
Ascential DataStage™
Enterprise MVS Edition
Mainframe Job Developer’s Guide
Version 7.5.1
Part No. 00D-027DS751

December 2004

This document, and the software described or referenced in it, are confidential and proprietary to Ascential

Software Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a

license agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise

provided to third parties, unless otherwise permitted by that agreement. No portion of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of Ascential. The specifications and

other information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

© 2000-2004 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise

Data Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration,

Simplified®, Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential

QualityStage™, Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential

MetaStage™, and Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be

registered in the United States or other jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices (LegalNotices.pdf) for

more information.

How to Use this Guide

This manual describes the features of the DataStage Manager and

DataStage Designer. It is intended for application developers and

system administrators who want to use Ascential DataStage™

Enterprise MVS Edition to design and develop data warehousing

applications in a mainframe environment.

If you are new to Ascential DataStage, you should read the Ascential

DataStage Manager Guide and Ascential DataStage Designer Guide.

These provide enough information to get you started in designing

DataStage jobs.

This manual contains information specific to mainframe jobs and is

intended to be used as a reference guide. It gives detailed information

about stage editors for particular mainframe data sources. It also

provides information about the powerful programming facilities that

are built in to Ascential DataStage Enterprise MVS Edition.

To find particular topics in the guide, you can:

Use the Guide’s contents list (at the beginning of the Guide).

Use the Guide’s index (at the end of the Guide).

Use the Adobe Acrobat Reader bookmarks.

Use the Adobe Acrobat Reader search facility (select
Edit Search).

How This Book is Organized
The following table lists topics that may be of interest to you and it

provides links to these topics:

This chapter Covers these topics…

Chapter 1 Provides a general introduction to DataStage mainframe jobs.

Chapter 2 Describes how to import meta data for mainframe jobs.

Chapter 3 Describes the Complex Flat File stage editor.

Chapter 4 Describes the Multi-Format Flat File stage editor.
Mainframe Job Developer’s Guide iii

How This Book is Organized How to Use this Guide
Chapter 5 Describes the IMS stage editor.

Chapter 7 Describes the Delimited Flat File stage editor.

Chapter 6 Describes the Fixed-Width Flat File stage editor.

Chapter 8 Describes the DB2 Load Ready Flat File stage editor.

Chapter 9 Describes the Relational stage editor.

Chapter 10 Describes the Teradata Relational stage editor.

Chapter 11 Describes the Teradata Export stage editor.

Chapter 12 Describes the Teradata Load stage editor.

Chapter 13 Describes the External Source stage editor and explains how to
create an external source routine definition in the DataStage
Manager.

Chapter 14 Describes the External Target stage editor and explains how to
create an external target routine definition in the DataStage
Manager.

Chapter 15 Describes the Transformer stage editor.

Chapter 16 Describes the Business Rule stage editor.

Chapter 17 Describes the Link Collector stage editor.

Chapter 18 Describes the Join stage editor.

Chapter 19 Describes the Lookup stage editor.

Chapter 20 Describes the Aggregator stage editor.

Chapter 21 Describes the Sort stage editor.

Chapter 22 Describes the External Routine stage editor and explains how to
create an external routine definition in the DataStage Manager.

Chapter 23 Describes the FTP stage editor.

Chapter 24 Explains how to generate code and upload jobs to the
mainframe. It also describes how to create a machine profile.

Appendix A Describes the programming components that are available for
DataStage mainframe jobs.

Appendix B Describes the data types supported in mainframe jobs and
defines the compatible data type mappings.

Appendix C Describes the native data types supported in source and target
stages for mainframe jobs.

Appendix D Explains how to edit column meta data in mainframe jobs.

Appendix E Describes JCL templates for mainframe jobs and how to
customize them.

This chapter Covers these topics…
iv Mainframe Job Developer’s Guide

How to Use this Guide Related Documentation
Related Documentation
To learn more about documentation from other Ascential products as

they relate to Ascential DataStage Enterprise MVS Edition, refer to the

following table.

Ascential Software Documentation

Appendix F Explains how to generate and use operational meta data in
mainframe jobs.

Appendix G Describes the run-time library for mainframe jobs, which contains
routines that are used during mainframe job execution.

Appendix H Lists COBOL and SQL reserved words.

This chapter Covers these topics…

Product Guide Description

Ascential DataStage Ascential DataStage Administrator
Guide

Describes Ascential DataStage setup,
routine housekeeping, and
administration

Ascential DataStage Designer
Guide

Describes the DataStage Designer,
and gives a general description of
how to create, design, and develop a
DataStage application

Ascential DataStage Manager
Guide

Describes the DataStage Manager
and explains how to use and
maintain the DataStage Repository

Ascential DataStage Server Job
Developer’s Guide

Describes the tools that are used in
building a server job, and supplies
programmer’s reference information

Ascential DataStage Parallel Job
Developer’s Guide

Describes the tools that are used in
building a parallel job, and supplies
programmer’s reference information

Ascential DataStage Parallel Job
Advanced Developer’s Guide

Gives more specialized information
about parallel job design

Ascential DataStage Mainframe
Job Developer’s Guide

Describes the tools that are used in
building a mainframe job, and
supplies programmer’s reference
information
Mainframe Job Developer’s Guide v

Documentation Conventions How to Use this Guide
These guides are also available online in PDF format. You can read

them with the Adobe Acrobat Reader supplied with Ascential

DataStage. See Ascential DataStage Install and Upgrade Guide for

details on installing the manuals and the Adobe Acrobat Reader.

You can use the Acrobat search facilities to search the whole Ascential

DataStage document set. To use this feature, select Edit Search

then choose the All PDF Documents in option and specify the

Ascential DataStage docs directory (by default this is C:\Program
Files\ Ascential\DataStage\Docs).

Extensive online help is also supplied. This is especially useful when

you have become familiar with using Ascential DataStage and need to

look up particular pieces of information.

Documentation Conventions
This manual uses the following conventions:

Ascential DataStage Director
Guide

Describes the DataStage Director and
how to validate, schedule, run, and
monitor DataStage server jobs

Ascential DataStage Install and
Upgrade Guide

Contains instructions for installing
Ascential DataStage on Windows
and UNIX platforms, and for
upgrading existing installations of
Ascential DataStage

Ascential DataStage NLS Guide Contains information about using the
NLS features that are available in
Ascential DataStage when NLS is
installed

Product Guide Description

Convention Used for…

bold Field names, button names, menu items, and
keystrokes. Also used to indicate filenames, and
window and dialog box names.

user input Information that you need to enter as is.

code Code examples

variable

or

<variable>

Placeholders for information that you need to enter.
Do not type the greater-/less-than brackets as part of
the variable.
vi Mainframe Job Developer’s Guide

How to Use this Guide User Interface Conventions
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.

All punctuation marks included in the syntax—for example,
commas, parentheses, or quotation marks—are required unless
otherwise indicated.

Syntax lines that do not fit on one line in this manual are
continued on subsequent lines. The continuation lines are
indented. When entering syntax, type the entire syntax entry,
including the continuation lines, on the same input line.

User Interface Conventions
The following DataStage dialog box illustrates the terminology used

in describing user interface elements:

Indicators used to separate menu options, such as:

Start Programs Ascential DataStage

[A] Options in command syntax. Do not type the brackets
as part of the option.

B… Elements that can repeat.

A|B Indicator used to separate mutually-exclusive
elements.

{ } Indicator used to identify sets of choices.

Convention Used for…

Browse
Button

Check
Box

Button

Drop-Down
List

Tab

Field

Option
Button

Page
Mainframe Job Developer’s Guide vii

Contacting Support How to Use this Guide
The DataStage user interface makes extensive use of tabbed pages,

sometimes nesting them to enable you to reach the controls you need

from within a single dialog box. At the top level, these are called

pages, while at the inner level they are called tabs. The example

shown above displays the General tab of the Inputs page. When

using context-sensitive online help, you will find that each page opens

a separate help topic, but each tab always opens the help topic for the

parent page. You can jump to the help pages for the separate tabs

from within the online help.

Contacting Support
To reach Customer Care, please refer to the information below:

Call toll-free: 1-866-INFONOW (1-866-463-6669)

Email: support@ascentialsoftware.com

Ascential Developer Net: http://developernet.ascential.com

Please consult your support agreement for the location and

availability of customer support personnel.

To find the location and telephone number of the nearest Ascential

Software office outside of North America, please visit the Ascential

Software Corporation website at http://www.ascential.com.
viii Mainframe Job Developer’s Guide

mailto:support@ascentialsoftware.com
http://developernet.ascential.com
http://www.ascential.com

Contents
How to Use this Guide
How This Book is Organized . iii

Related Documentation . v

Ascential Software Documentation . v

Documentation Conventions . vi

User Interface Conventions . vii

Contacting Support . viii

Chapter 1
Introduction

Developing Mainframe Jobs. 1-1

Importing Meta Data . 1-2

Creating a Mainframe Job . 1-2

Designing Job Stages . 1-5

Editing Job Properties . 1-9

After Development. 1-9

Generating Code. 1-10

Uploading Jobs . 1-10

Compiling and Uploading Multiple Jobs . 1-10

Programming Resources. 1-11
Mainframe Job Developer’s Guide ix

Contents
Chapter 2
Importing Meta Data for Mainframe Jobs

Importing Table Definitions . 2-1

COBOL File Definitions . 2-2

DB2 DCLGen Files . 2-5

Assembler File Definitions . 2-8

PL/I File Definitions . 2-11

Teradata Tables . 2-17

Viewing and Editing Table Definitions. 2-18

Importing IMS Definitions. 2-19

Viewing and Editing IMS Definitions . 2-23

IMS Database Editor . 2-24

IMS Viewset Editor. 2-25

Chapter 3
Complex Flat File Stages

Using a Complex Flat File Stage. 3-1

Specifying Stage Column Definitions . 3-3

Pre-Sorting Data. 3-7

Specifying Sort File Parameters . 3-10

Defining Complex Flat File Output Data . 3-11

Selecting Normalized Arrays . 3-14

Chapter 4
Multi-Format Flat File Stages

Using a Multi-Format Flat File Stage . 4-1

Specifying Stage Record Definitions . 4-3

Specifying Record ID Constraints . 4-7

Defining Multi-Format Flat File Output Data . 4-8

Selecting Normalized Arrays . 4-11

Chapter 5
IMS Stages

Using an IMS Stage. 5-1

Defining IMS Output Data . 5-3
x Mainframe Job Developer’s Guide

Contents
Chapter 6
Fixed-Width Flat File Stages

Using a Fixed-Width Flat File Stage . 6-1

Specifying Stage Column Definitions. 6-4

Pre-Sorting Data . 6-5

Specifying Target File Parameters . 6-9

Defining Fixed-Width Flat File Input Data . 6-10

Defining Fixed-Width Flat File Output Data . 6-12

Chapter 7
Delimited Flat File Stages

Using a Delimited Flat File Stage . 7-1

Specifying Stage Column Definitions. 7-3

Specifying Delimiter Information . 7-5

Specifying Target File Parameters . 7-7

Defining Delimited Flat File Input Data . 7-8

Defining Delimited Flat File Output Data . 7-10

Chapter 8
DB2 Load Ready Flat File Stages

Using a DB2 Load Ready Flat File Stage . 8-1

Specifying Stage Column Definitions. 8-3

Setting DB2 Bulk Loader Parameters . 8-4

Specifying Delimiter Information . 8-5

Specifying Load Data File Parameters . 8-6

Defining DB2 Load Ready Input Data . 8-8

Defining DB2 Load Ready Output Data . 8-10

Chapter 9
Relational Stages

Using a Relational Stage . 9-1

Defining Relational Input Data . 9-3

Updating Input Columns . 9-5

Using a WHERE Clause . 9-7

Defining Relational Output Data . 9-8

Defining Computed Columns . 9-12

Modifying the SQL Statement. 9-14
Mainframe Job Developer’s Guide xi

Contents
Chapter 10
Teradata Relational Stages

Using a Teradata Relational Stage. 10-1

Defining Teradata Relational Input Data . 10-3

Updating Input Columns . 10-5

Using a WHERE Clause . 10-7

Defining Teradata Relational Output Data. 10-8

Defining Computed Columns . 10-12

Modifying the SQL Statement . 10-14

Chapter 11
Teradata Export Stages

Using a Teradata Export Stage. 11-1

Specifying Teradata FastExport Parameters . 11-3

Specifying File Options . 11-4

Defining Teradata Export Output Data. 11-6

Defining Computed Columns . 11-10

Modifying the SQL Statement . 11-11

Chapter 12
Teradata Load Stages

Using a Teradata Load Stage . 12-1

Specifying Stage Column Definitions . 12-4

Updating Input Columns . 12-4

Defining a WHERE Clause . 12-6

Specifying Teradata Load Utility Parameters . 12-7

Specifying Error Handling Options. 12-8

Specifying File Options . 12-10

Defining Teradata Load Input Data . 12-12

Chapter 13
External Source Stages

Working with External Sources . 13-1

Creating an External Source Routine . 13-2

Viewing and Editing an External Source Routine 13-8

Copying an External Source Routine . 13-9

Renaming an External Source Routine . 13-9

Defining the External Source Call Interface. 13-10
xii Mainframe Job Developer’s Guide

Contents
Using an External Source Stage . 13-10

Specifying the External Source Routine. 13-12

Defining External Source Output Data . 13-14

Chapter 14
External Target Stages

Working with External Targets . 14-1

Creating an External Target Routine. 14-2

Viewing and Editing an External Target Routine. 14-7

Copying an External Target Routine. 14-8

Renaming an External Target Routine . 14-8

Defining the External Target Call Interface . 14-9

Using an External Target Stage . 14-9

Specifying the External Target Routine . 14-11

Defining External Target Input Data . 14-12

Chapter 15
Transformer Stages

Using a Transformer Stage . 15-1

Transformer Editor Components . 15-2

Toolbar . 15-2

Link Area . 15-2

Meta Data Area . 15-3

Shortcut Menus . 15-3

Transformer Stage Properties. 15-6

Transformer Stage Basic Concepts . 15-6

Input Links. 15-7

Output Links . 15-7
Mainframe Job Developer’s Guide xiii

Contents
Editing Transformer Stages . 15-8

Using Drag and Drop . 15-8

Find and Replace Facility. 15-9

Select Facilities. 15-10

Creating and Deleting Output Columns . 15-11

Moving Output Columns Within a Link . 15-12

Editing Output Column Meta Data . 15-12

Defining Output Column Derivations . 15-12

Editing Multiple Derivations . 15-15

Defining Constraints and Handling Rejects . 15-18

Specifying Output Link Order . 15-20

Defining Local Stage Variables . 15-21

The DataStage Expression Editor. 15-24

Entering Expressions . 15-24

Validating the Expression . 15-25

Exiting the Expression Editor . 15-26

Chapter 16
Business Rule Stages

Using a Business Rule Stage . 16-1

Defining Stage Variables . 16-2

Specifying Business Rule Logic . 16-4

SQL Constructs. 16-6

Defining Business Rule Input Data . 16-9

Defining Business Rule Output Data . 16-10

Chapter 17
Link Collector Stages

Using a Link Collector Stage. 17-1

Defining Link Collector Input Data . 17-2

Defining Link Collector Output Data. 17-4

Mapping Data . 17-5

Chapter 18
Join Stages

Using a Join Stage. 18-1

Defining Join Input Data . 18-3
xiv Mainframe Job Developer’s Guide

Contents
Defining Join Output Data. 18-5

Defining the Join Condition. 18-6

Mapping Data . 18-7

Join Examples . 18-11

Chapter 19
Lookup Stages

Using a Lookup Stage . 19-1

Performing Conditional Lookups . 19-3

Defining the Lookup Condition . 19-5

Defining Lookup Input Data . 19-6

Defining Lookup Output Data . 19-8

Mapping Data . 19-9

Lookup Examples. 19-13

Conditional Lookup Examples . 19-15

Chapter 20
Aggregator Stages

Using an Aggregator Stage. 20-1

Defining Aggregator Input Data . 20-2

Defining Aggregator Output Data. 20-3

Aggregating Data . 20-5

Mapping Data . 20-7

Chapter 21
Sort Stages

Using a Sort Stage . 21-1

Defining Sort Input Data . 21-2

Defining Sort Output Data. 21-3

Sorting Data . 21-4

Mapping Data . 21-5
Mainframe Job Developer’s Guide xv

Contents
Chapter 22
External Routine Stages

Working with Mainframe Routines . 22-1

Creating a Routine . 22-2

Viewing and Editing a Routine . 22-7

Copying a Routine . 22-7

Renaming a Routine . 22-8

Using an External Routine Stage . 22-8

Defining External Routine Input Data. 22-9

Defining External Routine Output Data . 22-11

Mapping Routines and Data . 22-12

Chapter 23
FTP Stages

Using an FTP Stage . 23-1

Specifying Target Machine Attributes . 23-2

Defining FTP Input Data . 23-4

Chapter 24
Code Generation and Job Upload

Generating Code . 24-1

Job Validation . 24-4

Generated Files . 24-4

Code Customization. 24-5

Uploading Jobs . 24-8

COBOL Compiler Options . 24-11

Working with Machine Profiles. 24-11

Creating a Machine Profile . 24-12

Viewing and Editing a Machine Profile . 24-15

Copying a Machine Profile . 24-15

Renaming a Machine Profile . 24-16

Compiling Multiple Jobs. 24-16
xvi Mainframe Job Developer’s Guide

Contents
Appendix A
Programmer’s Reference

Programming Components. A-1

Constants . A-2

Constraints . A-2

Expressions. A-3

Functions. A-4

Operators . A-16

Parameters . A-18

Routines . A-19

Variables . A-19

Appendix B
Data Type Definitions and Mappings

Data Type Definitions . B-1

Data Type Mappings . B-2

Processing Rules . B-3

Data Type Mapping Implementations . B-3

Mapping Dates . B-13

Appendix C
Native Data Types

Source Stages . C-1

Target Stages . C-7

Storage Lengths . C-11

Variable Calculation for Decimal Arithmetic . C-13

Appendix D
Editing Column Meta Data

Editing Mainframe Column Definitions . D-1

Propagating Column Values . D-2

Using the Edit Column Meta Data Dialog Box. D-4

Appendix E
JCL Templates

JCL Template Descriptions . E-1

JCL Template Usage . E-3
Mainframe Job Developer’s Guide xvii

Contents
Customizing a JCL Template . E-4

JCL Template Variables. E-5

JCL Extension Variables . E-13

Defining JCL Extension Variables. E-14

Conditional Statements in JCL Templates . E-15

% Symbols in JCL Templates . E-16

Appendix F
Operational Meta Data

About Operational Meta Data . F-1

Generating Operational Meta Data . F-2

Project-Level Operational Meta Data . F-2

Job-Level Operational Meta Data . F-3

Specifying MetaStage Machine Connection Details F-4

Controlling XML File Creation. F-6

Using GDG to Generate Unique Dataset Names. F-6

Importing XML Files into MetaStage . F-6

Using Operational Meta Data . F-8

Understanding Events . F-8

Process Analysis . F-10

Data Lineage. F-12

Impact Analysis . F-13

Appendix G
Run-time Library

Sort Routines . G-1

Hash Routines . G-3

Calculating Hash Table Memory Requirements . G-4

Delimited Flat File Creation Routines. G-5

Utility Routines. G-6

Data Type Conversion Routines . G-6

Operational Meta Data Routines . G-7

Appendix H
Reserved Words

COBOL Reserved Words . H-1

SQL Reserved Words. H-5
xviii Mainframe Job Developer’s Guide

Contents
Index
Mainframe Job Developer’s Guide xix

Contents
xx Mainframe Job Developer’s Guide

1
Introduction

This chapter gives an overview of DataStage mainframe jobs.

If you have Ascential DataStage Enterprise MVS Edition installed, you

can generate jobs that are compiled and run on a mainframe. Data

read by these jobs can then be loaded into the data warehouse.

Ascential DataStage also supports server jobs and parallel jobs. These

are compiled and run on the DataStage server. Such jobs connect to a

data source, extract and transform data, and write it to a data

warehouse. Server jobs are described in Ascential DataStage Server

Job Developer’s Guide and parallel jobs are described in Ascential

DataStage Parallel Job Developer’s Guide.

Developing Mainframe Jobs
DataStage mainframe jobs consist of individual stages. These stages

are used to represent data sources, data targets, or conversion

processes. Stages are added to a job and linked together using the

Designer. The linked stages represent the flow and manipulation of

data from one or more data sources to a final data warehouse.

To develop a mainframe job, you must do the following:

Import or manually create meta data for your mainframe data
sources and targets

Create a mainframe job

Design job stages

Edit job properties
Mainframe Job Developer’s Guide 1-1

Developing Mainframe Jobs Introduction
Before you start to develop your job, you must plan and set up your

project. See Ascential DataStage Manager Guide for information on

how to set up a project using the DataStage Manager.

Importing Meta Data
The fastest and easiest way to specify table definitions for your

mainframe data sources and targets is to import meta data from one

of the following file formats:

Assembler File Definitions

COBOL File Definitions

DB2 DCLGen File Definitions

IMS Definitions

PL/I File Definitions

You import meta data using the DataStage Manager or the Designer

Repository window. Chapter 2 describes how to import meta data for

use in mainframe jobs. See Ascential DataStage Manager Guide for

information on manually entering a table definition.

Creating a Mainframe Job
After you have set up your project and imported meta data, you are

ready to create a job. Jobs are created using the DataStage Designer.

To start the Designer, choose Start Programs Ascential
DataStage DataStage Designer. Or, if you are running the

Manager, choose Tools Run Designer.
1-2 Mainframe Job Developer’s Guide

Introduction Developing Mainframe Jobs
The DataStage Designer window appears:

To create a new mainframe job, do one of the following:

Choose File New from the Designer menu. The New dialog box
appears. Select Mainframe Job and click OK:

Click the New drop-down arrow on the Designer toolbar and
select Mainframe Job.
Mainframe Job Developer’s Guide 1-3

Developing Mainframe Jobs Introduction
The diagram window appears in the right pane of the Designer, and

the tool palette for mainframe jobs becomes available in the lower left

pane:

The DataStage Designer window consists of the following parts:

The Diagram window where you design your jobs.

The Repository window where you view components in a
project.

A Toolbar from where you select Designer functions.

A Tool Palette from which you select job components.

A Status Bar which displays one-line help for the window
components, and information on the current state of job
operations.

For full information about the Designer window, including the

functions of the pull-down and shortcut menus, refer to Ascential

DataStage Designer Guide.

You can customize the Designer to create a new mainframe job at

startup by doing the following:

1 Choose Tools Options. The Options dialog box appears.

2 Select the General page under the Default branch of the project
tree in the left pane.

3 Click Create new and select Mainframe from the drop-down list.

Save your job by choosing File Save. In the Create new job dialog

box, type a job name and a category. Click OK to save the job.
1-4 Mainframe Job Developer’s Guide

Introduction Developing Mainframe Jobs
Designing Job Stages
Jobs are designed and developed in the Diagram window of the

DataStage Designer. Each data source, data target, and processing

step is represented by a stage in the job design. The stages are linked

together to show the flow of data.

A stage can be passive or active. Passive stages handle access to

source and target tables for the extraction or writing of data. Active

stages model the flow of data and provide mechanisms for combining

data streams, aggregating data, and converting data from one data

type to another.

There are four types of mainframe job stage:

Source stages. Used to read data from a data source. Mainframe
source stage types include:

Complex Flat File

Delimited Flat File (can also be used as a target stage)

External Source

Fixed-Width Flat File (can also be used as a target stage)

IMS

Multi-Format Flat File

Relational (can also be used as a target stage)

Teradata Export

Teradata Relational (can also be used as a target stage)
Mainframe Job Developer’s Guide 1-5

Developing Mainframe Jobs Introduction
Target stages. Used to write data to a target data warehouse.
Mainframe target stage types include:

DB2 Load Ready Flat File

Delimited Flat File (can also be used as a source stage)

External Target

Fixed-Width Flat File (can also be used as a source stage)

Relational (can also be used as a source stage)

Teradata Load

Teradata Relational (can also be used as a source stage)

Processing stages. Used to transform data before writing it to
the target. Mainframe processing stage types include:

Aggregator

Business Rule

External Routine

Join

Link Collector

Lookup

Sort

Transformer
1-6 Mainframe Job Developer’s Guide

Introduction Developing Mainframe Jobs
Post-processing stage. Used to post-process target files
produced by a mainframe job. There is one type of post-
processing stage:

FTP

Stages are added and linked together using the tool palette. The

mainframe tool palette is divided into groups for General, Database,

File, and Processing stage types. Buttons for mainframe source and

target stages appear in the Database and File groups, and

mainframe processing stage buttons appear in the Processing

group. The General group contains the following buttons for linking

stages together and adding diagram annotations:

Annotation

Description Annotation

Link

For information on customizing the tool palette, see Ascential

DataStage Designer Guide.

A mainframe job must have at least one active stage, and every stage

in the job must have at least one link. Only one chain of stages is

allowed in a job. Active stages must have at least one input link and

one output link. Passive stages cannot be linked to passive stages.

Relational and Teradata Relational stages cannot be used in the same

job.

Table 1-1 shows the links that are allowed between mainframe stage

types.
Mainframe Job Developer’s Guide 1-7

Developing Mainframe Jobs Introduction

Table 1-1 Mainframe Stage Linkage

TO:

FROM:

Fi
xe

d
-W

id
th

 F
la

t
Fi

le
D

el
im

it
ed

 F
la

t
Fi

le
D

B
2

 L
o

ad
 R

ea
d

y
Fl

at
 F

il
e

R
el

at
io

n
al

Te
ra

d
at

a
R

el
at

io
n

al
Te

ra
d

at
a

Lo
ad

E
xt

er
n

al
 T

ar
g

et
Tr

an
sf

o
rm

er
B

u
si

n
es

s
R

u
le

Li
n

k
 C

o
ll

ec
to

r
Jo

in
Lo

o
k

u
p

 I
n

p
u

t
Lo

o
k

u
p

 R
ef

er
en

ce
A

g
g

re
g

at
o

r
S

o
rt

E
xt

er
n

al
 R

o
u

ti
n

e
FT

P

Complex Flat File ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Multi-Format Flat
File

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

IMS ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fixed-Width Flat File ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Delimited Flat File ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DB2 Load Ready Flat
File

✔

Relational ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Teradata Relational ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Teradata Export ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

External Source ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Transformer ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Business Rule ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Link Collector ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Join ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Lookup ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Aggregator ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Sort ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

External Routine ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
1-8 Mainframe Job Developer’s Guide

Introduction After Development
After you add stages and links to the Designer canvas, you must edit

the stages to specify the data you want to use and how it is handled.

Data arrives into a stage on an input link and is output from a stage on

an output link. The properties of the stage and the data on each input

and output link are specified using a stage editor. There are different

stage editors for each type of mainframe job stage.

See Ascential DataStage Designer Guide for details on how to develop

a job using the Designer. Chapters 3 through 23 of this manual

describe the individual stage characteristics and stage editors

available for mainframe jobs.

Editing Job Properties
Each job in a project has properties, including job parameters and

optional descriptions that provide job-level documentation. You can

define job parameters to be used as global variables throughout the

stages of a job. The actual values for these parameters are maintained

in a separate file that is accessed when the job is run on the

mainframe.

Mainframe jobs also have environmental properties that specify

information used to generate code. In addition, you can define JCL

extension variables which allow you to customize the DataStage-

generated JCL.

Also included in mainframe job properties are settings for flat file null

indicators, the century break year, the default date format, semantic

checking in expressions, and generating operational meta data. (Note:

Semantic checking can impact performance in jobs that contain a

large number of derivations.)

You can view and edit job properties from the DataStage Designer or

the DataStage Manager. From the Designer, open your job and choose

Edit Job Properties… . From the Manager, double-click your job in

the project tree, or select the job and choose File Properties… .

See Ascential DataStage Designer Guide for details on how to edit

mainframe job properties.

After Development
When you have finished developing your mainframe job, you are

ready to generate code. The code is then uploaded to the mainframe

machine, where the job is compiled and run.
Mainframe Job Developer’s Guide 1-9

After Development Introduction
Generating Code
To generate code for a mainframe job, open the job in the Designer

and choose File Generate Code. Or, click the Generate Code

button on the toolbar. The Code generation dialog box appears. This

dialog box displays the code generation path, COBOL program name,

compile JCL file name, and run JCL file name. There is a Generate

button for generating the COBOL code and JCL files, a View button

for viewing the generated code, and an Upload job button for

uploading a job once code has been generated. There is also a

progress bar and a display area for status messages.

When you click Generate, your job design is automatically validated

before the COBOL source, compile JCL, and run JCL files are

generated.

You can print the program and data flow during program execution by

selecting an option in the Trace runtime information drop-down

box. In addition, you can customize the COBOL program by selecting

the Generate COPY statements for customization check box.

You can also create and manage several versions of the COPYLIB

members by specifying a copy library prefix.

For more information on generating code, see Chapter 24, "Code

Generation and Job Upload."

Uploading Jobs
To upload a job from the Designer, choose File Upload Job, or click

Upload job in the Code generation dialog box after you’ve

generated code. The Remote System dialog box appears, allowing

you to specify information about connecting to the target mainframe

system. Once you have successfully connected to the target machine,

the Job Upload dialog box appears, allowing you to actually upload

the job.

You can also upload jobs in the Manager. Choose the Jobs branch of

the project tree, select one or more jobs in the display area, and

choose Tools Upload Job.

For more information about uploading jobs, see Chapter 24, "Code

Generation and Job Upload."

Compiling and Uploading Multiple Jobs
The DataStage Batch Job Compilation Wizard allows you to

compile and upload multiple jobs in a project. It can be invoked via

the command line or from within the DataStage Manager or Designer.
1-10 Mainframe Job Developer’s Guide

Introduction Programming Resources
For details on using the wizard, see "Compiling Multiple Jobs" on

page 24-16.

Programming Resources
You may need to perform certain programming tasks in your

mainframe jobs, such as reading data from an external source, calling

an external routine, writing expressions, or customizing the

DataStage-generated code.

External Source stages allow you to retrieve rows from an external

data source. After you write the external source program, you create

an external source routine in the Repository. Then you use an External

Source stage to represent the external source program in your job

design. The external source program is called from the DataStage-

generated COBOL program. See Chapter 13, "External Source Stages"

for details about calling external source programs.

External Target stages allow you to write rows to an external data

target. After you write the external target program, you create an

external target routine in the Repository. Then you use an External

Target stage to represent the external target program in your job

design. The external target program is called from the DataStage-

generated COBOL program. See Chapter 14, "External Target Stages"

for details about calling external target programs.

External Routine stages allow you to incorporate complex processing

or functionality specific to your environment within the DataStage-

generated COBOL program. As with External Source or External

Target stages, you first write the external program, then you define an

external routine in the Repository, and finally you add an External

Routine stage to your job design. For more information, see

Chapter 22, "External Routine Stages."

Expressions are used to define column derivations, constraints, SQL

clauses, stage variables, and conditions for performing joins and

lookups. The DataStage Expression Editor helps you define column

derivations, constraints, and stage variables in Transformer stages, as

well as column derivations and stage variables in Business Rule

stages. It is also used to update input columns in Relational, Teradata

Relational, and Teradata Load stages. An expression grid helps you

define constraints in source stages, as well as SQL clauses in

Relational, Teradata Relational, Teradata Export, and Teradata Load

stages. It also helps you define key expressions in Join and Lookup

stages. Details on defining expressions are provided in the chapters

describing the individual stage editors. In addition, Appendix A,

"Programmer’s Reference" contains reference information about the
Mainframe Job Developer’s Guide 1-11

Programming Resources Introduction
programming components that you can use in mainframe

expressions.

You can also customize the DataStage-generated COBOL program to

meet your shop standards. Processing can be done at both program

initialization and termination. In addition, you can change the text

associated with various warning and error messages, and you can

create and manage several versions of COPYLIB members. For details

see "Code Customization" on page 24-5.
1-12 Mainframe Job Developer’s Guide

2
Importing Meta Data for

Mainframe Jobs

This chapter explains how to import meta data from mainframe data

sources, including table definitions and IMS definitions. These

definitions contain the meta data for each data source and data target

in a data warehouse. They specify the data to be used at each stage of

a job.

You can save time and increase the accuracy of your table definitions

by importing them into the DataStage Repository. They can then be

shared by all the jobs in a project.

If you are not able to import table definitions, you have the option of

manually creating definitions in the Repository before you develop a

job, or defining columns directly in the stage editors during job

design. Columns entered during job design can be saved as table

definitions in the Repository by clicking the Save As button on the

Columns tab, allowing you to use them in other jobs. For details on

manually creating a table definition in the Manager, see Ascential

DataStage Manager Guide. For details on saving columns as table

definitions during job design, see the chapters on the individual stage

editors in this manual.

Importing Table Definitions
Mainframe table definitions include COBOL File Definitions (CFDs),

DB2 DCLGen files (DFDs), Assembler File Definitions (AsmFDs), PL/I

File Definitions (PL/I FDs), and Teradata table definitions.
Mainframe Job Developer’s Guide 2-1

Importing Table Definitions Importing Meta Data for Mainframe Jobs
COBOL File Definitions
COBOL File Definitions contain data description statements in a text

file that describe a file format in COBOL terms. You can import CFDs

into the DataStage Repository directly from a COBOL program. A CFD

file can contain multiple table definitions, and can be either a COBOL

copybook or a COBOL source program.

Before you import a COBOL FD, be sure it contains valid COBOL

syntax. Ascential DataStage supports level number 02 to 49 and

recognizes the following clauses:

OCCURS

OCCURS DEPENDING ON

PICTURE

REDEFINES

SIGN

SYNCHRONIZED

USAGE

The following items are not captured:

Level numbers 66, 77, and 88 (these become comments for the
column)

Data element names that are SQL reserved words (see
Appendix H, "Reserved Words" for a list)

At least one 01 level must be defined in a CFD file. The name at the 01

level becomes the default table name in Ascential DataStage.

Comments must be designated with an asterisk in the column

preceding the start position.

For details about the native data types that Ascential DataStage

supports when importing CFDs, see Appendix C, "Native Data Types."

To import a CFD, do one of the following:

In the Manager, choose Import Table Definitions COBOL
File Definitions… from the menu bar.

In the Designer Repository window, right-click on the Table
Definitions branch and select Import COBOL File
Definitions… from the shortcut menu.
2-2 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
The Import Meta Data (CFD) dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

COBOL file description pathname. The pathname where the
CFD file is located. You can type the pathname or browse for it by
clicking the … (browse) button. The CFD file must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.cfd.

Start position. The starting column where the table description
begins (the 01 level). The default start position is 8. You can
change the start position to any value from 2 to 80. Ascential
DataStage allows 64 positions from the start position. For
example, if the start position is 2, the last valid column position is
65.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Column comment association. The column to associate with a
comment line in a CFD file. Specify whether a comment line
should be associated with the column that follows it (the default)
or the column that precedes it.

Tables. The tables defined in the selected CFD file. This list will
appear after you enter the CFD pathname. Click Refresh to refresh
the list if necessary. Select a single table by clicking the table
name, or select multiple tables by holding down the Ctrl key and
clicking the table names. To select all tables, click Select all.

To see a summary description of a table, select the table name and

click Details. The Details of dialog box appears, displaying the

table name, description, and column names.
Mainframe Job Developer’s Guide 2-3

Importing Table Definitions Importing Meta Data for Mainframe Jobs
To category. The name of the category in the Repository where
the CFD will be saved. There are two parts to the category: the
data source type and the data source name. This field is
automatically filled in when you select a table. The default
category for CFDs is COBOL FD\filename. You can change the
category by typing a different name in this field.

Click Import after selecting the items to import. The data from the

CFD file is extracted and parsed. If any syntactical or semantic errors

are found, the Import Error dialog box appears:

This dialog box displays the number of errors and provides the

following options:

Edit… . Allows you to view and fix the errors.

Skip. Skips the current table and begins importing the next table,
if one has been selected.

Stop. Aborts the import of this table and any remaining tables.

If you click Edit…, the Edit CFD File dialog box appears:

This dialog box displays the CFD file in the top pane and the errors in

the bottom pane. For each error, the line number, an error indicator,

and an error message are shown. Double-clicking an error message
2-4 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
automatically positions the cursor at the corresponding line in the top

pane. You can edit the file by typing directly in the top pane.

Click Skip to skip the current table and begin importing the next one,

if one exists. Click Stop to abort the import of the table and any

remaining tables.

After you are done making changes, click Save to save your work. If

you have not changed the names or number of tables in the file, you

can click Retry to start importing the table again. However, if you

changed a table name or added or removed a table from the file, the

Import File dialog box appears. You can click Re-start to restart the

import process or Stop to abort the import.

DB2 DCLGen Files
DCLGen files provide data definition statements in a text file that

describe a file format in DB2 terms. You can import DCLGen files into

the Repository after they have been exported from a DB2 database. A

DCLGen file contains only one table definition. Ascential DataStage

uses the SQL declaration to determine the column definitions.

When you import a DCLGen file, the following conditions apply:

Columns are defined in SQL terms.

Quoted names are not supported for owner, table, or column
names.

DB2 names must not exceed the length allowed in the DB2
version you are using.

If NOT NULL is not specified, NULL is assumed.

For information about the native SQL data types that Ascential

DataStage supports when importing DCLGen files, see Appendix C,

"Native Data Types."

To import a DCLGen file, do one of the following:

In the Manager, choose Import Table Definitions DCLGen
File Definitions… from the menu bar.

In the Designer Repository window, right-click on the Table
Definitions branch and select Import DCLGen File
Definitions… from the shortcut menu.
Mainframe Job Developer’s Guide 2-5

Importing Table Definitions Importing Meta Data for Mainframe Jobs
The Import Meta Data (DCLGen) dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

DCLGen pathname. The pathname where the DCLGen file is
located. You can type the pathname or browse for it by clicking the
… (browse) button. The DCLGen file must either reside on the
DataStage client workstation or on a network that is visible from
the client workstation. The default capture file extension is *.dfd.

Start position. This is not used for DCLGen files. Ascential
DataStage captures the table definition from the EXEC SQL
DECLARE statement.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Tables. The table defined in the selected DCLGen file. This list will
appear after you enter the DCLGen pathname. Click Refresh to
refresh the list if necessary. Click the table name to select the
table.

To see a summary description of a table, select the table name and

click Details. The Details of dialog box appears, displaying the

table type, owner, description, and column names.

To category. The name of the category in the Repository where
the DCLGen file will be saved. This field is automatically filled in
when you select a table. The default category for DCLGen files is
DB2 Dclgen\filename. You can change the category by typing a
different name in this field.
2-6 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
Click Import after selecting the table to import. The data from the

DCLGen file is extracted and parsed. If any syntactical or semantic

errors are found, the Import Error dialog box appears:

This dialog box displays the number of errors and provides the

following options:

Edit… . Allows you to view and fix the errors.

Skip. Skips the current table and begins importing the next table,
if one has been selected.

Stop. Aborts the import of this table and any remaining tables.

If you click Edit…, the Edit DCLGen File dialog box appears:

This dialog box displays the DCLGen file in the top pane and the

errors in the bottom pane. For each error, the line number, an error

indicator, and an error message are shown. Double-clicking an error

message automatically positions the cursor at the corresponding line

in the top pane. You can edit the file by typing directly in the top pane.

Click Stop to abort the import of the table.

After you are done making changes, click Save to save your work. If

you have not changed the table name, you can click Retry to start

importing the table again. However, if you changed the table name,
Mainframe Job Developer’s Guide 2-7

Importing Table Definitions Importing Meta Data for Mainframe Jobs
the Import File dialog box appears. You can click Re-start to restart

the import process or Stop to abort the import.

Assembler File Definitions
Assembler File Definitions use Assembler syntax to describe records

in a table definition. An Assembler file can contain multiple record

definitions. Record description entries begin with a DSECT keyword

and may contain elementary items.

You can import both Assembler source files and listing files into the

DataStage Repository. Assembler source files have the following

default values:

The begin column is at column 1.

The end column is at the begin column plus 70.

The continuation column is at the begin column plus 71.

The continue column is at the begin column plus 15.

Default values for Assembler listing files are:

The begin column is at column 42.

The end column is at the begin column plus 70.

The continuation column is at the begin column plus 71.

The continue column is at the begin column plus 15.

Any statements before the begin column are not processed.

Any statements after the continuation indicator are not processed.

Note Listing file offsets are calculated using the IBM

Assembler. If you use another vendor’s Assembler,

adjustments may be needed prior to import.

Comments must be designated with an asterisk in the begin column

and must lie within the statement field. They may not appear between

an instruction statement and its continuation lines. Comments that

appear before the first DSECT keyword become the long description

for the table. The fully qualified path and filename of the AsmFD, as

well as the current date and time, are saved as the short description

for the table.

The import process creates a DataStage table of type QSAM_SEQ_
COMPLEX. Assembler data types are converted to COBOL native

data types during capture, as described in Table 2-1.
2-8 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
Note The DataStage Expression Editor provides functions for

performing bit manipulations. For more information, see

Appendix A, "Programmer’s Reference."

To import an AsmFD, do one of the following:

In the Manager, choose Import Table Definitions
Assembler File Definitions… from the menu bar.

In the Designer Repository window, right-click on the Table
Definitions branch and select Import Assembler File
Definitions… from the shortcut menu.

The Import Meta Data (ASM) dialog box appears:

Table 2-1 Assembler Data Type Conversion

Assembler
Type

COBOL Native
Type

COBOL Usage
Representation

SQL Type

B CHARACTER PIC X(n)1 Char

C CHARACTER PIC X(n) Char

D FLOAT COMP-2 Decimal

E FLOAT COMP-1 Decimal

F BINARY PIC S9(9) COMP Integer

G NCHAR PIC N(n) NChar

H BINARY PIC S9(4) COMP SmallInt

L CHARACTER PIC X(n) Char

P DECIMAL COMP-3 SIGNED Decimal

X CHARACTER PIC X(n) Char

Z DISPLAY NUMERIC PIC S9(n) Decimal

1 (n) is equal to the number of bytes.
Mainframe Job Developer’s Guide 2-9

Importing Table Definitions Importing Meta Data for Mainframe Jobs
This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

Assembler file description pathname. The pathname where
the AsmFD is located. You can type the pathname or browse for it
by clicking the … (browse) button. The file must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.asm for source files and *.lst for listing files.

Start position. The starting column where the table description
begins (level 1). Defaults to 1 for source files and 42 for listing
files.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Column comment association. The column to associate with a
comment line in an Assembler file. Specify whether a comment
line should be associated with the column that follows it (the
default) or the column that precedes it. The column definition is
included with the comment as part of each column description; if
you want to exclude the column definition from the description,
clear the Include column description check box.

Tables. The tables defined in the selected source file. This list will
appear after you enter the source file pathname. Click Refresh to
refresh the list if necessary. Select a single table by clicking the
table name, or select multiple tables by holding down the Ctrl key
and clicking the table names. To select all tables, click Select all.

To see a summary description of a table, select the table name and

click Details. The Details of dialog box appears, displaying the

table name, description, and column names.

To category. The name of the category in the Repository where
the AsmFD will be saved. This field is automatically filled in when
you select a table. The default category for AsmFDs is
Assembler\filename. You can change the category by typing a
different name in this field.

Click Import after selecting the items to import. The data is extracted

and parsed. If any syntactical or semantic errors are found, the

Import Error dialog box appears, allowing you to view and fix the

errors, skip the import of the incorrect item, or stop the import process

altogether.
2-10 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
PL/I File Definitions
PL/I File Definitions use PL/I language constructs to describe records

in a table definition. A PL/I FD can contain multiple record definitions.

Record description entries begin with a DECLARE or DCL keyword and

may contain elementary items.

You can import both PL/I source files and listing files into the

DataStage Repository.

When you import a PL/I FD, the following conditions apply:

Level numbers 1 to 49 are captured. The first level number must
be 1. The maximum number of levels in a structure is 15 and the
maximum level number is 255.

The level 1 field name becomes the default table name in
Ascential DataStage if the file does not use the DEFINED or DEF
attribute.

Field names that exceed the COBOL limit of 30 characters are
trimmed.

Field names cannot be the same as stage or link names and
cannot be COBOL or SQL reserved words. (See Appendix H,
"Reserved Words" for a list.)

The maximum precision for binary and decimal data is 31 signed
or 32 unsigned. The maximum precision for extended binary float
is 53.

Picture characters are supported only for numeric character data
that maps directly to COBOL display numeric data.

PL/I macros and complex data items are not supported.

Note Listing file offsets are calculated using the IBM PL/I

compiler. If you use another vendor’s PL/I compiler,

adjustments may be needed prior to import.

Comments must begin with /* and end with */. The fully qualified path

and filename of the PL/I FD, as well as the current date and time, are

saved as the short description for the table. Comments that appear

before the first DCL or DECLARE level 1 become the long description.

In addition, any comments defined on the level 1 variable declaration

are appended to the short description. Other comments defined on or

between level n (n > 1) variable definitions become column

descriptions.

The import process creates a DataStage table of type QSAM_SEQ_
COMPLEX. PL/I data types are converted to COBOL native data types

during capture, as described in Table 2-2.
Mainframe Job Developer’s Guide 2-11

Importing Table Definitions Importing Meta Data for Mainframe Jobs
Table 2-2 PL/I Data Type Conversion

PL/I Type COBOL
Native Type

COBOL Usage
Representation

SQL Type

BIT(n)1

(See "BIT Data Type
Examples" on
page 2-14 for more
information.)

CHARACTER Aligned or unaligned where
previous field is non-BIT:

PIC X(n/8) or

PIC X((n/8)+1) if n/8
results in a remainder

Unaligned and previous field
is BIT (‘p’ is the number of
bits in the previous field):

PIC X((p+n)/8) or

PIC X(((p+n)/8)+1) if
(p+n)/8 results in a
remainder

Char

CHARACTER(n) CHARACTER PIC X(n) Char

CHARACTER(n)
VARYINGZ

CHARACTER PIC X(n+1) Char

GRAPHIC(n) GRAPHIC_N PIC N(n) NChar

GRAPHIC(n)
VARYINGZ

GRAPHIC_N PIC N(n+2) NVarChar

WIDECHAR(n) GRAPHIC_N PIC N(n) NChar

WIDECHAR(n)
VARYINGZ

GRAPHIC_N PIC N(n+2) NVarChar

DECIMAL FIXED (p,s) DECIMAL Signed:
PIC S9(p-s)V9(s) COMP-3

Unsigned:
PIC 9(p-s)V9(s) COMP-3

Decimal

BINARY FIXED (p,s)

Signed: 1 ≤ p ≤ 7
Unsigned: 1 ≤ p ≤ 8

CHARACTER PIC X(1) Char
2-12 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
BIT(n) VARYING

(See "BIT Data Type
Examples" on
page 2-14 for more
information.)

2-byte BINARY
prefix plus
CHARACTER

Aligned or unaligned where
previous field is non-BIT:

PIC S9(4) COMP and

PIC X(n/8) or

PIC X((n/8)+1) if n/8
results in a remainder

Unaligned and previous field
is BIT (‘p’ is the number of
bits in the previous field):

PIC S9(4) COMP and

PIC X((p+n)/8) or

PIC X(((p+n)/8)+1) if
(p+n)/8 results in a
remainder

VarChar

CHARACTER(n)
VARYING

VARCHAR PIC S9(4) COMP

PIC X(n)

VarChar

GRAPHIC(n)
VARYING

VARGRAPHIC PIC S9(4) COMP

PIC N(n)

NVarChar

WIDECHAR(n)
VARYING

VARGRAPHIC PIC S9(4) COMP

PIC N(n)

NVarChar

BINARY FIXED (p,s)

Signed: 8 ≤ p ≤ 15
Unsigned: 9 ≤ p ≤16

2-byte BINARY Signed: PIC S9(4) COMP

Unsigned: PIC 9(4) COMP

Decimal

BINARY FIXED (p,s)

Signed: 16 ≤ p ≤ 31
Unsigned: 17 ≤ p ≤ 32

4-byte BINARY Signed: PIC S9(9) COMP

Unsigned: PIC 9(9) COMP

Decimal

BINARY FLOAT(p)

1 ≤ p ≤ 21

4-byte FLOAT PIC COMP-1 Decimal

DECIMAL FLOAT(p)

1 ≤ p ≤ 6

CHARACTER PIC X(4) Char

BINARY FLOAT(p)

22 ≤ p ≤ 53

8-byte FLOAT PIC COMP-2 Decimal

DECIMAL FLOAT(p)

7 ≤ p ≤ 16

CHARACTER PIC X(8) Char

PICTURE

‘(q)9V(s)9’

DISPLAY
NUMERIC

Signed: PIC S9(q)V9(s)

Unsigned: PIC 9(q)V9(s)

Decimal

POINTER CHARACTER PIC X(4) Char

Table 2-2 PL/I Data Type Conversion (Continued)

PL/I Type COBOL
Native Type

COBOL Usage
Representation

SQL Type
Mainframe Job Developer’s Guide 2-13

Importing Table Definitions Importing Meta Data for Mainframe Jobs
BIT Data Type Examples

Certain BIT and BIT VARYING data types require special handling. The

following examples illustrate how Ascential DataStage processes

these data types during capture.

1 Arrays on BIT columns are multiplied to the column length and
the array is dropped. For example:

BITCOL1(16) BIT(01)

becomes

BITCOL1 BIT(16).

2 If an unaligned BIT column can be stored in full bytes (the length
is divisible by 8 with no remainder), the column name is
preserved. For example:

BITCOL1 BIT(8)
BITCOL2 BIT(16) UNALIGNED

becomes

BITCOL1 PIC X(1)
BITCOL2 PIC X(2)

3 If a BIT column follows another BIT column (aligned or unaligned)
and cannot be stored in full bytes (there is a remainder when the
length is divided by 8), the second column is merged with the first
column. For example:

BITCOL1 BIT(5)
BITCOL2 BIT(6) UNALIGNED

becomes

BITCOL1 PIC X(2)

4 BIT VARYING columns are not merged.

5 GROUP BIT columns are collapsed to one element. For example:

03 BIT S1
05 S11 BIT(1)
05 S12 BIT(1)
05S13 BIT(1)
05 S14 BIT(1)
05 S15 BIT(1)
05 S16 BIT(1)
05 S17 BIT(1)
05 S18 BIT(1)

03 BIT S2
05 S21 BIT(1)
05 S22 BIT(1)
05 S23 BIT(1)
05 S24 BIT(1)
05 S25 BIT(1)

1 (n) is equal to the number of bytes.
2-14 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
05 S26 BIT(1)
05 S27 BIT(1)
05 S28 BIT(1)

is collapsed to the following:

03 BIT S1 BIT(8)
03 BIT S2 BIT(8)

which becomes

PIC X(1)
PIC X(1)

If the number of group elements is not evenly divisible by eight,

then the second group column is merged with the first group

column. For example:

03 BIT S1
05 S11 BIT(1)
05 S12 BIT(1)
05 S13 BIT(1)
05 S14 BIT(1)
05 S15 BIT(1)

03 BIT S2
05 S21 BIT(1)
05 S22 BIT(1)
05 S23 BIT(1)
05 S24 BIT(1)
05 S25 BIT(1)
05 S26 BIT(1)
05 S27 BIT(1)

is collapsed to the following:

03 BIT S1 BIT(5)
03 BIT S2 BIT(7)

The second GROUP column is then merged with the first GROUP

column as shown:

03 BIT S1 BIT(12)

The final result is:

PIC X(2)

Note The DataStage Expression Editor provides functions for

performing bit manipulations. For more information,

see Appendix A, "Programmer’s Reference."

To import a PL/I FD, do one of the following:

In the Manager, choose Import Table Definitions PL/I File
Definitions… from the menu bar.

In the Designer Repository window, right-click on the Table
Definitions branch and select Import PL/I File Definitions…
from the shortcut menu.
Mainframe Job Developer’s Guide 2-15

Importing Table Definitions Importing Meta Data for Mainframe Jobs
The Import Meta Data (PL/I) dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

PL/I file description pathname. The pathname where the PL/I
FD is located. You can type the pathname or browse for it by
clicking the … (browse) button. The PL/I FD must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.pli or *.pl1 for source files and *.lst for listing files.

Start position. The starting column where the table description
begins (level 1). Defaults to 1 for source files and 15 for listing
files.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Column comment association. The column to associate with a
comment line in a PL/I FD. Specify whether a comment line should
be associated with the column that follows it (the default) or the
column that precedes it. The column definition is included with
the comment as part of each column description; if you want to
exclude the column definition from the description, clear the
Include column description check box.

Tables. The tables defined in the selected PL/I FD. This list will
appear after you enter the PL/I FD pathname. Click Refresh to
refresh the list if necessary. Select a single table by clicking the
table name, or select multiple tables by holding down the Ctrl key
and clicking the table names. To select all tables, click Select all.

To see a summary description of a table, select the table name and

click Details. The Details of dialog box appears, displaying the

table name, description, and column names.
2-16 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing Table Definitions
To category. The name of the category in the Repository where
the PL/I FD will be saved. There are two parts to the category: the
data source type and the data source name. This field is
automatically filled in when you select a table. The default
category for PL/I FDs is PLI\filename. You can change the
category by typing a different name in this field.

Click Import after selecting the items to import. The data is extracted

and parsed. If any syntactical or semantic errors are found, the

Import Error dialog box appears, allowing you to view and fix the

errors, skip the import of the incorrect item, or stop the import process

altogether.

Teradata Tables
You can import Teradata table definitions into the DataStage

Repository using either the ODBC Table Definitions… menu option

or, if you have the Teradata plug-in installed for server jobs, you can

use the Plug-in Metadata Definitions… menu option. In either

case, you must open the Table Definition dialog box afterward and

manually change the mainframe platform type and access type.

To import Teradata tables:

1 Do one of the following:

In the Manager, choose Import Table Definitions ODBC
Table Definitions… or Import Table Definitions Plug-
in Metadata Definitions…from the menu bar.

In the Designer Repository window, right-click on the Table
Definitions branch and select Import ODBC Table
Definitions…or Import Plug-in Metadata
Definitions…from the shortcut menu.

The Import Meta Data dialog box appears, allowing you to

connect to the Teradata data source (for the Teradata plug-in, a

wizard appears and guides you through the process).

2 Fill in the required connection details and click OK. Once the
connection has been made, the updated dialog box gives details
of the table definitions available for import.

3 Select the table definition to import and click OK. The table
definition meta data is imported into the DataStage Repository.

4 Expand the Table Definitions branch of the project tree and
either double-click the Teradata table definition or select it and
choose Properties… from the shortcut menu. The Table
Definition dialog box appears.

5 On the General page, change the mainframe platform type to
OS390 and the mainframe access type to Teradata.
Mainframe Job Developer’s Guide 2-17

Viewing and Editing Table Definitions Importing Meta Data for Mainframe Jobs
6 Click OK to save your changes.

Viewing and Editing Table Definitions
After you import mainframe table definitions, you can view and edit

them in the DataStage Manager or the Designer.

To open a table definition in the Manager, select it in the display area

and do one of the following:

Choose File Properties.

Choose Properties from the shortcut menu.

Double-click the table definition in the display area.

Click the Properties button on the toolbar.

To open a table definition in the Designer, either double-click the table

definition in the Repository window, or right-click and select

Properties from the shortcut menu.

The Table Definition dialog box appears:

This dialog box has up to seven pages: General, Columns, Format,

NLS, Relationships, Parallel, and Layout. Only the General,
Columns, and Layout pages apply to mainframe table definitions.

The General page displays the data source type and name, table or

filename, owner, mainframe platform and access types, and short and

long descriptions of the data. You can edit any of these fields.

The Columns page displays the column definitions of the imported

data. You can edit the meta data on the Columns page in two ways:

directly in the grid or using the Edit Column Meta Data dialog box.

To edit directly in the grid, either double-click the cell you want to
2-18 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing IMS Definitions
change or highlight the cell and choose Edit cell… from the shortcut

menu. To use the Edit Column Meta Data dialog box, which allows

you to edit the meta data row by row, do one of the following:

Click any cell in the row you want to change, then choose Edit
row… from the shortcut menu.

Press Ctrl-E.

For information about using the Edit Column Meta Data dialog box

in mainframe jobs, see Appendix D, "Editing Column Meta Data."

To delete a column definition, click any cell in the row you want to

remove and press the Delete key or choose Delete row from the

shortcut menu.

The Layout page displays the schema format of the column

definitions in a table. Select a button to view the data representation

in one of three formats:

Parallel. Displays the OSH record schema. You can right-click to
save the layout as a text file in *.osh format.

COBOL. Displays the COBOL representation, including the
COBOL PICTURE clause, starting and ending offsets, and storage
length of each column. You can right-click to save the layout as an
HTML file.

Standard. Displays the SQL representation, including SQL type,
length, and scale.

Click OK to save any changes and to close the Table Definition

dialog box.

Importing IMS Definitions
You can import IMS definitions into the DataStage Repository from

Data Base Description (DBD) files and Program Specification Block

(PSB) files. A DBD defines the structure of an IMS database. A PSB

defines an application’s view of an IMS database. You must import a

DBD before you import its associated PSBs.

Ascential DataStage captures the following clauses from DBD files:

DBD

DATASET

AREA

SEGM

LCHILD
Mainframe Job Developer’s Guide 2-19

Importing IMS Definitions Importing Meta Data for Mainframe Jobs
FIELD

XDFIELD

DBDGEN

FINISH

END

The clauses captured from PSB files include:

PCB

SENSEG

SENFLD

PSBGEN

END

You can import IMS definitions from IMS version 5 and above. IMS

field types are converted to COBOL native data types during capture,

as described in Table 2-3.

Note The DataStage Expression Editor provides functions for

performing bit manipulations. For more information, see

Appendix A, "Programmer’s Reference."

IMS Data Base Descriptions

To import an IMS DBD, do one of the following:

In the Manager, choose Import IMS Definitions Data Base
Description (DBD)…from the menu bar, or right-click on the IMS
Databases (DBDs) branch and select Import IMS Database
(DBD)… from the shortcut menu.

Table 2-3 IMS Field Type Conversion

IMS Field Type COBOL Native Type COBOL Usage
Representation

SQL Type

X CHARACTER PIC X(n)1

1 (n) is equal to the number of bytes.

Char

P DECIMAL PIC S9(n)V9(0) COMP-3 Decimal

C CHARACTER PIC X(n) Char

F BINARY PIC S9(9) COMP Integer

H BINARY PIC S9(4) COMP SmallInt
2-20 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Importing IMS Definitions
In the Designer Repository window, right-click on the IMS
Databases (DBDs) branch and select Import IMS Database
(DBD)… from the shortcut menu.

