE.86 TO terminfo$<303>
EQU AT.NEGATIVE.87 TO terminfo$<304>
EQU AT.NEGATIVE.88 TO terminfo$<305>
EQU AT.NEGATIVE.89 TO terminfo$<306>
EQU AT.NEGATIVE.90 TO terminfo$<307>
EQU AT.NEGATIVE.91 TO terminfo$<308>
EQU AT.NEGATIVE.92 TO terminfo$<309>
EQU AT.NEGATIVE.93 TO terminfo$<310>
EQU AT.NEGATIVE.94 TO terminfo$<311>
EQU AT.NEGATIVE.95 TO terminfo$<312>
EQU AT.NEGATIVE.96 TO terminfo$<313>
EQU AT.NEGATIVE.97 TO terminfo$<314>
EQU AT.NEGATIVE.98 TO terminfo$<315>
EQU AT.NEGATIVE.99 TO terminfo$<316>
EQU AT.NEGATIVE.100 TO terminfo$<317>
EQU AT.NEGATIVE.101 TO terminfo$<318>
EQU AT.NEGATIVE.102 TO terminfo$<319>
EQU AT.NEGATIVE.103 TO terminfo$<320>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-595

TERMINFO function
EQU AT.NEGATIVE.104 TO terminfo$<321>
EQU AT.NEGATIVE.105 TO terminfo$<322>
EQU AT.NEGATIVE.106 TO terminfo$<323>
EQU AT.NEGATIVE.107 TO terminfo$<324>
EQU AT.NEGATIVE.108 TO terminfo$<325>
EQU AT.NEGATIVE.109 TO terminfo$<326>
EQU AT.NEGATIVE.110 TO terminfo$<327>
EQU AT.NEGATIVE.111 TO terminfo$<328>
EQU AT.NEGATIVE.112 TO terminfo$<329>
EQU AT.NEGATIVE.113 TO terminfo$<330>
EQU AT.NEGATIVE.114 TO terminfo$<331>
EQU AT.NEGATIVE.115 TO terminfo$<332>
EQU AT.NEGATIVE.116 TO terminfo$<333>
EQU AT.NEGATIVE.117 TO terminfo$<334>
EQU AT.NEGATIVE.118 TO terminfo$<335>
EQU AT.NEGATIVE.119 TO terminfo$<336>
EQU AT.NEGATIVE.120 TO terminfo$<337>
EQU AT.NEGATIVE.121 TO terminfo$<338>
EQU AT.NEGATIVE.122 TO terminfo$<339>
EQU AT.NEGATIVE.123 TO terminfo$<340>
EQU AT.NEGATIVE.124 TO terminfo$<341>
EQU AT.NEGATIVE.125 TO terminfo$<342>
EQU AT.NEGATIVE.126 TO terminfo$<343>
EQU AT.NEGATIVE.127 TO terminfo$<344>
EQU AT.NEGATIVE.128 TO terminfo$<345>
EQU DBLE.LDRAW.UP.LEFT.CORNER TO terminfo$<379>
EQU DBLE.LDRAW.UP.RIGHT.CORNER TO terminfo$<380>
EQU DBLE.LDRAW.LO.LEFT.CORNER TO terminfo$<381>
EQU DBLE.LDRAW.LO.RIGHT.CORNER TO terminfo$<382>
EQU DBLE.LDRAW.HORIZ TO terminfo$<383>
EQU DBLE.LDRAW.VERT TO terminfo$<384>
EQU DBLE.LDRAW.UP.TEE TO terminfo$<385>
EQU DBLE.LDRAW.LO.TEE TO terminfo$<386>
EQU DBLE.LDRAW.LEFT.TEE TO terminfo$<387>
EQU DBLE.LDRAW.RIGHT.TEE TO terminfo$<388>

TERMINFO EQUATEs (Continued)
6-596 BASIC Guide

TERMINFO function
EQU DBLE.LDRAW.CROSS TO terminfo$<389>
EQU LDRAW.LEFT.TEE.DBLE.HORIZ TO terminfo$<390>
EQU LDRAW.LEFT.TEE.DBLE.VERT TO terminfo$<391>
EQU LDRAW.RIGHT.TEE.DBLE.HORIZ TO terminfo$<392>
EQU LDRAW.RIGHT.TEE.DBLE.VERT TO terminfo$<393>
EQU LDRAW.LOWER.TEE.DBLE.HORIZ TO terminfo$<394>
EQU LDRAW.LOWER.TEE.DBLE.VERT TO terminfo$<395>
EQU LDRAW.UP.TEE.DBLE.HORIZ TO terminfo$<396>
EQU LDRAW.UP.TEE.DBLE.VERT TO terminfo$<397>
EQU LDRAW.UP.LEFT.CORNER.DBLE.HORIZ TO terminfo$<398>
EQU LDRAW.UP.LEFT.CORNER.DBLE.VERT TO terminfo$<399>
EQU LDRAW.UP.RIGHT.CORNER.DBLE.HORIZ TO terminfo$<400>
EQU LDRAW.UP.RIGHT.CORNER.DBLE.VERT TO terminfo$<401>
EQU LDRAW.LO.LEFT.CORNER.DBLE.HORIZ TO terminfo$<402>
EQU LDRAW.LO.LEFT.CORNER.DBLE.VERT TO terminfo$<403>
EQU LDRAW.LO.RIGHT.CORNER.DBLE.HORIZ TO terminfo$<404>
EQU LDRAW.LO.RIGHT.CORNER.DBLE.VERT TO terminfo$<405>
EQU LDRAW.CROSS.DBLE.HORIZ TO terminfo$<406>
EQU LDRAW.CROSS.DBLE.VERT TO terminfo$<407>
EQU NO.ESC.CTLC TO terminfo$<408>
EQU CEOL.STANDOUT.GLITCH TO terminfo$<409>
EQU GENERIC.TYPE TO terminfo$<410>
EQU HAS.META.KEY TO terminfo$<411>
EQU MEMORY.ABOVE TO terminfo$<412>
EQU MEMORY.BELOW TO terminfo$<413>
EQU STATUS.LINE.ESC.OK TO terminfo$<414>
EQU DEST.TABS.MAGIC.SMSO TO terminfo$<415>
EQU TRANSPARENT.UNDERLINE TO terminfo$<416>
EQU XON.XOFF TO terminfo$<417>
EQU NEEDS.XON.XOFF TO terminfo$<418>
EQU PRTR.SILENT TO terminfo$<419>
EQU HARD.CURSOR TO terminfo$<420>
EQU NON.REV.RMCUP TO terminfo$<421>
EQU NO.PAD.CHAR TO terminfo$<422>
EQU LINES.OF.MEMORY TO terminfo$<423>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-597

TERMINFO function
EQU VIRTUAL.TERMINAL TO terminfo$<424>
EQU NUM.LABELS TO terminfo$<425>
EQU LABEL.HEIGHT TO terminfo$<426>
EQU LABEL.WIDTH TO terminfo$<427>
EQU LINE.ATTRIBUTE TO terminfo$<428>
EQU COMMAND.CHARACTER TO terminfo$<429>
EQU CURSOR.MEM.ADDRESS TO terminfo$<430>
EQU DOWN.HALF.LINE TO terminfo$<431>
EQU ENTER.CA.MODE TO terminfo$<432>
EQU ENTER.DELETE.MODE TO terminfo$<433>
EQU ENTER.PROTECTED.MODE TO terminfo$<434>
EQU EXIT.ATTRIBUTE.MODE TO terminfo$<435>
EQU EXIT.CA.MODE TO terminfo$<436>
EQU EXIT.DELETE.MODE TO terminfo$<437>
EQU EXIT.STANDOUT.MODE TO terminfo$<438>
EQU EXIT.UNDERLINE.MODE TO terminfo$<439>
EQU FORM.FEED TO terminfo$<440>
EQU INIT.1STRING TO terminfo$<441>
EQU INIT.2STRING TO terminfo$<442>
EQU INIT.3STRING TO terminfo$<443>
EQU INIT.FILE TO terminfo$<444>
EQU INS.PREFIX TO terminfo$<445>
EQU KEY.IC TO terminfo$<446>
EQU KEYPAD.LOCAL TO terminfo$<447>
EQU KEYPAD.XMIT TO terminfo$<448>
EQU META.OFF TO terminfo$<449>
EQU META.ON TO terminfo$<450>
EQU PKEY.KEY TO terminfo$<451>
EQU PKEY.LOCAL TO terminfo$<452>
EQU PKEY.XMIT TO terminfo$<453>
EQU REPEAT.CHAR TO terminfo$<454>
EQU RESET.1STRING TO terminfo$<455>
EQU RESET.2STRING TO terminfo$<456>
EQU RESET.3STRING TO terminfo$<457>
EQU RESET.FILE TO terminfo$<458>

TERMINFO EQUATEs (Continued)
6-598 BASIC Guide

TERMINFO function
EQU SET.ATTRIBUTES TO terminfo$<459>
EQU SET.WINDOW TO terminfo$<460>
EQU UNDERLINE.CHAR TO terminfo$<461>
EQU UP.HALF.LINE TO terminfo$<462>
EQU INIT.PROG TO terminfo$<463>
EQU KEY.A1 TO terminfo$<464>
EQU KEY.A3 TO terminfo$<465>
EQU KEY.B2 TO terminfo$<466>
EQU KEY.C1 TO terminfo$<467>
EQU KEY.C3 TO terminfo$<468>
EQU PRTR.NON TO terminfo$<469>
EQU CHAR.PADDING TO terminfo$<470>
EQU LINEDRAW.CHARS TO terminfo$<471>
EQU PLAB.NORM TO terminfo$<472>
EQU ENTER.XON.MODE TO terminfo$<473>
EQU EXIT.XON.MODE TO terminfo$<474>
EQU ENTER.AM.MODE TO terminfo$<475>
EQU EXIT.AM.MODE TO terminfo$<476>
EQU XON.CHARACTER TO terminfo$<477>
EQU XOFF.CHARACTER TO terminfo$<478>
EQU ENABLE.LINEDRAW TO terminfo$<479>
EQU LABEL.ON TO terminfo$<480>
EQU LABEL.OFF TO terminfo$<481>
EQU KEY.BEG TO terminfo$<482>
EQU KEY.CANCEL TO terminfo$<483>
EQU KEY.CLOSE TO terminfo$<484>
EQU KEY.COMMAND TO terminfo$<485>
EQU KEY.COPY TO terminfo$<486>
EQU KEY.CREATE TO terminfo$<487>
EQU KEY.END TO terminfo$<488>
EQU KEY.ENTER TO terminfo$<489>
EQU KEY.EXIT TO terminfo$<490>
EQU KEY.FIND TO terminfo$<491>
EQU KEY.HELP TO terminfo$<492>
EQU KEY.MARK TO terminfo$<493>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-599

TERMINFO function
EQU KEY.MESSAGE TO terminfo$<494>
EQU KEY.MOVE TO terminfo$<495>
EQU KEY.NEXT TO terminfo$<496>
EQU KEY.OPEN TO terminfo$<497>
EQU KEY.OPTIONS TO terminfo$<498>
EQU KEY.PREVIOUS TO terminfo$<499>
EQU KEY.REDO TO terminfo$<500>
EQU KEY.REFERENCE TO terminfo$<501>
EQU KEY.REFRESH TO terminfo$<502>
EQU KEY.REPLACE TO terminfo$<503>
EQU KEY.RESTART TO terminfo$<504>
EQU KEY.RESUME TO terminfo$<505>
EQU KEY.SAVE TO terminfo$<506>
EQU KEY.SUSPEND TO terminfo$<507>
EQU KEY.UNDO TO terminfo$<508>
EQU KEY.SBEG TO terminfo$<509>
EQU KEY.SCANCEL TO terminfo$<510>
EQU KEY.SCOMMAND TO terminfo$<511>
EQU KEY.SCOPY TO terminfo$<512>
EQU KEY.SCREATE TO terminfo$<513>
EQU KEY.SDC TO terminfo$<514>
EQU KEY.SDL TO terminfo$<515>
EQU KEY.SELECT TO terminfo$<516>
EQU KEY.SEND TO terminfo$<517>
EQU KEY.SEOL TO terminfo$<518>
EQU KEY.SEXIT TO terminfo$<519>
EQU KEY.SFIND TO terminfo$<520>
EQU KEY.SHELP TO terminfo$<521>
EQU KEY.SHOME TO terminfo$<522>
EQU KEY.SIC TO terminfo$<523>
EQU KEY.SLEFT TO terminfo$<524>
EQU KEY.SMESSAGE TO terminfo$<525>
EQU KEY.SMOVE TO terminfo$<526>
EQU KEY.SNEXT TO terminfo$<527>
EQU KEY.SOPTIONS TO terminfo$<528>

TERMINFO EQUATEs (Continued)
6-600 BASIC Guide

TERMINFO function
EQU KEY.SPREVIOUS TO terminfo$<529>
EQU KEY.SPRINT TO terminfo$<530>
EQU KEY.SREDO TO terminfo$<531>
EQU KEY.SREPLACE TO terminfo$<532>
EQU KEY.SRIGHT TO terminfo$<533>
EQU KEY.SRESUM TO terminfo$<534>
EQU KEY.SSAVE TO terminfo$<535>
EQU KEY.SSUSPEND TO terminfo$<536>
EQU KEY.SUNDO TO terminfo$<537>
EQU REQ.FOR.INPUT TO terminfo$<538>
EQU KEY.F17 TO terminfo$<539>
EQU KEY.F18 TO terminfo$<540>
EQU KEY.F19 TO terminfo$<541>
EQU KEY.F20 TO terminfo$<542>
EQU KEY.F21 TO terminfo$<543>
EQU KEY.F22 TO terminfo$<544>
EQU KEY.F23 TO terminfo$<545>
EQU KEY.F24 TO terminfo$<546>
EQU KEY.F25 TO terminfo$<547>
EQU KEY.F26 TO terminfo$<548>
EQU KEY.F27 TO terminfo$<549>
EQU KEY.F28 TO terminfo$<550>
EQU KEY.F29 TO terminfo$<551>
EQU KEY.F30 TO terminfo$<552>
EQU KEY.F31 TO terminfo$<553>
EQU KEY.F32 TO terminfo$<554>
EQU KEY.F33 TO terminfo$<555>
EQU KEY.F34 TO terminfo$<556>
EQU KEY.F35 TO terminfo$<557>
EQU KEY.F36 TO terminfo$<558>
EQU KEY.F37 TO terminfo$<559>
EQU KEY.F38 TO terminfo$<560>
EQU KEY.F39 TO terminfo$<561>
EQU KEY.F40 TO terminfo$<562>
EQU KEY.F41 TO terminfo$<563>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-601

TERMINFO function
EQU KEY.F42 TO terminfo$<564>
EQU KEY.F43 TO terminfo$<565>
EQU KEY.F44 TO terminfo$<566>
EQU KEY.F45 TO terminfo$<567>
EQU KEY.F46 TO terminfo$<568>
EQU KEY.F47 TO terminfo$<569>
EQU KEY.F48 TO terminfo$<570>
EQU KEY.F49 TO terminfo$<571>
EQU KEY.F50 TO terminfo$<572>
EQU KEY.F51 TO terminfo$<573>
EQU KEY.F52 TO terminfo$<574>
EQU KEY.F53 TO terminfo$<575>
EQU KEY.F54 TO terminfo$<576>
EQU KEY.F55 TO terminfo$<577>
EQU KEY.F56 TO terminfo$<578>
EQU KEY.F57 TO terminfo$<579>
EQU KEY.F58 TO terminfo$<580>
EQU KEY.F59 TO terminfo$<581>
EQU KEY.F60 TO terminfo$<582>
EQU KEY.F61 TO terminfo$<583>
EQU KEY.F62 TO terminfo$<584>
EQU KEY.F63 TO terminfo$<585>
EQU CLEAR.MARGINS TO terminfo$<586>
EQU SET.LEFT.MARGIN TO terminfo$<587>
EQU SET.RIGHT.MARGIN TO terminfo$<588>
EQU LABEL.KEY.FUNCTION.17 TO terminfo$<589>
EQU LABEL.KEY.FUNCTION.18 TO terminfo$<590>
EQU LABEL.KEY.FUNCTION.19 TO terminfo$<591>
EQU LABEL.KEY.FUNCTION.20 TO terminfo$<592>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<593>
EQU LABEL.KEY.FUNCTION.22 TO terminfo$<594>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<595>
EQU LABEL.KEY.FUNCTION.24 TO terminfo$<596>
EQU LABEL.KEY.FUNCTION.25 TO terminfo$<597>
EQU LABEL.KEY.FUNCTION.26 TO terminfo$<598>

TERMINFO EQUATEs (Continued)
6-602 BASIC Guide

TERMINFO function
EQU LABEL.KEY.FUNCTION.27 TO terminfo$<599>
EQU LABEL.KEY.FUNCTION.28 TO terminfo$<600>
EQU LABEL.KEY.FUNCTION.2 TO terminfo$<601>
EQU LABEL.KEY.FUNCTION.30 TO terminfo$<602>
EQU LABEL.KEY.FUNCTION.31 TO terminfo$<603>
EQU LABEL.KEY.FUNCTION.32 TO terminfo$<604>
EQU LABEL.KEY.FUNCTION.33 TO terminfo$<605>
EQU LABEL.KEY.FUNCTION.34 TO terminfo$<606>
EQU LABEL.KEY.FUNCTION.35 TO terminfo$<607>
EQU LABEL.KEY.FUNCTION.36 TO terminfo$<608>
EQU LABEL.KEY.FUNCTION.37 TO terminfo$<609>
EQU LABEL.KEY.FUNCTION.38 TO terminfo$<610>
EQU LABEL.KEY.FUNCTION.39 TO terminfo$<611>
EQU LABEL.KEY.FUNCTION.40 TO terminfo$<612>
EQU LABEL.KEY.FUNCTION.41 TO terminfo$<613>
EQU LABEL.KEY.FUNCTION.42 TO terminfo$<614>
EQU LABEL.KEY.FUNCTION.43 TO terminfo$<615>
EQU LABEL.KEY.FUNCTION.44 TO terminfo$<616>
EQU LABEL.KEY.FUNCTION.45 TO terminfo$<617>
EQU LABEL.KEY.FUNCTION.46 TO terminfo$<618>
EQU LABEL.KEY.FUNCTION.4 TO terminfo$<619>
EQU LABEL.KEY.FUNCTION.48 TO terminfo$<620>
EQU LABEL.KEY.FUNCTION.49 TO terminfo$<621>
EQU LABEL.KEY.FUNCTION.50S TO terminfo$<622>
EQU LABEL.KEY.FUNCTION.51 TO terminfo$<623>
EQU LABEL.KEY.FUNCTION.52 TO terminfo$<624>
EQU LABEL.KEY.FUNCTION.53 TO terminfo$<625>
EQU LABEL.KEY.FUNCTION.54 TO terminfo$<626>
EQU LABEL.KEY.FUNCTION.55 TO terminfo$<627>
EQU LABEL.KEY.FUNCTION.56 TO terminfo$<628>
EQU LABEL.KEY.FUNCTION.57 TO terminfo$<629>
EQU LABEL.KEY.FUNCTION.58 TO terminfo$<630>
EQU LABEL.KEY.FUNCTION.59 TO terminfo$<631>
EQU LABEL.KEY.FUNCTION.60 TO terminfo$<632>
EQU LABEL.KEY.FUNCTION.61 TO terminfo$<633>

TERMINFO EQUATEs (Continued)
BASIC Statements and Functions 6-603

TERMINFO function
Example
$INCLUDE UNIVERSE.INCLUDE TERMINFO
PRINT AT.NEGATIVE.1
PRINT "Your terminal type is":TAB:TERMINAL.NAME

The program output on the cleared screen is:

Your terminal type is icl6404|ICL 6404CG Color Video Display

TIME

EQU LABEL.KEY.FUNCTION.62 TO terminfo$<634>
EQU LABEL.KEY.FUNCTION.63 TO terminfo$<635>

TERMINFO EQUATEs (Continued)
6-604 BASIC Guide

TIME function
TIME

Syntax
TIME ()

Description
Use the TIME function to return a string value expressing the internal time of day.
The internal time is the number of seconds that have passed since midnight to the
nearest thousandth of a second (local time).

The parentheses must be used with the TIME function to distinguish it from a user-
named variable called TIME. However, no arguments are required with the TIME
function.

UNIX System V. The time is returned only to the nearest whole second.

If the TIME.MILLISECOND option of the $OPTIONS statement is set, the TIME
function returns the system time in whole seconds.

Example
PRINT TIME()

This is the program output:

40663.842
BASIC Statements and Functions 6-605

TIMEDATE function
TIMEDATE

Syntax
TIMEDATE ()

Description
Use the TIMEDATE function to return the current system time and date in the
following format:

hh:mm:ss dd mmm yyyy

No arguments are required with the TIMEDATE function.

If you want to increase the number of spaces between the time and the date, edit
the line beginning with TMD0001 in the msg.txt file in the UV account directory.
This line can contain up to four hash signs (#). Each # prints a space between the
time and the date.

If NLS mode is enabled, the TIMEDATE function uses the convention defined in
the TIMEDATE field in the NLS.LC.TIME file for combined time and date format.
Otherwise, it returns the time and date. For more information about convention
records in the Time category, see the DataStage NLS Guide.

Examples
PRINT TIMEDATE()

This is the program output:

11:19:07 18 JUN 1996

If the TMD0001 message contains four #s, the program output is:

11:19:07 18 JUN 1996

hh Hours (based on a 24-hour clock)

mm Minutes

ss Seconds

dd Day

mmm Month

yyyy Year
6-606 BASIC Guide

TIMEOUT statement
TIMEOUT

Syntax

TIMEOUT {file.variable | link.number}, time

Description
Use the TIMEOUT statement to terminate a READSEQ or READBLK statement if
no data is read in the specified time. You can also use the TIMEOUT statement to
set a time limit for a network link. Use the TTYGET and TTYSET statements to set
a timeout value for a file open on a serial communications port.

The TIMEOUT statement is not supported on Windows NT.

file.variable specifies a file opened for sequential access.

time is an expression that evaluates to the number of seconds the program should
wait before terminating the READSEQ or READBLK statement or the network
connections.

link.number is the network link. It is a positive number from 1 through 255 (or the
number set in the NET_MAXCONNECT VALUE for network connections).

TIMEOUT causes subsequent READSEQ and READBLK statement to terminate
and execute their ELSE statements if the number of seconds specified by time
elapses while waiting for data. Use the STATUS function to determine if time has
elapsed. In the event of a timeout, neither READBLK nor READSEQ returns any
bytes from the buffer, and the entire I/O operation must be retried.

If either file.variable or time evaluates to the null value, the TIMEOUT statement
fails and the program terminates with a run-time error message.

Examples
TIMEOUT SUN.MEMBER, 10
READBLK VAR1 FROM SUN.MEMBER, 15 THEN PRINT VAR1 ELSE

IF STATUS() = 2 THEN
 PRINT "TIMEOUT OCCURRED"
END ELSE
 PRINT "CANNOT OPEN FILE"
END
GOTO EXIT.PROG

END
BASIC Statements and Functions 6-607

TIMEOUT statement
This is the program output:

TIMEOUT OCCURRED

The following example sets a 30-second timeout for the network connection to the
system ORION:

TIMEOUT SYSTEM (1200, "ORION"), 30
OPEN "ORION!/u1/user/file" TO FU.ORIONFILE
READ X,Y FROM FU.ORIONFILE

ELSE
 IF SYSTEM (1203)= 81015
 THEN PRINT "TIMEOUT ON READ"
END
ELSE
 PRINT "READ ERROR"
END

END
6-608 BASIC Guide

TPARM function
TPARM

Syntax

TPARM (terminfo.string, [arg1], [arg2], [arg3], [arg4], [arg5], [arg6], [arg7],

[arg8])

Description
Use the TPARM function to evaluate a parameterized terminfo string.

terminfo.string represents a string of characters to be compiled by the terminfo
compiler, tic. These terminal descriptions define the sequences of characters to
send to the terminal to perform special functions. terminfo.string evaluates to one
of four types of capability: numeric, Boolean, string, or parameterized string. If
terminfo.string or any of the eight arguments evaluates to the null value, the
TPARM function fails and the program terminates with a run-time error message.

Numeric capabilities are limited to a length of five characters that must form a
valid number. Only nonnegative numbers 0 through 32,767 are allowed. If a value
for a particular capability does not apply, the field should be left blank.

Boolean capabilities are limited to a length of one character. The letter Y (in either
uppercase or lowercase) indicates that the specified capability is present. Any
value other than Y indicates that the specified capability is not present.

String capabilities are limited to a length of 44 characters. You can enter special
characters as follows:

\E or \e The ESC character (ASCII 27).

\n or \l The LINEFEED character (ASCII 10).

\r The RETURN character (ASCII 13).

\t The TAB character (ASCII 9).

\b The BACKSPACE character (ASCII 8).

\f The formfeed character (ASCII 12).

\s A space (ASCII 32).

^x The representation for a control character (ASCII 0 through 31). The
character can be either uppercase or lowercase. A list of some control
character representations follows:
BASIC Statements and Functions 6-609

TPARM function
Parameterized string capabilities, such as cursor addressing, use special encoding
to include values in the appropriate format. The parameter mechanism is a stack
with several commands to manipulate it:

Representation Control Character

^A ^a

ASCII 1 (Ctrl-A) ASCII 1 (Ctrl-A)

^@ ASCII 0

^[ASCII 27 (Esc)

^\ ASCII 28

^] ASCII 29

^^ ASCII 30

^_ ASCII 31

^? ASCII 127 (Del)

\nnn Represents the ASCII character with a value of nnn in octal—for
example \033 is the Esc character (ASCII 27).

\\ Represents the "\" character.

\, Represents the "," character.

\^ Represents the "^" character.

%pn Push parameter number n onto the stack. Parameters number 1
through 8 are allowed and are represented by arg1 through arg8 of the
TPARM function.

%'c' The ASCII value of character c is pushed onto the stack.

%[nnn] Decimal number nnn is pushed onto the top of the stack.

%d Pop the top parameter off the stack, and output it as a decimal
number.

%nd Pop the top parameter off the stack, and output it as a decimal
number in a field n characters wide.

%0nd Like %nd, except that 0s are used to fill out the field.

%c The top of the stack is taken as a single ASCII character and output.

%s The top of the stack is taken as a string and output.
6-610 BASIC Guide

TPARM function
A delay in milliseconds can appear anywhere in a string capability. A delay is spec-
ified by $<nnn>, where nnn is a decimal number indicating the number of
milliseconds (one thousandth of a second) of delay desired. A proper number of
delay characters will be output, depending on the current baud rate.

%+ %− %* %/

The top two elements are popped off the stack and added, subtracted,
multiplied, or divided. The result is pushed back on the stack. The
fractional portion of a quotient is discarded.

%m The second element on the stack is taken modulo of the first element,
and the result is pushed onto the stack.

%& % | %^ The top two elements are popped off the stack and a bitwise AND,
OR, or XOR operation is performed. The result is pushed onto the
stack.

%= %< %> The second element on the stack is tested for being equal to, less then,
or greater than the first element. If the comparison is true, a 1 is
pushed onto the stack, otherwise a 0 is pushed.

%! %~ The stack is popped, and either the logical or the bitwise NOT of the
first element is pushed onto the stack.

%i One (1) is added to the first two parameters. This is useful for termi-
nals that use a one-based cursor address, rather than a zero-based.

%Px Pop the stack, and put the result into variable x, where x is a lower-
case letter (a − z).

%gx Push the value of variable x on the top of the stack.

%? exp %t exp [%e exp] %;

Form an if-then-else expression, with "%?" representing "IF", "%t"
representing "THEN", "%e" representing "ELSE", and "%;" termi-
nating the expression. The else expression is optional. Else-If
expressions are possible. For example:

%? C1 %t B1 %e C2 %t B2 %e C3 %t B3 %e C4 %t B4 %e %

Cn are conditions, and Bn are bodies.

%% Output a percent sign (%).
BASIC Statements and Functions 6-611

TPRINT statement
TPRINT

Syntax

TPRINT [ON print.channel] [print.list]

Description
Use the TPRINT statement to send data to the screen, a line printer, or another print
file. TPRINT is similar to the PRINT statement, except that TPRINT lets you
specify time delay expressions in the print list.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). If print.channel evaluates to
the null value, the TPRINT statement fails and the program terminates with a run-
time error message. Logical print channel –1 prints the data on the screen, regard-
less of whether a PRINTER ON statement has been executed.

You can specify HEADING, FOOTING, PAGE, and PRINTER CLOSE statements
for each logical print channel. The contents of the print files are printed in order by
logical print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric
or character strings, variables, constants, or literal strings. The list can consist of a
single expression or a series of expressions separated by commas (,) or colons (:)
for output formatting. If no print.list is designated, a blank line is printed. The null
value cannot be printed.

print.list can also contain time delays of the form $<time>. time is specified in milli-
seconds to the tenth of a millisecond. As the print list is processed, each time delay
is executed as it is encountered.

Expressions separated by commas are printed at preset tab positions. The default
tabstop setting is 10 characters. See the TABSTOP statement for information about
changing the default setting. Use multiple commas together for multiple tabula-
tions between expressions.

Expressions separated by colons are concatenated. That is, the expression
following the colon is printed immediately after the expression preceding the
colon. To print a list without a LINEFEED and RETURN, end print.list with a colon
(:).
6-612 BASIC Guide

TPRINT statement
If NLS is enabled, the TPRINT statement maps data in the same way as the PRINT
statement. For more information about maps, see the DataStage NLS Guide.

Example
The following example prints the string ALPHA followed by a delay of 1 second,
then the letters in the variable X. The printing of each letter is followed by a delay
of one tenth of a second.

X="A$<100>B$<100>C$<100>D$<100>E"
TPRINT "ALPHA$<1000.1> ":X

This is the program output:

ALPHA ABCDE
BASIC Statements and Functions 6-613

TRANS function
TRANS

Syntax

TRANS ([DICT] filename, record.ID, field#, control.code)

Description
Use the TRANS function to return the contents of a field or a record in a DataStage
file. TRANS opens the file, reads the record, and extracts the specified data.

filename is an expression that evaluates to the name of the remote file. If TRANS
cannot open the file, a run-time error occurs, and TRANS returns an empty string.

record.ID is an expression that evaluates to the ID of the record to be accessed. If
record.ID is multivalued, the translation occurs for each record ID and the result is
multivalued (system delimiters separate data translated from each record).

field# is an expression that evaluates to the number of the field from which the data
is to be extracted. If field# is −1, the entire record is returned, except for the
record ID.

control.code is an expression that evaluates to a code specifying what action to take
if data is not found or is the null value. The possible control codes are:

The returned value is lowered. For example, value marks in the original field
become subvalue marks in the returned value. For more information, see the
LOWER function.

If filename, record.ID, or field# evaluates to the null value, the TRANS function fails
and the program terminates with a run-time error message. If control.code evaluates
to the null value, null is ignored and X is used.

The TRANS function is the same as the XLATE function.

X (default) Returns an empty string if the record does not exist or data cannot
be found.

V Returns an empty string and produces an error message if the record does not
exist or data cannot be found.

C Returns the value of record.ID if the record does not exist or data cannot be
found.

N Returns the value of record.ID if the null value is found.
6-614 BASIC Guide

TRANS function
Example
X=TRANS("VOC","EX.BASIC",1,"X")
PRINT "X= ":X
*
FIRST=TRANS("SUN.MEMBER","6100",2,"X")

LAST=TRANS("SUN.MEMBER","6100",1,"X")
PRINT "NAME IS ":FIRST:" ":LAST

This is the program output:

X= F BASIC examples file
NAME IS BOB MASTERS
BASIC Statements and Functions 6-615

transaction statements
BEGIN TRANSACTION

Syntax
BEGIN TRANSACTION

[statements]

{ COMMIT [WORK] | ROLLBACK [WORK] }

[statements]

[{ COMMIT [WORK] | ROLLBACK [WORK] }

[statements]
.
.
.]

END TRANSACTION

Syntax (PIOPEN)
TRANSACTION START

{THEN statements [ELSE statements] | ELSE statements}
TRANSACTION COMMIT

{THEN statements [ELSE statements] | ELSE statements}
TRANSACTION ABORT

Description
Use transaction statements to treat a sequence of file I/O operations as one logical
operation with respect to recovery and visibility to other users. These operations
can include file I/O operations or subtransactions.

Note: BASIC accepts PI/open syntax in addition to DataStage syntax. You cannot
mix both types of syntax within a program.

For more information about transaction statements, refer to Chapter 4.
6-616 BASIC Guide

TRANSACTION ABORT statement
TRANSACTION ABORT

Syntax
TRANSACTION ABORT

Description
Use the TRANSACTION ABORT statement to cancel all file I/O changes made
during a transaction.

You can use the TRANSACTION ABORT statement in a transaction without a
TRANSACTION COMMIT statement to review the results of a possible change.
Doing so does not affect the parent transaction or the database.

After the transaction ends, execution continues with the statement following the
TRANSACTION ABORT statement.

Example
The following example shows the use of the TRANSACTION ABORT statement to
terminate a transaction if both the ACCOUNTS RECEIVABLE file and the INVEN-
TORY file cannot be successfully updated:

PROMPT ''
OPEN 'ACC.RECV' TO ACC.RECV ELSE STOP 'NO OPEN ACC.RECV'
OPEN 'INVENTORY' TO INVENTORY ELSE STOP 'NO OPEN INVENTORY'

PRINT 'Customer Id : ':
INPUT CUST.ID
PRINT 'Item No. : ':
INPUT ITEM
PRINT 'Amount : ':
INPUT AMOUNT

* Start a transaction to ensure both or neither records
* updated
TRANSACTION START ELSE STOP 'Transaction start failed.'
* Read customer record from accounts receivable
 READU ACT.REC FROM ACC.RECV, CUST.ID
 ON ERROR
 STOP 'Error reading ':CUST.ID:' from ACC.RECV file.'
 END LOCKED
 * Could not lock record so ABORT transaction
 TRANSACTION ABORT
BASIC Statements and Functions 6-617

TRANSACTION ABORT statement
 STOP 'Record ':CUST.ID:' on file ACC.RECV locked by user
':STATUS()
 END THEN
 * Build new record
 ACT.REC<1,-1> = ITEM:@SM:AMOUNT
 ACT.REC<2> = ACT.REC<2> + AMOUNT
 END ELSE
 * Create new record
 ACT.REC = ITEM:@SM:AMOUNT:@FM:AMOUNT
 END
 * Read item record from inventory
 READU INV.REC FROM INVENTORY, ITEM
 ON ERROR
 STOP 'Error reading ':ITEM:' from INVENTORY file.'
 END LOCKED
 * Could not lock record so ABORT transaction
 TRANSACTION ABORT
 STOP 'Record ':ITEM:' on file INVENTORY locked by user
':STATUS()
 END THEN
 * Build new record
 INV.REC<1> = INV.REC<1> - 1
 INV.REC<2> = INV.REC<2> - AMOUNT
 END ELSE
 STOP 'Record ':ITEM:' is not on file INVENTORY.'
 END
 * Write updated records to accounts receivable and inventory
 WRITEU ACT.REC TO ACC.RECV, CUST.ID
 WRITEU INV.REC TO INVENTORY, ITEM

TRANSACTION COMMIT ELSE STOP 'Transaction commit failed.'

END
6-618 BASIC Guide

TRANSACTION COMMIT statement
TRANSACTION COMMIT

Syntax

TRANSACTION COMMIT
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the TRANSACTION COMMIT statement to commit all file I/O changes made
during a transaction.

The TRANSACTION COMMIT statement can either succeed or fail. If the TRANS-
ACTION COMMIT statement succeeds, the THEN statements are executed; any
ELSE statements are ignored. If the TRANSACTION COMMIT statement fails, the
ELSE statements, if present, are executed, and control is transferred to the state-
ment following the TRANSACTION COMMIT statement.
BASIC Statements and Functions 6-619

TRANSACTION START statement
TRANSACTION START

Syntax

TRANSACTION START
{THEN statements [ELSE statements] | ELSE statements}

Description
Use the TRANSACTION START statement to begin a new transaction.

THEN and ELSE Clauses
You must have a THEN clause or an ELSE clause, or both, in a TRANSACTION
START statement.

If the TRANSACTION START statement successfully begins a transaction, the
statements in the THEN clause are executed. If for some reason DataStage is unable
to start the transaction, a fatal error occurs, and you are returned to the command
prompt.
6-620 BASIC Guide

TRIM function
TRIM

Syntax

TRIM (expression [,character [,option]])

Description
Use the TRIM function to remove unwanted characters in expression. If only expres-
sion is specified, multiple occurrences of spaces and tabs are reduced to a single tab
or space, and all leading and trailing spaces and tabs are removed. If expression
evaluates to one or more space characters, TRIM returns an empty string.

character specifies a character other than a space or a tab. If only expression and char-
acter are specified, multiple occurrences of character are replaced with a single
occurrence, and leading and trailing occurrences of character are removed.

option specifies the type of trim operation to be performed:

If expression evaluates to the null value, null is returned. If option evaluates to the
null value, null is ignored and option R is assumed. If character evaluates to the null
value, the TRIM function fails and the program terminates with a run-time error
message.

If NLS is enabled, you can use TRIM to remove other white space characters such
as Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.

A Remove all occurrences of character

B Remove both leading and trailing occurrences of character

D Remove leading, trailing, and redundant white space characters

E Remove trailing white space characters

F Remove leading white space characters

L Remove all leading occurrences of character

R Remove leading, trailing, and redundant occurrences of character

T Remove all trailing occurrences of character
BASIC Statements and Functions 6-621

TRIM function
Example
A=" Now is the time for all good men to"
PRINT A
PRINT TRIM(A)

This is the program output:

 Now is the time for all good men to
Now is the time for all good men to
6-622 BASIC Guide

TRIMB function
TRIMB

Syntax
TRIMB (expression)

Description
Use the TRIMB function to remove all trailing spaces and tabs from expression. All
other spaces or tabs in expression are left intact. If expression evaluates to the null
value, null is returned.

If NLS is enabled, you can use TRIMB to remove white space characters such as
Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.

Example
A=" THIS IS A SAMPLE STRING "
PRINT "'":A:"'": " IS THE STRING"
PRINT "'":TRIMB(A):"'":" IS WHAT TRIMB DOES"
END

This is the program output:

' THIS IS A SAMPLE STRING ' IS THE STRING
' THIS IS A SAMPLE STRING' IS WHAT TRIMB DOES
BASIC Statements and Functions 6-623

TRIMBS function
TRIMBS

Syntax
TRIMBS (dynamic.array)

CALL −TRIMBS (return.array, dynamic.array)

Description
Use the TRIMBS function to remove all trailing spaces and tabs from each element
of dynamic.array.

TRIMBS removes all trailing spaces and tabs from each element and reduces
multiple occurrences of spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of
dynamic.array is null, null is returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If NLS is enabled, you can use TRIMBS to remove white space characters such as
Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.
6-624 BASIC Guide

TRIMF function
TRIMF

Syntax
TRIMF (expression)

Description
Use the TRIMF function to remove all leading spaces and tabs from expression. All
other spaces or tabs in expression are left intact. If expression evaluates to the null
value, null is returned.

If NLS is enabled, you can use TRIMF to remove white space characters such as
Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.

Example
A=" THIS IS A SAMPLE STRING "
PRINT "'":A:"'":" IS THE STRING"
PRINT "'":TRIMF(A):"'":" IS WHAT TRIMF DOES"
END

This is the program output:

' THIS IS A SAMPLE STRING ' IS THE STRING
'THIS IS A SAMPLE STRING ' IS WHAT TRIMF DOES
BASIC Statements and Functions 6-625

TRIMFS function
TRIMFS

Syntax
TRIMFS (dynamic.array)

CALL −TRIMFS (return.array, dynamic.array)

Description
Use the TRIMFS function to remove all leading spaces and tabs from each element
of dynamic.array.

TRIMFS removes all leading spaces and tabs from each element and reduces
multiple occurrences of spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of
dynamic.array is null, null is returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If NLS is enabled, you can use TRIMFS to remove white space characters such as
Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.
6-626 BASIC Guide

TRIMS function
TRIMS

Syntax
TRIMS (dynamic.array)

CALL −TRIMS (return.array, dynamic.array)

Description
Use the TRIMS function to remove unwanted spaces and tabs from each element
of dynamic.array.

TRIMS removes all leading and trailing spaces and tabs from each element and
reduces multiple occurrences of spaces and tabs to a single space or tab.

If dynamic.array evaluates to the null value, null is returned. If any element of
dynamic.array is null, null is returned for that value.

If you use the subroutine syntax, the resulting dynamic array is returned as
return.array.

If NLS is enabled, you can use TRIMS to remove white space characters such as
Unicode values 0x2000 through 0x200B, 0x00A0, and 0x3000, marked as TRIM-
MABLE in the NLS.LC.CTYPE file entry for the specified locale. For more
information about Unicode values, see the DataStage NLS Guide.
BASIC Statements and Functions 6-627

TTYCTL statement
TTYCTL

Syntax
TTYCTL file.variable, code#

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the TTYCTL statement to set terminal device characteristics on Berkeley
terminal drivers. code# specifies the action to take.

This statement is not supported on UNIX System V or Windows NT.

The following table lists the available actions:

file.variable specifies a file previously opened for sequential access to a terminal
device. If file.variable evaluates to the null value, the TTYCTL statement fails and
the program terminates with a run-time error message.

If the action is taken, the THEN statements are executed. If no THEN statements
are present, program execution continues with the next statement.

TTYCTL Action Codes

Argument Action

0 No operation, determines if a device is a TTY.

1 Sets HUP (hang up data line) on close of file.

2 Clears HUP on close of file.

3 Sets exclusive use flag for TTY.

4 Resets exclusive use flag.

5 Sets the BREAK.

6 Clears the BREAK.

7 Turns on DTR (Data Terminal Ready).

8 Turns off DTR.

9 Flushes input and output buffers.

10 Waits for the output buffer to drain.
6-628 BASIC Guide

TTYCTL statement
If an error is encountered during the execution of the TTYCTL operation, or if the
file variable is not open to a terminal device, the ELSE statements are executed; any
THEN statements are ignored.

Example
OPENSEQ 'FILE.E', 'RECORD4' TO FILE ELSE ABORT
*
TTYCTL FILE, 0
 THEN PRINT 'THE FILE IS A TTY'
 ELSE PRINT 'THE FILE IS NOT A TTY'

This is the program output:

THE FILE IS NOT A TTY
BASIC Statements and Functions 6-629

TTYGET statement
TTYGET

Syntax

TTYGET variable [FROM {file.variable | LPTR [n] | MTU [n] }]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the TTYGET statement to assign the characteristics of a terminal, line printer
channel, or tape unit as a dynamic array to variable. If the FROM clause is omitted,
a dynamic array of the terminal characteristics for your terminal is assigned to
variable.

file.variable is a terminal opened for sequential processing with the OPENDEV or
OPENSEQ statement. If file.variable is specified, the terminal characteristics for the
specified terminal are retrieved.

n specifies a logical print channel with LPTR or a tape unit with MTU. (You cannot
specify a tape unit on Windows NT.) If n is specified, the characteristics for the
print channel or tape unit are retrieved. For logical print channels n is in the range
of 0 through 225; the default is 0. For tape units n is in the range of 0 through 7; the
default is 0.

If the terminal characteristics are retrieved, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned,
the ELSE statements are executed; any THEN statements are ignored.

If either file.variable or n evaluates to the null value, the TTYGET statement fails and
the program terminates with a run-time error message.

The best way to access the information in the dynamic array is to include the
BASIC code UNIVERSE.INCLUDE TTY. The syntax for including this file is:

$INCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of the dynamic array to a name, so that each value can
be easily accessed in your program. To take advantage of this code you must call
variable tty$. Once this code has been included in your program, you can use the
names to access the values of the dynamic array. To set values for a terminal line,
use the TTYSET statement.

The following table lists the equate names to the values of the dynamic array, and
describes each value. The final columns indicate which values are available on
6-630 BASIC Guide

TTYGET statement
different operating systems: SV indicates System V, B indicates Berkeley UNIX,
and NT indicates Windows NT.

TTYGET Statement Values

Value Name Description
Avail-
ability

S
V

B
N
T

Field 1

1 MODE.TYPE One of these modes:
MODE$LINE or 0 = line
MODE$RAW or 1 = raw
MODE$CHAR or 2 = character
MODE$EMULATE or 3 = emulated

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

2 MODE.MIN Minimum number of characters before input. ✓ ✓ ✓

3 MODE.TIME Minimum time in milliseconds before input. ✓ ✓ ✓

Field 2

1 CC.INTR Interrupt character. −1 undefined. ✓ ✓ ✓

2 CC.QUIT Quit character. −1 undefined. ✓ ✓

3 CC.SUSP Suspend character. −1 undefined. ✓ ✓

4 CC.DSUSP dsusp character. −1 undefined. ✓

5 CC.SWITCH Switch character. −1 undefined. ✓

6 CC.ERASE erase character. −1 undefined. ✓ ✓ ✓

7 CC.WERASE werase character. −1 undefined. ✓

8 CC.KILL Kill character. −1 undefined. ✓ ✓ ✓

9 CC.LNEXT lnext character. −1 undefined. ✓

10 CC.RPRINT rprint character. −1 undefined. ✓ ✓

11 CC.EOF eof character. −1 undefined. ✓ ✓

12 CC.EOL eol character. −1 undefined. ✓ ✓

13 CC.EOL2 eol2 character. −1 undefined. ✓

14 CC.FLUSH Flush character. −1 undefined. ✓
BASIC Statements and Functions 6-631

TTYGET statement
15 CC.START Start character. −1 undefined.
On System V, ^Q only.

✓ ✓ ✓

16 CC.STOP Stop character. −1 undefined.
On System V, ^S only.

✓ ✓ ✓

17 CC.LCONT lcont character. −1 undefined. Emulated only. ✓ ✓ ✓

18 CC.FMC fmc character. −1 undefined. Emulated only. ✓ ✓ ✓

19 CC.VMC vmc character. −1 undefined. Emulated only. ✓ ✓ ✓

20 CC.SMC smc character. −1 undefined. Emulated only. ✓ ✓ ✓

21 CCDEL Delete character. ✓ ✓

Field 3

1 CARRIER.RECEIVE Terminal can receive data. ✓ ✓ ✓

2 CARRIER.HANGUP Hang up upon close of terminal. ✓ ✓

3 CARRIER.LOCAL Terminal is a local line. ✓ ✓ ✓

Field 4

1 CASE.UCIN Convert lowercase to uppercase on input. ✓ ✓

2 CASE.UCOUT Convert lowercase to uppercase on output. ✓ ✓

3 CASE.XCASE Uppercase is preceded by a backslash (\) to
distinguish it from lowercase.

✓ ✓

4 CASE.INVERT Invert case on input. Emulated only. ✓ ✓ ✓

Field 5

1 CRMODE.INLCR Convert LINEFEED to RETURN on input. ✓ ✓

2 CRMODE.IGNCR Ignore RETURN on input. ✓ ✓

3 CRMODE.ICRNL Convert RETURN to LINEFEED on input. ✓ ✓

4 CRMODE.ONLCR Convert LINEFEED to LINEFEED, RETURN
on output.

✓ ✓

5 CRMODE.OCRNL Convert RETURN to LINEFEED on output. ✓ ✓

TTYGET Statement Values (Continued)

Value Name Description
Avail-
ability

S
V

B
N
T

6-632 BASIC Guide

TTYGET statement
6 CRMODE.ONOCR Prohibit output of RETURN when cursor
is in column 0.

✓ ✓

7 CRMODE.ONLRET LINEFEED performs RETURN function. ✓ ✓

Field 6

1 DELAY.BS Set backspace delay. ✓ ✓

2 DELAY.CR Set RETURN delay. ✓ ✓

3 DELAY.FF Set formfeed delay. ✓ ✓

4 DELAY.LF Set LINEFEED delay. ✓ ✓

5 DELAY.VT Set vertical tab delay. ✓ ✓

6 DELAY.TAB Set tab delay. ✓ ✓

7 DELAY.FILL 0 = time delay
1 = fill with empty strings
2 = fill with DELETEs

✓ ✓

Field 7

1 ECHO.ON Set terminal echo on. ✓ ✓ ✓

2 ECHO.ERASE ECHOE$ERASE or 0 = print echo character
ECHOE$BS or 1 = echo as backspace
ECHOE$BSB or 2 = echo as backspace, space,
backspace
ECHOE$PRINTER or 3 = echo as a printer

✓ ✓

3 ECHO.KILL ECHOK$KILL or 0 = kill as kill character
ECHOK$LF or 1 = kill as RETURN,
LINEFEED
ECHOK$ERASE or 2 = kill as series of erases

✓ ✓

4 ECHO.CTRL Set control to echo as ^ character ✓ ✓

5 ECHO.LF When echo is off, echo RETURN as
RETURN, LINEFEED

✓ ✓ ✓

TTYGET Statement Values (Continued)

Value Name Description
Avail-
ability

S
V

B
N
T

BASIC Statements and Functions 6-633

TTYGET statement
Field 8

1 HANDSHAKE.XON 1 = turns on X-ON/X-OFF protocol
0 = turns off X-ON/X-OFF protocol

✓ ✓ ✓

2 HANDSHAKE.
STARTANY

1 = any characters acts as X-ON
0 = only X-ON character acts as X-ON

✓ ✓

3 HANDSHAKE.
TANDEM

1 = when input buffer is nearly full,
X-OFF is sent
0 = turns off automatic X-OFF, X-ON mode

✓ ✓ ✓

4 HANDSHAKE.DTR 1 = turns on DTR
0 = turns off DTR

✓ ✓

Field 9

1 OUTPUT.POST Output postprocessing occurs. ✓ ✓

2 OUTPUT.TILDE Special output processing for tilde. ✓ ✓

3 OUTPUT.BG Stop background processes at output. ✓ ✓

4 OUTPUT.CS Output clearscreen before reports. Emulated
only.

✓ ✓

5 OUTPUT.TAB Set output tab expansion. ✓ ✓

Field 10

1 PROTOCOL.LINE Line protocol ✓ ✓

2 PROTOCOL.BAUD 1 = 50 9 = 1200
2 = 75 10 = 1800
3 = 110 11 = 2400
4 = 134 12 = 4800
5 = 150 13 = 9600
6 = 200 14 or EXTA = 19200
7 = 300 15 = EXTB
8 = 600

✓ ✓ ✓

TTYGET Statement Values (Continued)

Value Name Description
Avail-
ability

S
V

B
N
T

6-634 BASIC Guide

TTYGET statement
3 PROTOCOL.DATA Character size:
5 = 5 bits 7 = 7 bits
6 = 6 bits 8 = 8 bits

✓ ✓ ✓

4 PROTOCOL.STOP 2 = 2 stopbits 1 = 1 stopbit ✓ ✓ ✓

5 PROTOCOL.OUTPUT Output parity:
0 = no parity
1 = even parity
2 = odd parity

✓

✓

✓

✓

✓

✓

✓

6 PROTOCOL.INPUT Input parity:
0 = disable input parity checking
1 = enable input parity checking
2 = mark parity errors
3 = mark parity errors with a null
4 = ignore parity errors

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

7 PROTOCOL.STRIP 1 = strip to 7 bits0 = 8 bits ✓ ✓

Field 11

1 SIGNALS.ENABLE Enable signal keys: Interrupt, Suspend, Quit. ✓ ✓

2 SIGNALS.FLUSH Flush type-ahead buffer. ✓ ✓

3 SIGNALS.BRKKEY 0 = break ignored
1 = break as interrupt
2 = break as null

✓ ✓

TTYGET Statement Values (Continued)

Value Name Description
Avail-
ability

S
V

B
N
T

BASIC Statements and Functions 6-635

TTYSET statement
TTYSET

Syntax

TTYSET dynamic.array [ON {file.variable | LPTR [n] | MTU [n] }]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the TTYSET statement to set the characteristics of a terminal, line printer
channel, or tape unit. If only dynamic.array is specified, the terminal characteristics
for your terminal are set based on the contents of dynamic.array. dynamic.array is a
dynamic array of eleven fields, each of which has multiple values. A description of
the expected contents of each value of dynamic.array is given in the TTYGET
statement.

file.variable is a terminal opened for sequential processing with the OPENDEV or
OPENSEQ statement. If file.variable is specified, the terminal characteristics for the
specified terminal are set.

n specifies a logical print channel with LPTR or a tape unit with MTU. If n is spec-
ified, the characteristics for the print channel or tape unit are set. n is in the range
of 0 through 225 for logical print channels; the default is 0. n is in the range of 0
through 7 for tape units; the default is 0. On Windows NT you cannot specify a tape
unit.

If the terminal characteristics are set, the THEN statements are executed.

If the device does not exist or cannot be opened, or if no dynamic array is returned,
the ELSE statements are executed; any THEN statements are ignored.

If dynamic.array, file.variable, or n evaluates to the null value, the TTYSET statement
fails and the program terminates with a run-time error message.

To build dynamic.array, get the current values of the terminal line using the
TTYGET statement, manipulate the values, and reset them with the TTYSET state-
ment. The best way to access the information in the dynamic array is to include the
BASIC code UNIVERSE.INCLUDE TTY. The syntax for including this file is:

$INCLUDE UNIVERSE.INCLUDE TTY

This file equates each value of variable from the TTYGET statement with a name, so
that each value can be easily accessed in your program. To take advantage of this
code you must call variable tty$. Once this code is included in your program, you
can use the names to access the values of the dynamic array. The TTYGET State-
6-636 BASIC Guide

TTYSET statement
ment Values table lists the names equated to the values of the dynamic array and
describes the values.

Timeout Handling
You can set the MODE.MIN and MODE.TIME values to define timeouts for read
operations over a communications line. MODE.MIN specifies the minimum
number of characters to be received. MODE.TIME specifies time in tenths of a
second. The two values interact to provide four cases that can be used as follows.

Intercharacter Timer. When you set the values of both MODE.MIN and
MODE.TIME to greater than 0, MODE.TIME specifies the maximum time interval
allowed between successive characters received by the communication line in
tenths of a second. Timing begins only after the first character is received.

Blocking Read. When you set the value of MODE.MIN to greater than 0 and
MODE.TIME to 0, no time limit is set, so the read operation waits until the speci-
fied number of characters have been received (or a newline in the case of
READSEQ).

Read Timer. When you set the value of MODE.MIN to 0 and MODE.TIME to
greater than 0, MODE.TIME specifies how long the read operation waits for a char-
acter to arrive before timing out. If no characters are received in the time specified,
the READSEQ and READBLK statements use the ELSE clause if there is one. If you
use the NOBUF statement to turn off buffering, the timer is reset after each char-
acter is received.

Nonblocking Read. When you set the values of both MODE.MIN and
MODE.TIME to 0, data is read as it becomes available. The read operation returns
immediately.

• If any characters are received:

– READBLK returns as many characters as specified in the blocksize argu-
ment, or all the characters received, whichever is fewer.

– READSEQ returns characters up to the first newline, or all the characters
received if no newline is received.

• If no characters are received, READSEQ and READBLK use the ELSE
clause if there is one.
BASIC Statements and Functions 6-637

UNASSIGNED function
UNASSIGNED

Syntax
UNASSIGNED (variable)

Description
Use the UNASSIGNED function to determine if variable is unassigned. UNAS-
SIGNED returns 1 (true) if variable is unassigned. It returns 0 (false) if variable is
assigned a value, including the null value.

Example
A = "15 STATE STREET"
C = 23
X = UNASSIGNED(A)
Y = UNASSIGNED(B)
Z = UNASSIGNED(C)
PRINT X,Y,Z

This is the program output:

0 1 0
6-638 BASIC Guide

UNICHAR function
UNICHAR

Syntax
UNICHAR (unicode)

Description
Use the UNICHAR function to generate a single character from a Unicode value.

unicode is a decimal number from 0 through 65535 that is the value of the character
you want to generate. If unicode is invalid, an empty string is returned. If unicode
evaluates to the null value, null is returned.

The UNICHAR function operates the same way whether NLS mode is enabled or
not.

Note: Use BASIC @Variables to generate DataStage system delimiters. Do not use
the UNICHAR function.
BASIC Statements and Functions 6-639

UNICHARS function
UNICHARS

Syntax
UNICHARS (dynamic.array)

Description
Use the UNICHARS function to generate a dynamic array of characters from a
dynamic array of Unicode values.

dynamic.array is an array of decimal Unicode values separated by system delim-
iters. If any element of dynamic.array is invalid, an empty string is returned for that
element. If dynamic.array evaluates to the null value, null is returned. If any
element of dynamic.array is null, null is returned for that element.

The UNICHARS function operates the same way whether NLS mode is enabled or
not.

Note: Use BASIC @Variables to generate DataStage system delimiters. Do not use
the UNICHARS function.
6-640 BASIC Guide

UNISEQ function
UNISEQ

Syntax
UNISEQ (expression)

Description
Use the UNISEQ function to generate a Unicode value from expression.

The first character of expression is converted to its Unicode value, that is, a hexadec-
imal value in the range 0x0000 through 0x1FFFF. If expression is invalid, for
example, an incomplete internal string, an empty string is returned. If expression
evaluates to the null value, null is returned.

The UNISEQ function operates the same way whether NLS mode is enabled or not.

CAUTION: UNISEQ does not map system delimiters. For example,
UNISEQ("û") returns 251 (0x00FB), and UNISEQ(@TM) returns
63739 (0xF8FB). The Unicode value returned is the internal represen-
tation of the text mark character that is mapped to a unique area so
that it is not confused with any other character. Note that this
behaves differently from SEQ(@TM), which returns 251.

For more information about Unicode values and tokens defined for system delim-
iters, see the DataStage NLS Guide.
BASIC Statements and Functions 6-641

UNISEQS function
UNISEQS

Syntax
UNISEQS (dynamic.array)

Description
Use the UNISEQS function to generate an array of Unicode values from a dynamic
array of characters.

dynamic.array specifies an array of characters with the elements separated by
system delimiters. The first character of each element of dynamic.array is converted
to its Unicode value, a hexadecimal value in the range 0x0000 through 0x1FFFF. If
any element of dynamic.array is invalid, an empty string is returned for that
element. If dynamic.array evaluates to the null value, null is returned. If any
element of dynamic.array is the null value, null is returned for that element.

The UNISEQS function operates the same way whether NLS mode is enabled or
not.

CAUTION: UNISEQS does not map system delimiters. For example,
UNISEQS("û") returns 251 (0x00FB), and UNISEQS(@TM) returns
63739 (0xF8FB). The Unicode value returned is the internal represen-
tation of the text mark character that is mapped to a unique area so
that it is not confused with any other character. Note that this
behaves differently from SEQ(@TM), which returns 251.

For more information about Unicode values and tokens defined for system delim-
iters, see DataStage NLS Guide.
6-642 BASIC Guide

UNLOCK statement
UNLOCK

Syntax

UNLOCK [expression]

Description
Use the UNLOCK statement to release a process lock set by the LOCK statement.

expression specifies an integer from 0 through 63. If expression is not specified, all
locks are released (see the LOCK statement).

If expression evaluates to an integer outside the range of 0 through 63, an error
message appears and no action is taken.

If expression evaluates to the null value, the UNLOCK statement fails and the
program terminates with a run-time error message.

Examples
The following example unlocks execution lock 60:

UNLOCK 60

The next example unlocks all locks set during the current login session:

UNLOCK

The next example unlocks lock 50:

X=10
UNLOCK 60-X
BASIC Statements and Functions 6-643

UPCASE function
UPCASE

Syntax
UPCASE (expression)

Description
Use the UPCASE function to change all lowercase letters in expression to uppercase.
If expression evaluates to the null value, null is returned.

UPCASE is equivalent to OCONV ("MCU").

If NLS is enabled, the UPCASE function uses the conventions specified by the
Ctype category for the NLS.LC.CTYPE file to determine what constitutes upper-
case and lowercase. For more information about the NLS.LC.CTYPE file, see the
DataStage NLS Guide.

Example
A="This is an example of the UPCASE function: "
PRINT A
PRINT UPCASE(A)

This is the program output:

This is an example of the UPCASE function:
THIS IS AN EXAMPLE OF THE UPCASE FUNCTION:
6-644 BASIC Guide

UPRINT statement
UPRINT

Syntax

UPRINT [ON print.channel] [print.list]

Description
In NLS mode, use the UPRINT statement to print data that was mapped to an
external format using OCONV mapname. The UPRINT statement subsequently
sends the mapped data to the screen, a line printer, or another print file with no
further mapping.

The ON clause specifies the logical print channel to use for output. print.channel is
an expression that evaluates to a number from –1 through 255. If you do not use
the ON clause, logical print channel 0 is used, which prints to the user’s terminal
if PRINTER OFF is set (see the PRINTER statement). If print.channel evaluates to
the null value, the PRINT statement fails and the program terminates with a run-
time error message. Logical print channel –1 prints the data on the screen, regard-
less of whether a PRINTER ON statement has been executed.

You can specify HEADING, FOOTING, PAGE, andPRINTER CLOSE statements
for each logical print channel. The contents of the print files are printed in order by
logical print channel number.

print.list can contain any BASIC expression. The elements of the list can be numeric
or character strings, variables, constants, or literal strings; the null value, however,
cannot be printed. The list can consist of a single expression or a series of expres-
sions separated by commas (,) or colons (:) for output formatting. If no print.list
is designated, a blank line is printed.

Expressions separated by commas are printed at preset tab positions. The default
tabstop setting is 10 characters. For information about changing the default setting,
see the TABSTOP statement. Use multiple commas together for multiple tabula-
tions between expressions.

Expressions separated by colons are concatenated. That is, the expression
following the colon is printed immediately after the expression preceding the
colon. To print a list without a LINEFEED and RETURN, end print.list with a colon
(:).

If NLS is disabled, the UPRINT statement behaves like the PRINT statement.

For more information about maps, see the DataStage NLS Guide.
BASIC Statements and Functions 6-645

WEOF statement
WEOF

Syntax

WEOF [UNIT (mtu)] {THEN statements [ELSE statements] | ELSE statements}

Description
Use the WEOF statement to write an end-of-file (EOF) mark to tape.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if
no unit is specified.

mtu is an expression that evaluates to a three-digit code (decimal). Although the
mtu expression is a function of the UNIT clause, the WEOF statement uses only the
third digit (the u). Its value must be in the range of 0 through 7 (see the READT
statement for details on the mtu expression). If mtu evaluates to the null value, the
WEOF statement fails and the program terminates with a run-time error message.

Before a WEOF statement is executed, a tape drive unit must be attached
(assigned) to the user. Use the ASSIGN command to assign a tape unit to a user. If
no tape unit is attached or if the unit specification is incorrect, the ELSE statements
are executed.

The STATUS function returns 1 if WEOF takes the ELSE clause, otherwise it returns
0.

Example
WEOF UNIT(007) ELSE PRINT "OPERATION NOT COMPLETED."
6-646 BASIC Guide

WEOFSEQ statement
WEOFSEQ

Syntax

WEOFSEQ file.variable [ON ERROR statements]

Description
Use the WEOFSEQ statement to write an end-of-file (EOF) mark in a file opened
for sequential access. The end-of-file mark is written at the current position and has
the effect of truncating the file at this point. Any subsequent READSEQ statement
has its ELSE statements executed.

file.variable specifies a file opened for sequential access. If file.variable evaluates to
the null value, the WEOFSEQ statement fails and the program terminates with a
run-time error message.

Note: On Windows NT systems, you cannot use the WEOFSEQ statement with a
diskette drive that you opened with the OPENDEV statement. For 1/4-
inch cartridge tape drives (60 MB or 150 MB) you can use WEOFSEQ to
write an end-of-file (EOF) mark at the beginning of the data or after a write.

The ON ERROR Clause

The ON ERROR clause is optional in the WEOFSEQ statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered during processing of the WEOFSEQ statement.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.
BASIC Statements and Functions 6-647

WEOFSEQ statement
If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

See the OPENSEQ, READSEQ, and WRITESEQ statements for more information
about sequential file processing.

Note: Some systems do not support the truncation of disk files. WEOFSEQ is
ignored on these systems, except that WEOFSEQ always works at the
beginning of a file.

Example
The following example writes an end-of-file mark on the record RECORD in the
file TYPE1:

OPENSEQ 'TYPE1','RECORD' TO FILE ELSE STOP
WEOFSEQ FILE
6-648 BASIC Guide

WRITE statements
WRITE

Syntax

WRITE[U] expression {ON | TO} [file.variable,] record.ID

[ON ERROR statements] [LOCKED statements]

[THEN statements] [ELSE statements]

WRITEV[U] expression {ON | TO} [file.variable,] record.ID, field#

[ON ERROR statements] [LOCKED statements]

[THEN statements] [ELSE statements]

Description
Use WRITE statements to write new data to a record in a DataStage file. The value
of expression replaces any data previously stored in the record.

If expression evaluates to the null value, the WRITE statement fails and the program
terminates with a run-time error message.

file.variable specifies an open file. If file.variable is not specified, the default file is
assumed (for more information on default files, see the OPEN statement. If the file
is neither accessible nor open, the program terminates with a run-time error
message, unless ELSE statements are specified.

The system searches the file for the record specified by record.ID. If the record is not
found, WRITE creates a new record.

WRITE WRITEU WRITEV WRITEVU

Effects of WRITE Statements

Use this statement… To do this…

WRITE Write to a record.

WRITEU Write to a record, retaining an update record lock.

WRITEV Write to a field.

WRITEVU Write to a field, retaining an update record lock.
BASIC Statements and Functions 6-649

WRITE statements
If file.variable, record.ID, or field# evaluates to the null value, all WRITE statements
(WRITE, WRITEU, WRITEV, WRITEVU) fail and the program terminates with a
run-time error message.

The new value is written to the record, and the THEN statements are executed. If
no THEN statements are specified, execution continues with the statement
following the WRITE statement. If WRITE fails, the ELSE statements are executed;
any THEN statements are ignored.

When updating a record, the WRITE statement releases the update record lock set
with a READU statement. To maintain the update record lock set by the READU
statement, use a WRITEU statement instead of a WRITE statement.

The WRITE statement does not strip trailing field marks enclosing empty strings
from expression. Use the MATWRITE statement if that operation is required.

Tables. If the file is a table, the effective user of the program must have SQL
INSERT and UPDATE privileges to read records in the file. For information about
the effective user of a program, see the AUTHORIZATION statement.

If the OPENCHK configurable parameter is set to TRUE, or if the file is opened
with the OPENCHECK statement, all SQL integrity constraints are checked for
every write to an SQL table. If an integrity check fails, the WRITE statement uses
the ELSE clause. Use the ICHECK function to determine what specific integrity
constraint caused the failure.

NLS Mode. WRITE and other BASIC statements that perform I/O operations map
internal data to the external character set using the appropriate map for the output
file.

DataStage substitutes the file map’s unknown character for any unmappable char-
acter. The results of the WRITE statements depend on the following:

• The inclusion of the ON ERROR clause
• The setting of the NLSWRITEELSE parameter in the uvconfig file
• The location of the unmappable character

The values returned by the STATUS function and the results are as follows:

STATUS Value and Results
ON ERROR and
Parameter Setting

Unmappable Char-
acter Location

3 The WRITE fails, no records written.
4 The WRITE fails, no records written.

ON ERROR Record ID
Data
6-650 BASIC Guide

WRITE statements
For more information about unmappable characters , see the DataStage NLS Guide.

Use the STATUS function after a WRITE statement is executed, to determine the
result of the operation, as follows:

The ON ERROR Clause

The ON ERROR clause is optional in WRITE statements. Its syntax is the same as
that of the ELSE clause. The ON ERROR clause lets you specify an alternative for
program termination when a fatal error is encountered during processing of the
WRITE statement.

If a fatal error occurs, and the ON ERROR clause was not specified or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.

Program terminates with a run-time error
message.

No ON ERROR, and
NLSWRITEELSE = 1

Record ID or data

Program terminates with a run-time error
message.

Record is written with unknown charac-
ters; lost data.

No ON ERROR,
NLSWRITEELSE = 0

Record ID

Data

0 The record was locked before the WRITE operation.

−2 The record was unlocked before the WRITE operation.

−3 The record failed an SQL integrity check.

−4 The record failed a trigger program.

–6 Failed to write to a published file while the subsystem was shut down.

STATUS Value and Results
ON ERROR and
Parameter Setting

Unmappable Char-
acter Location
BASIC Statements and Functions 6-651

WRITE statements
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

The LOCKED Clause
The LOCKED clause is optional, but recommended. Its format is the same as that
of the ELSE clause.

The LOCKED clause handles a condition caused by a conflicting lock (set by
another user) that prevents the WRITE statement from processing. The LOCKED
clause is executed if one of the following conflicting locks exists:

• Exclusive file lock
• Intent file lock
• Shared file lock
• Update record lock
• Shared record lock

If the WRITE statement does not include a LOCKED clause, and a conflicting lock
exists, the program pauses until the lock is released.