The Import IMS Database (DBD) dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

IMS file description pathname. The pathname where the IMS
file is located. You can type the pathname or browse for it by
clicking the … (browse) button. The IMS file must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.dbd for DBD files.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Database names. The databases defined in the selected DBD file.
This list will appear after you enter the IMS file description
pathname. Click Refresh to refresh the list if necessary. Select a
single database by clicking the item name, or select multiple
databases by holding down the Ctrl key and clicking the names.
To select all databases, click Select all.

To view the details of a database, select it and click View. The

default editor (such as WordPad or Notepad) opens, displaying the

details of the database description file.

To category. The name of the category in the IMS Databases
(DBDs) branch of the project tree where the item will be saved.
This field is automatically filled in when you select a database to
import. The default category is Database\filename. You can
change the category by typing a different name in this field.

Click Import after selecting the items to import. The data is extracted

and parsed. If any syntactical or semantic errors are found, the

Import Error dialog box appears, allowing you to view and fix the
Mainframe Job Developer’s Guide 2-21

Importing IMS Definitions Importing Meta Data for Mainframe Jobs
errors, skip the import of the incorrect item, or stop the import process

altogether.

IMS Program Specification Blocks

To import an IMS PSB, do one of the following:

In the Manager, choose Import IMS Definitions Program
Specification Block (PSB/PCB)… from the menu bar, or right-
click on the IMS Viewsets (PSBs/PCBs) branch and select
Import IMS Viewset (PSB/PCB)… from the shortcut menu.

In the Designer Repository window, right-click on the IMS
Viewsets (PSBs/PCBs) branch and select Import IMS Viewset
(PSB/PCB)… from the shortcut menu.

The Import IMS Viewset (PSB/PCB) dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

IMS file description pathname. The pathname where the IMS
file is located. You can type the pathname or browse for it by
clicking the … (browse) button. The IMS file must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.psb for PSB files.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Create associated tables. Select this to have Ascential
DataStage create a table in the Repository that corresponds to
each sensitive segment in the PSB file, and columns in the table
that correspond to each sensitive field. If no sensitive fields exist
in the PSB, then the created columns correspond to the segments
in the DBD. Only those fields that are defined in the PSB become
2-22 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Viewing and Editing IMS Definitions
columns; fillers are created where necessary to maintain proper
field displacement and segment size. The associated tables are
stored in the Table Definitions branch of the project tree.

If you have a CFD with a definition of the complete IMS segment,

you can import it to create the completely defined table, including

any columns that were captured as fillers. You can then change

the associated table for each segment in the IMS Viewset Editor;

see "IMS Viewset Editor" on page 2-25 for details.

Viewset names. The names of the PSBs defined in the selected
PSB file. This list will appear after you enter the IMS file
description pathname. Click Refresh to refresh the list if
necessary. Select a single viewset by clicking the PSB name, or
select multiple items by holding down the Ctrl key and clicking
the names. To select all items, click Select all.

To view the details of a viewset, select it and click View. The

default editor (such as WordPad or Notepad) opens, displaying the

details of the viewset file.

To category. The name of the category in the IMS Viewsets
(PSBs/PCBs) branch of the project tree where the item will be
saved. This field is automatically filled in when you select a
viewset name. The default category is Viewset\filename. You
can change the category by typing a name in the To category
field.

Click Import after selecting the items to import. The data is extracted

and parsed. If any syntactical or semantic errors are found, the

Import Error dialog box appears, allowing you to view and fix the

errors, skip the import of the incorrect item, or stop the import process

altogether.

Viewing and Editing IMS Definitions
After you import IMS definitions, you can view and edit them in the

DataStage Manager or the Designer.

Note Editing of IMS definitions is limited to entering descriptions

and creating mappings between viewset segments and

their associated tables. If you want to edit columns, you

must open the associated table definition. Tables associated

with IMS definitions are stored in the Viewsets folder of

the Table Definitions branch of the project tree. For details

on editing table definitions, see "Viewing and Editing Table

Definitions" on page 2-18.
Mainframe Job Developer’s Guide 2-23

Viewing and Editing IMS Definitions Importing Meta Data for Mainframe Jobs
To open an IMS definition in the Manager, select the database or

viewset name in the display area and do one of the following:

Choose File Properties.

Choose Properties from the shortcut menu.

Double-click the item in the display area.

Click the Properties button on the toolbar.

To open an IMS definition in the Designer, either double-click the

database or viewset name in the Repository window, or right-click and

select Properties from the shortcut menu.

Depending on the type of IMS item you selected, either the IMS
Database (DBD) or the IMS Viewset (PSB/PCB) dialog box

appears.

IMS Database Editor
The IMS Database (DBD) dialog box allows you to view and edit

IMS databases:

This dialog box is divided into two panes. The left pane displays the

IMS database, segments, and datasets in a tree, and the right pane

displays the properties of selected items. Depending on the type of

item selected, the right pane has up to two pages:

Database. There are two pages for database properties:

– General. Displays the general properties of the database
including the name, version number, access type, organization,
category, and short and long descriptions. All of these fields
are read-only except for the short and long descriptions.
2-24 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Viewing and Editing IMS Definitions
– Hierarchy. Displays the segment hierarchy of the database.
You can right-click to view the hierarchy in detailed mode. This
diagram is read-only.

Segment. There are two pages for segment properties:

– General. Displays the segment name, the parent segment, its
minimum and maximum size in bytes, and a description. All of
these fields are read-only except for the description.

– Fields. Displays the fields of the selected segment. The field
descriptions are read-only.

Dataset. Properties are displayed on one page and include the
DD names that are used in the JCL to read the file. These names
are read-only. You can optionally enter a description of the
dataset.

IMS Viewset Editor
The IMS Viewset (PSB/PCB) dialog box allows you to view and edit

IMS viewsets:

This dialog box is divided into two panes. The left pane contains a tree

structure displaying the IMS viewset (PSB), its views (PCBs), and the

sensitive segments. The right pane displays the properties of selected

items. It has up to three pages depending on the type of item selected:

Viewset. Properties are displayed on one page and include the
PSB name and the category in the Repository where the viewset is
stored. These fields are read-only. You can optionally enter short
and long descriptions.

View. There are two pages for view properties:
Mainframe Job Developer’s Guide 2-25

Viewing and Editing IMS Definitions Importing Meta Data for Mainframe Jobs
– General. Displays the PCB name, DBD name, type, and an
optional description. If you did not create associated tables
during import or you want to change which tables are
associated with PCB segments, click the Segment/Table
Mapping… button. The Segment/Associated Table
Mapping dialog box appears.

To create a table association for a segment, select a table in the

left pane and drag it to the segment in the right pane. The left

pane displays available tables in the Repository which are of

type QSAM_SEQ_COMPLEX. The right pane displays the

segment names and the tables currently associated with them;

you can right-click to clear one or all of the current table

mappings.

Be sure that the record length of the associated table matches

the buffer length of the segment it refers to. If the lengths don’t

match, segment data may be read incorrectly.

Click OK when you are done with the mappings, or click

Cancel to discard any changes you have made and revert back

to the original table associations.

– Hierarchy. Displays the PCB segment hierarchy in a read-only
diagram. You can right-click to view the hierarchy in detailed
mode.

Sensitive Segment. There are three pages for sensitive segment
properties:

– General. Displays the segment name and its associated table.
If you want to change the associated table, click the browse
button next to the Associate table field to select another
table.

– Sen Fields. Displays the sensitive fields associated with the
sensitive segment. These fields are read-only.
2-26 Mainframe Job Developer’s Guide

Importing Meta Data for Mainframe Jobs Viewing and Editing IMS Definitions
– Columns. Displays the columns of the associated table. The
column descriptions are read-only.
Mainframe Job Developer’s Guide 2-27

Viewing and Editing IMS Definitions Importing Meta Data for Mainframe Jobs
2-28 Mainframe Job Developer’s Guide

3
Complex Flat File Stages

This chapter describes Complex Flat File stages, which are used to

read data from complex flat file data structures. A complex flat file

may contain one or more GROUP, REDEFINES, OCCURS or OCCURS

DEPENDING ON clauses.

Using a Complex Flat File Stage
Complex Flat File stages are used only as source stages and cannot

receive input links. As a source, they read data from a flat file.

Complex Flat File stages can have one or more output links, and the

outputs must be linked to active stages.
Mainframe Job Developer’s Guide 3-1

Using a Complex Flat File Stage Complex Flat File Stages
When you edit a Complex Flat File stage, the Complex Flat File
Stage dialog box appears:

This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has up to five tabs. The General tab is where you specify the
source data attributes. You can also enter an optional description
of the stage, which appears in the generated COBOL program. The
General tab has the following fields:

– The File name field is the mainframe source file from which
data will be read.

– Generate an end-of-data row. Select this check box to add
an end-of-data indicator after the last row is processed on each
output link. The indicator is a built-in variable called
ENDOFDATA which has a value of TRUE, meaning the last row
of data has been processed. (See "ENDOFDATA" on page A-20
for more information on using this variable). In addition, all
columns are set to null.

– The DD name field is the data definition name of the file in the
JCL. It can be 1 to 8 alphanumeric characters and the first
character must be alphabetic. The default name is DDn, where
n is the internal job number. You can edit this name.

– The Access type drop-down list defines whether the data is
part of a QSAM or VSAM file. You must specify the category
your data falls into:

QSAM_SEQ_COMPLEX. QSAM file structure.

VSAM_ESDS. VSAM Entry-Sequenced Data Set file structure.
3-2 Mainframe Job Developer’s Guide

Complex Flat File Stages Using a Complex Flat File Stage
VSAM_KSDS. VSAM Key-Sequenced Data Set file structure. If

this is selected, at least one column must be defined as a Key.

VSAM_RRDS. Relative Record Data Set file structure.

– Start row. Select First row to read the source file starting
with the first row, or Row number to start reading from a
specific row number. Type a whole number in the Row
number field, which has a default value of 1. There is no
maximum.

– End row. Select Last row to stop reading the source file after
the last row, or Row number to stop after a specific row
number. Type a whole number in the Row number field,
which has a default value of 1. There is no maximum.

– Block type. Select the block type of the source file. The default
is Fixed block file, which indicates that the source file
contains fixed record lengths. Complex Flat File stages can also
be used to read variable-block files with or without OCCURS
DEPENDING ON clauses.

The Columns tab is where you specify the column definitions for

the source data. See "Specifying Stage Column Definitions" on

page 3-3 for details on defining or loading column definitions.

The File view tab displays specialized information about the

columns in your source file, including the COBOL PICTURE clause,

the starting and ending offsets, and the storage length of each

column. You can right-click to save the file view layout as an HTML

file.

The Pre-sort tab allows you to pre-sort your source data before

passing it to the next stage in the job design. See "Pre-Sorting

Data" on page 3-7 for details on creating the sort control

statement.

The Options tab is available only if you have chosen to pre-sort

your source data on the Pre-sort tab. See "Specifying Sort File

Parameters" on page 3-10 for details on setting these options.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Stage Column Definitions
The Columns tab on the Stage page allows you to specify column

definitions for the data being read by Complex Flat File stages. These
Mainframe Job Developer’s Guide 3-3

Using a Complex Flat File Stage Complex Flat File Stages
column definitions are then projected to the Outputs page. The

Columns tab contains a grid with the following information:

Level number. The COBOL level number where the data is
defined. If no level number is given, a default value of 05 is
assigned.

Column name. The name of the column.

Key. Indicates if the input column is a record key. Only one field
can be defined as a key. Groups can be defined as keys by
defining the group field as a key. This field is required if the access
type of the source file is VSAM_KSDS.

Native type. The native data type. For details about the native
data types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHARACTER and GROUP data, and the total number of digits for
numeric data types.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and zero
for all other data types.

Nullable. Indicates whether the column can contain a null value.
(Nullable columns are not supported in Complex Flat File stages.)

Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save them

as a table definition, a CFD file, or a DCLGen file. Click Clear All to

start over. For details on editing column definitions, see Appendix D,

"Editing Column Meta Data."

Note If the access type of the table loaded is not one of those

listed in the Access type field on the Stage page, then

native data type conversions are done for all columns that

have a native data type which is unsupported in Complex

Flat File stages. For more information, see Appendix C,

"Native Data Types."
3-4 Mainframe Job Developer’s Guide

Complex Flat File Stages Using a Complex Flat File Stage
Create Fillers Option

Mainframe table definitions frequently contain hundreds of columns,

therefore to save storage space and processing time, there is a

Create fillers option in the Select Columns dialog box:

This option is available when you load columns from a simple or

complex flat file. It allows you to collapse sequences of unselected

columns into FILLER items with the appropriate size. The data type

will be set to CHARACTER and the name set to FILLER_XX_YY, where

XX is the start offset and YY is the end offset. This leads to more

efficient use of space and time and easier comprehension for users.

If you load more than one table definition, the list of columns from the

subsequent tables is added to the end of the current list. In cases

where the first column of the subsequent list has a level number

higher than the last column of the current list, Ascential DataStage

inserts an “02 FILLER” group item before the subsequent list is

loaded. (This is not done, however, if the first column being loaded

already has a level number of 02.)

Columns displayed here should reflect the actual layout of the source

file. Even though you may not want to output every column, all

columns of the file layout, including fillers, should appear here. You

select the columns to output from the stage on the Outputs page.
Mainframe Job Developer’s Guide 3-5

Using a Complex Flat File Stage Complex Flat File Stages
Array Handling

If you load a file containing arrays, the Complex file load option

dialog box appears:

This dialog box offers the following options:

Normalize all arrays. Presents the data as multiple rows at
execution time with one row for each column in the array. This is
the default.

Flatten all arrays. Creates new columns for each element of the
array and presents the data as one row at execution time.

Flatten selective arrays. Allows you to choose whether to
flatten or normalize arrays on an individual basis. Use the right
mouse button to select Flatten or Normalize. The array icon
changes for the arrays you select to flatten.

A column which contains an OCCURS DEPENDING ON clause may be

flattened when it is either the last column, or it is followed only by

subordinate columns and none of the following columns contain an

OCCURS DEPENDING ON clause. In all other cases, a column which

contains an OCCURS DEPENDING ON clause must be normalized.

If a column containing an OCCURS DEPENDING ON clause is

flattened, it is flattened to the maximum number of occurrences.

When a record contains fewer than the maximum number of

occurrences, the elements of the unused occurrences are set to null if

the element is nullable, or set to space or zero (depending on data

type) if the element is not nullable.

If a column containing an OCCURS DEPENDING ON clause is

normalized and the record contains zero occurrences of the column,

one row will be processed. The value used for the elements which

were subject to the OCCURS DEPENDING ON clause will be null if the
3-6 Mainframe Job Developer’s Guide

Complex Flat File Stages Using a Complex Flat File Stage
element is nullable, or space or zero (depending on data type) it the

element is not nullable.

Note Ascential DataStage does not flatten array columns that

have redefined fields, even if you choose to flatten all arrays

in the Complex file load option dialog box.

Pre-Sorting Data
Pre-sorting your source data can simplify processing in active stages

where data transformations and aggregations may occur. Ascential

DataStage allows you to pre-sort data loaded into Complex Flat File

stages by utilizing the mainframe DFSORT utility during code

generation. You specify the pre-sort criteria on the Pre-sort tab:

This tab is divided into two panes. The left pane displays the available

control statements, and the right pane allows you to edit the pre-sort

statement that will be added to the generated JCL. When you

highlight an item in the Control statements list, a short description

of the statement is displayed in the status bar at the bottom of the

dialog box.

To create a pre-sort statement, do one of the following:

Double-click an item in the Control statements list to insert it
into the Statement editor box.

Type any valid control statement directly in the Statement editor
text box.
Mainframe Job Developer’s Guide 3-7

Using a Complex Flat File Stage Complex Flat File Stages
The Control statements list contains the following items:

SORT FIELDS. Describes the sort control fields in the input
records. When you select SORT, the Select sort columns dialog
box appears:

This is where you select the columns to sort by and the sort order.

To move a column from the Available columns list to the

Selected columns list, double-click the column name or

highlight the column name and click >. To move all columns, click

>>. Remove a column from the Selected columns list by double-

clicking the column name or highlighting the column name and

clicking <. Remove all columns by clicking <<. Click Find to search

for a particular column in either list.

Array columns cannot be sorted and are unavailable for selection

in the Available columns list. Columns containing VARCHAR,

VARGRAPHIC_G, or VARGRAPHIC_N data are sorted based on the

data field only; the two-byte length field is skipped. The sort uses

the maximum size of the data field and operates in the same

manner as a CHARACTER column sort.

To specify the column sort order, click the Order field next to each

column in the Selected columns list. There are two options:

– Ascending. This is the default setting. Select this option to
sort the input column data in ascending order.

– Descending. Select this option to sort the input column data
in descending order.

Use the arrow buttons to the right of the Selected columns list

to change the order of the columns being sorted. The first column

is the primary sort column and any remaining columns are sorted

secondarily.
3-8 Mainframe Job Developer’s Guide

Complex Flat File Stages Using a Complex Flat File Stage
When you are finished, click OK to close the Select sort
columns dialog box. The selected columns and their sort order

appear in the Statement editor box.

ALTSEQ CODE. Changes the collating sequence of EBCDIC
character data.

INCLUDE COND. Specifies particular records to include.

OMIT COND. Filters unwanted input records.

RECORD TYPE. Specifies the type and length of records being
processed.

SUM FIELDS. Adds summary fields to the output data list.

Click Help to see the complete syntax diagrams for these control

statements.

Ascential DataStage does not support the following control

statements on the Pre-sort tab:

DEBUG

END

INREC

MERGE

MODS

OPTION

OUTFIL

OUTREC

No syntax checking is performed on the statement entered. However,

if you use an unsupported control statement, you may get an error

when the job runs even though you will not get an error during code

generation.
Mainframe Job Developer’s Guide 3-9

Using a Complex Flat File Stage Complex Flat File Stages
Specifying Sort File Parameters
The Options tab on the Stage page allows you to define the JCL

parameters that are required to create the pre-sorted mainframe file:

This tab contains the following fields:

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job upload successfully
completes. There are four options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set after job execution.

– KEEP. Retains the data set, but does not catalog it.

– PASS. Passes the data set to the next job step, but deletes it at
the end of the job. This is the default.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job upload does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Unit. Specifies the device type of the disk on which the data is to
be stored. The default value is SYSDA.

Allocation type. Specifies the unit of allocation used when
storage space is reserved for the file. There are two options:

– TRK. Track. This is the default.
3-10 Mainframe Job Developer’s Guide

Complex Flat File Stages Defining Complex Flat File Output Data
– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Vol ser. The volume serial number of the unit where the file will
be written. Up to six alphanumeric characters are allowed.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.

The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining Complex Flat File Output Data
Output links from Complex Flat File stages represent the data being

output from complex flat file data structures. The properties of such
Mainframe Job Developer’s Guide 3-11

Defining Complex Flat File Output Data Complex Flat File Stages
links and the column definitions of the data are described on the

Outputs page in the Complex Flat File Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Select the link you
want to edit from the Output name drop-down list. This list
displays all the output links from the Complex Flat File stage. If
there is only one output link, the field is read-only.

General. Contains an optional description of the link.

Selection. This tab allows you to select columns to output data
from. The Available columns list displays the columns loaded
from the source file, and the Selected columns list displays the
columns to be output from the stage.

Note If the Column push option is selected in Designer

options, all stage column definitions are automatically

propagated to each empty output link when you click

OK to exit the stage. You do not need to select columns

on the Selection tab, unless you want to output only a

subset of them. However, if any stage columns are

GROUP data type, the column push option works only if

all members of the group are CHARACTER data type.

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking >. To move all

columns, click >>. You can remove single columns from the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking <. Remove all columns

by clicking <<. Click Find to locate a particular column.
3-12 Mainframe Job Developer’s Guide

Complex Flat File Stages Defining Complex Flat File Output Data
You can select a group as one element if all elements of the group

are CHARACTER data. If one or more elements of the group are of

another type, then they must be selected separately. If a group

item and its sublevel items are all selected, storage is allocated for

the group item as well as each sublevel item.

The Selected columns list displays the column name and SQL

type for each column. Use the arrow buttons to the right of the

Selected columns list to rearrange the order of the columns.

Constraint. This tab is displayed by default. The Constraint grid
allows you to define a constraint that filters your output data:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list. (Group columns cannot be used in constraint
expressions and are not displayed.)

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2.

– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field. When you are done

building the expression, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For more information
about the native data types supported in mainframe source
and target stages, see Appendix C, "Native Data Types."
Mainframe Job Developer’s Guide 3-13

Defining Complex Flat File Output Data Complex Flat File Stages
– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and the total number of
digits for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value. (Nullable columns are not supported in Complex Flat
File stages.)

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. You must

go back to the Columns tab on the Stage page if you want to

change the definitions. Click Save As… to save the output

columns as a table definition, a CFD file, or a DCLGen file.

Selecting Normalized Arrays
In most cases you will select only one column representing a

normalized array as output from a Complex Flat File stage. However,

Ascential DataStage allows you to select more than one such column.

The following examples, which range from simple to complex,

illustrate how Ascential DataStage processes arrays before delivering

rows to the output link.

Selecting a Single Normalized Column

This example shows the result when you select both fields from a

single normalized column as output columns. For each record that is

read from the input file, three rows are written to the output link. The

fourth row out the link causes the second record to be read from the

file, starting the process over again.

Input Record:

05

05

FIELD-A

FIELD-B

PIC X(10).

PIC S9(5) COMP-3 OCCURS 3 TIMES.

Output Rows:

Row 1:

Row 2:

Row 3:

FIELD-A

FIELD-A

FIELD-A

FIELD-B (1)

FIELD-B (2)

FIELD-B (3)
3-14 Mainframe Job Developer’s Guide

Complex Flat File Stages Defining Complex Flat File Output Data
Selecting a Nested Normalized Column

This example shows the result when you select a nested array field as

output. If you select FIELD-A and FIELD-C as output columns,

Ascential DataStage multiplies the OCCURS values at each level. In

this case, 15 rows are written to the output link.

Selecting Parallel Normalized Columns

This example shows the result when you select parallel array fields as

output columns. Ascential DataStage determines the number of

output rows using the largest subscript. As a result, the smallest array

repeats. In this case, if you select all of the input fields as output

columns, five rows are written to the output link and the smaller array

restarts at the fourth row.

Input Record:

05 FIELD-A

05 FIELD-B

10 FIELD-C

PIC X(10).

OCCURS 3 TIMES.

PIC S9(5) COMP-3 OCCURS 5 TIMES.

Output Rows:

Row 1:

Row 2:

Row 3:

Row 4:

Row 5:

Row 6:

Row 7:

Row 8:

Row 9:

Row 10:

Row 11:

Row 12:

Row 13:

Row 14:

Row 15:

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-C (1, 1)

FIELD-C (1, 2)

FIELD-C (1, 3)

FIELD-C (1, 4)

FIELD-C (1, 5)

FIELD-C (2, 1)

FIELD-C (2, 2)

FIELD-C (2, 3)

FIELD-C (2, 4)

FIELD-C (2, 5)

FIELD-C (3, 1)

FIELD-C (3, 2)

FIELD-C (3, 3)

FIELD-C (3, 4)

FIELD-C (3, 5)

Input Record:

05

05

05

FIELD-A

FIELD-B

FIELD-C

PIC X(10).

PIC S9(5) COMP-3 OCCURS 3 TIMES.

PIC X(2) OCCURS 5 TIMES.
Mainframe Job Developer’s Guide 3-15

Defining Complex Flat File Output Data Complex Flat File Stages
Selecting Nested Parallel Normalized Columns

Using a more complex scenario, this example shows the result when

you select both parallel array fields and nested array fields as output.

If you select FIELD-A, FIELD-C, and FIELD-E as output columns in this

example, Ascential DataStage determines the number of output rows

by using the largest OCCURS value at each level and multiplying

them. In this case, three is the largest OCCURS value at the outer (05)

level, and five is the largest OCCURS value at the inner (10) level.

Therefore, 15 rows are written to the output link.

Output Rows:

Row 1:

Row 2:

Row 3:

Row 4:

Row 5:

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-B (1)

FIELD-B (2)

FIELD-B (3)

FIELD-B (1)

FIELD-B (2)

FIELD-C (1)

FIELD-C (2)

FIELD-C (3)

FIELD-C (4)

FIELD-C (5)

Input Record:

05 FIELD-A

05 FIELD-B

10 FIELD-C

05 FIELD-D

10 FIELD-E

PIC X(10).

OCCURS 3 TIMES.

PIC X(2) OCCURS 4 TIMES.

OCCURS 2 TIMES.

PIC 9(3) OCCURS 5 TIMES.

Output Rows:

Row 1:

Row 2:

Row 3:

Row 4:

Row 5:

Row 6:

Row 7:

Row 8:

Row 9:

Row 10:

Row 11:

Row 12:

Row 13:

Row 14:

Row 15:

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-A

FIELD-C (1, 1)

FIELD-C (1, 2)

FIELD-C (1, 3)

FIELD-C (1, 4)

FIELD-C (1, 1)

FIELD-C (2, 1)

FIELD-C (2, 2)

FIELD-C (2, 3)

FIELD-C (2, 4)

FIELD-C (2, 1)

FIELD-C (3, 1)

FIELD-C (3, 2)

FIELD-C (3, 3)

FIELD-C (3, 4)

FIELD-C (3, 1)

FIELD-E (1, 1)

FIELD-E (1, 2)

FIELD-E (1, 3)

FIELD-E (1, 4)

FIELD-E (1, 5)

FIELD-E (2, 1)

FIELD-E (2, 2)

FIELD-E (2, 3)

FIELD-E (2, 4)

FIELD-E (2, 5)

FIELD-E (1, 1)

FIELD-E (1, 2)

FIELD-E (1, 3)

FIELD-E (1, 4)

FIELD-E (1, 5)
3-16 Mainframe Job Developer’s Guide

Complex Flat File Stages Defining Complex Flat File Output Data
Notice that some of the subscripts repeat. In particular, those that are

smaller than the largest OCCURS value at each level start over,

including the second subscript of FIELD-C and the first subscript of

FIELD-E.
Mainframe Job Developer’s Guide 3-17

Defining Complex Flat File Output Data Complex Flat File Stages
3-18 Mainframe Job Developer’s Guide

4
Multi-Format Flat File Stages

This chapter describes Multi-Format Flat File stages, which are used to

read data from files containing multiple record types. The source data

may contain one or more GROUP, REDEFINES, OCCURS or OCCURS

DEPENDING ON clauses.

Using a Multi-Format Flat File Stage
Multi-Format Flat File stages are used only as source stages and

cannot receive input links. They can have multiple output links to

active stages. When you edit a Multi-Format Flat File stage, the Multi-
Format Flat File Stage dialog box appears:
Mainframe Job Developer’s Guide 4-1

Using a Multi-Format Flat File Stage Multi-Format Flat File Stages
This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has four tabs. The General tab is where you specify details about
the source data file, including:

– File name. Type the name of the mainframe source file to read
data from.

– Generate an end-of-data row. Select this check box to add
an end-of-data indicator after the last row is processed on each
output link. The indicator is a built-in variable called
ENDOFDATA which has a value of TRUE, meaning the last row
of data has been processed. (See "ENDOFDATA" on page A-20
for more information on using this variable). In addition, all
columns are set to null.

– DD name. Type the data definition name of the file in the JCL.
This can be 1 to 8 alphanumeric characters and the first
character must be alphabetic. The default name is DDn, where
n is the internal job number. You can edit this name.

– Access type. Select the access type of the source file from the
drop-down list. There are four choices:

QSAM_SEQ_COMPLEX. QSAM file structure.

VSAM_ESDS. VSAM Entry-Sequenced Data Set file structure.

VSAM_KSDS. VSAM Key-Sequenced Data Set file structure. If

this is selected, at least one column must be defined as a Key.

VSAM_RRDS. Relative Record Data Set file structure.

– Start row. Select First row to read the source file starting
with the first row, or Row number to start reading from a
specific row number. Type a whole number in the Row
number field, which has a default value of 1. There is no
maximum.

– End row. Select Last row to stop reading the source file after
the last row, or Row number to stop after a specific row
number. Type a whole number in the Row number field,
which has a default value of 1. There is no maximum.

– Block type. Select the block type of the source file. The default
is Variable block file, which indicates that the source file
contains variable record lengths. Multi-Format Flat File stages
can also be used to read fixed-block files, which contain
records of the same length.

– Maximum file record size. Specify the maximum record size
in the source file. The size must be greater than or equal to the
storage length of the largest record in the source file,
4-2 Mainframe Job Developer’s Guide

Multi-Format Flat File Stages Using a Multi-Format Flat File Stage
regardless of whether that record is loaded into the stage. If no
value is specified, it is set to the storage length of the largest
record loaded into the stage after clicking OK.

– Description. Enter an optional description, which will appear
in the generated COBOL program.

The Records tab is where you specify the record definitions for

the source data. See "Specifying Stage Record Definitions" on

page 4-3 for details on defining or loading record definitions.

The Records ID tab allows you to specify record ID constraints.

See "Specifying Record ID Constraints" on page 4-7 for details.

The Records view tab displays specialized information about the

record types in your source file, including the COBOL PICTURE

clause, the starting and ending offsets, and the storage length of

each record. You can right-click to save the records view layout as

an HTML file.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Stage Record Definitions
The Records tab on the Stage page allows you to specify multiple

record definitions for the data being read by Multi-Format Flat File

stages. These record definitions are then projected to the Outputs

page.
Mainframe Job Developer’s Guide 4-3

Using a Multi-Format Flat File Stage Multi-Format Flat File Stages
The Records tab lists the record definitions on the left and the

columns associated with each record on the right:

To create a new record type, do one of the following:

Click New record.

Right-click in the left pane and select New record from the
shortcut menu.

A new record is created with the default name of NEWRECORD. You

can edit this name either by double-clicking the name or choosing

Rename from the shortcut menu. Record names cannot be COBOL

reserved words (see Appendix H, "Reserved Words" for a list). Select

the Master check box if the record is the master. Only one master

record is permitted.

Once you have created a record, you can manually enter column

definitions in the Columns grid, or click Load to selectively load

column definitions from a table definition in the Repository. The

Columns grid displays the column information associated with the

selected record definition, including:

Level number. The COBOL level number where the data is
defined. If no level number is given, a default value of 05 is
assigned.

Column name. The name of the column.

Key. This field is required if the access type of the source file is
VSAM_KSDS.

Native type. The native data type. For details about the native
data types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."
4-4 Mainframe Job Developer’s Guide

Multi-Format Flat File Stages Using a Multi-Format Flat File Stage
Length. The data precision. This is the number of characters for
CHARACTER and GROUP data, and the total number of digits for
numeric data types.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and zero
for all other data types.

Nullable. Indicates whether the column can contain a null value.
(Nullable columns are not supported in Multi-Format Flat File
stages.)

Description. A text description of the column.

To edit column definitions, type directly in the grid or select Edit
Row… from the shortcut menu. This brings up the Edit Column
Meta Data dialog box, allowing you to enter COBOL-specific column

information. For details on using this dialog box see Appendix D,

"Editing Column Meta Data."

To remove a record definition and its columns, select the record name

in the left pane and click Clear All.

Create Fillers Option

Frequently, mainframe table definitions contain hundreds of columns,

therefore to save storage space and processing time, there is a

Create fillers option in the Select Columns dialog box:

This option is available when you load columns from a simple or

complex flat file. It allows you to collapse sequences of unselected

columns into FILLER items with the appropriate size. The data type

will be set to CHARACTER and the name set to FILLER_XX_YY, where

XX is the start offset and YY is the end offset. This leads to more

efficient use of space and time and easier comprehension for users.
Mainframe Job Developer’s Guide 4-5

Using a Multi-Format Flat File Stage Multi-Format Flat File Stages
Record definitions and columns displayed here should reflect the

actual layout of the source file. Even though you may not want to

output every column, all columns in the file layout, including fillers,

should appear here. You select the columns to output from the stage

on the Outputs page.

Array Handling

If you load a file containing arrays, the Complex file load option

dialog box appears:

This dialog box offers the following options:

Normalize all arrays. Presents the data as multiple rows at
execution time with one row for each column in the array. This is
the default.

Flatten all arrays. Creates new columns for each element of the
array and presents the data as one row at execution time.

Flatten selective arrays. Allows you to choose whether to
flatten or normalize arrays on an individual basis. Use the right
mouse button to select Flatten or Normalize. The array icon
changes for the arrays you select to flatten.

Columns containing OCCURS DEPENDING ON clauses are always

normalized in Multi-Format Flat File stages, regardless of your

selection on the Complex file load option dialog box. Only the used

occurrences are output from the stage.

Note Ascential DataStage does not flatten array columns that

have redefined fields, even if you choose to flatten all arrays

in the Complex file load option dialog box.
4-6 Mainframe Job Developer’s Guide

Multi-Format Flat File Stages Using a Multi-Format Flat File Stage
Specifying Record ID Constraints
For each record defined on the Records tab, you must specify a

record ID constraint from its columns. This is done on the Records ID

tab:

Columns identified in the record ID clause must be in the same

physical storage location across records. Specify the constraint using

the following fields:

(. Select an opening parenthesis if needed.

Column. Select the record ID column from the drop-down list,
which displays all columns from the selected record type.

Op. Select an operator from the drop-down list.

Column/Value. Type the identifying value for the record ID
column. Character values must be enclosed in single quotation
marks.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these fields are editable. As you build the constraint expression,

it appears in the Constraint field. When you are done building the

expression, click Verify. If errors are found, you must either correct

the expression, click Clear All to start over, or cancel. You cannot

save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of operators in

expressions. After you verify a constraint, any redundant parentheses

may be removed. For details, see "Operators" on page A-16.
Mainframe Job Developer’s Guide 4-7

Defining Multi-Format Flat File Output Data Multi-Format Flat File Stages
Defining Multi-Format Flat File Output Data
Output links from Multi-Format Flat File stages represent the data

being extracted from files containing multiple record types. Each

output link can have columns from multiple record definitions, and

columns from the same record definition can be output to multiple

links. The properties of such links and the column definitions of the

data are described on the Outputs page in the Multi-Format Flat
File Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Select the link you
want to edit from the Output name drop-down list. This list
displays all the output links from the Multi-Format Flat File stage.
If there is only one output link, the field is read-only.

General. Contains an optional description of the link.

Selection. Displayed by default. This tab allows you to select
columns to output from multiple record types. The Available
columns list displays the record definitions loaded into the stage
and their corresponding columns, and the Selected columns list
displays the columns to be output from the stage.

Note The Column push option does not operate in Multi-

Format Flat File stages. Even if you have this option

selected in Designer options, you must select columns

to output from the stage on the Selection tab.

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking >. Move all columns
4-8 Mainframe Job Developer’s Guide

Multi-Format Flat File Stages Defining Multi-Format Flat File Output Data
from a single record definition by highlighting the record name or

any of its columns and clicking >>. You can remove columns from

the Selected columns list by double-clicking the column name

or highlighting the column name and clicking <. Remove all

columns by clicking <<. Click Find to locate a particular column.

You can select a group as one element if all elements of the group

are CHARACTER data. If one or more elements of the group are of

another type, then they must be selected separately. If a group

item and its sublevel items are all selected, storage is allocated for

the group item as well as each sublevel item.

The Selected columns list displays the column name, record

name, SQL type, and alias for each column. You can edit the alias

to rename output columns since their names must be unique. Use

the arrow buttons to the right of the Selected columns list to

rearrange the order of the columns.

Constraint. This tab allows you to optionally define a constraint
that filters your output data:

Define a constraint in the Constraint grid using the following

fields:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list. (Group columns cannot be used in constraint
expressions and are not displayed.)

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2
Mainframe Job Developer’s Guide 4-9

Defining Multi-Format Flat File Output Data Multi-Format Flat File Stages
– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field.

Click the Default button to set the constraint to match the record

ID constraint on the Records ID tab for those records selected as

output. The Default button is available only when the

Constraint grid is empty.

When you are done building the expression, click Verify. If errors

are found, you must either correct the expression, click Clear All
to start over, or cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For more information
about the native data types supported in mainframe source
and target stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and total number of digits
for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value. (Nullable columns are not supported in Multi-Format
Flat File stages.)

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. You must

go back to the Records tab on the Stage page if you want to

change the definitions. Click Save As… to save the output

columns as a table definition, a CFD file, or a DCLGen file.
4-10 Mainframe Job Developer’s Guide

Multi-Format Flat File Stages Defining Multi-Format Flat File Output Data
Selecting Normalized Arrays
You can select multiple normalized array columns as output from

Multi-Format Flat File stages, just as you can in Complex Flat File

stages. For information about how Ascential DataStage processes

arrays before delivering rows to the output link, see "Selecting

Normalized Arrays" on page 3-14.
Mainframe Job Developer’s Guide 4-11

Defining Multi-Format Flat File Output Data Multi-Format Flat File Stages
4-12 Mainframe Job Developer’s Guide

5
IMS Stages

This chapter describes IMS stages, which are used to read data from

IMS databases.

Using an IMS Stage
IMS stages are used only as source stages and cannot receive input

links. They can have a single output link to an active stage.

IMS stages cannot be used in the same job with Relational target

stages. However, they can be used in jobs with Relational source

stages, including those used as a lookup reference.

When you edit an IMS stage, the IMS Stage dialog box appears:
Mainframe Job Developer’s Guide 5-1

Using an IMS Stage IMS Stages
This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has two tabs:

– The General tab allows you to enter an optional description of
the stage, which appears in the generated COBOL program.

Select the Generate an end-of-data row check box to add an

end-of-data indicator after the last row is processed on each

output link. The indicator is a built-in variable called

ENDOFDATA which has a value of TRUE, meaning the last row

of data has been processed. (See "ENDOFDATA" on page A-20

for more information on using this variable). In addition, all

columns are set to null.

– The View tab allows you to specify details about the IMS
source file and view its hierarchy:

It contains the following fields:

IMS id. Type the name of the IMS subsystem. This field is

required.

PSB. Select the Program Specification Block that defines the

view of the IMS database. The drop-down list displays those

PSBs imported into the Manager which contain at least one

PCB for IMS database retrieval. This field is required.

PCB. Select the Program Communication Block that is

associated with the PSB you selected. The drop-down list

displays all PCBs imported into the Manager that allow for

retrieval from the IMS database. This field is required.
5-2 Mainframe Job Developer’s Guide

IMS Stages Defining IMS Output Data
Note If there are multiple IMS stages in a job, they must

use the same IMS id and PSB. They can use

different PCBs.

Segment hierarchy view. Contains a diagram of the PCB

segment hierarchy. The diagram is not editable. You can view

details for individual segments by placing your cursor over a

segment until a ToolTip appears, or you can view the entire

hierarchy in detailed mode by selecting Details from the

shortcut menu. Detailed mode displays the name of the

associated table, its record length, and the segment key field.

Outputs. Specifies the column definitions for the data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining IMS Output Data
The output link from an IMS stage represents the data being read

from the IMS database. The properties of this link and the column

definitions of the data are described on the Outputs page in the IMS
Stage dialog box:

The Outputs page has the following field and six tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Contains an optional description of the output link.
Mainframe Job Developer’s Guide 5-3

Defining IMS Output Data IMS Stages
Path. Allows you to select a hierarchical path of segments to
output data from. The columns from the segments you select
become available for output on the Selection tab.

The diagram displays the segments of the PCB you selected on

the View tab. Each segment represents a DataStage table and its

associated columns. You can view details for individual segments

by placing your cursor over a segment until a ToolTip appears. To

view the entire segment hierarchy in detailed mode, right-click and

select Details. The segment name, associated table name, record

length, and key field are displayed. You can place your cursor over

the table name to view its location in the Manager.

Select a segment by clicking a box in the diagram. If you select a

child segment, all of its parent segments are also selected. Once

selected, the background color of a segment and its parent

segments turns blue. To clear the selection of a segment, click it

again. The background color of the segment and its child

segments returns to white.

The Process partial paths check box determines how paths are

processed. By default this box is not selected, meaning only

complete paths are processed. Complete paths are those path

occurrences where all the segments of the path exist. If this box is

selected, then path occurrences with missing children (called

partial paths) are processed. The columns for the missing children

are initialized to zeros and spaces. Note that when a segment is

missing, all the segments below it are missing as well.

The flexibility of doing partial path processing may come at the

expense of some efficiency. Depending on the IMS database, it

may be more efficient to do complete path processing. This is

because the data for all segments in a complete path can often be

returned to the program with a single IMS call. For partial paths,

separate IMS calls must be made for each segment.

Note Ascential DataStage always uses path processing for

efficiency, as long as your IMS database supports it and

you have not selected Process partial paths.

Select Flatten all arrays if you want to flatten arrays in the

source file. New columns are created for each array element and

the data is presented as one row at execution time. If this box is

not selected, any arrays in the source file are normalized and the

data is presented as multiple rows at execution time, with one row

for each column in the array.
5-4 Mainframe Job Developer’s Guide

IMS Stages Defining IMS Output Data
Segments view. Displays column information for the tables
associated with selected segments. The left pane displays the
segments you selected on the Path tab, and the right pane
displays the COBOL PICTURE clause, the starting and ending
offsets, and the storage length of each column in its associated
table. Right-click in the right pane to save the segment view layout
as an HTML file.

Selection. This tab allows you to select output columns from the
segments in the selected path. The Available columns list
displays the columns from the segments you selected on the Path
tab, and the Selected columns list displays the columns to be
output from the stage.

Note The Column push option does not operate in IMS

stages. Even if you have this option selected in Designer

options, you must select columns to output from the

stage on the Selection tab.

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking >. Move all columns

from a single segment by highlighting the segment name or any

of its columns and clicking >>. You can remove columns from the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking <. Remove all columns

by clicking <<. Click Find to locate a particular column.

You can select a group as one element if all elements of the group

are CHARACTER data. If one or more elements of the group are of

another type, then they must be selected separately. If a group
Mainframe Job Developer’s Guide 5-5

Defining IMS Output Data IMS Stages
item and its sublevel items are all selected, storage is allocated for

the group item as well as each sublevel item.

The Selected columns list displays the column name, segment

name, SQL type, and alias for each column. You can edit the alias

to rename output columns since their names must be unique. Use

the arrow buttons to the right of the Selected columns list to

rearrange the order of the columns.

Constraint. This tab allows you to optionally define a constraint
that filters your output data:

Define a constraint in the Constraint grid using the following

fields:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list. If you select a column that corresponds to a field
defined to IMS, the constraint expression is optimized so that
IMS evaluates it. This may result in faster and more efficient
processing. (Group columns cannot be used in constraint
expressions and are not displayed.)

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2

– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.
5-6 Mainframe Job Developer’s Guide

IMS Stages Defining IMS Output Data
– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field. When you are done

building the expression, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For more information
about the native data types supported in mainframe source
and target stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and total number of digits
for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value. (Nullable columns are not supported in IMS stages.)

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. If you

want to change the definitions, use the Table Definition dialog

box to edit the associated table definition in the Repository. Click

Save As… to save the output columns as a table definition, a CFD

file, or a DCLGen file.
Mainframe Job Developer’s Guide 5-7

Defining IMS Output Data IMS Stages
5-8 Mainframe Job Developer’s Guide

6
Fixed-Width Flat File Stages

This chapter describes Fixed-Width Flat File stages, which are used to

read data from or write data to a simple flat file. A simple flat file does

not contain GROUP, REDEFINES, OCCURS, or OCCURS DEPENDING

ON clauses.

Using a Fixed-Width Flat File Stage
Fixed-Width Flat File stages can be used as source stages or target

stages. As a source, this stage reads data from a simple flat file. As a

target, it writes data from an active stage into a simple flat file. It can

also be used to land intermediate files, acting as both a source and a

target stage.

Fixed-Width Flat File stages can have multiple input links and multiple

output links. The input links must come from an active stage, and the

output links can be to any active stage or the FTP stage.
Mainframe Job Developer’s Guide 6-1

Using a Fixed-Width Flat File Stage Fixed-Width Flat File Stages
When you edit a Fixed-Width Flat File stage, the Fixed-Width Flat
File Stage dialog box appears:

This dialog box can have up to three pages, depending on whether

there are inputs to and outputs from the stage:

Stage. Displays the stage name, which can be edited. This page
has up to five tabs, based on whether the stage is being used as a
source or a target.

The General tab allows you to specify the data file name, DD

name, write option, and starting and ending rows. You can also

enter an optional description of the stage, which appears in the

generated COBOL program.

– The File name field is the mainframe file from which data will
be read (when the stage is used as a source) or to which data
will be written (when the stage is used as a target).

– Generate an end-of-data row. Appears only when the stage
is used as a source. Select this check box to add an end-of-data
indicator after the last row is processed on each output link.
The indicator is a built-in variable called ENDOFDATA which
has a value of TRUE, meaning the last row of data has been
processed. (See "ENDOFDATA" on page A-20 for more
information on using this variable). In addition, all columns are
set to null.

– The DD name field is the data definition name of the file in the
JCL. It can be 1 to 8 alphanumeric characters and the first
character must be alphabetic.
6-2 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Using a Fixed-Width Flat File Stage
– The Write option field in a target stage allows you to select
how to place the data in the target file. The available options
are:

Create a new file. Creates a new file without checking to see

if one already exists. This is the default.

Append to existing file. Adds data to the existing file.

Overwrite existing file. Deletes the existing file and replaces

it with a new file.

Delete and recreate existing file. Deletes the existing file if

it has already been cataloged and recreates it.

– Start row. Select First row to read the source file starting
with the first row, or Row number to start reading from a
specific row number. Type a whole number in the Row
number field, which has a default value of 1. There is no
maximum.

– End row. Select Last row to stop reading the source file after
the last row, or Row number to stop after a specific row
number. Type a whole number in the Row number field,
which has a default value of 1. There is no maximum.

The Columns tab is where you specify the stage column

definitions. See "Specifying Stage Column Definitions" on

page 6-4 for details on defining or loading column definitions.

The File view tab displays specialized information about the

stage columns, including the COBOL PICTURE clause, the starting

and ending offsets, and the storage length of each column. You

can right-click to save the file view layout as an HTML file.

The Pre-sort tab appears only when the stage is used as a source.

It allows you to pre-sort your source data before passing it to the

next stage in the job design. See "Pre-Sorting Data" on page 6-5

for details on creating the sort control statement.

The Options tab is available in source stages if you have chosen

to pre-sort the source data, or in target stages if you have chosen

to create a new file, or delete and recreate an existing file, in the

Write option field. See "Specifying Target File Parameters" on

page 6-9 for details on setting these options.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.
Mainframe Job Developer’s Guide 6-3

Using a Fixed-Width Flat File Stage Fixed-Width Flat File Stages
Specifying Stage Column Definitions
You must specify column definitions for the data used in Fixed-Width

Flat File stages on the Columns tab on the Stage page, no matter

whether you are using the stage as a source, a target, or both. These

column definitions specify the format of the data being read or written

by the stage. They are then projected to the Inputs page when the

stage is used as a target, the Outputs page when the stage is a

source, or both pages if the stage is being used to land intermediate

files.

The Columns contains a grid with the following information:

Column name. The name of the column.

Native type. The native data type. For details about the native
data types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHARACTER data and the total number of digits for numeric data
types.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and zero
for all other data types.

Nullable. Indicates whether the column can contain a null value.

Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save them

as a table definition, a CFD file, or a DCLGen file. Click Clear All to

start over. For details on editing column definitions, see Appendix D,

"Editing Column Meta Data."

If a complex flat file is loaded, the incoming file is flattened and

REDEFINE and GROUP columns are removed. The array and OCCURS

DEPENDING ON columns are flattened to the maximum size. All level

numbers are set to zero.

Note If the access type of the table loaded is not

QSAM_SEQ_FLAT, then native data type conversions are

done for all columns that have a native data type which is

not one of those supported in Fixed-Width Flat File stages.

For more information, see Appendix C, "Native Data Types."
6-4 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Using a Fixed-Width Flat File Stage
Create Fillers Option

Frequently, mainframe table definitions contain hundreds of columns,

therefore to save storage space and processing time, there is a

Create fillers option in the Select Columns dialog box:

This option is available when you load columns from a simple or

complex flat file. It allows you to collapse sequences of unselected

columns into FILLER items with the appropriate size. The data type

will be set to CHARACTER and the name set to FILLER_XX_YY, where

XX is the start offset and YY is the end offset. This leads to more

efficient use of space and time and easier comprehension for users.

Columns displayed here should reflect the actual layout of the source

file. Even though you may not want to output every column, all of the

columns of the file layout, including fillers, should appear here. You

select the columns to output from the stage on the Outputs page.

Pre-Sorting Data
Pre-sorting your source data can simplify processing in active stages

where data transformations and aggregations may occur. Ascential

DataStage allows you to pre-sort data loaded into Fixed-Width Flat
Mainframe Job Developer’s Guide 6-5

Using a Fixed-Width Flat File Stage Fixed-Width Flat File Stages
File stages by utilizing the mainframe DFSORT utility during code

generation. You specify the pre-sort criteria on the Pre-sort tab:

This tab is divided into two panes. The left pane displays the available

control statements, and the right pane allows you to edit the pre-sort

statement that will be added to the generated JCL. When you

highlight an item in the Control statements list, a short description

of the statement is displayed in the status bar at the bottom of the

dialog box.

To create a pre-sort statement, do one of the following:

Double-click an item in the Control statements list to insert it
into the Statement editor box.

Type any valid control statement directly in the Statement editor
text box.
6-6 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Using a Fixed-Width Flat File Stage
The Control statements list contains the following items:

SORT FIELDS. Describes the sort control fields in the input
records. When you select SORT, the Select sort columns dialog
box appears:

This is where you select the columns to sort by and the sort order.

To move a column from the Available columns list to the

Selected columns list, double-click the column name or

highlight the column name and click >. To move all columns, click

>>. Remove a column from the Selected columns list by double-

clicking the column name or highlighting the column name and

clicking <. Remove all columns by clicking <<. Click Find to search

for a particular column in either list.

Array columns cannot be sorted and are unavailable for selection

in the Available columns list.

To specify the column sort order, click the Order field next to each

column in the Selected columns list. There are two options:

– Ascending. This is the default setting. Select this option to
sort the input column data in ascending order.

– Descending. Select this option to sort the input column data
in descending order.

Use the arrow buttons to the right of the Selected columns list

to change the order of the columns being sorted. The first column

is the primary sort column and any remaining columns are sorted

secondarily.

When you are finished, click OK to close the Select sort
columns dialog box. The selected columns and their sort order

appear in the Statement editor box.

ALTSEQ CODE. Changes the collating sequence of EBCDIC
character data.
Mainframe Job Developer’s Guide 6-7

Using a Fixed-Width Flat File Stage Fixed-Width Flat File Stages
INCLUDE COND. Specifies particular records to include.

OMIT COND. Filters unwanted input records.

RECORD TYPE. Specifies the type and length of records being
processed.

SUM FIELDS. Adds summary fields to the output data list.

Click Help to see the complete syntax diagrams for these control

statements.

Ascential DataStage does not support the following control

statements on the Pre-sort tab:

DEBUG

END

INREC

MERGE

MODS

OPTION

OUTFIL

OUTREC

No syntax checking is performed on the statement entered. However,

if you use an unsupported control statement, you may get an error

when the job runs even though you will not get an error during code

generation.
6-8 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Using a Fixed-Width Flat File Stage
Specifying Target File Parameters
The Options tab on the Stage page allows you to define the JCL

parameters that are required to create a pre-sorted mainframe file in

source stages or a new mainframe file in target stages:

This tab contains the following fields:

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job upload successfully
completes. There are four options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set after job execution.

– KEEP. Retains the data set, but does not catalog it.

– PASS. Passes the data set to the next job step, but deletes it at
the end of the job. This is the default.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job upload does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Unit. Specifies the device type of the disk on which the data is to
be stored. The default value is SYSDA.

Allocation type. Specifies the unit of allocation used when
storage space is reserved for the file. There are two options:

– TRK. Track. This is the default.
Mainframe Job Developer’s Guide 6-9

Defining Fixed-Width Flat File Input Data Fixed-Width Flat File Stages
– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Vol ser. The volume serial number of the unit where the file will
be written. Up to six alphanumeric characters are allowed.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.

The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining Fixed-Width Flat File Input Data
When you write data to a simple flat file, the Fixed-Width Flat File

stage has at least one input link. The properties of this link and the
6-10 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Defining Fixed-Width Flat File Input Data
column definitions of the data are described on the Inputs page of the

Fixed-Width Flat File Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The names of the input links to the Fixed-Width Flat
File stage. Use this drop-down menu to select which set of input
data you wish to view.

General. Contains an optional description of the selected link.

Columns. Contains the column definitions for the data being
written to the file. This tab has a grid with the following columns:

– Column name. The name of the column.

– Native type. The native data type. For more information
about the native data types supported in mainframe source
and target stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER data and the total number of digits for
numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Inputs page in the Fixed-

Width Flat File stage. You must go back to the Columns tab on the

Stage page if you want to make changes.
Mainframe Job Developer’s Guide 6-11

Defining Fixed-Width Flat File Output Data Fixed-Width Flat File Stages
If the stage has multiple input links, the columns on all the input

links should be the same as the stage columns.

Defining Fixed-Width Flat File Output Data
When you output data from a Fixed-Width Flat File stage, the

properties of the output links and the column definitions of the data

are described on the Outputs page in the Fixed-Width Flat File
Stage dialog box:

This dialog box has the following field and four tabs:

Output name. This drop-down list contains names of all output
links from the stage. If there is only one output link, this field is
read-only. When there are multiple output links, select the one you
want to edit before modifying the data.

Selection. This tab allows you to select columns to output data
from. The Available columns list displays the columns loaded
from the source file, and the Selected columns list displays the
columns to be output from the stage.

Note If the Column push option is selected in Designer

options, all stage column definitions are automatically

propagated to each empty output link when you click

OK to exit the stage. You do not need to select columns

on the Selection tab, unless you want to output only a

subset of them.

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or
6-12 Mainframe Job Developer’s Guide

Fixed-Width Flat File Stages Defining Fixed-Width Flat File Output Data
highlighting the column name and clicking >. To move all

columns, click >>. You can remove single columns from the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking <. Remove all columns

by clicking <<. Click Find to locate a particular column.

The Selected columns list displays the column name and SQL

type for each column. Use the arrow buttons to the right of the

Selected columns list to rearrange the order of the columns.

Constraint. This tab is displayed by default. The Constraint grid
allows you to define a constraint that filters your output data:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list.

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2.

– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field. When you are done

building the expression, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For information about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER data and the total number of digits for
numeric data types.
Mainframe Job Developer’s Guide 6-13

Defining Fixed-Width Flat File Output Data Fixed-Width Flat File Stages
– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. You must

go back to the Columns tab on the Stage page if you want to

change the definitions. Click Save As… to save the output

columns as a table definition, a CFD file, or a DCLGen file.
6-14 Mainframe Job Developer’s Guide

7
Delimited Flat File Stages

This chapter describes Delimited Flat File stages, which are used to

read data from or write data to delimited flat files.

Using a Delimited Flat File Stage
Delimited Flat File stages can be used as source or target stages. As a

source, the stage reads data from a delimited flat file. As a target, it

writes data from an active stage into a delimited flat file. It can also be

used to land intermediate files, acting as both a source and a target

stage.

Delimited Flat File stages can have multiple input and output links.

The input links can come from any active stage, and the output links

can be to any active stage or to an FTP stage.
Mainframe Job Developer’s Guide 7-1

Using a Delimited Flat File Stage Delimited Flat File Stages
When you edit a Delimited Flat File stage, the Delimited Flat File
Stage dialog box appears:

This dialog box can have up to three pages, depending on whether

there are inputs to and outputs from the stage:

Stage. Displays the name of the stage, which can be edited. This
page has up to four tabs, based on whether the stage is being
used as a source or a target.

The General tab displays the basic characteristics of the stage.

You can also enter an optional description of the stage, which

appears in the generated COBOL program.

– The File name field is the mainframe file from which data will
be read (when the stage is used as a source) or to which data
will be written (when the stage is used as a target).

– Generate an end-of-data row. Appears only when the stage
is used as a source. Select this check box to add an end-of-data
indicator after the last row is processed on each output link.
The indicator is a built-in variable called ENDOFDATA which
has a value of TRUE, meaning the last row of data has been
processed. (See "ENDOFDATA" on page A-20 for more
information on using this variable). In addition, all columns are
set to null.

– The DD name field is the data definition name of the file in the
JCL. It can be 1 to 8 alphanumeric characters and the first
character must be alphabetic.
7-2 Mainframe Job Developer’s Guide

Delimited Flat File Stages Using a Delimited Flat File Stage
– The Write option field allows you to specify how to write data
to the target file. There are four options:

Create a new file. Creates a new file without checking to see

if one already exists. This is the default.

Append to existing file. Adds data to the existing file.

Overwrite existing file. Deletes the existing file and replaces

it with a new file.

Delete and recreate existing file. Deletes the existing file if

it has already been cataloged and recreates it.

– Start row. Appears when the stage is used as a source. Select
First row to read the source file starting with the first row, or
Row number to start reading from a specific row number.
Type a whole number in the Row number field, which has a
default value of 1. There is no maximum.

– End row. Appears when the stage is used as a source. Select
Last row to stop reading the source file after the last row, or
Row number to stop after a specific row number. Type a
whole number in the Row number field, which has a default
value of 1. There is no maximum.

The Columns tab is where you specify the column definitions for

the data used in the stage. See "Specifying Stage Column

Definitions" on page 7-3 for details on defining or loading column

definitions.

The Format tab allows you to specify delimiter information for

the source or target file. See "Specifying Delimiter Information" on

page 7-5 for details on specifying the file format.

The Options tab appears if you have chosen to create a new file,

or delete and recreate an existing file, in the Write option field.

See "Specifying Target File Parameters" on page 7-7 for details on

specifying these options.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output
links. If the output is to an FTP stage, displays only the name and
an optional description of the link.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Stage Column Definitions
The Columns tab on the Stage page allows you to specify the

column definitions of the data being read or written by Delimited Flat
Mainframe Job Developer’s Guide 7-3

Using a Delimited Flat File Stage Delimited Flat File Stages
File stages. These column definitions are then projected to the Inputs

page when the stage is used as a target, the Outputs page when the

stage is used as a source, or both pages if the stage is being used to

land intermediate files.

The Columns tab contains a grid with the following columns:

Column name. The name of the column.

Native type. The native data type. For details about the native
data types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHAR data, the maximum number of characters for VARCHAR
data, and the total number of digits for numeric data types.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all other
data types.

Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save them

as a table definition, a CFD file, or a DCLGen file. Click Clear All to

start over. For details on editing column definitions, see Appendix D,

"Editing Column Meta Data."