If a LOCKED clause is used, the value returned by the STATUS function is the
terminal number of the user who owns the conflicting lock.

The WRITEU Statement
Use the WRITEU statement to update a record without releasing the update record
lock set by a previous READU statement (see the READ statement). To release the
update record lock set by a READU statement and maintained by a WRITEU state-
ment, you must use a RELEASE, WRITE, MATWRITE, or WRITEV statement. If
you do not explicitly release the lock, the record remains locked until the program
executes the STOP statement. When more than one program or user could modify
the same record, use a READU statement to lock the record before doing the
WRITE or WRITEU.

If expression evaluates to the null value, the WRITEU statement fails and the
program terminates with a run-time error message.
6-652 BASIC Guide

WRITE statements
The WRITEV Statement
Use the WRITEV statement to write a new value to a specified field in a record. The
WRITEV statement requires that field# be specified. field# is the number of the field
to which expression is written. It must be greater than 0. If either the record or the
field does not exist, WRITEV creates them.

If expression evaluates to the null value, null is written to field#, provided that the
field allows nulls. If the file is an SQL table, existing SQL security and integrity
constraints must allow the write.

The WRITEVU Statement
Use the WRITEVU statement to update a specified field in a record without
releasing the update record lock set by a previous READU statement (see the
READ statement). The WRITEVU syntax is like that of the WRITEV and WRITEU
statements.

If expression evaluates to the null value, null is written to field#, provided that the
field allows nulls. If the file is an SQL table, existing SQL security and integrity
constraints must allow the write.

Remote Files. If in a transaction you try to write to a remote file over and the write
statement fails, the transaction is rolled back, and the program terminates with a
run-time error message.

Example
CLEAR
DATA "ELLEN","KRANZER","3 AMES STREET","CAMBRIDGE"
DATA "MA","02139","SAILING"
OPEN '','SUN.MEMBER' TO FILE ELSE

PRINT "COULD NOT OPEN FILE"
STOP

END
PRINT "ENTER YOUR FIRST NAME"
INPUT FNAME
PRINT "ENTER YOUR LAST NAME"
INPUT LNAME
PRINT "ENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)"
PRINT "STREET ADDRESS"
INPUT STREET
PRINT "ENTER CITY"
BASIC Statements and Functions 6-653

WRITE statements
INPUT CITY
PRINT "ENTER STATE"
INPUT STATE
PRINT "ENTER ZIP CODE"
INPUT ZIP
PRINT "ENTER YOUR INTERESTS"
INPUT INTERESTS
RECORD<1>=LNAME
RECORD<2>=FNAME
RECORD<3>=STREET
RECORD<4>=CITY
RECORD<5>=STATE

RECORD<6>=ZIP
RECORD<7>=1989
RECORD<8>=INTERESTS
WRITE RECORD TO FILE, 1111
PRINT
EXECUTE 'LIST SUN.MEMBER LNAME WITH FNAME EQ ELLEN'

This is the program output:

ENTER YOUR FIRST NAME
?ELLEN
ENTER YOUR LAST NAME
?KRANZER
ENTER YOUR ADDRESS (PLEASE WAIT FOR PROMPTS)
STREET ADDRESS
?3 AMES STREET
ENTER CITY
?CAMBRIDGE
ENTER STATE
?MA
ENTER ZIP CODE
?02139
ENTER YOUR INTEREST
?SAILING

SUN.MEMBER LAST NAME.
1111 KRANZER

1 records listed.
6-654 BASIC Guide

WRITEBLK statement
WRITEBLK

Syntax
WRITEBLK expression ON file.variable

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the WRITEBLK statement to write a block of data to a file opened for sequen-
tial processing. Each WRITEBLK statement writes the value of expression starting
at the current position in the file. The current position is incremented to beyond the
last byte written. WRITEBLK does not add a newline at the end of the data.

file.variable specifies a file opened for sequential processing.

Note: On Windows NT systems, if you use the WRITEBLK statement to write to
a 1/4-inch cartridge tape (60 MB or 150 MB) that you opened with the
OPENDEV statement, you must specify the block size as 512 bytes or a
multiple of 512 bytes.

The value of expression is written to the file, and the THEN statements are executed.
If no THEN statements are specified, program execution continues with the next
statement. If the file cannot be accessed or does not exist, the ELSE statements are
executed; any THEN statements are ignored.

If either expression or file.variable evaluates to the null value, the WRITEBLK state-
ment fails and the program terminates with a run-time error message.

If NLS is enabled, the data written is mapped using the appropriate output file
map. For more information about maps, see the DataStage NLS Guide.
BASIC Statements and Functions 6-655

WRITEBLK statement
Example
OPENSEQ 'FILE.E','RECORD4' TO FILE ELSE ABORT
WEOFSEQ FILE
DATA1='ONE'
DATA2='TWO'
*
WRITEBLK DATA1 ON FILE ELSE ABORT
WRITEBLK DATA2 ON FILE ELSE ABORT
* These two lines write two items to RECORD4 in FILE.E without
* inserting a newline between them.
WEOFSEQ FILE
SEEK FILE,0,0 ELSE STOP
READSEQ A FROM FILE THEN PRINT A
* This reads and prints the line just written to the file.

This is the program output:

ONETWO
6-656 BASIC Guide

WRITELIST statement
WRITELIST

Syntax
WRITELIST dynamic.array ON listname

Description
Use the WRITELIST statement to save a list as a record in the &SAVEDLISTS& file.

dynamic.array is an expression that evaluates to a string made up of elements sepa-
rated by field marks. It is the list to be saved.

listname is an expression that evaluates to

record.ID

or

record.ID account.name

record.ID is the record ID of the select list created in the &SAVEDLISTS& file. If list-
name includes account.name, the &SAVEDLISTS& file of the specified account is
used instead of the one in the local account. If record.ID exists, WRITELIST over-
writes the contents of the record.

If either dynamic.array or listname evaluates to the null value, the WRITELIST state-
ment fails and the program terminates with a run-time error message.
BASIC Statements and Functions 6-657

WRITESEQ statement
WRITESEQ

Syntax

WRITESEQ expression {ON | TO} file.variable [ON ERROR statements]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the WRITESEQ statement to write new lines to a file opened for sequential
processing. DataStage keeps a pointer to the current position in the file while it is
open for sequential processing. The OPENSEQ statement sets this pointer to the
first byte of the file, and it is advanced by theREADSEQ, READBLK, WRITESEQ,
and WRITEBLK statements.

WRITESEQ writes the value of expression followed by a newline to the file. The
data is written at the current position in the file. The pointer is set to the position
following the newline. If the pointer is not at the end of the file, WRITESEQ over-
writes any existing data byte by byte (including the newline), starting from the
current position.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN state-
ments are executed. If THEN statements are not specified, program execution
continues with the next statement. If the specified file cannot be accessed or does
not exist, the ELSE statements are executed; any THEN statements are ignored.

If expression or file.variable evaluates to the null value, the WRITESEQ statement
fails and the program terminates with a run-time error message.

After executing a WRITESEQ statement, you can use the STATUS function to
determine the result of the operation:

File Buffering
Normally DataStage uses buffering for sequential input and output operations. If
you use the NOBUF statement after an OPENSEQ statement, buffering is turned
off and writes resulting from the WRITESEQ statement are performed right away.

0 The record was locked before the WRITESEQ operation.

−2 The record was unlocked before the WRITESEQ operation.
6-658 BASIC Guide

WRITESEQ statement
You can also use the FLUSH statement after a WRITESEQ statement to cause all
buffers to be written right away.

For more information about buffering, see the FLUSH and NOBUF statements.

The ON ERROR Clause
The ON ERROR clause is optional in the WRITESEQ statement. The ON ERROR
clause lets you specify an alternative for program termination when a fatal error is
encountered while the WRITESEQ statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

If NLS is enabled, WRITESEQ and other BASIC statements that perform I/O oper-
ations always map internal data to the external character set using the appropriate
map for the output file. For more information about maps, see the DataStage NLS
Guide.

Example
DATA 'NEW ITEM 1', 'NEW ITEM 2'
OPENSEQ 'FILE.E', 'RECORD1' TO FILE ELSE ABORT
READSEQ A FROM FILE ELSE STOP
*
FOR I=1 TO 2

INPUT B
BASIC Statements and Functions 6-659

WRITESEQ statement
WRITESEQ B TO FILE THEN PRINT B ELSE STOP
NEXT
*

CLOSESEQ FILE
END

This is the program output:

?NEW ITEM 1
NEW ITEM 1
?NEW ITEM 2
NEW ITEM 2
6-660 BASIC Guide

WRITESEQF statement
WRITESEQF

Syntax

WRITESEQF expression {ON | TO} file.variable [ON ERROR statements]

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the WRITESEQF statement to write new lines to a file opened for sequential
processing, and to ensure that data is physically written to disk (that is, not buff-
ered) before the next statement in the program is executed. The sequential file must
be open, and the end-of-file marker must be reached before you can write to the
file. You can use the FILEINFO function to determine the number of the line about
to be written.

Normally, when you write a record using the WRITESEQ statement, the record is
moved to a buffer that is periodically written to disk. If a system failure occurs, you
could lose all the updated records in the buffer. The WRITESEQF statement forces
the buffer contents to be written to disk; the program does not execute the state-
ment following the WRITESEQF statement until the buffer is successfully written
to disk. A WRITESEQF statement following several WRITESEQ statements
ensures that all buffered records are written to disk.

WRITESEQF is intended for logging applications and should not be used for
general programming. It increases the disk I/O of your program and therefore
degrades performance.

file.variable specifies a file opened for sequential access.

The value of expression is written to the file as the next line, and the THEN state-
ments are executed. If THEN statements are not specified, program execution
continues with the next statement. If the specified file cannot be accessed or does
not exist, the ELSE statements are executed; any THEN statements are ignored.

If expression or file.variable evaluates to the null value, the WRITESEQF statement
fails and the program terminates with a run-time error message.

If NLS is enabled, WRITESEQF and other BASIC statements that perform I/O
operations always map internal data to the external character set using the appro-
priate map for the output file. For more information about maps, see the DataStage
NLS Guide.
BASIC Statements and Functions 6-661

WRITESEQF statement
The ON ERROR Clause
The ON ERROR clause is optional in the WRITESEQF statement. Its syntax is the
same as that of the ELSE clause. The ON ERROR clause lets you specify an alter-
native for program termination when a fatal error is encountered while the
WRITESEQF statement is being processed.

If a fatal error occurs, and the ON ERROR clause was not specified, or was ignored
(as in the case of an active transaction), the following occurs:

• An error message appears.

• Any uncommitted transactions begun within the current execution envi-
ronment roll back.

• The current program terminates.

• Processing continues with the next statement of the previous execution
environment, or the program returns to the command prompt.

A fatal error can occur if any of the following occur:

• A file is not open.
• file.variable is the null value.
• A distributed file contains a part file that cannot be accessed.

If the ON ERROR clause is used, the value returned by the STATUS function is the
error number.

Values Returned by the FILEINFO Function
Key 14 (FINFO$CURRENTLINE) of the FILEINFO function can be used to deter-
mine the number of the line about to be written to the file.

Example
In the following example, the print statement following the WRITESEQF state-
ment is not executed until the record is physically written to disk:

WRITESEQF ACCOUNT.REC TO ACCOUNTS.FILE
THEN WRITTEN = TRUE
ELSE STOP "ACCOUNTS.FILE FORCE WRITE ERROR"

PRINT "Record written to disk."
6-662 BASIC Guide

WRITET statement
WRITET

Syntax

WRITET [UNIT (mtu)] variable

{THEN statements [ELSE statements] | ELSE statements}

Description
Use the WRITET statement to write a tape record on a magnetic tape. The value of
variable becomes the next tape record. variable is an expression that evaluates to the
text to be written to tape.

The UNIT clause specifies the number of the tape drive unit. Tape unit 0 is used if
no unit is specified. If the UNIT clause is used, mtu is an expression that evaluates
to a code made up of three decimal digits, as shown in the following table:

The mtu expression is read from right to left. If mtu evaluates to a one-digit code, it
represents the tape unit number. If mtu evaluates to a two-digit code, the rightmost
digit represents the unit number and the digit to its left is the track number.

If either mtu or variable evaluates to the null value, the WRITET statement fails and
the program terminates with a run-time error message.

Each tape record is written completely before the next record is written. The
program waits for the completion of data transfer to the tape before continuing.

Before a WRITET statement is executed, a tape drive unit must be attached
(assigned) to the user. Use the ASSIGN command to assign a tape unit to a user. If
no tape drive unit is attached or if the unit specification is incorrect, the ELSE state-
ments are executed.

mtu Codes

Code Available Options

m (mode) 0 = No conversion
1 = EBCDIC conversion
2 = Invert high bit
3 = Invert high bit and EBCDIC conversion

t (tracks) 0 = 9 tracks. Only 9-track tapes are supported.

u (unit number) 0 through 7
BASIC Statements and Functions 6-663

WRITET statement
The largest record that the WRITET statement can write is system-dependent. If
the actual record is larger, bytes beyond the system byte limit are not written.

Note: DataStage BASIC does not generate tape labels for the tape file produced
with the WRITET statement.

The STATUS function returns 1 if READT takes the ELSE clause, otherwise it
returns 0.

If NLS is enabled, WRITET and other BASIC statements that perform I/O opera-
tions always map external data to the internal character set using the appropriate
map for the file. The map defines the external character set for the file that is used
to input data on a keyboard, display data on a screen, and so on. For more infor-
mation about maps, see the DataStage NLS Guide.

PIOPEN Flavor
If you have a program that specifies the syntax UNIT ndmtu, the nd elements are
ignored by the compiler and no errors are reported.

Examples
The following example writes a record to tape drive 0:

RECORD=1S2S3S4
WRITET RECORD ELSE PRINT "COULD NOT WRITE TO TAPE"

The next example writes the numeric constant 50 to tape drive 2, a 9-track tape
with no conversion:

WRITET UNIT(002) "50" ELSE PRINT "COULD NOT WRITE"
6-664 BASIC Guide

WRITEU statement
WRITEU
Use the WRITEU statement to maintain an update record lock while performing
the WRITE statement. For details, see the WRITE statement.
BASIC Statements and Functions 6-665

WRITEV statement
Use the WRITEV statement to write on the contents of a specified field of a record
of a DataStage file. For details, see the WRITE statement.
6-666 BASIC Guide

Use the WRITEVU statement to maintain an update record lock while writing on
the contents of a specified field of a record of a DataStage file. For details, see the
WRITE statement.
BASIC Statements and Functions 6-667

XLATE

Syntax

XLATE ([DICT] filename, record.ID, field#, control.code)

Description
Use the XLATE function to return the contents of a field or a record in a DataStage
file. XLATE opens the file, reads the record, and extracts the specified data.

filename is an expression that evaluates to the name of the remote file. If XLATE
cannot open the file, a run-time error occurs, and XLATE returns an empty string.

record.ID is an expression that evaluates to the ID of the record to be accessed. If
record.ID is multivalued, the translation occurs for each record ID and the result is
multivalued (system delimiters separate data translated from each record).

field# is an expression that evaluates to the number of the field from which the data
is to be extracted. If field# is −1, the entire record is returned, except for the
record ID.

control.code is an expression that evaluates to a code specifying what action to take
if data is not found or is the null value. The possible control codes are:

The returned value is lowered. For example, value marks in the original field
become subvalue marks in the returned value. For more information, see the
LOWER function.

If filename, record.ID, or field# evaluates to the null value, the XLATE function fails
and the program terminates with a run-time error message. If control.code evaluates
to the null value, null is ignored and X is used.

The XLATE function is the same as the TRANS function.

X (default) Returns an empty string if the record does not exist or data cannot
be found.

V Returns an empty string and produces an error message if the record does not
exist or data cannot be found.

C Returns the value of record.ID if the record does not exist or data cannot be
found.

N Returns the value of record.ID if the null value is found.
6-668 BASIC Guide

Example
X=XLATE("VOC","EX.BASIC",1,"X")
PRINT "X= ":X
*
FIRST=XLATE("SUN.MEMBER","6100",2,"X")

LAST=XLATE("SUN.MEMBER","6100",1,"X")
PRINT "NAME IS ":FIRST:" ":LAST

This is the program output:

X= F BASIC examples file
NAME IS BOB MASTERS
BASIC Statements and Functions 6-669

XTD

Syntax
XTD (string)

Description
Use the XTD function to convert a string of hexadecimal characters to an integer. If
string evaluates to the null value, null is returned.

Example
Y = "0019"
Z = XTD (Y)
PRINT Z

This is the program output:

25
6-670 BASIC Guide

BASIC Statements and Functions 6-671

6-672 BASIC Guide

A
Quick Reference

This appendix is a quick reference for all DataStage BASIC statements and func-
tions. The statements and functions are grouped according to their uses:

• Compiler directives
• Declarations
• Assignments
• Program flow control
• File I/O
• Sequential file I/O
• Printer and terminal I/O
• Tape I/O
• Select lists
• String handling
• Data conversion and formatting
• NLS
• Mathematical functions
• Relational functions
• System
• Remote procedure calls
• Miscellaneous

Compiler Directives
* Identifies a line as a comment line. Same as the !, $*, and REM

statements.

! Identifies a line as a comment line. Same as the *, $*, and REM
statements.
Quick Reference A-1

#INCLUDE Inserts and compiles DataStage BASIC source code from
another program into the program being compiled. Same as
the $INCLUDE and INCLUDE statements.

$* Identifies a line as a comment line. Same as the *, !, and REM
statements.

$CHAIN Inserts and compiles DataStage BASIC source code from
another program into the program being compiled.

$COPYRIGHT Inserts comments into the object code header. (DataStage
supports this statement for compatibility with existing
software.)

$DEFINE Defines a compile time symbol.

$EJECT Begins a new page in the listing record. (DataStage supports
this statement for compatibility with existing software.) Same
as the $PAGE statement.

$IFDEF Tests for the definition of a compile time symbol.

$IFNDEF Tests for the definition of a compile time symbol.

$INCLUDE Inserts and compiles DataStage BASIC source code from
another program into the program being compiled. Same as
the #INCLUDE and INCLUDE statements.

$INSERT Performs the same operation as $INCLUDE; the only differ-
ence is in the syntax. (DataStage supports this statement for
compatibility with existing software.)

$MAP In NLS mode, specifies the map for the source code.

$OPTIONS Sets compile time emulation of flavors.

$PAGE Begins a new page in the listing record. (DataStage supports
this statement for compatibility with existing software.) Same
as the $EJECT statement.

EQUATE Assigns a symbol as the equivalent of a variable, function,
number, character, or string.

INCLUDE Inserts and includes the specified BASIC source code from
another program into the program being compiled. Same as
the #INCLUDE and $INCLUDE statements.

NULL Indicates that no operation is to be performed.
A-2 BASIC Guide

REM Identifies a line as a comment line. Same as the *, !, and $*
statements.

$UNDEFINE Removes the definition for a compile time symbol.

Declarations
COMMON Defines a storage area in memory for variables commonly

used by programs and external subroutines.

DEFFUN Defines a user-written function.

DIMENSION Declares the name, dimensionality, and size constraints of an
array variable.

FUNCTION Identifies a user-written function.

PROGRAM Identifies a program.

SUBROUTINE Identifies a series of statements as a subroutine.

Assignments
ASSIGNED() Determines if a variable is assigned a value.

CLEAR Assigns a value of 0 to specified variables.

LET Assigns a value to a variable.

MAT Assigns a new value to every element of an array with one
statement.

UNASSIGNED() Determines if a variable is unassigned.

Program Flow Control
ABORT Terminates all programs and returns to the command level.

BEGIN CASE Indicates the beginning of a set of CASE statements.

CALL Executes an external subroutine.

CASE Alters program flow based on the results returned by
expressions.

CHAIN Terminates a BASIC program and executes a command.

CONTINUE Transfers control to the next logical iteration of a loop.
Quick Reference A-3

END Indicates the end of a program or a block of statements.

END CASE Indicates the end of a set of CASE statements.

ENTER Executes an external subroutine.

EXECUTE Executes sentences and paragraphs from within the BASIC
program.

EXIT Quits execution of a LOOP…REPEAT loop and branches to
the statement following the REPEAT statement.

Allows a series of instructions to be performed in a loop a
given number of times.

GOSUB Branches to and returns from an internal subroutine.

GOTO Branches unconditionally to a specified statement within the
program or subroutine.

IF Determines program flow based on the evaluation of an
expression.

LOOP Repeatedly executes a sequence of statements under specified
conditions.

NEXT Defines the end of a FOR…NEXT loop.

ON Transfers program control to a specified internal subroutine
or to a specified statement, under specified conditions.

PERFORM Executes a specified sentence, paragraph, menu, or command
from within the BASIC program, and then returns execution
to the statement following the PERFORM statement.

REPEAT Repeatedly executes a sequence of statements under specified
conditions.

RETURN Transfers program control from an internal or external
subroutine back to the calling program.

RETURN (value) Returns a value from a user-written function.

STOP Terminates the current program.

SUBR() Returns the value of an external subroutine.

WHILE…UNTIL Provides conditions under which the LOOP…REPEAT state-
ment or FOR…NEXT statement terminates.
A-4 BASIC Guide

File I/O
AUTHORIZATION

Specifies the effective run-time UID (user identification)
number of the program.

BEGIN TRANSACTION
Indicates the beginning of a set of statements that make up a
single transaction.

BSCAN Scans the leaf-nodes of a B-tree file (type 25) or a secondary
index.

CLEARFILE Erases all records from a file.

CLOSE Writes data written to the file physically on the disk and
releases any file or update locks.

COMMIT Commits all changes made during a transaction, writing them
to disk.

DELETE Deletes a record from a DataStage file.

DELETEU Deletes a record from a previously opened file.

END TRANSACTION
Indicates where execution should continue after a transaction
terminates.

FILELOCK Sets a file update lock on an entire file to prevent other users
from updating the file until this program releases it.

FILEUNLOCK Releases file locks set by the FILELOCK statement.

INDICES() Returns information about the secondary key indexes in a file.

MATREAD Assigns the data stored in successive fields of a record from a
DataStage file to the consecutive elements of an array.

MATREADL Sets a shared read lock on a record, then assigns the data
stored in successive fields of the record to the consecutive
elements of an array.

MATREADU Sets an exclusive update lock on a record, then assigns the
data stored in successive fields of the record to the consecutive
elements of an array.

MATWRITE Assigns the data stored in consecutive elements of an array to
the successive fields of a record in a DataStage file.
Quick Reference A-5

MATWRITEU Assigns the data stored in consecutive elements of an array to
the successive fields of a record in a DataStage file, retaining
any update locks set on the record.

OPEN Opens a DataStage file to be used in a BASIC program.

OPENPATH Opens a file to be used in a BASIC program.

PROCREAD Assigns the contents of the primary input buffer of the proc to
a variable.

PROCWRITE Writes the specified string to the primary input buffer of the
proc that called your BASIC program.

READ Assigns the contents of a record to a dynamic array variable.

READL Sets a shared read lock on a record, then assigns the contents
of the record to a dynamic array variable.

READU Sets an exclusive update lock on a record, then assigns the
contents of the record to a dynamic array variable.

READV Assigns the contents of a field of a record to a dynamic array
variable.

READVL Sets a shared read lock on a record, then assigns the contents
of a field of a record to a dynamic array variable.

READVU Sets an exclusive update lock on a record, then assigns the
contents of a field of the record to a dynamic array variable.

RECORDLOCK()
Establishes whether or not a record is locked by a user.

RECORDLOCKL Sets a shared read-only lock on a record in a file.

RECORDLOCKU Locks the specified record to prevent other users from
accessing it.

RELEASE Unlocks records locked by READL, READU, READVL,
READVU, MATREADL, MATREADU, MATWRITEV,
WRITEV, or WRITEVU statements.

ROLLBACK Rolls back all changes made during a transaction. No changes
are written to disk.

SET TRANSACTION ISOLATION LEVEL
Sets the default transaction isolation level for your program.

TRANS() Returns the contents of a field in a record of a DataStage file.
A-6 BASIC Guide

TRANSACTION ABORT
Discards changes made during a transaction. No changes are
written to disk.

TRANSACTION COMMIT
Commits all changes made during a transaction, writing them
to disk.

TRANSACTION START
Indicates the beginning of a set of statements that make up a
single transaction.

WRITE Replaces the contents of a record in a DataStage file.

WRITEU Replaces the contents of the record in a DataStage file without
releasing the record lock.

WRITEV Replaces the contents of a field of a record in a DataStage file.

WRITEVU Replaces the contents of a field in the record without releasing
the record lock.

XLATE() Returns the contents of a field in a record of a DataStage file.

Sequential File I/O
CLOSESEQ Writes an end-of-file mark at the current location in the record

and then makes the record available to other users.

CREATE Creates a record in a DataStage type 1 or type 19 file or estab-
lishes a path.

FLUSH Immediately writes all buffers.

GET Reads a block of data from an input stream associated with a
device, such as a serial line or terminal.

GETX Reads a block of data from an input stream associated with a
device, and returns the characters in ASCII hexadecimal
format.

NOBUF Turns off buffering for a sequential file.

OPENSEQ Prepares a DataStage file for sequential use by the BASIC
program.

READBLK Reads a block of data from a DataStage file open for sequential
processing and assigns it to a variable.
Quick Reference A-7

READSEQ Reads a line of data from a DataStage file opened for sequen-
tial processing and assigns it to a variable.

SEND Writes a block of data to a device that has been opened for I/O
using OPENDEV or OPENSEQ.

STATUS Determines the status of a DataStage file open for sequential
processing.

TIMEOUT Terminates READSEQ or READBLK if no data is read in the
specified time.

TTYCTL Controls sequential file interaction with a terminal device.

TTYGET Gets a dynamic array of the terminal characteristics of a
terminal, line printer channel, or magnetic tape channel.

TTYSET Sets the terminal characteristics of a terminal, line printer
channel, or magnetic tape channel.

WEOFSEQ Writes an end-of-file mark to a DataStage file open for sequen-
tial processing at the current position.

WRITEBLK Writes a block of data to a record in a sequential file.

WRITESEQ Writes new values to the specified record of a DataStage file
sequentially.

WRITESEQF Writes new values to the specified record of a DataStage file
sequentially and ensures that the data is written to disk.

Printer and Terminal I/O
@() Returns an escape sequence used for terminal control.

BREAK Enables or disables the Break key on the keyboard.

CLEARDATA Clears all data previously stored by the DATA statement.

CRC32 Outputs data to the screen.

DATA Stores values to be used in subsequent requests for data input.

DISPLAY Outputs data to the screen.

ECHO Controls the display of input characters on the terminal
screen.

FOOTING Specifies text to be printed at the bottom of each page.
A-8 BASIC Guide

HEADING Specifies text to be printed at the top of each page.

HUSH Suppresses all text normally sent to a terminal during
processing.

INPUT Allows data input from the keyboard during program
execution.

INPUT @ Positions the cursor at a specified location and defines the
length of the input field.

INPUTCLEAR Clears the type-ahead buffer.

INPUTDISP @ Positions the cursor at a specified location and defines a
format for the variable to print.

INPUTERR Prints a formatted error message from the ERRMSG file on the
bottom line of the terminal.

INPUTNULL Defines a single character to be recognized as the empty string
in an INPUT @ statement.

INPUTTRAP Branches to a program label or subroutine on a TRAP key.

KEYEDIT Assigns specific editing functions to the keys on the keyboard
to be used with the INPUT statement.

KEYEXIT Specifies exit traps for the keys assigned editing functions by
the KEYEDIT statement.

KEYIN() Reads a single character from the input buffer and returns it.

KEYTRAP Specifies traps for the keys assigned specific functions by the
KEYEDIT statement.

OPENDEV Opens a device for input or output.

PAGE Prints a footing at the bottom of the page, advances to the next
page, and prints a heading at the top.

PRINT Outputs data to the terminal screen or to a printer.

PRINTER CLOSE Indicates the completion of a print file and readiness for the
data stored in the system buffer to be printed on the line
printer.

PRINTER ON | OFF
Indicates whether print file 0 is to output to the terminal
screen or to the line printer.

PRINTER RESET Resets the printing options.
Quick Reference A-9

PRINTERR Prints a formatted error message from the ERRMSG file on the
bottom line of the terminal.

PROMPT Defines the prompt character for user input.

TABSTOP Sets the current tabstop width for PRINT statements.

TERMINFO() Accesses the information contained in the terminfo files.

TPARM() Evaluates a parameterized terminfo string.

TPRINT Sends data with delays to the screen, a line printer, or another
specified print file (that is, a logical printer).

Tape I/O
READT Assigns the contents of the next record from a magnetic tape

unit to the named variable.

REWIND Rewinds the magnetic tape to the beginning of the tape.

WEOF Writes an end-of-file mark to a magnetic tape.

WRITET Writes the contents of a record onto magnetic tape.

Select Lists
CLEARSELECT Sets a select list to empty.

DELETELIST Deletes a select list saved in the &SAVEDLISTS& file.

GETLIST Activates a saved select list so it can be used by a READNEXT
statement.

READLIST Assigns an active select list to a variable.

READNEXT Assigns the next record ID from an active select list to a
variable.

SELECT Creates a list of all record IDs in a DataStage file for use by a
subsequent READNEXT statement.

SELECTE Assigns the contents of select list 0 to a variable.

SELECTINDEX Creates select lists from secondary key indexes.

SELECTINFO() Returns the activity status of a select list.

SSELECT Creates a sorted list of all record IDs from a DataStage file.
A-10 BASIC Guide

WRITELIST Saves a list as a record in the &SAVEDLISTS& file.

String Handling
ALPHA() Determines whether the expression is an alphabetic or nonal-

phabetic string.

CATS() Concatenates elements of two dynamic arrays.

CHANGE() Substitutes an element of a string with a replacement element.

CHECKSUM() Returns a cyclical redundancy code (a checksum value).

COL1() Returns the column position immediately preceding the
selected substring after a BASIC FIELD function is executed.

COL2() Returns the column position immediately following the
selected substring after a BASIC FIELD function is executed.

COMPARE() Compares two strings for sorting.

CONVERT Converts specified characters in a string to designated
replacement characters.

CONVERT() Replaces every occurrence of specified characters in a variable
with other specified characters.

COUNT() Evaluates the number of times a substring is repeated in a
string.

CRC32() Returns a 32-bit cyclic redundancy code.

COUNTS() Evaluates the number of times a substring is repeated in each
element of a dynamic array.

DCOUNT() Evaluates the number of delimited fields contained in a string.

DEL Deletes the specified field, value, or subvalue from a dynamic
array.

DELETE() Deletes a field, value, or subvalue from a dynamic array.

DOWNCASE() Converts all uppercase letters in an expression to lowercase.

DQUOTE() Encloses an expression in double quotation marks.

EREPLACE() Substitutes an element of a string with a replacement element.

EXCHANGE() Replaces one character with another or deletes all occurrences
of a specific character.
Quick Reference A-11

EXTRACT() Extracts the contents of a specified field, value, or subvalue
from a dynamic array.

FIELD() Examines a string expression for any occurrence of a specified
delimiter and returns a substring that is marked by that
delimiter.

FIELDS() Examines each element of a dynamic array for any occurrence
of a specified delimiter and returns substrings that are
marked by that delimiter.

FIELDSTORE() Replaces, deletes, or inserts substrings in a specified character
string.

FIND Locates a given occurrence of an element within a dynamic
array.

FINDSTR Locates a given occurrence of a substring.

FOLD() Divides a string into a number of shorter sections.

GETREM() Returns the numeric value for the position of the REMOVE
pointer associated with a dynamic array.

GROUP() Returns a substring that is located between the stated number
of occurrences of a delimiter.

GROUPSTORE Modifies existing character strings by inserting, deleting, or
replacing substrings that are separated by a delimiter
character.

INDEX() Returns the starting column position of a specified occurrence
of a particular substring within a string expression.

INDEXS() Returns the starting column position of a specified occurrence
of a particular substring within each element of a dynamic
array.

INS Inserts a specified field, value, or subvalue into a dynamic
array.

INSERT() Inserts a field, value, or subvalue into a dynamic array.

LEFT() Specifies a substring consisting of the first n characters of a
string.

LEN() Calculates the length of a string.

LENS() Calculates the length of each element of a dynamic array.
A-12 BASIC Guide

LOCATE Searches a dynamic array for a particular value or string, and
returns the index of its position.

LOWER() Converts system delimiters that appear in expressions to the
next lower-level delimiter.

MATBUILD Builds a string by concatenating the elements of an array.

MATCHFIELD() Returns the contents of a substring that matches a specified
pattern or part of a pattern.

MATPARSE Assigns the elements of an array from the elements of a
dynamic array.

QUOTE() Encloses an expression in double quotation marks.

RAISE() Converts system delimiters that appear in expressions to the
next higher-level delimiter.

REMOVE StatementRemoves substrings from a dynamic array.

REMOVE function Successively removes elements from a dynamic array.
Extracts successive fields, values, etc., for dynamic array
processing.

REVREMOVE statement
Successively removes elements from a dynamic array, starting
from the last element and moving right to left. Extracts succes-
sive fields, values, etc., for dynamic array processing.

REPLACE() Replaces all or part of the contents of a dynamic array.

REUSE() Reuses the last value in the shorter of two multivalue lists in
a dynamic array operation.

RIGHT() Specifies a substring consisting of the last n characters of a
string.

SETREM Sets the position of the REMOVE pointer associated with a
dynamic array.

SOUNDEX() Returns the soundex code for a string.

SPACE() Generates a string consisting of a specified number of blank
spaces.

SPACES() Generates a dynamic array consisting of a specified number of
blank spaces for each element.
Quick Reference A-13

SPLICE() Inserts a string between the concatenated values of corre-
sponding elements of two dynamic arrays.

SQUOTE() Encloses an expression in single quotation marks.

STR() Generates a particular character string a specified number of
times.

STRS() Generates a dynamic array whose elements consist of a char-
acter string repeated a specified number of times.

SUBSTRINGS() Creates a dynamic array consisting of substrings of the
elements of another dynamic array.

TRIM() Deletes extra blank spaces and tabs from a character string.

TRIMB() Deletes all blank spaces and tabs after the last nonblank char-
acter in an expression.

TRIMBS() Deletes all trailing blank spaces and tabs from each element of
a dynamic array.

TRIMF() Deletes all blank spaces and tabs up to the first nonblank char-
acter in an expression.

TRIMFS() Deletes all leading blank spaces and tabs from each element of
a dynamic array.

TRIMS() Deletes extra blank spaces and tabs from the elements of a
dynamic array.

UPCASE() Converts all lowercase letters in an expression to uppercase.

Data Conversion and Formatting
ASCII() Converts EBCDIC representation of character string data to

the equivalent ASCII character code values.

CHAR() Converts a numeric value to its ASCII character string
equivalent.

CHARS() Converts numeric elements of a dynamic array to their ASCII
character string equivalents.

DTX() Converts a decimal integer into its hexadecimal equivalent.

EBCDIC() Converts data from its ASCII representation to the equivalent
code value in EBCDIC.
A-14 BASIC Guide

FIX() Rounds an expression to a decimal number having the accu-
racy specified by the PRECISION statement.

FMT() Converts data from its internal representation to a specified
format for output.

FMTS() Converts elements of a dynamic array from their internal
representation to a specified format for output.

ICONV() Converts data to internal storage format.

ICONVS() Converts elements of a dynamic array to internal storage
format.

OCONV() Converts data from its internal representation to an external
output format.

OCONVS() Converts elements of a dynamic array from their internal
representation to an external output format.

PRECISION Sets the maximum number of decimal places allowed in the
conversion from the internal binary format of a numeric value
to the string representation.

SEQ() Converts an ASCII character code value to its corresponding
numeric value.

SEQS() Converts each element of a dynamic array from an ASCII
character code to a corresponding numeric value.

XTD() Converts a hexadecimal string into its decimal equivalent.

NLS
$MAP Directs the compiler to specify the map for the source code.

AUXMAP Assigns the map for the auxiliary printer to print unit 0 (i.e.,
the terminal).

BYTE() Generates a string made up of a single byte.

BYTELEN() Generates the number of bytes contained in the string value in
an expression.

BYTETYPE() Determines the function of a byte in a character.

BYTEVAL() Retrieves the value of a byte in a string value in an expression.
Quick Reference A-15

FMTDP() Formats data for output in display positions rather than char-
acter lengths.

FMTSDP() Formats elements of a dynamic array for output in display
positions rather than character lengths.

FOLDDP() Divides a string into a number of substrings separated by field
marks, in display positions rather than character lengths.

GETLOCALE() Retrieves the names of specified categories of the current
locale.

INPUTDP Lets the user enter data in display positions rather than char-
acter lengths.

LENDP() Returns the number of display positions in a string.

LENSDP() Returns a dynamic array of the number of display positions in
each element of a dynamic array.

LOCALEINFO() Retrieves the settings of the current locale.

SETLOCALE() Changes the setting of one or all categories for the current
locale.

UNICHAR() Generates a character from a Unicode integer value.

UNICHARS() Generates a dynamic array from an array of Unicode values.

UNISEQ() Generates a Unicode integer value from a character.

UNISEQS() Generates an array of Unicode values from a dynamic array.

UPRINT Prints data without performing any mapping. Typically used
with data that has already been mapped using OCONV
(mapname).

Mathematical Functions
ABS() Returns the absolute (positive) numeric value of an

expression.

ABSS() Creates a dynamic array containing the absolute values of a
dynamic array.

ACOS() Calculates the trigonometric arc-cosine of an expression.

ADDS() Adds elements of two dynamic arrays.

ASIN() Calculates the trigonometric arc-sine of an expression.
A-16 BASIC Guide

ATAN() Calculates the trigonometric arctangent of an expression.

BITAND() Performs a bitwise AND of two integers.

BITNOT() Performs a bitwise NOT of two integers.

BITOR() Performs a bitwise OR of two integers.

BITRESET() Resets one bit of an integer.

BITSET() Sets one bit of an integer.

BITTEST() Tests one bit of an integer.

BITXOR() Performs a bitwise XOR of two integers.

COS() Calculates the trigonometric cosine of an angle.

COSH() Calculates the hyperbolic cosine of an expression.

DIV() Outputs the whole part of the real division of two real
numbers.

DIVS() Divides elements of two dynamic arrays.

EXP() Calculates the result of base 'e' raised to the power designated
by the value of the expression.

INT() Calculates the integer numeric value of an expression.

FADD() Performs floating-point addition on two numeric values. This
function is provided for compatibility with existing software.

FDIV() Performs floating-point division on two numeric values.

FFIX() Converts a floating-point number to a string with a fixed
precision. FFIX is provided for compatibility with existing
software.

FFLT() Rounds a number to a string with a precision of 14.

FMUL() Performs floating-point multiplication on two numeric
values. This function is provided for compatibility with
existing software.

FSUB() Performs floating-point subtraction on two numeric values.

LN() Calculates the natural logarithm of an expression in base 'e'.

MAXIMUM() Returns the element with the highest numeric value in a
dynamic array.
Quick Reference A-17

MINIMUM() Returns the element with the lowest numeric value in a
dynamic array.

MOD() Calculates the modulo (the remainder) of two expressions.

MODS() Calculates the modulo (the remainder) of elements of two
dynamic arrays.

MULS() Multiplies elements of two dynamic arrays.

NEG() Returns the arithmetic additive inverse of the value of the
argument.

NEGS() Returns the negative numeric values of elements in a dynamic
array. If the value of an element is negative, the returned value
is positive.

NUM() Returns true (1) if the argument is a numeric data type; other-
wise, returns false (0).

NUMS() Returns true (1) for each element of a dynamic array that is a
numeric data type; otherwise, returns false (0).

PWR() Calculates the value of an expression when raised to a speci-
fied power.

RANDOMIZESyntaxInitializes the RND function to ensure that the same
sequence of random numbers is generated after initialization.

REAL() Converts a numeric expression into a real number without
loss of accuracy.

REM() Calculates the value of the remainder after integer division is
performed.

RND() Generates a random number between zero and a specified
number minus one.

SADD() Adds two string numbers and returns the result as a string
number.

SCMP() Compares two string numbers.

SDIV() Outputs the quotient of the whole division of two integers.

SIN() Calculates the trigonometric sine of an angle.

SINH() Calculates the hyperbolic sine of an expression.

SMUL() Multiplies two string numbers.
A-18 BASIC Guide

SQRT() Calculates the square root of a number.

SSUB() Subtracts one string number from another and returns the
result as a string number.

SUBS() Subtracts elements of two dynamic arrays.

SUM() Calculates the sum of numeric data within a dynamic array.

SUMMATION() Adds the elements of a dynamic array.

TAN() Calculates the trigonometric tangent of an angle.

TANH() Calculates the hyperbolic tangent of an expression.

Relational Functions
ANDS() Performs a logical AND on elements of two dynamic arrays.

EQS() Compares the equality of corresponding elements of two
dynamic arrays.

GES() Indicates when elements of one dynamic array are greater
than or equal to corresponding elements of another dynamic
array.

GTS() Indicates when elements of one dynamic array are greater
than corresponding elements of another dynamic array.

IFS() Evaluates a dynamic array and creates another dynamic array
on the basis of the truth or falsity of its elements.

ISNULL() Indicates when a variable is the null value.

ISNULLS() Indicates when an element of a dynamic array is the null
value.

LES() Indicates when elements of one dynamic array are less than or
equal to corresponding elements of another dynamic array.

LTS() Indicates when elements of one dynamic array are less than
corresponding elements of another dynamic array.

NES() Indicates when elements of one dynamic array are not equal
to corresponding elements of another dynamic array.

NOT() Returns the complement of the logical value of an expression.

NOTS() Returns the complement of the logical value of each element
of a dynamic array.
Quick Reference A-19

ORS() Performs a logical OR on elements of two dynamic arrays.

System
DATE() Returns the internal system date.

DEBUG Invokes RAID, the interactive DataStage BASIC debugger.

ERRMSG Prints a formatted error message from the ERRMSG file.

INMAT() Used with the MATPARSE, MATREAD, and MATREADU
statements to return the number of array elements or with the
OPEN statement to return the modulo of a file.

ITYPE() Returns the value resulting from the evaluation of an
I-descriptor.

LOCK Sets an execution lock to protect user-defined resources or
events from being used by more than one concurrently
running program.

NAP Suspends execution of a BASIC program, pausing for a speci-
fied number of milliseconds.

SENTENCE() Returns the stored sentence that invoked the current process.

SLEEP Suspends execution of a BASIC program, pausing for a speci-
fied number of seconds.

STATUS() Reports the results of a function or statement previously
executed.

SYSTEM() Checks the status of a system function.

TIME() Returns the time in internal format.

TIMEDATE() Returns the time and date.

UNLOCK Releases an execution lock that was set with the LOCK
statement.
A-20 BASIC Guide

Remote Procedure Calls
RPC.CALL() Sends requests to a remote server.

RPC.CONNECT() Establishes a connection with a remote server process.

RPC.DISCONNECT()
Disconnects from a remote server process.

Miscellaneous
CLEARPROMPTS Clears the value of the in-line prompt.

EOF(ARG.) Checks whether the command line argument pointer is past
the last command line argument.

FILEINFO() Returns information about the specified file’s configuration.

ILPROMPT() Evaluates strings containing in-line prompts.

GET(ARG.) Retrieves a command line argument.

SEEK(ARG.) Moves the command line argument pointer.
Quick Reference A-21

A-22 BASIC Guide

B
ASCII and Hex Equivalents

Table B-1 lists binary, octal, hexadecimal, and ASCII equivalents of decimal
numbers.

Table B-1. ASCII Equivalents

Decimal Binary Octal Hexadecimal ASCII

000 00000000 000 00 NUL
001 00000001 001 01 SOH
002 00000010 002 02 STX
003 00000011 003 03 ETX
004 00000100 004 04 EOT
005 00000101 005 05 ENQ
006 00000110 006 06 ACK
007 00000111 007 07 BEL
008 00001000 010 08 BS
009 00001001 011 09 HT
010 00001010 012 0A LF
011 00001011 013 0B VT
012 00001100 014 0C FF
013 00001101 015 0D CR
014 00001110 016 0E SO
015 00001111 017 0F SI
016 00010000 020 10 DLE
017 00010001 021 11 DC1
018 00010010 022 12 DC2
019 00010011 023 13 DC3
020 00010100 024 14 DC4
ASCII and Hex Equivalents B-1

021 00010101 025 15 NAK
022 00010110 026 16 SYN
023 00010111 027 17 ETB
024 00011000 030 18 CAN
025 00011001 031 19 EM
026 00011010 032 1A SUB
027 00011011 033 1B ESC
028 00011100 034 1C FS
029 00011101 035 1D GS
030 00011110 036 1E RS
031 00011111 037 1F US
032 00100000 040 20 SPACE
033 00100001 041 21 !
034 00100010 042 22 "
035 00100011 043 23 #
036 00100100 044 24 $
037 00100101 045 25 %
038 00100110 046 26 &
039 00100111 047 27 '
040 00101000 050 28 (
041 00101001 051 29)
042 00101010 052 2A *
043 00101011 053 2B +
044 00101100 054 2C ,
045 00101101 055 2D –
046 00101110 056 2E .
047 00101111 057 2F /
048 00110000 060 30 0
049 00110001 061 31 1
050 00110010 062 32 2
051 00110011 063 33 3
052 00110100 064 34 4
053 00110101 065 35 5

Table B-1. ASCII Equivalents (Continued)

Decimal Binary Octal Hexadecimal ASCII
B-2 Ascential DataStage BASIC Guide

054 00110110 066 36 6
055 00110111 067 37 7
056 00111000 070 38 8
057 00111001 071 39 9
058 00111010 072 3A :
059 00111011 073 3B ;
060 00111100 074 3C <
061 00111101 075 3D =
062 00111110 076 3E >
063 00111111 077 3F ?
064 01000000 100 40 @
065 01000001 101 41 A
066 01000010 102 42 B
067 01000011 103 43 C
068 01000100 104 44 D
069 01000101 105 45 E
070 01000110 106 46 F
071 01000111 107 47 G
072 01001000 110 48 H
073 01001001 111 49 I
074 01001010 112 4A J
075 01001011 113 4B K
076 01001100 114 4C L
077 01001101 115 4D M
078 01001110 116 4E N
079 01001111 117 4F O
080 01010000 120 50 P
081 01010001 121 51 Q
082 01010010 122 52 R
083 01010011 123 53 S
084 01010100 124 54 T
085 01010101 125 55 U
086 01010110 126 56 V

Table B-1. ASCII Equivalents (Continued)

Decimal Binary Octal Hexadecimal ASCII
ASCII and Hex Equivalents B-3

087 01010111 127 57 W
088 01011000 130 58 X
089 01011001 131 59 Y
090 01011010 132 5A Z
091 01011011 133 5B [
092 01011100 134 5C \
093 01011101 135 5D]
094 01011110 136 5E ^
095 01011111 137 5F _
096 01100000 140 60 `
097 01100001 141 61 a
098 01100010 142 62 b
099 01100011 143 63 c
100 01100100 144 64 d
101 01100101 145 65 e
102 01100110 146 66 f
103 01100111 147 67 g
104 01101000 150 68 h
105 01110001 151 69 i
106 01110010 152 6A j
107 01110011 153 6B k
108 01110100 154 6C l
109 01110101 155 6D m
110 01110110 156 6E n
111 01110111 157 6F o
112 01111000 160 70 p
113 01111001 161 71 q
114 01111010 162 72 r
115 01111011 163 73 s
116 01111100 164 74 t
117 01110101 165 75 u
118 01110110 166 76 v
119 01110111 167 77 w

Table B-1. ASCII Equivalents (Continued)

Decimal Binary Octal Hexadecimal ASCII
B-4 Ascential DataStage BASIC Guide

Table B-2 provides additional hexadecimal and decimal equivalents.

120 01111000 170 78 x
121 01111001 171 79 y
122 01111010 172 7A z
123 01111011 173 7B {
124 01111100 174 7C |
125 01111101 175 7D }
126 01111110 176 7E ~
127 01111111 177 7F DEL
128 10000000 200 80 SQLNULL
251 11111011 373 FB TM
252 11111100 374 FC SM
253 11111101 375 FD VM
254 11111110 376 FE FM
255 11111111 377 FF IM

Table B-2. Additional Hexadecimal and Decimal Equivalents

Hexadecimal Decimal Hexadecimal Decimal

80 128 3000 12288
90 144 4000 16384
A0 160 5000 20480
B0 176 6000 24576
C0 192 7000 28672
D0 208 8000 32768
E0 224 9000 36864
F0 240 A000 40960
100 256 B000 45056
200 512 C000 49152
300 768 D000 53248
400 1024 E000 57344
500 1280 F000 61440

Table B-1. ASCII Equivalents (Continued)

Decimal Binary Octal Hexadecimal ASCII
ASCII and Hex Equivalents B-5

B-6 Ascential DataStage BASIC Guide

C
Correlative and Conversion

Codes

conversion codes
This appendix describes the correlative and conversion codes used in dictionary
entries and with the ICONV, ICONVS, OCONV, and OCONVS functions in
BASIC. Use conversion codes with the ICONV function when converting data to
internal storage format and with the OCONV function when converting data from
its internal representation to an external output format. Read this entire appendix
and both the ICONV function and OCONV function sections before attempting to
perform internal or external data conversion.

Note: If you try to convert the null value, null is returned and the STATUS func-
tion returns 1 (invalid data).

The NLS extended syntax is supported only for Release 9.4.1 and above.

Table C-1 lists correlative and conversion codes.

Table C-1. Correlative and Conversion Codes

Code Description

A Algebraic functions
C Concatenation
D Date conversion
DI International date conversion
ECS Extended character set conversion
F Mathematical functions
G Group extraction
Correlative and Conversion Codes C-1

L Length function
MB Binary conversion
MCA Masked alphabetic conversion
MC/A Masked nonalphabetic conversion
MCD Decimal to hexadecimal conversion
MCDX Decimal to hexadecimal conversion
MCL Masked lowercase conversion
MCM Masked multibyte conversion
MC/M Masked single-byte conversion
MCN Masked numeric conversion
MC/N Masked nonnumeric conversion
MCP Masked unprintable character conversion
MCT Masked initial capitals conversion
MCU Masked uppercase conversion
MCW Masked wide-character conversion
MCX Hexadecimal to decimal conversion
MCXD Hexadecimal to decimal conversion
MD Masked decimal conversion
ML Masked left conversion
MM NLS monetary conversion
MO Octal conversion
MP Packed decimal conversion
MR Masked right conversion
MT Time conversion
MU0C Hexadecimal Unicode character conversion
MX Hexadecimal conversion
MY ASCII conversion
NL NLS Arabic numeral conversion
NLSmapname Conversion using NLS map name
NR Roman numeral conversion
P Pattern matching

Table C-1. Correlative and Conversion Codes (Continued)

Code Description
C-2 BASIC Guide

Q Exponential conversion
R Range function
S Soundex
S Substitution
T Text extraction
T filename File translation
TI International time conversion

Table C-1. Correlative and Conversion Codes (Continued)

Code Description
Correlative and Conversion Codes C-3

A code: Algebraic Functions
Format

A [;] expression

The A code converts A codes into F codes in order to perform mathematical oper-
ations on the field values of a record, or to manipulate strings. The A code
functions in the same way as the F code but is easier to write and to understand.

expression can be one or more of the following:

A data location or string

A special system counter operand

loc[R] Field number specifying a data value, followed by an optional R
(repeat code).

N(name) name is a dictionary entry for a field. The name is referenced in the file
dictionary. An error message is returned if the field name is not
found. Any codes specified in field 3 of name are applied to the field
defined by name, and the converted value is processed by the A code.

string Literal string enclosed in pairs of double quotation marks ("), single
quotation marks ('), or backslashes (\).

number Constant number enclosed in pairs of double quotation marks ("),
single quotation marks ('), or backslashes (\). Any integer, positive,
negative, or zero can be specified.

D System date (in internal format).

T System time (in internal format).

@NI Current system counter (number of items listed or selected).

@ND Number of detail lines since the last BREAK on a break line.

@NV Current value counter for columnar listing only.

@NS Current subvalue counter for columnar listing only.

@NB Current BREAK level number. 1 = lowest level break. This has a value
of 255 on the grand-total line.

@LPV Load Previous Value: load the result of the last correlative or conver-
sion onto the stack.
C-4 BASIC Guide

A code: Algebraic Functions
A function

An arithmetic operator

A relational operator

A conditional operator

R(exp) Remainder after integer division of the first operand by the second.
For example, R(2,"5") returns the remainder when field 2’s value is
divided by 5.

S(exp) Sum all multivalues in exp. For example, S(6) sums the multivalues of
field 6.

IN(exp) Test for the null value.

[] Extract substring. Field numbers, literal numbers, or expressions can
be used as arguments within the brackets. For example, if the value
of field 3 is 9, then 7["2",3] returns the second through ninth charac-
ters of field 7. The brackets are part of the syntax and must be typed.

IF(expression) | THEN(expression) | ELSE(expression)

(conv) Conversion expression in parentheses (except A and F conversions).

* Multiply operands.

/ Divide operands. Division always returns an integer result: for
example, "3" / "2" evaluates to 1, not to 1.5.

+ Add operands.

− Subtract operands.

: Concatenate operands.

= Equal to

< Less than

> Greater than

or <> Not equal to

<= Less than or equal to

>= Greater than or equal to

AND Logical AND

OR Logical OR
Correlative and Conversion Codes C-5

A code: Algebraic Functions
In most cases F and A codes do not act on a data string passed to them. The code
specification itself contains all the necessary data (or at least the names of fields
that contain the necessary data). So the following A codes produce identical F
codes, which in turn assign identical results to X:

X = OCONV("123", "A;'1' + '2'")
X = OCONV("", "A;'1' + '2'")
X = OCONV(@ID, "A;'1' + '2'")
X = OCONV("The quick brown fox jumped over a lazy dog's

back","A;'1' + '2'")

The data strings passed to the A code—123, the empty string, the record ID, and
“The quick brown fox…” string—simply do not come into play. The only possible
exception occurs when the user includes the LPV (load previous value) special
operand in the A or F code. The following example adds the value 5 and the
previous value 123 to return the sum 128:

X = OCONV("123", "A;'5' + LPV")

It is almost never right to call an A or F code using the vector conversion functions
OCONVS and ICONVS. In the following example, Y = 123V456V789:

X = OCONVS(Y, "A;'5' + '2')

The statement says, “For each value of Y, call the A code to add 5 and 2.” (V repre-
sents a value mark.) The A code gets called three times, and each time it returns the
value 7. X, predictably, gets assigned 7. The scalar OCONV function returns the
same result in much less time.

What about correlatives and conversions within an A or F code? Since any string
in the A or F code can be multivalued, the F code calls the vector functions
OCONVS or ICONVS any time it encounters a secondary correlative or conver-
sion. In the following example, the F code—itself called only once—calls OCONVS
to ensure that the G code gets performed on each value of @RECORD< 1 >. X is
assigned the result cccVfff:

@RECORD< 1 > = aaa*bbb*cccVddd*eee*fff
X = OCONV("", "A;1(G2*1)"

The value mark is reserved to separate individual code specifications where
multiple successive conversions must be performed.
C-6 BASIC Guide

A code: Algebraic Functions
The following dictionary entry specifies that the substring between the first and
second asterisks of the record ID should be extracted, then the first four characters
of that substring should be extracted, then the masked decimal conversion should
be applied to that substring:

001: D
002: 0
003: G1*1VT1,4VMD2
004: Foo
005: 6R
006: S

To attempt to define a multivalued string as part of the A or F code itself rather
than as part of the @RECORD produces invalid code. For instance, both:

X = OCONV("", "A;'aaa*bbb*cccVddd*eee*fff'(G2*1)")

and the dictionary entry:

001: D
002: 0
003: A;'aaa*bbb*cccVddd*eee*fff'(G2*1)
004: Bar
005: 7L
006: S

are invalid. The first returns an empty string (the original value) and a status of 2.
The second returns the record ID; if the STATUS function were accessible from
dictionary entries, it would also be set to 2.
Correlative and Conversion Codes C-7

C code: Concatenation
Format

C [;] expression1 c expression2 [c expression3] …

The C code chains together field values or quoted strings, or both.

The semicolon is optional and is ignored.

c is the character to be inserted between the fields. Any nonnumeric character
(except system delimiters) is valid, including a blank. A semicolon (;) is a reserved
character that means no separation character is to be used. Two separators cannot
follow in succession, with the exceptions of semicolons and blanks.

expression is a field number and requests the contents of that field; or any string
enclosed in single quotation marks ('), double quotation marks ("), or back-
slashes (\); or an asterisk (*), which specifies the data value being converted.

You can include any number of delimiters or expressions in a C code.

Note: When the C conversion is used in a field descriptor in a file dictionary, the
field number in the LOC or A/AMC field of the descriptor should be 0. If
it is any other number and the specified field contains an empty string, the
concatenation is not performed.

Examples
Assume a BASIC program with @RECORD = "oneFtwoFthreeVfour":

There is one anomaly of the C code (as implemented by ADDS Mentor, at least)
that the C code does not reproduce:

Statement Output

PRINT OCONV("x","C;1;'xyz';2") onexyztwo

PRINT ICONV("x","C;2;'xyz';3") twoxyzthreeVfour

PRINT OCONV("","C;2;'xyz';3")

PRINT ICONV(x,"C;1***2") one*x*two

PRINT OCONV(0,"C;1:2+3") one:two+threeVfour

PRINT ICONV (x, "C*1*2*3") x1x2x3
C-8 BASIC Guide

C code: Concatenation
The assumption that anything following a nonseparator asterisk is a separator
seems egregious, so the C code implements:

Anyone wanting the ADDS effect can quote the numbers.

PRINT ICONV (x, "C*1*2*3") xone*two*threeVfour
Correlative and Conversion Codes C-9

D code: Date Conversion
Format

D [n] [*m] [s] [fmt [[f1, f2, f3, f4, f5]]] [E] [L]
The D code converts input dates from conventional formats to an internal format
for storage. It also converts internal dates back to conventional formats for output.
When converting an input date to internal format, date conversion specifies the
format you use to enter the date. When converting internal dates to external
format, date conversion defines the external format for the date.

If the D code does not specify a year, the current year is assumed. If the code spec-
ifies the year in two-digit form, the years from 0 through 29 mean 2000 through
2029, and the years from 30 through 99 mean 1930 through 1999.

You can set the default date format with the DATE.FORMAT command. A system-
wide default date format can be set in the msg.text file of the UV account directory.
Date conversions specified in file dictionaries or in ICONV or OCONV functions
use the default date format except where they specifically override it. When NLS
locales are enabled, the locale overrides any value set in the msg.text file.

n Single digit (normally 1 through 4) that specifies the number of digits
of the year to output. The default is 4.

* Any single nonnumeric character that separates the fields in the case
where the conversion must first do a group extraction to obtain the
internal date. * cannot be a system delimiter.

m Single digit that must accompany any use of an asterisk. It denotes
the number of asterisk-delimited fields to skip in order to extract the
date.

s Any single nonnumeric character to separate the day, month, and
year on output. s cannot be a system delimiter. If you do not specify
s, the date is converted in 09 SEP 1996 form, unless a format option
overrides it.

If NLS locales are enabled and you do not specify a separator char-
acter or n, the default date form is 09 SEP 1996. If the Time category
is active, the conversion code in the D_FMT field is used.
C-10 BASIC Guide

D code: Date Conversion
If NLS locales are enabled and you do not specify an s or format
option, the order and the separator for the day/month/year defaults
to the format defined in the DI_FMT or in the D_FMT field. If the
day/month/year oder cannot be determined from these fields, the
conversion uses the order defined in the DEFAULT_DMY_ORDER
field. If you do not specify s and the month is numeric, the separator
character comes from the DEFAULT_DMY_SEP field.

fmt Specifies up to five of the following special format options that let
you request the day, day name, month, year, and era name:

Y[n] Requests only the year number (n digits).

YA Requests only the name of the Chinese calendar year. If NLS
locales are enabled, uses the YEARS field in the
NLS.LC.TIME file.

M Requests only the month number (1 through 12).

MA Requests only the month name. If NLS locales are enabled,
uses the MONS field in the NLS.LC.TIME file. You can use
any combination of upper- and lowercase letters for the
month; DataStage checks the combination against the
ABMONS field, otherwise the MONS field.

MB Requests only the abbreviated month name. If NLS locales
are enabled, uses the ABMONS field in the NLS.LC.TIME
file; otherwise, uses the first three characters of the month
name.

MR Requests only the month number in Roman numerals (I
through XII).

D Requests only the day number within the month (1 through
31).

W Requests only the day number within the week (1 through 7,
where Sunday is 7). If NLS locales are enabled, uses the
DAYS field in the NLS.LC.TIME file, where Sunday is 1.

WA Requests only the day name. If NLS locales are enabled, uses
the DAYS field in the NLS.LC.TIME file, unless modified by
the format modifiers, f1, f2, and so forth.

WB Requests only the abbreviated day name. If NLS locales are
enabled, uses the ABDAYS field in the NLS.LC.TIME file.
Correlative and Conversion Codes C-11

D code: Date Conversion
Q Requests only the quarter number within the year (1 through
4).

J Requests only the day number within the year (1 through
366).

N Requests only the year within the current era. If NLS locales
are enabled, uses the ERA STARTS field in the NLS.LC.TIME
file.

NA Requests only the era name corresponding to the current
year. If NLS locales are enabled, uses the ERA NAMES or
ERA STARTS fields in the NLS.LC.TIME file.

Z Requests only the time-zone name, using the name from the
operating system.

[f1, f2, f3, f4, f5]

f1, f2, f3, f4, and f5 are the format modifiers for the format options. The
brackets are part of the syntax and must be typed. You can specify up
to five modifiers, which correspond to the options in fmt, respectively.
The format modifiers are positional parameters: if you want to
specify f3 only, you must include two commas as placeholders. Each
format modifier must correspond to a format option. The value of the
format modifiers can be any of the following:

n Specifies how many characters to display. n can modify any
format option, depending on whether the option is numeric
or text.

• If numeric, (D, M, W, Q, J, Y, 0), n prints n digits, right-
justified with zeros.

• If text (MA, MB, WA, WB, YA, N, “text”), n left-justi-
fies the option within n spaces.

A[n] Month format is alphabetic. n is a number from 1 through 32
specifying how many characters to display. Use A with the Y,
M, W, and N format options.

Z[n] Suppresses leading zeros in day, month, or year. n is a
number from 1 through 32 specifying how many digits to
display. Z works like n, but zero-suppresses the output for
numeric options.
C-12 BASIC Guide

D code: Date Conversion
The following table shows the format options you can use together:

‘text’ Any text enclosed in single or double quotation marks is
treated as if there were no quotation marks and placed after
the text produced by the format option in the equivalent
position. Any separator character is ignored. ‘text’ can
modify any option.

E Toggles the European (day/month/year) versus the U.S.
(month/day/year) formatting of dates. Since the NLS.LC.TIME file
specifies the default day/month/year order, E is ignored if you use a
time convention.

L Specifies that lowercase letters should be retained in month or day
names; otherwise the routine converts names to all capitals. Since the
NLS.LC.TIME file specifies the capitalization of names, L is ignored
if you use a time convention.

Format Option Use with These Options

Y M, MA, D, J, [f1, f2, f3, f4, f5]

YA M, MA, D, [f1, f , f3, f4, f5]

M Y, YA, D, [f1, f2, f3, f4, f5]

MA Y, YA, D, [f1, f2, f3, f4, f5]

MB Y, YA, D, [f1, f2, f3, f4, f5]

D Y, M, [f1, f2, f3, f4, f5]

N Y, M, MA, MB, D, WA [f1, f2, f3, f4, f5]

NA Y, M, MA, MB, D, WA [f1, f2, f3, f4, f5]

W Y, YA, M, MA, D
WA Y, YA, M, MA, D
WB Y, YA, M, MA, D
Q [f1]

J Y, [f1, f2, f3, f4, f5]

Z [f1]
Correlative and Conversion Codes C-13

D code: Date Conversion
Each format modifier must correspond to a format option. The following table
shows which modifiers can modify which options:

ICONV and OCONV Differences
The syntax for converting dates with ICONV is the same as for OCONV, except
that:

In IDEAL and INFORMATION flavor accounts, the input conversion of an
improper date returns a valid internal date and a STATUS() value of 3. For
example, 02/29/93 is interpreted as 03/01/93, and 09/31/93 is interpreted as
10/01/93. A status of 3 usually represents a common human error. More flagrant
errors return an empty string and a STATUS() value of 1.

In PICK, REALITY, and IN2 flavor accounts, the input conversion of an improper
date always returns an empty string and a status of 1.

If the data to be converted is the null value, a STATUS() value of 3 is set and no
conversion occurs.

Format
Modifier

Format Option

D M Y J W

A no yes yes no yes
n yes yes yes yes yes
Z yes yes yes yes no

‘text’ yes yes yes yes yes

n Ignored. The input conversion accepts any number of year’s digits
regardless of the n specification. If no year exists in the input date, the
routine uses the year part of the system date.

s Ignored. The input conversion accepts any single nonnumeric,
nonsystem-delimiter character separating the day, month, and year
regardless of the s specification. If the date is input as an undelimited
string of characters, it is interpreted as one of the following formats:
[YY]YYMMDD or [YY]YYDDD.

subcodes Ignored. The input conversion accepts any combination of upper-
and lowercase letters in the month part of the date.
C-14 BASIC Guide

D code: Date Conversion
Example
The following example shows how to use the format modifiers:

D DMY[Z,A3,Z2]

Z modifies the day format option (D) by suppressing leading zeros (05 becomes 5).
A3 modifies the month format option (M) so that the month is represented by the
first three alphabetic characters (APRIL becomes APR). Z2 modifies the year
format option (Y) by suppressing leading zeros and displaying two digits. This
conversion converts April 5, 1993 to 5 APR 93.
Correlative and Conversion Codes C-15

DI code: International Date Conversion
Format
DI

The international date conversion lets you convert dates in internal format to the
default local convention format and vice versa. If NLS locales are not enabled, the
DI conversion defaults to D. If NLS locales are enabled, DI uses the date conversion
in the DI_FMT field. The DI_FMT field can contain any valid D code.
C-16 BASIC Guide

ECS code: Extended Character Set Conversion
Format
ECS

The ECS code resolves clashes between the DataStage system delimiters and the
ASCII characters CHAR(251) through CHAR(255). It converts the system delim-
iters and ASCII characters to alternative characters using an appropriate
localization procedure. If no localization library is in use, the input string is
returned without character conversion. This code is used with an ICONV or
OCONV function.
Correlative and Conversion Codes C-17

F code: Mathematical Functions
Format

F [;] element [; element …]
The F code performs mathematical operations on the data values of a record, or
manipulates strings. It comprises any number of operands or operators in reverse
Polish format (Lukasiewicz) separated by semicolons.

The program parses the F code from left to right, building a stack of operands.
Whenever it encounters an operator, it performs the requested operation, puts the
result on the top of the stack, and pops the lower stack elements as necessary.

The semicolon (;) is the element separator.

element can be one or more of the items from the following categories:

A data location or string

A special system counter operand

loc[R] Numeric location specifying a data value to be pushed onto the stack,
optionally followed by an R (repeat code).

Cn n is a constant to be pushed onto the stack.

string Literal string enclosed in pairs of double quotation marks ("), single
quotation marks ('), or backslashes (\).

number Constant number enclosed in pairs of double quotation marks ("),
single quotation marks ('), or backslashes (\). Any integer, positive,
negative, or zero can be specified.

D System date (in internal format).

T System time (in internal format).

@NI Current item counter (number of items listed or selected).

@ND Number of detail lines since the last BREAK on a break line.

@NV Current value counter for columnar listing only.

@NS Current subvalue counter for columnar listing only.

@NB Current BREAK level number. 1 = lowest level break. This has a value
of 255 on the grand-total line.

@LPV Load Previous Value: load the result of the last correlative code onto
the stack.
C-18 BASIC Guide

F code: Mathematical Functions
An operator

Operators specify an operation to be performed on top stack entries. stack1 refers
to the value on the top of the stack, stack2 refers to the value just below it, stack3
refers to the value below stack2, and so on.

A logical operator

Logical operators compare stack1 to stack2. Each returns 1 for true and 0 for false:

*[n] Multiply stack1 by stack2. The optional n is the descaling factor (that
is, the result is divided by 10 raised to the nth power).

/ Divide stack1 into stack2, result to stack1.

R Same as /, but instead of the quotient, the remainder is returned to
the top of the stack.

+ Add stack1 to stack2.

− Subtract stack1 from stack2, result to stack1 (except for REALITY
flavor, which subtracts stack2 from stack1).

: Concatenate stack1 string onto the end of stack2 string.

[] Extract substring. stack3 string is extracted, starting at the character
specified by stack2 and continuing for the number of characters spec-
ified in stack1. This is equivalent to the BASIC [m,n] operator, where
m is in stack2 and n is in stack1.