If a complex flat file is loaded, the incoming file is flattened and

REDEFINE and GROUP columns are removed. Array and OCCURS

DEPENDING ON columns are flattened to the maximum size. All level

numbers are set to zero.
7-4 Mainframe Job Developer’s Guide

Delimited Flat File Stages Using a Delimited Flat File Stage
Specifying Delimiter Information
The Format tab on the Stage page allows you to specify the format

of the delimited flat file being read or written by the stage:

You define the column and string delimiters for the source or target

file in the Delimiter area. Delimiters must be single-byte, printable

characters. Possible delimiters include:

A character, such as a comma.

An ASCII code in the form of a three-digit decimal number, from
000 to 255.

A hexadecimal code in the form &Hxx or &hxx, where x is a
hexadecimal digit (0–9, a–f, A–F).

The Delimiter area contains the following fields:

Column. Specifies the character that separates the data fields in
the file. By default this field contains a comma.

Column delimiter precedes line delimiter. Indicates whether
there is a delimiter after the last column. Select this check box to
specify that a column delimiter always precedes a new line.

String. Specifies the character used to enclose strings. By default
this field contains a double quotation mark. String delimiters are
handled in the following manner:

– In source stages string delimiters are removed when the
source data is read. If the source data contains the string
delimiter character, each occurrence of the extra delimiter is
removed. For example, if the source data is ““abc”” and the
string delimiter is a double quotation mark, the result will be
“abc”. If the source data is ab””c, the result will be ab”c.
Mainframe Job Developer’s Guide 7-5

Using a Delimited Flat File Stage Delimited Flat File Stages
– In target stages string delimiters are generated only if the data
contains the column or string delimiter character itself. For
example, if delimited target data contains the string delimiter
character, the output will contain a duplicate string delimiter in
each place where the delimiter appears. If the data is “abc”
and the string delimiter is a double quotation mark, the result
will be ““abc””. If the data is ab”c, the result will be ab””c.

Similarly, if the target data contains the column delimiter

character, the output is enclosed with a string delimiter. In this

case, if the data is ab,c and the column delimiter is a comma,

then the output will be “ab,c” assuming the string delimiter is

a double quotation mark.

Always delimit string data. Select this check box to always
generate string delimiters in target stages, regardless of whether
the data contains the column delimiter character or not.

The Source defaults area allows you to set additional options for

delimited files. It contains the following fields:

NULL string. Specifies characters to interpret as an SQL null
value in a source file. Columns containing these characters are
initialized to zero or spaces, depending on the data type.

Padding. Specifies the character used to pad missing columns in
a source file. The default value is #.

Missing column action. Specifies the action to take when a
column is missing from the source data. The options are:

– Pad with NULL value. Missing columns are written as null
values and are initialized to zero or spaces, depending on the
data type. This is the default.

– Pad with empty value. Missing columns are written as an
empty string.

There are two check boxes at the bottom of the Format tab:

First line is column names. Select this check box if the first row
of data in the source file contains the column names.

Suppress row truncation warnings. If the source file contains
more columns than what is defined on the Stage page, this field
allows you to block warning messages about overlong rows
during run time. By default this check box is selected.

When the stage is used as a source, all fields on the Format tab are

available except Always delimit string data. When the stage is

used as a target, only the Delimiter area is available.
7-6 Mainframe Job Developer’s Guide

Delimited Flat File Stages Using a Delimited Flat File Stage
Specifying Target File Parameters
The Options tab on the Stage page allows you to define the JCL

parameters that are required to create a new mainframe file:

This tab contains the following fields:

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job execution successfully
completes. There are four options:

– CATLG. Catalogs the data set. This is the default.

– DELETE. Deletes the data set after job execution.

– KEEP. Retains the data set, but does not catalog it.

– PASS. Passes the data set to an FTP job step, but deletes it at
the end of the job.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job execution does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Unit. Specifies the device type of the disk on which the data is to
be stored. The default value is SYSDA.

Allocation type. Specifies the unit of allocation used when
storage space is reserved for the file. There are two options:

– TRK. Track. This is the default.
Mainframe Job Developer’s Guide 7-7

Defining Delimited Flat File Input Data Delimited Flat File Stages
– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Vol ser. The volume serial number of the unit where the file will
be written. Up to six alphanumeric characters are allowed.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.

The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining Delimited Flat File Input Data
When you write data to a delimited flat file, the Delimited Flat File

stage has at least one input link. The properties of these links and the
7-8 Mainframe Job Developer’s Guide

Delimited Flat File Stages Defining Delimited Flat File Input Data
column definitions of the data are described on the Inputs page of the

Delimited Flat File Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The names of the input links to the Delimited Flat
File stage. Use this drop-down menu to select which set of input
data you wish to view.

General. Contains an optional description of the selected link.

Columns. Displayed by default. Contains the column definitions
for the data being written to the file. This tab has a grid with the
following columns:

– Column name. The name of the column.

– Native type. The native data type. For information about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, and the total number of digits for numeric data
types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Description. A text description of the column.

Column definitions are read-only on the Inputs page in the

Delimited Flat File stage. You must go back to the Columns page

on the Stage page to make any changes.
Mainframe Job Developer’s Guide 7-9

Defining Delimited Flat File Output Data Delimited Flat File Stages
Defining Delimited Flat File Output Data
When you output data from a Delimited Flat File stage, the properties

of the output link are described on the Outputs page in the

Delimited Flat File Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. This drop-down list contains names of all output
links from the stage. If there is only one output link, this field is
read-only. When there are multiple output links, select the one you
want to edit before modifying the data.

Selection. This tab allows you to select columns to output data
from. The Available columns list displays the columns loaded
from the source file, and the Selected columns list displays the
columns to be output from the stage.

Note If the Column push option is selected in Designer

options, all stage column definitions are automatically

propagated to each empty output link when you click

OK to exit the stage. You do not need to select columns

on the Selection tab, unless you want to output only a

subset of them.

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking >. To move all

columns, click >>. You can remove single columns from the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking <. Remove all columns

by clicking <<. Click Find to locate a particular column.
7-10 Mainframe Job Developer’s Guide

Delimited Flat File Stages Defining Delimited Flat File Output Data
The Selected columns list displays the column name and SQL

type for each column. Use the arrow buttons to the right of the

Selected columns list to rearrange the order of the columns.

Constraint. This tab is displayed by default. The Constraint grid
allows you to define a constraint that filters your output data:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list.

– Op. Select an operator or a logical f unction from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2

– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field. When you are done

building the expression, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For information about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, and the total number of digits for numeric data
types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.
Mainframe Job Developer’s Guide 7-11

Defining Delimited Flat File Output Data Delimited Flat File Stages
– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. You must

go back to the Columns tab on the Stage page if you want to

change the definitions. Click Save As… to save the output

columns as a table definition, a CFD file, or a DCLGen file.
7-12 Mainframe Job Developer’s Guide

8
DB2 Load Ready Flat File Stages

This chapter describes DB2 Load Ready Flat File stages, which are

used to write data to a sequential or delimited flat file in a format that

is compatible for use with the DB2 bulk loader facility.

Using a DB2 Load Ready Flat File Stage
DB2 Load Ready Flat File stages can have multiple input links. These

input links can come from any active stage. The stage can also be

used as a source for FTP stages. In such cases, they have one output

link. Only the load data file is sent to the FTP stage. No control file is

sent.
Mainframe Job Developer’s Guide 8-1

Using a DB2 Load Ready Flat File Stage DB2 Load Ready Flat File Stages
When you edit a DB2 Load Ready Flat File stage, the DB2 Load
Ready Flat File Stage dialog box appears:

This dialog box can have up to three pages (depending on whether

there is an output from the stage):

Stage. Displays the name of the stage, which can be edited. This
page has up to five tabs, depending on the write option and file
type you specify.

The General tab displays the basic characteristics of the stage

including the load data file name, DD name, write option, and file

type. You can also enter an optional description of the stage,

which appears in the generated COBOL program.

– The File name field is the name of the resulting load ready file
that is used in the mainframe JCL.

– The DD name field is the data definition name of the file in the
JCL. It can be 1 to 8 alphanumeric characters and the first
character must be alphabetic.

– The Write option field allows you to specify how to write data
to the load file. There are four options:

Create a new file. Creates a new file without checking to see

if one already exists. This is the default.

Append to existing file. Adds data to the existing file.

Overwrite existing file. Deletes the existing file and replaces

it with a new file.

Delete and recreate existing file. Deletes the existing file if

it has already been cataloged and recreates it.
8-2 Mainframe Job Developer’s Guide

DB2 Load Ready Flat File Stages Using a DB2 Load Ready Flat File Stage
– The Fixed width flat file and Delimited flat file buttons
allow you to specify the type of file to be written. The default is
Fixed width flat file.

The Columns tab is where you specify the column definitions for

the data being written by the stage. See "Specifying Stage Column

Definitions" on page 8-3 for details on defining or loading column

definitions.

The Bulk Loader tab allows you to set parameters for running

the bulk loader utility and generating the required control file. See

"Setting DB2 Bulk Loader Parameters" on page 8-4 for details on

setting these parameters.

The Format tab appears if you select Delimited flat file as the

target file type. This allows you to specify delimiter information

for the file. See "Specifying Delimiter Information" on page 8-5 for

details on specifying the file format.

The Options tab appears if you have chosen to create a new file,

or delete and recreate an existing file, in the Write option field.

See "Specifying Load Data File Parameters" on page 8-6 for details

on specifying these options.

Inputs. Specifies the column definitions for the data input links.

Outputs. Displays the name and an optional description of the
data output link to an FTP stage.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Stage Column Definitions
The Columns tab on the Stage page allows you to specify the format

of the data being written by DB2 Load Ready Flat File stages. These

column definitions are then projected to the Inputs page. The

Columns tab contains a grid with the following columns:

Column name. The name of the column.

Native type. The native DB2 SQL type. For details about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHARACTER data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data types,
and the number of digits in the microsecond portion of
TIMESTAMP data.
Mainframe Job Developer’s Guide 8-3

Using a DB2 Load Ready Flat File Stage DB2 Load Ready Flat File Stages
Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL PACKED and DECIMAL
ZONED data, and zero for all other data types.

Nullable. Indicates whether the column can contain a null value.

Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save them

as a table definition, a CFD file, or a DCLGen file. Click Clear All to

start over. For details on editing column definitions, see Appendix D,

"Editing Column Meta Data."

Note If a complex flat file is loaded, the incoming file is flattened

and REDEFINE and GROUP columns are removed. Array

and OCCURS DEPENDING ON columns are flattened to the

maximum size. All level numbers are set to zero.

Setting DB2 Bulk Loader Parameters
The Bulk Loader tab on the Stage page allows you to set

parameters to run the DB2 bulk loader utility and generate the

necessary control file:

This tab has the following fields:

User name. The user ID needed to sign on to the DB2 host
system.

DB2 subsystem id. The designation for the DB2 instance on the
host system. This name can be different from the one specified at
the project level.
8-4 Mainframe Job Developer’s Guide

DB2 Load Ready Flat File Stages Using a DB2 Load Ready Flat File Stage
Table name. The physical table name to be loaded by the bulk
load operation.

Table owner. The name of the table owner.

A password is not required for the bulk load operation. The unique

control statement is generated within the JCL.

Specifying Delimiter Information
If you selected Delimited flat file as the file type on the General
tab, then the Format tab on the Stage page appears. This tab allows

you to specify delimiter information for the target file:

Delimiters must be single-byte, printable characters. Possible

delimiters include:

A character, such as a comma.

An ASCII code in the form of a three-digit decimal number, from
000 to 255.

A hexadecimal code in the form &Hxx or &hxx, where x is a
hexadecimal digit (0–9, a–f, A–F).

The following restrictions apply to delimiter settings:

You cannot specify the same character for more than one type of
delimiter.

You can specify a character constant for a delimiter only if the DB2
bulk load utility control statement is coded in the same encoding
scheme as the input file, such as UNICODE.
Mainframe Job Developer’s Guide 8-5

Using a DB2 Load Ready Flat File Stage DB2 Load Ready Flat File Stages
If the utility control statement and the input file are not coded in
the same encoding scheme, you must use the hexadecimal
representation for non-default delimiters.

You cannot specify a binary 0 (zero) for any delimiter.

The Format tab contains the following fields:

Column delimiter. Specifies the character that separates the
data fields in the file. By default this field contains a comma.

String delimiter. Specifies the character used to enclose strings.
By default this field contains a double quotation mark.

String fields are delimited only if the data contains the column

delimiter character. For example, if the data is ab,c and the

column delimiter is a comma, then the output will be “ab,c”

assuming the string delimiter is a double quotation mark.

Select Always delimit string data to delimit all string fields in

the target file, regardless of whether the data contains the column

delimiter character or not.

Decimal. Specifies the decimal point character used in the input
file. By default this field contains a period.

Specifying Load Data File Parameters
The Options tab on the Stage page allows you to define the JCL

parameters that are required to create a new mainframe file:
8-6 Mainframe Job Developer’s Guide

DB2 Load Ready Flat File Stages Using a DB2 Load Ready Flat File Stage
This tab contains the following fields:

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job execution successfully
completes. There are four options:

– CATLG. Catalogs the data set. This is the default.

– DELETE. Deletes the data set at the end of the bulk load step.

– KEEP. Retains the data set, but does not catalog it.

– PASS. Passes the data set to an FTP job step, but deletes it at
the end of the job.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job execution does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Unit. Specifies the device type of the disk on which the data is to
be stored. The default value is SYSDA.

Allocation type. Specifies the unit of allocation used when
storage space is reserved for the file. There are two options:

– TRK. Track. This is the default.

– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Vol ser. The volume serial number of the unit where the file will
be written. Up to six alphanumeric characters are allowed.

Database version. Contains the version number of the DB2
database to be updated. Ascential DataStage supports DB2
versions 5.1 and later.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.
Mainframe Job Developer’s Guide 8-7

Defining DB2 Load Ready Input Data DB2 Load Ready Flat File Stages
The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining DB2 Load Ready Input Data
When you write data to a flat file in DB2 Load Ready format, the DB2

Load Ready Flat File stage has an input link. The properties of this link
8-8 Mainframe Job Developer’s Guide

DB2 Load Ready Flat File Stages Defining DB2 Load Ready Input Data
and the column definitions of the data are described on the Inputs

page of the DB2 Load Ready Flat File Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The names of the input links to the DB2 Load Ready
Flat File stage. Use this drop-down menu to select which set of
input data you wish to view.

General. Contains an optional description of the selected link.

Columns. Displayed by default. Contains the column definitions
for the data being written to the table. This page has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type. For information about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL PACKED and DECIMAL
ZONED data, and zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.
Mainframe Job Developer’s Guide 8-9

Defining DB2 Load Ready Output Data DB2 Load Ready Flat File Stages
Column definitions are read-only on the Inputs page in the DB2

Load Ready Flat File stage. You must go back to the Columns tab

on the Stage page to make any changes.

Defining DB2 Load Ready Output Data
When you output data from a DB2 Load Ready Flat File stage to the

FTP stage, the properties of the output link are described on the

Outputs page in the DB2 Load Ready Flat File Stage dialog box:

The Outputs page has the following field and tab:

Output name. The name of the output link. Since only one output
link is allowed, the field is read-only.

General. Allows you to enter an optional description of the output
link.
8-10 Mainframe Job Developer’s Guide

9
Relational Stages

This chapter describes Relational stages, which are used to read data

from or write data to a DB2 database table on an OS/390 platform.

Using a Relational Stage
Relational stages can have any number of input or output links.

However, each input link supports only one DB2 table.

Relational stages and Teradata Relational stages cannot be used in the

same job due to preprocessor restrictions. Relational stages can be

used with Teradata Export and Teradata Load stages in a single job.
Mainframe Job Developer’s Guide 9-1

Using a Relational Stage Relational Stages
When you edit a Relational stage, the Relational Stage dialog box

appears:

This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the stage name, which can be edited. This page
has a General tab where you can enter an optional description of
the stage. The description will appear in the generated COBOL
program. The General tab has two fields:

– Generate an end-of-data row. Appears only when the stage
is used as a source. Select this check box to add an end-of-data
indicator after the last row is processed on each output link.
The indicator is a built-in variable called ENDOFDATA which
has a value of TRUE, meaning the last row of data has been
processed. (See "ENDOFDATA" on page A-20 for more
information on using this variable). In addition, all columns are
set to null.

– Access type. Displays the relational access type. DB2 is the
default in Relational stages and is read-only.

Inputs. Specifies the table name, update action, column
definitions, and optional WHERE clause for the data input links.

Outputs. Specifies the table to use and the associated column
definitions for each data output link. This page also specifies the
SQL query used to extract the data from the tables.

Click OK to close this dialog box. Changes are saved when you save

the job.
9-2 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Input Data
Defining Relational Input Data
When you write data to a table in DB2, the Relational stage has an

input link. The properties of this link and the column definitions of the

data are defined on the Inputs page of the Relational Stage dialog

box:

The Inputs page has the following field and up to four tabs,

depending on the update action you specify:

Input name. The name of the input link. Select the link you want
to edit from the Input name drop-down list. This list displays all
the input links to the Relational stage. If there is only one input
link, the field is read-only.

General. This tab is always present and is displayed by default. It
contains the following parameters:

– Table name. This specifies the name of the table where the
data will be written. Type a name in the Table name text box,
qualifying it with the location and owner names if necessary.
Qualified names should be entered in the format
location.owner.tablename or owner.tablename. Table names
cannot be COBOL or SQL reserved words. See Appendix H,
"Reserved Words" for a list.

– Update action. Specifies how the data is written. Select the
option you want from the drop-down list:

Insert new or update existing rows. New rows are inserted

or, if the insert fails, the existing rows are updated.

Insert rows without clearing. Inserts the new rows in the

table without checking to see if they already exist.
Mainframe Job Developer’s Guide 9-3

Defining Relational Input Data Relational Stages
Replace existing rows completely. Deletes the existing

rows that match the rows to be inserted, then adds the new

rows to the table.

Update existing rows only. Updates the existing data rows

that match the rows to be inserted. Any rows in the data that do

not exist in the table are ignored.

Update existing rows or insert new ones. The existing

data rows are updated or, if this fails, new rows are added.

Delete rows. Deletes the existing rows if they match the

predicates for the new rows.

– Description. Contains an optional description of the input
link.

Note You specify the number of rows per commit on the

Environment page of the Job Properties dialog

box. This defines the number of rows to write,

update, or delete before they are committed. For

details, see Ascential DataStage Designer Guide.

Columns. This tab is always present and contains the column
definitions for the data being written to the table. This tab has a
grid with the following columns:

– Column name. The name of the column.

– Native type. The SQL data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

The columns are automatically loaded if you have mapped data

from a prior, active stage. You can also enter and edit column

definitions on the Columns tab, or click Load to load column

definitions from the Repository. Click Save As… to save the

columns as a table definition, a CFD file, or a DCLGen file. For
9-4 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Input Data
details on editing column definitions, see Appendix D, "Editing

Column Meta Data."

Update Columns. This tab appears if you have chosen to update
or replace rows in the Update action field on the General tab. It
does not appear if you select Insert rows without clearing,
Replace existing rows completely, or Delete rows. It allows
you to select the columns to update and to define the column
derivations. See "Updating Input Columns" on page 9-5 for details
on updating columns.

Where. This tab appears if you have chosen to update, replace, or
delete rows in the Update action field on the General tab. It
does not appear if you select Insert rows without clearing. It
allows you to specify the filter criteria for selecting rows to update.
See "Using a WHERE Clause" on page 9-7 for details on
constructing a WHERE clause.

Updating Input Columns
The Update Columns tab allows you to select input columns to

update and to specify the column derivations.

You can move a column from the Available columns list to the

Selected columns list either by double-clicking the column name or

by highlighting the column name and clicking >. To move all columns,

click >>. You can remove single columns from the Selected columns

list either by double-clicking the column name or by highlighting the

column name and clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the arrow

buttons to the right of the Selected columns list to change the order

of the columns being updated.

When you move a column to the Selected columns list, the default

column derivation is to replace the column. You can edit this

derivation by clicking the Modify button.
Mainframe Job Developer’s Guide 9-5

Defining Relational Input Data Relational Stages
The Expression Editor appears:

Derivation expressions must return a value. You can build an

expression using the items shown in the Item type list box, including

columns, job parameters, and constants. (See Appendix A,

"Programmer’s Reference" for definitions of these expression

components.) When you click an item type, the available items are

displayed in the Item properties list box. Double-click an item to

insert it in the Expression syntax box.

You can select operators for your expression by clicking the buttons

on the Operators tool palette. Click Undo to undo the last change to

the expression, or click Clear All to start over.

The Expression Editor validates expressions as they are built. If a

syntax error is found, a message appears in red and the element

causing the error is underlined in the Expression syntax text box. To

perform both syntax and semantic checking, click Verify. (The Verify

button is available if you select Perform expression semantic
checking in project or job properties.)

When you are finished building an expression, click OK to save your

changes. If your expression contains errors, you will be allowed to

continue without correcting the syntax, but you will be warned that

the expression is invalid.
9-6 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Input Data
Using a WHERE Clause
You can define a WHERE clause to select rows to update, replace, or

delete based on certain criteria. If you do not specify a WHERE clause,

all of the rows in your table will be updated, replaced or deleted

depending on the update action you selected on the General tab.

WHERE clauses are defined on the Where tab:

To specify a WHERE clause, create an expression in the Where grid:

(. Select an opening parenthesis if needed.

Column. Select the column you want to filter on from the drop-
down list.

Op. Select an operator or a logical function from the drop-down
list. For information on using functions in WHERE clauses, see
"Constraints" on page A-2.

Column/Value. Select a column or job parameter from the drop-
down list, or double-click in the cell to enter a value. Character
values must be enclosed in single quotation marks. Note that job
parameters can be used here, but they are not allowed in the
WHERE clauses of Relational source stages. For details on using
job parameters in Relational WHERE clauses, see "Parameters" on
page A-18.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. To validate the clause, click
Mainframe Job Developer’s Guide 9-7

Defining Relational Output Data Relational Stages
the Verify button. If errors are found, you must either correct the

expression, click Clear All to start over, or cancel. You cannot save an

incorrect WHERE clause.

Ascential DataStage follows SQL guidelines on orders of operators in

clauses. After you verify a WHERE clause, any redundant parentheses

may be removed. For details, see "Operators" on page A-16.

Defining Relational Output Data
When you read data from a DB2 database table, the Relational stage

has an output link. The properties of this link and the column

definitions of the data are defined on the Outputs page in the

Relational Stage dialog box:

The Outputs page has the following field and up to nine tabs,

depending on how you choose to specify the SQL statement to output

the data:

Output name. The name of the output link. Select the link you
want to edit from the Output name drop-down list. This list
displays all the output links from the Relational stage. If there is
only one output link, the field is read-only.

General. Contains an optional description of the link.

Tables. This tab is displayed by default and allows you to select
the tables to extract data from. The available tables must already
have definitions in the Repository. If table names are qualified
with an owner name, you can select tables having the same table
name.
9-8 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Output Data
You can move a table to the Selected tables list either by double-

clicking the table name or by highlighting the table name and

clicking >. To move all tables, click >>. Remove single tables from

the Selected tables list either by double-clicking the table name

or by highlighting the table name and clicking <. Remove all tables

by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected tables list to rearrange

the order of the tables.

You can select a table more than once to perform a self join. In this

case, a unique alias name is automatically generated in the

Selected tables list. You can edit the alias by highlighting the

alias name and typing a new name. The length of the alias is

limited to the length allowed by the version of DB2 you are using.

Select. This tab allows you to select the columns to extract data
from. Using a tree structure, the Available columns list displays
the set of tables you selected on the Tables tab. Click the + next to
the table name to display the associated column names.

You can move a column to the Selected columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns from a single table,

highlight the table name and click > or >>. Remove single columns

from the Selected columns list either by double-clicking the

column name or by highlighting the column name and clicking <.

Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected columns list to

rearrange the order of the columns.

Note If you remove a table from the Selected tables list on

the Tables tab, its columns are automatically removed

from the Select tab.

The Selected columns list displays the column name, table

alias, native data type, and expression for each column. Click New

to add a computed column or Modify to change the computed

value of a selected column. For details on computed columns, see

"Defining Computed Columns" on page 9-12.

Where. The Where grid allows you to define a WHERE clause to
filter rows in the output link:

– (. Select an opening parenthesis if needed.

– Column. Select the column you want to filter on from the
drop-down list.
Mainframe Job Developer’s Guide 9-9

Defining Relational Output Data Relational Stages
– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in WHERE
clauses, see "Constraints" on page A-2.

– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks. Job parameters cannot
be used here; they are allowed only in the WHERE clauses of
Relational target stages. For more information on using job
parameters in Relational WHERE clauses, see "Parameters" on
page A-18.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the clause, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect WHERE clause.

Ascential DataStage follows SQL guidelines on orders of

operators in clauses. After you verify a WHERE clause, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Group By. This tab allows you to select the columns to group by
in the output link. The Available columns list displays the
columns you selected on the Select tab. The Available columns
and Group by columns lists display the name, table alias, and
native data type for each column.

You can move a column to the Group by columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns, click >>. Remove single

columns from the Selected columns list either by double-

clicking the column name or by highlighting the column name and

clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Group by columns list to

change the order of the columns to group by.

Having. This tab appears only if you have selected columns to
group by. It allows you to narrow the scope of the GROUP BY
clause. The Having grid allows you to specify conditions the
grouped columns must meet before they are selected:

– (. Select an opening parenthesis if needed.
9-10 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Output Data
– Column. Select the column you want to filter on from the
drop-down list.

– Op. Select an operator or a logical function from the drop-
down list.

– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the HAVING clause, it

appears in the Having field. HAVING clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the HAVING clause, click Verify. If errors are found, you

must either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect HAVING clause.

Order By. This tab allows you to specify the sort order of data in
selected output columns. The Available columns and Order by
columns lists display the name, table alias, and native data type
for each column. The Order column in the Order by columns list
shows the sort order of column data.

You can move a column to the Order by columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns, click >>. Remove single

columns from the Order by columns list either by double-

clicking the column name or by highlighting the column name and

clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Order by columns list to

rearrange the column order.

To specify the sort order of data in the selected columns, click on

the Order field in the Order by columns list. Select Ascending

or Descending from the drop-down list, or select nothing to sort

by the database default.

SQL. This tab displays the SQL statement constructed from your
selections on the Tables, Select, Where, Group By, Having, and
Order By tabs. You can edit the statement by typing in the SQL
text box. For more information see "Modifying the SQL
Statement" on page 9-14.
Mainframe Job Developer’s Guide 9-11

Defining Relational Output Data Relational Stages
Columns. This tab displays the output columns generated by the
SQL statement. This grid has the following columns:

– Column name. The name of the column.

– Native type. The SQL data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can edit only column names on this tab, unless you modified

the SQL statement on the SQL tab. If you modified the SQL

statement but no meta data has been defined in the DataStage

Manager for the identified tables, then you can also add, edit, and

remove columns on the Columns tab. Click Load to load columns

from a table definition in the Repository or Clear All to start over.

Click Save As… to save the columns as a table definition, a CFD

file, or a DCLGen file. For details about the conditions under which

column editing is allowed, see "Modifying the SQL Statement" on

page 9-14.

Defining Computed Columns
Computed columns are typically used to perform column

aggregations or to convert column data types. They also provide

access to some DB2 functions that are not available in Aggregator or

Transformer stages.

You define or modify computed columns on the Select tab. To define

a new computed column, click New. To edit an existing computed

column, highlight the column in the Selected columns list and click

Modify. (The Modify button is available only if you have already

defined a computed column.) When you click New or Modify, the

Computed Column dialog box appears:
9-12 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Output Data
This dialog box contains the following fields:

As name. The name of the computed column. You must assign a
unique name to the computed column.

Description. An optional description of the column.

Native data type. The native data type of the column. For details
about the native data types supported in mainframe source and
target stages, see Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHARACTER data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data types,
and the number of digits in the microsecond portion of
TIMESTAMP data.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all other
data types.

Nullable. Specifies whether the column can contain a null value.

Expression. Contains the expression used to compute the
column value.

You can define the expression for the computed column by typing in

the Expression text entry box. Click the Functions button to get a list

of available DB2 functions. You can select a function and click OK to

insert it into the Expression field, or simply double-click the function

name.

Note All of the functions supported in DB2 versions 8.1 and

earlier are available when you click the Functions button.

However, you must ensure that the functions you select are

compatible with the version of DB2 you are using, or you

will get an error.
Mainframe Job Developer’s Guide 9-13

Defining Relational Output Data Relational Stages
To replace <Operand> with a column name in the expression,

highlight or delete <Operand> and click the Columns button. You will

get a list of available columns. Select one of these columns and click

OK to insert it into the Expression field, or simply double-click the

column name. When you are done, click Verify to validate the

expression, then click OK to save your changes.

Note You cannot save an incorrect column derivation. If errors

are found when your expression is validated, you must

either correct the expression or cancel the action.

Modifying the SQL Statement
Ascential DataStage allows you to edit the SQL statement on the SQL

tab. Click the right mouse button to get a shortcut menu with editing

functions such as cut, paste, and copy. If you have a predefined SQL

statement you want to use, you can cut and paste it into the SQL text

box. Job parameters cannot be used in the SQL statement; only

column names and constants (except HIGH_VALUES and

LOW_VALUES) are supported.

Click Verify to validate the statement when you are done. If the entire

SQL SELECT statement can be parsed and table meta data has been

defined in the Manager for the identified tables, then your changes

will be propagated back to the other pages where they apply.

If the entire SQL SELECT statement can be parsed, or at least the

SELECT list clause and the SELECT FROM clause can be parsed, but

no table meta data has been defined in the Manager and no columns

exist on the Columns tab, then Ascential DataStage creates column

definitions for each column in the SELECT list using the specified

column name, a default data type of Char, and length of 10. If columns

already exist on the Columns tab, they must match the columns

defined in the SELECT list, including the number of columns and

attributes such as data type, length, and scale. You can use the Load

and Clear All buttons to edit, clear, or load new column definitions

on the Columns tab, as shown on the next page.
9-14 Mainframe Job Developer’s Guide

Relational Stages Defining Relational Output Data
If the SELECT list on the SQL tab and the columns list on the

Columns tab do not match, DB2 precompiler, DB2 bind, or execution

time errors will occur.

If the SQL SELECT list clause and the SELECT FROM clause can be

parsed and table meta data has been defined in the Manager for the

identified tables, then the columns list on the Columns tab is cleared

and repopulated from the meta data. The Load and Clear All buttons

on the Columns tab are unavailable and no edits are allowed except

for changing the column name.

If either the SQL SELECT list clause or the SELECT FROM clause

cannot be parsed, then no changes are made to columns defined on

the Columns tab. You must ensure that the number of columns

matches the number defined in the SELECT list clause and that they

have the correct attributes in terms of data type, length, and scale. Use

the Load or Clear All buttons to edit, clear, or load new column

definitions on the Columns tab. If the SELECT list on the SQL tab and

the columns list on the Columns tab do not match, DB2 precompiler,

DB2 bind, or execution time errors will occur.

If validation is unsuccessful, you will receive an error message. You

can correct the SQL statement, undo your changes, or choose to

continue without making any corrections. If you continue without

making corrections, however, only the General, SQL, and Columns

tabs on the Outputs page will be active.

Note Some DB2 syntax, such as subqueries, cannot be

successfully validated by Ascential DataStage. Though you

will receive an error message, you should continue without
Mainframe Job Developer’s Guide 9-15

Defining Relational Output Data Relational Stages
making changes if you are confident that the SQL statement

is correct.
9-16 Mainframe Job Developer’s Guide

10
Teradata Relational Stages

This chapter describes Teradata Relational stages, which are used to

read data from or write data to a Teradata database table on an OS/

390 platform.

Using a Teradata Relational Stage
Teradata Relational stages can have any number of input or output

links. However, each input link supports only one Teradata table.

Jobs containing one or more Teradata Relational stages can connect

to only one Teradata database. You must specify Teradata connection

parameters, including the Teradata database identifier, user id, and

password, in job properties before generating code.

Teradata Relational and Relational stages cannot be used in the same

job due to preprocessor restrictions.
Mainframe Job Developer’s Guide 10-1

Using a Teradata Relational Stage Teradata Relational Stages
When you edit a Teradata Relational stage, the Teradata Relational
Stage dialog box appears:

This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the stage name, which can be edited. This page
has a General tab where you can enter an optional description of
the stage. The description will appear in the generated COBOL
program The General tab has two fields:

– Generate an end-of-data row. Appears only when the stage
is used as a source. Select this check box to add an end-of-data
indicator after the last row is processed on each output link.
The indicator is a built-in variable called ENDOFDATA which
has a value of TRUE, meaning the last row of data has been
processed. (See "ENDOFDATA" on page A-20 for more
information on using this variable). In addition, all columns are
set to null.

– Access type. Displays the relational access type. TERADATA
is the default in Teradata Relational stages and is read-only.

Inputs. Specifies the table name, update action, column
definitions, and optional WHERE clause for the data input links.

Outputs. Specifies the table to use and the associated column
definitions for each data output link. This page also specifies the
SQL query used to extract the data from the tables.

Click OK to close this dialog box. Changes are saved when you save

the job.
10-2 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Input Data
Defining Teradata Relational Input Data
When you write data to a table in Teradata, the Teradata Relational

stage has an input link. The properties of this link and the column

definitions of the data are defined on the Inputs page of the Teradata

Relational Stage dialog box:

The Inputs page has the following field and up to four tabs,

depending on the update action you specify:

Input name. The name of the input link. Select the link you want
to edit from the Input name drop-down list. This list displays all
the input links to the Teradata Relational stage. If there is only one
input link, the field is read-only.

General. This tab is always present and is displayed by default. It
contains the following parameters:

– Table name. This specifies the name of the table where the
data will be written. Type a name in the Table name text box,
qualifying it with the location and owner names if necessary.
Qualified names should be entered in the format
location.owner.tablename or owner.tablename. Table names
cannot be COBOL or SQL reserved words. See Appendix H,
"Reserved Words" for a list.

– Update action. Specifies how the data is written. Select the
option you want from the drop-down list:

Insert new or update existing rows. New rows are inserted

or, if the insert fails, the existing rows are updated.

Insert rows without clearing. Inserts the new rows in the

table without checking to see if they already exist.
Mainframe Job Developer’s Guide 10-3

Defining Teradata Relational Input Data Teradata Relational Stages
Replace existing rows completely. Deletes the existing

rows that match the rows to be inserted, then adds the new

rows to the table.

Update existing rows only. Updates the existing data rows

that match the rows to be inserted. Any rows in the data that do

not exist in the table are ignored.

Update existing rows or insert new ones. The existing

data rows are updated or, if this fails, new rows are added. This

is performed using two SQL statements for the UPDATE and

INSERT.

Delete rows. Deletes the existing rows if they match the

predicates for the new rows.

Atomic upsert of rows. The existing data rows are updated

or, if this fails, new rows are added. This is performed using a

single SQL statement for both the UPDATE and INSERT.

– Description. Contains an optional description of the input
link.

Columns. This tab is always present and contains the column
definitions for the data being written to the table. This tab has a
grid with the following columns:

– Column name. The name of the column.

– Native type. The SQL data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

The columns are automatically loaded if you have mapped data

from a prior, active stage. You can also enter and edit column

definitions on the Columns tab, or click Load to load column

definitions from the Repository. Click Save As… to save the

columns as a table definition, a CFD file, or a DCLGen file. For
10-4 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Input Data
details on editing column definitions, see Appendix D, "Editing

Column Meta Data."

Update Columns. This tab appears if you have chosen to update
or replace rows in the Update action field on the General tab. It
does not appear if you select Insert rows without clearing,
Replace existing rows completely, or Delete rows. It allows
you to select the columns to update and define the column
derivations. See "Updating Input Columns" on page 10-5 for
details on updating columns.

Where. This tab appears if you have chosen to update, replace, or
delete rows in the Update action field on the General tab. It
does not appear if you select Insert rows without clearing. It
allows you to specify the filter criteria for selecting rows to update.
See "Using a WHERE Clause" on page 10-7 for details on
constructing a WHERE clause.

Updating Input Columns
The Update Columns tab allows you to select input columns to

update and to specify the column derivations.

You can move a column from the Available columns list to the

Selected columns list either by double-clicking the column name or

by highlighting the column name and clicking >. To move all columns,

click >>. You can remove single columns from the Selected columns

list either by double-clicking the column name or by highlighting the

column name and clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the arrow

buttons to the right of the Selected columns list to change the order

of the columns being updated.

When you move a column to the Selected columns list, the default

column derivation is to replace the column. You can edit this

derivation by clicking the Modify button.
Mainframe Job Developer’s Guide 10-5

Defining Teradata Relational Input Data Teradata Relational Stages
The Expression Editor appears:

Derivation expressions must return a value. You can build an

expression using the items shown in the Item type list box, including

columns, job parameters, and constants. (See Appendix A,

"Programmer’s Reference" for definitions of these expression

components.) When you click an item type, the available items are

displayed in the Item properties list box. Double-click an item to

insert it in the Expression syntax box.

You can select operators for your expression by clicking the buttons

on the Operators tool palette. Click Undo to undo the last change to

the expression, or click Clear All to start over.

The Expression Editor validates expressions as they are built. If a

syntax error is found, a message appears in red and the element

causing the error is underlined in the Expression syntax text box. To

perform both syntax and semantic checking, click Verify. (The Verify

button is available if you select Perform expression semantic
checking in project or job properties.)

When you are finished building an expression, click OK to save your

changes. If your expression contains errors, you will be allowed to

continue without correcting the syntax, but you will be warned that

the expression is invalid.
10-6 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Input Data
Using a WHERE Clause
You can define a WHERE clause to select rows to update, replace, or

delete based on certain criteria. If you do not specify a WHERE clause,

all of the rows in your table will be updated, replaced or deleted

depending on the update action you selected on the General tab.

WHERE clauses are defined on the Where tab:

To specify a WHERE clause, create an expression in the Where grid:

(. Select an opening parenthesis if needed.

Column. Select the column you want to filter on from the drop-
down list.

Op. Select an operator or a logical function from the drop-down
list. For information on using functions in WHERE clauses, see
"Constraints" on page A-2.

Column/Value. Select a column or job parameter from the drop-
down list, or double-click in the cell to enter a value. Character
values must be enclosed in single quotation marks. Note that job
parameters can be used here, but they are not allowed in the
WHERE clauses of Teradata Relational source stages. For more
information on using job parameters in Teradata Relational
WHERE clauses, see "Parameters" on page A-18.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. To validate the clause, click
Mainframe Job Developer’s Guide 10-7

Defining Teradata Relational Output Data Teradata Relational Stages
the Verify button. If errors are found, you must either correct the

expression, click Clear All to start over, or cancel. You cannot save an

incorrect WHERE clause.

Ascential DataStage follows SQL guidelines on orders of operators in

clauses. After you verify a WHERE clause, any redundant parentheses

may be removed. For details, see "Operators" on page A-16.

Defining Teradata Relational Output Data
When you read data from a Teradata database table, the Teradata

Relational stage has an output link. The properties of this link and the

column definitions of the data are defined on the Outputs page in the

Teradata Relational Stage dialog box:

The Outputs page has the following field and up to nine tabs,

depending on how you choose to specify the SQL statement to output

the data:

Output name. The name of the output link. Select the link you
want to edit from the Output name drop-down list. This list
displays all the output links from the Teradata Relational stage. If
there is only one output link, the field is read-only.

General. Contains an optional description of the link.

Tables. This tab is displayed by default and allows you to select
the tables to extract data from. The available tables must already
have definitions in the Repository.

You can move a table to the Selected tables list either by double-

clicking the table name or by highlighting the table name and
10-8 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Output Data
clicking >. To move all tables, click >>. Remove single tables from

the Selected tables list either by double-clicking the table name

or by highlighting the table name and clicking <. Remove all tables

by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected tables list to rearrange

the order of the tables.

You can select a table more than once to perform a self join. In this

case, a unique alias name is automatically generated in the

Selected tables list. You can edit the alias by highlighting the

alias name and typing a new name.

Select. This tab allows you to select the columns to extract data
from. Using a tree structure, the Available columns list displays
the set of tables you selected on the Tables tab. Click the + next to
the table name to display the associated column names.

You can move a column to the Selected columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns from a single table,

highlight the table name and click > or >>. Remove single columns

from the Selected columns list either by double-clicking the

column name or by highlighting the column name and clicking <.

Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected columns list to

rearrange the order of the columns.

Note If you remove a table from the Selected tables list on

the Tables tab, its columns are automatically removed

from the Select tab.

The Selected columns list displays the column name, table

alias, native data type, and expression for each column. Click New

to add a computed column or Modify to change the computed

value of a selected column. For details on computed columns, see

"Defining Computed Columns" on page 10-12.

Where. The Where grid allows you to define a WHERE clause to
filter rows in the output link:

– (. Select an opening parenthesis if needed.

– Column. Select the column you want to filter on from the
drop-down list.

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in WHERE
clauses, see "Constraints" on page A-2.
Mainframe Job Developer’s Guide 10-9

Defining Teradata Relational Output Data Teradata Relational Stages
– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks. Note that job
parameters cannot be used here; they are only allowed in the
WHERE clauses of Teradata Relational target stages. For more
information on using job parameters in Teradata Relational
WHERE clauses, see "Parameters" on page A-18.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the clause, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect WHERE clause.

Ascential DataStage follows SQL guidelines on orders of

operators in clauses. After you verify a WHERE clause, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Group By. This tab allows you to select the columns to group by
in the output link. The Available columns list displays the
columns you selected on the Select tab. The Available columns
and Group by columns lists display the name, table alias, and
native data type for each column.

You can move a column to the Group by columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns, click >>. Remove single

columns from the Selected columns list either by double-

clicking the column name or by highlighting the column name and

clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Group by columns list to

change the order of the columns to group by.

Having. This tab appears only if you have selected columns to
group by. It allows you to narrow the scope of the GROUP BY
clause. The Having grid allows you to specify conditions the
grouped columns must meet before they are selected:

– (. Select an opening parenthesis if needed.

– Column. Select the column you want to filter on from the
drop-down list.
10-10 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Output Data
– Op. Select an operator or a logical function from the drop-
down list.

– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the HAVING clause, it

appears in the Having field. HAVING clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the HAVING clause, click Verify. If errors are found, you

must either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect HAVING clause.

Order By. This tab allows you to specify the sort order of data in
selected output columns. The Available columns and Order by
columns lists display the name, table alias, and native data type
for each column. The Order column in the Order by columns list
shows the sort order of column data.

You can move a column to the Order by columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns, click >>. Remove single

columns from the Order by columns list either by double-

clicking the column name or by highlighting the column name and

clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Order by columns list to

rearrange the column order.

To specify the sort order of data in the selected columns, click on

the Order field in the Order by columns list. Select Ascending

or Descending from the drop-down list, or select nothing to sort

by the database default.

SQL. This tab displays the SQL statement constructed from your
selections on the Tables, Select, Where, Group By, Having, and
Order By tabs. You can edit the statement by typing in the SQL
text box. For more information see "Modifying the SQL
Statement" on page 10-14.

Columns. This tab displays the output columns generated by the
SQL statement. This grid has the following columns:

– Column name. The name of the column.
Mainframe Job Developer’s Guide 10-11

Defining Teradata Relational Output Data Teradata Relational Stages
– Native type. The SQL data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can edit only column names on this tab, unless you modified

the SQL statement on the SQL tab. If you modified the SQL

statement but no meta data has been defined in the Manager for

the identified tables, then you can also add, edit, and remove

columns on the Columns tab. Click Load to load columns from a

table definition in the Repository or Clear All to start over. Click

Save As… to save the columns as a table definition, a CFD file, or

a DCLGen file. For details about the conditions under which

column editing is allowed, see "Modifying the SQL Statement" on

page 10-14.

Defining Computed Columns
Computed columns are typically used to perform column

aggregations or to convert column data types. They also provide

access to some Teradata functions that are not available in Aggregator

or Transformer stages.

You define or modify computed columns on the Select tab. To define

a new computed column, click New. To edit an existing computed

column, highlight the column in the Selected columns list and click

Modify. (The Modify button is available only if you have already

defined a computed column.) When you click New or Modify, the

Computed Column dialog box appears.
10-12 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Output Data
This dialog box contains the following fields:

As name. The name of the computed column. You must assign a
unique name to the computed column.

Description. An optional description of the column.

Native data type. The native data type of the column. For details
about the native data types supported in mainframe source and
target stages, see Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHAR data, the maximum number of characters for VARCHAR
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of TIMESTAMP data.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all other
data types.

Nullable. Specifies whether the column can contain a null value.

Expression. Contains the expression used to compute the
column value.

You can define the expression for the computed column by typing in

the Expression text entry box. Click the Functions button to get a list

of available Teradata functions. You can select a function and click OK

to insert it into the Expression field, or simply double-click the

function name.

To replace <Operand> with a column name in the expression,

highlight or delete <Operand> and click the Columns button. You will

get a list of available columns. Select one of these columns and click

OK to insert it into the Expression field, or simply double-click the

column name. When you are done, click Verify to validate the

expression, then click OK to save your changes.
Mainframe Job Developer’s Guide 10-13

Defining Teradata Relational Output Data Teradata Relational Stages
Note You cannot save an incorrect column derivation. If errors

are found when your expression is validated, you must

either correct the expression or cancel the action.

Modifying the SQL Statement
Ascential DataStage allows you to edit the SQL statement on the SQL

tab. Click the right mouse button to get a shortcut menu with editing

functions such as cut, paste, and copy. If you have a predefined SQL

statement you want to use, you can cut and paste it into the SQL text

box. Job parameters cannot be used in the SQL statement; only

column names and constants (except HIGH_VALUES and

LOW_VALUES) are supported.

Click Verify to validate the statement when you are done. If the entire

SQL SELECT statement can be parsed and table meta data has been

defined in the Manager for the identified tables, then your changes

will be propagated back to the other pages where they apply.

If the entire SQL SELECT statement can be parsed, or at least the

SELECT list clause and the SELECT FROM clause can be parsed, but

no table meta data has been defined in the Manager and no columns

exist on the Columns tab, then Ascential DataStage creates column

definitions for each column in the SELECT list using the specified

column name, a default data type of Char, and length of 10. If columns

already exist on the Columns tab, they must match the columns

defined in the SELECT list, including the number of columns and

attributes such as data type, length, and scale. You can use the Load

and Clear All buttons to edit, clear, or load new column definitions

on the Columns tab, as shown:
10-14 Mainframe Job Developer’s Guide

Teradata Relational Stages Defining Teradata Relational Output Data
If the SELECT list on the SQL tab and the columns list on the

Columns tab do not match, Teradata precompiler, Teradata bind, or

execution time errors will occur.

If the SQL SELECT list clause and the SELECT FROM clause can be

parsed and table meta data has been defined in the Manager for the

identified tables, then the columns list on the Columns tab is cleared

and repopulated from the meta data. The Load and Clear All buttons

on the Columns tab are unavailable and no edits are allowed except

for changing the column name.

If either the SQL SELECT list clause or the SELECT FROM clause

cannot be parsed, then no changes are made to columns defined on

the Columns tab. You must ensure that the number of columns

matches the number defined in the SELECT list clause and that they

have the correct attributes in terms of data type, length, and scale. Use

the Load or Clear All buttons to edit, clear, or load new column

definitions on the Columns tab. If the SELECT list on the SQL tab and

the columns list on the Columns tab do not match, Teradata

precompiler, Teradata bind, or execution time errors will occur.

If validation is unsuccessful, you will receive an error message. You

can correct the SQL statement, undo your changes, or choose to

continue without making any corrections. If you continue without

making corrections, however, only the General, SQL, and Columns

tabs on the Outputs page will be active.

Note Some Teradata syntax, such as subqueries, cannot be

successfully validated by Ascential DataStage. Though you

will receive an error message, you should continue without

making changes if you are confident that the SQL statement

is correct.
Mainframe Job Developer’s Guide 10-15

Defining Teradata Relational Output Data Teradata Relational Stages
10-16 Mainframe Job Developer’s Guide

11
Teradata Export Stages

This chapter describes Teradata Export stages, which use the Teradata

FastExport utility to read data from a Teradata database table on an

OS/390 platform.

Using a Teradata Export Stage
Teradata Export stages are used only as source stages and cannot

receive input links. They have a single output link to an active stage.

When you edit a Teradata Export stage, the Teradata Export Stage

dialog box appears:
Mainframe Job Developer’s Guide 11-1

Using a Teradata Export Stage Teradata Export Stages
This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has three tabs.

The General tab is where you specify the Teradata connection

parameters. You can also enter an optional description of the

stage, which appears in the generated COBOL program. The

General tab has four fields:

– TDP id. The identifier of the Teradata database.

– Account id. The Teradata account associated with the user.
This field is optional.

– User id. The user name for Teradata login.

– Password. The password associated with the login user
name.

If you have already specified Teradata connection parameters in

job properties, the TDP id, Account id, User id, and Password

fields display these settings as their initial values. You can edit

these fields. If your job contains multiple Teradata Export stages,

each one can connect to a different Teradata database.

The Parameters tab allows you to specify parameters that

control the execution of FastExport. See "Specifying Teradata

FastExport Parameters" on page 11-3 for details.

The File tab contains information needed to create the flat file

where FastExport writes the exported data. See "Specifying File

Options" on page 11-4 for details.

Outputs. Specifies the SELECT statement used by FastExport to
extract data from the Teradata table.

Click OK to close this dialog box. Changes are saved when you save

the job.
11-2 Mainframe Job Developer’s Guide

Teradata Export Stages Using a Teradata Export Stage
Specifying Teradata FastExport Parameters
The parameters needed to run the Teradata FastExport utility are set

on the Parameters tab on the Stage page:

This tab contains the following fields:

Min sessions. The minimum number of sessions required.

Max sessions. The maximum number of sessions allowed.

Tenacity. The number of hours that FastExport will attempt to log
on to the Teradata database to get the minimum number of
sessions specified.

Sleep. The number of minutes to wait between each logon
attempt.

Out limit. The maximum number of records to write to the output
file.

Block size.The maximum block size (in bytes) that should be
used when returning data from the database.

Log table. The name of the table used for logging. The default
name is ExpLog#####_date_time, where date is the current date in
CCYYMMDD format and time is the current time in HHMMSS
format. The ##### is a 5-digit sequence number which is used to
make the name unique in case there are multiple Teradata Export
stages in the job.

Only the Min sessions and Log table fields are required.
Mainframe Job Developer’s Guide 11-3

Using a Teradata Export Stage Teradata Export Stages
Specifying File Options
The File tab allows you to specify various options about the flat file

that is created by FastExport to hold the extracted data:

This tab contains the following fields:

File name. The name of the file where data will be written.

Write option. Specifies how to write data to the file. There are
four options:

– Create a new file. Creates a new file without checking to see
if one already exists. This is the default.

– Append to existing file. Adds data to the existing file.

– Overwrite existing file. Deletes the existing file and replaces
it with a new file.

– Delete and recreate existing file. Deletes the existing file if
it has already been cataloged and recreates it.

DD name. The data definition name of the file in the JCL. It can be
1 to 8 alphanumeric characters and the first character must be
alphabetic.

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job upload successfully
completes. There are four options:

– CATLG. Catalogs the data set. This is the default.

– DELETE. Deletes the data set after job execution.

– KEEP. Retains the data set, but does not catalog it.
11-4 Mainframe Job Developer’s Guide

Teradata Export Stages Using a Teradata Export Stage
– PASS. Passes the data set to the next job step, but deletes it at
the end of the job.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job upload does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Vol ser. The volume serial number of the unit where the file will
be written. Up to six alphanumeric characters are allowed.

Unit. Specifies the device type of the disk on which the data is to
be stored. The default value is SYSDA.

Allocation type. Specifies the unit of allocation used when
storage space is reserved for the file. There are two options:

– TRK. Track. This is the default.

– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.

The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
Mainframe Job Developer’s Guide 11-5

Defining Teradata Export Output Data Teradata Export Stages
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining Teradata Export Output Data
When you read data from a Teradata database table, the Teradata

Export stage has an output link. The properties of this link and the

column definitions of the data are defined on the Outputs page in the

Teradata Export Stage dialog box:

The Outputs page has the following field and up to nine tabs,

depending on how you choose to specify the SQL statement to output

the data:

Output name. The name of the output link. Since only one output
link is allowed, this field is read-only.

General. Contains an optional description of the link.

Tables. This tab is displayed by default and allows you to select
the tables to extract data from. The available tables must already
have definitions in the Repository.
11-6 Mainframe Job Developer’s Guide

Teradata Export Stages Defining Teradata Export Output Data
You can move a table to the Selected tables list either by double-

clicking the table name or by highlighting the table name and

clicking >. To move all tables, click >>. Remove single tables from

the Selected tables list either by double-clicking the table name

or by highlighting the table name and clicking <. Remove all tables

by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected tables list to rearrange

the order of the tables.

You can select a table more than once to perform a self join. In this

case, a unique alias name is automatically generated in the

Selected tables list. You can edit the alias by highlighting the

alias name and typing a new name.

Select. This tab allows you to select the columns to extract data
from. Using a tree structure, the Available columns list displays
the set of tables you selected on the Tables tab. Click the + next to
the table name to display the associated column names.

You can move a column to the Selected columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns from a single table,

highlight the table name and click > or >>. Remove single columns

from the Selected columns list either by double-clicking the

column name or by highlighting the column name and clicking <.

Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Selected columns list to

rearrange the order of the columns.

Note If you remove a table from the Selected tables list on

the Tables tab, its columns are automatically removed

from the Select tab.

The Selected columns list displays the column name, table

alias, native data type, and expression for each column. Click New

to add a computed column or Modify to change the computed

value of a selected column. For details on computed columns, see

"Defining Computed Columns" on page 11-10.

Where. The Where grid allows you to define a WHERE clause to
filter rows in the output link:

– (. Select an opening parenthesis if needed.

– Column. Select the column you want to filter on from the
drop-down list.
Mainframe Job Developer’s Guide 11-7

Defining Teradata Export Output Data Teradata Export Stages
– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in WHERE
clauses, see "Constraints" on page A-2.

– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the clause, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect WHERE clause.

Ascential DataStage follows SQL guidelines on orders of

operators in clauses. After you verify a WHERE clause, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Group By. This tab allows you to select the columns to group by
in the output link. The Available columns list displays the
columns you selected on the Select tab. The Available columns
and Group by columns lists display the name, table alias, and
native data type for each column.

You can move a column to the Group by columns list either by

double-clicking the column name or by highlighting the column

name and clicking >. To move all columns, click >>. Remove single

columns from the Selected columns list either by double-

clicking the column name or by highlighting the column name and

clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the

arrow buttons to the right of the Group by columns list to

change the order of the columns to group by.

Having. This tab appears only if you have selected columns to
group by. It allows you to narrow the scope of the GROUP BY
clause. The Having grid allows you to specify conditions the
grouped columns must meet before they are selected:

– (. Select an opening parenthesis if needed.

– Column. Select the column you want to filter on from the
drop-down list.
11-8 Mainframe Job Developer’s Guide

Teradata Export Stages Defining Teradata Export Output Data
– Op. Select an operator or a logical function from the drop-
down list.

– Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must
be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.

– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the HAVING clause, it

appears in the Having field. HAVING clauses must be boolean

expressions that return TRUE or FALSE. When you are done

building the HAVING clause, click Verify. If errors are found, you

must either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect HAVING clause.

SQL. This tab displays the SQL statement constructed from your
selections on the Tables, Select, Where, Group By, Having, and
Order By tabs. You can edit the statement by typing in the SQL
text box. For more information see "Modifying the SQL
Statement" on page 11-11.

Columns. This tab displays the output columns generated by the
SQL statement. This grid has the following columns:

– Column name. The name of the column.

– Native type. The SQL data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can edit only column names on this tab, unless you modified

the SQL statement on the SQL tab. If you modified the SQL

statement but no meta data has been defined in the Manager for

the identified tables, then you can also add, edit, and remove

columns on the Columns tab. Click Load to load columns from a
Mainframe Job Developer’s Guide 11-9

Defining Teradata Export Output Data Teradata Export Stages
table definition in the Repository or Clear All to start over. Click

Save As… to save the columns as a table definition, a CFD file, or

a DCLGen file. For details about the conditions under which

column editing is allowed, see "Modifying the SQL Statement" on

page 11-11.

Defining Computed Columns
Computed columns are typically used to perform column

aggregations or to convert column data types. They also provide

access to some Teradata functions that are not available in Aggregator

or Transformer stages.

You define or modify computed columns on the Select tab. To define

a new computed column, click New. To edit an existing computed

column, highlight the column in the Selected columns list and click

Modify. (The Modify button is available only if you have already

defined a computed column.) When you click New or Modify, the

Computed Column dialog box appears:

This dialog box contains the following fields:

As name. The name of the computed column. You must assign a
unique name to the computed column.

Description. An optional description of the column.

Native data type. The native data type of the column. For details
about the native data types supported in mainframe source and
target stages, see Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHAR data, the maximum number of characters for VARCHAR
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of TIMESTAMP data.
11-10 Mainframe Job Developer’s Guide

Teradata Export Stages Defining Teradata Export Output Data
Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all other
data types.

Nullable. Specifies whether the column can contain a null value.

Expression. Contains the expression used to compute the
column value.

You can define the expression for the computed column by typing in

the Expression text entry box. Click the Functions button to get a list

of available Teradata functions. You can select a function and click OK

to insert it into the Expression field, or simply double-click the

function name.

To replace <Operand> with a column name in the expression,

highlight or delete <Operand> and click the Columns button. You will

get a list of available columns. Select one of these columns and click

OK to insert it into the Expression field, or simply double-click the

column name. When you are done, click Verify to validate the

expression, then click OK to save your changes.

Note You cannot save an incorrect column derivation. If errors

are found when your expression is validated, you must

either correct the expression or cancel the action.

Modifying the SQL Statement
Ascential DataStage allows you to edit the SQL statement on the SQL

tab. Click the right mouse button to get a shortcut menu with editing

functions such as cut, paste, and copy. If you have a predefined SQL

statement you want to use, you can cut and paste it into the SQL text

box. Job parameters cannot be used in the SQL statement; only

column names and constants (except HIGH_VALUES and

LOW_VALUES) are supported.

Click Verify to validate the statement when you are done. If the entire

SQL SELECT statement can be parsed and table meta data has been

defined in the Manager for the identified tables, then your changes

will be propagated back to the other pages where they apply.

If the entire SQL SELECT statement can be parsed, or at least the

SELECT list clause and the SELECT FROM clause can be parsed, but

no table meta data has been defined in the Manager and no columns

exist on the Columns tab, then Ascential DataStage creates column

definitions for each column in the SELECT list using the specified

column name, a default data type of Char, and length of 10. If columns

already exist on the Columns tab, they must match the columns

defined in the SELECT list, including the number of columns and

attributes such as data type, length, and scale. You can use the Load
Mainframe Job Developer’s Guide 11-11

Defining Teradata Export Output Data Teradata Export Stages
and Clear All buttons to edit, clear, or load new column definitions

on the Columns tab, as shown:

If the SELECT list on the SQL tab and the columns list on the

Columns tab do not match, Teradata precompiler, Teradata bind, or

execution time errors will occur.