S Sum of multivalues in stack1 is placed at the top of the stack.

_ Exchange stack1 and stack2 values.

P or \ Push stack1 back onto the stack (that is, duplicate stack1).

^ Pop the stack1 value off the stack.

(conv) Standard conversion operator converts data in stack1, putting the
result into stack1.

= Equal to.

< Less than.

> Greater than.

or <> Not equal to.

[Less than or equal to.

] Greater than or equal to.
Correlative and Conversion Codes C-19

F code: Mathematical Functions
Note: The F code performs only integer arithmetic.

& Logical AND.

! Logical OR.

\n\ A label is defined by a positive integer enclosed by two backslashes
(\\).

#n Connection to label n if stack1 differs from stack2.

>n Connection to label n if stack1 is greater than stack2.

<n Connection to label n if stack1 is less than stack2.

=n Connection to label n if stack1 equals stack2.

}n Connection to label n if stack1 is greater than or equal to stack2.

{n Connection to label n if stack1 is less than or equal to stack2.

IN Tests stack1 to see if it is the null value.

Fnnnn If stack1 evaluates to false, branch forward nnnn characters in the F
code, and continue processing.

Bnnnn Branch forward unconditionally nnnn characters in the F code, and
continue processing.

Gnnnn Go to label nnnn. The label must be a string delimited by backslashes
(\).

G* Go to the label defined in stack1. The label must be a string delimited by
backslashes (\).
C-20 BASIC Guide

G code: Group Extraction
Format

G [skip] delim #fields

The G code extracts one or more values, separated by the specified delimiter, from
a field.

skip specifies the number of fields to skip; if it is not specified, 0 is assumed and no
fields are skipped.

delim is any single nonnumeric character (except IM, FM, VM, SM, and TM) used
as the field separator.

#fields is the decimal number of contiguous delimited values to extract.
Correlative and Conversion Codes C-21

L code: Length Function
Format

L [n [,m]]
The L code places length constraints on the data to be returned.

If Ln is specified, selection is met if the value’s length is less than or equal to n char-
acters; otherwise an empty string is returned.

If Ln,m is specified, selection is met if the value’s length is greater than or equal to
n characters, and less than or equal to m characters; otherwise an empty string is
returned.

If n is omitted or 0, the length of the value is returned.
C-22 BASIC Guide

MC codes: Masked Character Conversion
Formats
MCA
MC/A
MCD[X]
MCL
MCM
MC/M
MCN
MC/N
MCP
MCT
MCU
MCW
MCX[D]

The MC codes let you change a field’s data to upper- or lowercase, to extract
certain classes of characters, to capitalize words in the field, and to change unprint-
able characters to periods.

MCA Extracts all alphabetic characters in the field, both upper- and lower-
case. Nonalphabetic characters are not printed. In NLS mode, uses
the ALPHABETICS field in the NLS.LC.CTYPE file.

MC/A Extracts all nonalphabetic characters in the field. Alphabetic charac-
ters are not printed. In NLS mode, uses the NON-ALPHABETICS
field in the NLS.LC.CTYPE file.

MCD[X] Converts decimal to hexadecimal equivalents.

MCL Converts all uppercase letters to lowercase. Does not affect lowercase
letters or nonalphabetic characters. In NLS mode, uses the UPPER-
CASE and DOWNCASED fields in the NLS.LC.CTYPE file.

MCM Use only if NLS is enabled. Extracts all NLS multibyte characters in
the field. Multibyte characters are all those outside the Unicode range
(x0000–x007F), the DataStage system delimiters, and the null value.
As long as NLS is enabled, the conversion still works if locales are off.
If NLS mode is disabled, the code returns a STATUS of 2, that is, an
invalid conversion code.
Correlative and Conversion Codes C-23

MC codes: Masked Character Conversion
MC/M Use only if NLS is enabled. Extracts all NLS single-byte characters in
the field. Single-byte characters are all those in the Unicode range
x0000–x007F. As long as NLS is enabled, the conversion still works if
locales are off. If NLS mode is disabled, the code returns a STATUS of
2, that is, an invalid conversion code.

MCN Extracts all numeric characters in the field. Alphabetic characters are
not printed. In NLS mode, uses the NUMERICS field in the
NLS.LC.CTYPE file.

MC/N Extracts all nonnumeric characters in the field. Numeric characters
are not printed. In NLS mode, uses the NON-NUMERICS field in the
NLS.LC.CTYPE file.

MCP Converts each unprintable character to a period. In NLS mode, uses
the PRINTABLE and NON_PRINTABLE fields in the NLS.LC.CTYPE
file.

MCT Capitalizes the first letter of each word in the field (the remainder of
the word is converted to lowercase). In NLS mode, uses the LOWER-
CASE and UPCASED fields of the NLS.LC.CTYPE file.

MCU Converts all lowercase letters to uppercase. Does not affect uppercase
letters or nonalphabetic characters. In NLS mode, uses the LOWER-
CASE and UPCASED fields in the NLS.LC.CTYPE file.

MCW Use only if NLS is enabled. Converts between 7-bit standard ASCII
(0021 007E range) and their corresponding double-byte characters,
which are two display positions in width (FF01 FF5E fullwidth
range). As long as NLS is enabled, the conversion still works if locales
are off. If NLS mode is disabled, the code returns a STATUS of 2, that
is, an invalid conversion code.

MCX[D] Converts hexadecimal to decimal equivalents.
C-24 BASIC Guide

MD code: Masked Decimal Conversion
Format

MD [n [m]] [,] [$] [F] [I] [Y] [intl] [– | < | C | D] [P] [Z] [T] [fx]
The MD code converts numeric input data to a format appropriate for internal
storage. If the code includes the $, F, I, or Y option, the conversion is monetary,
otherwise it is numeric. The MD code must appear in either an ICONV or an
OCONV expression. When converting internal representation of data to external
output format, masked decimal conversion inserts the decimal point and other
appropriate formats into the data.

Note: If NLS is enabled and either the Numeric or Monetary categories are set to
OFF, the MD code behaves as if NLS locales were turned off.

If the value of n is 0, the decimal point does not appear in the output.

The optional m specifies the power of 10 used to scale the input or output data. On
input, the decimal point is moved m places to the right before storing. On output,
the decimal point is moved m places to the left. For example, if m is 2 in an input
conversion and the input data is 123, it would be stored as 12300. If m is 2 in an
output conversion and the stored data is 123, it would be output as 1.23. If m is not
specified, it is assumed to be the same as n. In both cases, the last required decimal
place is rounded off before excess digits are truncated. Zeros are added if not
enough decimal places exist in the original expression.

If NLS is enabled and the conversion is monetary, the thousands separator comes
from the THOU_SEP field of the Monetary category of the current locale, and the
decimal separator comes from the DEC_SEP field. If the conversion is numeric, the
thousands separator comes from the THOU_SEP field of the Numeric category,
and the decimal separator comes from the DEC_SEP field.

, Specifies that thousands separators be inserted every three digits to the
left of the decimal point on output.

$ Prefixes a local currency sign to the number before justification. If NLS is
enabled, the CURR_SYMBOL of the Monetary category is used.

F Prefixes a franc sign (F) to the number before justification. (In all flavors
except IN2, you must specify F in the conversion code if you want ICONV
to accept the character F as a franc sign.)
Correlative and Conversion Codes C-25

MD code: Masked Decimal Conversion
I Used with the OCONV function, the international monetary symbol for
the locale is used (INTL_CURR_SYMBOL in the Monetary category).
Used with the ICONV function, the international monetary symbol for
the locale is removed. If NLS is disabled or the Monetary category is
turned off, the default symbol is USD.

Y Used with the OCONV function: if NLS is enabled, the yen/yuan char-
acter (Unicode 00A5) is used. If NLS is disabled or the Monetary locale
category is turned off, the ASCII character xA5 is used.

intl An expression that customizes numeric output according to different
international conventions, allowing multibyte characters. The intl expres-
sion can specify a prefix, a suffix, and the characters to use as a thousands
delimiter and as the decimal delimiter, using the locale definition from
the NLS.LC.NUMERIC file. The intl expression has the following syntax:

[prefix , thousands , decimal , suffix]
The bold brackets are part of the syntax and must be typed. The four
elements are positional parameters and must be separated by commas.
Each element is optional, but its position must be held by a comma. For
example, to specify a suffix only, type [,,,suffix].

prefix Character string to prefix to the number. If prefix contains
spaces, commas, or right square brackets, enclose it in quota-
tion marks.

thousands Character string that separates thousands. If thousands
contains spaces, commas, or right square brackets, enclose it
in quotation marks.

decimal Character string to use as a decimal delimiter. If decimal
contains spaces, commas, or right square brackets, enclose it
in quotation marks.

suffix Character string to append to the number. If suffix contains
spaces, commas, or right square brackets, enclose it in quota-
tion marks.

− Specifies that negative data be suffixed with a minus sign and positive
data be suffixed with a blank space.

< Specifies that negative data be enclosed in angle brackets for output; posi-
tive data is prefixed and suffixed with a blank space.
C-26 BASIC Guide

MD code: Masked Decimal Conversion
When NLS locales are enabled, the <, –, C and D options define numbers intended
for monetary use. These options override any specified monetary formatting. If the
conversion is monetary and no monetary formatting is specified, it uses the
POS_FMT, NEG_FMT, POS_SIGN, and NEG_SIGN fields from the Monetary cate-
gory of the current locale.

If the conversion is numeric and the ZERO_SUP field is set to 1, leading zeros of
numbers between –1 and 1 are suppressed. For example, –0.5 is output as –.5.

When converting data to internal format, the fx option has the following effect. If
the input data has been overlaid on a background field of characters (for example,
$###987.65), the fx option is used with ICONV to indicate that the background
characters should be ignored during conversion. The f is a one- or two-digit
number indicating the maximum number of background characters to be ignored.
The x specifies the background character to be ignored. If background characters
exist in the input data and you do not use the fx option, the data is considered bad
and an empty string results.

When converting data from internal representation to external output format, the
fx option causes the external output of the data to overlay a field of background
characters. The f is a one- or two-digit number indicating the number of times the
background character is to be repeated. The x specifies the character to be used as
a background character. If the $ option is used with the fx option, the $ precedes
the background characters when the data is output.

C Specifies that negative data include a suffixed CR; positive data is
suffixed with two blank spaces.

D Specifies that negative data include a suffixed DB; positive data is
suffixed with two blank spaces.

P Specifies that no scaling be performed if the input data already contains
a decimal point.

Z Specifies that 0 be output as an empty string.

T Specifies that the data be truncated without rounding.

Used with the ICONV function: if NLS is enabled, the yen/yuan char-
acter is removed. If NLS is disabled or the Monetary category is turned
off, the ASCII character xA5 is removed.
Correlative and Conversion Codes C-27

ML and MR codes: Formatting Numbers
Format

ML [n [m]] [Z] [,] [C | D | M | E | N] [$] [F] [intl] [(fx)]
MR [n [m]] [Z] [,] [C | D | M | E | N] [$] [F] [intl] [(fx)]

The ML and MR codes allow special processing and formatting of numbers and
monetary amounts. If the code includes the F or I option, the conversion is mone-
tary, otherwise it is numeric. ML specifies left justification; MR specifies right
justification.

Note: If NLS is enabled and either the Numeric or Monetary categories are set to
OFF, the ML and MR codes behave as if locales were turned off.

If NLS is enabled and the conversion is monetary, the thousands separator comes
from the THOU_SEP field of the Monetary category of the current locale, and the
decimal separator comes from the DEC_SEP field. If the conversion is numeric, the
thousands separator comes from the THOU_SEP field of the Numeric category,
and the decimal separator comes from the DEC_SEP field.

When NLS locales are enabled, the <, –, C, and D options define numbers intended
for monetary use. These options override any specified monetary formatting. If the
conversion is monetary and no monetary formatting is specified, it uses the
POS_FMT, NEG_FMT, POS_SIGN, and NEG_SIGN fields from the Monetary cate-
gory of the current locale.

n Number of digits to be printed to the right of the decimal point. If n is
omitted or 0, no decimal point is printed.

m Descales (divides) the number by 10 to the mth power. If not specified, m
= n is assumed. On input, the decimal point is moved m places to the right
before storing. On output, the decimal point is moved m places to the left.
For example, if m is 2 in an input conversion specification and the input
data is 123, it would be stored as 12300. If m is 2 in an output conversion
specification and the stored data is 123, it would be output as 1.23. If the
m is not specified, it is assumed to be the same as the n value. In both
cases, the last required decimal place is rounded off before excess digits
are truncated. Zeros are added if not enough decimal places exist in the
original expression.
C-28 BASIC Guide

ML and MR codes: Formatting Numbers
They are unaffected by the Numeric or Monetary categories. If no options are set,
the value is returned unchanged.

Z Specifies that 0 be output as an empty string.

, Specifies that thousands separators be inserted every three digits to the
left of the decimal point on output.

C Suffixes negative values with CR.

D Suffixes positive values with DB.

M Suffixes negative numbers with a minus sign (−).

E Encloses negative numbers in angle brackets (< >).

N Suppresses the minus sign (−) on negative numbers.

$ Prefixes a local currency sign to the number before justification. The $
option automatically justifies the number and places the currency sign
just before the first digit of the number output.

F Prefixes a franc sign (F) to the number before justification. (In all flavors
except IN2, you must specify F in the conversion code if you want ICONV
to accept the character F as a franc sign.)

intl An expression that customizes output according to different international
conventions, allowing multibyte characters. The intl expression can
specify a prefix, a suffix, and the characters to use as a thousands delim-
iter and as the decimal delimiter. The intl expression has the following
syntax:

[prefix , thousands , decimal , suffix]

The bold brackets are part of the syntax and must be typed. The four
elements are positional parameters and must be separated by commas.
Each element is optional, but its position must be held by a comma. For
example, to specify a suffix only, type [,,,suffix].

prefix Character string to prefix to the number. If prefix contains
spaces, commas, or square brackets, enclose it in quotation
marks.

thousands Character string that separates thousands. If thousands
contains spaces, commas, or square brackets, enclose it in
quotation marks.
Correlative and Conversion Codes C-29

ML and MR codes: Formatting Numbers
The format codes precede x, the number that specifies the size of the field.

You can also enclose literal strings in the parentheses. The text is printed as speci-
fied, with the number being processed right- or left-justified.

NLS mode uses the definitions from the Numeric category, unless the conversion
code indicates a definition from the Monetary category. If you disable NLS or turn
off the required category, the existing definitions apply.

decimal Character string to use as a decimal delimiter. If decimal
contains spaces, commas, or right square brackets, enclose it
in quotation marks.

suffix Character string to append to the number. If suffix contains
spaces, commas, or right square brackets, enclose it in quota-
tion marks.

f One of three format codes:

Data justifies in a field of x blanks.

* Data justifies in a field of x asterisks (*).

% Data justifies in a field of x zeros.
C-30 BASIC Guide

MM code: Monetary Conversion
Format

MM [n] [I [L]]

The MM code provides for local conventions for monetary formatting.

Note: If NLS is enabled and either the Numeric or Monetary categories are set to
OFF, the MM code behaves as if locales were turned off.

If NLS is enabled and the Monetary category is turned on, the MM code uses the
local monetary conventions for decimal and thousands separators. The format
options are as follows:.

If you specify MM with no arguments, the decimal and thousands separators come
from the Monetary category of the current locale, and the currency symbol comes
from the CURR_SYMBOL field. If you specify MM with the I option, the decimal
and thousands separators are . (period) and , (comma), and the currency symbol
comes from the INTL_CURR_SYMBOL field. If you specify MM with both the I
and the L options, the decimal and thousands separators come from the Monetary
category of the current locale, and the currency symbol comes from the
INTL_CURR_SYMBOL field. The I and L options are ignored when used in the
ICONV function.

If NLS is disabled or the category is turned off, the default decimal and thousands
separators are the period and the comma.

n Specifies the number of decimal places (0 through 9) to be maintained or out-
put. If n is omitted, the DEC_PLACES field from the Monetary category is
used; if the I option is also specified, the INTL_DEC_PLACES field is used. If
NLS is disabled or the Monetary category is turned off, and n is omitted, n
defaults to 2.

I Substitutes the INTL_CURR_SYMBOL for the CURR_SYMBOL in the Mone-
tary category of the current locale. If NLS locales are off, the default interna-
tional currency symbol is USD.

L Used with the I option to specify that decimal and thousands separators are
required instead of the defaults (. and ,). The DEC_SEP and THOU_SEP fields
from the Monetary category are used.
Correlative and Conversion Codes C-31

MM code: Monetary Conversion
The STATUS values are as follows:

0 Successful conversion. Returns a string containing the converted monetary
value.

1 Unsuccessful conversion. Returns an empty string.

2 Invalid conversion code. Returns an empty string.
C-32 BASIC Guide

MP code: Packed Decimal Conversion
Format
MP

The MP code allows decimal numbers to be packed two-to-the-byte for storage.
Packed decimal numbers occupy approximately half the disk storage space
required by unpacked decimal numbers.

Leading + signs are ignored. Leading − signs cause a hexadecimal D to be stored
in the lower half of the last internal digit. If there is an odd number of packed
halves, four leading bits of 0 are added. The range of the data bytes in internal
format expressed in hexadecimal is 00 through 99 and 0D through 9D. Only valid
decimal digits (0−9) and signs (+, −) should be input. Other characters cause no
conversion to take place.

Packed decimal numbers should always be unpacked for output, since packed
values that are output unconverted are not displayed on terminals in a recogniz-
able format.
Correlative and Conversion Codes C-33

MT code: Time Conversion
Format

MT [H] [P] [Z] [S] [c] [[f1, f2, f3]]
The MT code converts times from conventional formats to an internal format for
storage. It also converts internal times back to conventional formats for output.
When converting input data to internal storage format, time conversion specifies
the format that is to be used to enter the time. When converting internal represen-
tation of data to external output format, time conversion defines the external
output format for the time.

MT is required when you specify time in either the ICONV or the OCONV func-
tion. The remaining specifiers are meaningful only in the OCONV function; they
are ignored when used in the ICONV function.

The internal representation of time is the numeric value of the number of seconds
since midnight.

If used with ICONV in an IDEAL, INFORMATION, or PIOPEN flavor account, the
value of midnight is 0. In all other account flavors, the value of midnight is 86400.

To separate hours, minutes, and seconds, you can use any nonnumeric character
that is not a system delimiter. Enclose the separator in quotation marks. If no
minutes or seconds are entered, they are assumed to be 0. You can use a suffix of
AM, A, PM, or P to specify that the time is before or after noon. If an hour larger
than 12 is entered, a 24-hour clock is assumed. 12:00 AM is midnight and 12:00 PM
is noon.

If NLS is enabled and the Time category is active, the locale specifies the AM and
PM strings, and the separator comes from the T_FMT or TI_FMT fields in the Time
category.

H Specifies to use a 12-hour format with the suffixes AM or PM. The
24-hour format is the default. If NLS is enabled, the AM and PM strings
come from the AM_STR and PM_STR fields in the Time category.

P Same as H, but the AM and PM strings are prefixed, not suffixed.

Z Specifies to zero-suppress hours in the output.

S Specifies to use seconds in the output. The default omits seconds.
C-34 BASIC Guide

MT code: Time Conversion
c Specifies the character used to separate the hours, minutes, and seconds
in the output. The colon (:) is the default. If NLS is enabled and you do
not specify c, and if the Time category is active, c uses the
DEFAULT_TIME_SEP field.

[f1, f2, f3] Specify format modifiers. You must include the brackets, as they are
part of the syntax. You can specify from 1 through 3 modifiers, which
correspond to the hours, minutes, and seconds, in that order. The
format modifiers are positional parameters: if you want to specify f3
only, you must include two commas as placeholders. Each format
modifier must correspond to a format option. Use the following value
for the format modifiers:

‘text’ Any text you enclose in single or double quotation marks is
output without the quotation marks and placed after the
appropriate number for the hours, minutes, or seconds.
Correlative and Conversion Codes C-35

MX, MO, MB, and MU0C codes: Radix Conversion
Formats

MX[0C] Hexadecimal conversion (base 16)

MO[0C] Octal conversion (base 8)

MB[0C] Binary conversion (base 2)

MU0C Hexadecimal Unicode character conversion

The MX, MO, and MB codes convert data from hexadecimal, octal, and binary
format to decimal (base 10) format and vice versa.

With ICONV. The decimal, or ASCII, format is the internal format for data repre-
sentation. When used with the ICONV function, MX, MO, and MB without the 0C
extension convert hexadecimal, octal, or binary data values (respectively) to their
equivalent decimal values. MX, MO, and MB with the 0C extension convert hexa-
decimal, octal, or binary data values to the equivalent ASCII characters rather than
to decimal values.

Use the MU0C code only if NLS is enabled. When used with ICONV, MU0C
converts data in Unicode hexadecimal format to its equivalent in the internal char-
acter set.

Characters outside of the range for each of the bases produce conversion errors.
The ranges are as follows:

With OCONV. When used with the OCONV function, MX, MO, and MB without
the 0C extension convert decimal values to their equivalent hexadecimal, octal, or
binary equivalents for output, respectively. Nonnumeric data produces a conver-
sion error if the 0C extension is not used.

MX, MO, and MB with the 0C extension convert an ASCII character or character
string to hexadecimal, octal, or binary output format. Each character in the string
is converted to the hexadecimal, octal, or binary equivalent of its ASCII character
code.

MX (hexadecimal) 0 through 9, A through F, a through f

MO (octal) 0 through 7

MB (binary) 0, 1

MU0C (Unicode) No characters outside range
C-36 BASIC Guide

MX, MO, MB, and MU0C codes: Radix Conversion
Use the MU0C code only if NLS is enabled. When used with OCONV, MU0C
converts characters from their internal representation to their Unicode hexadec-
imal equivalents for output. The data to convert must be a character or character
string in the internal character set; each character in the string is converted to its
4-digit Unicode hexadecimal equivalent. Data is converted from left to right, one
character at a time, until all data is exhausted.
Correlative and Conversion Codes C-37

MY code: ASCII Conversion
Format
MY

The MY code specifies conversion from hexadecimal to ASCII on output, and
ASCII to hexadecimal on input. When used with the OCONV function, MY
converts from hexadecimal to ASCII. When used with the ICONV function, MY
converts from ASCII to hexadecimal.

Characters outside of the range for each of the bases produce conversion errors.
The ranges are as follows:

MY (hexadecimal) 0 through 9, A through F, a through f
C-38 BASIC Guide

NL code: Arabic Numeral Conversion
Format
NL

The NL code allows conversion from a locale-dependent set of alternative charac-
ters (representing digits in the local language) to Arabic numerals. The alternative
characters are the external set, the Arabic characters are the internal set.

If NLS is not enabled, characters are checked to ensure only that they are valid
ASCII digits 0 through 9, but no characters are changed.

The STATUS function returns one of the following:

0 Successful conversion. If NLS is not enabled, input contains valid digits.

1 Unsuccessful conversion. The data to be converted contains a character other
than a digit in the appropriate internal or external set.
Correlative and Conversion Codes C-39

NLSmapname code: NLS Map Conversion
Format
NLSmapname

The NLSmapname code converts data from internal format to external format and
vice versa using the specified map. mapname is either a valid map name or one of
the following: LPTR, CRT, AUX, or OS.

The STATUS function returns one of the following:

0 Conversion successful

1 mapname invalid, string returned empty

2 Conversion invalid

3 Data converted, but result may be invalid (map could not deal with some
characters)
C-40 BASIC Guide

NR code: Roman Numeral Conversion
Format
NR

The NR code converts Roman numerals into Arabic numerals when used with the
ICONV function. The decimal, or ASCII, format is the internal format for
representation.

When used with the OCONV function, the NR code converts Arabic numerals into
Roman numerals.

The following is a table of Roman/Arabic numeral equivalents:

Roman Arabic

i 1

v 5

x 10

l 50

c 100

d 500

m 1000

V 5000

X 10,000

L 50,000

C 100,000

D 500,000

M 1,000,000
Correlative and Conversion Codes C-41

P code: Pattern Matching
Format

P(pattern) [{ ; | /} (pattern)] …

The P code extracts data whose values match one or more patterns. If the data does
not match any of the patterns, an empty string is returned.

pattern can contain one or more of the following codes:

If n is 0, any number of numeric, alphabetic, or alphanumeric characters matches.
If either the data or the match pattern is the null value, null is returned.

Separate multiple ranges by a semicolon (;) or a slash (/).

Parentheses must enclose each pattern to be matched. For example, if the user
wanted only Social Security numbers returned, P(3N-2N-4N) would test for
strings of exactly three numbers, then a hyphen, then exactly two numbers, then a
hyphen, then exactly four numbers.

nN An integer followed by the letter N, which tests for n numeric
characters.

nA An integer followed by the letter A, which tests for n alphabetic
characters.

nX An integer followed by the letter X, which tests for n alphanu-
meric characters.

nnnn A literal string, which tests for that literal string.
C-42 BASIC Guide

Q code: Exponential Notation
Format

QR [n{E | .}m] [edit] [mask]

QL [n{E | .}m] [edit] [mask]
QX

The Q code converts numeric input data from exponential notation to a format
appropriate for internal storage. When converting internal representation of data
to external output format, the Q code converts the data to exponential notation by
determining how many places to the right of the decimal point are to be displayed
and by specifying the exponent.

Q alone and QR both specify right justification. QL specifies left justification. QX
specifies right justification. QX is synonymous with QR0E0 as input and MR as
output.

n specifies the number of fractional digits to the right of the decimal point. It can
be a number from 0 through 9.

m specifies the exponent. It can be a number from 0 through 9. When used with E,
m can also be a negative number from –1 through –9.

Separate n and m with either the letter E or a period (.). Use E if you want to
specify a negative exponent.

edit can be any of the following:

$ Prefixes a dollar sign to the value.

F Prefixes a franc sign to the value.

, Inserts commas after every thousand.

Z Returns an empty string if the value is 0. Any trailing fractional zeros are
suppressed, and a zero exponent is suppressed.

E Surrounds negative numbers with angle brackets (< >).

C Appends cr to negative numbers.

D Appends db to positive numbers.

B Appends db to negative numbers.

N Suppresses a minus sign on negative numbers.

M Appends a minus sign to negative numbers.

T Truncates instead of rounding.
Correlative and Conversion Codes C-43

Q code: Exponential Notation
mask allows literals to be intermixed with numerics in the formatted output field.
The mask can include any combination of literals and the following three special
format mask characters:

If NLS is enabled, the Q code formats numeric and monetary values as the ML and
MR codes do, except that the intl format cannot be specified. See the ML and MR
codes for more information.

See the FMT function for more information about formatting numbers.

#n Data is displayed in a field of n fill characters. A blank is the default fill
character. It is used if the format string does not specify a fill character
after the width parameter.

%n Data is displayed in a field of n zeros.

*n Data is displayed in a field of n asterisks.
C-44 BASIC Guide

R code: Range Function
Format

Rn,m [{ ; | / } n,m] …

The R code limits returned data to that which falls within specified ranges. n is the
lower bound, m is the upper bound.

Separate multiple ranges by a semicolon (;) or a slash (/).

If range specifications are not met, an empty string is returned.
Correlative and Conversion Codes C-45

S (Soundex) code
Format
S

The S code with no arguments specifies a soundex conversion. Soundex is a
phonetic converter that converts ordinary English words into a four-character
abbreviation comprising one alphabetic character followed by three digits.
Soundex conversions are frequently used to build indexes for name lookups.
C-46 BASIC Guide

S (substitution) code
Format
S ; nonzero.substitute ; zero.substitute ; null.substitute

The S code substitutes one of three values depending on whether the data to
convert evaluates to zero or an empty string, to the null value, or to something else.

If the data to convert evaluates to zero or an empty string, zero.substitute is
returned. If the data is nonzero, nonempty, and nonnull, nonzero.substitute is
returned. If the data is the null value, null.substitute is returned. If null.substitute is
omitted, null values are not replaced.

All three substitute expressions can be one of the following:

• A quoted string
• A field number
• An asterisk

If it is an asterisk and the data evaluates to something other than zero, the empty
string, or the null value, the data value itself is returned.

Example
Assume a BASIC program where @RECORD is:

AFBFCVD

Statement Output

PRINT OCONV("x","S;2;'zero'") B

PRINT OCONV("x","S;*;'zero'") x

PRINT OCONV(0,"S;2;'zero'") zero

PRINT OCONV('',"S;*;'zero'") zero
Correlative and Conversion Codes C-47

T code: Text Extraction
Format

T [start,] length

The T code extracts a contiguous string of characters from a field.

If you specify length only, the extraction is either from the left or from the right
depending on the justification specified in line 5 of the dictionary definition item.
In a BASIC program if you specify length only, the extraction is from the right. In
this case the starting position is calculated according to the following formula:

string.length − substring.length + 1

This lets you extract the last n characters of a string without having to calculate the
string length.

If start is specified, extraction is always from left to right.

start Starting column number. If omitted, 1 is assumed.

length Number of characters to extract.
C-48 BASIC Guide

Tfile code: File Translation
Format

T[DICT] filename ; c [vloc] ; [iloc] ; [oloc] [;bloc]

T[DICT] filename ; c ; [iloc] ; [oloc] [;bloc] [,vloc | [vloc]]
The Tfile code converts values from one file to another by translating through a file.
It uses data values in the source file as IDs for records in a lookup file. The source
file can then reference values in the lookup file.

To access the lookup file, its record IDs (field 0) must be referenced. If no reference
is made to the record IDs of the lookup file, the file cannot be opened and the
conversion cannot be performed. The data value being converted must be a
record ID in the lookup file.

DICT Specifies the lookup file’s dictionary. (In REALITY flavor accounts,
you can use an asterisk (*) to specify the dictionary: for instance,
T*filename … .)

filename Name of the lookup file.

c Translation subcode, which must be one of the following:

V Conversion item must exist on file, and the specified field must
have a value, otherwise an error message is returned.

C If conversion is impossible, return the original value-to-be-
translated.

I Input verify only. Functions like V for input and like C for output.

N Returns the original value-to-be-translated if the null value is
found.

O Output verify only. Functions like C for input and like V for
output.

X If conversion is impossible, return an empty string.

vloc Number of the value to be returned from a multivalued field. If you
do not specify vloc and the field is multivalued, the whole field is
returned with all system delimiters turned into blanks. If the vloc
specification follows the oloc or bloc specification, enclose vloc in
square brackets or separate vloc from oloc or bloc with a comma.
Correlative and Conversion Codes C-49

Tfile code: File Translation
iloc Field number (decimal) for input conversion. The input value is used
as a record ID in the lookup file, and the translated value is retrieved
from the field specified by the iloc. If the iloc is omitted, no input
translation takes place.

oloc Field number (decimal) for output translation. When RetrieVe creates
a listing, data from the field specified by oloc in the lookup file are
listed instead of the original value.

bloc Field number (decimal) which is used instead of oloc during the
listing of BREAK.ON and TOTAL lines.
C-50 BASIC Guide

TI code: International Time Conversion
Format
TI

The international time conversion lets you convert times in internal format to the
default local convention format and vice versa. If NLS locales are not enabled, the
TI conversion defaults to MT. If NLS locales are enabled, TI uses the date conver-
sion in the TI_FMT field of the Time category. The TI_FMT field can contain any
valid MT code.
Correlative and Conversion Codes C-51

C-52 BASIC Guide

This appendix lists reserved words in the BASIC language. We recommend that

D
BASIC Reserved Words
you not use them as variable names in your programs.
ABORT
ABORTE
ABORTM
ABS
ABSS
ACOS
ADDS
ALL
ALPHA
AND
ANDS
ARG.
ASCII
ASIN
ASSIGN
ASSIGNED
ATAN
AUTHORIZATION
BCONVERT
BEFORE
BEGIN
BITAND
BITNOT
BITOR
BITRESET
BITSET
BITTEST
BITXOR
BREAK
BSCAN
BY
CALL
CALLING
CAPTURING

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D

BASIC Reserved Word
ASE
AT
ATS
HAIN
HANGE
HAR
HARS
HECKSUM
LEAR
LEARCOMMON
LEARDATA
LEARFILE
LEARINPUT
LEARPROMPTS
LEARSELECT
LOSE
LOSESEQ
OL1
OL2
OM
OMMIT
OMMON
OMPARE
ONTINUE
ONVERT
OS
OSH
OUNT
OUNTS
REATE
RC32
RT
ATA
ATE

DCOUNT
DEBUG
DECLARE
DEFFUN
DEL
DELETE
DELETELIST
DELETEU
DIAGNOSTICS
DIM
DIMENSION
DISPLAY
DIV
DIVS
DO
DOWNCASE
DQUOTE
DTX
EBCDIC
ECHO
ELSE
END
ENTER
EOF
EQ
EQS
EQU
EQUATE
EREPLACE
ERRMSG
ERROR
EXCHANGE
EXEC
EXECUTE

EX
EX
EX
FA
FD
FF
FF
FI
FI
FI
FI
FI
FI
FI
FI
FI
FL
FM
FM
FM
FO
FO
FO
FO
FR
FS
FU
G
G
G
G
G
G

s

IT
P
TRACT
DD
IV
IX
LT
ELD
ELDS
ELDSTORE
LEINFO
LELOCK
LEUNLOCK
ND
NDSTR
X
USH
T
TS
UL
LD
OTING
R
RMLIST
OM
UB
NCTION

ARBAGECOLLECT
CI
E
ES
ET
ETLIST
D-1

GETREM
GETX
GO
GOSUB
GOTO
GROUP
GROUPSTORE
GT
GTS
HEADING
HEADINGE
HEADINGN
HUSH
ICHECK
ICONV
ICONVS
IF
IFS
ILPROMPT
IN
INCLUDE
INDEX
INDEXS
INDICES
INMAT
INPUT
INPUTCLEAR
INPUTDISP
INPUTERR
INPUTIF
INPUTNULL
INPUTTRAP
INS
INSERT
INT
ISNULL
ISNULLS
ISOLATION
ITYPE
KEY
KEYEDIT
KEYEXIT
KEYIN
KEYTRAP
LE
LEFT
LEN
LENS
LES
LET

LEVEL
LIT
LITERALLY
LN
LOCATE
LOCK
LOCKED
LOOP
LOWER
LPTR
LT
LTS
MAT
MATBUILD
MATCH
MATCHES
MATCHFIELD
MATPARSE
MATREAD
MATREADL
MATREADU
MATWRITE
MATWRITEU
MAXIMUM
MESSAGE
MINIMUM
MOD
MODS
MTU
MULS
NAP
NE
NEG
NEGS
NES
NEXT
NOBUF
NO.ISOLATION
NOT
NOTS
NULL
NUM
NUMS
OCONV
OCONVS
OFF
ON
OPEN
OPENCHECK
OPENDEV

OPENPATH
OPENSEQ
OR
ORS
OUT
PAGE
PASSLIST
PCDRIVER
PERFORM
PRECISION
PRINT
PRINTER
PRINTERIO
PRINTERR
PROCREAD
PROCWRITE
PROG
PROGRAM
PROMPT
PWR
QUOTE
RAISE
RANDOMIZE
READ
READ.COMMITTED
READ.UNCOM-
MITTED
READBLK
READL
READLIST
READNEXT
READSEQ
READT
READU
READV
READVL
READVU
REAL
RECIO
RECORDLOCKED
RECORDLOCKL
RECORDLOCKU
RELEASE
REM
REMOVE
REPEAT
REPEATABLE.READ
REPLACE
RESET
RETURN

RETURNING
REUSE
REVREMOVE
REWIND
RIGHT
RND
ROLLBACK
RPC.CALL
RPC.CONNECT
RPC.DISCONNECT
RQM
RTNLIST
SADD
SCMP
SDIV
SEEK
SELECT
SELECTE
SELECTINDEX
SELECTN
SELECTV
SEND
SENTENCE
SEQ
SEQS
SEQSUM
SERIALIZABLE
SET
SETREM
SETTING
SIN
SINH
SLEEP
SMUL
SOUNDEX
SPACE
SPACES
SPLICE
SQLALLOCONNECT
SQLALLOCENV
SQLALLOCSTMT
SQLBINDCOL
SQLCANCEL
SQLCOLATTRI-
BUTES
SQLCONNECT
SQLDESCRIBECOL
SQLDISCONNECT
SQLERROR
SQLEXECDIRECT
D-2 Ascential DataStage BASIC Guide

SQLEXECUTE
SQLFETCH
SQLFREECONNECT
SQLFREEENV
SQLFREESTMT
SQLGETCURSOR-
NAME
SQLNUMRESULT-
COLS
SQLPREPARE
SQLROWCOUNT
SQLSETCONNECT-
OPTION
SQLSETCURSOR-
NAME
SQLSETPARAM
SQRT
SQUOTE
SSELECT
SSELECTN
SSELECTV
SSUB
START
STATUS
STEP
STOP
STOPE
STOPM
STORAGE
STR
STRS
SUB
SUBR
SUBROUTINE
SUBS
SUBSTRINGS
SUM
SUMMATION
SYSTEM
TABSTOP
TAN
TANH
TERMINFO
THEN
TIME
TIMEDATE
TIMEOUT
TO
TPARM
TPRINT

TRANS
TRANSACTION
TRIM
TRIMB
TRIMBS
TRIMF
TRIMFS
TRIMS
TTYCTL
TTYGET
TTYSET
UNASSIGNED
UNIT
UNLOCK
UNTIL
UPCASE
USING
WEOF
WEOFSEQ
WEOFSEQF
WHILE
WORDSIZE
WORKWRITE
WRITEBLK
WRITELIST
WRITESEQ
WRITESEQF
WRITET
WRITEU
WRITEV
WRITEVU
XLATE
XTD
BASIC Reserved Words D-3

D-4 Ascential DataStage BASIC Guide

E
@Variables

Table E-1 lists BASIC @variables. The @variables denoted by an asterisk (*) are
read-only. All others can be changed by the user.

The EXECUTE statement initializes the values of stacked @variables either to 0 or
to values reflecting the new environment. These values are not passed back to the
calling environment. The values of nonstacked @variables are shared between the
EXECUTE and calling environments. All @variables listed here are stacked unless
otherwise indicated.

Table E-1. BASIC @Variables

Variable Read-
Only Value

@ABORT.CODE * A numeric value indicating the type of
condition that caused the ON.ABORT
paragraph to execute. The values are:
1 - An ABORT statement was executed.
2 - An abort was requested after pressing
the Break key followed by option A.
3 - An internal or fatal error occurred.

@ACCOUNT * User login name. Same as @LOGNAME.
Nonstacked.

@AM * Field mark: CHAR(254). Same as @FM.
@ANS Last I-type answer, value indeterminate.
@AUTHORIZATION * Current effective user name.
@COMMAND * The last command executed or entered at

the command prompt.
@COMMAND.STACK * Dynamic array containing the last 99

commands executed.
@CONV For future use.
@Variables E-1

@CRTHIGH * Number of lines on the terminal.
@CRTWIDE * Number of columns on the terminal.
@DATA.PENDING * Dynamic array containing input gener-

ated by the DATA statement. Values in
the dynamic array are separated by field
marks.

@DATE Internal date.
@DAY Day of month from @DATE.
@DICT For future use.
@FALSE * Compiler replaces the value with 0.
@FILE.NAME Current filename. Same as @FILENAME.
@FILENAME Current filename. Same as

@FILE.NAME.
@FM * Field mark: CHAR(254). Same as @AM.
@FORMAT For future use.
@HDBC * ODBC connection environment on the

local DataStage server. Nonstacked.
@HEADER For future use.
@HENV * ODBC environment on the local

DataStage server. Nonstacked.
@HSTMT * ODBC statement environment on the

local DataStage server. Nonstacked.
@ID Current record ID.
@IM * Item mark: CHAR(255).
@ISOLATION * Current transaction isolation level for the

active transaction or the current default
isolation level if no transaction exists.

@LEVEL * The nesting level of execution state-
ments. Nonstacked.

@LOGNAME * User login name. Same as @ACCOUNT.
@LPTRHIGH * Number of lines on the device to which

you are printing (that is, terminal or
printer).

Table E-1. BASIC @Variables (Continued)

Variable Read-
Only Value
E-2 BASIC Guide

@LPTRWIDE * Number of columns on the device to
which you are printing (that is, terminal
or printer).

@MONTH Current month.
@MV The current value counter for columnar

listing only. Used only in I-descriptors.
Same as @NV.

@NB The current BREAK level number. 1 is
the lowest-level break. @NB has a value
of 255 on the grand total line. Used only
in I-descriptors.

@ND The number of detail lines since the last
BREAK on a break line. Used only in
I-descriptors.

@NEW * The new contents of the current record.
Use in trigger programs. Nonstacked.

@NI The current item counter (the number of
items listed or selected). Used only in
I-descriptors. Same as @RECCOUNT.

@NS The current subvalue counter for
columnar listing only. Used only in
I-descriptors.

@NULL * The null value. Nonstacked.
@NULL.STR * The internal representation of the null

value, which is CHAR(128). Nonstacked.
@NV The current value counter for columnar

listing only. Used only in I-descriptors.
Same as @MV.

@OLD * The original contents of the current
record. Use in trigger programs.
Nonstacked.

@OPTION The value of field 5 in the VOC for the
calling verb.

@PARASENTENCE * The last sentence or paragraph that
invoked the current process.

@PATH * Pathname of the current account.

Table E-1. BASIC @Variables (Continued)

Variable Read-
Only Value
@Variables E-3

@RECCOUNT The current item counter (the number of
items listed or selected). Used only in
I-descriptors. Same as @NI.

@RECORD Entire current record.
@RECUR0 Reserved.
@RECUR1 Reserved.
@RECUR2 Reserved.
@RECUR3 Reserved.
@RECUR4 Reserved.
@SCHEMA * Schema name of the current DataStage

account. Nonstacked. When users create
a new schema, @SCHEMA is not set until
the next time they log in to DataStage.

@SELECTED Number of elements selected from the
last select list. Nonstacked.

@SENTENCE * The sentence that invoked the current
BASIC program. Any EXECUTE updates
@SENTENCE.

@SM * Subvalue mark: CHAR(252). Same as
@SVM.

@SQL.CODE * For future use.
@SQL.DATE * The current system date. Use in trigger

programs. Nonstacked.
@SQL.ERROR * For future use.
@SQL.STATE * For future use.
@SQL.TIME * The current system time. Use in trigger

programs. Nonstacked.
@SQL.WARNING * For future use.
@SQLPROC.NAME * The name of the current SQL procedure.
@SQLPROC.TX.LEVEL * The transaction level at which the

current SQL procedure began.
@STDFIL Default file variable.
@SVM * Subvalue mark: CHAR(252). Same as

@SM.
@SYS.BELL * Bell character. Nonstacked.

Table E-1. BASIC @Variables (Continued)

Variable Read-
Only Value
E-4 BASIC Guide

@SYSTEM.RETURN.CODE Status codes returned by system
processes. Same as @SYSTEM.SET.

@SYSTEM.SET Status codes returned by system
processes. Same as
@SYSTEM.RETURN.CODE.

@TERM.TYPE * The terminal type. Nonstacked.
@TIME Internal time.
@TM * Text mark: CHAR(251).
@TRANSACTION * A numeric value. Any nonzero value

indicates that a transaction is active; the
value 0 indicates that no transaction
exists.

@TRANSACTION.ID * Transaction number of the active transac-
tion. An empty string indicates that no
transaction exists.

@TRANSACTION.LEVEL * Transaction nesting level of the active
transaction. A 0 indicates that no transac-
tion exists.

@TRUE Compiler replaces the value with 1.
@TTY Terminal device name. If the process is a

phantom, @TTY returns the value
‘phantom’. If the process is a DataStage
API, it returns ‘uvcs’.

@USER0 User-defined.
@USER1 User-defined.
@USER2 User-defined.
@USER3 User-defined.
@USER4 User-defined.
@USERNO * User number. Nonstacked. Same as

@USER.NO.
@USER.NO * User number. Nonstacked. Same as

@USERNO.
@USER.RETURN.CODE Status codes created by the user.
@VM * Value mark CHAR(253).
@WHO * The name of the current DataStage

account directory. Nonstacked.

Table E-1. BASIC @Variables (Continued)

Variable Read-
Only Value
@Variables E-5

@YEAR Current year.

Table E-1. BASIC @Variables (Continued)

Variable Read-
Only Value
E-6 BASIC Guide

F
BASIC Subroutines

This appendix describes the following subroutines you can call from a DataStage
BASIC program:

!ASYNC (!AMLC)
!EDIT.INPUT
!ERRNO
!FCMP
!GET.KEY
!GET.PARTNUM
!GET.PATHNAME
!GET.USER.COUNTS
!GETPU
!INLINE.PROMPTS
!INTS
!MAKE.PATHNAME
!MATCHES
!MESSAGE
!PACK.FNKEYS
!REPORT.ERROR
!SET.PTR
!SETPU
!TIMDAT
!USER.TYPE
!VOC.PATHNAME
BASIC Subroutines F-1

In addition, the subroutines listed in Table F-1 have been added to existing func-
tions for PI/open compatibility.

Table F-1. PI/open Subroutines

Subroutine Associated Function

CALL !ADDS ADDS

CALL !ANDS ANDS

CALL !CATS CATS

CALL !CHARS CHARS

CALL !CLEAR.PROMPTS CLEAR.PROMPTS

CALL !COUNTS COUNTS

CALL !DISLEN LENDP

CALL !DIVS DIVS

CALL !EQS EQS

CALL !FADD FADD

CALL !FDIV FDIV

CALL !FIELDS FIELDS

CALL !FMTS FMTS

CALL !FMUL FMUL

CALL !FOLD FOLD

CALL !FSUB FSUB

CALL !GES GES

CALL !GTS GTS

CALL !ICONVS ICONVS

CALL !IFS IFS

CALL !INDEXS INDEXS

CALL !LENS LENS

CALL !LES LES

CALL !LTS LTS

CALL !MAXIMUM MAXIMUM

CALL !MINIMUM MINIMUM

CALL !MODS MODS
F-2 Ascential DataStage BASIC Guide

CALL !MULS MULS

CALL !NES NES

CALL !NOTS NOTS

CALL !NUMS NUMS

CALL !OCONVS OCONVS

CALL !ORS ORS

CALL !SEQS SEQS

CALL !SPACES SPACES

CALL !SPLICE SPLICE

CALL !STRS STRS

CALL !SUBS SUBS

CALL !SUBSTRINGS SUBSTRINGS

CALL !SUMMATION SUMMATION

Table F-1. PI/open Subroutines (Continued)

Subroutine Associated Function
BASIC Subroutines F-3

!ASYNC subroutine
Syntax
CALL !ASYNC (key, line, data, count, carrier)

Description
Use the !ASYNC subroutine (or its synonym !AMLC) to send data to, and receive
data from an asynchronous device.

key defines the action to be taken (1 through 5). The values for key are defined in the
following list:

line is the number portion from the &DEVICE& entry TTY##, where ## represents
a decimal number.

data is the data being sent to or received from the line.

count is an output variable containing the character count.

carrier is an output variable that returns a value dependent on the value of key. If
key is 1, 2, or 3, carrier returns the variable specified by the user. If key has a value
of 4 or 5, carrier returns 1.

You must first assign an asynchronous device using the ASSIGN command. A
entry must be in the &DEVICE& file for the device to be assigned with the
record ID format of TTY##, where ## represents a decimal number. The actions
associated with each key value are as follows:

key Action

1 Inputs the number of characters indicated by the value of count.

2 Inputs the number of characters indicated by the value of count or until
a linefeed character is encountered.

3 Outputs the number of characters indicated by the value of count.

4 Returns the number of characters in the input buffer to count. On oper-
ating systems where the FIONREAD key is not supported, 0 is returned
in count. When the value of key is 4, 1 is always returned to carrier.

5 Returns 0 in count if there is insufficient space in the output buffer. On
operating systems where the TIOCOUTQ key is not supported, 0 is
returned in count. When the value of key is 5, 1 is always returned to
carrier.
F-4 Ascential DataStage BASIC Guide

!ASYNC subroutine
Example
The !ASYNC subroutine returns the first 80 characters from the device defined by
ASYNC10 in the &DEVICE& file to the variable data.

data=
count= 80
carrier= 0
call !ASYNC(1,10,data,count,carrier)
BASIC Subroutines F-5

!EDIT.INPUT subroutine
Syntax
CALL !EDIT.INPUT (keys, wcol, wrow, wwidth, buffer, startpos, bwidth, ftable,

code)

Qualifiers

keys Controls certain operational characteristics. keys can take the additive
values (the token names can be found in the GTI.FNKEYS.IH include
file) shown here:

Value Token Description

0 IK$NON None of the keys below are required.

1 IK$OCR Output a carriage return.

2 IK$ATM Terminate editing as soon as the user has entered
bwidth characters.

4 IK$TCR Toggle cursor-visible state.

8 IK$DIS Display contents of buffer string on entry.

16 IK$HDX Set terminal to half-duplex mode (restored on
exit).

32 IK$INS Start editing in insert mode. Default is overlay
mode.

64 IK$BEG Separate Begin Line/End Line functionality
required.

wcol The screen column of the start of the window (x coordinate).

wrow The screen row for the window (y coordinate).

wwidth The number of screen columns the window occupies.

buffer Contains the following:

on entry The text to display (if key IK$DIS is set).

on exit The final edited value of the text.

startpos Indicates the cursor position as follows:

on entry The initial position of the cursor (from start of buffer).

on exit The position of the cursor upon exit.
F-6 Ascential DataStage BASIC Guide

!EDIT.INPUT subroutine
Description
Use the !EDIT.INPUT subroutine to request editable terminal input within a
single-line window on the terminal. Editing keys are defined in the terminfo files
and can be set up using the KEYEDIT, KEYTRAP and KEYEXIT statements. To ease
the implementation, the UNIVERSE.INCLUDE file GTI.FNKEYS.IH can be
included to automatically define the editing keys from the current terminfo defini-
tion. We recommend that you use the INCLUDE file.

All input occurs within a single-line window of the terminal screen, defined by the
parameters wrow, wcol, and wwidth. If the underlying buffer length bwidth is greater
than wwidth and the user performs a function that moves the cursor out of the
window horizontally, the contents of buffer are scrolled so as to keep the cursor
always in the window.

If the specified starting cursor position would take the cursor out of the window,
the buffer’s contents are scrolled immediately so as to keep the cursor visible.
!EDIT.INPUT does not let the user enter more than bwidth characters into the
buffer, regardless of the value of wwidth.

!EDIT.INPUT Functions
!EDIT.INPUT performs up to eight editing functions, as follows:

bwidth The maximum number of positions allowed in buffer. bwidth can be more
than wwidth, in which case the contents of buffer scroll horizontally as
required.

ftable A packed function key trap table, defining which keys cause exit from
the !EDIT.INPUT function. The !PACK.FNKEYS function creates the
packed function key trap table.

code The reply code:

= 0 User pressed Return or entered bwidth characters and
IK$ATM was set.

> 0 The function key number that terminated !EDIT.INPUT.

Value Token Description

3 FK$BSP Backspace

4 FK$LEFT Cursor left
BASIC Subroutines F-7

!EDIT.INPUT subroutine
The specific keys to perform each function can be automatically initialized by
including the $INCLUDE UNIVERSE.INCLUDE GTI.FNKEYS.IH statement in the
application program.

If any of the values appear in the trap list, its functionality is disabled and the
program immediate exits the !EDIT.INPUT subroutine when the key associated
with that function is pressed.

Unsupported Functions

This implementation does not support a number of functions originally available
in the Prime INFORMATION version. Because of this, sequences can be generated
that inadvertently cause the !EDIT.INPUT function to terminate. For this reason,
you can create a user-defined terminal keystroke definition file so that
!EDIT.INPUT recognizes the unsupported sequences. Unsupported sequences
cause the !EDIT.INPUT subroutine to ring the terminal bell, indicating the recog-
nition of an invalid sequence.

The file CUSTOM.GTI.DEFS defines a series of keystroke sequences for this
purpose. You can create the file in each account or in a central location, with VOC
entries in satellite accounts referencing the remote file. There is no restriction on
how the file can be created. For instance, you can use the command:

>CREATE.FILE CUSTOM.GTI.DEFS 2 17 1 /* Information style */

or:

>CREATE-FILE CUSTOM.GTI.DEFS (1,1,3 17,1,2) /* Pick style */

to create the definition file. A terminal keystroke definition record assumes the
name of the terminal which the definitions are associated with, i.e., for vt100 termi-
nals the CUSTOM.GTI.DEFS file record ID would be vt100 (case-sensitive). Each
terminal keystroke definition record contains a maximum of 82 fields (attributes)

5 FK$RIGHT Cursor right

19 FK$INSCH Insert character

21 FK$INSTXT Insert/overlay mode toggle

23 FK$DELCH Delete character

24 FK$DELLIN Delete line

51 FK$CLEOL Clear to end-of-line

Value Token Description
F-8 Ascential DataStage BASIC Guide

!EDIT.INPUT subroutine
which directly correspond to the keystroke code listed in the GTI.FNKEYS.IH
include file.

The complete listing of the fields defined within the GTI.FNKEYS.IH include file
is shown below:

Key Name Field Description

FK$FIN 1 Finish

FK$HELP 2 Help

FK$BSP 3 Backspace1

FK$LEFT 4 Left arrow1

FK$RIGHT 5 Right arrow1

FK$UP 6 Up arrow

FK$DOWN 7 Down arrow

FK$LSCR 8 Left screen

FK$RSCR 9 Right screen

FK$USCR 10 Up screen, Previous page

FK$DSCR 11 Down screen, Next page

FK$BEGEND 12 Toggle begin/end line, or Begin line

FK$TOPBOT 13 Top/Bottom, or End line

FK$NEXTWD 14 Next word

FK$PREVWD 15 Previous word

FK$TAB 16 Tab

FK$BTAB 17 Backtab

FK$CTAB 18 Column tab

FK$INSCH 19 Insert character (space)1

FK$INSLIN 20 Insert line

FK$INSTXT 21 Insert text, Toggle insert/overlay mode1

FK$INSDOC 22 Insert document

FK$DELCH 23 Delete character1

FK$DELLIN 24 Delete line1
BASIC Subroutines F-9

!EDIT.INPUT subroutine
FK$DELTXT 25 Delete text

FK$SRCHNX 26 Search next

FK$SEARCH 27 Search

FK$REPLACE 28 Replace

FK$MOVE 29 Move text

FK$COPY 30 Copy text

FK$SAVE 31 Save text

FK$FMT 32 Call format line

FK$CONFMT 33 Confirm format line

FK$CONFMTNW 34 Confirm format line, no wrap

FK$OOPS 35 Oops

FK$GOTO 36 Goto

FK$CALC 37 Recalculate

FK$INDENT 38 Indent (set left margin)

FK$MARK 39 Mark

FK$ATT 40 Set attribute

FK$CENTER 41 Center

FK$HYPH 42 Hyphenate

FK$REPAGE 43 Repaginate

FK$ABBREV 44 Abbreviation

FK$SPELL 45 Check spelling

FK$FORM 46 Enter formula

FK$HOME 47 Home the cursor

FK$CMD 48 Enter command

FK$EDIT 49 Edit

FK$CANCEL 50 Abort/Cancel

FK$CLEOL 51 Clear to end of line1

FK$SCRWID 52 Toggle between 80 and 132 mode

Key Name Field Description
F-10 Ascential DataStage BASIC Guide

!EDIT.INPUT subroutine
FK$PERF 53 Invoke DSS PERFORM emulator

FK$INCLUDE 54 DSS Include scratchpad data

FK$EXPORT 55 DSS Export scratchpad data

FK$TWIDDLE 56 Twiddle character pair

FK$DELWD 57 Delete word

FK$SRCHPREV 58 Search previous

FK$LANGUAGE 59 Language

FK$REFRESH 60 Refresh

FK$UPPER 61 Uppercase

FK$LOWER 62 Lowercase

FK$CAPIT 63 Capitalize

FK$REPEAT 64 Repeat

FK$STAMP 65 Stamp

FK$SPOOL 66 Spool record

FK$GET 67 Get record

FK$WRITE 68 Write record

FK$EXECUTE 69 Execute macro

FK$NUMBER 70 Toggle line numbering

FK$DTAB 71 Clear tabs

FK$STOP 72 Stop (current activity)

FK$EXCHANGE 73 Exchange mark and cursor

FK$BOTTOM 74 Move bottom

FK$CASE 75 Toggle case sensitivity

FK$LISTB 76 List (buffers)

FK$LISTD 77 List (deletions)

FK$LISTA 78 List (selects)

FK$LISTC 79 List (commands)

FK$DISPLAY 80 Display (current select list)

Key Name Field Description
BASIC Subroutines F-11

!EDIT.INPUT subroutine
Example
The following BASIC program sets up three trap keys (using the !PACK.FNKEYS
subroutine), waits for the user to enter input, then reports how the input was
terminated:

$INCLUDE UNIVERSE.INCLUDE GTI.FNKEYS.IH
* Set up trap keys of FINISH, UPCURSOR and DOWNCURSOR
TRAP.LIST = FK$FIN:@FM:FK$UP:@FM:FK$DOWN
CALL !PACK.FNKEYS(TRAP.LIST, Ftable)
* Start editing in INPUT mode, displaying contents in window
KEYS = IK$INS + IK$DIS
* Window edit is at x=20, y=2, of length 10 characters;
* the user can enter up to 30 characters of input into TextBuffer,
* and the cursor is initially placed on the first character of the
* window.
TextBuffer=""
CursorPos = 1
CALL !EDIT.INPUT(KEYS, 20, 2, 10, TextBuffer, CursorPos, 30, Ftable,

ReturnCode)
* On exit, the user's input is within TextBuffer,
* CursorPos indicates the location of the cursor upon exiting,
* and ReturnCode contains the reason for exiting.
BEGIN CASE
 CASE CODE = 0 * User pressed RETURN key
 CASE CODE = FK$FIN * User pressed the defined FINISH key
 CASE CODE = FK$UP * User pressed the defined UPCURSOR key
 CASE CODE = FK$DOWN * User pressed the defined DOWNCURSOR key
 CASE 1 * Should never happen
END CASE

FK$BLOCK 81 Block (replace)

FK$PREFIX 82 Prefix

1. Indicates supported functionality.

Key Name Field Description
F-12 Ascential DataStage BASIC Guide

!ERRNO subroutine
Syntax
CALL !ERRNO (variable)

Description
Use the !ERRNO subroutine to return the current value of the operating system
errno variable.

variable is the name of a BASIC variable.

The !ERRNO subroutine returns the value of the system errno variable after the last
call to a GCI subroutine in variable. If you call a system routine with the GCI, and
the system call fails, you can use !ERRNO to determine what caused the failure. If
no GCI routine was called prior to its execution, !ERRNO returns 0. The values of
errno that apply to your system are listed in the system include file errno.h.
BASIC Subroutines F-13

!FCMP subroutine
Syntax
CALL !FCMP (result , number1 , number2)

Description
Use the !FCMP subroutine to compare the equality of two floating-point
numeric values as follows:

If number1 is less than number2, result is –1.

If number1 is equal to number2, result is 0.

If number1 is greater than number2, result is 1.
F-14 Ascential DataStage BASIC Guide

!GET.KEY subroutine
Syntax
CALL !GET.KEY (string, code)

Qualifiers

Description
Use the !GET.KEY subroutine to return the next key pressed at the keyboard. This
can be either a printing character, the Return key, a function key as defined by the
current terminal type, or a character sequence that begins with an escape or control
character not defined as a function key.

Function keys can be automatically initialized by including the $INCLUDE
UNIVERSE.INCLUDES GTI.FNKEYS.IH statement in the application program
that uses the !GET.KEY subroutine.

Example
The following BASIC program waits for the user to enter input, then reports the
type of input entered:

 $INCLUDE GTI.FNKEYS.IH
 STRING = ' ' ; * initial states of call variables
 CODE = -999
 * Now ask for input until user hits a "Q"
 LOOP

string Returns the character sequence of the next key pressed at the keyboard.

code Returns the string interpretation value:

Code String Value

0 A single character that is not part of any function key sequence. For
example, if A is pressed, code = 0 and string = CHAR(65).

>0 The character sequence associated with the function key defined by
that number in the GTI.FNKEYS.IH include file. For example, on a
VT100 terminal, pressing the key labelled --> (right cursor move)
returns code = 5 and string = CHAR(27):CHAR(79):CHAR(67).

<0 A character sequence starting with an escape or control character
that does not match any sequence in either the terminfo entry or the
CUSTOM.GCI.DEFS file.
BASIC Subroutines F-15

!GET.KEY subroutine
 UNTIL STRING[1,1] = "q" OR STRING[1,1] = "Q"
 PRINT 'Type a character or press a function key (q to quit):':
 CALL !GET.KEY(STRING, CODE)
 * Display meaning of CODE
 PRINT
 PRINT "CODE = ":CODE:
 BEGIN CASE
 CASE CODE = 0
 PRINT " (Normal character)"
 CASE CODE > 0
 PRINT " (Function key number)"
 CASE 1; * otherwise
 PRINT " (Unrecognised function key)"
 END CASE
 * Print whatever is in STRING, as decimal numbers:
 PRINT "STRING = ":
 FOR I = 1 TO LEN(STRING)
 PRINT "CHAR(":SEQ(STRING[I,1]):") ":
 NEXT I
 PRINT
 REPEAT
 PRINT "End of run."
 RETURN
END
F-16 Ascential DataStage BASIC Guide

!GET.PARTNUM subroutine
Syntax
CALL !GET.PARTNUM (file, record.ID, partnum, status)

Description
Use the !GET.PARTNUM subroutine with distributed files to determine the
number of the part file to which a given record ID belongs.

file (input) is the file variable of the open distributed file.

record.ID (input) is the record ID.

partnum (output) is the part number of the part file of the distributed file to which
the given record ID maps.

status (output) is 0 for a valid part number or an error number for an invalid part
number. An insert file of equate tokens for the error numbers is available.

An insert file of equate names is provided to allow you to use mnemonics for the
error numbers. The insert file is called INFO_ERRORS.INS.IBAS, and is located in
the INCLUDE subdirectory. To use the insert file, specify $INCLUDE SYSCOM
INFO_ERRORS.INS.IBAS when you compile the program.

Use the !GET.PARTNUM subroutine to call the partitioning algorithm associated
with a distributed file. If the part number returned by the partitioning algorithm is
not valid, that is, not an integer greater than zero, !GET.PARTNUM returns a
nonzero status code. If the part number returned by the partitioning algorithm is
valid, !GET.PARTNUM returns a zero status code.

Equate Name Description

IE$NOT.DISTFILE The file specified by the file variable is not a
distributed file.

IE$DIST.DICT.OPEN.FAIL The program failed to open the file dictionary
for the distributed file.

IE$DIST.ALG.READ.FAIL The program failed to read the partitioning
algorithm from the distributed file dictionary.

IE$NO.MAP.TO.PARTNUM The record ID specified is not valid for this
distributed file.
BASIC Subroutines F-17

!GET.PARTNUM subroutine
Note: !GET.PARTNUM does not check that the returned part number corresponds
to one of the available part files of the currently opened file.

Example
In the following example, a distributed file SYS has been defined with parts and
part numbers S1, 5, S2, 7, and S3, 3, respectively. The file uses the default SYSTEM
partitioning algorithm.

PROMPT ''
GET.PARTNUM = '!GET.PARTNUM'
STATUS = 0
PART.NUM = 0
OPEN '', 'SYS' TO FVAR ELSE STOP 'NO OPEN SYS'
PATHNAME.LIST = FILEINFO(FVAR, FINFO$PATHNAME)
PARTNUM.LIST = FILEINFO(FVAR, FINFO$PARTNUM)
LOOP
 PRINT 'ENTER Record ID : ':
 INPUT RECORD.ID
 WHILE RECORD.ID
 CALL @GET.PARTNUM(FVAR, RECORD.ID, PART.NUM, STATUS)
 LOCATE PART.NUM IN PARTNUM.LIST<1> SETTING PART.INDEX THEN
PATHNAME = PATHNAME.LIST <PART.INDEX>
 END ELSE
 PATHNAME = ''
 END
 PRINT 'PART.NUM = ':PART.NUM:' STATUS = ':STATUS :'

PATHNAME = ': PATHNAME
 REPEAT
 END

!GET.PARTNUM returns part number 5 for input record ID 5-1, with status code 0,
and part number 7 for input record ID 7-1, with status code 0, and part number 3
for input record ID 3-1, with status code 0. These part numbers are valid and corre-
spond to available part files of file SYS.

!GET.PARTNUM returns part number 1200 for input record ID 1200-1, with status
code 0. This part number is valid but does not correspond to an available part file
of file SYS.

!GET.PARTNUM returns part number 0 for input record ID 5-1, with status code
IE$NO.MAP.TO.PARTNUM, and part number 0 for input record ID A-1, with
status code IE$NO.MAP.TO.PARTNUM, and part number 0 for input record ID 12-
4, with status code IE$NO.MAP.TO.PARTNUM. These part numbers are not valid
and do not correspond to available part files of the file SYS.
F-18 Ascential DataStage BASIC Guide

!GET.PATHNAME subroutine
Syntax
CALL !GET.PATHNAME (pathname, directoryname, filename, status)

Description
Use the !GET.PATHNAME subroutine to return the directory name and filename
parts of a pathname.

pathname (input) is the pathname from which the details are required.

directoryname (output) is the directory name portion of the pathname, that is, the
pathname with the last entry name stripped off.

filename (output) is the filename portion of the pathname.

status (output) is the returned status of the operation. A 0 indicates success, another
number is an error code indicating that the supplied pathname was not valid.

Example
If pathname is input as /usr/accounts/ledger, directoryname is returned as /usr/accounts,
and filename is returned as ledger.

PATHNAME = "/usr/accounts/ledger "
CALL !GET.PATHNAME(PATHNAME,DIR,FNAME,STATUS)
IF STATUS = 0
THEN
 PRINT "Directory portion = ":DIR
 PRINT "Entryname portion = ":FNAME
END
BASIC Subroutines F-19

!GETPU subroutine
Syntax
CALL !GETPU (key, print.channel, set.value, return.code)

Description
Use the !GETPU subroutine to read individual parameters of any logical print
channel.

key is a number indicating the parameter to be read.

print.channel is the logical print channel, designated by –1 through 255.

set.value is the value to which the parameter is currently set.

return.code is the code returned.

The !GETPU subroutine allows you to read individual parameters of logical print
channels as designated by print.channel. Print channel 0 is the terminal unless a
PRINTER ON statement has been executed to send output to the default printer. If
you specify print channel –1, the output is directed to the terminal, regardless of
the status of PRINTER ON or OFF. See the description of the !SETPU subroutine
later in this appendix for a means of setting individual print.channel parameters.

Equate Names for Keys
An insert file of equate names is provided to allow you to use mnemonics rather
than key numbers. The name of the insert file is GETPU.INS.IBAS. Use the
$INCLUDE compiler directive to insert this file if you want to use equate names.
The following list shows the equate names and keys for the parameters:

Mnemonic Key Parameter

PU$MODE 1 Printer mode.

PU$WIDTH 2 Device width (columns).

PU$LENGTH 3 Device length (lines).

PU$TOPMARGIN 4 Top margin (lines).

PU$BOTMARGIN 5 Bottom margin (lines).

PU$LEFTMARGIN 6 Left margin (columns, reset on printer
close). Always returns 0.

PU$SPOOLFLAGS 7 Spool option flags.
F-20 Ascential DataStage BASIC Guide

!GETPU subroutine
PU$DEFERTIME 8 Spool defer time. This cannot be 0.

PU$FORM 9 Spool form (string).

PU$BANNER 10 Spool banner or hold filename (string).

PU$LOCATION 11 Spool location (string).

PU$COPIES 12 Spool copies. A single copy can be
returned as 1 or 0.

PU$PAGING 14 Terminal paging (nonzero is on). This
only works when PU$MODE is set to 1.

PU$PAGENUMBER 15 Returns the current page number.

PU$DISABLE 16 0 is returned if print.channel is enabled;
and a 1 is returned if print.channel is
disabled.

PU$CONNECT 17 Returns the number of a connected print
channel or an empty string if no print
channels are connected.

PU$NLSMAP 22 If NLS is enabled, returns the NLS map
name associated with the specified print
channel.

PU$LINESLEFT 1002 Lines left before new page needed.
Returns erroneous values for the
terminal if cursor addressing is used, if a
line wider than the terminal is printed,
or if terminal input has occurred.

PU$HEADERLINES 1003 Lines used by current header.

PU$FOOTERLINES 1004 Lines used by current footer.

PU$DATALINES 1005 Lines between current header and footer.

PU$DATACOLUMNS 1006 Columns between left margin and device
width.