If the SQL SELECT list clause and the SELECT FROM clause can be

parsed and table meta data has been defined in the Manager for the

identified tables, then the columns list on the Columns tab is cleared

and repopulated from the meta data. The Load and Clear All buttons

on the Columns tab are unavailable and no edits are allowed except

for changing the column name.

If either the SQL SELECT list clause or the SELECT FROM clause

cannot be parsed, then no changes are made to columns defined on

the Columns tab. You must ensure that the number of columns

matches the number defined in the SELECT list clause and that they

have the correct attributes in terms of data type, length, and scale. Use

the Load or Clear All buttons to edit, clear, or load new column

definitions on the Columns tab. If the SELECT list on the SQL tab and

the columns list on the Columns tab do not match, Teradata

precompiler, Teradata bind, or execution time errors will occur.

If validation is unsuccessful, you will receive an error message. You

can correct the SQL statement, undo your changes, or choose to

continue without making any corrections. If you continue without

making corrections, however, only the General, SQL, and Columns

tabs on the Outputs page will be active.

Note Some Teradata syntax, such as subqueries, cannot be

successfully validated by Ascential DataStage. Though you

will receive an error message, you should continue without
11-12 Mainframe Job Developer’s Guide

Teradata Export Stages Defining Teradata Export Output Data
making changes if you are confident that the SQL statement

is correct.
Mainframe Job Developer’s Guide 11-13

Defining Teradata Export Output Data Teradata Export Stages
11-14 Mainframe Job Developer’s Guide

12
Teradata Load Stages

This chapter describes Teradata Load stages, which are used to write

data to a sequential file in a format that is compatible for use with a

Teradata load utility.

Using a Teradata Load Stage
Teradata Load stages are used only as target stages and have no

output links. They can have multiple input links from active stages.

When you edit a Teradata Load stage, the Teradata Load Stage

dialog box appears:
Mainframe Job Developer’s Guide 12-1

Using a Teradata Load Stage Teradata Load Stages
This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has seven tabs.

The General tab displays the basic characteristics of the stage. It

contains the following fields:

– Load type. Select the load utility to execute. FastLoad moves
large volumes of data into an empty table in a Teradata
database. MultiLoad is used to load a table in a Teradata
database. TPump is used for low-volume batch maintenance
of a Teradata database.

– Table name. The name of the table where data will be written.
Qualified names should be entered in the format
owner.tablename or location.owner.tablename. Table names
cannot be COBOL or SQL reserved words. See Appendix H,
"Reserved Words" for a list.

– Table preparation. Specifies the table action to be taken at
the start of the load operation. Choose one of the following
options from the drop-down list:

None. No action taken. This is the default.

Create a new table. Creates a new table in the target

database.

Drop and redefine the table. Drops the existing table and

creates a new one.

Delete rows from an existing table. Deletes the rows from

an existing table.

– Update action. Specifies how the data is written to the table.
This field is only available if MultiLoad or TPump are selected
as the load utility. The options are:

Insert rows without clearing. Inserts the new rows in the

table.

Update existing rows only. Updates the existing data rows

that match the rows to be inserted. Any rows in the data that do

not exist in the table are ignored.

Update existing rows or insert new ones (Upsert). The

existing data rows are updated or, if this fails, new rows are

added. This is performed using a single SQL statement for

both the UPDATE and INSERT.

Delete rows. Deletes the existing rows if they match the

predicates for the current rows.
12-2 Mainframe Job Developer’s Guide

Teradata Load Stages Using a Teradata Load Stage
– TDP id. The identifier of the Teradata database.

– Account id. The Teradata account associated with the user.
This field is optional.

– User id. The user name for Teradata login.

– Password. The password associated with the login user
name.

If you have already specified Teradata connection parameters

in job properties, the TDP id, Account id, User id, and

Password fields display these settings as their initial values.

You can edit these fields. If your job contains multiple Teradata

Load stages, each one can connect to a different Teradata

database.

– Description. Contains an optional description of the stage,
which appears in the generated COBOL program.

The Columns tab contains the column definitions for the data

being written to the table. See "Specifying Stage Column

Definitions" on page 12-4 for details on defining or loading

column definitions.

The Update Columns tab is available if you have chosen to

update or upsert rows in the Update action field. It allows you to

select the columns to update and define the column derivations.

See "Updating Input Columns" on page 12-4 for details on

updating columns.

The Where tab is available if you have chosen to update, upsert,

or delete rows in the Update action field on the General tab. It

allows you to specify the filter criteria for selecting rows to update.

See "Defining a WHERE Clause" on page 12-6 for details on

constructing a constraint.

The Parameters tab allows you to specify parameters that

control the execution of the load utility. See "Specifying Teradata

Load Utility Parameters" on page 12-7 for details on setting these

options.

The Errors tab allows you to set error handling options for the

load utility. See "Specifying Error Handling Options" on page 12-8

for details on setting these options.

The File tab contains information needed to create the flat file

where data is written. See "Specifying File Options" on page 12-10

for details.

Inputs. Specifies the column definitions for the data input links.
Mainframe Job Developer’s Guide 12-3

Using a Teradata Load Stage Teradata Load Stages
Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Stage Column Definitions
The Columns tab on the Stage page allows you to specify the format

of the data being written by Teradata Load stages. These column

definitions are then projected to the Inputs page. This tab has a grid

with the following columns:

Column name. The name of the column.

Native type. The SQL data type. For details about the native data
types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."

Length. The data precision. This is the number of characters for
CHAR data, the maximum number of characters for VARCHAR
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of TIMESTAMP data.

Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all other
data types.

Nullable. Indicates whether the column can contain a null value.

Description. A text description of the column.

The columns are automatically loaded if you have mapped data from

a prior, active stage. You can also enter and edit column definitions on

the Columns tab, or click Load to load column definitions from the

Repository. Click Save As… to save the columns as a table definition,

a CFD file, or a DCLGen file. For details on editing column definitions,

see Appendix D, "Editing Column Meta Data."

Updating Input Columns
The Update Columns tab allows you to select input columns to

update and to specify the column derivations.

You can move a column from the Available columns list to the

Selected columns list either by double-clicking the column name or

by highlighting the column name and clicking >. To move all columns,

click >>. You can remove single columns from the Selected columns

list either by double-clicking the column name or by highlighting the

column name and clicking <. Remove all columns by clicking <<.

Click Find to search for a particular column in either list. Use the arrow

buttons to the right of the Selected columns list to change the order

of the columns being updated.
12-4 Mainframe Job Developer’s Guide

Teradata Load Stages Using a Teradata Load Stage
When you move a column to the Selected columns list, the default

column derivation is to replace the column. You can edit this

derivation by clicking the Modify button. The Expression Editor
appears:

Derivation expressions must return a value. You can build an

expression using the items shown in the Item type list box, including

columns, job parameters, and constants. (See Appendix A,

"Programmer’s Reference" for definitions of these expression

components.) When you click an item type, the available items are

displayed in the Item properties list box. Double-click an item to

insert it in the Expression syntax box.

You can select operators for your expression by clicking the buttons

on the Operators tool palette. Click Undo to undo the last change to

the expression, or click Clear All to start over.

The Expression Editor validates expressions as they are built. If a

syntax error is found, a message appears in red and the element

causing the error is underlined in the Expression syntax text box. To

perform both syntax and semantic checking, click Verify. (The Verify

button is available if you select Perform expression semantic
checking in project or job properties.)

When you are finished building an expression, click OK to save your

changes. If your expression contains errors, you will be allowed to

continue without correcting the syntax, but you will be warned that

the expression is invalid.
Mainframe Job Developer’s Guide 12-5

Using a Teradata Load Stage Teradata Load Stages
Defining a WHERE Clause
You can define a WHERE clause to select rows to update or delete

based on certain criteria. If you do not specify a WHERE clause, all of

the rows in your table will be updated or deleted depending on the

update action you selected on the General tab.

WHERE clauses are defined on the Where tab:

To define a WHERE clause, create an expression in the grid:

(. Select an opening parenthesis if needed.

Column. Select the column you want to filter on from the drop-
down list.

Op. Select an operator or a logical function from the drop-down
list. For information on using functions in WHERE clauses, see
"Constraints" on page A-2.

Column/Value. Select a column or job parameter from the drop-
down list, or double-click in the cell to enter a value. Character
values must be enclosed in single quotation marks.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these fields are editable. As you build the WHERE clause, it

appears in the Where field. WHERE clauses must be boolean

expressions that return TRUE or FALSE. To validate the clause, click

the Verify button. If errors are found, you must either correct the

expression, click Clear All to start over, or cancel. You cannot save an

incorrect WHERE clause.
12-6 Mainframe Job Developer’s Guide

Teradata Load Stages Using a Teradata Load Stage
Ascential DataStage follows SQL guidelines on orders of operators in

clauses. After you verify a WHERE clause, any redundant parentheses

may be removed. For details, see "Operators" on page A-16.

Specifying Teradata Load Utility Parameters
The parameters needed to run the Teradata load utility are set on the

Parameters tab of the Stage page:

The fields displayed here vary depending on the load utility selected

on the General tab. For FastLoad they include:

Min sessions. The minimum number of sessions required.

Max sessions. The maximum number of sessions allowed.

Tenacity. The number of hours that the load utility will attempt to
log on to the Teradata database to get the minimum number of
sessions specified.

Sleep. The number of minutes to wait between each logon
attempt.

MultiLoad parameters include all of the above plus the following:

Log table. The name of the table used for logging. The default
name is LoadLog#####_date_time, where date is the current date
in CCYYMMDD format and time is the current time in HHMMSS
format. The ##### is a 5-digit sequence number which is used to
make the name unique in case there are multiple such names in
the job.

Work table. The name of the work table used by the load utility.
The table name must be a new, nonexisting name for a nonrestart
task, or an existing table name for a restart task. The default name
Mainframe Job Developer’s Guide 12-7

Using a Teradata Load Stage Teradata Load Stages
is WorkTbl#####_date_time, where date is the current date in
CCYYMMDD format and time is the current time in HHMMSS
format. The ##### is a 5-digit sequence number which is used to
make the name unique in case there are multiple such names in
the job.

Checkpoint. The number of rows sent to Teradata between
checkpoints. For TPump this can be 0 to 60 and for MultiLoad it
can be any integer greater than 0. It can also be left blank.

For TPump the parameters are the same as those for FastLoad and

MultiLoad, as well as the following:

Serialize. Specifies whether operations on a given row should
occur serially. Select ON or OFF.

Latency. Specifies the flushing threshold based on the number of
seconds that the oldest record has resided in the buffer. This can
be blank or an integer greater than 10.

Pack. Specifies the number of statements to pack into a multi-
statement request. Type a number from 1 to 300 or MAX.

Rate. Specifies the maximum rate per minute at which statements
should be sent to Teradata.

Robust. Specifies whether to enable complex restarts in Teradata.
Select ON or OFF.

Specifying Error Handling Options
Error handling options for the Teradata load utility are set on the

Errors tab of the Stage page.
12-8 Mainframe Job Developer’s Guide

Teradata Load Stages Using a Teradata Load Stage
The fields displayed here vary depending on the load utility selected

on the General tab. They include some or all of the following:

Error table 1. The name of the database table where error
information should be inserted.

Error table 2. The name of a second database table where error
information should be inserted.

Error limit (percent). The number of errors to allow before the
run is terminated.

Duplicate UPDATE rows. Determines the handling of duplicate
rows during an update. MARK inserts duplicate rows into the
error table and IGNORE disregards the duplicates.

Duplicate INSERT rows. Determines the handling of duplicate
rows during an insert. MARK inserts duplicate rows into the error
table and IGNORE disregards the duplicates.

Missing UPDATE rows. Determines the handling of missing
rows during an update. MARK inserts missing rows into the error
table and IGNORE does nothing.

Missing DELETE rows. Determines the handling of missing
rows during a delete. MARK inserts missing rows into the error
table and IGNORE does nothing.

Extra UPDATE rows. Determines the handling of extra rows
during an update. MARK inserts extra rows into the error table
and IGNORE does nothing.

Extra DELETE rows. Determines the handling of extra rows
during a delete. MARK inserts extra rows into the error table and
IGNORE does nothing.

Only a subset of these fields may be displayed, depending on the load

utility you selected on the Stage page.
Mainframe Job Developer’s Guide 12-9

Using a Teradata Load Stage Teradata Load Stages
Specifying File Options
The File tab allows you to specify various options about the flat file

that is created to hold the data:

This tab contains the following fields:

File name. The name of the file where data will be written.

Write option. Allows you to specify how to write data to the load
file. There are four options:

– Create a new file. Creates a new file without checking to see
if one already exists. This is the default.

– Append to existing file. Adds data to the existing file.

– Overwrite existing file. Deletes the existing file and replaces
it with a new file.

– Delete and recreate existing file. Deletes the existing file if
it has already been cataloged and recreates it.

DD name. The data definition name of the file in the JCL. It can be
1 to 8 alphanumeric characters and the first character must be
alphabetic.

Normal EOJ handling. Contains the parameter for the
disposition of the data file when job upload successfully
completes. There are four options:

– CATLG. Catalogs the data set. This is the default.

– DELETE. Deletes the data set after job execution.

– KEEP. Retains the data set, but does not catalog it.
12-10 Mainframe Job Developer’s Guide

Teradata Load Stages Using a Teradata Load Stage
– PASS. Passes the data set to the next job step, but deletes it at
the end of the job.

Abnormal EOJ handling. Contains the parameter for the
disposition of the data file when job upload does not complete
successfully. There are three options:

– CATLG. Catalogs the data set.

– DELETE. Deletes the data set. This is the default.

– KEEP. Retains the data set, but does not catalog it.

Vol ser. This is the name of the volume serial identifier associated
with the disk where storage space is being reserved. Up to six
alphanumeric characters are allowed.

Unit. Designates the type of disk on which the data is to be stored.
The default value is SYSDA.

Allocation type. Specifies the type of units to be reserved in the
SPACE parameter to receive the data. There are two options:

– TRK. Track. This is the default.

– CYL. Cylinder. This generally allocates a greater amount of
storage space than TRK.

The exact size of a track or cylinder is device dependent.

Primary allocation amount. Contains the number of tracks or
cylinders to be reserved as the initial storage for the job. The
minimum is 1 and the maximum is 32768. The default value is 10.

Secondary allocation amount. Contains the number of tracks
or cylinders to be reserved if the primary allocation is insufficient
for the job. The minimum is 1 and the maximum is 32768. The
default value is 10.

Expiration date. Specifies the expiration date for a new data set
in YYDDD or YYYY/DDD format. For expiration dates of January 1,
2000 or later, you must use the YYYY/DDD format. JCL extension
variables can also be used.

The YY can be from 01 to 99 or the YYYY can be from 1900 to

2155. The DDD can be from 000 to 365 for nonleap years or 000 to

366 for leap years.

If you specify the current date or an earlier date, the data set is

immediately eligible for replacement. Data sets with expiration

dates of 99365, 99366, 1999/365 and 1999/366 are considered

permanent and are never deleted or overwritten.

Retention period. Specifies the number of days to retain a new
data set. You can enter a number or use a JCL extension variable.
When the job runs, this value is added to the current date to
Mainframe Job Developer’s Guide 12-11

Defining Teradata Load Input Data Teradata Load Stages
produce an expiration date, using 365-day years and 366-day leap
years. Note that if the calculated expiration date is December 31,
1999, the expiration date is set to January 1, 2000.

Note You can specify either an expiration date or a retention

period, but not both. When you enter a value in one of

these fields, the other field becomes unavailable. No

validation is done on either field; if you enter an

incorrect value, JCL errors may occur.

These parameters are used during JCL generation. All fields except

Vol ser, Expiration date, and Retention period are required.

Defining Teradata Load Input Data
When you write data to a table in Teradata, the Teradata Load stage

has an input link. The properties of this link and the column definitions

of the data are defined on the Inputs page of the Teradata Load
Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The names of the input links to the Teradata Load
stage. Use this drop-down menu to select which set of input data
you wish to view.

General. Contains an optional description of the selected link.
12-12 Mainframe Job Developer’s Guide

Teradata Load Stages Defining Teradata Load Input Data
Columns. Contains the column definitions for the data being
written to the table. This page has a grid with the following
columns:

– Column name. The name of the column.

– Native type. The native data type. For information about the
native data types supported in mainframe source and target
stages, see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHAR data, the maximum number of characters for
VARCHAR data, the total number of digits for numeric data
types, and the number of digits in the microsecond portion of
TIMESTAMP data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Inputs page of Teradata

Load stages. You must go back to the Columns tab on the Stage

page to make any changes.
Mainframe Job Developer’s Guide 12-13

Defining Teradata Load Input Data Teradata Load Stages
12-14 Mainframe Job Developer’s Guide

13
External Source Stages

This chapter describes External Source stages, which are used to

retrieve rows from an external data source. An External Source stage

represents a user-written program that is called from the DataStage-

generated COBOL program. The external source program can be

written in any language that is callable from COBOL.

Working with External Sources
External source programs allow you to read data from data sources

that are not supported in Ascential DataStage Enterprise MVS Edition.

After you write an external source program, you create an external

source routine in the DataStage Repository. The external source

routine specifies the attributes of the external source program.

You create, view, or edit an external source routine using the

Mainframe Routine dialog box. You can access this dialog box in the

Manager or in the Repository window of the Designer. This dialog box

has four pages for external source routines: General, Creator,
Arguments, and JCL.

There are three buttons in the Mainframe Routine dialog box:

Close. Closes the Mainframe Routine dialog box. If you have
any unsaved changes, you are prompted to save them.

Save. Saves the external source routine.

Help. Starts the Help system.
Mainframe Job Developer’s Guide 13-1

Working with External Sources External Source Stages
Creating an External Source Routine
To create a new external source routine, do one of the following:

In the Manager, select the Routines branch in the project tree and
choose File New Mainframe Routine… .

In the Designer Repository window, right-click on the Routines
branch and select New Mainframe Routine from the shortcut
menu.

The Mainframe Routine dialog box appears:

The General page is displayed by default. Enter general information

about the external source routine, including:

Routine name. Type the name (up to 8 characters) of the external
subroutine. In mainframe terms, the routine name is the name of
an entry point in a member of a load or object library. The library
member may also contain other entry points with other names.
The routine name must match the external subroutine name if
Dynamic invocation (the default) is selected, and automatically
appears in the External subroutine name field.

Type. Select the type of routine, in this case, External Source
Routine. (External target routines are discussed in Chapter 14,
"External Target Stages." External routines are discussed in
Chapter 22, "External Routine Stages.")

Category. Type or browse for a category name to store the
routine under in the Repository. If you do not enter a name in this
field, the routine is created under the main Routines branch.

Platform. Select the operating system that the COBOL subroutine
runs on. (OS/390 is the only platform currently supported.)
13-2 Mainframe Job Developer’s Guide

External Source Stages Working with External Sources
External subroutine name. Type the name of the load or object
library member that contains the subroutine or function entry
point. If dynamic invocation is selected, then the external
subroutine name must match the routine name. If the invocation
method is static, then the two names need not match.

Invocation method. Select the invocation method for the
routine. Dynamic invocation calls the routine at run-time. Static
invocation embeds the routine within a program. Dynamic is the
default.

Library path. Type the pathname of the library that contains the
routine member. JCL extension variables can be used. This field is
required for static invocation.

Short description. Type an optional brief description of the
routine. The text entered in this field is displayed when you
choose View Details from the DataStage Manager window or
print a report. It also appears in the External Source stage editor.

Long description. Type an optional detailed description of the
routine.

Next, select the Creator page to enter creator information:

The Creator page allows you to specify information about the creator

and version number of the routine, including:

Vendor. Type the name of the company that created the routine.

Author. Type the name of the person who created the routine.

Version. Type the version number of the routine. This is used
when the routine is imported. The Version field contains a three-
part version number, for example, 2.0.0. The first part of this
Mainframe Job Developer’s Guide 13-3

Working with External Sources External Source Stages
number is an internal number used to check compatibility
between the routine and the Ascential DataStage system, and
cannot be changed. The second part of this number represents the
release number. This number should be incremented when major
changes are made to the routine definition or the underlying code.
The new release of the routine supersedes any previous release.
Any jobs using the routine use the new release. The last part of
this number marks intermediate releases when a minor change or
fix has taken place.

Copyright. Type the copyright information.

The next step is to define routine arguments by selecting the

Arguments page:

For external source routines, arguments are treated as fields of a

record. The record is passed to the external source routine program.

You can define an unlimited number of arguments, and the columns

in the argument record can have complex data structures such as

GROUP, REDEFINES, OCCURS and OCCURS DEPENDING ON clauses.

Click Load to load arguments from an existing table definition.

Arguments loaded from a table definition are not flattened when the

routine type is External Source Routine on the General page.

However, if you change the routine type from External Source
Routine to External Routine, Ascential DataStage will flatten the

arguments, eliminating any GROUP or OCCURS that may have

existed.
13-4 Mainframe Job Developer’s Guide

External Source Stages Working with External Sources
To create a new argument, type directly in the Arguments grid or, if

you need to specify COBOL attributes, do one of the following:

Right-click in the column area and select Edit row… from the
shortcut menu.

Press Ctrl-E.

The Edit Routine Argument Meta Data dialog box appears:

The top pane of this dialog box contains the same fields that appear

on the Arguments grid, plus an additional field for the date format.

Enter the following information for each argument you want to define:

Argument name. Type the name of the argument.

Native type. Select the native data type of the argument from the
drop-down list.

Length. Type a number representing the length or precision of
the argument.

Scale. If the argument is numeric, type a number to define the
number of digits to the right of the decimal point.

Nullable. Select Yes or No from the drop-down list to specify
whether the argument can contain a null value. The default is No
in the Edit Routine Argument Meta Data dialog box.

Date format. Select the date format of the argument from the
drop-down list.

Description. Type an optional description of the argument.
Mainframe Job Developer’s Guide 13-5

Working with External Sources External Source Stages
The bottom pane of the Edit Routine Argument Meta Data dialog

box displays the COBOL page by default. Use this page to enter any

required COBOL information for the external source argument:

Level number. Type the COBOL level number where the data is
defined. The default value is 05.

Occurs. Type the number of the COBOL OCCURS clause.

Usage. Select the COBOL USAGE clause from the drop-down list.
This specifies which COBOL format the column will be read in.
These formats map to the formats in the Native type field, and
changing one will normally change the other. Possible values are:

– COMP. Used with BINARY native types.

– COMP-1. Used with single-precision FLOAT native types.

– COMP-2. Used with double-precision FLOAT native types.

– COMP-3. Packed decimal, used with DECIMAL native types.

– COMP-5. Used with NATIVE BINARY native types.

– DISPLAY. Zoned decimal, used with DISPLAY_NUMERIC or
CHARACTER native types.

– DISPLAY-1. Double-byte zoned decimal, used with
GRAPHIC_G or GRAPHIC_N.

Sign indicator. Select Signed or blank from the drop-down list
to specify whether the argument can be signed or not. The default
is Signed for numeric data types and blank for all other types.

Sign option. If the argument is signed, select the location of the
sign in the data from the drop-down list. Choose from the
following:

– LEADING. The sign is the first byte of storage.

– TRAILING. The sign is the last byte of storage.

– LEADING SEPARATE. The sign is in a separate byte that has
been added to the beginning of storage.

– TRAILING SEPARATE. The sign is in a separate byte that has
been added to the end of storage.

Selecting either LEADING SEPARATE or TRAILING SEPARATE

will increase the storage length of the column by one byte.

Sync indicator. Select SYNC or blank from the drop-down list to
indicate whether the argument is a COBOL-SYNCHRONIZED
clause or not. The default is blank.

Redefined field. Optionally specify a COBOL REDEFINES clause.
This allows you to describe data in the same storage area using a
different data description. The redefining argument must be the
13-6 Mainframe Job Developer’s Guide

External Source Stages Working with External Sources
same length, or smaller, than the argument it redefines. Both
arguments must have the same level number, and an argument
can only redefine the immediately preceding argument with that
level.

Depending on. Optionally specify a COBOL OCCURS
DEPENDING ON clause from the drop-down list.

Storage length. Gives the storage length in bytes of the
argument as defined. This field is derived and cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the argument definition and cannot be edited.

The buttons at the bottom of the Edit Routine Argument Meta
Data dialog box allow you to continue adding or editing arguments,

or to save and close. The buttons are:

< Previous and Next >. Displays the meta data in the previous or
next argument. These buttons are available only when a previous
or next argument exists. If there are unsaved changes to the
current argument, you are prompted to save them before
continuing.

Close. Closes the Edit Routine Argument Meta Data dialog
box. If you have any unsaved changes, you are prompted to save
them.

Apply. Saves changes to the current argument.

Reset. Removes all changes made to the argument since the last
time you applied changes.

Help. Starts the Help system.

The last step is to define the JCL associated with the external source

routine, including any DD names or library names needed to run the

external source program. The JCL page appears when you select

External Source Routine as the routine type on the General page.
Mainframe Job Developer’s Guide 13-7

Working with External Sources External Source Stages
Click JCL to bring this page to the front:

You can type directly in the Additional JCL required for the
routine box, or click Load JCL to load the JCL from an existing file.

The JCL on this page is included in the run JCL that Ascential

DataStage generates for your job.

Note No syntax checking is performed on the JCL entered on this

page.

The Save button is available after you define the JCL. Click Save to

save the external source routine definition when you are finished.

Viewing and Editing an External Source Routine
To view and edit existing external source routines using the DataStage

Manager, select the routine in the display area and do one of the

following:

Choose File Properties.

Select Properties from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the external source routine in the display area.

To view or edit existing external source routines in the Designer,

either double-click the routine in the Repository window, or right-click

and select Properties from the short cut menu.

The Mainframe Routine dialog box appears. You can edit any of the

fields and options on any of the pages. If you make any changes, be

sure to save them before closing the Mainframe Routine dialog box.
13-8 Mainframe Job Developer’s Guide

External Source Stages Working with External Sources
Copying an External Source Routine
You can copy an existing external source routine in the Manager by

selecting it in the display area and doing one of the following:

Choose File Copy.

Select Copy from the shortcut menu.

Click the Copy button on the toolbar.

To copy an existing routine in the Designer, highlight the routine in the

Repository window and select CreateCopy from the shortcut menu.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears, allowing you to rename the copy immediately.

If the invocation method of the routine is dynamic, the external

subroutine name is set automatically.

Renaming an External Source Routine
You can rename an existing external source routine in either the

DataStage Manager or the Designer. To rename an item, select it in

the Manager display area or the Designer Repository window, and do

one of the following:

Click the routine again. An edit box appears and you can type a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Select Rename from the shortcut menu. An edit box appears and
you can enter a different name or edit the existing one. Save the
new name by pressing Enter or clicking outside the edit box.

Double-click the routine. The Mainframe Routine dialog box
appears and you can edit the Routine name field. Click Save,
then Close.

Choose File Rename (Manager only). An edit box appears and
you can type a different name or edit the existing one. Save the
new name by pressing Enter or by clicking outside the edit box.

If the invocation method of the routine is dynamic, the external

subroutine name is set automatically.
Mainframe Job Developer’s Guide 13-9

Defining the External Source Call Interface External Source Stages
Defining the External Source Call Interface
The call interface between the DataStage-generated COBOL program

and the external source program consists of two parameters:

The address of the control structure

The address of the record definition

The control structure is an 8-byte area, as shown in the following

example:

01 DS-EXTSRC1-CONTROL
05 ES-REQUEST PIC X.
05 ES-RC PIC S9(4) COMP.
05 ES-EOF PIC X.
05 ES-DATA-AREA PIC X(4).

The first byte indicates the type of call from the DataStage-generated

COBOL program to the external source routine. Call type O opens a

file, R reads a record, and C closes a file.

The next two bytes are for the return code that is sent back from the

external source routine to confirm the success or failure of the call. A

zero indicates success and nonzero indicates failure.

The fourth byte is an EOF (end of file) status indicator returned by the

external source routine. A Y indicates EOF and N is for a returned row.

The last four bytes comprise a data area that can be used for re-

entrant code. You can optionally use this area to store information

such as an address or a value needed for dynamic calls.

Using an External Source Stage
External Source stages are used only as source stages and cannot

receive input links. They can have multiple output links, and the

outputs must be linked to active stages. Each External Source stage

can call only one external source program. When you edit the External

Source stage, the External Source Stage dialog box appears.
13-10 Mainframe Job Developer’s Guide

External Source Stages Using an External Source Stage
This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has four tabs:

– General. Contains an optional description of the stage, which
appears in the generated COBOL program. Select the
Generate an end-of-data row check box to add an end-of-
data indicator after the last row is processed. The indicator is a
built-in variable called ENDOFDATA which has a value of TRUE,
meaning the last row of data has been processed. (See
"ENDOFDATA" on page A-20 for more information on using
this variable). In addition, all columns are set to null. The end-
of-data row is sent down all output links from the stage.

– Routine. Specifies the name of the external source routine and
its arguments. See "Specifying the External Source Routine" on
page 13-12 for details on specifying the routine.

– JCL. Contains the JCL for the external source routine. This tab
is available after you load an external source routine on the
Routine tab. It displays any JCL you specified as part of the
external source routine in the Manager. You can enter and edit
JCL in the JCL statements box, or click Load JCL… to load
JCL from another file. JCL extension variables can be used.
Click Reset to reset any changes you have made to the JCL,
reverting back to what was originally specified in the Manager.
Any changes you make are saved when you click OK on the
Stage page.

– File view. Displays the record structure of the arguments in
the external source program, including the COBOL PICTURE
clause, the starting and ending offsets, and the storage length
Mainframe Job Developer’s Guide 13-11

Using an External Source Stage External Source Stages
of each argument. The total storage length is displayed in the
status bar. You can right-click to save the file view layout as an
HTML file.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying the External Source Routine
The Routine tab on the Stage page allows you to select the external

source routine to call, and load its arguments. These arguments are

then projected to the Outputs page.

The Routine tab displays the following information:

Name. The name of the external source routine.

Arguments. The arguments of the external source routine,
including the following:

– Level number. The COBOL level number where the data is
defined. If no level number is given, a default value of 05 is
assigned.

– Column name. The name of the column.

– Native type. The native data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and the total number of
digits for numeric data types.
13-12 Mainframe Job Developer’s Guide

External Source Stages Using an External Source Stage
– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Click Load to load an external source routine from the Repository. The

routine name and arguments are then displayed in read-only format

on the Routine tab. If you want to make changes to the routine, you

must go back to the Mainframe Routine dialog box in the DataStage

Manager. Click Clear All to remove a routine and its arguments from

the Routine tab.

Array Handling

If you load a routine containing arrays, the Complex file load
option dialog box appears:

This dialog box offers the following options:

Normalize all arrays. Presents the data as multiple rows at
execution time with one row for each column in the array. This is
the default.

Flatten all arrays. Creates new columns for each element of the
array and presents the data as one row at execution time.

Flatten selective arrays. Allows you to choose whether to
flatten or normalize arrays on an individual basis. Use the right
mouse button to select Flatten or Normalize. The array icon
changes for the arrays you select to flatten.

Columns containing OCCURS DEPENDING ON clauses are always

flattened in External Source stages, regardless of your selection on

the Complex file load option dialog box. Such columns are
Mainframe Job Developer’s Guide 13-13

Defining External Source Output Data External Source Stages
flattened to the maximum number of occurrences. The elements of

the unused occurrences are set to null if the element is nullable or

space or zero (depending on the column data type) if the element is

not nullable.

Note Ascential DataStage does not flatten array columns that

have redefined fields, even if you choose to flatten all arrays

in the Complex file load option dialog box.

Defining External Source Output Data
Output links from External Source stages represent the data being

output from an external data source. The properties of such links and

the column definitions of the data are defined on the Outputs page in

the External Source Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Select the link you
want to edit from the Output name drop-down list. This list
displays all the output links from the External Source stage. If
there is only one output link, the field is read-only.

General. Contains an optional description of the link.

Selection. This tab allows you to select arguments as output
columns. The Available arguments list displays the arguments
loaded from the external source routine, and the Selected
columns list displays the columns to be output from the stage.
13-14 Mainframe Job Developer’s Guide

External Source Stages Defining External Source Output Data
Note If the Column push option is selected in Designer

options, the routine arguments are automatically

selected as output columns on each empty output link

when you click OK to exit the stage. You do not need to

select columns on the Selection tab, unless you want

to output only a subset of them. However, if any routine

arguments are GROUP data type, the column push

option works only if all members of the group are

CHARACTER data type.

You can move an argument from the Available arguments list to

the Selected columns list by double-clicking the argument name

or highlighting the argument name and clicking >. To move all

arguments, click >>. You can remove single columns from the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking <. Remove all columns

by clicking <<. Click Find to locate a particular argument.

You can select a group as one element if all elements of the group

are CHARACTER data. If one or more elements of the group are of

another type, then they must be selected separately. If a group

item and its sublevel items are all selected, storage is allocated for

the group item as well as each sublevel item.

If you select an argument that is an array element, you have the

option of flattening the array or denormalizing it at run-time. If you

flatten the array, a unique name is generated for each subelement

of the array. You can delete any subelements that are not needed

from the Selected columns list.

The Selected columns list displays the column name and SQL

type for each column. Use the arrow buttons to the right of the

Selected columns list to rearrange the order of the columns.

Constraint. This tab is displayed by default. The Constraint grid
allows you to define a constraint that filters your output data:

– (. Select an opening parenthesis if needed.

– Column. Select a column or job parameter from the drop-
down list. (Group columns cannot be used in constraint
expressions and are not displayed.)

– Op. Select an operator or a logical function from the drop-
down list. For information on using functions in constraint
expressions, see "Constraints" on page A-2

– Column/Value. Select a column or job parameter from the
drop-down list, or double-click in the cell to enter a value.
Character values must be enclosed in single quotation marks.

–). Select a closing parenthesis if needed.
Mainframe Job Developer’s Guide 13-15

Defining External Source Output Data External Source Stages
– Logical. Select AND or OR from the drop-down list to
continue the expression in the next row.

All of these fields are editable. As you build the constraint

expression, it appears in the Constraint field. When you are done

building the expression, click Verify. If errors are found, you must

either correct the expression, click Clear All to start over, or

cancel. You cannot save an incorrect constraint.

Ascential DataStage follows SQL guidelines on orders of

operators in expressions. After you verify a constraint, any

redundant parentheses may be removed. For details, see

"Operators" on page A-16.

Columns. This tab displays the output columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Key. Indicates if the column is a record key.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and the total number of
digits for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Outputs page. You must

go back to the Mainframe Routine dialog box in the DataStage

Manager if you want to make changes to the external source

routine arguments. Click Save As… to save the output columns

as a table definition, a CFD file, or a DCLGen file.
13-16 Mainframe Job Developer’s Guide

14
External Target Stages

This chapter describes External Target stages, which are used to write

rows to a given data target. An External Target stage represents a

user-written program that is called from the DataStage-generated

COBOL program. The external target program can be written in any

language that is callable from COBOL.

Working with External Targets
External target programs allow you to write data to data targets that

are not supported in Ascential DataStage Enterprise MVS Edition.

After you write an external target program, you create an external

target routine in the DataStage Repository. The external target routine

specifies the attributes of the external target program.

You create, view, or edit an external target routine using the

Mainframe Routine dialog box. You can access this dialog box in the

Manager or in the Repository window of the Designer. This dialog box

has four pages for external target routines: General, Creator,
Arguments, and JCL.

There are three buttons in the Mainframe Routine dialog box:

Close. Closes the Mainframe Routine dialog box. If you have
any unsaved changes, you are prompted to save them.

Save. Saves the external target routine.

Help. Starts the Help system.
Mainframe Job Developer’s Guide 14-1

Working with External Targets External Target Stages
Creating an External Target Routine
To create a new external target routine, do one of the following:

In the Manager, select the Routines branch in the project tree and
choose File New Mainframe Routine… .

In the Designer Repository window, right-click on the Routines
branch and select New Mainframe Routine from the shortcut
menu.

The Mainframe Routine dialog box appears:

The General page is displayed by default. Enter general information

about the external target routine, including:

Routine name. Type the name (up to 8 characters) of the external
subroutine. In mainframe terms, the routine name is the name of
an entry point in a member of a load or object library. The library
member may also contain other entry points with other names.
The routine name must match the external subroutine name if
Dynamic invocation (the default) is selected, and automatically
appears in the External subroutine name field.

Type. Select the type of routine, in this case, External Target
Routine. (External source routines are discussed in Chapter 13,
"External Source Stages." External routines are detailed in
Chapter 22, "External Routine Stages.")

Category. Type or browse for a category name to store the
routine under in the Repository. If you do not enter a name in this
field, the routine is created under the main Routines branch.

Platform. Select the operating system that the COBOL subroutine
runs on. (OS/390 is the only platform currently supported.)
14-2 Mainframe Job Developer’s Guide

External Target Stages Working with External Targets
External subroutine name. Type the name of the load or object
library member that contains the subroutine or function entry
point. If dynamic invocation is selected, then the external
subroutine name must match the routine name. If the invocation
method is static, then the two names need not match.

Invocation method. Select the invocation method for the
routine. Dynamic invocation calls the routine at run-time. Static
invocation embeds the routine within a program. Dynamic is the
default.

Library path. Type the pathname of the library that contains the
routine member. JCL extension variables can be used. This field is
required for static invocation.

Short description. Type an optional brief description of the
routine. The text entered in this field is displayed when you
choose View Details from the DataStage Manager window or
print a report. It also appears in the External Target stage editor.

Long description. Type an optional detailed description of the
routine.

Next, select the Creator page to enter creator information:

The Creator page allows you to specify information about the creator

and version number of the routine, including:

Vendor. Type the name of the company that created the routine.

Author. Type the name of the person who created the routine.

Version. Type the version number of the routine. This is used
when the routine is imported. The Version field contains a three-
part version number, for example, 2.0.0. The first part of this
Mainframe Job Developer’s Guide 14-3

Working with External Targets External Target Stages
number is an internal number used to check compatibility
between the routine and the Ascential DataStage system, and
cannot be changed. The second part of this number represents the
release number. This number should be incremented when major
changes are made to the routine definition or the underlying code.
The new release of the routine supersedes any previous release.
Any jobs using the routine use the new release. The last part of
this number marks intermediate releases when a minor change or
fix has taken place.

Copyright. Type the copyright information.

The next step is to define routine arguments by selecting the

Arguments page:

For external target routines, arguments are treated as fields of a

record. The record is passed to the external target routine program.

You can define an unlimited number of arguments. The columns in

the argument record cannot contain complex data structures such as

GROUP, REDEFINES, OCCURS and OCCURS DEPENDING ON clauses.

Click Load to load arguments from an existing table definition.

Arguments loaded from a table definition are flattened as necessary.

To create a new argument, type directly in the Arguments grid or, if

you need to specify COBOL attributes, do one of the following:

Right-click in the column area and select Edit row… from the
shortcut menu.

Press Ctrl-E.
14-4 Mainframe Job Developer’s Guide

External Target Stages Working with External Targets
The Edit Routine Argument Meta Data dialog box appears:

The top pane of this dialog box contains the same fields that appear

on the Arguments grid, plus an additional field for the date format.

Enter the following information for each argument you want to define:

Argument name. Type the name of the argument.

Native type. Select the native data type of the argument from the
drop-down list.

Length. Type a number representing the length or precision of
the argument.

Scale. If the argument is numeric, type a number to define the
number of digits to the right of the decimal point.

Nullable. Select Yes or No from the drop-down list to specify
whether the argument can contain a null value. The default is No
in the Edit Routine Argument Meta Data dialog box.

Date format. Select the date format of the argument from the
drop-down list.

Description. Type an optional description of the argument.

The bottom pane of the Edit Routine Argument Meta Data dialog

box displays the COBOL page by default. Use this page to enter any

required COBOL information for the external target argument:

Usage. Select the COBOL USAGE clause from the drop-down list.
This specifies which COBOL format the column will be read in.
These formats map to the formats in the Native type field, and
changing one will normally change the other. Possible values are:
Mainframe Job Developer’s Guide 14-5

Working with External Targets External Target Stages
– COMP. Used with BINARY native types.

– COMP-1. Used with single-precision FLOAT native types.

– COMP-2. Used with double-precision FLOAT native types.

– COMP-3. Packed decimal, used with DECIMAL native types.

– COMP-5. Used with NATIVE BINARY native types.

– DISPLAY. Zoned decimal, used with DISPLAY_NUMERIC or
CHARACTER native types.

– DISPLAY-1. Double-byte zoned decimal, used with
GRAPHIC_G or GRAPHIC_N.

Sign indicator. Select Signed or blank from the drop-down list
to specify whether the argument can be signed or not. The default
is Signed for numeric data types and blank for all other types.

Sign option. If the argument is signed, select the location of the
sign in the data from the drop-down list. Choose from the
following:

– LEADING. The sign is the first byte of storage.

– TRAILING. The sign is the last byte of storage.

– LEADING SEPARATE. The sign is in a separate byte that has
been added to the beginning of storage.

– TRAILING SEPARATE. The sign is in a separate byte that has
been added to the end of storage.

Selecting either LEADING SEPARATE or TRAILING SEPARATE

will increase the storage length of the column by one byte.

Storage length. Gives the storage length in bytes of the
argument as defined. This field is derived and cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the argument definition and cannot be edited.

The buttons at the bottom of the Edit Routine Argument Meta
Data dialog box allow you to continue adding or editing arguments,

or to save and close. The buttons are:

< Previous and Next >. Displays the meta data in the previous or
next argument. These buttons are available only when a previous
or next argument exists. If there are unsaved changes to the
current argument, you are prompted to save them before
continuing.

Close. Closes the Edit Routine Argument Meta Data dialog
box. If you have any unsaved changes, you are prompted to save
them.

Apply. Saves changes to the current argument.
14-6 Mainframe Job Developer’s Guide

External Target Stages Working with External Targets
Reset. Removes all changes made to the argument since the last
time you applied changes.

Help. Starts the Help system.

The last step is to define the JCL associated with the external target

routine, including any DD names or library names needed to run the

external target program. The JCL page appears when you select

External Target Routine as the routine type on the General page.

Click JCL to bring this page to the front:

You can type directly in the Additional JCL required for the
routine box, or click Load JCL to load the JCL from an existing file.

The JCL on this page is included in the run JCL that Ascential

DataStage generates for your job.

Note No syntax checking is performed on the JCL entered on this

page.

The Save button is available after you define the JCL. Click Save to

save the external target routine definition when you are finished.

Viewing and Editing an External Target Routine
To view and edit existing external target routines using the DataStage

Manager, select the routine in the display area and do one of the

following:

Choose File Properties.

Select Properties from the shortcut menu.

Click the Properties button on the toolbar.
Mainframe Job Developer’s Guide 14-7

Working with External Targets External Target Stages
Double-click the external target routine in the display area.

To view or edit existing external target routines in the Designer, either

double-click the routine in the Repository window, or right-click and

select Properties from the short cut menu.

The Mainframe Routine dialog box appears. You can edit any of the

fields and options on any of the pages. If you make any changes, be

sure to save them before closing the Mainframe Routine dialog box.

Copying an External Target Routine
You can copy an existing external target routine in the Manager by

selecting it in the display area and doing one of the following:

Choose File Copy.

Select Copy from the shortcut menu.

Click the Copy button on the toolbar.

To copy an existing routine in the Designer, highlight the routine in the

Repository window and select Create Copy from the shortcut menu.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears, allowing you to rename the copy immediately.

If the invocation method of the routine is dynamic, the external

subroutine name is set automatically.

Renaming an External Target Routine
You can rename an existing external target routine in either the

DataStage Manager or the Designer. To rename an item, select it in

the Manager display area or the Designer Repository window, and do

one of the following:

Click the routine again. An edit box appears and you can type a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Select Rename from the shortcut menu. An edit box appears and
you can enter a different name or edit the existing one. Save the
new name by pressing Enter or clicking outside the edit box.

Double-click the routine. The Mainframe Routine dialog box
appears and you can edit the Routine name field. Click Save,
then Close.
14-8 Mainframe Job Developer’s Guide

External Target Stages Defining the External Target Call Interface
Choose File Rename (Manager only). An edit box appears and
you can type a different name or edit the existing one. Save the
new name by pressing Enter or by clicking outside the edit box.

If the invocation method of the routine is dynamic, the external

subroutine name is set automatically.

Defining the External Target Call Interface
The call interface between the DataStage-generated COBOL program

and the external target program consists of two parameters:

The address of the control structure

The address of the record definition

The control structure is an 8-byte area, as shown in the following

example:

01 DS-EXTTGT1-CONTROL
05 ET-REQUEST PIC X.
05 ET-RC PIC S9(4) COMP.
05 ET-EOF PIC X.
05 ET-DATA-AREA PIC X(4).

The first byte indicates the type of call from the DataStage-generated

COBOL program to the external target routine. Call type O opens a

file, W writes a record, and C closes a file.

The next two bytes are for the return code that is sent back from the

external target routine to confirm the success or failure of the call. A

zero indicates success and nonzero indicates failure.

The fourth byte is an EOF (end of file) status indicator returned by the

external target routine. A Y indicates EOF and N is for a returned row.

The last four bytes comprise a data area that can be used for re-

entrant code. You can optionally use this area to store information

such as an address or a value needed for dynamic calls.

Using an External Target Stage
External Target stages are used only as target stages and have no

output links. They can have multiple input links from active stages.

Each External Target stage can call only one external target program.
Mainframe Job Developer’s Guide 14-9

Using an External Target Stage External Target Stages
When you edit the External Target stage, the External Target Stage

dialog box appears:

This dialog box has two pages:

Stage. Displays the stage name, which can be edited. This page
has four tabs:

– General. Contains an optional description of the stage, which
appears in the generated COBOL program.

– Routine. Specifies the name of the external target routine and
deploys its arguments. See "Specifying the External Target
Routine" on page 14-11 for details on specifying the routine.

– JCL. Contains the JCL for the external target routine. This tab
is available after you load an external target routine on the
Routine tab. It displays any JCL you specified as part of the
external target routine in the Manager. You can enter and edit
JCL in the JCL statements box, or click Load to load JCL
from another file. JCL extension variables can be used. Any
changes you make are saved when you click OK on the Stage
page.

– File view. Displays the record structure of the arguments in
the external target program, including the COBOL PICTURE
clause, the starting and ending offsets, and the storage length
of each argument. The total storage length is displayed in the
status bar. You can right-click to save the file view layout as an
HTML file.

Inputs. Shows the column definitions for the data input links.

Click OK to close this dialog box. Changes are saved when you save

the job.
14-10 Mainframe Job Developer’s Guide

External Target Stages Using an External Target Stage
Specifying the External Target Routine
The Routine tab on the Stage page allows you to select the external

target routine to call, and load its arguments. These arguments are

then projected to the Inputs page.

The Routine tab displays the following information:

Name. The name of the external target routine.

Arguments. The arguments of the external target routine,
including the following:

– Column name. The name of the column.

– Native type. The native data type. For details about the native
data types supported in mainframe source and target stages,
see Appendix C, "Native Data Types."

– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and the total number of
digits for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Click Load to load an external target routine from the Repository. The

routine name and arguments are then displayed in read-only format

on the Routine tab. If you want to make changes to the routine, you

must go back to the Mainframe Routine dialog box in the DataStage
Mainframe Job Developer’s Guide 14-11

Defining External Target Input Data External Target Stages
Manager. Click Clear All to remove a routine and its arguments from

the Routine tab.

If you have pushed columns from a previous stage in the job design,

they are displayed in the Arguments grid and you can simply type

the routine name in the Name field. However, you still must define

the external target routine in the Manager prior to generating code.

Defining External Target Input Data
Input links to External Target stages represent the data being written

to an external data target. The column definitions of the data are

displayed on the Inputs page in the External Target Stage dialog

box:

The Inputs page has the following field and two tabs:

Input name. The name of the input link. Select the link you want
from the Input name drop-down list. This list displays all the links
to the External Target stage. If there is only one input link, the field
is read-only.

General. Contains an optional description of the link.

Columns. This tab displays the input columns. It has a grid with
the following columns:

– Column name. The name of the column.

– Native type. The native data type.
14-12 Mainframe Job Developer’s Guide

External Target Stages Defining External Target Input Data
– Length. The data precision. This is the number of characters
for CHARACTER and GROUP data, and the total number of
digits for numeric data types.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for DECIMAL and FLOAT data, and
zero for all other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Column definitions are read-only on the Inputs page. You must

go back to the Mainframe Routine dialog box in the DataStage

Manager if you want to make changes to the external target

routine arguments.
Mainframe Job Developer’s Guide 14-13

Defining External Target Input Data External Target Stages
14-14 Mainframe Job Developer’s Guide

15
Transformer Stages

This chapter describes Transformer stages, which perform data

conversions on extracted data. The data is then passed to another

active stage or to a stage that writes data to a target file or database.

The same Transformer stage editor is used for server and mainframe

jobs. This chapter describes only the mainframe functionality. For

server functionality, see Ascential DataStage Server Job Developer’s

Guide.

Using a Transformer Stage
Transformer stages have one input link and one or more output links.If

you click the right mouse button on a Transformer stage from the

Designer canvas, the shortcut menu displays various options for

editing the stage:

Selecting Properties opens the Transformer Editor.

If the stage has links, selecting a link name from the Input Links
or Output Links menu option opens the Transformer Editor with
the selected link highlighted.

If columns have already been defined on the input link to the
stage, you can select Propagate Columns to propagate columns
from the input link to a selected output link. This saves time if you
are simply passing columns through the stage without performing
data transformations.

If columns have already been defined on both the input and
output links, you can select Auto-Match Columns to
automatically map the input columns to the selected output link
columns that have matching names.
Mainframe Job Developer’s Guide 15-1

Transformer Editor Components Transformer Stages
When you edit a Transformer stage, the Transformer Editor appears.

In the following example, there is one input link and two output links.

Meta data has been defined for the input link, but not for the output

links:

Transformer Editor Components
The Transformer Editor has the following components.

Toolbar
The Transformer toolbar appears at the top of the Transformer Editor.

It contains the following buttons:

Link Area
The top area displays links to and from the Transformer stage,

showing their columns and the relationships between them.

Stage
Properties

Constraints

Show All or
Selected
Relations Cut

Copy

Paste

Save Column
Definition

Column
Auto-Match

Output Link
Execution
Order

Show/Hide
Stage Variables

Find/
Replace

Load Column
Definition
15-2 Mainframe Job Developer’s Guide

Transformer Stages Transformer Editor Components
The link area is where all column definitions and stage variables are

defined.

The link area is divided into two panes; you can drag the splitter bar

between them to resize the panes relative to one another. There is

also a horizontal scroll bar, allowing you to scroll the view left or right.

The left pane shows the input link and the right pane shows output

links and stage variables. For all types of link, key fields are shown in

bold. Output columns that have no derivation defined are shown in

red (or the color defined in Tools Options).

Within the Transformer Editor, a single link may be selected at an one

time. When selected, the link’s title bar is highlighted, and arrowheads

indicate any selected columns.

Meta Data Area
The bottom area shows the column meta data for input and output

links. Again this area is divided into two panes: the left showing input

link meta data and the right showing output link meta data.

The meta data for each link is shown in a grid contained within a

tabbed page. Click the tab to bring the required link to the front. This

link is also selected in the link area.

If you select a link in the link area, its meta data page is brought to the

front automatically.

You can edit the grids to change the column meta data on the output

links only. You can also add and delete output link meta data. For

details on editing column meta data, see Appendix D, "Editing

Column Meta Data."

Shortcut Menus
The Transformer Editor shortcut menus are displayed by right-clicking

the links in the links area. There are three slightly different menus,

depending on whether you right-click an input link, an output link, or a

stage variable.
Mainframe Job Developer’s Guide 15-3

Transformer Editor Components Transformer Stages
The input link shortcut menu enables you to:

Open the Properties dialog box to enter a description of the link.

Open the Column Auto-Match dialog box.

Display the Find/Replace dialog box.

Select all columns on the link.

Display the Select dialog box.

Copy a column on the link.

The output link shortcut menu enables you to:

Open the Properties dialog box to enter a description of the link.

Open the Constraints dialog box to specify a constraint.

Open the Column Auto-Match dialog box.

Display the Find/Replace dialog box.

Select all columns on the link.

Display the Select dialog box.

Edit several derivations in one operation.

Edit, validate, or clear a derivation.

Append or insert a new column into the selected link.

Delete columns on the link.

Cut, copy, and paste a column or derivation on the link.

Input

Link

Shortcut

Menu

Output

Link

Shortcut

Menu
15-4 Mainframe Job Developer’s Guide

Transformer Stages Transformer Editor Components
The stage variable shortcut menu enables you to:

Open the Stage Properties dialog box to specify a variable.

Open the Column Auto-Match dialog box.

Display the Find/Replace dialog box.

Select all stage variables.

Display the Select dialog box.

Edit several derivations in one operation.

Edit, validate, or clear a derivation.

Append or insert a new stage variable.

Delete a stage variable.

Cut, copy, and paste a stage variable or derivation.

If you display the shortcut menu from the links area background, you

can:

Open the Stage Properties dialog box to enter a description of
the stage, specify a variable, or specify the order of output link
processing.

Open the Constraints dialog box to specify a constraint.

Open the Link Ordering tab of the Stage Properties dialog box
to reorder output link processing.

Toggle between displaying stage variables and hiding them.

Toggle between viewing link relations for all links, or for the
selected link only.

Right-clicking in the meta data area of the Transformer Editor opens

the standard grid-editing shortcut menus.

Stage

Variable

Shortcut

Menu

Background

Shortcut

Menu
Mainframe Job Developer’s Guide 15-5

Transformer Stage Properties Transformer Stages
Transformer Stage Properties
The Transformer stage has a Properties dialog box which allows you

to specify details about how the stage operates:

The Transformer Stage Properties dialog box has three pages:

Stage. This is used to specify general information about the
stage. The Stage page has three tabs:

– General. Allows you to enter an optional description of the
stage.

– Variables. Allows you to specify stage variables for use in the
stage. See "Defining Local Stage Variables" on page 15-21 for
details on defining stage variables.

– Link Ordering. Allows you to specify the order in which the
output links are processed. See "Specifying Output Link Order"
on page 15-20 for details on link ordering.

Inputs. Allows you to enter an optional description of the data on
the input link. The Transformer stage can have only one input link.

Outputs. Allows you to enter an optional description for each of
the output links from the stage.

Transformer Stage Basic Concepts
This section explains some of the basic concepts of using a

Transformer stage. Before you edit a Transformer stage, you must

have already defined the data being passed into the stage from your
15-6 Mainframe Job Developer’s Guide

Transformer Stages Transformer Stage Basic Concepts
input link. You will use the Transformer Editor to define the data that

will be output by the stage and how it will be transformed.

Input Links
Data is passed to the Transformer stage via a single input link. The

input link can come from a passive or active stage. Input data to a

Transformer stage is read-only. You must go back to the stage on your

input link if you want to change the column definitions.

Output Links
You can have any number of output links from the Transformer stage.

You may want to pass some data straight through the Transformer

stage unaltered, but it’s likely that you’ll want to transform data from

some input columns before outputting it from the Transformer stage.

Each output link column is defined in the column’s Derivation cell

within the Transformer Editor. To simply pass data through the

Transformer stage, you can drag an input column to an output

column’s Derivation cell. To transform the data, you can enter an

expression using the Expression Editor.

In addition to specifying derivation details for individual output

columns, you can also specify constraints that operate on entire

output links. A constraint is an expression based on the SQL3

language that specifies criteria that the data must meet before it can

be passed to the output link. For data that does not meet the criteria,

you can use a constraint to designate another output link as the reject

link. The reject link will contain columns that did not meet the criteria

for the other output links.

Each output link is processed in turn. If the constraint expression

evaluates to TRUE for an input row, the data row is output on that link.

Conversely, if a constraint expression evaluates to FALSE for an input

row, the data row is not output on that link.

Constraint expressions on different links are independent. If you have

more than one output link, an input row may result in a data row

being output from some, none, or all of the output links.

For example, consider the data that comes from a paint shop. It could

include information about any number of different colors. If you want

to separate the colors into different files, you would set up different

constraints. You could output the information about green and blue

paint on LinkA, red and yellow paint on LinkB, and black paint on

LinkC.
Mainframe Job Developer’s Guide 15-7

Editing Transformer Stages Transformer Stages
When an input row contains information about yellow paint, the LinkA

constraint expression evaluates to FALSE and the row is not output on

LinkA. However, the input data does satisfy the constraint criterion for

LinkB and the rows are output on LinkB.

If the input data contains information about white paint, this does not

satisfy any constraint and the data row is not output on Links A, B, or

C. However, you could designate another link to serve as the reject

link. The reject link is used to route data to a table or file that is a

“catch-all” for rows that are not output on any other link. The table or

file containing these rejects is represented by another stage in the job

design.

Editing Transformer Stages
The Transformer Editor allows you to perform the following

operations within a Transformer stage:

Create new columns on output links

Delete columns from output links

Move columns within output links

Edit output column meta data

Define output column derivations

Define link constraints and handle rejects

Specify the order in which the output links are processed

Define local stage variables

Using Drag and Drop
Many of the Transformer stage edits can be made simpler by using

the Transformer Editor’s drag-and-drop functionality. You can drag

columns from any link to any other link. Common uses are:

Copying input columns to output links

Moving columns within output links

Copying derivations in output links
15-8 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link. An insert point appears on the target link to indicate
where the new cell will go.

3 Release the mouse button to drop the selected cell.

You can drag and drop multiple columns or derivations. Use the

standard Explorer keys when selecting the source column cells, then

proceed as for a single cell.

You can add a column to the end of an existing derivation by holding

down the Ctrl key as you drag the column. This opens the Expression

Editor, allowing you to continue editing the column derivation.

The drag-and-drop insert point is shown below:

Find and Replace Facility
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the find/replace facility to help locate a particular column

or expression and change it.

The find/replace facility allows you to:

Find and replace a column name

Find and replace expression text

Find the next empty expression

Find the next expression that contains an error

To use the find/replace facility, do one of the following:

Click the Find/Replace button on the toolbar.

Select Find/Replace from the link shortcut menu.

Press Ctrl-F.
Mainframe Job Developer’s Guide 15-9

Editing Transformer Stages Transformer Stages
The Find and Replace dialog box appears:

This dialog box has three tabs:

Expression Text. Allows you to locate the occurrence of a
particular string within an expression, and replace it if required.
You can search up or down, and choose to match case, search the
selected link only, or neither. You can also choose to replace all
occurrences of the string within an expression.