Mnemonic Key Parameter
BASIC Subroutines F-21

!GETPU subroutine
The PU$SPOOLFLAGS Key
The PU$SPOOLFLAGS key refers to a 32-bit option word that controls a number
of print options. This is implemented as a 16-bit word and a 16-bit extension word.
(Thus bit 21 refers to bit 5 of the extension word.) The bits are assigned as follows:

Equate Names for Return Code
An insert file of equate names is provided to allow you to use mnemonics rather
than key numbers. The name of the insert file is ERRD.INS.IBAS. Use the

Bit Description

1 Uses FORTRAN-format mode. This allows the attaching of
vertical format information to each line of the data file. The first
character position of each line from the file does not appear in the
printed output, and is interpreted as follows:

Character Meaning

0 Advances two lines.

1 Ejects to the top of the next page.

+ Overprints the last line.

Space Advances one line.

– Advances three lines (skip two lines). Any other
character is interpreted as advance one line.

3 Generates line numbers at the left margin.

4 Suppresses header page.

5 Suppresses final page eject after printing.

12 Spools the number of copies specified in an earlier !SETPU call.

21 Places the job in the spool queue in the hold state.

22 Retains jobs in the spool queue in the hold state after they have
been printed.

other All the remaining bits are reserved.
F-22 Ascential DataStage BASIC Guide

!GETPU subroutine
$INCLUDE statement to insert this file if you want to use equate names. The
following list shows the codes returned in the argument return.code:

Examples
In this example, the file containing the parameter key equate names is inserted
with the $INCLUDE compiler directive. Later the top margin parameter for logical
print channel 0 is interrogated. Print channel 0 is the terminal unless a prior
PRINTER ON statement has been executed to direct output to the default printer.
The top margin setting is returned in the argument TM.SETTING. Return codes are
returned in the argument RETURN.CODE.

$INCLUDE SYSCOM GETPU.INS.IBAS
CALL !GETPU(PU$TOPMARGIN,0,TM.SETTING,RETURN.CODE)

The next example does the same as the previous example but uses the key 4 instead
of the equate name PU$TOPMARGIN. Because the key number is used, it is not
necessary for the insert file GETPU.INS.IBAS to be included.

CALL !GETPU(4,0,TM.SETTING,RETURN.CODE)

The next example returns the current deferred time on print channel 0 in the vari-
able TIME.RET:

CALL !GETPU(PU$DEFERTIME,0,TIME.RET,RETURN.CODE)

Code Meaning

0 No error

E$BKEY Bad key (key is out of range)

E$BPAR Bad parameter (value of new.value is out of range)

E$BUNT Bad unit number (value of print.channel is out of range)

E$NRIT No write (attempt to set a read-only parameter)
BASIC Subroutines F-23

!GET.USER.COUNTS subroutine
Syntax
CALL !GET.USER.COUNTS (uv.users, max.uv.users, os.users)

Description
Use the !GET.USER.COUNTS subroutine to return a count of DataStage and
system users. If any value cannot be retrieved, a value of –1 is returned.

uv.users (output) is the current number of DataStage users.

max.uv.users (output) is the maximum number of licensed DataStage users allowed
on your system.

os.users (output) is the current number of operating system users.
F-24 Ascential DataStage BASIC Guide

!INLINE.PROMPTS subroutine
Syntax
CALL !INLINE.PROMPTS (result , string)

Description
Use the !INLINE.PROMPTS subroutine to evaluate a string that contains in-line
prompts. In-line prompts have the following syntax:

<<{ control ,}…text{ ,option}>>

result (output) is the variable that contains the result of the evaluation.

string (input) is the string containing an in-line prompt.

control specifies the characteristics of the prompt, and can be one of the following:

@(CLR) Clears the terminal screen.

@(BELL) Rings the terminal bell.

@(TOF) Issues a formfeed character: in most circumstances this results in
the cursor moving to the top left of the screen.

@(col ,row) Prompts at the specified column and row number on the terminal.

A Always prompts when the in-line prompt containing the control
option is evaluated. If you do not specify this option, the input
value from a previous execution of the prompt is used.

Cn Specifies that the nth word on the command line is used as the
input value. (Word 1 is the verb in the sentence.)

F(filename ,record.id[, fm[,vm[,sm]]])

Takes the input value from the specified record in the specified
file, and optionally, extracts a value (@VM), or subvalue (@SM),
from the field (@FM). This option cannot be used with the file
dictionary.

In Takes the nth word from the command line, but prompts if the
word is not entered.

R(string) Repeats the prompt until an empty string is entered. If string is
specified, each response to the prompt is appended by string
between each entry. If string is not specified, a space is used to
separate the responses.
BASIC Subroutines F-25

!INLINE.PROMPTS subroutine
If the in-line prompt has a value, that value is substituted for the prompt. If the in-
line prompt does not have a value, the prompt is displayed to request an input
value when the function is executed. The value entered at the prompt is then
substituted for the in-line prompt.

Note: Once a value has been entered for a particular prompt, the prompt
continues to have that value until a !CLEAR.PROMPTS subroutine is
called, or control option A is specified. A !CLEAR.PROMPTS subroutine
clears all the values that have been entered for in-line prompts.

You can enclose prompts within prompts.

Example
A = ""
CALL !INLINE.PROMPTS(A,"You have requested the <<Filename>> file")
PRINT "A"

The following output is displayed:

Filename=PERSONNEL
You have requested the PERSONNEL file

P Saves the input from an in-line prompt. The input is then used for
all in-line prompts with the same prompt text. This is done until
the saved input is overwritten by a prompt with the same prompt
text and with a control option of A, C, I, or S, or until control
returns to the command prompt. The P option saves the input from
an in-line prompt in the current paragraph, or in other paragraphs.

Sn Takes the nth word from the command (as in the In control option),
but uses the most recent command entered at the command level
to execute the paragraph, rather than an argument in the para-
graph. This is useful where paragraphs are nested.

text The prompt to be displayed.

option A valid conversion code or pattern match. A valid conversion code
is one that can be used with the ICONV function. Conversion
codes must be enclosed in parentheses. A valid pattern match is
one that can be used with the MATCHING keyword.
F-26 Ascential DataStage BASIC Guide

!INTS subroutine
Syntax
CALL !INTS (result, dynamic.array)

Description
Use the !INTS subroutine to retrieve the integer portion of elements in a dynamic
array.

result (output) contains a dynamic array that comprises the integer portions of the
elements of dynamic.array.

dynamic.array (input) is the dynamic array to process.

The !INTS subroutine returns a dynamic array, each element of which contains the
integer portion of the numeric value in the corresponding element of the input
dynamic.array.

Example
A=33.0009:@VM:999.999:@FM:-4.66:@FM:88.3874
CALL !INTS(RESULT,A)

The following output is displayed:

33VM999FM–4FM88
BASIC Subroutines F-27

!MAKE.PATHNAME subroutine
Syntax
CALL !MAKE.PATHNAME (path1, path2, result, status)

Description
Use the !MAKE.PATHNAME subroutine to construct the full pathname of a file.
The !MAKE.PATHNAME subroutine can be used to:

• Concatenate two strings to form a pathname. The second string must be a
relative path.

• Obtain the fully qualified pathname of a file. Where only one of path1 or
path2 is given, !MAKE.PATHNAME returns the pathname in its fully quali-
fied state. In this case, any filename you specify does not have to be an
existing filename.

• Return the current working directory. To do this, specify both path1 and
path2 as empty strings.

path1 (input) is a filename or partial pathname. If path1 is an empty string, the
current working directory is used.

path2 (input) is a relative pathname. If path2 is an empty string, the current working
directory is used.

result (output) is the resulting pathname.

status (output) is the returned status of the operation. 0 indicates success. Any other
number indicates either of the following errors:

Example
In this example, the user’s working directory is /usr/accounts:

ENT = "ledger"
CALL !MAKE.PATHNAME(ENT,"",RESULT,STATUS)
IF STATUS = 0
THEN PRINT "Full name = ":RESULT

IE$NOTRELATIVE path2 was not a relative pathname.

IE$PATHNOTFOUND The pathname could not be found when
!MAKE.PATHNAME tried to qualify it fully.
F-28 Ascential DataStage BASIC Guide

!MAKE.PATHNAME subroutine
The following result is displayed:

Full name = /usr/accounts/ledger
BASIC Subroutines F-29

!MATCHES subroutine
Syntax
CALL !MATCHES (result , dynamic.array, match.pattern)

Description
Use the !MATCHES subroutine to test whether each element of one dynamic array
matches the patterns specified in the elements of the second dynamic array. Each
element of dynamic.array is compared with the corresponding element of
match.pattern. If the element in dynamic.array matches the pattern specified in
match.pattern, 1 is returned in the corresponding element of result. If the element
from dynamic.array is not matched by the specified pattern, 0 is returned.

result (output) is a dynamic array containing the result of the comparison on each
element in dynamic array1.

dynamic.array (input) is the dynamic array to be tested.

match.pattern (input) is a dynamic array containing the match patterns.

When dynamic.array and match.pattern do not contain the same number of elements,
the behavior of !MATCHES is as follows:

• result always contains the same number of elements as the longer of
dynamic.array or match.pattern.

• If there are more elements in dynamic.array than in match.pattern, the
missing elements are treated as though they contained a pattern that
matched an empty string.

• If there are more elements in match.pattern than in dynamic.array, the
missing elements are treated as though they contained an empty string.

Examples
The following example returns the value of the dynamic array as 1VM1VM1:

A='AAA4A4':@VM:2398:@VM:'TRAIN'
B='6X':@VM:'4N':@VM:'5A'
CALL !MATCHES(RESULT,A,B)
F-30 Ascential DataStage BASIC Guide

!MATCHES subroutine
In the next example, there are missing elements in match.pattern that are treated as
though they contain a pattern that matches an empty string. The result is
0VM0SM0FM1FM1.

R='AAA':@VM:222:@SM:'CCCC':@FM:33:@FM:'DDDDDD'
S='4A':@FM:'2N':@FM:'6X'
CALL !MATCHES(RESULT,R,S)

In the next example, the missing element in match.pattern is used as a test for an
empty string in dynamic.array, and the result is 1VM1FM1:

X='AAA':@VM:@FM:''
Y='3A':@FM:'3A'
CALL !MATCHES(RESULT,X,Y)
BASIC Subroutines F-31

!MESSAGE subroutine
Syntax
CALL !MESSAGE (key, username, usernum, message, status)

Description
Use the !MESSAGE subroutine to send a message to another user on the system.
!MESSAGE lets you change and report on the current user’s message status.

key (input) specifies the operation to be performed. You specify the option you
require with the key argument, as follows:

username (input) is the name of the user, or the TTY name, for send or status
operations.

usernum (input) is the number of the user for send/status operations.

message (input) is the message to be sent.

status (output) is the returned status of the operation as follows:

Note: The value of message is ignored when key is set to IK$MSGACCEPT,
IK$MSGREJECT, or IK$MSGSTATUS.

IK$MSGACCEPT Sets message status to accept.

IK$MSGREJECT Sets message status to reject.

IK$MSGSEND Sends message to user.

IK$MSGSENDNOW Sends message to user now.

IK$MSGSTATUS Displays message status of user.

0 The operation was successful.

IE$NOSUPPORT You specified an unsupported key option.

IE$KEY You specified an invalid key option.

IE$PAR The username or message you specified was not valid.

IE$UNKNOWN.USER You tried to send a message to a user who is not logged
in to the system.

IE$SEND.REQ.REC The sender does not have the MESSAGERECEIVE option
enabled.

IE$MSG.REJECTED One or more users have the MESSAGEREJECT mode set.
F-32 Ascential DataStage BASIC Guide

!MESSAGE subroutine
Example
CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
IF CODE # 0
THEN CALL !REPORT.ERROR ('MY.COMMAND','!MESSAGE',CODE)
BASIC Subroutines F-33

!PACK.FNKEYS subroutine
Syntax
CALL !PACK.FNKEYS (trap.list, ftable)

Qualifiers

Description
The !PACK.FNKEYS subroutine converts a list of function key numbers into a bit
string suitable for use with the !EDIT.INPUT subroutine. This bit string defines the
keys which cause !EDIT.INPUT to exit, enabling the program to handle the specific
keys itself.

trap.list can be a list of function key numbers delimited by field marks
(CHAR(254)). Alternatively, the mnemonic key name, listed below and in the
UNIVERSE.INCLUDE file GTI.FNKEYS.IH, can be used:

trap.list A list of function numbers delimited by field marks (CHAR(254)),
defining the specific keys that are to be used as trap keys by the
!EDIT.INPUT subroutine.

ftable A bit-significant string of trap keys used in the ftable parameter of the
!EDIT.INPUT subroutine. This string should not be changed in any
way before calling the !EDIT.INPUT subroutine.

Key Name Field Description

FK$FIN 1 Finish

FK$HELP 2 Help

FK$BSP 3 Backspace1

FK$LEFT 4 Left arrow1

FK$RIGHT 5 Right arrow1

FK$UP 6 Up arrow

FK$DOWN 7 Down arrow

FK$LSCR 8 Left screen

FK$RSCR 9 Right screen

FK$USCR 10 Up screen, Previous page

FK$DSCR 11 Down screen, Next page
F-34 Ascential DataStage BASIC Guide

!PACK.FNKEYS subroutine
FK$BEGEND 12 Toggle begin/end line, or Begin line

FK$TOPBOT 13 Top/Bottom, or End line

FK$NEXTWD 14 Next word

FK$PREVWD 15 Previous word

FK$TAB 16 Tab

FK$BTAB 17 Backtab

FK$CTAB 18 Column tab

FK$INSCH 19 Insert character (space)1

FK$INSLIN 20 Insert line

FK$INSTXT 21 Insert text, Toggle insert/overlay mode1

FK$INSDOC 22 Insert document

FK$DELCH 23 Delete character1

FK$DELLIN 24 Delete line1

FK$DELTXT 25 Delete text

FK$SRCHNX 26 Search next

FK$SEARCH 27 Search

FK$REPLACE 28 Replace

FK$MOVE 29 Move text

FK$COPY 30 Copy text

FK$SAVE 31 Save text

FK$FMT 32 Call format line

FK$CONFMT 33 Confirm format line

FK$CONFMTNW 34 Confirm format line, no wrap

FK$OOPS 35 Oops

FK$GOTO 36 Goto

FK$CALC 37 Recalculate

FK$INDENT 38 Indent (set left margin)

FK$MARK 39 Mark

Key Name Field Description
BASIC Subroutines F-35

!PACK.FNKEYS subroutine
FK$ATT 40 Set attribute

FK$CENTER 41 Center

FK$HYPH 42 Hyphenate

FK$REPAGE 43 Repaginate

FK$ABBREV 44 Abbreviation

FK$SPELL 45 Check spelling

FK$FORM 46 Enter formula

FK$HOME 47 Home the cursor

FK$CMD 48 Enter command

FK$EDIT 49 Edit

FK$CANCEL 50 Abort/Cancel

FK$CLEOL 51 Clear to end of line1

FK$SCRWID 52 Toggle between 80 and 132 mode

FK$PERF 53 Invoke DSS PERFORM emulator

FK$INCLUDE 54 DSS Include scratchpad data

FK$EXPORT 55 DSS Export scratchpad data

FK$TWIDDLE 56 Twiddle character pair

FK$DELWD 57 Delete word

FK$SRCHPREV 58 Search previous

FK$LANGUAGE 59 Language

FK$REFRESH 60 Refresh

FK$UPPER 61 Uppercase

FK$LOWER 62 Lowercase

FK$CAPIT 63 Capitalize

FK$REPEAT 64 Repeat

FK$STAMP 65 Stamp

FK$SPOOL 66 Spool record

FK$GET 67 Get record

Key Name Field Description
F-36 Ascential DataStage BASIC Guide

!PACK.FNKEYS subroutine
If ftable is returned as an empty string, an error in the trap.list array is detected, such
as an invalid function number. Otherwise ftable is a bit-significant string which
should not be changed in any way before its use with the !EDIT.INPUT subroutine.

Example
The following program sets up three trap keys using the !PACK.FNKEYS function,
then uses the bit string within the !EDIT.INPUT subroutine:

$INCLUDE UNIVERSE.INCLUDE GTI.FNKEYS.IH
* Set up trap keys of FINISH, UPCURSOR and DOWNCURSOR
TRAP.LIST = FK$FIN:@FM:FK$UP:@FM:FK$DOWN
CALL !PACK.FNKEYS(TRAP.LIST, Ftable)
* Start editing in INPUT mode, displaying contents in window
KEYS = IK$INS + IK$DIS
* Window edit is at x=20, y=2, of length 10 characters;
* the user can enter up to 30 characters of input into TextBuffer,
* and the cursor is initially placed on the first character of the

FK$WRITE 68 Write record

FK$EXECUTE 69 Execute macro

FK$NUMBER 70 Toggle line numbering

FK$DTAB 71 Clear tabs

FK$STOP 72 Stop (current activity)

FK$EXCHANGE 73 Exchange mark and cursor

FK$BOTTOM 74 Move bottom

FK$CASE 75 Toggle case sensitivity

FK$LISTB 76 List (buffers)

FK$LISTD 77 List (deletions)

FK$LISTA 78 List (selects)

FK$LISTC 79 List (commands)

FK$DISPLAY 80 Display (current select list)

FK$BLOCK 81 Block (replace)

FK$PREFIX 82 Prefix

1. Indicates supported functionality.

Key Name Field Description
BASIC Subroutines F-37

!PACK.FNKEYS subroutine
* window.
TextBuffer=""
CursorPos = 1
CALL !EDIT.INPUT(KEYS,20,2,10,TextBuffer,CursorPos,30,Ftable,ReturnCode)
* On exit, the user's input is within TextBuffer,
* CursorPos indicates the location of the cursor upon exiting,
* and ReturnCode contains the reason for exiting.
BEGIN CASE
 CASE CODE = 0
 * User pressed RETURN key
 CASE CODE = FK$FIN
 * User pressed the defined FINISH key
 CASE CODE = FK$UP
 * User pressed the defined UPCURSOR key
 CASE CODE = FK$DOWN
 * User pressed the defined DOWNCURSOR key
 CASE 1 * Should never happen
 END CASE
F-38 Ascential DataStage BASIC Guide

!REPORT.ERROR subroutine
Syntax
CALL !REPORT.ERROR (command, subroutine, code)

Description
Use the !REPORT.ERROR subroutine to print explanatory text for a DataStage or
operating system error code.

command is the name of the command that used the subroutine in which an error
was reported.

subroutine is the name of the subroutine that returned the error code.

code is the error code.

The general format of the message printed by !REPORT.ERROR is as follows:

Error: Calling subroutine from command. system error code:
message.text.

system is the operating system, or DataStage.

Text for values of code in the range 0 through 9999 is retrieved from the operating
system. Text for values of code over 10,000 is retrieved from the SYS.MESSAGES file.
If the code has no associated text, a message to that effect is displayed. Some
DataStage error messages allow text to be inserted in them. In this case, code can be
a dynamic array of the error number, followed by one or more parameters to be
inserted into the message text.

Examples
CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
IF CODE # 0
THEN CALL !REPORT.ERROR ('MY.COMMAND','!MESSAGE',CODE)

If code was IE$SEND.REQ.REC, !REPORT.ERROR would display the following:

Error calling "!MESSAGE" from "MY.COMMAND" UniVerse error 1914:
Warning: Sender requires "receive" enabled!

The next example shows an error message with additional text:

CALL !MESSAGE (KEY,USERNAME,USERNUMBER,MESSAGE,CODE)
IF CODE # 0
THEN CALL !REPORT.ERROR
('MY.COMMAND','!MESSAGE',CODE:@FM:USERNAME)
BASIC Subroutines F-39

!REPORT.ERROR subroutine
If code was IE$UNKNOWN.USER, and the user ID was joanna, !REPORT.ERROR
would display the following:

Error calling "!MESSAGE" from "MY.COMMAND" UniVerse error 1757:
joanna is not logged on
F-40 Ascential DataStage BASIC Guide

!SET.PTR subroutine
Syntax
CALL !SET.PTR (print.channel, width, length, top.margin, bottom.margin,

mode, options)

Description
Use the !SET.PTR subroutine to set options for a logical print channel. This subrou-
tine provides the same functionality as the SETPTR command.

print.channel is the logical printer number, –1 through 255. The default is 0.

width is the page width. The default is 132.

length is the page length. The default is 66.

top.margin is the number of lines left at the top of the page. The default is 3.

bottom.margin is the number of lines left at the bottom of the page. The default is 3.

mode is a number 1 through 5 that indicates the output medium, as follows:

1 - Line Printer Spooler Output (default).

2, 4, 5 - Assigned Device. To send output to an assigned device, you must first
assign the device to a logical print channel, using the ASSIGN command. The
ASSIGN command issues an automatic SETPTR command using the default
parameters, except for mode, which it sets to 2. Use !SET.PTR only if you have
to change the default parameters.

3 - Hold File Output. Mode 3 directs all printer output to a file called
&HOLD&. If a &HOLD& file does not exist in your account, !SET.PTR creates
the file and its dictionary (D_&HOLD&). You must execute !SET.PTR with
mode 3 before each report to create unique report names in &HOLD&. If the
report exists with the same name, the new report overwrites.

options are any of the printer options that are valid for the SETPTR command.
These must be separated by commas and enclosed by valid quotation marks.

If you want to leave a characteristic unchanged, supply an empty string argument
and specify the option NODEFAULT. If you want the default to be selected, supply
an empty string argument without specifying the NODEFAULT option.
BASIC Subroutines F-41

!SET.PTR subroutine
Printing on the Last Line and Printing a Heading
If you print on the last line of the page or screen and use a HEADING statement to
print a heading, your printout will have blank pages. The printer or terminal is set
to advance to the top of the next page when the last line of the page or screen is
printed. The HEADING statement is set to advance to the top of the next page to
print the heading.

Example
The following example sets the options so that printing is deferred until 12:00, and
the job is retained in the queue:

CALL !SET.PTR (0,80,60,3,3,1,'DEFER 12:00,RETAIN')
F-42 Ascential DataStage BASIC Guide

!SETPU subroutine
Syntax
CALL !SETPU (key, print.channel, new.value, return.code)

Description
Use the !SETPU subroutine to set individual parameters of any logical print
channel.

Unlike !SET.PTR, you can specify only individual parameters to change; you need
not specify parameters you do not want to change. See the description of the
!GETPU subroutine for a way to read individual print.channel parameters.

key is a number indicating the parameter to be set (see “Equate Names for Keys”).

print.channel is the logical print channel, designated by –1 through 255.

new.value is the value to which you want to set the parameter.

return.code is the returned error code (see “Equate Names for Return Code”).

The !SETPU subroutine lets you change individual parameters of logical print
channels as designated by print.channel. Print channel 0 is the terminal unless a
PRINTER ON statement has been executed to send output to the default printer. If
you specify print channel –1, the output is directed to the terminal, regardless of
the status of PRINTER ON or OFF.

Equate Names for Keys
An insert file of equate names is provided to allow you to use mnemonics rather
than key numbers. The name of the insert file is GETPU.INS.IBAS. Use the
$INCLUDE compiler directive to insert this file if you want to use the equate
names. For a description of the $INCLUDE compiler directive, see Chapter 3. The
following list shows the equate names and keys for the parameters:

Mnemonic Key Parameter

PU$MODE 1 Printer mode.

PU$WIDTH 2 Device width (columns).

PU$LENGTH 3 Device length (lines).

PU$TOPMARGIN 4 Top margin (lines).

PU$BOTMARGIN 5 Bottom margin (lines).
BASIC Subroutines F-43

!SETPU subroutine
The PU$SPOOLFLAGS Key

The PU$SPOOLFLAGS key refers to a 32-bit option word that controls a number
of print options. This is implemented as a 16-bit word and a 16-bit extension word.
(Thus bit 21 refers to bit 5 of the extension word.) The bits are assigned as follows:

PU$SPOOLFLAGS 7 Spool option flags (see “The PU$SPOOLFLAGS
Key”).

PU$DEFERTIME 8 Spool defer time. This cannot be 0.

PU$FORM 9 Spool form (string).

PU$BANNER 10 Spool banner or hold filename (string).

PU$LOCATION 11 Spool location (string).

PU$COPIES 12 Spool copies. A single copy can be returned as 1
or 0.

PU$PAGING 14 Terminal paging (nonzero is on). This only
works when PU$MODE is set to 1.

PU$PAGENUMBER 15 Sets the next page number.

Bit Description

1 Uses FORTRAN-format mode. This allows the attaching of vertical
format information to each line of the data file. The first character
position of each line from the file does not appear in the printed
output, and is interpreted as follows:

Character Meaning

0 Advances two lines.

1 Ejects to the top of the next page.

+ Overprints the last line.

Space Advances one line.

– Advances three lines (skip two lines). Any other char-
acter is interpreted as advance one line.

3 Generates line numbers at the left margin.

4 Suppresses header page.

Mnemonic Key Parameter
F-44 Ascential DataStage BASIC Guide

!SETPU subroutine
Equate Names for Return Code
An insert file of equate names is provided to allow you to use mnemonics rather
than key numbers. The name of the insert file is ERRD.INS.IBAS. Use the
$INCLUDE statement to insert this file if you want to use equate names. The
following list shows the codes returned in the argument return.code:

Printing on the Last Line and Printing a Heading

If you print on the last line of the page or screen and use a HEADING statement to
print a heading, your printout will have blank pages. The printer or terminal is set
to advance to the top of the next page or screen when the last line of the page or
screen is printed. The HEADING statement is set to advance to the top of the next
page to print the heading.

Examples
In the following example, the file containing the parameter key equate names is
inserted with the $INCLUDE compiler directive. Later, the top margin parameter
for logical print channel 0 is set to 10 lines. Return codes are returned in the argu-
ment RETURN.CODE.

5 Suppresses final page eject after printing.

12 Spools the number of copies specified in an earlier !SETPU call.

21 Places the job in the spool queue in the hold state.

22 Retains jobs in the spool queue in the hold state after they have been
printed.

other All the remaining bits are reserved.

Code Meaning

0 No error

E$BKEY Bad key (key is out of range)

E$BPAR Bad parameter (value of new.value is out of range)

E$BUNT Bad unit number (value of print.channel is out of range)

E$NRIT No write (attempt to set a read-only parameter)

Bit Description
BASIC Subroutines F-45

!SETPU subroutine
$INCLUDE SYSCOM GETPU.INS.IBAS
CALL !SETPU(PU$TOPMARGIN,0,10,RETURN.CODE)

The next example does the same as the previous example, but uses the key 4
instead of the equate name PU$TOPMARGIN. Because the key is used, it is not
necessary for the insert file GETPU.INS.IBAS to be included.

CALL !SETPU(4,0,10,RETURN.CODE)
F-46 Ascential DataStage BASIC Guide

!TIMDAT subroutine
Syntax

CALL !TIMDAT (variable)

Description
Use the !TIMDAT subroutine to return a dynamic array containing the time, date,
and other related information. The !TIMDAT subroutine returns a 13-element
dynamic array containing information shown in the following list.

variable is the name of the variable to which the dynamic array is to be assigned.

Field Description

1 Month (two digits).

2 Day of month (two digits).

3 Year (two digits).

4 Minutes since midnight (integer).

5 Seconds into the minute (integer).

6 Ticks1 of last second since midnight (integer). Always
returns 0.

1. Tick refers to the unit of time your system uses to measure real time.

7 CPU seconds used since entering DataStage.

8 Ticks of last second used since login (integer).

9 Disk I/O seconds used since entering DataStage. Always
returns –1.

10 Ticks of last disk I/O second used since login (integer).
Always returns –1.

11 Number of ticks per second.

12 User number.

13 Login ID (user ID).
BASIC Subroutines F-47

!TIMDAT subroutine
Use the following functions for alternative ways of obtaining time and date
information:

Example
CALL !TIMDAT(DYNARRAY)
FOR X = 1 TO 13

PRINT 'ELEMENT ':X:', DYNARRAY
NEXT X

Use this function… To obtain this data…

DATE () Data in fields 1, 2, and 3 of the dynamic array returned
by the !TIMDAT subroutine

TIME () Data in fields 4, 5, and 6 of the dynamic array returned
by the !TIMDAT subroutine

@USERNO User number

@LOGNAME Login ID (user ID)
F-48 Ascential DataStage BASIC Guide

!USER.TYPE subroutine
Syntax
CALL !USER.TYPE (type, admin)

Description
Use the !USER.TYPE subroutine to return the user type of the current process and
a flag to indicate if the user is an Administrator.

type is a value that indicates the type of process making the subroutine call. type can
be either of the following:

admin is a value that indicates if the user making the call is an Administrator.
Possible values of admin are 1, if the user is an Administrator, and 0, if the user is
not an Administrator.

An insert file of equate names is provided for the !USER.TYPE values. To use the
equate names, specify the directive $INCLUDE SYSCOM USER_TYPES.H when
you compile your program. (For PI/open compatibility you can specify
$INCLUDE SYSCOM USER_TYPES.INS.IBAS.)

Example
In this example, the !USER.TYPE subroutine is called to determine the type of user.
If the user is a phantom, the program stops. If the user is not a phantom, the
program sends a message to the terminal and continues processing.

ERROR.ACCOUNTS.FILE: CALL !USER.TYPE(TYPE, ADMIN)
IF TYPE = U&PH THEN STOP
 ELSE PRINT 'Error on opening ACCOUNTS file'

Equate Name Value Meaning

U$NORM 1 Normal user

U$PH 65 Phantom
BASIC Subroutines F-49

Syntax
CALL !VOC.PATHNAME (data/dict, voc.entry, result, status)

Description
Use the !VOC.PATHNAME subroutine to extract the pathnames for the data file or
the file dictionary of a specified VOC entry.

data/dict (input) indicates the file dictionary or data file, as follows:

IK$DICT or 'DICT' returns the pathname of the file dictionary of the specified
VOC entry.

IK$DATA or ' ' returns the pathname (or pathnames for distributed files) of the
data file of the specified VOC entry.

voc.entry is the record ID in the VOC.

result (output) is the resulting pathnames.

status (output) is the returned status of the operation.

An insert file of equate names is provided for the data/dict values. To use the equate
names, specify the directive $INCLUDE SYSCOM INFO_KEYS.H when you
compile your program. (For PI/open compatibility you can specify $INCLUDE
SYSCOM INFO_KEYS.INS.IBAS.)

The result of the operation is returned in the status argument, and has one of the
following values:

Example
CALL !VOC.PATHNAME (IK$DATA,"VOC",VOC.PATH,STATUS)
IF STATUS = 0
THEN PRINT "VOC PATHNAME = ":VOC.PATH

If the user’s current working directory is /usr/account, the output is:

 VOC PATHNAME = /usr/accounts/VOC

Value Result

0 The operation executed successfully.

IE$PAR A bad parameter was used in data/dict or voc.entry.