Column Names. Allows you to find a particular column and
rename it if required. You can search up or down, and choose to
match case, match whole words, or search the selected link only.

Expression Types. Allows you to find the next empty expression
or the next expression that contains an error. You can search up or
down and choose to search the selected link only. You can also
press Ctrl-M to find the next empty expression or Ctrl-N to find
the next erroneous expression.

Note The find and replace results are shown in the color specified

in Tools Options.

Press F3 to repeat the last search you made without opening the Find
and Replace dialog box.

Select Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the select column facility to select multiple columns.

The select facility enables you to:

Select all columns/stage variables whose expressions contain text
that matches the text specified.

Select all column/stage variables whose name contains the text
specified (and, optionally, matches a specified type).

Select all columns/stage variables with a certain data type.

Select all columns with missing or invalid expressions.
15-10 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
To use the select facility, choose Select from the link shortcut menu.

The Select dialog box appears. It has three tabs:

Expression Text. This allows you to select all columns/stage
variables whose expressions contain text that matches the text
specified. The text specified is a simple text match, taking into
account the Match case setting.

Column Names. This allows you to select all columns/stage
variables whose name contains the text specified. There is an
additional Data type drop-down list that will limit the columns
selected to those with that data type. You can use the Data type
drop-down list on its own to select all columns of a certain data
type. For example, all string columns can be selected by leaving
the text field blank, and selecting String as the data type. The
data types in the list are generic data types, where each of the
column SQL data types belong to one of these generic types.

Expression Types. This allows you to select all columns with
either empty expressions or invalid expressions.

Creating and Deleting Output Columns
You can create output columns from the Transformer stage using any

of the following methods:

Select the output link, then click the Load Column Definition
button on the toolbar. Double-click a table from the Table
Definitions dialog box, then select columns from the Select
Columns dialog box.

Use drag-and-drop or copy-and-paste functionality to create a new
column by copying from an existing column on another link.

Use the shortcut menu to create a new column definition.

Edit the grids in the link’s meta data tab to insert a new column.

When copying columns, a new column is created with the same meta

data as the column it was copied from.

To delete a column from within the Transformer Editor, select the

column you want to delete and click the Cut button or select Delete
Column from the shortcut menu.

Note If you map input columns to output columns in a

Transformer stage, and you later delete the input link on the

Designer canvas, your output column derivations are not

automatically cleared. You can selectively delete output

column derivations using the methods described above, or

choose Select All from the shortcut menu and click Cut to

clear everything.
Mainframe Job Developer’s Guide 15-11

Editing Transformer Stages Transformer Stages
Moving Output Columns Within a Link
You can move columns within an output link using either a drag-and-

drop or a cut-and-paste operation. Select the required column, then

drag it to its new location, or cut it and paste it in its new location.

Editing Output Column Meta Data
You can edit output column meta data from within the grid in the

bottom of the Transformer Editor. Select the tab for the link meta data

that you want to edit, then use the standard DataStage edit grid

controls.

The meta data shown does not include column derivations, since

these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the

Transformer Editor in five ways:

If you want a new output column to be directly derived from an
input column, with no transformations performed, then you can
use drag and drop or copy and paste to copy an input column to
an output link. The output columns will have the same names as
the input columns from which they were derived.

If the output column already exists, you can drag or copy an input
column to the output column’s Derivation field. This specifies
that the column is directly derived from an input column, with no
transformations performed.

You can use the column auto-match facility to automatically set
that output columns are derived from their matching input
columns.

You may need one output link column derivation to be the same
as another output link column derivation. In this case you can use
drag and drop or copy and paste to copy the derivation cell from
one column to another.

In many cases you will need to transform data before deriving an
output column from it. For these purposes you can use the
Expression Editor. To display the Expression Editor, double-click
on the required output link column Derivation cell. (You can also
open the Expression Editor by selecting Edit Derivation from the
shortcut menu.)

If a derivation is displayed in red (or the color defined in

Tools Options) it means that the Transformer Editor considers it

incorrect. (In some cases this may simply mean that the derivation
15-12 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
does not meet the DataStage usage pattern rules, but will actually

function correctly.)

Once an output column has a derivation defined that contains any

input columns, then a relationship line is drawn between the input

column and the output column, as shown in the following example:

This is a simple example; there can be multiple relationship lines

either into or out of columns. You can choose whether to view the

relationships for all links, or just the relationships for the selected

links, using the button on the toolbar.

Column Auto-Match Facility

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link. You can use this feature to quickly fill in output link

derivations by routing data from corresponding input columns, then

go back and edit individual link columns where you want a different

derivation.

To use auto-match:

1 Do one of the following:

Click the Column Auto-Match button on the Transformer
Editor toolbar.

Select Auto Match from the input link header or output link
header shortcut menu.

Select Auto-Match Columns from the Transformer stage
shortcut menu on the Designer canvas, and choose the target
output link. With this option, the matching is done
automatically based on column names, without opening the
Transformer Editor or the Column Auto-Match dialog box.
Mainframe Job Developer’s Guide 15-13

Editing Transformer Stages Transformer Stages
With either of the first two options, the Column Auto-Match

dialog box appears:

2 Select the output link that you want to match columns for from the
drop-down list.

3 Click Location match or Name match from the Match type
area.

If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.
15-14 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

4 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Editing Multiple Derivations
You can make edits across several output column or stage variable

derivations by choosing Derivation Substitution… from the

shortcut menu. This opens the Expression Substitution dialog box.

The Expression Substitution dialog box allows you to make the

same change to the expressions of all the currently selected columns

within a link. For example, if you wanted to add a call to the trim()

function around all the string output column expressions in a link, you

could do this in two steps. First, use the Select dialog box to select all

the string output columns. Then use the Expression Substitution

dialog box to apply a trim() call around each of the existing expression

values in those selected columns.

You are offered a choice between Whole expression substitution and

Part of expression substitution.

Whole Expression

With this option the whole existing expression for each column is

replaced by the replacement value specified. This replacement value

can be a completely new value, but will usually be a value based on

the original expression value. When specifying the replacement value,

the existing value of the column’s expression can be included in this

new value by including $1. This can be included any number of times.
Mainframe Job Developer’s Guide 15-15

Editing Transformer Stages Transformer Stages
For example, when adding a trim() call around each expression of the

currently selected column set, having selected the required columns,

you would:

1 Select the Whole expression option.

2 Enter a replacement value of:

trim($1)

3 Click OK.

Where a column’s original expression was:

DSLink3.col1

This will be replaced by:

trim(DSLink3.col1)

This is applied to the expressions in each of the selected columns.

If you need to include the actual text $1 in your expression, enter it as

$$1.

Part of Expression

With this option, only part of each selected expression is replaced

rather than the whole expression. The part of the expression to be

replaced is specified by selecting Regular expression to match.

It is possible that more that one part of an expression string could

match the regular expression specified. If Replace all occurrences

of a match within the expression is checked, then each occurrence

of a match will be updated with the replacement value specified. If it is

not checked, then just the first occurrence is replaced.

When replacing part of an expression, the replacement value specified

can include that part of the original expression being replaced. In

order to do this, the regular expression specified must have round

brackets around its value. $1 in the replacement value will then

represent that matched text. If the regular expression is not

surrounded by round brackets, then $1 will simply be the text $1.

For complex regular expression usage, subsets of the regular

expression text can be included in round brackets rather than the

whole text. In this case, the entire matched part of the original

expression is still replaced, but $1, $2 etc. can be used to refer to each

matched bracketed part of the regular expression specified.

The following is an example of the Part of expression replacement.
15-16 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Suppose a selected set of columns have derivations that use input

columns from DSLink3. For example, two of these derivations could

be:

DSLink3.OrderCount + 1
If (DSLink3.Total > 0) Then DSLink3.Total Else -1

You may want to protect the usage of these input columns from null

values, and use a zero value instead of the null. To do this:

1 Select the columns you want to substitute expressions for.

2 Select the Part of expression option.

3 Specify a regular expression value of:

(DSLink3\.[a-z,A-Z,0-9]*)

This will match strings that contain DSLink3. followed by any

number of alphabetic characters or digits. (This assumes that

column names in this case are made up of alphabetic characters

and digits). The round brackets around the whole expression

means that $1 will represent the whole matched text in the

replacement value.

4 Specify a replacement value of:

NullToZero($1)

This replaces just the matched substrings in the original

expression with those same substrings, but surrounded by the

NullToZero call.

5 Click OK to apply this to all the selected column derivations.

From the examples above:

DSLink3.OrderCount + 1

would become:

NullToZero(DSLink3.OrderCount) + 1

and

If (DSLink3.Total > 0) Then DSLink3.Total Else –1

would become:

If (NullToZero(DSLink3.Total) > 0) Then DSLink3.Total Else –1

If the Replace all occurrences of a match within the expression
option is selected, the second expression will become:

If (NullToZero(DSLink3.Total) > 0)
Then NullToZero(DSLink3.Total)
Else –1
Mainframe Job Developer’s Guide 15-17

Editing Transformer Stages Transformer Stages
The replacement value can be any form of expression string. For

example, in the case above, the replacement value could have been:

(If (StageVar1 > 50000) Then $1 Else ($1 + 100))

In the first case above, the expression

DSLink3.OrderCount + 1

would become:

(If (StageVar1 > 50000) Then DSLink3.OrderCount
Else (DSLink3.OrderCount + 100)) + 1

Defining Constraints and Handling Rejects
You can define limits for output data by specifying a constraint. In

mainframe jobs, constraints are expressions based on the SQL3

language and are defined using the Expression Editor. Constraints are

boolean expressions that return TRUE or FALSE.

You can specify a constraint for each output link from a Transformer

stage. You can also use a constraint to specify that a particular link is

to act as a reject link. Reject links output rows that have not been

written on any other output links from the Transformer stage.

To define a constraint or specify a reject link, do one of the following:

Click the Constraints button on the toolbar.

Double-click an output link’s Constraint field.

Select Constraints from the background or header shortcut
menus.

The Transformer Stage Constraints dialog box appears:

Define a constraint by double-clicking the Constraint field next to the

output link name. This opens the Expression Editor dialog box. (For
15-18 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
details on defining expressions, see "The DataStage Expression

Editor" on page 15-24). Once you have defined a constraint, it will

appear below the output link’s title bar in the Transformer Editor.

When the job runs, the constraint expression will be checked against

the row data. If the data does not satisfy the constraint, the row will

not be written to that link.

Define a reject link by entering an expression in the Constraint field

that tests the variable REJECTEDCODE for failure in any of the

previous links. To build the expression, use the constant

DSE_TRXCONSTRAINT, which indicates that a row was rejected

because the link constraint was not satisfied. An example would be:

OutLink.REJECTEDCODE = DSE_TRXCONSTRAINT

You can use the AND/OR operators to build a compound expression

that tests constraints on multiple output links. Note that the reject

link(s) must be last in the execution order. Any data on rows not

written to any other output link in the stage is then written to the reject

link(s), using the column mappings you have specified.

For example, suppose you have a job that writes out regional data to a

relational database. You want to create a reject link as well as an error

log. Your job design might look like this:

Let’s assume that the links are executed in order: Link1, Link2, Link3. A

constraint on Link1 checks that the correct region codes are being

used. Link2, the reject link, captures rows which are rejected from

Link1 because the region code is incorrect. The constraint expression

for Link2 would be:

Link1.REJECTEDCODE = DSE_TRXCONSTRAINT

Data
Source

Transformer
Stage

Relational
Stage

Fixed-
Width

Flat File

Delimited
Flat File

Stage

Link1

Link2

Link3
Mainframe Job Developer’s Guide 15-19

Editing Transformer Stages Transformer Stages
Link3, the error log, captures rows that were rejected from the

Relational target stage because of a DBMS error rather than a failed

constraint. The expression for Link3 would be:

Link1.REJECTEDCODE = DSE_TRXLINK

You could then insert an additional output column on Link3 to return

the DBMS error code. The derivation expression for this column

would be:

Link1.DBMSCODE

By looking at the value in this column, you would be able to

determine the reason why the row was rejected.

Specifying Output Link Order
You can specify the order in which output links process a row. The

initial order of the links is the order in which they are added to the

stage.

To reorder output links:

1 Do one of the following:

Click the Output Link Execution Order button on the
Transformer Editor toolbar.

Choose Reorder Output Links from the background shortcut
menu.

Click the Stage Properties button on the Transformer Editor
toolbar, or choose Stage Properties from the background
shortcut menu and click the Link Ordering tab.

The Transformer Stage Properties dialog box appears with the

Link Ordering tab of the Stage page displayed.
15-20 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
2 Use the arrow buttons to rearrange the list of links in the execution
order required.

3 When you are satisfied with the order, click OK.

Defining Local Stage Variables
You can declare and use your own variables within a Transformer

stage. Such variables are accessible only from the Transformer stage

in which they are declared. They can be used as follows:

They can be assigned values by expressions.

They can be used in expressions that define an output column
derivation.

Expressions evaluating a variable can include other variables or
the variable being evaluated itself.

Any stage variables you declare are shown in a table in the right pane

of the links area. The table looks similar to an output link. You can

display or hide the table by clicking the Show/Hide Stage Variables

button on the Transformer toolbar or making the selection from the

background shortcut menu.

Note Stage variables are not shown in the output link meta data

area at the bottom of the right pane.
Mainframe Job Developer’s Guide 15-21

Editing Transformer Stages Transformer Stages
The table lists the stage variables together with the expressions used

to derive their values. Link lines join the stage variables with input

columns used in the expressions. Links from the right side of the table

connect the variables to the output columns that use them.

To declare a stage variable:

1 Do one of the following:

Select Insert New Stage Variable from the stage variable
shortcut menu. A new variable is added to the stage variables
table in the links pane. The variable is given the default name
StageVar and default data type Decimal (18, 4). You can edit
these properties using the Transformer Stage Properties
dialog box, as described in the next step.

Click the Stage Properties button on the Transformer toolbar.

Select Stage Properties from the background shortcut menu.

Select Stage Variable Properties from the stage variable
shortcut menu.
15-22 Mainframe Job Developer’s Guide

Transformer Stages Editing Transformer Stages
The Transformer Stage Properties dialog box appears:

2 Click the Variables tab. The Variables tab contains a grid
showing currently declared variables, their initial values, SQL
type, precision, scale, and an optional description. Use the
standard grid controls to add or edit variables. Click the Load
button to load stage variables from a table definition in the
Repository, or Save As… to save them as a table definition in the
Repository. Click Clear All to start over.

Variable names must begin with an alphabetic character (a–z, A–Z)

and can only contain alphanumeric characters (a–z, A–Z, 0–9). The

initial value is required and must be an absolute value in

mainframe jobs. If the initial value is a string, it must be enclosed

in single quotes.

3 Click OK. The new variable appears in the stage variable table in
the links pane.

You can perform most of the same operations on a stage variable as

you can on an output column (see "Defining Output Column

Derivations" on page 15-12). A shortcut menu offers the same

commands. You cannot, however, paste a stage variable as a new

column, or paste a column as a new stage variable.
Mainframe Job Developer’s Guide 15-23

The DataStage Expression Editor Transformer Stages
The DataStage Expression Editor
The DataStage Expression Editor helps you enter correct expressions

when you edit Transformer stages. The Expression Editor can be

opened from:

Output link Derivation cells

Stage variable Derivation cells

Transformer Stage Constraints dialog box

To open the Expression Editor, double-click the Derivation or

Constraint field, or select Edit Derivation from the shortcut menu:

Entering Expressions
There are two ways to define expressions using the Expression Editor:

typing directly in the Expression syntax text box, or building the

expression using the available items and operators shown in the

bottom pane.
15-24 Mainframe Job Developer’s Guide

Transformer Stages The DataStage Expression Editor
To build an expression:

1 Click a branch in the Item type box. The available items are
displayed in the Item properties list. The Expression Editor
offers the following programming components:

Columns. Input columns. The column name, data type, and
link name are displayed under Item properties. When you
select a column, any description that exists will appear at the
bottom of the Expression Editor dialog box.

Variables. The built-in variables SQLCA.SQLCODE,
ENDOFDATA, REJECTEDCODE and DBMSCODE, as well as any
local stage variables you have defined. The variable name and
data type are displayed under Item properties.

Built-in Routines. SQL3 functions including data type
conversion, date and time, logical, numerical, and string
functions. Function syntax is displayed under Item
properties. When you select a function, a description appears
at the bottom of the Expression Editor dialog box.

Parameters. Any job parameters that you have defined. The
parameter name and data type are displayed under Item
properties.

Constants. Built-in constants including CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP, DSE_NOERROR,
DSE_TRXCONSTRAINT, DSE_TRXLINK, NULL, HIGH_VALUES,
LOW_VALUES, and X. The DSE_ constants are available only
for constraint expressions, and NULL is available only for
derivation expressions.

For definitions of these programming components, see

Appendix A, "Programmer’s Reference."

2 Double-click an item in the Item properties list to insert it into the
Expression syntax box.

3 Click one of the buttons on the Operators toolbar to insert an
operator in the Expression syntax box. (For operator definitions
see Appendix A, "Programmer’s Reference.")

As you build the expression, you can click Undo to undo the last

change or Clear All to start over. Click OK to save the expression

when you are finished.

Validating the Expression
The Expression Editor validates expressions as they are built. If a

syntax error is found, a message appears in red and the element

causing the error is underlined in the Expression syntax text box. To

check for both syntax and semantic errors, first select Perform
Mainframe Job Developer’s Guide 15-25

The DataStage Expression Editor Transformer Stages
expression semantic checking in project or job properties, then

click the Verify button in the Expression Editor. You can save an

expression without correcting errors, but you will be warned that the

expression is invalid.

Exiting the Expression Editor
You can exit the Expression Editor in one of the following ways:

Click OK (which accepts changes).

Click Cancel (which discards changes).

Close the Expression Editor dialog box (which discards
changes).
15-26 Mainframe Job Developer’s Guide

16
Business Rule Stages

This chapter describes Business Rule stages, which are used to

perform complex transformations using SQL business rule logic. They

provide access to the control-flow features of SQL, such as conditional

and looping statements, and give you greater transaction control over

a job using SQL’s COMMIT and ROLLBACK statements. You can also

use Business Rule stages to terminate job processing using an EXIT

statement or to display information in COBOL using a DISPLAY

statement.

Using a Business Rule Stage
Business Rule stages have one input link and any number of output

links. The input link can come from a source stage or a processing

stage. The output links can be to other processing stages or target

stages.
Mainframe Job Developer’s Guide 16-1

Using a Business Rule Stage Business Rule Stages
When you edit a Business Rule stage, the Business Rule Stage

dialog box appears:

This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has three tabs:

– General. Allows you to enter an optional description of the
stage.

– Variables. Used to define stage variables. See "Defining Stage
Variables" on page 16-2 for details.

– Definition. Used to specify the business rule logic for the
stage. See "Specifying Business Rule Logic" on page 16-4 for
details.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining Stage Variables
You can declare and use your own variables within a Business Rule

stage, just as you do in a Transformer stage. These stage variables are

accessible only from the Business Rule stage in which they are

declared. Any stage variables you declare are available on the

Definition tab, where they can be used in the business rule logic for

the stage.
16-2 Mainframe Job Developer’s Guide

Business Rule Stages Using a Business Rule Stage
If an initial value is not specified for a stage variable, it has an initial

value of NULL. The variable is initialized before the first input row is

processed. If the business rule logic specified on the Definition tab

assigns a value to the stage variable for any given input row, the

variable retains its value for subsequent rows until it is reassigned

another value.

You declare stage variables on the Variables tab of the Business
Rule Stage dialog box:

Declare a stage variable using the grid:

Name. The name of the stage variable. Variable names must
begin with an alphabetic character (a-z, A-Z) and can only contain
alphanumeric characters (a-z, A-A, 0-9).

Initial Value. The initial value of the variable. If the initial value is
a string, it must be enclosed in single quotes.

SQL type. The SQL data type of the variable. Choose the SQL
type from the drop-down list. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

Precision. The precision of the variable. This is the number of
characters for Char data, the maximum number of characters for
VarChar data, the total number of digits for numeric data types,
and the number of digits in the microsecond portion of
Timestamp data.

Scale. The data scale factor of the variable. This is the number of
digits to the right of the decimal point for Decimal data, and zero
for all other data types.

Description. An optional description of the variable.
Mainframe Job Developer’s Guide 16-3

Using a Business Rule Stage Business Rule Stages
Click Load to load a set of stage variables from the table definition in

the Repository. You can also enter and edit stage variables manually

and click Save As… to save them as a table definition, a CFD file, or a

DCLGen file. Click Clear All to start over.

Specifying Business Rule Logic
Business Rule stages allow you to perform complex data

transformations using SQL business rule logic. You specify this logic

on the Definition tab:

The Definition tab is divided into four panes:

Templates. Lists the programming components you can use in a
business rule, including:

– Columns. The columns on the input and output links.

– Parameters. Any job parameters you have defined.

– Variables. Any stage variables you have defined on the
Variables tab, as well as the built-in variables ENDOFDATA
and SQLCA.SQLCODE.

– SQL Constructs. The available SQL constructs. See "SQL
Constructs" on page 16-6 for SQL statement definitions.

– Built-in Routines. SQL3 functions including data type
conversion, date and time, logical, numerical and string
functions.

– Constants. Built-in constants including CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP, HIGH_VALUES,
LOW_VALUES, X, and NULL.
16-4 Mainframe Job Developer’s Guide

Business Rule Stages Using a Business Rule Stage
For definitions of Ascential DataStage’s built-in variables,

functions, and constants, see Appendix A, "Programmer’s

Reference."

Business rule editor. Displays the business rule as you define it.
A business rule consists of an SQL statement list, which is a
sequence of SQL statements terminated by semicolons. Any
comments must begin with /* and end with */.

To create a business rule, type directly in the text box or insert

code fragments by selecting or dragging items from the

Templates and Operators panes. Standard editing functions

such as cut, copy, paste, delete, select all, and replace are

available from the shortcut menu, which you can access by right-

clicking anywhere in the box.

This pane contains two buttons:

– Build Rule. Click this to automatically generate the SET and
INSERT statements (and constraints if any exist) to map input
columns to output columns. The following dialog box appears:

This dialog box contains a Comment page, where you can

type comments to be inserted in the Business rule editor

pane, and a Rule page, where you define the mappings

between input columns, output columns, and any stage

variables that exist.

To define the mappings, use a drag-and-drop operation or click

the Auto-Match button to map columns based on name or

location. You can also double-click the Derivation cell next to

an output column or stage variable to create derivation
Mainframe Job Developer’s Guide 16-5

Using a Business Rule Stage Business Rule Stages
expressions using the Expression Editor. For more information

on using the Expression Editor, see "Entering Expressions" on

page 15-24.

Once the mappings are defined, the necessary SET and

INSERT statements appear where the cursor is positioned in

the Business rule editor text box. To define another set of

mappings, click the Build Rule button again. Any previously

defined mappings are not displayed.

– Verify. Click this to check the syntax and semantics of the
business rule. Any errors are displayed in the Status pane.

Operators. Displays the available operators, including arithmetic,
logical, relational, and string concatenation operators. Operator
definitions are provided in Appendix A, "Programmer’s
Reference."

Status. Displays status messages about any syntax or semantic
errors found in the business rule logic. You can double-click a
syntax error to highlight the location of the error in the Business
rule editor text box.

Output columns are initialized to NULL before the first input row is

processed. If the business rule logic assigns a value to an output

column for any given input row, the column retains its value for

subsequent rows until it is reassigned another value.

Note If the Column push option is selected in Designer options

and you close the Business Rule stage without specifying

any logic on the Definition tab, the stage automatically

generates business rule logic to copy all input link columns

to any empty output links.

SQL Constructs
When you define the business rule logic on the Definition tab, you

can choose from a number of SQL constructs in the Templates pane.
16-6 Mainframe Job Developer’s Guide

Business Rule Stages Using a Business Rule Stage
Table 16-1 describes the syntax descriptions and semantic rules for

these SQL constructs.

Table 16-1 SQL Constructs

Name Description

BEGIN END
Block

Groups statements together. Acts as an organization tool and does
not affect the business rule logic.

Syntax:
[<beginning label>:] BEGIN <block body> END [<ending label>]

block body is an SQL statement list

Semantic Rules:

A block label is an SQL identifier that gives a name for the block.
Block labels are optional. If an ending label is specified, it must
match the beginning label.

SET
Statement

Evaluates an expression and assigns the result to a variable or an
output link column.

Syntax:
SET <target> = <source>

target is an output link column or a variable

source is an expression or NULL

Semantic Rules:

If the data types of the source and target are not equivalent, the
source is automatically converted to the target’s data type before
assignment. If the source is not convertible to the target data type,
an error will occur. The conversions that are supported are the same
as those allowed by the CAST function. For details about the CAST
function, see Appendix A, "Programmer’s Reference."

INSERT
Statement

Sends columns down an output link.

Syntax:
INSERT INTO <output link>

Semantic Rules:

A business rule must contain at least one INSERT statement for each
output link. To verify that data has been successfully written to an
output link, check the variable SQLCA.SQLCODE after the INSERT
statement. A nonzero value indicates an error.

DISPLAY
Statement

Writes values to the SYSPRINT spooler.

Syntax:
DISPLAY (<value list>)

value list is <expression> [,<expression>]...

Semantic Rules:

Expression values are written to the SYSPRINT spooler from left to
right on one line, terminated by a carriage return. Noncharacter
values are displayed as if they were converted to VARCHAR.
Mainframe Job Developer’s Guide 16-7

Using a Business Rule Stage Business Rule Stages
IF
Statement

Allows conditional execution of SQL statements.

Syntax:
IF <condition> <THEN clause> [<ELSE clause>] END IF

condition is a comparison whose value determines the program
flow.

THEN clause is the statement to be executed if the condition
is true.

ELSE clause is the statement to be executed if the condition
is false.

Semantic Rules:

A condition must be a boolean expression. If the condition evaluates
to TRUE, the business rule executes the SQL statements in the
THEN clause. If the condition evaluates to FALSE or UNKNOWN
(NULL), the business rule executes the SQL statements in the ELSE
clause if present.

LOOP
Statement

Executes the loop body repeatedly until a LEAVE statement is
executed to exit the loop.

Syntax:
<beginning label> : LOOP <loop body> END LOOP [<ending
label>]

loop body is an SQL statement list

Semantic Rules:

A loop label is an SQL identifier that gives a name for the loop. The
ending label is optional. If an ending label is specified, it must match
the beginning label. The loop body must contain a LEAVE
statement.

LEAVE
Statement

Exits a loop.

Syntax:
LEAVE <loop label>

loop label is an SQL identifier that gives a name for a loop

Semantic Rules:

A LEAVE statement must be used in a loop body. It exits the loop,
allowing program execution to resume at the statement following
the END LOOP. The loop label must match the label of the nearest
LOOP statement that contains the LEAVE statement.

COMMIT
Statement

Commits any inserts, updates, and deletes made to relational tables
in a job.

Syntax:
COMMIT

Semantic Rules:

To use a COMMIT statement, a job must contain a target Relational
or Teradata Relational stage.

Table 16-1 SQL Constructs (Continued)

Name Description
16-8 Mainframe Job Developer’s Guide

Business Rule Stages Defining Business Rule Input Data
Defining Business Rule Input Data
Data from the input link is passed from a previous stage in the job

design to the Business Rule stage. The properties of this link and the

column definitions of the data are described on the Inputs page in the

Business Rule Stage dialog box:

ROLLBACK
Statement

Cancels any inserts, updates, and deletes made to relational tables
in a job since the last COMMIT statement.

Syntax:
ROLLBACK

Semantic Rules:

To use a ROLLBACK statement, a job must contain a target
Relational or Teradata Relational stage.

EXIT
Statement

Performs an implicit COMMIT and terminates the job with the
status.

Syntax:
EXIT (<status>)

Semantic Rules:

The exit status must be an integer expression. Its value is returned
to the operating system.

Table 16-1 SQL Constructs (Continued)

Name Description
Mainframe Job Developer’s Guide 16-9

Defining Business Rule Output Data Business Rule Stages
The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Business Rule
stage. Since only one input link is allowed, the link name is read-
only.

General. Contains an optional description of the link.

Columns. Contains a grid displaying the column definitions for
the data being written to the stage. This grid has the following
columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Input column definitions are read-only in the Business Rule stage.

You must go back to the stage on your input link if you want to

change the column definitions.

Defining Business Rule Output Data
When you output data from a Business Rule stage, the properties of

the output links and the column definitions of the data are defined on

the Outputs page in the Business Rule Stage dialog box.
16-10 Mainframe Job Developer’s Guide

Business Rule Stages Defining Business Rule Output Data
The Outputs page has the following field and two tabs:

Output name. The name of the output link. If there is only one
output link, this field is read-only. If there are multiple output links,
select the one you want to edit from the drop-down list.

General. Contains an optional description of the link.

Columns. Contains the column definitions for the data on the
output links. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Click Load to selectively load columns from a table definition in

the Repository. You can also enter and edit column definitions

manually and click Save As… to save them as a table definition, a

CFD file, or a DCLGen file. Click Clear All to start over. For details
Mainframe Job Developer’s Guide 16-11

Defining Business Rule Output Data Business Rule Stages
on editing column definitions, see Appendix D, "Editing Column

Meta Data."
16-12 Mainframe Job Developer’s Guide

17
Link Collector Stages

This chapter describes Link Collector stages, which are used to

combine data from multiple input links into a single output link. The

number of columns on the output link must be the same as the

number of columns on each of the input links. Data from the input

links is appended to the output link, preserving the number of

columns and increasing the number of rows.

In mainframe Link Collector stages you do not specify a collection

algorithm as you do in server Link Collector stages. If you wish to

collect data using the sort/merge method provided in server jobs, use

a Join stage instead of a Link Collector stage and specify the Two File
Match join technique. In mainframe jobs there is no equivalent to the

Round-Robin data collection method provided in server jobs.

Using a Link Collector Stage
Link Collector stages have two or more input links and one output link.

Input links can come from source stages or processing stages, and the

output link can be to another processing stage or a target stage.

Circular relationships between Link Collector stages and other stages

in a job design are not allowed.
Mainframe Job Developer’s Guide 17-1

Defining Link Collector Input Data Link Collector Stages
When you edit a Link Collector stage, the Link Collector Stage

dialog box appears:

This dialog box has three pages:

Stage. Displays the stage name, which can be edited. This page
has a General tab where you can enter an optional description of
the stage.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining Link Collector Input Data
Link Collector stages can have multiple input links. The properties of

these links and the column definitions of the data are described on the

Inputs page in the Link Collector stage dialog box.
17-2 Mainframe Job Developer’s Guide

Link Collector Stages Defining Link Collector Input Data
The Inputs page has the following field and two tabs:

Input name. The name of the input link. Select the link you want
to edit from the Input name drop-down list. This list displays all
of the input links to the Link Collector stage.

General. Contains an optional description of the link.

Columns. Contains a grid displaying the column definitions for
the data on the input links. The grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Input column definitions are read-only in the Link Collector stage.

You must go back to the stages on your input links if you want to

change the column definitions.
Mainframe Job Developer’s Guide 17-3

Defining Link Collector Output Data Link Collector Stages
Note that the number of columns on each input link must be the

same and must match the number of columns on the output link.

Defining Link Collector Output Data
When you output data from a Link Collector stage, the properties of

the output link and the column definitions of the data are defined on

the Outputs page in the Link Collector Stage dialog box:

The Outputs page has the following field and two tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Contains an optional description of the link.

Columns. Contains a grid displaying the column definitions for
the data on the output link. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.
17-4 Mainframe Job Developer’s Guide

Link Collector Stages Defining Link Collector Output Data
– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over.

Note that the number of columns on the output link must be

identical to the number of columns on each of the input links. For

details on editing column definitions, see Appendix D, "Editing

Column Meta Data."

Mapping Data
In Link Collector stages, input columns are automatically mapped to

output columns based on position. Data types between input and

output columns must be convertible, and data conversion is

automatic.

Note If the Column push option is selected in Designer options

and the output link columns do not exist, then the output

columns are automatically created from the columns on the

first input link when you click OK to exit the stage.

The order in which the input links are processed by the Link Collector

stage depends on the job design. The stage usually sends all rows of

one input link down the output link before processing another input

link. Since the stage does not store input rows, it sends an input row

down the output link as soon as the row is received. Therefore the

order in which rows are sent down the output link depends on when

the rows arrive on the input links.

End-of-data rows are treated as normal input rows. If there are end-of-

data rows on multiple input links, they are sent down the output link

in the order they come in. Therefore an end-of-data row is not

necessarily the last row sent down the output link.

If some of a Link Collector stage’s input links can be traced back to a

common Transformer stage without any passive stage in between,

then the order in which these input link rows are processed depends

on the output link ordering in the Transformer stage.
Mainframe Job Developer’s Guide 17-5

Defining Link Collector Output Data Link Collector Stages
17-6 Mainframe Job Developer’s Guide

18
Join Stages

This chapter describes Join stages, which are used to join data from

two input tables and produce one output table. You can use the Join

stage to perform inner joins, outer joins, or full joins.

An inner join returns only those rows that have matching column
values in both input tables. The unmatched rows are discarded.

An outer join returns all rows from the outer table even if there are
no matches. You define which of the two tables is the outer table.

A full join returns all rows that match the join condition, plus the
unmatched rows from both input tables.

Unmatched rows returned in outer joins or full joins have NULL

values in the columns of the other link.

Using a Join Stage
Join stages have two input links and one output link. The two input

links must come from source stages. The joined data can be output to

another processing stage or a passive stage.
Mainframe Job Developer’s Guide 18-1

Using a Join Stage Join Stages
When you edit a Join stage, the Join Stage dialog box appears:

This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has a General tab where you define
the join specifications and enter an optional description of the
stage.

In the Join type area, you can select to perform an inner join, an

outer join, or a full join. Inner join is the default option.

In the Outer link drop-down list box, select the input link that will

be the outer table if you are performing an outer join. The

columns from this link, called the primary link, are preserved in

the join. If you are performing an inner join, the other

(nonselected) link, called the secondary link, is the inner table

where the join technique is applied.

The Join technique drop-down list box is where you specify the

algorithm for performing the join. Four options are available:

– Auto. The join technique is automatically chosen by Ascential
DataStage based on the information you specify in the stage.
This is the default option.

– Hash. An in-memory hash table is built on the secondary input
table (i.e., the input link not selected as the outer link). This
technique requires an equality join condition, where a column
(or an expression based on a column) from the primary link
equals a column (or an expression based on a column) from
the secondary link. Compound equality join conditions are
allowed.
18-2 Mainframe Job Developer’s Guide

Join Stages Defining Join Input Data
For information on hash table memory requirements, see

"Calculating Hash Table Memory Requirements" on page G-4.

– Nested. Each row of the secondary input table is read
sequentially to determine if the column value matches that of
the primary input table.

– Two File Match. The primary and secondary input tables are
read sequentially one time to determine if column values
match. Both input tables must be sorted on the matching keys,
and the primary table may not have duplicates.

This technique requires an equality join condition, where a

column (or an expression based on a column) from the

primary link equals a column (or an expression based on a

column) from the secondary link. A compound equality join

condition is allowed.

Note If the join condition contains an expression, the

input tables must be sorted on the expression

result. For example, if a SUBSTRING expression is

specified, the input tables must be sorted on the

SUBSTRING portion of the column.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output link.
This page has a Join Condition tab where you define the join
condition. The Mapping tab is used to define the mappings
between input and output columns.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining Join Input Data
Data from the two input links is passed from previous source stages in

the job design to the Join stage. The properties of these links and the
Mainframe Job Developer’s Guide 18-3

Defining Join Input Data Join Stages
column definitions of the data are described on the Inputs page in the

Join Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Join stage. Select
the link you want to edit from the Input name drop-down list.
This list displays the two input links to the Join stage.

General. Shows the input type and contains an optional
description of the link. The Input type field is read-only and
indicates whether the input link is the outer (primary) link or the
inner (secondary) link, as specified on the Stage page.

Columns. Displayed by default. Contains a grid displaying the
column definitions for the data being written to the stage. This
grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.
18-4 Mainframe Job Developer’s Guide

Join Stages Defining Join Output Data
– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Input column definitions are read-only in the Join stage. You must

go back to the stages on your input links if you want to change the

column definitions.

Defining Join Output Data
When you output data from a Join stage, the properties of the output

link and the column definitions of the data are defined on the

Outputs page in the Join Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Contains an optional description of the link.

Join Condition. Displayed by default. Contains the join
condition. See "Defining the Join Condition" on page 18-6 for
details on specifying the join condition.

Mapping. Specifies the mapping of input columns to output
columns. See "Mapping Data" on page 18-7 for details on defining
mappings.
Mainframe Job Developer’s Guide 18-5

Defining Join Output Data Join Stages
Columns. Contains the column definitions for the data on the
output link. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over. For details on editing column definitions, see

Appendix D, "Editing Column Meta Data."

Defining the Join Condition
The Join Condition tab is where you to specify how to join the data

from the two input tables:
18-6 Mainframe Job Developer’s Guide

Join Stages Defining Join Output Data
Create an expression using the Join Condition grid:

(. Select an opening parenthesis if needed.

Column. Select a column from the drop-down list. The drop-
down list displays the column names from both input links.

Op. Select an operator or a logical function from the drop-down
list. For definitions of these items, see Appendix A, "Programmer’s
Reference."

Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must be
enclosed in single quotation marks.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these columns are editable. As you build the join condition, it

appears in the Join condition field. Join conditions must be boolean

expressions that return TRUE or FALSE. To validate the expression,

click Verify. If errors are found, you must either correct the

expression, click Clear All to start over, or cancel. You cannot save an

incorrect join condition.

Ascential DataStage follows SQL guidelines on orders of operators in

expressions. After you verify a join condition, any redundant

parentheses may be removed. For details, see "Operators" on

page A-16.

Mapping Data
The Mapping tab is used to define the mappings between input and

output columns being passed through the Join stage.

Note You can bypass this step if the Column push option is

selected in Designer options. Output columns are

automatically created for each output link, and mappings

between corresponding input and output columns are

defined, when you click OK to exit the stage.
Mainframe Job Developer’s Guide 18-7

Defining Join Output Data Join Stages
This tab is divided into two panes, the left for the input links (and any

job parameters that have been defined) and the right for the output

link, and it shows the columns and the relationships between them:

You can drag the splitter bar between the two panes to resize them

relative to one another. Vertical scroll bars allow you to scroll the view

up or down the column lists, as well as up or down the panes.

You can define column mappings from the Mapping tab in two ways:

Drag and Drop. This specifies that an output column is directly
derived from an input column. See "Using Drag and Drop" on
page 18-9 for details.

Auto-Match. This automatically sets output column derivations
from their matching input columns, based on name or location.
See "Using Column Auto-Match" on page 18-9 for details.

Derivation expressions cannot be specified on the Mapping tab. If

you need to perform data transformations, you must include a

Transformer stage elsewhere in your job design.

As mappings are defined, the output column names change from red

to black. A relationship line is drawn between the input column and

the output column.

Find Facility

If you are working on a complex job, there is a find facility to help you

locate a particular column or expression. To use the find facility, do

one of the following:

Click the Find button on the Mapping tab.
18-8 Mainframe Job Developer’s Guide

Join Stages Defining Join Output Data
Select Find from the link shortcut menu.

The Find dialog box appears:

This dialog box has two tabs:

Column Names. Allows you to find a particular column.

Expression Text. Allows you to locate the occurrence of a
particular string within an output column expression.

To begin your search, go to the appropriate tab and select the link

name from the Link name drop-down list. (You can search for

expression text only on the output link.) Enter the text to search for in

the Find what field. Select the Match case and Match whole word

check boxes to narrow your search. On the Expression Text tab,

select Empty Expression to search for the next empty expression.

Using Drag and Drop

A simple way to specify mappings is to use the Mapping tab’s drag-

and-drop functionality. You can drag columns from your input link to

your output link to define each mapping.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link.

3 Release the mouse button to drop the selected cell.

You can also click the title bar displaying the name of the link and,

without releasing the mouse button, drag the mouse pointer to the

first Derivation cell within the target link. This will map all input

columns to the output columns based on location.

Using Column Auto-Match

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link.
Mainframe Job Developer’s Guide 18-9

Defining Join Output Data Join Stages
To use auto-match:

1 Click the AutoMap button on the Mapping tab. The Column
Auto-Match dialog box appears:

2 Click Location match or Name match from the Match type
area.

If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.
18-10 Mainframe Job Developer’s Guide

Join Stages Join Examples
Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

3 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Join Examples
Join stages allow you to perform three types of joins: inner joins,

outer joins, and full joins. The following example illustrates the

different results produced by each type of join.

Suppose you have a table containing information on sales orders.

Each sales order includes the customer identification number,

product, and order total, as shown in Table 18-1.

Table 18-1 Sales Orders

Customer ID Product Order Total

10 Paint $25

20 Primer $15

30 Paintbrushes $10

30 Rollers $10

40 Wallpaper $50

50 Masking Tape $5

90 Drop cloths $15
Mainframe Job Developer’s Guide 18-11

Join Examples Join Stages
Another table contains detailed customer information, as shown in

Table 18-2.

You specify a join condition that matches the two tables on customer

identification number and returns the customer and sales order

information.

An inner join returns the results shown in Table 18-3. Since the last

row in each table is unmatched, both are discarded.

An outer join, where the customer table is the outer link, returns the

six matching rows as well as the unmatched rows from the customer

Table 18-2 Customers

Customer ID Customer Name City State

10 AAA Painting San Jose California

20 ABC Paint Pros Portland Oregon

30 Mural Art Sacramento California

40 Ocean Design Co. Monterey California

50 Smith & Son Painters Reno Nevada

60 West Coast Interiors San Francisco California

Table 18-3 Inner Join Result

Customer Name City State Product Order Total

AAA Painting San Jose California Paint $25

ABC Paint Pros Portland Oregon Primer $15

Mural Art Sacramento California Paintbrushes $10

Mural Art Sacramento California Rollers $10

Ocean Design Co. Monterey California Wallpaper $50

Smith & Son Painters Reno Nevada Masking Tape $5
18-12 Mainframe Job Developer’s Guide

Join Stages Join Examples
table, shown in Table 18-4. Notice that the unmatched rows contain

null values in the product and order total columns.

By contrast, a full join returns all the rows that match the join

condition, as well as unmatched rows from both input links. The

results are shown in Table 18-5.

Table 18-4 Outer Join Result

Customer Name City State Product Order Total

AAA Painting San Jose California Paint $25

ABC Paint Pros Portland Oregon Primer $15

Mural Art Sacramento California Paintbrushes $10

Mural Art Sacramento California Rollers $10

Ocean Design Co. Monterey California Wallpaper $50

Smith & Son Painters Reno Nevada Masking Tape $5

West Coast Interiors San Francisco California (Null) (Null)

Table 18-5 Full Join Result

Customer Name City State Product Order Total

AAA Painting San Jose California Paint $25

ABC Paint Pros Portland Oregon Primer $15

Mural Art Sacramento California Paintbrushes $10

Mural Art Sacramento California Rollers $10

Ocean Design Co. Monterey California Wallpaper $50

Smith & Son Painters Reno Nevada Masking Tape $5

(Null) (Null) (Null) Drop cloths $15

West Coast Interiors San Francisco California (Null) (Null)
Mainframe Job Developer’s Guide 18-13

Join Examples Join Stages
18-14 Mainframe Job Developer’s Guide

19
Lookup Stages

This chapter describes Lookup stages, which allow you to perform

table lookups. A singleton lookup returns the first single row that

matches the lookup condition. A cursor lookup returns all rows that

match the lookup condition. Ascential DataStage also allows

conditional lookups, which are performed only when a pre-lookup

condition is true.

Using a Lookup Stage
Lookup stages have two input links and one output link. The primary

input link can come from a processing stage or a source stage. The

other input link, called the reference link, must come from a source

stage. The reference link appears on the Designer canvas with a

dotted line to distinguish it from the primary link. Output data can be

sent to another processing stage or a target stage.
Mainframe Job Developer’s Guide 19-1

Using a Lookup Stage Lookup Stages
When you edit a Lookup stage, the Lookup Stage dialog box

appears:

This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has three tabs:

– General. This is where you define the lookup specifications
and enter an optional description of the stage.

The Lookup type area lets you choose to perform a singleton

or a cursor lookup. Singleton Lookup is the default.

The Lookup technique drop-down list is where you select the

Auto or Hash lookup technique. Auto lookups allow Ascential

DataStage to choose the technique based on the information

you specify. This is the default option. If you select Auto and

the reference link is a Relational or Teradata Relational stage,

Ascential DataStage passes the lookup condition to the

database for processing. If the reference link is a Complex Flat

File stage with a VSAM_KSDS file structure, it performs a serial

read of the file, using the VSAM START command where

possible to reduce the number of records read. In all other

cases, selecting Auto results in a hash lookup if possible or

else a serial read of the file.

Hash lookups are performed using an in-memory hash table

built on the reference link. This technique can only be used

with an equality lookup condition, where a field from the

primary link equals a field from the reference link. For

information on hash table memory requirements, see

"Calculating Hash Table Memory Requirements" on page G-4.
19-2 Mainframe Job Developer’s Guide

Lookup Stages Using a Lookup Stage
– Pre-lookup Condition. This is where you specify a pre-
lookup condition for conditional lookups. See "Performing
Conditional Lookups" on page 19-3 for details on defining a
pre-lookup condition.

– Lookup Condition. Contains the lookup expression. See
"Defining the Lookup Condition" on page 19-5 for details on
specifying the lookup condition.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output link
and the mappings between input and output columns.

Click OK to close this dialog box. Changes are saved when you save

the job.

Performing Conditional Lookups
Conditional lookups are based on a pre-lookup condition that must be

met before a lookup is performed. They can improve the performance

of a job by allowing you to skip the execution of a lookup if the lookup

data is not needed or is already available. See "Lookup Examples" on

page 19-13 for details on specifying conditional lookups to meet your

requirements.

If no pre-lookup condition is specified in a Lookup stage, then the

lookup is always performed for each row of the primary input link.

Pre-lookup conditions are specified on the Pre-lookup Condition tab

of the Stage page:
Mainframe Job Developer’s Guide 19-3

Using a Lookup Stage Lookup Stages
In the Action if pre-lookup condition fails drop-down list, you

specify how to handle data that does not meet the pre-lookup

condition. There are three options:

Skip Row. Prevents the row from being output from the stage.

Use Previous Values. Sends the values from the previous
lookup down the output link. This option is only available for
singleton lookups. If the previous lookup failed or there was no
previous lookup, then the action taken depends on your selection
in the Action if lookup condition fails field on the Lookup
Condition tab. See Table 19-9 on page 19-16 for more information
on the results produced by various option combinations.

Null Fill. Sends the row down the output link with the lookup
values set to NULL if the pre-lookup condition fails.

The default value is blank in the Action if pre-lookup condition
fails field. This is allowed only if no pre-lookup condition is specified.

You define the pre-lookup condition using the following fields on the

expression grid:

(. Select an opening parenthesis if needed.

Column. Select a column from the primary input link, a job
parameter, or the ENDOFDATA variable from the drop-down list.
ENDOFDATA refers to the value from the primary input link. (See
"ENDOFDATA" on page A-20 for more information on using this
variable).

Op. Select an operator or a logical function from the drop-down
list. For definitions of these items, see Appendix A, "Programmer’s
Reference."

Column/Value. Select a column from the primary input link or
double-click in the cell to enter a value. Character values must be
enclosed in single quotation marks.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these columns are editable. The pre-lookup condition can

reference job parameters, constants, and columns of the primary

input link, but cannot use columns of the reference link. As you build

the expression, it appears in the Pre-lookup condition field.

Lookup conditions must be boolean expressions that return TRUE or

FALSE. To validate the expression, click Verify . An error message will

appear if errors are found. To start over, click Clear All.

Ascential DataStage follows SQL guidelines on orders of operators in

expressions. After you verify a lookup condition, any redundant
19-4 Mainframe Job Developer’s Guide

Lookup Stages Using a Lookup Stage
parentheses may be removed. For details, see "Operators" on

page A-16.

Defining the Lookup Condition
The Lookup stage gives you flexibility in creating your job design. You

can perform singleton or cursor lookups, as well as conditional

lookups, depending on your requirements. You can also use the

Lookup stage to validate the accuracy of input data.

Lookup expressions are defined on the Lookup Condition tab:

In the Action if lookup condition fails drop-down list, you select

an option for handling a failed lookup. There are three options:

Skip Row. Skips the row and goes to the next one. This is the
default.

Abort Program. Stops the program.

Null Fill. Fills the columns of the reference link with null values
and continues to the next stage with the row from the primary
link.

You define the lookup condition using the following fields in the

expression grid:

(. Select an opening parenthesis if needed.

Column. Select a column from the drop-down list. The drop-
down list displays the column names from both input links.

Op. Select an operator or a logical function from the drop-down
list. For definitions of these items, see Appendix A, "Programmer’s
Reference."
Mainframe Job Developer’s Guide 19-5

Defining Lookup Input Data Lookup Stages
Column/Value. Select a column from the drop-down list or
double-click in the cell to enter a value. Character values must be
enclosed in single quotation marks.

). Select a closing parenthesis if needed.

Logical. Select AND or OR from the drop-down list to continue
the expression in the next row.

All of these columns are editable. As you build the lookup expression,

it appears in the Lookup condition field. Lookup conditions must be

boolean expressions that return TRUE or FALSE. To validate the

expression, click Verify. If errors are found, you must either correct

the expression, click Clear All to start over, or cancel. You cannot

save an incorrect lookup condition.

Ascential DataStage follows SQL guidelines on orders of operators in

expressions. After you verify a lookup condition, any redundant

parentheses may be removed. For details, see "Operators" on

page A-16.

Sorting the Reference Link

If the reference file contains multiple rows that match the lookup

condition, it is recommended that you sort the file before performing

a singleton lookup using the Auto technique. The sort should be

based on the columns used in the lookup condition, as well as any

other columns you may need to ensure correct results. Sorting the

reference file is not necessary when using the Hash technique or

performing a cursor lookup.

Defining Lookup Input Data
Data from the primary link and the reference link is passed from

previous stages in the job design to the Lookup stage. The properties

of these links and the column definitions of the data are described on

the Inputs page in the Lookup Stage dialog box.
19-6 Mainframe Job Developer’s Guide

Lookup Stages Defining Lookup Input Data
The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Lookup stage.
Select the link you want to edit from the Input name drop-down
list. This list displays the two input links to the Lookup stage.

General. Shows the input type and contains an optional
description of the link. The Input type field is read-only and
indicates whether the input link is the stream (primary) link or the
reference link.

Columns. Displayed by default. Contains a grid displaying the
column definitions for the data being written to the stage:

– Column name. The name of the column.

– SQL type. The SQL data type. See Appendix B, "Data Type
Definitions and Mappings" for details on the data types
supported in mainframe jobs.

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.
Mainframe Job Developer’s Guide 19-7

Defining Lookup Output Data Lookup Stages
Input column definitions are read-only in the Lookup stage. You

must go back to the stages on your input links if you want to

change the column definitions.

Defining Lookup Output Data
When you output data from a Lookup stage, the properties of the

output link and the column definitions of the data are defined on the

Outputs page in the Lookup Stage dialog box:

The Outputs page has the following field and three tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Contains an optional description of the link.

Mapping. Specifies the mapping of input columns to output
columns. See "Mapping Data" on page 19-9 for details on defining
mappings.

Columns. Contains the column definitions for the data being
output from the stage. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."
19-8 Mainframe Job Developer’s Guide

Lookup Stages Defining Lookup Output Data
– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over. For details on editing column definitions, see

Appendix D, "Editing Column Meta Data."

Mapping Data
The Mapping tab is used to define the mappings between input and

output columns being passed through the Lookup stage.

Note You can bypass this step if the Column push option is

selected in Designer options. Output columns are

automatically created for each output link, and mappings

between corresponding input and output columns are

defined, when you click OK to exit the stage.

This tab is divided into two panes, the left for the input links (and any

job parameters that have been defined) and the right for the output

link, and it shows the columns and the relationships between them.
Mainframe Job Developer’s Guide 19-9

Defining Lookup Output Data Lookup Stages
You can drag the splitter bar between the two panes to resize them

relative to one another. Vertical scroll bars allow you to scroll the view

up or down the column lists, as well as up or down the panes.

You can define column mappings from the Mapping tab in two ways:

Drag and Drop. This specifies that an output column is directly
derived from an input column. See "Using Drag and Drop" on
page 19-11 for details.

Auto-Match. This automatically sets output column derivations
from their matching input columns, based on name or location.
See "Using Column Auto-Match" on page 19-11 for details.

Derivation expressions cannot be specified on the Mapping tab. If

you need to perform data transformations, you must include a

Transformer stage elsewhere in your job design.

As mappings are defined, the output column names change from red

to black. A relationship line is drawn between the input column and

the output column.

Find Facility

If you are working on a complex job, there is a find facility to help you

locate a particular column or expression. To use the find facility, do

one of the following:

Click the Find button on the Mapping tab.

Select Find from the link shortcut menu.
19-10 Mainframe Job Developer’s Guide

Lookup Stages Defining Lookup Output Data
The Find dialog box appears:

This dialog box has two tabs:

Column Names. Allows you to find a particular column.

Expression Text. Allows you to locate the occurrence of a
particular string within an output column expression.

To begin your search, go to the appropriate tab and select the link

name from the Link name drop-down list. (You can search for

expression text only on the output link.) Enter the text to search for in

the Find what field. Select the Match case and Match whole word

check boxes to narrow your search. On the Expression Text tab,

select Empty Expression to search for the next empty expression.

Using Drag and Drop

A simple way to specify mappings is to use the Mapping tab’s drag-

and-drop functionality. You can drag columns from your input link to

your output link to define each mapping.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link.

3 Release the mouse button to drop the selected cell.

You can also click the title bar displaying the name of the link and,

without releasing the mouse button, drag the mouse pointer to the

first Derivation cell within the target link. This will map all input

columns to the output columns based on location.

Using Column Auto-Match

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link.
Mainframe Job Developer’s Guide 19-11

Defining Lookup Output Data Lookup Stages
To use auto-match:

1 Click the AutoMap button on the Mapping tab.

The Column Auto-Match dialog box appears:

2 Click Location match or Name match from the Match type
area.

If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.
19-12 Mainframe Job Developer’s Guide

Lookup Stages Lookup Examples
Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

3 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Lookup Examples
Table lookups allow you to take a value that is a code in your source

table and look up the information associated with that code in a

reference table. For example, suppose you have a table containing

information on products. For each product there is a supplier code.

You have another table with supplier information. In this case you

could use a table lookup to translate the supplier code into a supplier

name.

Table 19-1 provides a simple example of supplier codes on the

primary link, and Table 19-2 provides a simple example of the supplier

information on the reference link:

Table 19-1 Primary Link

Product Supplier Code

Paint A

Primer B

Paintbrushes D

Wallpaper E
Mainframe Job Developer’s Guide 19-13

Lookup Examples Lookup Stages
A cursor lookup using the Auto technique and Skip Row option

produces the results shown in Table 19-3.

A cursor lookup using the Hash technique and Skip Row option

produces the results shown in either Table 19-4 or Table 19-5,

depending on how the hash table is built.

Table 19-2 Reference Link

Supplier Code Supplier Name

A Anderson

B Brown, C.

B Brown, M.

C Carson

E Edwards

Table 19-3 Auto Cursor Lookup Result

Product Supplier Name

Paint Anderson

Primer Brown, C.

Primer Brown, M.

Wallpaper Edwards

Table 19-4 Hash Cursor Lookup Result (A)

Product Supplier Name

Paint Anderson

Primer Brown, C.

Primer Brown, M.

Wallpaper Edwards

Table 19-5 Hash Cursor Lookup Result (B)

Product Supplier Name

Paint Anderson

Primer Brown, M.

Primer Brown, C.

Wallpaper Edwards
19-14 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
A singleton lookup using the Auto technique and Skip Row option

produces the results shown in Table 19-6.

A singleton lookup using the Hash technique and Skip Row option

produces the results shown in either Table 19-7 or Table 19-8,

depending on how the hash table is built.

In the singleton lookup examples, if you had chosen the Null Fill
option instead of Skip Row as the action for a failed lookup, there

would be another row in each table for the product Paintbrushes with

a NULL for supplier name.

Conditional Lookup Examples
When performing conditional lookups in a Lookup stage, it is

important that you carefully consider the results of your selections in

the Action if pre-lookup condition fails and Action if lookup
condition fails fields. Certain combinations of options may not make

Table 19-6 Auto Singleton Lookup Result

Product Supplier Name

Paint Anderson

Primer Brown, C.

Wallpaper Edwards

Table 19-7 Hash Singleton Lookup Result (A)

Product Supplier Name

Paint Anderson

Primer Brown, C.

Wallpaper Edwards

Table 19-8 Hash Singleton Lookup Result (B)

Product Supplier Name

Paint Anderson

Primer Brown, M.

Wallpaper Edwards
Mainframe Job Developer’s Guide 19-15

Conditional Lookup Examples Lookup Stages
sense for some business cases. Table 19-9 describes the results of

various option combinations.

As an example, suppose you design a job that uses a conditional

lookup to find supplier data that is missing from a product table. The

product table is the primary link to the Lookup stage and the supplier

data is the reference link, as shown in the following job design.

Table 19-9 Action if Lookup Fails Option Combinations

Result of
Pre-lookup
Condition

Action If
Pre-lookup
Condition Fails

Result of
Previous
Lookup

Action If Lookup
Condition Fails

Resulting
Action Taken

TRUE Any Successful Any Lookup

TRUE Any Failed Skip Row Lookup

TRUE Any Failed Null Fill Lookup

TRUE Any Failed Abort Program Abort Program

FALSE Skip Row Successful Any Skip Row

FALSE Skip Row Failed Skip Row Skip Row

FALSE Skip Row Failed Null Fill Skip Row

FALSE Skip Row Failed Abort Program Abort Program

FALSE Null Fill Successful Any Null Fill

FALSE Null Fill Failed Skip Row Null Fill

FALSE Null Fill Failed Null Fill Null Fill

FALSE Null Fill Failed Abort Program Abort Program

FALSE Use Previous Values Successful Any Use Previous Values

FALSE Use Previous Values Failed Skip Row Skip Row

FALSE Use Previous Values Failed Null Fill Null Fill

FALSE Use Previous Values Failed Abort Program Abort Program
19-16 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Data for the ProductData primary link is shown in Table 19-10. Notice

that the column Supplier_Name has missing data.

Table 19-10 Primary Link

Record # Supplier_Code Supplier_Name Product

1 A Anderson Paint

2 B Brown Paint

3 B Brown Primer

4 B Brushes

5 C Wallpaper

6 C Carson Wallpaper

7 D Paint

8 D Varnish

9 E Edwards Wallpaper

10 F Fisher Brushes

11 X Xcel Stain

12 Z Zack Primer

13 X Varnish

14 Z Brushes
Mainframe Job Developer’s Guide 19-17

Conditional Lookup Examples Lookup Stages
Data for the SupplierInfo reference link is shown in Table 19-11:

The Lookup stage is configured such that if the supplier name is blank

on the primary link, the lookup is performed to fill in the missing

supplier information. The lookup type is Singleton Lookup and the

lookup technique is Auto.

The pre-lookup condition is:

ProductData.SUPPLIER_NAME = ‘ ‘

The lookup condition is:

ProductData.SUPPLIER_CODE = SupplierInfo.SUPPLIER_CODE

On the Mapping tab of the Lookup stage, the columns Supplier_Code

and Supplier_Name from the primary link and Supplier_Name from

the reference link are mapped to the output link, as shown:

Table 19-11 Reference Link

Supplier_Code Supplier_Name

A Anderson

B Brown

C Carson

D Donner

E Edwards

F Fisher

G Green
19-18 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Next the data passes to a Transformer stage, where the columns are

mapped to the output link. The column derivation for Supplier_Name

uses IF THEN ELSE logic to determine the correct output:

IF LookupOut.SUPPLIER_NAME= ' ' THEN
LookupOut.SUPPLIER_NAME_2

ELSE LookupOut.SUPPLIER_NAME
END

In other words, if Supplier_Name from the primary link is blank, then

the output is the value from the reference link. Otherwise it is the

value from the primary link.

The Transformer stage appears as follows:

Depending on your selections in the Action if pre-lookup
condition fails and Action if lookup condition fails fields, both

the lookup results and the final results of the job can vary greatly, as

demonstrated in the following examples.
Mainframe Job Developer’s Guide 19-19

Conditional Lookup Examples Lookup Stages
Null Fill, Skip Row Combination

If the action specified for a failed pre-lookup condition is Null Fill and

the action for a failed lookup is Skip Row, the lookup results are:

Records 1-3, 6, and 9-12 failed the pre-lookup condition but are passed

through the stage due to the Null Fill action. In these records, the

column Supplier_Name_2 is filled with a null value. Records 13 and 14

passed the pre-lookup condition, but failed the lookup condition

because the supplier codes do not match. Since Skip Row is the

specified action for a failed lookup, neither record is output from the

stage.

The final output after data passes through the Transformer stage is:

Table 19-12 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

1 A Anderson (Null)

2 B Brown (Null)

3 B Brown (Null)

4 B Brown

5 C Carson

6 C Carson (Null)

7 D Donner

8 D Donner

9 E Edwards (Null)

10 F Fisher (Null)

11 X Xcel (Null)

12 Z Zack (Null)

Table 19-13 Final Output

Supplier_Code Supplier_Name Product

A Anderson Paint

B Brown Paint

B Brown Primer

B Brown Brushes

C Carson Wallpaper

C Carson Wallpaper

D Donner Paint
19-20 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Skip Row, Skip Row Combination

Using the same data, the same pre-lookup condition, and the same

lookup condition, but changing the action for a failed pre-lookup

condition to Skip Row, produces the following lookup results:

Records 1-3, 6, and 9-12 from the primary link failed the pre-lookup

condition and are not passed on due to the Skip Row action. Records

4, 5, 7, and 8 passed the pre-lookup condition and have successful

lookup results. Records 13 and 14 passed the pre-lookup condition but

failed in the lookup because the supplier codes do not match. They are

omitted as output from the stage due to the Skip Row action for a

failed lookup.

The final output after data passes through the Transformer stage is:

D Donner Varnish

E Edwards Wallpaper

F Fisher Brushes

X Xcel Stain

Z Zack Primer

Table 19-14 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

4 B Brown

5 C Carson

7 D Donner

8 D Donner

Table 19-15 Final Output

Supplier_Code Supplier_Name Product

B Brown Brushes

C Carson Wallpaper

D Donner Paint

D Donner Varnish

Table 19-13 Final Output (Continued)

Supplier_Code Supplier_Name Product
Mainframe Job Developer’s Guide 19-21

Conditional Lookup Examples Lookup Stages
Use Previous Values, Skip Row Combination

In this example, the action for a failed pre-lookup condition is Use
Previous Values. This means output data mapped from the

reference link is used repeatedly until the data from a subsequent

lookup changes. The results produced with this option can vary

depending on the content and order of the primary link. Using the

same data as before, the results of the lookup are:

Records 1-3 from the primary link failed the pre-lookup condition and

are not passed on. This is because there are no previous values to use

and the action for a failed lookup is Skip Row. Records 4, 5, 7, and 8

passed the pre-lookup condition and have successful lookup results.

Records 6 and 9-12 failed the pre-lookup condition, however, in

Records 9-12 the results include incorrect values in the column

Supplier_Name_2 because of the Use Previous Values action.

Records 13 and 14 are omitted because they failed the lookup

condition and the action is Skip Row.

The final output after data passes through the Transformer stage is:

Table 19-16 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

4 B Brown

5 C Carson

6 C Carson Carson

7 D Donner

8 D Donner

9 E Edwards Donner

10 F Fisher Donner

11 X Xcel Donner

12 Z Zack Donner

Table 19-17 Final Output

Supplier_Code Supplier_Name Product

B Brown Brushes

C Carson Wallpaper

C Carson Wallpaper

D Donner Paint

D Donner Varnish
19-22 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Use Previous Values, Skip Row Combination 2

This example is the same as the last one except that the data on the

primary link is reordered. The fourth record has become the first

record, as shown in Table 19-18.

E Edwards Wallpaper

F Fisher Brushes

X Xcel Stain

Z Zack Primer

Table 19-18 Primary Link

Record # Supplier_Code Supplier_Name Product

1 B Brushes

2 A Anderson Paint

3 B Brown Paint

4 B Brown Primer

5 C Wallpaper

6 C Carson Wallpaper

7 D Paint

8 D Varnish

9 E Edwards Wallpaper

10 F Fisher Brushes

11 X Xcel Stain

12 Z Zack Primer

13 X Varnish

14 Z Brushes

Table 19-17 Final Output (Continued)

Supplier_Code Supplier_Name Product
Mainframe Job Developer’s Guide 19-23

Conditional Lookup Examples Lookup Stages
This time the results of the Lookup stage are as follows:

Since the first record met the pre-lookup condition, a lookup was

successfully performed and previous values were used until another

lookup was performed. If the first lookup had failed, the results would

be the same as in the last example.

The final output after data passes through the Transformer stage is:

Table 19-19 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

1 B Brown

2 A Anderson Brown

3 B Brown Brown

4 B Brown Brown

5 C Carson

6 C Carson Carson

7 D Donner

8 D Donner

9 E Edwards Donner

10 F Fisher Donner

11 X Xcel Donner

12 Z Zack Donner

Table 19-20 Final Output

Supplier_Code Supplier_Name Product

B Brown Brushes

A Anderson Paint

B Brown Paint

B Brown Primer

C Carson Wallpaper

C Carson Wallpaper

D Donner Paint

D Donner Varnish

E Edwards Wallpaper

F Fisher Brushes
19-24 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Use Previous Values, Null Fill Combination

In this example the action if the pre-lookup condition fails is still Use
Previous Values, but the action if the lookup condition fails is

changed to Null Fill. The data is the same as in the first three

examples. The results of the lookup are:

Notice that Records 1-3 are present even though there are not

previous values to assign. This is the result of using Null Fill as the

action if the lookup fails. Also notice that Records 13 and 14 are

present even though they failed the lookup; this is also the result of

the Null Fill option.

X Xcel Stain

Z Zack Primer

Table 19-21 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

1 A Anderson (Null)

2 B Brown (Null)

3 B Brown (Null)

4 B Brown

5 C Carson

6 C Carson Carson

7 D Donner

8 D Donner

9 E Edwards Donner

10 F Fisher Donner

11 X Xcel Donner

12 Z Zack Donner

13 X (Null)

14 Z (Null)

Table 19-20 Final Output (Continued)

Supplier_Code Supplier_Name Product
Mainframe Job Developer’s Guide 19-25

Conditional Lookup Examples Lookup Stages
The final output after data passes through the Transformer stage is:

Null Fill, Null Fill Combination

In this example, the action for both a failed pre-lookup condition and a

failed lookup condition is Null Fill. The lookup results are as follows:

Table 19-22 Final Output

Supplier_Code Supplier_Name Product

A Anderson Paint

B Brown Paint

B Brown Primer

B Brown Brushes

C Carson Wallpaper

C Carson Wallpaper

D Donner Paint

D Donner Varnish

E Edwards Wallpaper

F Fisher Brushes

X Xcel Stain

Z Zack Primer

X (Null) Varnish

Z (Null) Brushes

Table 19-23 Lookup Results

Record # Supplier_Code Supplier_Name Supplier_Name_2

1 A Anderson (Null)

2 B Brown (Null)

3 B Brown (Null)

4 B Brown

5 C Carson

6 C Carson (Null)

7 D Donner

8 D Donner

9 E Edwards (Null)

10 F Fisher (Null)
19-26 Mainframe Job Developer’s Guide

Lookup Stages Conditional Lookup Examples
Records 1-3, 6, and 9-12 fail the pre-lookup condition but are passed

on due to the Null Fill action. Records 4, 5, 7, and 8 pass the pre-

lookup condition and have successful lookup results. Records 13 and

14 pass the pre-lookup condition, fail the lookup condition, and are

passed on due to the Null Fill action if the lookup condition fails.

The final output after data passes through the Transformer stage is:

11 X Xcel (Null)

12 Z Zack (Null)

13 X (Null)

14 Z (Null)

Table 19-24 Final Output

Supplier_Code Supplier_Name Product

A Anderson Paint

B Brown Paint

B Brown Primer

B Brown Brushes

C Carson Wallpaper

C Carson Wallpaper

D Donner Paint

D Donner Varnish

E Edwards Wallpaper

F Fisher Brushes

X Xcel Stain

Z Zack Primer

X Varnish

Z Brushes

Table 19-23 Lookup Results (Continued)

Record # Supplier_Code Supplier_Name Supplier_Name_2
Mainframe Job Developer’s Guide 19-27

Conditional Lookup Examples Lookup Stages
19-28 Mainframe Job Developer’s Guide

20
Aggregator Stages

This chapter describes Aggregator stages, which group data from a

single input link and perform aggregation functions such as count,

sum, average, first, last, min, and max. The aggregated data is output

to a processing stage or a target stage via a single output link.

Using an Aggregator Stage
Aggregator stages have only one input link and one output link. The

input link must come from a source stage. When you edit an

Aggregator stage, the Aggregator Stage dialog box appears:
Mainframe Job Developer’s Guide 20-1

Defining Aggregator Input Data Aggregator Stages
This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has a General tab which contains an
optional description of the stage.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output link.
This page has an Aggregation tab where you specify the
aggregation functions. The Mapping tab is where you define the
mappings between input and output columns.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining Aggregator Input Data
Data to be aggregated is passed from a previous stage in the job

design and into the Aggregator stage via a single input link. The

properties of this link and the column definitions of the data are

described on the Inputs page in the Aggregator Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Aggregator stage.
Since only one input link is allowed, the link name is read-only.

General. Contains an optional description of the link.

Columns. Displayed by default. Contains a grid displaying the
column definitions for the data being written to the stage:

– Column name. The name of the column.
20-2 Mainframe Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Input column definitions are read-only in the Aggregator stage.

You must go back to the stage on your input link if you want to

change the column definitions.

Defining Aggregator Output Data
When you output data from an Aggregator stage, the properties of the

output link and the column definitions of the data are defined on the

Outputs page in the Aggregator Stage dialog box:
Mainframe Job Developer’s Guide 20-3

Defining Aggregator Output Data Aggregator Stages
The Outputs page has the following field and four tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Displayed by default. Select the aggregation type on this
tab and enter an optional description of the link. The Type field
contains two options:

– Group by sorts the input rows and then aggregates the data.

– Control break aggregates the data without sorting the input
rows. This is the default option.

Aggregation. Contains a grid specifying the columns to group by
and the aggregation functions for the data being output from the
stage. See "Aggregating Data" on page 20-5 for details on defining
the data aggregation.

Mapping. Specifies the mapping of input columns to output
columns. See "Mapping Data" on page 20-7 for details on defining
mappings.

Columns. Contains the column definitions for the data on the
output link. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over. For details on editing column definitions, see

Appendix D, "Editing Column Meta Data."
20-4 Mainframe Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
Aggregating Data
Your data sources may contain many thousands of records, especially

if they are being used for transaction processing. For example,

suppose you have a data source containing detailed information on

sales orders. Rather than passing all of this information through to

your data warehouse, you can summarize the information to make

analysis easier.

The Aggregator stage allows you to group by and summarize the

information on the input link. You can select multiple aggregation

functions for each column. In this example, you could average the

values in the QUANTITY_ORDERED, QUANTITY_SOLD, UNIT_PRICE,

and DISC_AMT columns, sum the values in the ITEM_ORDER_AMT,

ITEM_SALES_AMT, and BACK_ORDER_QTY columns, return only the

first values in PRODUCT_ID and PROD_DESC columns, and return

only the last values in ORDER_YY and ORDER_MM columns.

The Aggregation tab is used to select columns to group by and

specify the aggregation functions to perform on the input data:

The grid on this tab has the following columns:

Column name. The name of the column.

Group By. Specifies whether to group by the data in the column.
The default is to group by all columns except those being
aggregated. The Group By box is automatically cleared when you
select an aggregation function for a column.

Note Every column output from an Aggregator stage must be

either grouped by or aggregated.
Mainframe Job Developer’s Guide 20-5

Defining Aggregator Output Data Aggregator Stages
Min. Returns the lowest value in the column.

Max. Returns the highest value in the column.

Count. Counts the number of values in the column. (Records
containing null values do not increase the count.)

Sum. Totals the values in the column. This function is only
available for numeric SQL data types.

Average. Averages the values in the column. This function is only
available for numeric SQL data types.

First. Returns the first value in the column. This function is only
available with Control break aggregation.

Last. Returns the last value in the column. This function is only
available with Control break aggregation.

SQL Type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

You cannot change the SQL data type on the Aggregation tab.

You must go back to the stage on your input link if you want to

change the column definitions.

Table 20-1 shows the meta data for the columns created by the

aggregation functions.

Table 20-1 Aggregation Column Meta Data

Function Column Name SQL Type Precision Scale Nullable

Min x_MIN1

1 x represents the name of the input column being aggregated.

Same as
input

Same as
input

Same as
input

Yes

Max x_MAX Same as
input

Same as
input

Same as
input

Yes

Count x_COUNT Decimal 182 0 No

Sum x_SUM Decimal 182 Same as
input

Yes

Average x_AVG Decimal 182 Input
column
scale + 2

(max 18)2

Yes

First x_FIRST Same as
input

Same as
input

Same as
input

Yes

Last x_LAST Same as
input

Same as
input

Same as
input

Yes
20-6 Mainframe Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
Mapping Data
The Mapping tab is used to define the mappings between input and

output columns being passed through the Aggregator stage.

Note You can bypass this step if the Column push option is

selected in Designer options. Output columns are

automatically created for each output link, and mappings

between corresponding input and output columns are

defined, when you click OK to exit the stage.

This tab is divided into two panes, the left for the input link (and any

job parameters that have been defined) and the right for the output

link, and it shows the columns and the relationships between them:

In the left pane, the input column names are prefixed with the

aggregation function being performed. If more than one aggregation

function is being performed on a single column, the column name will

be listed for each function being performed. Names of grouped

columns are displayed without a prefix.

In the right pane, the output column derivations are also prefixed with

the aggregation function. The output column names are suffixed with

the aggregation function.

2 If Support extended decimal is selected in project properties, then the
precision (or the maximum scale of an average) is the maximum decimal size
specified.
Mainframe Job Developer’s Guide 20-7

Defining Aggregator Output Data Aggregator Stages
You can drag the splitter bar between the two panes to resize them

relative to one another. Vertical scroll bars allow you to scroll the view

up or down the column lists, as well as up or down the panes.

You can define column mappings from the Mapping tab in two ways:

Drag and Drop. This specifies that an output column is directly
derived from an input column. See "Using Drag and Drop" on
page 20-9 for details.

Auto-Match. This automatically sets output column derivations
from their matching input columns, based on name or location.
See "Using Column Auto-Match" on page 20-9 for details.

Derivation expressions cannot be specified on the Mapping tab. If

you need to perform data transformations, you must include a

Transformer stage elsewhere in your job design.

As mappings are defined, the output column names change from red

to black. A relationship line is drawn between the input column and

the output column.

Find Facility

If you are working on a complex job, there is a find facility to help you

locate a particular column or expression. To use the find facility, do

one of the following:

Click the Find button on the Mapping tab.

Select Find from the link shortcut menu.

The Find dialog box appears:

This dialog box has two tabs:

Column Names. Allows you to find a particular column.

Expression Text. Allows you to locate the occurrence of a
particular string within an output column expression.

To begin your search, go to the appropriate tab and select the link

name from the Link name drop-down list. (You can search for

expression text only on the output link.) Enter the text to search for in

the Find what field. Select the Match case and Match whole word
20-8 Mainframe Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
check boxes to narrow your search. On the Expression Text tab,

select Empty Expression to search for the next empty expression.

Using Drag and Drop

A simple way to specify mappings is to use the Mapping tab’s drag-

and-drop functionality. You can drag columns from your input link to

your output link to define each mapping.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link.

3 Release the mouse button to drop the selected cell.

You can also click the title bar displaying the name of the link and,

without releasing the mouse button, drag the mouse pointer to the

first Derivation cell within the target link. This will map all input

columns to the output columns based on location.

Using Column Auto-Match

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link.

To use auto-match:

1 Click the AutoMap button on the Mapping tab. The Column
Auto-Match dialog box appears:

2 Click Location match or Name match in the Match type area.
Mainframe Job Developer’s Guide 20-9

Defining Aggregator Output Data Aggregator Stages
If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore aggregate prefix. Select this check box to perform
the match based on the column names, ignoring the
aggregate prefix.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

3 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.
20-10 Mainframe Job Developer’s Guide

21
Sort Stages

This chapter describes Sort stages, which perform sorting on input

columns from a single input link. The sorted columns are output to a

processing stage or a target stage via a single output link.

Using a Sort Stage
Sort stages have only one input link and one output link. The input link

must come from a source stage. The sorted data can be output to

another processing stage or a target stage.

When you edit a Sort stage, the Sort Stage dialog box appears:
Mainframe Job Developer’s Guide 21-1

Defining Sort Input Data Sort Stages
This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has a General tab where you can
enter an optional description of the stage.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output link.
This page has a Sort By tab where you select the columns to be
sorted and specify the sort order. The Mapping tab is where you
define the mappings between input and output columns.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining Sort Input Data
Data to be sorted is passed from a previous stage in the job design

and into the Sort stage via a single input link. The properties of this

link and the column definitions of the data are described on the

Inputs page in the Sort Stage dialog box:

The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Sort stage. Since
only one input link is allowed, the link name is read-only.

General. Contains an optional description of the link.

Columns. Displayed by default. Contains a grid displaying the
column definitions for the data being written to the stage:

– Column name. The name of the column.
21-2 Mainframe Job Developer’s Guide

Sort Stages Defining Sort Output Data
– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

Input column definitions are read-only in the Sort stage. You must

go back to the stage on your input link if you want to change the

column definitions.

Defining Sort Output Data
When you output data from a Sort stage, the properties of the output

link and the column definitions of the data are defined on the

Outputs page in the Sort Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.
Mainframe Job Developer’s Guide 21-3

Defining Sort Output Data Sort Stages
General. Contains an optional description of the link.

Sort By. Displayed by default. Contains a list of available columns
to sort and specifies the sort order. See "Sorting Data" on
page 21-4 for details on defining the sort order.

Mapping. Specifies the mapping of input columns to output
columns. See "Mapping Data" on page 21-5 for details on defining
mappings.

Columns. Contains the column definitions for the data on the
output link. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over. For details on editing column definitions, see

Appendix D, "Editing Column Meta Data."

Sorting Data
The data sources for your data warehouse may organize information

in a manner that is efficient for managing day-to-day operations, but

is not helpful for making business decisions. For example, suppose

you want to analyze information about new employees. The data in

your employee database contains detailed information about all

employees, including their employee number, department, job title,

hire date, education level, salary, and phone number. Sorting the data

by hire date and manager will get you the information you need

faster.
21-4 Mainframe Job Developer’s Guide

Sort Stages Defining Sort Output Data
The Sort stage allows you to sort columns on the input link to suit

your requirements. Sort specifications are defined on the Sort By tab:

You can move a column from the Available columns list to the

Selected columns list by double-clicking the column name or

highlighting the column name and clicking >. To move all columns,

click >>. You can remove single columns from the Selected columns

list by double-clicking the column name or highlighting the column

name and clicking <. Remove all columns by clicking <<. Click Find to

search for a particular column in either list.

After you have selected the columns to be sorted on the Sort By tab,

you must specify the sort order. Click the Sort Order field next to

each column in the Selected columns list. A drop-down list box

appears with two sort options:

Ascending. This is the default setting. Select this option if the
input data in the specified column should be sorted in ascending
order.

Descending. Select this option if the input data in the specified
column should be sorted in descending order.

Use the arrow buttons to the right of the Selected columns list to

change the order of the columns being sorted. The first column is the

primary sort column and any remaining columns are sorted

secondarily.

Mapping Data
The Mapping tab is used to define the mappings between input and

output columns being passed through the Sort stage.
Mainframe Job Developer’s Guide 21-5

Defining Sort Output Data Sort Stages
Note You can bypass this step if the Column push option is

selected in Designer options. Output columns are

automatically created for each output link, and mappings

between corresponding input and output columns are

defined, when you click OK to exit the stage.

This tab is divided into two panes, the left for the input link (and any

job parameters that have been defined) and the right for the output

link, and it shows the columns and the relationships between them:

You can drag the splitter bar between the two panes to resize them

relative to one another. Vertical scroll bars allow you to scroll the view

up or down the column lists, as well as up or down the panes.

You can define column mappings from the Mapping tab in two ways:

Drag and Drop. This specifies that an output column is directly
derived from an input column. See "Using Drag and Drop" on
page 21-7 for details.

Auto-Match. This automatically sets output column derivations
from their matching input columns, based on name or location.
See "Using Column Auto-Match" on page 21-8 for details.

Derivation expressions cannot be specified on the Mapping tab. If

you need to perform data transformations, you must include a

Transformer stage elsewhere in your job design.

As mappings are defined, the output column names change from red

to black. A relationship line is drawn between the input column and

the output column.
21-6 Mainframe Job Developer’s Guide

Sort Stages Defining Sort Output Data
Find Facility

If you are working on a complex job, there is a find facility to help you

locate a particular column or expression. To use the find facility, do

one of the following:

Click the Find button on the Mapping tab.

Select Find from the link shortcut menu.

The Find dialog box appears:

This dialog box has two tabs:

Column Names. Allows you to find a particular column.

Expression Text. Allows you to locate the occurrence of a
particular string within an output column expression.

To begin your search, go to the appropriate tab and select the link

name from the Link name drop-down list. (You can search for

expression text only on the output link.) Enter the text to search for in

the Find what field. Select the Match case and Match whole word

check boxes to narrow your search. On the Expression Text tab,

select Empty Expression to search for the next empty expression.

Using Drag and Drop

A simple way to specify mappings is to use the Mapping tab’s drag-

and-drop functionality. You can drag columns from your input link to

your output link to define each mapping.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link.

3 Release the mouse button to drop the selected cell.

You can also click the title bar displaying the name of the link and,

without releasing the mouse button, drag the mouse pointer to the
Mainframe Job Developer’s Guide 21-7

Defining Sort Output Data Sort Stages
first Derivation cell within the target link. This will map all input

columns to the output columns based on location.

Using Column Auto-Match

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link.

To use auto-match:

1 Click the AutoMap button on the Mapping tab. The Column
Auto-Match dialog box appears:

2 Click Location match or Name match from the Match type
area.

If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.
21-8 Mainframe Job Developer’s Guide

Sort Stages Defining Sort Output Data
If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

3 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.
Mainframe Job Developer’s Guide 21-9

Defining Sort Output Data Sort Stages
21-10 Mainframe Job Developer’s Guide

22
External Routine Stages

This chapter describes External Routine stages, which are used to call

COBOL subroutines in libraries external to Ascential DataStage

Enterprise MVS Edition. Before you edit an External Routine stage,

you must first define the routine in the DataStage Repository.

Working with Mainframe Routines
In mainframe jobs, routines allow you to incorporate complex

processing or functionality specific to your environment in the COBOL

programs generated by Ascential DataStage. Some possible uses of

an external routine could include a call to a statistical analysis

program, an interface to a database type not supported by Ascential

DataStage Enterprise MVS Edition, or a call to an existing COBOL

program that performs a specialized function. Such a routine can be

written in any language that can be called by a COBOL program, such

as COBOL, Assembler, or C.

When you create, view, or edit a mainframe routine under the

Routines branch in the DataStage Manager or the Designer

Repository window, the Mainframe Routine dialog box appears.

This dialog box has three pages for external routines: General,
Creator, and Arguments.

There are three buttons in the Mainframe Routine dialog box:

Close. Closes the Mainframe Routine dialog box. If you have
any unsaved changes, you are prompted to save them.

Save. Saves the routine.

Help. Starts the Help system.
Mainframe Job Developer’s Guide 22-1

Working with Mainframe Routines External Routine Stages
Creating a Routine
To create a new routine, do one of the following:

In the Manager, select the Routines branch in the project tree and
choose File New Mainframe Routine… .

In the Designer Repository window, right-click on the Routines
branch and select New Mainframe Routine from the shortcut
menu.

The Mainframe Routine dialog box appears:

The General page is displayed by default. Enter general information

about the routine, including:

Routine name. Type the name (up to 8 characters) of the function
or subroutine. In mainframe terms, the routine name is the name
of an entry point in a member of a load or object library. The
library member may also contain other entry points with other
names. The routine name must match the external subroutine
name if Dynamic invocation (the default) is selected, and
automatically appears in the External subroutine name field.

Type. Select the type of routine, in this case, External Routine.
(External source routines are detailed in Chapter 13, "External
Source Stages." External target routines are detailed in
Chapter 14, "External Target Stages.")

Category. Type or browse for a category name to store the
routine under in the Repository. If you do not enter a name in this
field, the routine is created under the main Routines branch.

Platform. Select the operating system that the COBOL subroutine
will run on. (OS/390 is the only platform currently supported.)
22-2 Mainframe Job Developer’s Guide

External Routine Stages Working with Mainframe Routines
External subroutine name. Type the name of the load or object
library member that contains the subroutine or function entry
point. If dynamic invocation is selected, then the external
subroutine name must match the routine name. If the invocation
method is static, then the two names need not match.

Invocation method. Select the invocation method for the
routine. Dynamic invocation calls the routine at run-time. Static
invocation embeds the routine within the program. Dynamic is
the default.

Library path. Type the pathname of the library that contains the
routine member. JCL extension variables can be used. This field is
required for static invocation.

Short description. Type an optional brief description of the
routine. The text entered in this field is displayed when you
choose View Details from the DataStage Manager window or
print a report. It also appears in the External Routine stage editor.

Long description. Type an optional detailed description of the
routine.

Next, select the Creator page to enter creator information:

The Creator page allows you to specify information about the creator

and version number of the routine, including:

Vendor. Type the name of the company that created the routine.

Author. Type the name of the person who created the routine.

Version. Type the version number of the routine. This is used
when the routine is imported. The Version field contains a three-
part version number, for example, 2.0.0. The first part of this
Mainframe Job Developer’s Guide 22-3

Working with Mainframe Routines External Routine Stages
number is an internal number used to check compatibility
between the routine and the Ascential DataStage system, and
cannot be changed. The second part of this number represents the
release number. This number should be incremented when major
changes are made to the routine definition or the underlying code.
The new release of the routine supersedes any previous release.
Any jobs using the routine use the new release. The last part of
this number marks intermediate releases when a minor change or
fix has taken place.

Copyright. Type the copyright information.

The last step is to define routine arguments by selecting the

Arguments page:

Arguments are optional for mainframe routines. To load arguments

from an existing routine, click Load. To create a new argument, type

directly in the Arguments page grid or, if you need to specify COBOL

attributes, do one of the following:

Right-click in the column area and select Edit row… from the
shortcut menu.

Press Ctrl-E.
22-4 Mainframe Job Developer’s Guide

External Routine Stages Working with Mainframe Routines
The Edit Routine Argument Meta Data dialog box appears:

The top pane contains the same fields that appear on the Arguments

page grid. Enter the following information for each argument you

want to define:

Argument name. Type the name of the argument to be passed to
the routine.

I/O type. Select the direction to pass the data. There are three
options:

– Input. A value is passed from the data source to the external
routine. The value is mapped to an input row element.

– Output. A value is returned from the external routine to the
stage. The value is mapped to an output column.

– Both. A value is passed from the data source to the external
routine and returned from the external routine to the stage.
The value is mapped to an input row element, and later
mapped to an output column.

Native type. Select the native data type of the argument value
from the drop-down list.

Length. Type a number representing the length or precision of
the argument.

Scale. If the argument is numeric, type a number to define the
number of digits to the right of the decimal point.

Description. Type an optional description of the argument.
Mainframe Job Developer’s Guide 22-5

Working with Mainframe Routines External Routine Stages
The bottom pane of the Edit Routine Argument Meta Data dialog

box displays the COBOL page by default. Use this page to enter any

required COBOL information for the mainframe argument:

Usage. Select the COBOL USAGE clause from the drop-down list.
This specifies which COBOL format the column will be read in.
These formats map to the formats in the Native type field, and
changing one will normally change the other. Possible values are:

– COMP. Used with BINARY native types.

– COMP-1. Used with single-precision FLOAT native types.

– COMP-2. Used with double-precision FLOAT native types.

– COMP-3. Packed decimal, used with DECIMAL native types.

– COMP-5. Used with NATIVE BINARY native types.

– DISPLAY. Zoned decimal, used with DISPLAY_NUMERIC or
CHARACTER native types.

– DISPLAY-1. Double-byte zoned decimal, used with
GRAPHIC_G or GRAPHIC_N.

Sign indicator. Select Signed or blank from the drop-down list
to specify whether the argument can be signed or not. The default
is Signed for numeric data types and blank for all other types.

Sign option. If the argument is signed, select the location of the
sign in the data from the drop-down list. Choose from the
following:

– LEADING. The sign is the first byte of storage.

– TRAILING. The sign is the last byte of storage.

– LEADING SEPARATE. The sign is in a separate byte that has
been added to the beginning of storage.

– TRAILING SEPARATE. The sign is in a separate byte that has
been added to the end of storage.

Selecting either LEADING SEPARATE or TRAILING SEPARATE

will increase the storage length of the column by one byte.

Sync indicator. Select SYNC or blank from the drop-down list to
indicate whether the argument is a COBOL-SYNCHRONIZED
clause or not. The default is blank.

Storage length. Gives the storage length in bytes of the
argument as defined. This field is derived and cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the argument definition and cannot be edited.
22-6 Mainframe Job Developer’s Guide

External Routine Stages Working with Mainframe Routines
The buttons at the bottom of the Edit Routine Argument Meta
Data dialog box allow you to continue adding or editing arguments,

or to save and close. The buttons are:

< Previous and Next >. Displays the meta data in the previous or
next argument. These buttons are available only when a previous
or next argument exists. If there are unsaved changes to the
current argument, you are prompted to save them before
continuing.

Close. Closes the Edit Routine Argument Meta Data dialog
box. If you have any unsaved changes, you are prompted to save
them.

Apply. Saves changes to the current argument.

Reset. Removes all changes made to the argument since the last
time you applied changes.

Help. Starts the Help system.

When you are finished, click Save in the Mainframe Routine dialog

box to save the routine definition.

Viewing and Editing a Routine
You can view and edit subroutine definitions in the Manager by

selecting the routine in the display area and doing one of the

following:

Choose File Properties.

Select Properties from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the subroutine in the display area.

To view or edit existing routines in the Designer, either double-click

the routine in the Repository window, or highlight the routine and

select Properties from the short cut menu.

The Mainframe Routine dialog box appears. You can edit any of the

fields and options on any of the pages. If you make any changes, be

sure to save them before closing the Mainframe Routine dialog box.

Copying a Routine
You can copy an existing routine in the Manager by selecting it in the

display area and doing one of the following:

Choose File Copy.

Select Copy from the shortcut menu.
Mainframe Job Developer’s Guide 22-7

Using an External Routine Stage External Routine Stages
Click the Copy button on the toolbar.

To copy a routine in the Designer, highlight the routine in the

Routines branch of the Repository window and select CreateCopy

from the shortcut menu.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears allowing you to rename the copy immediately.

Renaming a Routine
You can rename an existing routine in either the DataStage Manager

or the Designer. To rename an item, select it in the Manager display

area or the Designer Repository window, and do one of the following:

Click the routine again. An edit box appears and you can type a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Select Rename from the shortcut menu. An edit box appears and
you can enter a different name or edit the existing one. Save the
new name by pressing Enter or clicking outside the edit box.

Double-click the routine. The Mainframe Routine dialog box
appears and you can edit the Routine name field. Click Save,
then Close.

Choose File Rename (Manager only). An edit box appears and
you can type a different name or edit the existing one. Save the
new name by pressing Enter or by clicking outside the edit box.

Note If you rename a routine and the Invocation method is

dynamic, the external subroutine name is automatically set

to match the routine name.

Using an External Routine Stage
External Routine stages have only one input link and one output link.

Input links can come from source stages or processing stages, and

output links can be to processing stages or target stages. Each

External Routine stage can call only one routine.
22-8 Mainframe Job Developer’s Guide

External Routine Stages Defining External Routine Input Data
When you edit the External Routine stage, the External Routine
Stage dialog box appears:

This dialog box has three pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has a General tab which contains an
optional description of the stage.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output link.
This page has a Rtn. Mapping tab where you define the
mappings between input columns and input arguments. The
Mapping tab is where you define the mappings between input
columns, output arguments, and output columns.

Click OK to close this dialog box. Changes are saved when you save

the job.

Defining External Routine Input Data
Data to be sent through this stage is passed from a previous stage in

the job design and into the External Routine stage via a single input

link. The properties of this link and the column definitions of the data
Mainframe Job Developer’s Guide 22-9

Defining External Routine Input Data External Routine Stages
are described on the Inputs page in the External Routine Stage

dialog box:

The Inputs page has the following field and two tabs:

Input name. The name of the input link to the External Routine
stage. Since only one input link is allowed, the link name is read-
only.

General. Contains an optional description of the link.

Columns. Displayed by default. Contains a grid displaying the
column definitions for the data being written to the stage:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.
22-10 Mainframe Job Developer’s Guide

External Routine Stages Defining External Routine Output Data
Input column definitions are read-only in the External Routine

stage. You must go back to the stage on your input link if you want

to change the column definitions.

Defining External Routine Output Data
When you output data from an External Routine stage, the properties

of the output link and the column definitions of the data are defined

on the Outputs page in the External Routine Stage dialog box:

The Outputs page has the following field and four tabs:

Output name. The name of the output link. Since only one output
link is allowed, the link name is read-only.

General. Displayed by default. This tab allows you to select the
routine to be called and enter an optional description of the link. It
contains the following fields:

– Category. The category where the routine is stored in the
Repository. Select a category from the drop-down list.

– Routine name. The name of the routine. The drop-down list
displays all routines saved under the category you selected.

– Pass arguments as record. Select this check box to pass the
routine arguments as a single record, with everything at the 01
level.

– Routine description. Displays a read-only description of the
routine as defined in the Manager.
Mainframe Job Developer’s Guide 22-11

Defining External Routine Output Data External Routine Stages
Rtn. Mapping. Specifies the mapping of input columns to input
arguments. This tab is made available when you select a routine
on the General tab. For details on defining routine mappings, see
"Mapping Routines and Data" on page 22-12.

Mapping. Specifies the mapping of input columns and output
arguments to output columns. See "Mapping Routines and Data"
on page 22-12 for details on defining mappings.

Columns. Contains the column definitions for the data on the
output link. This grid has the following columns:

– Column name. The name of the column.

– SQL type. The SQL data type. For details about the data types
supported in mainframe jobs, see Appendix B, "Data Type
Definitions and Mappings."

– Length. The data precision. This is the number of characters
for Char data, the maximum number of characters for VarChar
data, the total number of digits for numeric data types, and the
number of digits in the microsecond portion of Timestamp
data.

– Scale. The data scale factor. This is the number of digits to the
right of the decimal point for Decimal data, and zero for all
other data types.

– Nullable. Indicates whether the column can contain a null
value.

– Description. A text description of the column.

You can Load columns from a table definition in the Repository, or

enter column definitions manually and click Save As… to save

them as a table definition, a CFD file, or a DCLGen file. Click Clear
All to start over. For details on editing column definitions, see

Appendix D, "Editing Column Meta Data."

Mapping Routines and Data
There are two sets of mappings that can be performed in External

Routine stages. The first set defines the mappings from input columns

to input arguments, and is performed on the Rtn. Mapping tab. The

second set defines the mappings from input columns and output

arguments to output columns, and is performed on the Mapping tab.

The Rtn. Mapping tab is available only if the routine you select on

the General tab contains arguments with an I/O type of Input or

Both. This page is divided into two panes, the left for input columns
22-12 Mainframe Job Developer’s Guide

External Routine Stages Defining External Routine Output Data
(and any job parameters that have been defined), and the right for

input arguments, and shows the relationships between them:

The Mapping tab is similarly divided into two panes. The left pane

displays input columns, routine arguments that have an I/O type of

Output or Both, and any job parameters that have been defined. The

right pane displays output columns. When you simply want to move

values that are not used by the external routine through the stage, you

map input columns to output columns.

As you define the mappings, relationship lines appear between the

two panes:

Note If the Column push option is selected in Designer options,

and you click OK on the Stage page without editing the
Mainframe Job Developer’s Guide 22-13

Defining External Routine Output Data External Routine Stages
Mapping tab, Ascential DataStage automatically creates

output columns and defines mappings from the input

columns to the output columns. Any output arguments that

exist are not mapped.

On both the Rtn. Mapping and Mapping tabs you can drag the

splitter bar between the two panes to resize them relative to one

another. Vertical scroll bars allow you to scroll the view up or down

the column lists, as well as up or down the panes.

You can define mappings from the Rtn. Mapping and Mapping tabs

in two ways:

Drag and Drop. This specifies that the argument or column is
directly derived from an input column or argument. See "Using
Drag and Drop" on page 22-15 for details.

Auto-Match. This automatically sets output column derivations
from their matching input columns, based on name or location.
See "Using Column Auto-Match" on page 22-15 for details.

Derivation expressions cannot be specified on the Rtn. Mapping or

Mapping tabs. If you need to perform data transformations, you must

include a Transformer stage elsewhere in your job design.

As mappings are defined, the output column names change from red

to black. A relationship line is drawn between the input column and

input argument on the Rtn. Mapping tab, or between the input

column or output argument and the output column on the Mapping

tab.

Find Facility

If you are working on a complex job, there is a find facility to help you

locate a particular column or expression. To use the find facility, do

one of the following:

Click the Find button on the Mapping tab.

Select Find from the link shortcut menu.

The Find dialog box appears:
22-14 Mainframe Job Developer’s Guide

External Routine Stages Defining External Routine Output Data
This dialog box has two tabs:

Column Names. Allows you to find a particular column.

Expression Text. Allows you to locate the occurrence of a
particular string within an output column expression.

To begin your search, go to the appropriate tab and select the link

name from the Link name drop-down list. (You can search for

expression text only on the output link.) Enter the text to search for in

the Find what field. Select the Match case and Match whole word

check boxes to narrow your search. On the Expression Text tab,

select Empty Expression to search for the next empty expression.

Using Drag and Drop

A simple way to specify mappings is to use the drag-and-drop

functionality on the Rtn. Mapping and Mapping tabs. You can drag

columns from your input link to your output link to define each

mapping.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link.

3 Release the mouse button to drop the selected cell.

You can also click the title bar displaying the name of the link and,

without releasing the mouse button, drag the mouse pointer to the

first Derivation cell within the target link. This will map all input

columns to the output columns based on location.

Using Column Auto-Match

The column auto-match facility allows you to automatically set

columns on an output link to be derived from matching columns on

an input link.
Mainframe Job Developer’s Guide 22-15

Defining External Routine Output Data External Routine Stages
To use auto-match:

1 Click the AutoMap button on the Mapping tab. The Column
Auto-Match dialog box appears:

2 Click Location match or Name match from the Match type
area.

If you click Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you click Name match, you need to specify further information

for the input and output columns as follows:

Input Columns:

– Match all columns or Match selected columns. Click
one of these to specify whether all input link columns
should be matched, or only those currently selected on the
input link.

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.
22-16 Mainframe Job Developer’s Guide

External Routine Stages Defining External Routine Output Data
Output Columns:

– Ignore prefix. Allows you to optionally specify characters
at the front of the column name that should be ignored
during the matching procedure.

– Ignore suffix. Allows you to optionally specify characters
at the end of the column name that should be ignored
during the matching procedure.

Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored and
select Ignore case, then both IP and ip will be ignored.

3 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.
Mainframe Job Developer’s Guide 22-17

Defining External Routine Output Data External Routine Stages
22-18 Mainframe Job Developer’s Guide

23
FTP Stages

This chapter describes FTP (file transfer protocol) stages, which are

used to transfer files to another machine. This stage collects the

information required to generate the job control language (JCL) to

perform the file transfer. File retrieval from the target machine is not

supported.

Using an FTP Stage
The FTP stage is a post-processing stage that can have one or more

input links. The input links can come from Fixed-Width Flat File

stages, DB2 Load Ready stages, or Delimited Flat File stages. FTP

stages do not have output links.
Mainframe Job Developer’s Guide 23-1

Using an FTP Stage FTP Stages
When you edit an FTP stage, the FTP Stage dialog box appears:

This dialog box has the following pages:

Stage. Displays the name of the stage you are editing. The stage
name is editable. This page has a General tab that allows you to
specify the attributes of the target machine where your file will be
transferred. See "Specifying Target Machine Attributes" below for
details.

Inputs. Specifies the filename of the data input link, as well as the
destination filename and platform type.

Click OK to close this dialog box. Changes are saved when you save

the job.

Specifying Target Machine Attributes
The General tab on the Stage page allows you to define the

attributes of the target machine. It contains the following fields:

Machine Profile. A configured name that identifies the machine
connection. Select a machine name from the drop-down list. This
list box contains all the machine profiles defined under the
Machine Profiles branch in the Repository. For details on
creating new machine profiles, see "Creating a Machine Profile" on
page 24-12.

If you change the information for an existing machine profile, the

changes are used only in the FTP stage and are not propagated

back to the saved profile.

File exchange method. The method of file transfer to be used.
Select FTP (the default) or Connect:Direct.
23-2 Mainframe Job Developer’s Guide

FTP Stages Using an FTP Stage
Host name/IP address. The IP address or a fully qualified host
name for the target machine. This field is automatically filled in if
you select an existing machine profile.

Port. The network port ID for the FTP or Connect:Direct
connection. The default port is 21 for FTP or 1364 for
Connect:Direct.

User name. The user name or account to use for target system
login. This field is automatically filled in if you select an existing
machine profile.

Password. The password associated with the user name for
target system login. This field is automatically filled in if you select
an existing machine profile.

Transfer mode. The file transfer mode. The transfer mode must
match the characteristic of the input data files. All input files must
have the same mode, and only one mode can be utilized per
transfer. You can enter your own transfer mode or choose one of
the following options, depending on the file exchange method.

FTP options are:

– Block. Transfers files as a series of data blocks. The blocks are
preceded by one or more header bytes which contain a
descriptor code and a count field indicating the total length of
the data block.

– Compress. Compresses files prior to transferring them.

– Stream. Transfers files as a stream of bytes. There is no
restriction on the representation type used; record structures
are allowed.

Connect:Direct options are:

– Compress. Compresses text data or single-character repetitive
data prior to transfer.

– Compress Extended. Searches for repetitive strings of
characters in the data and compresses them to codes. This
option is recommended when line transmission speeds are
limited, CPU is available, and data is repetitive.

Transfer type. The file transfer type. The transfer type must
match the characteristic of the input data files. All input files must
have the same type, and only one type can be utilized per transfer.
You can enter your own transfer type or choose one of the
following options:

– ASCII. Used for text files.

– EBCDIC. Used for EBCDIC (Extended Binary Coded Decimal
Interchange Code) data, which is generally found in IBM
mainframe environments.
Mainframe Job Developer’s Guide 23-3

Defining FTP Input Data FTP Stages
– Binary. Used for nontext files such as program files and
images.

FTP Service. The FTP service type. Active FTP service is for an
active connection, which is generally used when command
processing is required. This is the default. The Passive option is
available if you need to establish a connection through a firewall
that does not allow inbound communication.

Description. An optional description of the stage.

Defining FTP Input Data
Data from the input links is passed from previous source stages in the

job design to the FTP stage. The properties of these links, the target

platform, and the source and destination filenames are defined on the

Inputs page in the FTP Stage dialog box:

The Inputs page has the following field and tab:

Input name. The name of the input link to the FTP stage. Select
the link you want to edit from the Input name drop-down list.
This list displays all the input links to the FTP stage. If there is only
one input link, the field is read-only.

General. Displays the input and destination filenames, the target
platform, and an optional description of the link.

– The File name field is read-only and displays the name of the
file being passed from the previous stage in the job design.

– The Destination file name field is where you specify the
name of the file on the target system.
23-4 Mainframe Job Developer’s Guide

FTP Stages Defining FTP Input Data
– The Transfer to field allows you to select the type of machine
where data will be transferred. The default is Mainframe.
Mainframe Job Developer’s Guide 23-5

Defining FTP Input Data FTP Stages
23-6 Mainframe Job Developer’s Guide

24
Code Generation and Job Upload

This chapter describes how to generate code for a mainframe job and

upload the job to the mainframe machine. When you have edited all

the stages in a job design, you can validate the job design and

generate code. You then transfer the code to the mainframe to be

compiled and run.

Generating Code
When you have finished developing a mainframe job, you are ready

to generate code for the job. Mainframe job code is generated using

the DataStage Designer. To generate code, open a job in the Designer

and do one of the following:

Choose File Generate Code.

Click the Generate Code button on the toolbar.
Mainframe Job Developer’s Guide 24-1

Generating Code Code Generation and Job Upload
The Code generation dialog box appears:

This dialog box contains the following fields and buttons:

Code generation path. The base location for the COBOL
program and JCL files. Each mainframe job holds the COBOL
program and JCL files in a subdirectory of the base location
reflecting the server host name, project name, and job. For
example, where the base location is:

C:\Program Files\ Ascential\DataStage\Gencode

a complete pathname might be:

C:\Program Files\Ascential\DataStage\Gencode\R101\ datastage\mjob1

You can also specify the code generation location in Designer

options. If you have already entered a pathname there, it will

automatically appear in the Code generation path field. If you

have not, then a default pathname is created. You can edit this

pathname.

Cobol program file name. The name comprises up to eight
alphanumeric characters. The first character must be alphabetic.
The default name is DSn, where n is the internal job number. You
can edit this name.

Compile JCL file name. This can be up to eight alphanumeric
characters. The default name is DSnC, where n is the internal job
number. You can edit this name.

Run JCL file name. This can be up to eight alphanumeric
characters. The default name is DSnX, where n is the internal job
number. You can edit this name.
24-2 Mainframe Job Developer’s Guide

Code Generation and Job Upload Generating Code
Trace runtime information. Choose one of the options to
produce run-time information regarding the program flow or data
being read and written:

– None. No information is generated. This is the default.

– Program flow. The COBOL program is generated with a
DISPLAY of every paragraph name as it is executed. The
paragraph names are indented to reflect the nesting of
PERFORMs.

– Data flow. Data is printed as it is being read or written. For all
source and target stages except Relational, the entire buffer is
printed without columns being identified. For Relational
stages, individual column values in the SELECT, INSERT, or
UPDATE statements are printed.

– Program and Data flow. Both the program flow and the data
flow are printed.

IMS Program Type. This field is available only if there is an IMS
stage in the job. Select the type of IMS program to generate: BMP
or DLI (the default).

Generate COPY statements for customization. Select this
check box if you want to customize the DataStage-generated
COBOL program. You can use this option to perform a task at the
beginning of the program, the end, or both. For details see "Code
Customization" on page 24-5.

Copy library prefix. This field allows you to manage several
versions of the COPYLIB members used for code customization.
For more information, see "Code Customization" on page 24-5.

Generate. Click this button to validate your job design and
generate the COBOL program and JCL files. Once you begin, the
Generate button changes to a Cancel button, allowing you to
stop the code generation. The Progress bar displays the progress
of the code generation process, and relevant status messages
about job validation and code generation appear in the Status
window.

View. Click this button to view the generated COBOL and JCL
files. You can select the file you want to view from a pop-up menu
that is available after code is successfully generated. Microsoft
Notepad is the default viewer, but you can specify a different tool
in Designer options. Choose Tools Options…, select the
Mainframe branch under Default in the options tree, and in the
Source Viewer field, type or browse for the pathname of your
preferred tool.

Upload job… . This button is available after you successfully
generate code. It opens the Remote System dialog box, allowing
you to connect to the target mainframe for job upload.
Mainframe Job Developer’s Guide 24-3

Generating Code Code Generation and Job Upload
Close. Click this button to close the Code generation dialog box.
The code generation path and the names of the generated COBOL
and JCL files are automatically saved with the job.

Help. Click this button to start the Help system.

Job Validation
Code generation first validates your job design. If all stages validate

successfully, then code is generated. If validation fails, code

generation stops and error messages are displayed for all stages that

contain errors. Stages with errors are then highlighted in red on the

Designer canvas.

Status messages about validation are displayed in the Status

window.

Validation of a mainframe job design involves:

Checking that all stages in the job are connected in one
continuous flow, and that each stage has the required number of
input and output links

Checking the expressions used in each stage for syntax and
semantic correctness

Checking the column mappings to ensure they are data type
compatible

Tip During code generation Ascential DataStage sets flags

indicating which stages validate successfully. If you

generate code for a job, then you view a stage in your job

design without making changes, click Cancel instead of OK

to close the stage editor. Next time you generate code, job

validation will bypass this stage, saving time. (This does not

apply if you selected Autosave job before compile/
generate in Designer options.)

Generated Files
Three files are produced during code generation:

A COBOL program file, which contains the actual COBOL code that
has been generated. Only one COBOL program is generated for a
job, regardless of how many stages it contains.

A JCL compile file, which contains the JCL that controls the
compilation of the COBOL code on the target mainframe machine.

A JCL run file, which contains the JCL that controls the running of
the job on the mainframe once it has been compiled.
24-4 Mainframe Job Developer’s Guide

Code Generation and Job Upload Generating Code
After code generation is successful, the Status window displays the

names and locations of the generated files, and indicates the database

name and user name used by each relational stage.

Code Customization
There are three ways you can customize code in DataStage

mainframe jobs:

You can change the text associated with various warning and error
messages. This text is in the ARDTMSG1, ARDTMSG2,
ARDTIMSG, and RTLMSGS COPYLIB members.

You can use the Generate COPY statements for
customization check box in the Code generation dialog box to
generate other COPY statements. This method allows you to
insert your own code into the program by using the ARDTUFCT,
ARDTUFDF, ARDTUDAT, ARDTUBGN, ARDTUEND, and
ARDTUCOD COPYLIB members.

You can use the Copy library prefix field in the Code
generation dialog box to manage several versions of the
COPYLIB members mentioned above.

Note that these options are not dependent on one another. You can

use any or all of these methods to customize the DataStage-generated

code.

Changing Warning and Error Message Text

All COBOL programs generated by Ascential DataStage include three

COPY statements. These statements are generated into the

WORKING-STORAGE section and are used for COBOL data structures

that contain message text strings:

COPY ARDTMSG1. This statement is used for process log
message texts. These are the messages that are displayed at the
end of the job and show run statistics.

COPY ARDTMSG2. This statement is used for messages related
to file processing errors.

COPY ARDTIMSG. This statement is used for messages related
to IMS errors.

COPY RTLMSGS. This statement is used for messages related to
errors and warnings from the run-time library.

If you change the text in these members, be sure that you do not

change the data structures themselves.
Mainframe Job Developer’s Guide 24-5

Generating Code Code Generation and Job Upload
Generating COPY Statements for Customization

When you select Generate COPY statements for customization

in the Code generation dialog box, Ascential DataStage provides

several places in the generated COBOL program that you can

customize. You can add code to be executed at program initialization,

program termination, or both. However, you cannot add code that

would affect the row-by-row processing of the generated program.

When you use this method, six additional COPY statements are added

to the generated COBOL program:

COPY ARDTUFCT. This statement is generated at the end of the
FILE-CONTROL paragraph in the ENVIRONMENT DIVISION. You
can use this to add SELECT statements to the program.

COPY ARDTUFDF. This statement is generated at the end of the
FILE SECTION in the DATA DIVISION. You can use this to add FD
statements to the program.

COPY ARDTUDAT. This statement is generated just before the
PROCEDURE DIVISION statement. You can use this to add
WORKING-STORAGE variables and/or a LINKAGE SECTION to the
program.

COPY ARDTUBGN. This statement is generated just after the
PROCEDURE DIVISION statement. You can use this to add your
own program initialization code. If you included a LINKAGE
SECTION in ARDTUDAT, you can use this to add the USING clause
to the PROCEDURE DIVISION statement.

COPY ARDTUEND. This statement is generated just before each
GOBACK statement. You can use this to add your own program
termination code.

COPY ARDTUCOD. This statement is generated as the last
statement in the COBOL program. You use this to add your own
paragraphs to the code. These paragraphs are those which are
PERFORMed from the code in ARDTUBGN and ARDTUEND.

Ascential DataStage provides default versions of these COPYLIB

members. As provided, ARDTUFCT, ARDTUFDF, ARDTUDAT,

ARDTUEND, and ARDTUCOD contain only comments, and

ARDTUBGN contains comments and a period.

Using the COPYLIB Prefix

The Copy library prefix field in the Code generation dialog box

allows you to create several versions of the included COPYLIB

members. This is useful if some of your DataStage jobs require one

type of customization and some require another.
24-6 Mainframe Job Developer’s Guide

Code Generation and Job Upload Generating Code
By default, the prefix for the COPY members is ARDT. If this prefix is

used, the COPY statements are generated as described above. If you

enter your own prefix in the Copy library prefix field, the COPY

statements are generated as follows:

COPY prefixMSG1.
COPY prefixMSG2.
COPY prefixIMSG.
COPY prefixMSGS.
COPY prefixUFCT.
COPY prefixUFDF.
COPY prefixUDAT.
COPY prefixUBGN.
COPY prefixUEND.
COPY prefixUCOD.

The prefix must be 1-4 characters long and convertible to uppercase.

The first character of the prefix must be A-Z, #, $, or @. The other

characters must be A-Z, 0-9, #, $, or @. If you change the prefix, you

must make sure that COPYLIB members exist with those names; note

that COPYLIB members are subject to COBOL validation rules.

COPY Statement Results

Your selections in the Code generation dialog box determine how

the COPY statements are generated into the COBOL program. You can

select the Generate COPY statements for customization check

box, you can specify your own prefix in the Copy library prefix field,

or you can do both. Table 24-1 describes the actual COPY statements

that are generated based on your selections.

Table 24-1 Actual COPY Statements Generated

Default COPYLIB
Prefix (ARDT) Used

User-Specified
COPYLIB Prefix

“Generate COPY
Statements for
Customization” check
box is not selected

COPY ARDTMSG1

COPY ARDTMSG2

COPY RTLMSGS

COPY prefixMSG1

COPY prefixMSG2

COPY prefixMSGS

“Generate COPY
Statements for
Customization” check
box is selected

COPY ARDTMSG1

COPY ARDTMSG2

COPY RTLMSGS

COPY ARDTUFCT

COPY ARDTUFDF

COPY ARDTUDAT

COPY ARDTUBGN

COPY ARDTUEND

COPY ARDTUCOD

COPY prefixMSG1

COPY prefixMSG2

COPY prefixMSGS

COPY prefixUFCT

COPY prefixUFDF

COPY prefixUDAT

COPY prefixUBGN

COPY prefixUEND

COPY prefixUCOD
Mainframe Job Developer’s Guide 24-7

Uploading Jobs Code Generation and Job Upload
Uploading Jobs
Once you have successfully generated code for a mainframe job, you

can upload the files to the target mainframe, where the job is

compiled and run. If you make changes to a job, you must regenerate

code before you can upload the job.

Jobs can be uploaded from the DataStage Designer or the DataStage

Manager by doing one of the following:

From the Designer, open the job and choose File Upload Job.
Or, click Upload job… in the Code generation dialog box after
you have successfully generated code.

From the Manager, select the Jobs branch in the project tree,
highlight the job in the display area, and choose Tools Upload
Job.

The Remote System dialog box appears, allowing you to specify

information about connecting to the target mainframe system:

This dialog box contains the following fields:

Machine profile. A configured name that identifies the
mainframe machine connection. Select a machine name from the
drop-down list. This list box contains all the machine profiles
defined under the Machine Profiles branch in the Repository. For
details on creating new machine profiles, see "Working with
Machine Profiles" on page 24-11.

Platform. The mainframe platform type. Since OS/390 is the only
platform currently supported, this field is read-only.

IP Host name/address. The IP address or a fully qualified host
name.

User name. The user name or account to use for host system
login.
24-8 Mainframe Job Developer’s Guide

Code Generation and Job Upload Uploading Jobs
Password. The password associated with the user name for host
system login.

Source library. The library on the remote system where
mainframe source jobs will be transferred.

Compile JCL library. The library on the remote system where
where JCL compile files will be transferred.

Run JCL library. The library on the remote system where JCL
run files will be transferred.

Object library location. The library on the remote system where
compiler output will be transferred.

Load library location. The library on the remote system where
executable programs will be transferred.

DBRM library location. The library on the remote system where
information about a DB2 program will be transferred.

Jobcard accounting information. Identification information for
the jobcard.

FTP Service. The FTP service type. Active FTP service is for an
active connection, which is generally used when command
processing is required. This is the default. The Passive option is
available if you need to establish a connection through a firewall
that does not allow inbound communication.

Port. The network port ID for the FTP connection. The default port
is 21.

Transfer type. The FTP transfer type. Select ASCII, BINARY, or
quote type B 1, or enter your own transfer type using the FTP
quote command.