IE$RNF The VOC entry record cannot be found.
F-50 Ascential DataStage BASIC Guide

Index

Symbols

– operator 2-13
! statement 1-4, 6-2
!ASYNC subroutine F-4
!EDIT.INPUT subroutine F-6
!ERRNO subroutine F-13
!FCMP subroutine F-14
!GET.KEY subroutine F-15
!GET.PARTNUM subroutine F-17
!GET.PATHNAME subroutine F-19
!GET.USER.COUNTS subroutine F-24
!GETPU subroutine F-20
!INLINE.PROMPTS subroutine F-25
!INTS subroutine F-27
!MAKE.PATHNAME subroutine F-28
!MATCHES subroutine F-30
!MESSAGE subroutine F-32
!PACK.FNKEYS subroutine F-34
!REPORT.ERROR subroutine F-39
!SET.PTR subroutine F-41
!SETPU subroutine F-43
!TIMDAT subroutine F-47
!USER.TYPE subroutine F-49
!VOC.PATHNAME subroutine F-50
operator 2-17
#INCLUDE statement 3-5, 6-3
$* statement 6-4
$CHAIN statement 3-5, 6-5
$COPYRIGHT statement 6-6
$DEFINE statement 3-6, 6-7
$EJECT statement 6-9
$IFDEF statement 3-8, 6-10
$IFNDEF statement 3-8, 6-11
$INCLUDE statement 3-5, 6-12
$INSERT statement 3-3, 3-5, 6-13

$MAP statement 6-15
$OPTIONS statement 3-6, 6-16

default settings 6-22
options 6-17–6-21
STATIC.DIM option 2-7
VEC.MATH option 2-14, 2-22

$PAGE statement 6-25
$UNDEFINE statement 3-6, 6-26
&PH& file 3-1
* operator 2-13
* statement 1-4, 6-27
** operator 2-13
+ operator 2-13
+= operator 2-21
/ operator 2-13
: operator 2-14
:= operator 2-21
< > operator 2-17, 6-28, 6-220, 6-498
< operator 2-17
<= operator 2-17
−= operator 2-21
= operator 2-17, 2-21
> operator 2-17
>< operator 2-17
>= operator 2-17
@ expressions in INPUT

statements 6-321
@ function 6-29
@ABORT.CODE variable E-1
@ACCOUNT variable E-1
@AM variable E-1
@ANS variable E-1
@AUTHORIZATION variable 6-65,

E-1
@COMMAND variable E-1
Index-1

@COMMAND.STACK variable E-1
@CONV variable E-1
@CRTHIGH variable E-2
@CRTWIDE variable E-2
@DATA.PENDING variable E-2
@DATE variable E-2
@DAY variable E-2
@DICT variable E-2
@FILE.NAME variable E-2
@FILENAME variable E-2
@FM variable E-2
@FORMAT variable E-2
@HDBC variable E-2
@HEADER variable E-2
@HENV variable E-2
@HSTMT variable E-2
@ID variable E-2
@IM variable E-2
@ISOLATION variable 4-9, E-2
@LEVEL variable E-2
@LOGNAME variable E-2
@LPTRHIGH variable E-2
@LPTRWIDE variable E-3
@MONTH variable E-3
@MV variable E-3
@NB variable E-3
@ND variable E-3
@NEW variable E-3
@NI variable E-3
@NS variable E-3
@NULL variable 2-4, 2-15, 6-62, E-3
@NULL.STR variable 2-4, 2-15, 6-62,

6-95, 6-96, E-3
@NV variable E-3
@OLD variable E-3
@OPTION variable E-3
@PARASENTENCE variable E-3
@PATH variable E-3
@RECCOUNT variable E-4
@RECORD variable E-4

and ITYPE function 6-342
@RECUR0 variable E-4

@RECUR1 variable E-4
@RECUR2 variable E-4
@RECUR3 variable E-4
@RECUR4 variable E-4
@SCHEMA variable E-4
@SELECTED variable E-4
@SENTENCE variable 6-534, E-4
@SM variable E-4
@SQL.CODE variable E-4
@SQL.DATE variable E-4
@SQL.ERROR variable E-4
@SQL.STATE variable E-4
@SQL.TIME variable E-4
@SQL.WARNING variable E-4
@SQLPROC.NAME variable E-4
@SQLPROC.TX.LEVEL variable E-4
@STDFIL variable 6-424, 6-433, E-4
@SVM variable E-4
@SYS.BELL variable E-4
@SYSTEM.RETURN.CODE

variable E-5
@SYSTEM.SET variable E-5
@TERM.TYPE variable E-5
@TIME variable E-5
@TM variable E-5
@TRANSACTION variable 4-10, E-5
@TRANSACTION.ID variable 4-10,

E-5
@TRANSACTION.LEVEL

variable 4-10, E-5
@TRUE variable E-5
@TTY variable E-5
@USER.NO variable E-5
@USER.RETURN.CODE variable E-5
@USER0 variable E-5
@USER1 variable E-5
@USER2 variable E-5
@USER3 variable E-5
@USER4 variable E-5
@USERNO variable E-5
@variables 4-9, E-1–E-6
@VM variable E-5
Index-2 Ascential DataStage BASIC Guide

@WHO variable E-5
@YEAR variable E-6
[] operator 6-49
^ operator 2-13
~ (tilde) 6-382

A

A conversion C-4
ABORT statement 6-52
ABORTE statement 6-21, 6-52
ABORTM statement 6-21, 6-52
ABS function 6-53
ABSS function 6-54
ACID properties 4-7
ACOS function 6-55
ADDS function 6-56
algebraic functions C-4
ALPHA function 6-57
alphabetic characters 1-6
AND operator 2-19, 6-58, 6-70
ANDS function 6-58
angle brackets (< >) 6-28, 6-220, 6-498
Arabic numeral conversion C-39
arguments, passing to subroutines 1-3
arithmetic operators 2-12–2-14

and dynamic arrays 2-22
and multivalued data 2-14
and the null value 2-13

array variables 2-6–2-10
arrays

assigning values to 6-379
dimensioned 2-6–2-7, 6-147
dynamic 2-7–2-10
matrices 2-6
passing to subroutines 6-87, 6-148,

6-572
standard 2-6, 2-7
vectors 2-6

ASCII
characters 2-2

CHAR(0) 2-2

CHAR(10) 2-2
CHAR(128) 2-4
codes B-1

conversion C-38
function 6-59
strings 1-3, 2-17

ASIN function 6-60
ASSIGNED function 6-61
assigning variables 6-62, 6-362
assignment operators 2-21, 6-28, 6-62

and substrings 2-16
assignment statements 1-4, 6-62, 6-362
ATAN function 6-64
atomicity property 4-7
AUTHORIZATION statement 6-65
AUXMAP statement 6-67

B

B-tree files 6-79
BASIC character set

alphabetic 1-6
numeric 1-6
special 1-6

BASIC command 3-1–3-4
options 3-2–3-4

BASIC compiler
keywords 1-2
variables 1-2

BASIC language
application 1-1
extensions of 1-1
reserved words D-1

BASIC programs
cataloging 3-10–3-13
compiling 3-1–3-9
conditional compiling 3-6, 6-306
definition 1-2
editing 1-7
flavors compatibility 3-6
global cataloging 3-11
listing 3-2, 3-3
Index-3

local cataloging 3-11
normal cataloging 3-11
object code 3-9

listing 5-12
printing 3-2, 3-4
running 3-10
storing 1-7

BASIC statements 1-2
BEGIN CASE statement 6-89
BEGIN TRANSACTION

statement 6-69
binary conversion C-36
BITAND function 6-70
BITNOT function 6-71
BITOR function 6-72
BITRESET function 6-73
BITSET function 6-74
BITTEST function 6-75
BITXOR function 6-76
blank spaces, see spaces
brackets

angle (< >) 6-28, 6-220, 6-498
square ([]) 6-49

Break key 5-3
BREAK statement 6-77
BSCAN statement 6-79
BYTE function 6-82
BYTELEN function 6-83
BYTETYPE function 6-84
BYTEVAL function 6-85

C

C conversion C-8
CALL statement 1-3, 6-86

and RETURN statement 6-502
and SUBROUTINE

statement 6-572
calling subroutines 6-86
CASE

option 6-17
statement 6-89

CAT operator 2-14
CATALOG command 3-12
catalog shared memory 3-13
cataloging BASIC programs

globally 3-11
locally 3-11
normally 3-11

CATS function 6-92
CHAIN statement 6-93
CHANGE function 6-94
CHAR function 6-95
CHAR(0) 2-2
CHAR(10) 2-2
CHAR(128) 6-95, 6-96, 6-227
CHAR(252) 2-7
CHAR(253) 2-7
CHAR(254) 2-7
character conversion C-23
character set conversion C-17
character strings 2-1–2-2

ASCII 2-2
constants 2-2
empty 2-3, 2-5
numeric 2-13
substrings 2-15

characters
alphabetic 1-6
numeric 1-6
special 1-6

CHARS function 6-96
CHECKSUM function 6-97, 6-127
CLEAR statement 6-98
CLEARDATA statement 6-99
CLEARFILE statement 6-100
clearing

in-line prompts 6-102
select lists 6-103

CLEARPROMPTS statement 6-102,
6-310

CLEARSELECT statement 6-103
CLOSE statement 6-105
CLOSESEQ statement 6-107
Index-4 Ascential DataStage BASIC Guide

COL1 function 6-109
COL2 function 6-110
commas in numeric constants 2-3
comments 1-4, 6-2, 6-4, 6-27, 6-492
COMMIT statement 6-112
common

clearing 6-98
unnamed, saving variable

values 6-93
COMMON statement 6-114
common variables 2-6
COMP.PRECISION option 6-17
COMPARE function 6-115
compiler directives 3-4–3-9
concatenation

conversion C-8
and the null value 2-15
operator 2-14

conditional compiling 3-6, 6-306
configurable parameters

ISOMODE 4-12
MAXRLOCK 4-14
OPENCHK 6-299, 6-396, 6-425,

6-650
consistency property 4-7
constants

character string 2-2
definition 2-5
fixed-point numeric 2-3
floating-point 2-3
numeric 2-3

CONTINUE statement 6-265, 6-374
control keys 6-345, 6-351, 6-354

defining 6-345
control statements, see statements
conventions, documentation 1-ix
conversion codes C-1–C-50

A C-4
C C-8
D C-10
DI C-16
ECS C-17

F C-18
G C-21
in format expressions 6-251
in ICONV function 6-302
in ICONVS function 6-304
in OCONV function 6-417
in OCONVS function 6-420
L C-22
MB C-36
MC C-23
MD C-25
ML C-28
MM C-31
MO C-36
MP C-33
MR C-28
MT C-34
MU0C C-36
MX C-36
MY C-38
NL C-39
NLSmapname C-40
NR C-41
P C-42
Q C-43
R C-45
S (Soundex) C-46
S (substitution) C-47
T C-48
Tfile C-49
TI C-51

CONVERT
function 6-118
statement 6-119

COS function 6-120
COSH function 6-121
COUNT function 6-122
COUNT.OVLP option 6-17, 6-122,

6-124, 6-133, 6-313
COUNTS function 6-124
CREATE statement 6-126

and NOBUF statement 6-411
Index-5

CRT statement 6-128
cursors, positioning 6-29

D

D conversion C-10
data

anomalies 4-11
character string 2-1–2-2
null value 2-3
numeric 2-3
preventing loss of 4-1
visibility 4-6

DATA statement 6-129
and INPUT statements 6-321

data types 2-1–2-4
logical 2-19
null value 2-3

date conversion C-10, C-16
date format, default C-10
DATE function 6-131
dates, internal system 6-131
DCFLUSH function 6-132
DCOUNT function 6-133
deadlocks 4-5
DEBUG statement 5-3, 6-134
debugger 5-1, 6-134
DECATALOG command 3-13
decimal equivalents B-5
DEFFUN statement 6-136, 6-270
defining

control keys 6-345
escape keys 6-346
function keys 6-346
identifiers 3-6
unsupported keys 6-348

DEL statement 6-138
DELETE

function 6-140
statement 6-142

DELETE.CATALOG command 3-12
DELETELIST statement 6-145

DELETEU statement 6-142, 6-146
delimiters, system 2-7
DI conversion C-16
DIM statement 6-147
DIMENSION statement 6-147
dimensioned arrays 2-6–2-7
dirty reads 4-12
display length 2-12
DISPLAY statement 6-150
distributed files, status 6-562
DIV function 6-151
DIVS function 6-152
documentation conventions 1-ix
DOWNCASE function 6-153
DQUOTE function 6-154
DSDetachJob function 6-157
DSExecute subroutione 6-158
DSGetCustInfo function 6-158
DSGetJobInfo function 6-160
DSGetLinkInfo function 6-164
DSGetLogEntry function 6-166
DSGetLogSummary function 6-167
DSGetNewestLogId function 6-169
DSGetParamInfo function 6-170
DSGetProjectInfo function 6-173
DSGetStageInfo function 6-174
DSGetVarInfo function 6-177
DSLogEvent function 6-178
DSLogFatal function 6-179
DSLogInfo function 6-180
DSLogWarn function 6-182
DSSetJobLimit function 6-190
DSSetParam function 6-191
DSSetUserStatus subroutine 6-192
DSStopJob function 6-193
DSTransformError function 6-194
DTX function 6-199
durability property 4-8
dynamic arrays 2-7–2-10

and arithmetic operators 2-22
and the null value 2-27
and operators 2-21–2-28
Index-6 Ascential DataStage BASIC Guide

and REUSE function 2-27
creating 2-9

dynamic arrays, passing to
subroutines 6-87

E

EBCDIC function 6-200
ECHO statement 6-201
ECS conversion C-17
edit editor 1-8
editors

edit 1-8
vi 1-8

effective UID 6-65
AUTHORIZATION statement 6-65

empty strings 2-3, 2-5
and pattern matching 2-18

END CASE statement 6-89
END statement 6-202
END.WARN option 6-17, 6-202
ENTER statement 6-205
entering external subroutines 6-205
EOF(ARG.) function 6-206
EQ operator 2-17
EQS function 6-207
EQUATE statement 6-208
EREPLACE function 6-210
ERRMSG

codes 6-211
file 6-211, 6-451

and STOPE statement 6-565
statement 6-211

and STOP statement 6-565
error messages 3-9, 6-52, 6-211, 6-451,

6-565
escape keys 6-346, 6-351, 6-354

defining 6-346
EXCHANGE function 6-213
exclusive file locks 4-5
EXEC.EQ.PERF option 6-17, 6-216
EXECUTE statement 6-215

EXIT statement 6-218
EXP function 6-219
expressions 2-11

@ 6-321
format 2-11, 6-248–6-251

extended character set
conversion C-17

external subroutines, entering 6-205
EXTRA.DELIM option 6-17, 6-334,

6-337, 6-500
EXTRACT function 6-28, 6-220
extracting substrings 6-49

F

F conversion C-18
FADD function 6-223
FDIV function 6-224
FFIX function 6-225
FFLT function 6-226
FIELD function 6-227

and COL1 function 6-109
and COL2 function 6-110

field marks 2-7
FIELDS function 6-229
file locks, types 4-2, 6-238
file translation C-49
file variables 2-10
FILELOCK statement 6-238
files

&PH& 3-1
B-tree 6-79
closing 6-105
configuration information 6-232
distributed 6-562
ERRMSG 6-211, 6-451
locking 6-241
part 6-562
sequential processing 6-107, 6-126,

6-247, 6-411, 6-430, 6-436,
6-468, 6-475, 6-523, 6-607,
6-658, 6-661
Index-7

type 1 1-7, 3-1
type 19 1-7, 3-1

FILEUNLOCK statement 6-241
FIND statement 6-243
FINDSTR statement 6-244
FIX function 6-245
fixed-point constants 2-3
flavors 6-16

compatibility 3-6
floating-point constants 2-3
floating-point numbers 2-3
FLUSH statement 6-247

after WRITESEQ statement 6-659
FMT function 6-248
FMTDP function 6-253
FMTS function 6-254
FMTSDP function 6-255
FMUL function 6-257
FOLD function 6-258
FOLDDP function 6-259
FOOTING statement 6-260
FOR statement 6-264
FOR.INCR.BEF option 6-17, 6-266
format expressions 2-11, 6-248–6-251

in INPUT statements 6-322
FORMAT.OCONV option 6-17
formatting numbers C-28
FORMLIST statement 6-268
FSELECT option 6-17
FSUB function 6-269
function keys 6-346, 6-351, 6-354, F-15,

F-34
defining 6-346

FUNCTION statement 6-270
functions

intrinsic 1-2
numeric 1-3
range C-45
string 1-3
user-written 6-504
vector 2-22

G

G conversion C-21
GE operator 2-17
GES function 6-272
GET statement 6-273
GET(ARG.) statement 6-279
GETLIST statement 6-281
GETLOCALE function 6-282, 6-364
GETREM function 6-283
GETX statement 6-273, 6-278
global cataloging 3-11
GOSUB statement 1-3, 6-284

with ON statement 6-421
and RETURN statement 6-502

GOTO statement 6-286
with ON statement 6-422

granularity 4-1
group extraction C-21
GROUP function 6-287
GROUPSTORE statement 6-289
GT operator 2-17
GTS function 6-291

H

HEADER.BRK option 6-17
HEADER.DATE option 6-18, 6-263,

6-295
HEADER.EJECT option 6-18, 6-293
HEADING statement 6-292
HEADINGE statement 6-21, 6-293
HEADINGN statement 6-21, 6-293
hexadecimal conversion C-36
hexadecimal equivalents B-5
host name and SYSTEM

function 6-581
HUSH statement 6-297

I

ICHECK function 6-299
Index-8 Ascential DataStage BASIC Guide

ICONV function 6-302, C-1, C-36
ICONVS function 6-304, C-6
identifiers

removing 3-6
replacing 3-6

IF
operator 2-18
statement 6-305

IFS function 6-308
ILPROMPT function 6-309
IN2.SUBSTR option 6-18
include files, UVLOCALE.H 6-282,

6-364
INCLUDE statement 3-5, 6-312
INDEX function 6-313
INDEXS function 6-315
INDICES function 6-316

and secondary indexes 6-316
in transactions 6-318

INFO.ABORT option 6-18
INFO.CONVERT option 6-18
INFO.ENTER option 6-18
INFO.INCLUDE option 6-18
INFO.LOCATE option 6-18, 6-368
INFO.MARKS option 6-18
INFO.MOD option 6-18
in-line prompts, clearing 6-102
INMAT function 6-319

after MATPARSE statement 6-387
after MATREAD statement 6-390
after OPEN statement 6-425

INPUT @ statement 6-321
INPUT statements 6-321

and DATA statement 6-129
INPUT.ELSE option 6-19, 6-323
INPUTAT option 6-19
INPUTCLEAR statement 6-326
INPUTDISP statement 6-327
INPUTDP statement 6-328
INPUTERR statement 6-329
INPUTIF statement 6-321
INPUTNULL statement 6-331

INPUTTRAP statement 6-332
INS statement 6-333
INSERT function 6-336

and LOCATE statement 6-367
INT function 6-339
INT.PRECISION option 6-19
intent file locks 4-4
internal system date 6-131
international date conversion C-16
international time conversion C-51
intrinsic functions, see functions
ISNULL function 2-18, 6-340

with CASE statement 6-89
with IF statement 6-306

ISNULLS function 2-18, 6-341
isolation levels 4-13, 6-69

minimum locks for 4-13
types 4-11

isolation property 4-7
ISOMODE parameter 4-12
ITYPE function 6-342

K

KEEP.COMMON keyword 6-93
keyboard keys

control 6-345, 6-351, 6-354
escape 6-346, 6-351, 6-354
function 6-346, 6-351, 6-354, F-34
unsupported 6-348

KEYEDIT statement 6-344
KEYEXIT statement 6-351
KEYIN function 6-353
KEYTRAP statement 6-354
keywords 1-2

definition 1-3

L

L conversion C-22
labels, statement 1-5
LE operator 2-17
Index-9

LEFT function 6-356
LEN function 6-357
LENDP function 6-358
length function C-22
LENS function 6-359
LENSDP function 6-360
LES function 6-361
LET statement 6-362
levels, see isolation levels
line number table, suppressing 3-2, 3-4
list variables, see select list variables
listing object code 5-12
LN function 6-363
local cataloging 3-11
local variables 6-93
LOCALEINFO function 6-364
LOCATE statement 6-366
LOCATE.R83 option 6-19
lock escalation, example 4-14
LOCK statement 6-371
locks

compatibility 4-1
deadlocks 4-5
exclusive file lock 4-5
file lock 6-241
granularity 4-1
intent file lock 4-4
and MATREADL statement 6-392
and MATREADU statement 6-392
process lock 6-643
and READL statement 6-465
and READU statement 6-398,

6-465, 6-652
and READVL statement 6-466
releasing 6-398, 6-489, 6-643, 6-652
semaphore lock 6-371
shared file lock 4-4
shared record lock 4-2
transactions and 4-8
types 4-2, 6-238
update record lock 4-3
well-formed writes and 4-13

logical operators 2-19
AND 2-19
NOT 2-19
and the null value 2-19
OR 2-19

LOOP statement 6-373
loops

FOR...NEXT 6-264, 6-410
LOOP...REPEAT 6-373

lost updates 4-11
LOWER function 6-376
LT operator 2-17
LTS function 6-378

M

masked character conversions C-23
MAT statement 6-379
MATBUILD statement 6-381
MATCH operator 2-18, 6-382
MATCHFIELD function 6-384
mathematical functions C-4, C-18
MATPARSE statement 6-386

and INMAT function 6-319
MATREAD statement 6-389

and INMAT function 6-319
MATREADL statement 6-392

and INMAT function 6-319
matrices 2-6

zero element 2-7
MATWRITE statement 6-396
MATWRITEU statement 6-398
MAXIMUM function 6-401
MAXRLOCK parameter 4-14
MB conversion C-36
MC conversion C-23
MD conversion C-25
messages

error 3-9, 6-52, 6-211, 6-451, 6-565
warning 3-9

MINIMUM function 6-402
ML conversion C-28
Index-10 Ascential DataStage BASIC Guide

MM conversion C-31
MO conversion C-36
MOD function 6-403
MODS function 6-404
monetary conversion C-31
MP conversion C-33
MR conversion C-28
MT conversion C-34
MU0C conversion C-36
MULS function 6-405
multivalues and arithmetic

operators 2-14
MX conversion C-36
MY conversion C-38

N

named common variables 2-6
names of variables 1-2, 2-5
NAP statement 6-406
NE operator 2-17
NEG function 6-407
NEGS function 6-408
NES function 6-409
nested transactions 4-6

committing 6-112
example 4-9
properties 4-7

newlines 1-6
NEXT statement 6-264, 6-410
NL conversion C-39
NLS monetary conversion C-31
NLSmapname conversion C-40
NO.CASE option 6-19
NO.RESELECT option 6-19
NOBUF statement 6-411

with TTYSET statement 6-637
nonrepeatable reads 4-12
normal cataloging 3-11
NOT

function 6-412
operator 2-19

NOTS function 6-413
NR conversion C-41
NULL statement 6-414
null value

in arithmetic expressions 2-13
and concatenation operators 2-15
definition 2-3
and dynamic arrays 2-27
and logical operators 2-19
stored representation 2-4

NUM function 6-415
numbers, floating-point 2-3
numeric

character strings 2-13
characters 1-6
constants 2-3
data 2-3
functions 1-3

NUMS function 6-416

O

object code 1-2, 3-9
listing 5-12

OCONV function 6-417, C-1, C-36
OCONVS function 6-420, C-6
octal conversion C-36
ON statement 6-421
ONGO.RANGE option 6-19, 6-422
OPEN statement 6-424

and INMAT function 6-319
OPENCHECK statement 6-299, 6-428
OPENCHK parameter 6-299, 6-396,

6-425, 6-650
OPENDEV statement 6-430
OPENPATH statement 6-433
OPENSEQ statement 6-436

and CREATE statement 6-126
and NOBUF statement 6-411

operators 2-12–2-28
arithmetic 2-12–2-14
assignment 2-16, 2-21
Index-11

concatenation 2-14
and dynamic arrays 2-21–2-28
logical 2-19
pattern matching 2-18
relational 2-16–2-18
string 2-14
substring 2-15

operators, assignment 6-28, 6-62
OR operator 2-19, 6-72, 6-442
ORS function 6-442

P

P conversion C-42
packed decimal conversion C-33
PAGE statement 6-443
part files, status 6-562
part numbers, status 6-562
passing

arrays to subroutines 6-87, 6-148,
6-572

variables to subroutines 6-148,
6-572

pattern matching 2-18, 6-382, C-42
and empty strings 2-18
codes 6-382

PCLOSE.ALL option 6-19
PERF.EQ.EXEC option 6-19, 6-444
PERFORM statement 6-444
PHANTOM command 3-1
phantom writes 4-12
PIOPEN.INCLUDE option 6-19
PIOPEN.MATREAD option 6-19
PIOPEN.SELIDX option 6-20, 6-530
pointer (REMOVE) 6-283, 6-507, 6-541
PRECISION statement 6-446
PRINT statement 6-447

and INPUT statements 6-322
and TABSTOP statement 6-583

PRINTER CLOSE statement 6-449
PRINTER statement 6-449
PRINTERR statement 6-451

process locks 6-643
PROCREAD statement 6-453
PROCWRITE statement 6-454
PROGRAM statement 6-455
PROMPT statement 6-456

and INPUT statements 6-322
prompts, see in-line prompts
PWR function 6-457

Q

Q conversion C-43
quotation marks in character

strings 2-2
QUOTE function 6-458

R

R conversion C-45
RADIANS option 6-20
RAID 5-5
RAID (debugger) 6-134

commands 5-4, 6-134
description 5-1

RAID command 5-2
options 5-2
suppressing execution of 3-2

RAISE function 6-459
RANDOMIZE statement 6-461
range function C-45
RAW.OUTPUT option 6-20
READ statement 6-462
READ.RETAIN option 6-20, 6-466
READBLK statement 6-468

and TIMEOUT statement 6-607
READL locks, see shared record locks
READL statement 6-462
READLIST statement 6-471
READNEXT statement 6-473

and READLIST statement 6-471
and SELECT statement 6-526

READSEQ statement 6-475
Index-12 Ascential DataStage BASIC Guide

and TIMEOUT statement 6-607
READT statement 6-477
READU locks, see update record locks
READU statement 6-462
READV statement 6-462
READVL statement 6-462
READVU statement 6-462
REAL function 6-483
REAL.SUBSTR option 6-20
RECORDLOCKED function 6-487
RECORDLOCKL statement 6-484
RECORELOCKU statement 6-484
relational operators 2-16–2-18
RELEASE statement 6-489
REM

function 6-491
statement 1-4, 6-492

REMOVE
function 6-493
pointer 6-283, 6-507, 6-541
statement 6-495

removing
identifiers 3-6
spaces 6-621, 6-623, 6-624, 6-625,

6-626, 6-627, 6-641
tabs 6-621, 6-623, 6-624, 6-625,

6-626, 6-627, 6-641
REPEAT statement 6-373
REPLACE function 6-28, 6-220, 6-498
reserved words in BASIC D-1
RETURN (value) statement

and DEFFUN statement 6-136
RETURN (value) statement 6-270
RETURN statement 1-3, 6-87, 6-502
RETURN TO statement 6-284
REUSE function 2-27, 6-505
REVREMOVE statement 6-507
REWIND statement 6-509
RIGHT function 6-510
RND function 6-511

and RANDOMIZE statement 6-461
RNEXT.EXPL option 6-20, 6-473

ROLLBACK statement 6-512
Roman numeral conversion C-41
RPC.CALL function 6-514
RPC.CONNECT function 6-516
RPC.DISCONNECT function 6-518
RUN command 3-10

options 3-10

S

S (soundex) conversion C-46
S (substitution) conversion C-47
SADD function 6-519
saving variables in unnamed

common 6-93
scientific notation 2-3
SCMP function 6-520
SDIV function 6-521
secondary indexes and BASIC

INDICES function 6-316
SEEK statement 6-522
SEEK(ARG.) statement 6-524
select lists

clearing 6-103
variables 2-10, 6-103, 6-529, 6-552

SELECT statement 6-526
SELECTE statement 6-529
SELECTINDEX statement 6-530
SELECTINFO function 6-532
SELECTN statement 6-21, 6-528
SELECTV statement 6-21, 6-527
semaphore locks 6-371
SEND statement 6-533
SENTENCE function 6-534
SEQ function 6-535
SEQ.255 option 6-20, 6-535
SEQS function 6-536
sequential I/O 1-6
sequential processing 6-107, 6-126,

6-247, 6-411, 6-430, 6-436,
6-468, 6-475, 6-523, 6-607,
6-658, 6-661
Index-13

serializability
lost updates and 4-12
property 4-8

SET TRANSACTION ISOLATION
LEVEL statement 4-8, 6-537

SETLOCALE function 6-539
SETPTR command F-41
SETREM statement 6-541
shared file locks 4-4
shared memory 3-13
shared record locks 4-2
SIN function 6-542
SINH function 6-543
SLEEP statement 6-544
SMUL function 6-545
soundex conversion C-46
SOUNDEX function 6-546
source code 1-2

comments 1-4
spaces in 1-6
syntax 1-4
tabs in 1-6

SPACE function 6-547
spaces

in numeric constants 2-3
in source code 1-6
removing 6-621, 6-623, 6-624,

6-625, 6-626, 6-627, 6-641
SPACES function 6-548
special characters 1-6
SPLICE function 6-549
SQRT function 6-550
square brackets ([]) 6-49
SQUOTE function 6-551
SSELECT statement 6-552
SSELECTN statement 6-554
SSELECTV statement 6-552
SSUB function 6-555
standard arrays 2-7

matrices 2-6
vectors 2-6

statement labels

cross-reference table of 3-2, 3-3
definition 1-5

statements 1-2
assignment 1-4
control 1-4
types 1-4

STATIC.DIM option 2-7, 6-20, 6-148
STATUS function 6-556

after BSCAN statement 6-80, 6-556
after DELETE statement 6-556
after FILELOCK statement 6-557
after FMT function 6-557
after GET statement 6-557
after GETX statement 6-557
after HUSH statement 6-297
after ICONV function 6-302, 6-557
after ICONVS function 6-304
after INPUT @ statement 6-557
after MATWRITE statement 6-557
after OCONV function 6-417, 6-557
after OCONVS function 6-420
after OPEN statements 6-558
after OPENPATH statement 6-434
after READ statement 6-558
after READBLK statement 6-559
after READL statement 6-559
after READSEQ statement 6-475,

6-559
after READT statement 6-478,

6-509, 6-559, 6-646, 6-664
after READU statement 6-559
after READVL statement 6-559
after READVU statement 6-559
after RECORDLOCKED

statement 6-488
after REWIND statement 6-559
after RPC.CALL function 6-514,

6-559
after RPC.CONNECT

function 6-516, 6-559
after RPC.DISCONNECT

function 6-518, 6-559
Index-14 Ascential DataStage BASIC Guide

after SELECTINDEX
statement 6-530

after WEOF statement 6-559
after WRITE statements 6-557
after WRITESEQ statement 6-658
after WRITET statement 6-559

STATUS statement 6-561
values 6-561

STOP statement 6-565
STOP.MSG option 6-20, 6-52, 6-565
STOPE statement 6-21, 6-565
STOPM statement 6-21, 6-565
STORAGE statement 6-567
STR function 6-568
string functions 1-3, C-18
string operators 2-14
strings

see also character strings
comparing 2-16
determining length 2-18

STRS function 6-569
SUBR function 6-570
SUBROUTINE statement 1-3, 6-86,

6-572
subroutines

calling 6-86
definition 1-3
entering external 6-205
list of F-2
passing arguments to 1-3
passing arrays to 6-87, 6-148
returning from 6-502
returning values from 6-570
vector functions 2-22

SUBS function 6-573
substitution C-47
substring operator 2-15
substrings 2-15–2-16

and assignment operators 2-16
definition 2-15
extracting 2-16, 6-49

SUBSTRINGS function 6-574

subtransactions 4-6
subvalue marks 2-7
SUM function 6-575
SUMMATION function 6-577
SUPP.DATA.ECHO option 6-20, 6-323
symbol table, suppressing 3-2, 3-4
syntax, source code 1-4
system date 6-131
system delimiters 2-7
SYSTEM function 6-578

host name 6-581
values 6-578

T

T conversion C-48
tabs

removing 6-621, 6-623, 6-624,
6-625, 6-626, 6-627, 6-641

in source code 1-6
TABSTOP statement 6-583

and PRINT statement 6-447, 6-645
and TPRINT statement 6-612

TAN function 6-584
TANH function 6-585
TERMINFO function 6-586

table of EQUATEs 6-586–6-604
text extraction C-48
Tfile conversion C-49
TI conversion C-51
tilde (~) 6-382
time conversion C-34, C-51
TIME function 6-605
TIME.MILLISECOND option 6-20
TIMEDATE function 6-606
TIMEOUT statement 6-607
TPARM function 6-609
TPRINT statement 6-612
TRANS function 6-614
TRANSACTION ABORT

statement 6-617
Index-15

TRANSACTION COMMIT
statement 6-619

TRANSACTION START
statement 6-620

transaction statements 6-616
transaction variables

@ISOLATION 4-9
@TRANSACTION 4-10
@TRANSACTION.ID 4-10
@TRANSACTION.LEVEL 4-10

transactions 4-6
@variables 4-9
active 4-6
and data visibility 4-6
example 4-9
isolation levels 4-8
locks and 4-8
nested 4-6

committing 6-112
properties 4-7
and RELEASE statements 6-489
subtransactions 4-6

TRIM function 6-621
TRIMB function 6-623
TRIMBS function 6-624
TRIMF function 6-625
TRIMFS function 6-626
TRIMS function 6-627
TTYCTL statement 6-628
TTYGET statement 6-630

values 6-631
TTYSET statement 6-636
type 1 files 1-7, 3-1
type 19 files 1-7, 3-1

U

UID, effective 6-65
ULT.FORMAT option 6-21
UNASSIGNED function 6-638
UNICHAR function 6-639
UNICHARS function 6-640

UNISEQ function 6-641
UNISEQS function 6-642
UNIX vi editor 1-8
UNLOCK statement 6-643

and LOCK statement 6-371
unnamed common variables 2-6
unnamed common, saving variable

values 6-93
unsupported keys, defining 6-348
UNTIL statement 6-264, 6-373
UPCASE function 6-644
update record locks 4-3
UPRINT statement 6-645
USE.ERRMSG option 6-21, 6-452
user ID 6-65
user-written functions 6-504
UVLOCALE.H include file 6-282,

6-364

V

value marks 2-7
VAR.SELECT option 6-21, 6-103,

6-281, 6-471, 6-472, 6-527,
6-528, 6-553, 6-554

variables 1-2, 2-5–2-10
array 2-6–2-10
assigning 6-62, 6-362
common 6-114
definition 1-2
file 2-10
in RAID 5-3
in user-written functions 6-270
local 6-93
named common 2-6
names 1-2, 2-5
passing to subroutines 6-148, 6-572
saving in unnamed common 6-93
select list 2-10, 6-103, 6-529, 6-552
transaction 4-9
unnamed common 2-6, 6-93

VEC.MATH option 2-14, 2-22, 6-21
Index-16 Ascential DataStage BASIC Guide

vector functions 2-22
as subroutines 2-22

vectors 2-6
zero element 2-7

vi editor 1-8
VLIST command 5-12

suppressing execution of 3-2

W

warning messages 3-9
well-formed write 4-13
WEOF statement 6-646
WEOFSEQ statement 6-646, 6-647
WHILE statement 6-264, 6-373
WIDE.IF option 6-21
WRITE statement 6-649
WRITEBLK statement 6-655
WRITELIST statement 6-657
WRITESEQ statement 6-658, 6-661
WRITESEQF statement 6-661
WRITET statement 6-663
WRITEU statement 6-649
WRITEV statement 6-649
WRITEVU statement 6-649

X

XLATE function 6-668
XTD function 6-670

Z

zero element 2-7
Index-17

Index-18 Ascential DataStage BASIC Guide

	How to Use this Guide
	Organization of This Manual
	Documentation Conventions
	DataStage Documentation

	Introduction to DataStage BASIC
	BASIC Terminology
	Subroutines
	Source Syntax
	Statement Types
	Statement Labels
	Spaces or Tabs
	Newlines and Sequential File I/O
	Special Characters
	Storing Programs
	Editing Programs
	Editing Programs in DataStage
	Editing Programs Outside DataStage

	Getting Started

	Data Types, Variables, and Operators
	Types of Data
	Character String Data
	Numeric Data
	Unknown Data: The Null Value

	Constants
	Variables
	Array Variables
	File Variables
	Select List Variables

	Expressions
	Format Expressions

	Operators
	Arithmetic Operators
	String Operators
	Relational Operators
	Pattern Matching Operators
	IF Operator
	Logical Operators
	Assignment Operators
	Dynamic Array Operations

	Compiling BASIC Programs
	The BASIC Command
	Compiling Programs in the Background
	BASIC Options

	Compiler Directives
	Including Other Programs
	Defining and Removing Identifiers
	Specifying Flavor Compatibility
	Conditional Compilation

	Warnings and Error Messages
	Successful Compilation
	The RUN Command
	Cataloging a BASIC Program
	Catalog Space
	The CATALOG Command
	Deleting Cataloged Programs

	Catalog Shared Memory

	Locks, Transactions, and Isolation Levels
	Locks
	Shared Record Lock
	Update Record Lock
	Shared File Lock
	Intent File Lock
	Exclusive File Lock
	Deadlocks

	Transactions
	Active Transactions
	Transactions and Data Visibility
	Transaction Properties
	Transactions and Locks
	Transactions and Isolation Levels
	Using Transactions in BASIC
	@Variables
	Transaction Restrictions

	Isolation Levels
	Isolation Level Types
	Data Anomalies
	Using the ISOMODE Configurable Parameter
	Isolation Levels and Locks
	Example

	Debugging Tools
	RAID
	Invoking RAID from the Command Processor
	Invoking RAID from a BASIC Program
	Invoking RAID Using the Break Key
	Referencing Variables Through RAID
	RAID Commands

	VLIST

	BASIC Statements and Functions
	Quick Reference
	Compiler Directives
	Declarations
	Assignments
	Program Flow Control
	File I/O
	Sequential File I/O
	Printer and Terminal I/O
	Tape I/O
	Select Lists
	String Handling
	Data Conversion and Formatting
	NLS
	Mathematical Functions
	Relational Functions
	System
	Remote Procedure Calls
	Miscellaneous

	ASCII and Hex Equivalents
	Correlative and Conversion Codes
	BASIC Reserved Words
	@Variables
	BASIC Subroutines
	Index