If you select an existing machine profile in the Remote System

dialog box, the host name and address, user name and password, and

library locations are automatically filled in. You can edit these fields,

but your changes are not saved. When you are finished, click

Connect to establish the mainframe connection.
Mainframe Job Developer’s Guide 24-9

Uploading Jobs Code Generation and Job Upload
Once you have successfully connected to the target machine, the Job
Upload dialog box appears, allowing you to actually upload the job:

This dialog box has two display areas: one for the Local System and

one for the Remote System. It contains the following fields:

Jobs. The names of the jobs available for upload. If you invoked
Job Upload from the Designer, only the name of the job you are
currently working on is displayed. If you invoked Job Upload
from the Manager, the names of all jobs in the project are
displayed and you can upload several jobs at a time.

Files in job. The files belonging to the selected job. This field is
read-only.

Select Transfer Files. The files to upload. You can choose from
three options:

– All. Uploads the COBOL source, compile JCL, and run JCL
files.

– JCL Only. Uploads only the compile JCL and run JCL files.

– COBOL Only. Uploads only the COBOL source file.

Source library. The name of the source library on the remote
system that you specified in the Remote System dialog box. You
can edit this field, but your changes are not saved.

Compile library. The name of the compile library on the remote
system that you specified in the Remote System dialog box. You
can edit this field, but your changes are not saved.

Run library. The name of the run library on the remote system
that you specified in the Remote System dialog box. You can
edit this field, but your changes are not saved.
24-10 Mainframe Job Developer’s Guide

Code Generation and Job Upload Working with Machine Profiles
Transferred files. The files transferred to the remote system.
This field is read-only.

When you are ready to start uploading a job, click Start Transfer. The

names of the files in the job appear in the Files in job window. After

the files are uploaded, the filenames appear in the Transferred files

window.

Note Before uploading a job, check to see if the directory on the

target machine is full. If the directory is full, the files cannot

be uploaded. However, the filenames still appear in the

Transferred files window if you click Start Transfer.
Compressing the partitioned data sets on the target

machine is recommended in this situation.

If you want to upload a job to another mainframe machine, click New
Connection. The Remote System dialog box appears, allowing you

to select a different machine connection.

COBOL Compiler Options
Ascential DataStage uses the following COBOL compiler options

when compiling the generated COBOL source: APOST, LIB, NONAME,

NODYNAM, and RENT. For a complete explanation of each option,

refer to the latest edition of IBM COBOL for OS/390 and VM

Programming Guide.

Working with Machine Profiles
A machine profile defines the connection to a mainframe machine.

Machine profiles are created in the DataStage Manager or the

Designer Repository window. You can choose to create a machine

profile before you upload a job, or you can enter the connection

details and library names in the Remote System dialog box at

upload time (however, these specifications are not saved). If you will

be uploading jobs to the same machine frequently, it may be faster to

create a machine profile in advance.

If you are generating operational meta data for use in Ascential

MetaStage™, then you can also use a machine profile to specify the

connection details of the machine where the XML file will be

transferred.

When you create, view, or edit a machine profile under the Machine
Profiles branch in the Repository, the Machine Profile dialog box

appears. This dialog box has three pages: General, Connection, and

Libraries.
Mainframe Job Developer’s Guide 24-11

Working with Machine Profiles Code Generation and Job Upload
There are three buttons in the Machine Profile dialog box:

OK. Saves changes to the machine profile and closes the
Machine Profile dialog box.

Cancel. Discards changes to the machine profile and closes the
Machine Profile dialog box.

Help. Starts the Help system.

Creating a Machine Profile
To create a new machine profile, do one of the following:

In the Manager, select the Machine Profiles branch in the project
tree and choose File New Machine Profile.

In the Designer Repository window, right-click on the Machine
Profiles branch and select New Profile from the shortcut menu.

The Machine Profile dialog box appears:

The General page is displayed by default. Enter general information

about the machine profile, including:

Machine profile name. Type the name of the machine profile.

Category. Type a category name, or click the … (browse) button
to select a category in the Select Category dialog box.

Platform type. Select the platform type. (OS/390 is the only
platform currently supported.)

Short description. Type an optional brief description of the
machine profile. The text entered in this field is displayed when
you choose View Details from the DataStage Manager window
or print a report.
24-12 Mainframe Job Developer’s Guide

Code Generation and Job Upload Working with Machine Profiles
Long description. Type an optional detailed description of the
routine.

Next, select the Connection page to specify the connection

parameters for the mainframe machine:

Enter mainframe connection parameters, including:

IP Host name/address. Type the IP address or a fully qualified
host name.

Port. If necessary, change the network port ID for the FTP
connection. The default port is 21.

User name. Type the user name or account to use for host
system login.

FTP transfer type. Specify the file transfer type. Select ASCII for
text files, Binary for non-text files, or enter your own transfer
type.

Password. Type the password associated with the user name for
host system login.

FTP Service. Select the FTP service type. There are two options:

– Active. Active FTP connection. This is the default and is
generally used when command processing is required.

– Passive. Establishes an FTP connection through a firewall that
does not allow inbound communication.

The Mainframe operational meta data area allows you to specify

details about the XML file that is created if you select Generate
operational meta data in project or job properties. You can then use

a machine profile to load these details in the Operational Meta Data
Mainframe Job Developer’s Guide 24-13

Working with Machine Profiles Code Generation and Job Upload
page of the Job Properties dialog box. There are two fields in this

area:

XML file target directory. Type the name of the target directory
where the XML file should be placed for use in Ascential
MetaStage. Specify the name in the appropriate DOS mode,
including any slash marks required. If the directory name contains
blanks, enclose the full name in single quotes.

If you leave this field blank, the XML file will be placed in the

default FTP directory on the Ascential MetaStage machine.

Dataset name for XML file. Type the dataset name for the XML
file on the mainframe machine. Be sure to create this file on the
mainframe prior to running the COBOL program.

Note If you create a machine profile just for operational meta

data, then no entries are needed in the fields on the

Libraries page of the Machine Profile dialog box.

Select the Libraries page to complete the machine profile:

This page displays the names of the libraries on the mainframe

machine where jobs will be transferred, including:

Source library. Type the name of the library where the
mainframe source jobs should be placed.

Compile JCL library. Type the name of the library where JCL
compile files should be placed.

Run JCL library. Type the name of the library where JCL run files
should be placed.
24-14 Mainframe Job Developer’s Guide

Code Generation and Job Upload Working with Machine Profiles
Object library. Type the name of the library where compiler
output should be placed.

DBRM library. Type the name of the library where information
about a DB2 program should be placed.

Load library. Type the name of the library where executable
programs should be placed.

Jobcard accounting information. Type identification
information for the jobcard.

Click OK to save the machine profile. You must enter a user name and

password on the Connection page before you are allowed to save a

new machine profile.

Viewing and Editing a Machine Profile
To view or edit existing machine profiles in the Manager, select the

Machine Profiles branch in the project tree, highlight a machine

profile in the display area, and do one of the following:

Choose File Properties… .

Select Properties… from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the machine profile in the display area.

To view or edit existing machine profiles in the Designer, either

double-click the machine profile in the Repository window, or right-

click and select Properties from the short cut menu.

The Machine Profile dialog box appears. You can edit any of the

fields and options on any of the pages. If you make any changes, be

sure to save them before closing the Machine Profile dialog box.

Copying a Machine Profile
You can copy an existing machine profile in the Manager by selecting

it in the display area and doing one of the following:

Choose File Copy.

Select Copy from the shortcut menu.

Click the Copy button on the toolbar.

To copy an existing machine profile in the Designer, right-click the

machine profile in the Repository window and select CreateCopy

from the shortcut menu.
Mainframe Job Developer’s Guide 24-15

Compiling Multiple Jobs Code Generation and Job Upload
The machine profile is copied and a new machine profile is created

under the same branch in the project tree. By default, the name of the

copy is called CopyOfXXX, where XXX is the name of the chosen

machine profile. An edit box appears allowing you to rename the copy

immediately.

Renaming a Machine Profile
You can rename a machine profile in either the DataStage Manager or

the Designer. To rename an item, select it in the Manager display area

or the Designer Repository window, and do one of the following:

Click the machine profile again. An edit box appears and you can
type a different name or edit the existing one. Save the new name
by pressing Enter or by clicking outside the edit box.

Select Rename from the shortcut menu. An edit box appears and
you can type a different name or edit the existing one. Save the
new name by pressing Enter or clicking outside the edit box.

Double-click the machine profile. The Machine Profile dialog box
appears and you can edit the Machine profile name field. Click
OK to save your changes.

Choose File Rename (Manager only). An edit box appears and
you can type a different name or edit the existing one. Save the
new name by pressing Enter or by clicking outside the edit box.

Compiling Multiple Jobs
You can compile and upload multiple mainframe jobs at once using

the DataStage Batch Job Compilation Wizard. There are two

ways to invoke the wizard:

From the DataStage Designer or Manager, choose Tools
Multiple Job Compile.

In the DataStage client folder, double-click the file dsjcwiz.exe
(for example, C:\Program Files\Ascential\DataStage\
dsjcwiz.exe). Enter your logon details in the Attach to Project
dialog box to attach to your project.
24-16 Mainframe Job Developer’s Guide

Code Generation and Job Upload Compiling Multiple Jobs
The DataStage Batch Job Compilation Wizard starts:

1 Specify the type of job to compile on the Job selection criteria
screen:

a Mainframe is selected by default in the Select jobs of type
area, along with other job types if you have other DataStage
components installed.

b If you want to automatically select all jobs that have not been
compiled, select the Only select uncompiled jobs check box.

c If you want to choose which jobs to compile, select the Show
job selection page check box. If this check box is unselected,
the wizard selects all jobs in the project, or all uncompiled jobs
if you selected Only select uncompiled jobs.

2 Click Next >. If you selected Show job selection page, the Job
Selection Override screen appears, allowing you to select which
jobs to compile. Otherwise the Compiler options screen
appears.
Mainframe Job Developer’s Guide 24-17

Compiling Multiple Jobs Code Generation and Job Upload
3 In the Upload machine profile drop-down box, select the
machine profile for job upload or click Don’t Upload Job to skip
job upload.

4 If your jobs already have a code generation path specified in the
Code generation dialog box, select Use Job-level code
generation path to have the wizard use the existing path.
Otherwise, clear this check box and specify a new path in the
Code Generation Base Directory field. The default path is
C:\Program Files\Ascential\DataStage. Click the Browse
button to browse for a different path. If you change the path, your
jobs will be saved with the new path.

5 Click Next >. The Compile Process screen appears. Click the
Start Compile button to begin compilation. As each job is
compiled, status messages are displayed in the Compilation
Status area. After compilation, the final status is displayed in the
Status field.
24-18 Mainframe Job Developer’s Guide

Code Generation and Job Upload Compiling Multiple Jobs
6 Click Next >. The Job compilation report screen appears,
showing the compilation start and finish times, the number of jobs
that succeeded or failed, and compilation details for each job.

7 Click Finish to close the wizard.

You can also compile multiple jobs from the command line of the

DataStage client machine by invoking the file dscc.exe in the

DataStage client directory. The dscc command takes several

arguments. For details on using this command, see Ascential

DataStage Designer Guide.
Mainframe Job Developer’s Guide 24-19

Compiling Multiple Jobs Code Generation and Job Upload
24-20 Mainframe Job Developer’s Guide

A
Programmer’s Reference

This appendix provides a programmer’s reference guide for Ascential

DataStage Enterprise MVS Edition. It describes the programming

components that are available for mainframe jobs.

Programming Components
There are different types of programming components used within

mainframe jobs. They fall into two categories:

Built-in. Ascential DataStage Enterprise MVS Edition comes with
several built-in programming components that you can reuse
within your mainframe jobs as required. These variables,
functions, and constants are used to build expressions. They are
only accessible from the Expression Editor, and the underlying
code is not visible.

External. You can use certain external components, such as
COBOL library functions, from within Ascential DataStage
Enterprise MVS Edition. This is done by defining a routine which
in turn calls the external function from an External Source,
External Target, or External Routine stage.

The following sections discuss programming terms you will come

across when programming mainframe jobs.
Mainframe Job Developer’s Guide A-1

Programming Components Programmer’s Reference
Constants
A constant is a value that is fixed during the execution of a program,

and may be reused in different contexts. Table A-1 describes the

constants that are available in mainframe jobs.

Constraints
A constraint is a rule that determines what values can be stored in the

columns of a table. Using constraints prevents the storage of invalid

data in a table.

Table A-1 Mainframe Job Constants

Constant Definition

CURRENT_DATE Returns the current date at the time of execution.

CURRENT_TIME Returns the current time at the time of execution.

CURRENT_TIME(<Precision>) Returns the current time to the specified precision
at the time of execution.

CURRENT_TIMESTAMP Returns the current timestamp at the time of
execution.

CURRENT_TIMESTAMP
(<Precision>)

Returns the current timestamp to the specified
precision at the time of execution.

DSE_NOERROR1

1 Only available in constraint expressions to test the variable REJECTEDCODE.
See "Variables" on page A-19 for more information.

The row was successfully inserted into the link.

DSE_TRXCONSTRAINT1 The link constraint test failed.

DSE_TRXLINK1 The database rejected the row.

NULL2

2 Only available in derivation expressions.

The value is null.

HIGH_VALUES3

3 Only available by itself in output column derivations, as the initial value of a
stage variable, or as the argument of a CAST function. The constant cannot
be used in an expression except as the argument of a CAST function. The
data type of the output column or stage variable must be Char or VarChar.

A string value in which all bits are set to 1.

LOW_VALUES3 A string value in which all bits are set to 0.

X A string literal containing pairs of hexadecimal
digits, such as X’0D0A’. Follows standard SQL
syntax for specifying a binary string value.
A-2 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Constraints are boolean expressions that return TRUE or FALSE.

Constraints are defined on:

the Transformer Stage Constraints dialog box

the Constraints tab in Complex Flat File, Multi-Format Flat File,
IMS, Fixed-Width Flat File, Delimited Flat File, and External Source
stages

the Where tab in Relational, Teradata Relational, and Teradata
Export stages

Transformer stage constraints are defined using the Expression

Editor, which provides access to all of Ascential DataStage’s built-in

constants, functions, variables, and operators.

Source stage constraints and WHERE clauses are built using a grid,

which provides access to Ascential DataStage’s operators and most

built-in logical functions. You can make selections in the grid, or you

can manually type the constraint by double-clicking in one of the cells.

Manually-specified constraints can include any of Ascential

DataStage’s built-in functions except for IF THEN ELSE, IS DATE, IS

NOT DATE, and IS NUMERIC. See "Functions" on page A-4 for detailed

descriptions of these functions.

Expressions
An expression is an element of code that defines a value. The word

expression is used both as a specific part of SQL3 syntax, and to

describe portions of code that you can enter when defining a job.

Expressions can contain:

Column names

Variables

Functions

Parameters

String or numeric constants

Operators

In mainframe jobs, expressions are used to define constraints, column

derivations, stage variable derivations, SQL clauses, and key

expressions. Table A-2 describes how and where you enter

expressions in mainframe job stages.
Mainframe Job Developer’s Guide A-3

Programming Components Programmer’s Reference
Details on defining expressions are provided in the chapters

describing the individual stage editors.

Functions
Functions take arguments and return a value. The word function is

applied to two components in DataStage mainframe jobs:

Built-in functions. These are special SQL3 functions that are
specific to Ascential DataStage Enterprise MVS Edition. You can
access these built-in functions via the Built-in Routines branch
of the Item type project tree, which is available in the Expression
Editor or on the Definition tab of the Business Rule Stage
dialog box. These functions are defined in the following sections.

Table A-2 Mainframe Job Expressions

Stage Expression Editor Expression Grid

Complex Flat File Constraint tab

Multi-Format Flat File Constraint tab

IMS Constraint tab

Fixed-Width Flat File Constraint tab

Delimited Flat File Constraint tab

External Source Constraint tab

Relational Update Columns tab Where tab, Group By tab,
Having tab, Order By tab

Teradata Relational Update Columns tab Where tab, Group By tab,
Having tab, Order By tab

Teradata Export Where tab, Group By tab,
Having tab

Teradata Load Update Columns tab Where tab

Transformer Derivation cell for
output columns and
stage variables,
Transformer Stage
Constraints dialog box

Business Rule Derivation cell for
output columns and
stage variables

Join Join Condition tab

Lookup Pre-lookup Condition
tab, Lookup Condition tab
A-4 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
DB2 functions. These are functions supported only in DB2 data
sources. When defining computed columns in Relational, Teradata
Relational, and Teradata Export stages, you can access the DB2
functions by clicking the Functions button in the Computed
Column dialog box. Refer to your DB2 documentation for
function definitions.

Date Type Conversion Functions

Table A-3 describes the built-in data type conversion functions that

are available in mainframe jobs.

Table A-3 Data Type Conversion Functions

Function Syntax Description

CAST CAST(<Operand>AS CHAR
(<Length>))

Converts the value of <Operand> to
Char data type.

CAST CAST(<Operand>AS VARCHAR
(<Length>))

Converts the value of <Operand> to
VarChar data type.

CAST CAST(<Operand>AS
SMALLINT)

Converts the value of <Operand> to
SmallInt data type.

CAST CAST(<Operand>AS INT) Converts the value of <Operand> to
Integer data type.

CAST CAST(<Operand>AS DECIMAL
(<Precision>, <Scale>))

Converts the value of <Operand> to
Decimal data type with the specified
precision and scale.

CAST CAST(<Operand>AS DATE) Converts the value of <Operand> to

Date data type.1

1 The format of <Operand> must be consistent with the default date format
specified in project or job properties.

CAST CAST(<Operand>AS TIME
(<TimePrecision>))

Converts the value of <Operand> to
Time data type with the specified

precision.2

2 The format of <Operand> must be in Ascential DataStage Enterprise MVS
Edition’s internal time form, HH:MM:SS.

CAST CAST(<Operand>AS
TIMESTAMP(<Timestamp-
Precision>))

Converts the value of <Operand> to
Timestamp data type with the

specified precision.3

CAST CAST(<Operand>AS NCHAR
(<Length>))

Converts the value of <Operand> to

NChar data type.4

CAST CAST(<Operand>AS NCHAR
VARYING (<Length>))

Converts the value of <Operand> to

NVarChar data type.4
Mainframe Job Developer’s Guide A-5

Programming Components Programmer’s Reference
Date and Time Functions

Table A-4 describes the built-in date and time functions that are

available in mainframe jobs.

3 The format of <Operand> must be in Ascential DataStage Enterprise MVS
Edition’s internal timestamp form, CCYY-MM-DD HH:MM:SS.NNNNNN. If the
date portion does not exist, the result is set to the current date. If the time
portion does not exist, the result is set to 00:00:00.

4 The data type of <Operand> must be NChar or NVarChar.

Table A-4 Date and Time Functions

Function Syntax Description

DATE DATE ‘yyyy-mm-dd’ Treats the constant specified by
‘yyyy-mm-dd’ as a Date data type
rather than a Char data type.

EXTRACT EXTRACT(YEAR FROM
<DateTime>)

Returns the numeric value of the

year from <DateTime>.1

1 The data type of <DateTime> must be Date or Timestamp.

EXTRACT EXTRACT(MONTH FROM
<DateTime>)

Returns the numeric value of the

month from <DateTime>.1,2

2 If the value of MONTH or DAY in <DateTime> is less than 10, and you CAST
the extracted value as Char(2), the leading zero is dropped. Use the
concatenation function to restore it if necessary.

EXTRACT EXTRACT(DAY FROM
<DateTime>)

Returns the numeric value of the

day from <DateTime>.1

EXTRACT EXTRACT(HOUR FROM
<DateTime>)

Returns the numeric value of the

hour from <DateTime>.3

3 The data type of <DateTime> must be Time or Timestamp.

EXTRACT EXTRACT(MINUTE FROM
<DateTime>)

Returns the numeric value of the

minute from <DateTime>.3

EXTRACT EXTRACT(SECOND FROM
<DateTime>)

Returns the numeric value of the
second (including fractional

seconds) from <DateTime>.3

TIME TIME ‘hh:mm:ss’ Treats the constant specified by
‘hh:mm:ss’ as a Time data type
rather than a Char data type.

TIMESTAMP TIMESTAMP
‘yyyy-mm-dd hh:mm:ss’

Treats the constant specified by
‘yyyy-mm-dd hh:mm:ss’ as a
Timestamp data type rather than a
Char data type.
A-6 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Logical Functions

Table A-5 describes the built-in logical functions that are available in

mainframe jobs. IF THEN ELSE can stand alone or can be nested

within other IF THEN ELSE statements. The rest of the logical

functions can only be used as the argument of an IF THEN ELSE

statement.

Table A-5 Logical Functions

Function Syntax Description

BETWEEN <Expression1>BETWEEN
<Expression2>AND
<Expression3>

Returns TRUE if <Expression2>
is less than or equal to
<Expression1> and
<Expression1> is less than or
equal to <Expression3>.
Otherwise, it returns FALSE.

NOT BETWEEN <Expression1>NOT
BETWEEN<Expression2>
AND<Expression3>

Returns TRUE if <Expression1>
is less than <Expression2> or
<Expression1> is greater than
<Expression3>. Otherwise, it
returns FALSE.

IF THEN ELSE IF<BooleanExpression>
THEN<Expression1>
ELSE<Expression2>END

If <BooleanExpression> is true,
returns the value of
<Expression1>. Otherwise, it
returns the value of
<Expression2>.

IN <Expression1>IN
(<Expression2>,
<Expression3>,...,
<ExpressionN>)

Returns TRUE if the value of
<Expression1> is in the list of
values. Otherwise, it returns
FALSE.

NOT IN <Expression1>NOT IN
(<Expression2>,
<Expression3>,...,
<ExpressionN>)

Returns TRUE if the value of
<Expression1> is not in the list
of values. Otherwise, it returns
FALSE.

IS DATE <Expression>IS DATE Returns TRUE if the value of
<Expression> is a DATE.
Otherwise it returns FALSE.

IS NOT DATE <Expression>IS NOT DATE Returns TRUE if the value of
<Expression> is not a DATE.
Otherwise it returns FALSE.

IS FALSE <Expression>IS FALSE Returns TRUE if the value of
<Expression> is false.
Otherwise it returns FALSE.

IS NOT FALSE <Expression>IS NOT FALSE Returns TRUE if the value of
<Expression> is not false.
Otherwise it returns FALSE.
Mainframe Job Developer’s Guide A-7

Programming Components Programmer’s Reference
IS HIGH_ VALUES <String>IS HIGH_VALUES Returns TRUE if the value of
<String> is 0xFFFF. Otherwise, it
returns FALSE.

IS NOT HIGH_
VALUES

<String>IS NOT
HIGH_VALUES

Returns TRUE if the value of
<String> is not 0xFFFF.
Otherwise, it returns FALSE.

IS LOW_ VALUES <String>IS LOW_VALUES Returns TRUE if the value of
<String> is 0x0000. Otherwise,
it returns FALSE.

IS NOT LOW_
VALUES

<String>IS NOT
LOW_VALUES

Returns TRUE if the value of
<String> is not 0x0000.
Otherwise, it returns FALSE.

IS NULL <BooleanExpression>IS
NULL

Returns TRUE if the value of
<Expression1> is NULL.
Otherwise, it returns FALSE.

IS NOT NULL <BooleanExpression>IS
NOT NULL

Returns TRUE if <Expression1>
is not NULL. Otherwise, it
returns FALSE.

IS NUMERIC <String> IS NUMERIC or
<Decimal> IS NUMERIC

Returns TRUE if the value of
<String> or <Decimal> can be
converted to a numeric data
type. Otherwise, it returns
FALSE.

IS TRUE <Expression>IS TRUE Returns TRUE if the value of
<Expression> is true. Otherwise
it returns FALSE.

IS NOT TRUE <Expression>IS NOT TRUE Returns TRUE if the value of
<Expression> is not true.
Otherwise it returns FALSE.

Table A-5 Logical Functions (Continued)

Function Syntax Description
A-8 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Numerical Functions

Table A-6 describes the built-in numerical function that is available in

mainframe jobs.

ROUND Examples

The ROUND function can be used to round a constant value, a single

column value, a simple expression, or any intermediate value within a

complex expression. For decimal data, it rounds a value to the right or

left of a decimal point. For binary data, it rounds a value to the left of

the decimal point.

If the absolute value of <Integer_value> is larger than the number of

digits to the left of the decimal point, the result will be zero. If the

absolute value of <Integer_value> is larger than the number of digits

to the right of the decimal point, no rounding will occur. If

<Expression> is a BINARY data type and <Integer_value> is positive,

no rounding will occur.

The first example shows how the same number is rounded to

different decimal places using the ROUND function:

Table A-6 Numerical Functions

Function Syntax Description

ROUND ROUND(<Expression>,
<Integer_value>)

<Expression> is rounded to
<Integer_value> places right of the
decimal point. If <Integer_value> is
negative, <Expression> is rounded
to the absolute value of
<Integer_value> places to the left of

the decimal point.1,2

1 The data type of <Expression> must be BINARY or DECIMAL. (Note that
DISPLAY NUMERIC and FLOAT data types are automatically converted to
Decimal type after being read from a flat file.)

2 If <Expression> is null, the result is the null value.

Expression Result

ROUND(876.543,2) 876.54

ROUND(876.543,1) 876.5

ROUND(876.543,0) 877

ROUND(876.543,-1) 880

ROUND(876.543,-2) 900

ROUND(876.543,-3) 1000

ROUND(876.543,-4) 0
Mainframe Job Developer’s Guide A-9

Programming Components Programmer’s Reference
The next example demonstrates how positive and negative numbers

are rounded using zero decimal places:

The last example shows how the ROUND function operates in an

expression. The results vary depending on whether you round the

intermediate values within the expression or only the result. Suppose

you want to calculate the sum of two columns multiplied by a third

column. For example:

(COL1 + COL2) * COL3

You can round the result only, the sum of COL1 and COL2 only, or all

three numbers plus the result. Suppose COL1 is 35.555555, COL2 is

15.55, and COL3 is .555000. The results would vary as shown:

String Functions

Table A-7 describes the built-in string functions that are available in

mainframe jobs.

Expression Result

ROUND(6.9,0) 7

ROUND(6.1,0) 6

ROUND(-6.1,0) -6

ROUND(-6.9,0) -7

Expression Result

ROUND((COL1 + COL2) * COL3, 2) 28.36

ROUND(ROUND(COL1 + COL2), 2) * COL3, 2) 28.37

ROUND((ROUND(COL1, 2) + ROUND(COL2, 2)) *
ROUND(COL3, 2), 2)

28.62

Table A-7 String Functions

Function Syntax Description

AND_BITS AND_BITS(<String1>,
<String2>)

Returns a value that is the result of
a bitwise AND-ing of <String1>

and <String2>.1

CHARACTER_
LENGTH

CHARACTER_LENGTH
(<String>)

Returns the number of characters

in <String>.2

LOWER LOWER(<String>) Returns the value of <String>

converted to lowercase.2
A-10 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
LPAD LPAD(<String1>,
<StringLength>,
<String2>)

Returns a string of <StringLength>
characters that consists of
<String1> padded to the left with
<String2> characters. If <String2>
is omitted, the default is to pad

with blanks.3

OR_BITS OR_BITS(<String1>,
<String2>)

Returns a value that is the result of
a bitwise OR-ing of <String1> and

<String2>.1

POSITION POSITION(<String1>IN
<String2>)

Returns the first position at which
<String1> occurs within

<String2>.4

RPAD RPAD(<String1>,
<StringLength>,
<String2>)

Returns a string of <StringLength>
characters that consists of
<String1> padded to the right with
<String2> characters. If <String2>
is omitted, the default is to pad

with blanks.3

SUBSTRING SUBSTRING(<String>
FROM<StartPosition>)

Returns the portion of <String>
that begins at the byte indicated by
<StartPosition> and ends at the

end of <String>.5

SUBSTRING SUBSTRING(<String>
FROM<StartPosition>
FOR<StringLength>)

Returns the portion of <String>
that begins at the byte indicated by
<StartPosition> and continues for
<StringLength> bytes or to the end
of <String> if <StringLength> is

omitted.5

TRIM TRIM(<String>) Returns the portion of <String>
with leading and trailing blanks

removed.6

TRIM TRIM(<Character>FROM
<String>)

Returns the portion of <String>
with both leading and trailing

<Character> removed.6

TRIM TRIM(BOTH FROM
<String>)

Returns the portion of <String>
with both leading and trailing

blanks removed.6

TRIM TRIM(BOTH<Character>
FROM<String>)

Returns the portion of <String>
with both leading and trailing

<Character> removed.6

TRIM TRIM(LEADING FROM
<String>)

Returns the portion of <String>

with leading blanks removed.6

Table A-7 String Functions (Continued)

Function Syntax Description
Mainframe Job Developer’s Guide A-11

Programming Components Programmer’s Reference
TRIM TRIM(LEADING
<Character>FROM
<String>)

Returns the portion of <String>
with leading <Character>

removed.6

TRIM TRIM(TRAILING FROM
<String>)

Returns the portion of <String>

with trailing blanks removed.6

TRIM TRIM(TRAILING
<Character>FROM
<String>)

Returns the portion of <String>
with trailing <Character>

removed.6

UPPER UPPER(<String>) Returns the value of <String>

converted to uppercase.2

XOR_BITS XOR_BITS(<String1>,
<String2>)

Returns a value that is the result of
a bitwise exclusive OR-ing of

<String1> and <String2>.1

1 The data type of <String1> and <String2> must be Char or VarChar. If both
arguments are Char, the data type of the result is Char; otherwise it is
VarChar. If both arguments are non-nullable, the result is non-nullable;
otherwise it is nullable. The precision of the result is equal to the smaller
precision of the two arguments. Note that the precision of the result dictates
the number of bytes used in the operation and the number of bytes returned
by the function; also note that it is expressed as a number of bytes, not bits.
NULL is returned by the function if either argument is NULL.

2 The data type of <String> must be Char, VarChar, NChar, or NVarChar.

3 If the data type of <Expression> is not Char, VarChar, NChar, or NVarChar,
then <Expression> is converted to VarChar data type with a maximum length
of <StringLength> before padding occurs. If the data type of <Expression> is
NChar or NVarChar, then the data type of <String> must also be NChar or
NVarChar. <StringLength> must be an integer greater than zero.

4 The data types of <String1> and <String2> must be Char, VarChar, NChar, or
NVarChar.

5 The data type of <String> must be Char, VarChar, NChar, or NVarChar. The
data types of <StartPosition> and <StringLength> must be numeric with a
scale of 0. If <String>, <StartPosition>, or <StringLength> is NULL, the result
is NULL. If <StringLength> is less than or equal to zero, the result is NULL.

6 The data type of <String> and <Character> must be Char, VarChar, NChar, or
NVarChar. The length of <Character> must be 1.

Table A-7 String Functions (Continued)

Function Syntax Description
A-12 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Multi-Byte String Functions

Table A-8 describes the multi-byte string functions that are available

in mainframe jobs. These are available only if National Language

Support (NLS) is installed as part of the DataStage server.

Table A-8 Multi-Byte String Functions

Function Syntax Description

CHARACTER_
LENGTH_MB

CHARACTER_LENGTH_MB

(<String>)

Returns the number of

characters in <String>.1,2

LOWER_MB LOWER_MB(<String>) Returns the value of <String>

converted to lowercase.1

POSITION_MB POSITION_MB(<String1>
IN<String2>)

Returns the first position at
which <String1> occurs within

<String2>.2,3

SUBSTRING_MB SUBSTRING_MB(<String>
FROM<StartPosition>)

Returns the portion of <String>
that begins at the character
indicated by <StartPosition> and

ends at the end of <String>.4

SUBSTRING_MB SUBSTRING_MB(<String>
FROM<StartPosition>
FOR<StringLength>)

Returns the portion of <String>
that begins at the character
indicated by <StartPosition> and
continues for <StringLength>

characters.4

TRIM_MB TRIM_MB(<String>) Returns the portion of <String>
with leading and trailing blanks

removed.5

TRIM_MB TRIM_MB(<Character>
FROM<String>)

Returns the portion of <String>
with both leading and trailing

<Character> removed.5

TRIM_MB TRIM_MB(BOTH FROM
<String>)

Returns the portion of <String>
with both leading and trailing

blanks removed.5

TRIM_MB TRIM_MB(BOTH<Character>
FROM<String>)

Returns the portion of <String>
with both leading and trailing

<Character> removed.5

TRIM_MB TRIM_MB(LEADING FROM
<String>)

Returns the portion of <String>

with leading blanks removed.5

TRIM_MB TRIM_MB(LEADING
<Character>FROM
<String>)

Returns the portion of <String>
with leading <Character>

removed.5
Mainframe Job Developer’s Guide A-13

Programming Components Programmer’s Reference
LPAD and RPAD Examples

The LPAD and RPAD string padding functions are useful for right-

justifying character data or constructing date strings in the proper

format. For example, suppose you wanted to convert an integer field

to a right-justified character field with a width of 9 characters. You

would use the LPAD function in an expression similar to this:

LPAD(ItemData.quantity,9)

Another example is to convert integer fields for year, month, and day

into a character field in YYYY-MM-DD date format. The month and day

portions of the character field must contain leading zeroes if their

integer values have less than two digits. You would use the RPAD

function in an expression similar to this:

CAST(Item.Data.ship_year AS CHAR(4))||
LPAD(ItemData.ship_month,2,’0’)||’-’||
LPAD(ItemData.ship_day,2,’0’)

To right-justify a DECIMAL(5,2) value to a width of 10 characters, you

would specify the LPAD function as follows:

LPAD(value,10)

TRIM_MB TRIM_MB(TRAILING FROM
<String>)

Returns the portion of <String>

with trailing blanks removed.5

TRIM_MB TRIM_MB(TRAILING
<Character>FROM
<String>)

Returns the portion of <String>
with trailing <Character>

removed.5

UPPER_MB UPPER_MB(<String>) Returns the value of <String>

converted to uppercase.1

1 The data type of <String> must be Char, VarChar, NChar, or NVarChar.

2 The number for these functions is expressed in terms of characters, not
bytes. Embedded SHIFT-OUT or SHIFT-IN keys are ignored.

3 The data types of <String1> and <String2> must be Char, VarChar, NChar, or
NVarChar.

4 The data type of <String> must be Char, VarChar, NChar, or NVarChar. The
data types of <StartPosition> and <StringLength> must be numeric with a
scale of 0. If <String>, <StartPosition>, or <StringLength> is NULL, the result
is NULL. If <StringLength> is less than or equal to zero, the result is NULL.

5 The data type of <String> and <Character> must be Char, VarChar, NChar, or
NVarChar. The length of <Character> must be 1.

Table A-8 Multi-Byte String Functions (Continued)

Function Syntax Description
A-14 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
This would yield results similar to this:

To include a plus sign for positive numbers, you would specify the

expression as follows:

IF value > 0
THEN LPAD(‘+’ || CAST(value AS VARCHAR(6)),10)
ELSE LPAD(value,10)
END

The results would then be similar to this:

SUBSTRING Rules

The SUBSTRING and SUBSTRING_MB functions perform substring

extraction according to SQL3 guidelines. The operations are identical,

but the orientations are different. Use the SUBSTRING_MB function

when you want to perform character-oriented substring extraction.

This function handles multi-byte characters, so if your string contain

multi-byte character data, use this function. Use the SUBSTRING

function when you want to do byte-oriented substring extraction.

The SUBSTRING function is implemented using COBOL statements,

whereas the SUBSTRING_MB function is implemented as a call to a

run-time library routine. The implications of this are that the byte-

oriented SUBSTRING function performs better than the character-

oriented SUBSTRING_MB function.

If the <StartPosition> or the implied end position is outside the

bounds of <String>, these functions return only the portion that is

within the bounds. For example:

SUBSTRING(‘ABCDE’ FROM 1) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM 0) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -1) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -2) returns ‘ABCDE’

Value Result

12.12 12.12

100.00 100.00

-13.13 -13.13

-200.00 -200.00

Value Result

12.12 +12.12

100.00 +100.00

-13.13 -13.13

-200.00 -200.00
Mainframe Job Developer’s Guide A-15

Programming Components Programmer’s Reference
SUBSTRING(‘ABCDE’ FROM -3) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM 1 FOR 4) returns ‘ABCD’
SUBSTRING(‘ABCDE’ FROM 0 FOR 4) returns ‘ABC’
SUBSTRING(‘ABCDE’ FROM -1 FOR 4) returns ‘AB’
SUBSTRING(‘ABCDE’ FROM -2 FOR 4) returns ‘A’
SUBSTRING(‘ABCDE’ FROM -3 FOR 4) returns ‘’
SUBSTRING(‘ABCDE’ FROM 1 FOR 23) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM 0 FOR 23) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -1 FOR 23) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -2 FOR 23) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -3 FOR 23) returns ‘ABCDE’
SUBSTRING(‘ABCDE’ FROM -21 FOR 23) returns ‘A’

Operators
An operator performs an operation on one or more expressions (the

operands). DataStage mainframe jobs support the following types of

operators:

Arithmetic operators

String concatenation operator

Relational operators

Logical operators

Ascential DataStage follows SQL guidelines on orders of operators in

expressions. Specifically, AND has higher precedence than OR. Any

redundant parentheses may be removed after verification. This

applies to constraints in flat file source stages, WHERE clauses in

relational source stages, join conditions, and lookup conditions. For

example, if you define the following expression:

(A AND B) OR (C AND D)

Ascential DataStage removes all of the parentheses in this case, since

it first evaluates A AND B, then C AND D, and finally compares the

results of the two. The expression will appear like this:

A AND B OR C AND D

However, if you define an expression similar to this:

A AND (B OR C) AND D

Ascential DataStage does not remove the parentheses here because

the result of the expression (B OR C) is evaluated first.
A-16 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Table A-9 describes the operators that are available in mainframe jobs

and their location.

Table A-9 Mainframe Job Operators

Operator Definition Expression
Editor

Expression
Grid

(Opening parenthesis ✔ ✔

) Closing parenthesis ✔ ✔

|| Concatenate ✔

< Less than ✔ ✔

> Greater than ✔ ✔

<= Less than or equal to ✔ ✔

>= Greater than or equal to ✔ ✔

= Equality ✔ ✔

<> Inequality ✔ ✔

AND And ✔ ✔

OR Or ✔ ✔

NOT Not ✔

BETWEEN Between ✔1

1 These operators are available in the Functions\Logical branch of the Item
type project tree.

✔

NOT BETWEEN Not between ✔1 ✔

IN In ✔1 ✔

NOT IN Not in ✔1 ✔

IS NULL NULL ✔1 ✔

IS NOT NULL Not NULL ✔1 ✔

+ Addition ✔

– Subtraction ✔

* Multiplication ✔

/ Division ✔
Mainframe Job Developer’s Guide A-17

Programming Components Programmer’s Reference
Parameters
Job parameters represent processing variables. They are defined,

edited, and deleted on the Parameters page of the Job Properties

dialog box. The actual parameter values are placed in a separate file

that is uploaded to the mainframe and accessed when the job is run.

See Ascential DataStage Designer Guide for details on specifying

mainframe job parameters.

You can use job parameters in column derivations and constraints.

They appear in the Expression Editor, on the Definition tab in

Business Rule stages, on the Mapping tab in active stages, and in the

Constraint grid in Complex Flat File, Delimited Flat File, Fixed-Width

Flat File, IMS, Multi-Format Flat File, and External Source stages.

In Relational and Teradata Relational stages, you can use job

parameters on the Where tab of the Inputs page, but not on the

Where tab of the Outputs page. This is because job parameters are

available only when the stage is used as a target. If you want to use a

job parameter in the SQL SELECT statement of a Relational or

Teradata Relational source stage, add a Transformer stage after the

Relational or Teradata Relational stage in your job design, and define

a constraint that compares a source column to the job parameter. The

source column and job parameter must have the same data type and

length, no implicit or explicit casting can occur, and there cannot be

an ORDER BY clause in the SQL SELECT statement. If these

requirements are met, Ascential DataStage pushes the constraint back

to the SELECT statement and the filtering is performed by the

database.

If the source column and job parameter are not the same data type

and length, you can convert them using one of the following

techniques:

Create a computed column in the Relational or Teradata Relational
stage that has the same data type and length as the job parameter.
Define an expression for the computed column using one of the
DB2 or Teradata functions to convert the original column to the
correct data type and length. You can then use the computed
column in the Transformer stage constraint.

Convert the job parameter to the data type and length of the
Relational or Teradata Relational source column. Use the CAST
function to convert the job parameter to the correct data type and
length in the Transformer stage constraint. When code is
generated, the EXEC SQL statement will include the job parameter
in the WHERE clause.
A-18 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
Routines
In mainframe jobs, routines specify a COBOL function that exists in a

library external to Ascential DataStage. Mainframe routines are stored

in the Routines branch of the DataStage Repository, where you can

create, view, or edit them using the Mainframe Routine dialog box.

For details on creating routines, see Chapter 22, "External Routine

Stages."

Variables
Variables are used to temporarily store values in memory. You can

then use the values in a series of operations. This can save

programming time because you can easily change the values of the

variables as your requirements change.

Ascential DataStage’s built-in job variables are described in

Table A-10. You can also declare and use your own variables in

Transformer and Business Rule stages. Such variables are accessible

only from the Transformer stage or Business Rule stage in which they

are declared. For details on declaring local stage variables, see

Chapter 15, "Transformer Stages" and Chapter 16, "Business Rule

Stages."

Table A-10 describes the built-in variables that are available for

mainframe jobs.

REJECTEDCODE and DBMSCODE

These variables are available only in Transformer stages. They are

displayed under the Variables branch of the Expression Editor for all

output links except the first link in the execution order. They are used

to check the results of links that have already been executed. For

example, if you have three output links, only the last two can be used

to evaluate results. The second link can check the results of the first

Table A-10 Mainframe Job Variables

Variable Definition

linkname.REJECTEDCODE Returns the Ascential DataStage error code or
DSE_NOERROR if not rejected.

linkname.DBMSCODE Returns the DBMS error code.

ENDOFDATA Returns TRUE if the last row of data has been
processed or FALSE if the last row of data has not
been processed.

SQLCA.SQLCODE Returns 0 if data was successfully written to an
output link. A nonzero value indicates an error.
Mainframe Job Developer’s Guide A-19

Programming Components Programmer’s Reference
link, and the third link can check the results of the first two links. Click

the Output Link Execution Order button on the Transformer Editor

toolbar to reorder the output links to meet your requirements.

There are three ways to use the variable REJECTEDCODE in constraint

expressions:

If link1.REJECTEDCODE = DSE_TRXCONSTRAINT, the data on link1
does not satisfy the constraint. This expression can be used when
any stage type follows the Transformer stage in the job design.

If link1.REJECTEDCODE = DSE_NOERROR, the constraint on link1
was satisfied, regardless of the stage type that follows the
Transformer stage in the job design. However, when this
expression is used in a job where a Relational stage follows the
Transformer stage in the job design, then it not only indicates that
the constraint on link1 was satisfied, it also indicates that the row
was successfully inserted or updated into the database.

If link1.REJECTEDCODE = DSE_TRXLINK, the row was rejected by
the next stage, which must be a Relational stage. You can check
the value of DBMSCODE to find the cause of the error.

For more information on using REJECTEDCODE and DBMSCODE in

Transformer stage constraints, see "Defining Constraints and

Handling Rejects" on page 15-18.

ENDOFDATA

ENDOFDATA can be used in the following places:

Output column derivations in Transformer stages

Stage variable derivations in Transformer stages

Constraint expressions in Transformer stages

SQL business rule logic in Business Rule stages

Pre-lookup condition expressions in Lookup stages

The syntax for ENDOFDATA varies depending on the type of

expression. For column and stage variable derivations, use the IS

TRUE or IS FALSE logical function to test ENDOFDATA as shown:

IF ENDOFDATA IS TRUE THEN ‘B’ ELSE ‘A’ END
IF ENDOFDATA IS FALSE THEN ‘B’ ELSE ‘A’ END

For constraint expressions, SQL business rule logic, and pre-lookup

conditions, use the following syntax:

ENDOFDATA IS TRUE
ENDOFDATA IS FALSE

Do not use numeric expressions to test ENDOFDATA.
A-20 Mainframe Job Developer’s Guide

Programmer’s Reference Programming Components
When the end-of-data indicator is passed to an active stage, the way it

is handled varies depending on the stage type. In Transformer,

Business Rule, Link Collector, and Lookup stages, the end-of-data row

is processed just like any other row. In Join, Aggregator, Sort, and

External Routine stages, the end-of-data row is not processed along

with the rest of the data but is simply passed through the stage. End-

of-data rows are ignored on the reference link to Lookup stages and

on the inner link to Join stages.

SQLCA.SQLCODE

SQLCA.SQLCODE is available in the same places as ENDOFDATA:

Output column derivations in Transformer stages

Stage variable derivations in Transformer stages

Constraint expressions in Transformer stages

SQL business rule logic in Business Rule stages

Pre-lookup condition expressions in Lookup stages

Typically this variable is used to determine whether data is

successfully written to an output link. In a Business Rule stage, you

would add SQLCA.SQLCODE after the INSERT statement in the

business rule logic to check whether an output link to a Relational

stage succeeded. You can also use it to detect a lookup failure. In this

case you would check the value of SQLCA.SQLCODE before doing an

INSERT into an output link.
Mainframe Job Developer’s Guide A-21

Programming Components Programmer’s Reference
A-22 Mainframe Job Developer’s Guide

B
Data Type Definitions and Mappings

This appendix describes the data types supported in Ascential

DataStage Enterprise MVS Edition, the permissible data type

mappings, and how data type mappings are implemented.

Data Type Definitions
Table B-1describes the data types supported in Ascential DataStage

Enterprise MVS Edition.

Table B-1 Ascential DataStage Enterprise MVS Edition Data Types

Data
Type

Description Precision Scale Date Mask

Char A string of
characters

The number of
characters

Zero Any date
mask whose
length ≤
precision

VarChar A 2-byte binary
integer plus a string
of characters

The maximum
number of
characters in
the string

Zero None

NChar A string of DBCS
characters

The number of
characters

Zero None

NVarChar A 2-byte binary
integer plus a string
of DBCS characters

The maximum
number of
characters in
the string

Zero None
Mainframe Job Developer’s Guide B-1

Data Type Mappings Data Type Definitions and Mappings
Data Type Mappings
Table B-2 shows the data type mappings permitted in Ascential

DataStage Enterprise MVS Edition and the techniques used for

conversion. COBOL refers to one or more COBOL statements, such as

MOVE and/or COMPUTE. DSXX2YY refers to a function in the run-

time library that converts a value from one data type to another. For

details about these conversion techniques, see "Data Type Mapping

Implementations" on page B-3.

SmallInt A 2-byte binary
integer

The number of
decimal digits
(1 ≤ n ≤ 4)

Zero None

Integer A 4-byte binary
integer

The number of
decimal digits
(5 ≤ n ≤ 9)

Zero Any numeric
date mask
whose length
≤ precision

Decimal A number in packed
decimal format,
signed or unsigned

The number of
decimal digits

(1 ≤ n ≤ 18)1

The number
of digits to
the right of
the decimal
point

(0 ≤ n ≤ 18)1

If scale = 0,
then any
numeric date
mask whose
length ≤
precision; if
scale > 0, then
none

Date Three 2-byte binary
numbers (for CCYY,
MM, DD)

10 Zero None (default
date format
assumed)

Time Three 2-byte binary
numbers (for HH,
MM, SS)

8 Zero None

Timestamp Six 2-byte binary
numbers (for CCYY,
MM, DD, HH, MM,
SS) and a 4-byte
binary number (for
microseconds)

26 Zero None

1 If Support extended decimal is selected in project properties, then the
precision and scale can be up to the maximum decimal size specified.

Table B-1 Ascential DataStage Enterprise MVS Edition Data Types

Data
Type

Description Precision Scale Date Mask
B-2 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Data Type Mapping Implementations
Processing Rules
Mapping a nullable source to a non-nullable target is allowed.

However, the assignment of the source value to the target is allowed

only if the source value is not actually NULL. If it is NULL, then a

message is written to the process log and program execution is

halted.

When COBOL MOVE and COMPUTE statements are used during the

assignment, the usual COBOL rules for these statements apply. This

includes data format conversion, truncation, and space filling rules.

Data Type Mapping Implementations
Table B-3 through Table B-12 describe how data type mappings are

implemented in Ascential DataStage Enterprise MVS Edition.

Table B-2 Ascential DataStage Enterprise MVS Edition Data Type Mappings

TARGET

SOURCE
Char Var

Char
NChar NVar

Char
Small
Int

Integer Decimal Date Time Time-
stamp

Char COBOL COBOL DSC2SI DSC2I DSC2D DSC2DT DSC2TM DSC2TS

VarChar COBOL COBOL DSC2SI DSC2I DSC2D DSC2DT DSC2TM DSC2TS

NChar COBOL COBOL

NVarChar COBOL COBOL

SmallInt DSSI2C DSSI2C COBOL COBOL COBOL

Integer DSI2C DSI2C COBOL COBOL COBOL COBOL COBOL

Decimal DSD2C DSD2C COBOL COBOL COBOL COBOL COBOL COBOL

Date COBOL COBOL COBOL COBOL COBOL

Time COBOL COBOL COBOL COBOL COBOL

Timestamp COBOL COBOL COBOL COBOL
Mainframe Job Developer’s Guide B-3

Data Type Mapping Implementations Data Type Definitions and Mappings
Table B-3 Char Data Type Mappings

Char Source Implementation

Char Char COBOL statements – The source is moved to the target.
Truncation occurs if the length of the target is less than the
length of the source. Spaces are padded in the target if the
length of the target is greater than the length of the source.

Char VarChar COBOL statements – The Char value is moved to the VarChar
value. Truncation occurs if the maximum length of the VarChar
is less than the length of the Char. The length of the VarChar is
set to the lesser of the length of the Char or the maximum
length of the VarChar.

Char NChar This mapping is not allowed.

Char NVarChar This mapping is not allowed.

Char SmallInt DSC2SI – Convert a character string to a small integer. The Char
is scanned for an integer number string of this pattern: zero or
more spaces, an optional plus or minus sign, one or more
decimal digits, zero or more spaces. Any unexpected character
that is found disrupts the pattern and terminates the scan for
the number. If the scan is terminated before any decimal digits
are found, then zero is assigned to the SmallInt. If the number
is too big to fit into a SmallInt, the high-order digits are
truncated.

Char Integer DSC2I – Convert a character string to an integer. The Char is
scanned for an integer number string of this pattern: zero or
more spaces, an optional plus or minus sign, one or more
decimal digits, zero or more spaces. Any unexpected character
that is found disrupts the pattern and terminates the scan for
the number. If the scan is terminated before any decimal digits
are found, then zero is assigned to the Integer. If the number is
too big to fit into an Integer, the high-order digits are truncated.

Char Decimal DSC2D – Convert a character string to a packed decimal
number. The Char is scanned for a decimal number string of
this pattern: zero or more spaces; an optional plus or minus
sign; either: (a) one or more decimal digits, (b) one or more
decimal digits, a decimal point, and one or more decimal digits,
or (c) a decimal point and one or more decimal digits; and
finally zero or more spaces. Any unexpected character that is
found disrupts the pattern and terminates the scan for the
number. If the scan is terminated before any decimal digits are
found, then zero is assigned to the Decimal. If the number is
too big to fit into the Decimal, the high-order digits are
truncated. If the Char has more digits to the right of the decimal
point than are specified in the scale of the Decimal, only the
number of digits specified in the scale are used.

Char Date DSC2DT – Convert a character string to a date. The Char must
have a length of at least 10 and be consistent with the default
date format, left-aligned in the Char area. (The separator
characters need not be dashes.)
B-4 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Data Type Mapping Implementations
Char Time DSC2TM – Convert a character string to a time. The Char must
be in time form, HH:MM:SS, left-aligned in the Char area. (The
separator characters need not be periods.)

Char Timestamp DSC2TS – Convert a character string to a timestamp. The Char
must be in timestamp form, CCYY-MM-DD
HH:MM:SS.NNNNNN, left-aligned in the Char area. (The
separator characters need not be dashes and periods.)

Table B-4 VarChar Data Type Mappings

VarChar Source Implementation

VarChar Char COBOL statements – The actual VarChar value is moved to
the Char. Truncation occurs if the actual length of the
VarChar is greater than the length of the Char. Spaces are
padded in the Char if the length of the Char is greater than
the actual length of the VarChar.

VarChar VarChar COBOL statements – The source value is moved to the
target value. Truncation occurs if the actual length of the
source is greater than the maximum length of the target.
The length of the target is set to the lesser of the actual
length of the source or the maximum length of the target.

VarChar NChar This mapping is not allowed.

VarChar NVarChar This mapping is not allowed.

VarChar SmallInt DSC2SI – Convert a character string to a small integer. The
VarChar is scanned for an integer number string of this
pattern: zero or more spaces, an optional plus or minus
sign, one or more decimal digits, zero or more spaces. Any
unexpected character that is found disrupts the pattern and
terminates the scan for the number. If the scan is
terminated before any decimal digits are found, then zero is
assigned to the SmallInt. If the number is too big to fit into a
SmallInt, the high-order digits are truncated.

VarChar Integer DSC2I – Convert a character string to an integer. The
VarChar is scanned for an integer number string of this
pattern: zero or more spaces, an optional plus or minus
sign, one or more decimal digits, zero or more spaces. Any
unexpected character that is found disrupts the pattern and
terminates the scan for the number. If the scan is
terminated before any decimal digits are found, then zero is
assigned to the Integer. If the number is too big to fit into an
Integer, the high-order digits are truncated.

Table B-3 Char Data Type Mappings (Continued)

Char Source Implementation
Mainframe Job Developer’s Guide B-5

Data Type Mapping Implementations Data Type Definitions and Mappings
VarChar Decimal DSC2D – Convert a character string to a packed decimal
number. The VarChar is scanned for a decimal number
string of this pattern: zero or more spaces; an optional plus
or minus sign; either: (a) one or more decimal digits, (b) one
or more decimal digits, a decimal point, and one or more
decimal digits, or (c) a decimal point and one or more
decimal digits; and finally zero or more spaces. Any
unexpected character that is found disrupts the pattern and
terminates the scan for the number. If the scan is
terminated before any decimal digits are found, then zero is
assigned to the Decimal. If the number is too big to fit into
the Decimal, the high-order digits are truncated. If the Char
has more digits to the right of the decimal point than are
specified in the scale of the Decimal, only the number of
digits specified in the scale are used.

VarChar Date DSC2DT – Convert a character string to a date. The VarChar
must consistent with the default date format, left-aligned in
the VarChar area. (The separator characters need not be
dashes.)

VarChar Time DSC2TM – Convert a character string to a time. The VarChar
must be in time form, HH:MM:SS, left-aligned in the
VarChar area. (The separator characters need not be
periods.)

VarChar Timestamp DSC2TS – Convert a character string to a timestamp. The
VarChar must be in timestamp form, CCYY-MM-DD
HH:MM:SS.NNNNNN, left-aligned in the VarChar area. (The
separator characters need not be dashes and periods.)
There may be from zero to six digits to the right of the
decimal point; if there are zero digits, there should not be a
decimal point.

Table B-4 VarChar Data Type Mappings (Continued)

VarChar Source Implementation
B-6 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Data Type Mapping Implementations
Table B-5 NChar Data Type Mappings

NChar Source Implementation

NChar Char This mapping is not allowed.

NChar VarChar This mapping is not allowed.

NChar NChar COBOL statements – The source is moved to the target.
Truncation occurs if the length of the target is less than the
length of the source. Spaces are padded in the target if the
length of the target is greater than the length of the source.

NChar NVarChar COBOL statements – The NChar value is moved to the
NVarChar value. Truncation occurs if the maximum length of
the NVarChar is less than the length of the NChar. The length
of the NVarChar is set to the lesser of the length of the NChar
or the maximum length of the NVarChar.

NChar SmallInt This mapping is not allowed.

NChar Integer This mapping is not allowed.

NChar Decimal This mapping is not allowed.

NChar Date This mapping is not allowed.

NChar Time This mapping is not allowed.

NChar Timestamp This mapping is not allowed.

Table B-6 NVarChar Data Type Mappings

NChar Source Implementation

NVarChar Char This mapping is not allowed.

NVarChar VarChar This mapping is not allowed.

NVarChar NChar COBOL statements – The actual NVarChar value is moved
to the NChar. Truncation occurs if the actual length of the
NVarChar is greater than the length of the NChar. Spaces
are padded in the NChar if the length of the NChar is
greater than the actual length of the NVarChar.

NVarChar NVarChar COBOL statements – The source value is moved to the
target value. Truncation occurs if the actual length of the
source is greater than the maximum length of the target.
The length of the target is set to the lesser of the actual
length of the source or the maximum length of the target.

NVarChar SmallInt This mapping is not allowed.

NVarChar Integer This mapping is not allowed.
Mainframe Job Developer’s Guide B-7

Data Type Mapping Implementations Data Type Definitions and Mappings
NVarChar Decimal This mapping is not allowed.

NVarChar Date This mapping is not allowed.

NVarChar Time This mapping is not allowed.

NVarChar Timestamp This mapping is not allowed.

Table B-7 SmallInt Data Type Mappings

SmallInt Source Implementation

SmallInt Char DSSI2C – Convert a small integer to a character string. The
SmallInt is converted to a string of digits (with a minus sign
as the first character if the number is negative). This string
is left-aligned in the Char area. If the length of the string is
less than the length of the Char area, spaces are used to
pad on the right. If the length of the string is greater than
the length of the Char area, the high-order digits are
truncated.

SmallInt VarChar DSSI2C – Convert a small integer to a character string. The
SmallInt is converted to a string of digits (with a minus sign
as the first character if the number is negative). This string
is left-aligned in the VarChar area. If the length of the string
is greater than the length of the VarChar area, the high-
order digits are truncated.

SmallInt NChar This mapping is not allowed.

SmallInt NVarChar This mapping is not allowed.

SmallInt SmallInt COBOL statements – Move source to target.

SmallInt Integer COBOL statements – Move source to target.

SmallInt Decimal COBOL statements – Move source to target. If the SmallInt
value is greater than the maximum or less than the
minimum of the Decimal, a warning message is printed in
the process log.

SmallInt Date This mapping is not allowed.

SmallInt Time This mapping is not allowed.

SmallInt Timestamp This mapping is not allowed.

Table B-6 NVarChar Data Type Mappings (Continued)

NChar Source Implementation
B-8 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Data Type Mapping Implementations
Table B-8 Integer Data Type Mappings

Integer Source Implementation

Integer Char DSI2C – Convert an integer to a character string. The Integer
is converted to a string of digits (with a minus sign as the
first character if the number is negative). This string is left-
aligned in the Char area. If the length of the string is less
than the length of the Char area, spaces are used to pad on
the right. If the length of the string is greater than the length
of the Char area, the high-order digits are truncated.

Integer VarChar DSI2C – Convert an integer to a character string. The integer
is converted to a string of digits (with a minus sign as the
first character if the number is negative). This string is left-
aligned in the VarChar area. If the length of the string is
greater than the length of the VarChar area, the high-order
digits are truncated.

Integer NChar This mapping is not allowed.

Integer NVarChar This mapping is not allowed.

Integer SmallInt COBOL statements – Move source to target. If the integer
value is greater than the maximum or less than the
minimum of the SmallInt, a warning message is printed in
the process log.

Integer Integer COBOL statements – Move source to target.

Integer Decimal COBOL statements – Move source to target. If the integer
value is greater than the maximum or less than the
minimum of the Decimal, a warning message is printed in
the process log.

Integer Date COBOL statements – If the Integer has a date mask, the Date
is computed from the Integer according to the mask. If the
Integer has no date mask, the Integer is assumed to
represent a day number (where days are numbered
sequentially from 0001-01-01, which is day number 1) and is
converted to a Date.

Integer Time COBOL statements – The Integer is assumed to represent a
second number (where seconds are numbered sequentially
from midnight, so 00.00.00 is 0, 00.00.01 is 1, and so on)
and is converted to a Time.

Integer Timestamp This mapping is not allowed.
Mainframe Job Developer’s Guide B-9

Data Type Mapping Implementations Data Type Definitions and Mappings
Table B-9 Decimal Data Type Mappings

Decimal Source Implementation

Decimal Char DSD2C – Convert a decimal to a character string. The string
is left-aligned in the Char area and has this format: a minus
sign if the number is negative, followed by zero or more
decimal digits, and, if the packed decimal has a nonzero
scale value, a decimal point followed by “scale” number of
digits. If the length of the string is less than the length of the
Char area, spaces are used to pad on the right. If the length
of the string is greater than the length of the Char area, the
high-order digits are truncated.

Decimal VarChar DSD2C – Convert a decimal to a character string. The string
is left-aligned in the VarChar area and has this format: a
minus sign if the number is negative, followed by zero or
more decimal digits, and, if the packed decimal has a
nonzero scale value, a decimal point followed by “scale”
number of digits. If the length of the string is greater than
the maximum length of the VarChar area, the high-order
digits are truncated.

Decimal NChar This mapping is not allowed.

Decimal NVarChar This mapping is not allowed.

Decimal SmallInt COBOL statements – Move source to target. If the value of
the Decimal is greater than the maximum or less than the
minimum of the SmallInt, a warning message is printed in
the process log.

Decimal Integer COBOL statements – Move source to target. If the value of
the Decimal is greater than the maximum or less than the
minimum of the Integer, a warning message is printed in
the process log.

Decimal Decimal COBOL statements – Move source to target. If the value of
the source Decimal is greater than the maximum or less
than the minimum of the target Decimal, a warning
message is printed in the process log.

Decimal Date COBOL statements – If the Decimal has a date mask, the
Date is computed from the Decimal according to the mask.
If the Decimal has no date mask, the Decimal is assumed to
represent a day number (where days are numbered
sequentially from 0001-01-01, which is day number 1) and is
converted to a Date.

Decimal Time COBOL statements – This mapping converts a Decimal to a
Time that represents the number of seconds since
midnight. The precision of the Decimal must be at least 5.
(For example, 0 becomes 00.00.00 which is midnight, 61
becomes 00.01.01, 86399 becomes 23.59.59)
B-10 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Data Type Mapping Implementations
Decimal Timestamp COBOL statements – This mapping converts a Decimal to a
Timestamp that represents the number of seconds since
midnight on 0001-01-01. The precision of the Decimal
should be at least 18, or the maximum size specified in
project properties if extended decimal support is selected. If
you want to include milliseconds, the scale of the Decimal
should be no more than 6.

Table B-10 Date Data Type Mappings

Date Source Implementation

Date Char COBOL statements – If the Char has a date mask, the Date is
formatted into the Char area according to that format. If the
target does not have a date mask, the length of the Char must
be at least 10 and the Date is formatted into the Char area
consistent with the default date format. If the Char area is
larger than the length needed according to the date mask, the
Date is left-aligned in the Char area and padded on the right
with spaces.

Date VarChar COBOL statements – The maximum length of the VarChar must
be at least 10. The Date is formatted into the VarChar area
consistent with the default date format.

Date NChar This mapping is not allowed.

Date NVarChar This mapping is not allowed.

Date SmallInt This mapping is not allowed.

Date Integer COBOL statements – If the Integer has a date mask, the Date is
moved to the Integer and formatted according to the mask. If
the Integer has no date mask, the Date is converted to an
Integer that represents the day number, where days are
numbered sequentially from 0001-01-01 (which is day number
1).

Date Decimal COBOL statements – If the Decimal has a date mask, the Date is
moved to the Decimal and formatted according to the mask. If
the Decimal has no date mask, the Date is converted to a day
number, where days are numbered sequentially from 0001-01-
01 (which is day number 1). If the day number is greater than
the maximum or less than the minimum of the target Decimal,
a warning message is printed in the process log.

Date Date COBOL statements – Move source to target.

Date Time This mapping is not allowed.

Date Timestamp This mapping is not allowed.

Table B-9 Decimal Data Type Mappings (Continued)

Decimal Source Implementation
Mainframe Job Developer’s Guide B-11

Data Type Mapping Implementations Data Type Definitions and Mappings
Table B-11 Time Data Type Mappings

Time Source Implementation

Time Char COBOL statements – The time is formatted into the Char area
according to the HH:MM:SS format. The length of the Char
area must be at least 8. If the Char area is larger than 8, the
time is left-aligned in the Char area and padded on the right
with spaces.

Time VarChar COBOL statements – The time is formatted into the VarChar
area according to the HH:MM:SS format. The maximum length
of the VarChar area must be at least 8.

Time NChar This mapping is not allowed.

Time NVarChar This mapping is not allowed.

Time SmallInt This mapping is not allowed.

Time Integer COBOL statements – This mapping converts a Time to an
Integer that represents the number of seconds since midnight.
(For example, 00.00.00 is midnight and becomes 0, 00.01.01
becomes 61, 23.59.59 becomes 86399.)

Time Decimal COBOL statements – This mapping converts a Time to a
Decimal that represents the number of seconds since
midnight. The precision of the Decimal must be at least 5. (For
example, 00.00.00 is midnight and becomes 0, 00.01.01
becomes 61, 23.59.59 becomes 86399.)

Time Date This mapping is not allowed.

Time Time COBOL statements – Move source to target.

Time Timestamp This mapping is not allowed.

Table B-12 Timestamp Data Type Mappings

Timestamp Source Implementation

Timestamp Char COBOL statements – The Timestamp is formatted into
the Char area according to the CCYY-MM-DD
HH:MM:SS.NNNNNN format. The length of the Char
area must be at least 26. If the length of the Char area is
greater than 26, the Timestamp is left-aligned in the Char
area and padded on the right with spaces.

Timestamp VarChar COBOL statements – The Timestamp is formatted into
the VarChar area according to the CCYY-MM-DD
HH:MM:SS.NNNNNN format. The maximum length of
the VarChar area must 26.

Timestamp NChar This mapping is not allowed.
B-12 Mainframe Job Developer’s Guide

Data Type Definitions and Mappings Mapping Dates
Mapping Dates
Table B-13 describes some of the conversion rules that apply when

dates are mapped from one format to another.

Any input column with a date mask becomes a Date data type and is

converted to the job-level default date format.

Timestamp NVarChar This mapping is not allowed.

Timestamp SmallInt This mapping is not allowed.

Timestamp Integer This mapping is not allowed.

Timestamp Decimal COBOL statements – The Timestamp is formatted into
the Decimal area as a floating point value that represents
the number of seconds since midnight on 0001-01-01.
The precision of the Decimal should be 18, or the
maximum size specified in project properties if extended
decimal support is selected. If you want to include
milliseconds, the scale of the Decimal should be no
more than 6. Since float is not precise, you may lose
precision in the value being converted.

Timestamp Date This mapping is not allowed.

Timestamp Time This mapping is not allowed.

Timestamp Timestamp COBOL statements – Move source to target.

Table B-12 Timestamp Data Type Mappings (Continued)

Timestamp Source Implementation

Table B-13 Date Mappings

Input
Format

Output
Format

Rule Example

MMDDYY DD-MON-CCYY 01 ≤ MM ≤ 12, otherwise
output is unknown (‘UNK’)

140199 01-UNK-1999

010120 01-JAN-2020

CCYY YY CC is removed 1999 99

2020 20

YY CCYY Depends on the century
break year specified in job
properties. If YY < century
break year, CC = 20; if YY ≥
century break year, CC = 19.

If century break year is
30, then:

29 2029

30 1930
Mainframe Job Developer’s Guide B-13

Mapping Dates Data Type Definitions and Mappings
No conversions apply when months, days, and years are mapped to

the same format (i.e., MM to MM or CCYY to CCYY). If the input dates

are invalid, the output dates will also be invalid.
B-14 Mainframe Job Developer’s Guide

C
Native Data Types

This appendix describes the native data types that Ascential

DataStage Enterprise MVS Edition supports in mainframe source and

target stages.

Source Stages
Table C-1 describes the native data types supported in Complex Flat

File, Fixed-Width Flat File, Multi-Format Flat File, External Source, and

External Routine stages.

Table C-1 Complex Flat File, Fixed-Width Flat File, Multi-Format Flat

File, External Source, and External Routine Stage Native Types

Native Data
Type

Description

BINARY COBOL supports three sizes of binary integers: 2-byte, 4-
byte, and 8-byte. The COBOL picture for each of these sizes
is S9(p)COMP, where p is the precision specified in the
column definition. COBOL allocates a 2-byte binary integer
when the precision is 1 to 4, a 4-byte binary integer when
the precision is 5 to 9, and an 8-byte binary integer when the
precision is 10 to 18 (or higher if extended decimal support
is selected in project properties).

Tables can be defined with columns of any size binary
integer. The DataStage-generated COBOL programs can
read all three sizes, but internally they are converted to
packed decimal numbers with the specified precision for
further processing.

If a column of BINARY type has a date format specified, then
the column value is converted to internal date form and the
column type is changed to Date for further processing.
Mainframe Job Developer’s Guide C-1

Source Stages Native Data Types
CHARACTER Ascential DataStage Enterprise MVS Edition supports
reading strings of character data.

If a column of CHARACTER type has a date format specified,
then the column value is converted to internal date form and
the column type is changed to Date for further processing.

DECIMAL DECIMAL numbers are numbers in packed decimal format.
Ascential DataStage Enterprise MVS Edition provides
support for these numbers.

If a column of DECIMAL type has a date format specified,
then the column value is converted to internal date form and
the column type is changed to Date for further processing.

DISPLAY NUMERIC The DataStage-generated COBOL programs can read
DISPLAY NUMERIC numbers, but internally they are
converted to packed decimal numbers for further
processing. The precision and scale of the numbers are not
changed, so no precision is lost in doing this conversion.

If a column of DISPLAY NUMERIC type has a date format
specified, then the column value is converted to internal
date form and the column type is changed to Date for
further processing.

FLOAT The DataStage-generated COBOL programs can read single-
and double-precision floating point numbers, but internally
they are converted to packed decimal numbers for further
processing. The precision and scale of the column definition
are used for the packed decimal number. This means that
precision can be lost when moving a FLOAT to this number.

For example, suppose C is defined to be a single-precision
floating point column (i.e., its COBOL picture is COMP-1)
having a precision of 5 and scale of 2. This would cause a
packed decimal number to be created as PIC S9(3)V9(2)
COMP-3. Suppose that the file contains three records with
values of 54.0, -2266.46, and .0078125 for C. No precision is
lost when the first value is moved to the packed decimal.
The second value becomes -266.46, thus losing the
precision on the left. The third value becomes .00, losing the
precision on the right.

GRAPHIC-G The DataStage-generated COBOL programs can read data
with picture clause symbol G and USAGE DISPLAY-1. The
associated data must be DBCS characters in the range from
X’00’ through X’FF’. The DBCS data can be defined explicitly
or implicitly.

Internally, they are converted to NChar for further
processing. The picture clause in the column definition
represents the length in the correct format, DBCS length.

Table C-1 Complex Flat File, Fixed-Width Flat File, Multi-Format Flat

File, External Source, and External Routine Stage Native Types

Native Data
Type

Description
C-2 Mainframe Job Developer’s Guide

Native Data Types Source Stages
GRAPHIC-N The DataStage-generated COBOL programs can read data
with picture clause symbol N. USAGE DISPLAY-1 is assumed
and does not need to be specified. The associated data must
be DBCS characters in the range from X’00’ through X’FF’.
The DBCS data can be defined explicitly or implicitly.

Internally, they are converted to NChar for further
processing. The picture clause in the column definition
represents the length in the correct format, DBCS length.

GROUP This data type is available only in Complex Flat File, Multi-
Format Flat File, External Source, and External Routine
stages. Ascential DataStage Enterprise MVS Edition treats
groups as character strings. The length of the character
string is the size of the group, which is the sum of the sizes
of all elements of the group. This is in accordance with
standard COBOL usage.

NATIVE BINARY The DataStage-generated COBOL programs can read native
binary data with 2, 4, or 8 bytes. The COBOL picture clause
is S9(p)COMP-5, where p is the precision specified in the
column definition. A scaling factor can be specified as well.
COBOL allocates a 2-byte binary integer when the precision
is 1 to 4, a 4-byte binary integer when the precision is 5 to 9,
and an 8-byte binary integer when the precision is 10 to 18
(or higher if extended decimal support is selected in project
properties).

Numeric values are not limited to the value implied by the
number of nines in the picture clause. Internally NATIVE
BINARY data is converted to packed decimal numbers for
further processing. If the precision is 1 to 4, the data is
converted to Decimal(5), if the precision is 5 to 9, the data is
converted to Decimal(10, and if the precision is 10 to 18, the
data is converted to Decimal(18).

If a column of NATIVE BINARY type has a date format
specified, then the column value is converted to internal
date form and the column type is changed to Date for
further processing.

VARCHAR Ascential DataStage Enterprise MVS Edition supports
reading variable-length strings of character data.

If a column of VARCHAR type has a date format specified,
then the column value is converted to internal date form and
the column type is changed to Date for further processing.

Table C-1 Complex Flat File, Fixed-Width Flat File, Multi-Format Flat

File, External Source, and External Routine Stage Native Types

Native Data
Type

Description
Mainframe Job Developer’s Guide C-3

Source Stages Native Data Types
Table C-2 describes the native data types supported in Delimited Flat

File source stages.

VARGRAPHIC_G The DataStage-generated COBOL programs can read data
with picture clause symbol G and USAGE DISPLAY-1. The
associated data must be DBCS characters in the range from
X’00’ through X’FF’. The DBCS data can be defined explicitly
or implicitly.

Internally, they are converted to NVarChar for further
processing. The picture clause in the column definition
represents the length in the correct format, DBCS length.

VARGRAPHIC_N The DataStage-generated COBOL programs can read data
with picture clause symbol N. USAGE DISPLAY-1 is assumed
and does not need to be specified. The associated data must
be DBCS characters in the range from X’00’ through X’FF’.
The DBCS data can be defined explicitly or implicitly.

Internally, they are converted to NVarChar for further
processing. The picture clause in the column definition
represents the length in the correct format, DBCS length.

Table C-2 Delimited Flat File Source Stage Native Types

Native Data Type Description

CHAR A string of characters with blank characters trimmed from
the right.

DECIMAL A value in this format: a minus sign if the value is negative,
a string of decimal digits, and, if the scale of the number is
nonzero, then a decimal point followed by a string of digits.

INT A minus sign if the value is negative, followed by a string of
decimal digits.

NCHAR A string of DBCS characters.

NVARCHAR A variable-length string of DBCS characters.

SMALLINT The same format as an INT value.

VARCHAR The same format as a CHAR value.

Table C-1 Complex Flat File, Fixed-Width Flat File, Multi-Format Flat

File, External Source, and External Routine Stage Native Types

Native Data
Type

Description
C-4 Mainframe Job Developer’s Guide

Native Data Types Source Stages
Table C-3 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for selecting columns in DB2 tables.

Table C-3 Relational Source Stage Native Types

Native Data Type Description

CHARACTER Ascential DataStage Enterprise MVS Edition supports
selecting strings of characters.

DATE Ascential DataStage Enterprise MVS Edition supports the
ISO (CCYY-MM-DD), USA (MM/DD/YY), and European
(DD.MM.CCYY) date formats supported by DB2. The default
date format of the job must equal the date format of the
DB2 subsystem used. Further date processing is done using
the internal form. When a DATE column value is processed
by Ascential DataStage Enterprise MVS Edition, it is
selected from DB2 in the default date form, and then
converted to an internal form that is independent of the
original format of the DATE. Further date processing is
done using the internal form.

DECIMAL DECIMAL numbers are numbers in packed decimal format.
Ascential DataStage Enterprise MVS Edition provides full
support for these numbers. If you selected Support
extended decimal in project properties, and you import a
DCLGen file containing DECIMAL data with precision
greater than the maximum decimal size specified, Ascential
DataStage changes the precision of the DECIMAL to the
maximum size specified.

GRAPHIC This is a string of DBCS characters and is supported in
Ascential DataStage Enterprise MVS Edition.

INTEGER This represents a 4-byte binary integer and is supported in
Ascential DataStage Enterprise MVS Edition. When
importing DCLGen files, Ascential DataStage captures
INTEGER data with precision up to 10. However, due to
COBOL restrictions, the precision is changed to 9 when
loading such data into mainframe jobs.

NUMERIC NUMERIC is a synonym for DECIMAL.

SMALLINT This represents a 2-byte binary integer. The DataStage-
generated COBOL programs can select columns of
SMALLINT type, but internally they are converted to 4-byte
binary integers for further processing. No precision is lost
in the conversion. When importing DCLGen files, Ascential
DataStage captures SMALLINT data with precision up to 5.
However, due to COBOL restrictions, the precision is
changed to 4 when loading such data into mainframe jobs.

TIME When Ascential DataStage Enterprise MVS Edition
processes a TIME column value, it selects it from DB2 in the
standard form (HH.MM.SS) and then converts it to an
internal form. Further time processing is done using the
internal form.
Mainframe Job Developer’s Guide C-5

Source Stages Native Data Types
Table C-4 describes the native data types supported in Teradata Export

and Teradata Relational source stages.

TIMESTAMP When Ascential DataStage Enterprise MVS Edition
processes a TIMESTAMP column value, it selects it from
DB2 in the standard form (CCYY-MM-DD-
HH.MM.SS.NNNNNN) and then converts it to an internal
form. Further timestamp processing is done using the
internal form.

VARCHAR Ascential DataStage Enterprise MVS Edition supports
variable-length strings of characters.

VARGRAPHIC Ascential DataStage Enterprise MVS Edition supports
selecting variable-length strings of DBCS characters, but
internally it converts them to NVarChar type for further
processing.

Table C-4 Teradata Export Stage and Teradata Relational Source

Stage Native Types

Native Data Type Description

BYTEINT This represents a 1-byte binary integer and is converted to a
2-byte integer for processing.

CHAR Ascential DataStage Enterprise MVS Edition supports
selecting strings of character data.

DATE Ascential DataStage Enterprise MVS Edition uses the ISO
(CCYY-MM-DD) format supported by Teradata. When a
DATE column value is processed by Ascential DataStage
Enterprise MVS Edition, it is selected from Teradata and
then converted to an internal form that is independent of
the original format of the DATE. Further date processing is
done using the internal form.

DECIMAL DECIMAL numbers are numbers in packed decimal format.
Ascential DataStage Enterprise MVS Edition provides full
support for these numbers.

FLOAT This is a double-precision floating point number and is
supported in Ascential DataStage Enterprise MVS Edition.

GRAPHIC This is a string of DBCS characters and is supported in
Ascential DataStage Enterprise MVS Edition.

INTEGER This represents a 4-byte binary integer and is supported in
Ascential DataStage Enterprise MVS Edition.

Table C-3 Relational Source Stage Native Types (Continued)

Native Data Type Description
C-6 Mainframe Job Developer’s Guide

Native Data Types Target Stages
Target Stages
Table C-5 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for writing data to Fixed-Width Flat

File and External Target stages.

SMALLINT This represents a 2-byte binary integer. Ascential DataStage
Enterprise MVS Edition generates COBOL programs that
can select columns of SMALLINT type, but internally it
converts them to 4-byte binary integers for further
processing. No precision is lost in the conversion.

TIME When Ascential DataStage Enterprise MVS Edition
processes a TIME column value, it selects it from Teradata
in the standard form (HH.MM.SS) and then converts it to an
internal form. Further time processing is done using the
internal form.

TIMESTAMP When Ascential DataStage Enterprise MVS Edition
processes a TIMESTAMP column value, it selects it from
Teradata in the standard form (CCYY-MM-DD-
HH.MM.SS.NNNNNN) and then converts it to an internal
form. Further timestamp processing is done using the
internal form.

VARCHAR Ascential DataStage Enterprise MVS Edition supports
variable-length strings of characters.

VARGRAPHIC This is a variable-length string of DBCS characters.
Ascential DataStage Enterprise MVS Edition support
selecting strings of this type, but internally it converts them
to NVarChar type for further processing.

Table C-4 Teradata Export Stage and Teradata Relational Source

Stage Native Types (Continued)

Native Data Type Description

Table C-5 Fixed-Width Flat File Target Stage and External Target

Stage Native Types

Native Data Type Description

BINARY Depending on the precision of the column, this is a 2-byte,
4-byte, or 8-byte binary integer.

CHARACTER A string of characters.

DECIMAL A packed decimal number.

DISPLAY NUMERIC A display numeric number.

FLOAT A single- or double-precision floating point number.
Mainframe Job Developer’s Guide C-7

Target Stages Native Data Types
When a fixed-width flat file column of one of these data types is

defined as nullable, two fields are written to the file:

A one-byte null indicator

The column value

When the indicator has a value of 1, the column value is null and any

value in the next field (i.e., the column value) is ignored. When the

indicator has a value of 0, the column is not null and its value is in the

next field.

Table C-6 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for writing data to delimited flat files.

GRAPHIC-G A DBCS data type when picture clause symbol G is used
and USAGE DISPLAY-1 is specified.

GRAPHIC-N A DBCS data type when picture clause symbol N is used.
USAGE DISPLAY-1 is assumed and does not need to be
specified.

NATIVE BINARY Depending on the precision of the column, this is a 2-byte,
4-byte, or 8-byte native binary integer.

Table C-6 Delimited Flat File Target Stage Native Types

Native Data Type Description

CHAR A string of characters with blank characters trimmed from
the right.

DECIMAL A value in this format: a minus sign if the value is negative,
a string of decimal digits, and, if the scale of the number is
nonzero, then a decimal point followed by a string of digits.

INT A minus sign if the value is negative, followed by a string of
decimal digits.

NCHAR A string of DBCS characters.

NVARCHAR A variable-length string of DBCS characters.

SMALLINT The same format as an INT value.

VARCHAR The same format as a CHAR value.

Table C-5 Fixed-Width Flat File Target Stage and External Target

Stage Native Types (Continued)

Native Data Type Description
C-8 Mainframe Job Developer’s Guide

Native Data Types Target Stages
Table C-7 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for writing data to a DB2 load-ready

flat file.

Table C-8 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for inserting and updating columns

of DB2 tables.

Table C-7 DB2 Load Ready Flat File Stage Native Types

Native Data Type Description

CHARACTER A string of characters.

DATE EXTERNAL A date consistent with the default date format.

DECIMAL PACKED A packed decimal number.

DECIMAL ZONED A display numeric number.

GRAPHIC A string of DBCS characters.

INTEGER A 4-byte binary integer.

NUMERIC A synonym of DECIMAL.

SMALLINT A 2-byte binary integer.

TIME EXTERNAL A time of the format HH.MM.SS.

TIMESTAMP EXTERNAL A timestamp of the format CCYY-MM-DD-
HH.MM.SS.NNNNNN.

VARCHAR A 2-byte binary integer containing the length of the
string, followed by a string of characters of the same
length.

VARGRAPHIC Variable-length graphic string. This is a sequence of
DBCS characters. The length control field indicates the
maximum number of DBCS characters, not bytes.

Table C-8 Relational Target Stage Native Types

Native Data Type Description

CHARACTER A string of characters.

DATE A date consistent with the default date format.

DECIMAL A packed decimal number.

GRAPHIC A string of DBCS characters.

INTEGER A 4-byte binary integer.

NUMERIC A synonym of DECIMAL.

SMALLINT A 2-byte binary integer.

TIME A time in DB2 format: HH.MM.SS.
Mainframe Job Developer’s Guide C-9

Target Stages Native Data Types
Table C-9 describes the native data types that Ascential DataStage

Enterprise MVS Edition supports for writing data to a Teradata file.

TIMESTAMP A timestamp in DB2 format: CCYY-MM-DD-
HH.MM.SS.NNNNNN.

VARCHAR A variable-length string of characters.

VARGRAPHIC A variable-length string of DBCS characters.

Table C-9 Teradata Target Stage Native Types

Native Data Type Description

BYTEINT A 1-byte binary integer.

CHARACTER A string of characters.

DATE A date consistent with the default date format.

DECIMAL A packed decimal number.

GRAPHIC A string of DBCS characters.

INTEGER A 4-byte binary integer.

NUMERIC A synonym of DECIMAL.

SMALLINT A 2-byte binary integer.

TIME A time in Teradata format: HH:MM:SS.NNNNNN.

TIMESTAMP A timestamp in Teradata format: CCYY-MM-DD
HH:MM:SS.NNNNNN.

VARCHAR A variable-length string of characters.

VARGRAPHIC A variable-length string of DBCS characters.

Table C-8 Relational Target Stage Native Types (Continued)

Native Data Type Description
C-10 Mainframe Job Developer’s Guide

Native Data Types Storage Lengths
Storage Lengths
Table C-10 through Table C-12 describe the SQL type conversion,

precision, scale, and storage length for COBOL native data types, DB2

native data types, and Teradata native data types.

Table C-10 COBOL Native Types

Native Data
Type

Native
Length
(bytes)

COBOL Usage
Representation1

SQL
Type

Precision
(p)

Scale
(s)

Storage
Length
(bytes)

BINARY 2

4

8

PIC S9 to S9(4) COMP

PIC S9(5) to S9(9) COMP

PIC S9(10) to S9(18) COMP

SmallInt

Integer

Decimal

1 to 4

5 to 9

10 to 18

n/a

n/a

n/a

2

4

8

CHARACTER n PIC X(n) Char n n/a n

DECIMAL (p+s)/2+1 PIC S9(p)V9(s) COMP-3 Decimal p+s s (p+s)/2+1

DISPLAY_
NUMERIC

p+s PIC S9(p)V9(s) Decimal p+s s (p+s)/2+1

FLOAT

(single)

(double)

4

8

PIC COMP-1

PIC COMP-2

Decimal

Decimal

p+s
(default 18)

p+s
(default 18)

s
(default 4)

s
(default 4)

4

8

GRAPHIC_G n*2 PIC G(n) DISPLAY-1 NChar n n/a n*2

GRAPHIC_N n*2 PIC N(n) NChar n n/a n*2

GROUP n (sum of all
the column
lengths that
make up the
group)

Char n n/a n

NATIVE BINARY 2

4

8

PIC S9 to S9(4) COMP-5

PIC S9(5) to S9(9) COMP-5

PIC S9(10) to S9(18) COMP-5

SmallInt

Integer

Decimal

1 to 4

5 to 9

10 to 18

n/a

n/a

n/a

2

4

8

VARCHAR n+2 PIC S9(4) COMP
PIC X(n)

VarChar n+2 n/a n+2

VARGRAPHIC _G (n*2)+2 PIC S9(4) COMP
PIC G(n) DISPLAY-1

NVarChar n+2 n/a (n*2)+2

VARGRAPHIC _N (n*2)+2 PIC S9(4) COMP
PIC N(n)

NVarChar n+2 n/a (n*2)+2

1 The COBOL PICTURE clauses shown in the table are for signed numbers, however, unsigned
numbers are handled in a similar manner.
Mainframe Job Developer’s Guide C-11

Storage Lengths Native Data Types
Table C-11 DB2 Native Types

Native Data
Type

Native
Length
(bytes)

COBOL Usage
Representation1

SQL
Type

Precision
(p)

Scale
(s)

Storage
Length
(bytes)

CHARACTER n PIC X(n) Char n n/a n

DATE 10 PIC X(10) Date 10 n/a 10

DECIMAL p/2+1 PIC S9(p)V9(s) COMP-3 Decimal p+s s (p+s)/2+1

GRAPHIC n*2 PIC G(n) DISPLAY-1 NChar n n/a n*2

INTEGER 4 PIC S9(9) COMP Integer 9 n/a 4

NUMERIC p PIC S9(p)V9(s) Decimal p+s s n

SMALLINT 2 PIC S9(4) COMP SmallInt 2 n/a 2

TIME 8 PIC X(8) Time 8 n/a 8

TIMESTAMP 26 PIC x(26) Timestamp 26 n/a 26

VARCHAR n+2 PIC S9(4) COMP
PIC X(n)

VarChar n+2 n/a n+2

VARGRAPHIC (n*2)+2 PIC S9(4) COMP
PIC G(n) DISPLAY-1

NVarChar n+2 n/a (n*2)+2

1 This is used only when DB2 table definitions are loaded into a flat file stage.

Table C-12 Teradata Native Types

Native Data
Type

Native
Length
(bytes)

COBOL Usage
Representation1

SQL
Type

Precision
(p)

Scale
(s)

Storage
Length
(bytes)

BYTEINT 1 PIC S9(3) COMP Integer 3 n/a 2

CHAR n PIC X(n) Char n n/a n

DATE 10 PIC X(10) Date 10 n/a 10

DECIMAL p/2+1 PIC S9(p)V9(s) COMP-3 Decimal p+s s (p+s)/2+1

FLOAT (double) 8 PIC COMP-2 Decimal p+s
(default 18)

s
(default 4)

8

GRAPHIC n*2 PIC G(n) DISPLAY-1 NChar n n/a n*2

INTEGER 4 PIC S9(9) COMP Integer 9 n/a 4

SMALLINT 2 PIC S9(4) COMP SmallInt 2 n/a 2

TIME 8 PIC X(8) Time 8 n/a 8

TIMESTAMP 26 PIC X(26) Timestamp 26 n/a 26

VARCHAR n+2 PIC S9(4) COMP
PIC X(n)

VarChar n+2 n/a n+2
C-12 Mainframe Job Developer’s Guide

Native Data Types Variable Calculation for Decimal Arithmetic
Variable Calculation for Decimal Arithmetic
The following examples illustrate how Ascential DataStage Enterprise

MVS Edition computes the precision and scale of intermediate

variables for use in decimal arithmetic.

Let Dn represent a DECIMAL(Pn, Sn) number, where Pn is the

precision and Sn is the scale. The precision is equal to the magnitude

plus the scale. The magnitude, Mn, is the number of digits left of the

decimal point, and the scale is the number of digits right of the

decimal point.

Addition and Subtraction (D1 + D2 or D1 - D2)

Result scale = MAX(S1, S2)

Result precision = MAX(M1, M2) + Result scale + 1 bit

Example: DECIMAL(5,1) + DECIMAL(5,3) = DECIMAL(8,3)

This allows room for 9999.9 + 99.999 = 10099.899

Multiplication (D1 * D2)

Result scale = S1 + S2

Result precision = P1 + P2

Example: DECIMAL(5,1) * DECIMAL(5,3) = DECIMAL(10,4)

This allows room for 9999.9 * 99.999 = 999980.0001

Division (D1 / D2)

Result scale = S1 + M2

Result precision = P1 + P2

Example: DECIMAL(5,1) / DECIMAL(5,3) = DECIMAL(10, 3)

This allows room for 9999.9 / 0.001 = 9999900.000 and 0.1 / 99.999 =

0.001

VARGRAPHIC (n*2)+2 PIC S9(4) COMP
PIC G(n) DISPLAY-1

NVarChar n+2 n/a (n*2)+2

1 This is used only when Teradata table definitions are loaded into a flat file stage.

Table C-12 Teradata Native Types (Continued)

Native Data
Type

Native
Length
(bytes)

COBOL Usage
Representation1

SQL
Type

Precision
(p)

Scale
(s)

Storage
Length
(bytes)
Mainframe Job Developer’s Guide C-13

Variable Calculation for Decimal Arithmetic Native Data Types
In all cases, the COBOL code generator may adjust the result size if the

calculated precision exceeds the maximum size supported by the

COBOL compiler. In other words, if the result precision (Pn) is greater

than the maximum decimal size defined for the project, any

intermediate resultant variable will be defined as a double-precision

float (COMP-2 in COBOL terms) instead of packed decimal (COMP-3 in

COBOL terms) of the calculated precison (Pn) and scale (Sn). Double-

precision float is imprecise, so there may be a loss of digit precision.

Another, more complicated, example provides further explanation:

Final = ((D1 + D2) * (D3 / D4)) * D5

where D1 is DECIMAL(5,1)

 D2 is DECIMAL(5,3)

 D3 is DECIMAL(5,1)

 D4 is DECIMAL(5,3)

 D5 is DECIMAL(6,4)

Result1 = D1 + D2

Result1 scale = MAX(S1, S2) = 3

Result1 precision = MAX(M1, M2) + Result1 scale + 1 bit = 8

Result1 is DECIMAL(8,3)

Result2 = D3 / D4

Result2 scale = S3 + M4 = 3

Result2 precision = P3 + P4 = 10

Result2 is DECIMAL(10,3)

Result3 = Result1 * Result2

Result3 scale = Result1 scale + Result2 scale = 6

Result3 precision = Result1 precision + Result2 precision = 18

Result3 is DECIMAL(18,6)

Result4 = Result3 * D5

Result4 scale = Result3 scale + S5 = 10

Result4 precision Result3 precision + P5 = 24

If COBOL compiler maximum decimal support is 18, then

Result4 is a double-precision float.
C-14 Mainframe Job Developer’s Guide

Native Data Types Variable Calculation for Decimal Arithmetic
If COBOL compiler maximum decimal support is 31, the

Result4 is DECIMAL(24,10).

Result4 will be stored in Final (the target variable). If Final is not

large enough to accomodate the value of Result4, a warning

message is issued and COBOL truncates the data value.
Mainframe Job Developer’s Guide C-15

Variable Calculation for Decimal Arithmetic Native Data Types
C-16 Mainframe Job Developer’s Guide

D
Editing Column Meta Data

This appendix describes how to enter and edit column meta data in

mainframe jobs. Additional information on loading and editing

column definitions is in Ascential DataStage Manager Guide and

Ascential DataStage Designer Guide.

Editing Mainframe Column Definitions
You can enter and edit column meta data in the DataStage Manager or

the Designer. When you edit meta data in the Manager or the

Designer Repository window, it is saved as a table definition in the

Repository and can be shared by all the jobs in a project. You can also

save column definitions entered during job design. Click the Save
As… button on the Columns tab of any stage editor to save your

output column definitions as a table definition in the Repository, a

CFD file, or a DCLGen file.

You can enter and edit column definitions in the following places:

In the Manager or the Designer Repository window, on the
Columns page in the Table Definition dialog box

In the Designer, using one of the mainframe stage editors:

– in Complex Flat File, Fixed-Width Flat File, Delimited Flat File,
and DB2 Load Ready Flat File stages, on the Columns tab on
the Stage page

– in Multi-Format Flat File stages, on the Records tab on the
Stage page

– in Relational, Teradata Relational, and Teradata Export source
stages, on the Columns tab on the Outputs page (only if you
have modified the SQL statement)
Mainframe Job Developer’s Guide D-1

Editing Mainframe Column Definitions Editing Column Meta Data
– in Relational, Teradata Relational, and Teradata Load target
stages, on the Columns tab on the Inputs page

– in Business Rule, Link Collector, Join, Lookup, Aggregator,
Sort, and External Routine stages, on the Columns tab on the
Outputs page

– in Transformer stages, in the output link meta data area

All of these areas have a grid with fields for each of the column

attributes. You can enter or edit meta data directly in the grid by

double-clicking a cell, or you can use the Edit Column Meta Data

dialog box, which is described on page D-4.

Propagating Column Values
Ascential DataStage provides an easy way to propagate values to

groups of columns in mainframe jobs. Since mainframe jobs typically

involve large numbers of columns, this can save a significant amount

of time.

You can propagate column values in the Columns grid of any

mainframe stage editor (except those that are read-only) or on the

Columns page of the Table Definition dialog box.

To propagate column values:

1 Select the group of columns for the propagation, with the last
column selected being the desired source column. Press the Ctrl
or Shift key while making your selections. Be sure that the source
column attributes are correct before proceeding, as they cannot be
changed in the next step.

2 Right-click on the source column and select Propagate
values…from the shortcut menu. The Propagate column
values dialog box appears, displaying the attributes of the source
column:
D-2 Mainframe Job Developer’s Guide

Editing Column Meta Data Editing Mainframe Column Definitions
3 Select the check box next to each attribute you want to propagate
to the target group of columns.

4 Click OK.

Before propagating the selected values, Ascential DataStage validates

that the target column attributes are compatible with the changes.

Table D-1 describes the propagation rules for each column attribute:

During validation, a message is displayed for any columns that do not

meet validation requirements; these columns are left unchanged. For

columns that pass validation, propagation occurs and a message

confirms that the changes were successfully applied.

Table D-1 Column Value Propagation Rules

Attribute Propagation Rules

Data type If the data type is changed from character to numeric, Ascential
DataStage Enterprise MVS Edition maintains the precision and
date mask of the target column. If the precision of the source
column exceeds the maximum limit for the target column, the
target is set to the maximum. If the source column has a
character date mask and the target is numeric, propagation does
not occur.

Length If the source column is character and the target column is
numeric, and the length of the source exceeds the maximum for
the target, then the length of the target is set to the maximum. If
the source column is decimal and the target is integer, and the
length of the decimal exceeds the maximum for the integer,
then the length of the target is set to the maximum.

Scale Both the source and target columns must be numeric for
propagation to occur. The scale of the target column cannot
exceed its length.

Nullable No restrictions.

Occurs No restrictions.

Level number Propagation is subject to the COBOL file definition.

Date format The source and target columns must both be character or both
be numeric for propagation to occur. If the length of the target
column is not 10, it is set to 10.

Usage Propagation is dependent on COBOL rules.

Sign indicator Propagation is dependent on COBOL rules.

Sign option Propagation is dependent on COBOL rules.

Sync indicator Propagation is dependent on COBOL rules.
Mainframe Job Developer’s Guide D-3

Using the Edit Column Meta Data Dialog Box Editing Column Meta Data
Using the Edit Column Meta Data Dialog Box
To enter or edit several column definitions, you can use the Edit
Column Meta Data dialog box by doing one of the following:

Right-click and select Edit row… from the shortcut menu.

Press Ctrl-E.

The Edit Column Meta Data dialog box appears:

There are different versions of this dialog box, depending on the type

of mainframe stage you are editing. The top half of the dialog box

contains fields that are common to all data sources, except where

noted:

Column name. The name of the column. This field is mandatory.

Key. Indicates if the input column is a record key. This field
applies only to Complex Flat File stages.

Native type. The native data type. For details about the native
data types supported in mainframe source and target stages, see
Appendix C, "Native Data Types."

Length. The length or data precision of the column.

Scale. The data scale factor if the column is numeric. This defines
the number of decimal places.

Nullable. Specifies whether the column can contain a null value.

Date format. The date format for the column.

Description. A text description of the column.
D-4 Mainframe Job Developer’s Guide

Editing Column Meta Data Using the Edit Column Meta Data Dialog Box
The bottom half of this dialog box has a COBOL tab containing fields

specific to certain mainframe data sources. Depending on the stage

you are editing and the information specified at the top of the Edit
Column Meta Data dialog box, the COBOL tab displays some or all

of the following fields:

Level number. Type the COBOL level number where the data is
defined. The default value is 05.

Occurs. Type the number of the COBOL OCCURS clause.

Usage. Select the COBOL USAGE clause from the drop-down list.
This specifies which COBOL format the column will be read in.
These formats map to the formats in the Native type field, and
changing one will normally change the other. Possible values are:

– COMP. Used with BINARY native types.

– COMP-1. Used with single-precision FLOAT native types.

– COMP-2. Used with double-precision FLOAT native types.

– COMP-3. Packed decimal, used with DECIMAL native types.

– COMP-5. Used with NATIVE BINARY native types.

– DISPLAY. Zoned decimal, used with DISPLAY_NUMERIC or
CHARACTER native types.

– DISPLAY-1. Double-byte zoned decimal, used with
GRAPHIC_G or GRAPHIC_N.

Sign indicator. Select Signed or blank from the drop-down list
to specify whether the argument can be signed or not. The default
is Signed for numeric data types and blank for all other types.

Sign option. If the argument is signed, select the location of the
sign in the data from the drop-down list. Choose from the
following:

– LEADING. The sign is the first byte of storage.

– TRAILING. The sign is the last byte of storage.

– LEADING SEPARATE. The sign is in a separate byte that has
been added to the beginning of storage.

– TRAILING SEPARATE. The sign is in a separate byte that has
been added to the end of storage.

Selecting either LEADING SEPARATE or TRAILING SEPARATE

will increase the storage length of the column by one byte.

Sync indicator. Select SYNC or blank from the drop-down list to
indicate whether the argument is a COBOL-SYNCHRONIZED
clause or not. The default is blank.
Mainframe Job Developer’s Guide D-5

Using the Edit Column Meta Data Dialog Box Editing Column Meta Data
Redefined field. Optionally specify a COBOL REDEFINES clause.
This allows you to describe data in the same storage area using a
different data description. The redefining argument must be the
same length, or smaller, than the argument it redefines. Both
arguments must have the same level number, and an argument
can only redefine the immediately preceding argument with that
level.

Depending on. Optionally specify a COBOL OCCURS
DEPENDING ON clause from the drop-down list.

Storage length. Gives the storage length in bytes of the
argument as defined. This field is derived and cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the argument definition and cannot be edited.

The buttons at the bottom of the Edit Column Meta Data dialog box

allow you to continue adding or editing columns, or to save and close.

The buttons are:

< Previous and Next >. Displays the meta data in the previous or
next row. These buttons are available only when a previous or
next row exists. If there are outstanding changes to the current
row, you are asked whether you want to save them before moving
on.

Close. Closes the Edit Column Meta Data dialog box. If you
have any unsaved changes, you are prompted to save them.

Apply. Saves changes to the current row.

Reset. Removes all changes made to the row since the last time
you applied changes.

Help. Starts the Help system.

In the Designer, click OK to save the columns definitions before

closing the stage editor. You can also click Save As… on the

Columns tab to save columns as a table definition in the Repository,

a CFD file, or a DCLGen file. In the Manager or the Designer

Repository window, click OK in the Table Definition dialog box to

save the column definitions before closing.
D-6 Mainframe Job Developer’s Guide

E
JCL Templates

Job control language (JCL) provides instructions for executing a job

on the mainframe. JCL divides a job into one or more steps. Each step

identifies:

The program to be executed

The libraries containing the program

The files required by the program and their attributes

Any inline input required by the program

Conditions for performing a step

Ascential DataStage Enterprise MVS Edition comes with a set of JCL

templates that you customize to produce the JCL specific to your job.

The templates are used to generate compile and run JCL. This

appendix describes these JCL templates and explains how to

customize them.

JCL Template Descriptions
Ascential DataStage’s JCL templates are in a directory called

JCLTemplates under the DataStage server install directory. The

directory contains two sets of template files: a default set that you can

edit, and a master set that is read-only. Table E-1 describes the tasks

that the JCL templates are suited for.
Mainframe Job Developer’s Guide E-1

JCL Template Descriptions JCL Templates
Table E-1 Ascential DataStage JCL Templates

Template Description

AllocateFile Creates a new, empty file.

CleanupMod Deletes a possible nonexistent file.

CleanupOld Deletes an existing file.

CompileLink1 Non-database compile and link edit.

ConnectDirect Basic statements needed to run a Connect:Direct file
exchange step. The default version of this template is
designed for UNIX platforms, but it can be customized for
other platforms using JCL extension variables.

DB2CompileLinkBind1 Database compile, link edit, and bind.

DB2IMSRun Basic statements needed to run both a database step and
an IMS program.

DB2Load Database load utility.

DB2Run Basic statements needed to run a database step.

DeleteFile Deletes a file using the mainframe utility IDCAMS.

FTP Basic statements needed to run an FTP step.

IMSRun Basic statements needed to run an IMS program.

Jobcard Basic job card used at the beginning of every job (compile
or execution).

NewFile Defines a new file.

OldFile Defines an existing file.

OMXfr JCL statements needed to transfer operational meta data
XML file to the MetaStage client machine.

PreSort Basic statements needed to run an external sort step.

Run Basic statements needed to run the main processing step.

Sort Statements necessary for sorting.

TDCompileLink1 Teradata compile and link.

TDFastExport Teradata FastExport utility.

TDFastLoad Teradata FastLoad utility.

TDMultiLoad Teradata MultiLoad utility.

TDRun Teradata run.

TDTPump Teradata TPump utility.
E-2 Mainframe Job Developer’s Guide

JCL Templates JCL Template Usage
JCL Template Usage
JCL templates are used during code generation to create the compile

and run JCL files. Table E-2 and Table E-3 list the templates in the

order they are used for each JCL file, and provide usage details.

1 Ascential DataStage uses the APOST, LIB, NONAME, NODYNAM, and RENT
COBOL compiler options when compiling the generated COBOL source. For a
complete explanation of each option, refer to the latest edition of IBM COBOL
for OS/390 and VM Programming Guide.

Table E-2 Compile JCL Template Usage

Template Usage

JobCard One.

CompileLink,
DB2CompileLinkBind, or
TDCompileLink

One. DB2CompileLinkBind is used for jobs that have at
least one DB2 Relational stage, TDCompileLink is used
for jobs that have at least one Teradata Relational stage,
and CompileLink is used for all other jobs.

Table E-3 Run JCL Template Usage

Template Usage

JobCard One.

CleanupMod One for each target Fixed-Width Flat File, Delimited Flat
File, DB2 Load Ready Flat File, or Teradata Export stage,
where Normal EOJ handling is set to DELETE.

DeleteFile One for each target Fixed-Width Flat File, Delimited Flat
File, or DB2 Load Ready Flat File stage, where the Write
option is set to Delete and recreate existing file.

PreSort One for each Complex Flat File stage or Fixed-Width
Flat File stage where sort control statements have been
specified on the Pre-sort tab.

AllocateFile One for each target Fixed-Width Flat File, Delimited Flat
File, DB2 Load Ready Flat File, or Teradata Load stage,
where Normal EOJ handling is set to DELETE.

TDFastExport One for each Teradata Export stage.
Mainframe Job Developer’s Guide E-3

Customizing a JCL Template JCL Templates
Customizing a JCL Template
When you start a new project, you can create a project-specific

version of a JCL template by editing the default template. After you

customize a template, it is used for all of the jobs in your project.

Each JCL template contains statements that you must replace with

values specific to your environment. These statements are identified

as follows:

<== REVIEW

There are two ways to view and edit Ascential DataStage’s JCL

templates:

Using a standard editing tool such as Microsoft Notepad

Using the JCL Templates dialog box in the DataStage Manager

Run, DB2Run,
DB2IMSRun, IMSRun, or
TDRun

One. DB2Run is used for jobs that have at least one DB2
Relational stage, IMSRun is used for jobs that have at
least one IMS stage, DB2IMSRun is used for jobs that
have both DB2 Relational and IMS stages, TDRun is
used for jobs that have at least one Teradata Relational
stage, and Run is used for all other jobs.

NewFile One for each target Fixed-Width Flat File, Delimited Flat
File, DB2 Load Ready Flat File, or Teradata Load stage,
where Normal EOJ handling is not set to DELETE.

OldFile One for each source Fixed-Width Flat File, Complex Flat
File, or Teradata Export stage, and one for each target
Fixed-Width Flat File, Delimited Flat File, DB2 Load
Ready Flat File, or Teradata Load stage, where Normal
EOJ handling is set to DELETE.

Sort One for each Sort stage and one for each Aggregator
stage where Type is set to Group by.

FTP or ConnectDirect One for each FTP stage, depending on the file exchange
method selected.

OMXfr One if operational meta data is being generated.

DB2Load, TDFastLoad,
TDMultiLoad, or
TDTPump

One for each DB2 Load Ready Flat File stage or Teradata
Load stage, depending on the load utility selected.

CleanupOld One for each target Fixed-Width Flat File, Delimited Flat
File, DB2 Load Ready Flat File, or Teradata Load stage,
where Normal EOJ handling is set to DELETE.

Table E-3 Run JCL Template Usage (Continued)

Template Usage
E-4 Mainframe Job Developer’s Guide

JCL Templates JCL Template Variables
You can open the JCL Templates dialog box by choosing

Tools JCL Templates in the DataStage Manager:

This dialog box contains the following fields and buttons:

Platform type. Displays the platform type. Since OS/390 is the
only platform currently supported, this field is read-only.

Template name. Contains a list of available JCL templates in a
drop-down list. See Table E-1 for template descriptions.

Short description. Provides a short description of the selected
template.

Template. Displays the code that the selected template contains.

Save. The Save button is made available if you edit the code or if
you subsequently reset a modified template to the default code.
Click Save to save your changes.

Reset. Resets the template code back to that of the master, read-
only default template.

Close. Closes the JCL Templates dialog box. If you have any
unsaved changes, you are prompted to save them.

Help. Starts the Help system.

JCL Template Variables
Table E-4 describes the variables in the JCL templates, including the

level and location in Ascential DataStage Enterprise MVS Edition

where they are specified. These variables are control words used in

JCL generation. Each variable begins with %. They should never be
Mainframe Job Developer’s Guide E-5

JCL Template Variables JCL Templates
modified or deleted within the JCL templates. They are automatically

assigned values when you generate code for a mainframe job.

Table E-4 JCL Template Variables

Variable Definition Specification
Level

Specification
Location

%abnormal File handling
for abnormal
end of job

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|
Abnormal EOJ handling

%allocunit Allocation unit Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|
Allocation type

%blocksize Block size for
new files,
calculated
based on
record size and
the constraints
defined in the
Max. Block-
ing Factor and
Max. Block
Size fields

Project Administrator:

Project Properties
dialog box|
Mainframe|Max. Blocking
Factor, Max. Block Size

%commands Command
syntax for
various utilities

Job Determined by the
system

%dblib DBRM library
used for job
upload

Project Manager:

Machine Profile dialog
box|Libraries|DBRM
library

%dbpass DB2 password Job Properties Designer:

Job Properties dialog
box|Environment|
DBMS Password

(if not available
from above,
then this value
is used)

Default Job
Properties

Administrator:

DataStage
Administration window|
Projects|Properties|
Mainframe|DBMS
Password

%dbsubsys DB2 subsystem
identifier

DB2 Load Ready Flat
File stage

Designer:

Stage|Bulk Loader|DB2
sub-system id
E-6 Mainframe Job Developer’s Guide

JCL Templates JCL Template Variables
(if not available
from above,
then this value
is used)

Job Properties Designer:

Job Properties dialog
box|Environment|
System name

(if not available
from above,
then this value
is used)

Default Job
Properties

Administrator:

DataStage
Administration
window|Projects|
Properties|Mainframe|
DBMS System Name

%dbtable DB2 table name DB2 Load Ready Flat
File stage

Designer:

Stage|Bulk Loader|Table
name

%dbuser DB2 user name DB2 Load Ready Flat
File stage

Designer:

Stage|Bulk Loader|User
name

(if not available
from above,
then this value
is used)

Job Properties Designer:

Job Properties dialog
box|Environment|User
name

(if not available
from above,
then this value
is used)

Default Job
Properties

Administrator:

DataStage
Administration window|
Projects|Properties|
Mainframe|DBMS User
Name

%ddname Data definition
name

Complex Flat File,
Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|General|DD name

%ddstmts Data definition
statements
added to a run
JCL template,
allowing extra
steps to be
added to the
run JCL

DB2Run,
DB2IMSRun, Run, or
TDRun JCL template

Inserted by the user in
the run JCL step that
executes the DataStage-
generated COBOL
program. This is
followed by user-
specified JCL which
allows other steps to be

executed.1

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
Mainframe Job Developer’s Guide E-7

JCL Template Variables JCL Templates
%deletefile Deletion of an
existing file

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|General|File name
(used only when the
write option is Delete
and recreate existing
file)

%deviceunit Device unit for
new files or
work datasets

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|UNIT

%disp Disposition for
a file

Complex Flat File,
Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Determined by the
system. For Complex Flat
File and Fixed-Width Flat
File source stages, SHR
is used. For Fixed-Width
Flat File, DB2 Load Ready
Flat File, and Delimited
Flat File target stages, the
value depends on the
write option specified:
NEW is used when
creating new files, OLD
is used when overwriting
an existing file, MOD is
used when appending to
an existing file, and
REPL is used when
deleting and recreating
an existing file.

%expdate Expiration date
for a dataset

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File, Teradata Load
stages

Designer:

Stage|Options|
Expiration date

or

Stage|File|Expiration
date (Teradata Load)

%extdec Extended
decimal
support

Project Administrator:

DataStage
Administration window|
Projects|Properties|
Mainframe|Support
extended decimal. When
this field is selected,
EXTEND is used,
otherwise COMPAT is
used.

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
E-8 Mainframe Job Developer’s Guide

JCL Templates JCL Template Variables
%filename File to name Complex Flat File,
Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|General|File name

%ftpfromfile FTP source file
name

FTP stage Designer:

Inputs|General|File name

%ftphost FTP host name
or IP address

FTP stage Designer:

Stage|General|
Host name/IP address

%ftpmode FTP transfer
mode

FTP stage Designer:

Stage|General|Transfer
mode

%ftppassword FTP user
password

FTP stage Designer:

Stage|General|Password

%ftpport FTP port FTP stage Designer:

Stage|General|Port

%ftptofile FTP target file
name

FTP stage Designer:

Inputs|General|
Destination file name

%ftptype FTP transfer
type

FTP stage Designer:

Stage|General|Transfer
type

%ftpuser FTP user ID FTP stage Designer:

Stage|General|User
name

%imsprogtype IMS program
type

Job Designer:

Code generation dialog
box|IMS program type

%imsid IMS system
name

IMS stage Designer:

Stage|View|IMS id

%imspsb IMS PSB name IMS stage Designer:

Stage|View|PSB

%jobacctg Jobcard
accounting
information

Project Manager:

Machine Profile dialog
box|Libraries|Jobcard
accounting information

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
Mainframe Job Developer’s Guide E-9

JCL Template Variables JCL Templates
%loadcontrol DB2 database
load utility
control
statements

DB2 Load Ready Flat
File stage

Determined by the
system based on column
definitions specified in
Designer:

Stage|Columns

%loadlib Load library
used for job
upload

Project Manager:

Machine Profile dialog
box|Libraries|Load
library

%normal File handling
for normal end
of job

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|Normal
EOJ handling

%objlib Object library
used for job
upload

Project Manager:

Machine Profile dialog
box|Libraries|Object
library

%omfile Dataset name
for operational
meta data XML
file

Job Properties Designer:

Job Properties dialog
box|Operational meta
data|Dataset name for
XML file

%omipaddr Target machine
IP address for
operational
meta data XML
file

Job Properties Designer:

Job Properties dialog
box|Operational meta
data|IP address

%ompass Target machine
password for
operational
meta data XML
file

Job Properties Designer:

Job Properties dialog
box|Operational meta
data|Password

%omtarget Target directory
for operational
meta data XML
file

Job Properties Designer:

Job Properties dialog
box|Operational meta
data|XML file target
directory

%omuser Target machine
user name for
operational
meta data XML
file

Job Properties Designer:

Job Properties dialog
box|Operational meta
data|User name

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
E-10 Mainframe Job Developer’s Guide

JCL Templates JCL Template Variables
%omxml Filename for
operational
meta data XML
file

Job Determined by the
system based on the
execution time of the
COBOL program

%pgmname Program name Job Properties Manager:

Job Properties dialog
box|Advanced|COBOL
program name

%presort Presort criteria
for source data

Complex Flat File,
Fixed-Width Flat File
stages

Designer:

Stage|Pre-sort|
Statement editor

%primamt Primary
allocation
amount

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|Primary
allocation amount

%recfm Record format
for a new file

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Determined by the
system. For Fixed-Width
Flat File and DB2 Load
Ready Flat File stages, FB
is used. For Delimited
Flat File stages, VB is
used.

%reclen Record length
for a new file

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Determined by the
system based on column
definitions specified in
Designer:

Stage|Columns

%retnperiod Retention
period for a
dataset

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File, Teradata Load
stages

Designer:

Stage|Options|
Retention period

or

Stage|File|Retention
period (Teradata Load)

%secamt Secondary
allocation
amount

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|

Secondary allocation
amount

%sortblocksize Sort stages

%sortid Sort in and sort
out temporary
file name

Sort stages Determined by the
system

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
Mainframe Job Developer’s Guide E-11

JCL Template Variables JCL Templates
%sortreclen Sort record
length

Sort stages Determined by the
system

%sortseq Presort
processing

Complex Flat File,
Fixed-Width Flat File
stages

Determined by the
system

%srclib Source library
used for job
upload

Project Manager:

Machine Profile dialog
box|Libraries|Source

library2

%tblowner DB2 table
owner

DB2 Load Ready Flat
File stage

Designer:

Stage|Bulk Loader|Table
owner

%tdpass Teradata
password

Job Properties Designer:

Job Properties dialog
box|Environment|
Teradata Password

(if not specified
here, then the
above value is
used)

Teradata Export,
Teradata Load stages

Designer:

Stage|General|Password

%tdtdp Teradata
database
identifier

Job Properties Designer:

Job Properties dialog
box|Environment|TDP id

(if not specified
here, then the
above value is
used)

Teradata Export,
Teradata Load stages

Designer:

Stage|General|TDP id

%tduser Teradata user
id

Job Properties Designer:

Job Properties dialog
box|Environment|
User id

(if not specified
here, then the
above value is
used)

Teradata Export,
Teradata Load stages

Designer:

Stage|General|User id

%volser Volume serial
name

Fixed-Width Flat File,
DB2 Load Ready Flat
File, Delimited Flat
File stages

Designer:

Stage|Options|Vol ser

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
E-12 Mainframe Job Developer’s Guide

JCL Templates JCL Extension Variables
JCL Extension Variables
JCL extension variables allow you to customize the JCL generated by

Ascential DataStage. They are available only at the job level and are

similar to OS/390 JCL substitution variables. You can use JCL

extension variables in the following places:

in JCL templates

wherever a filename is entered as input to a stage

in the Expiration date or Retention period fields in Complex
Flat File, Fixed-Width Flat File, Delimited Flat File, DB2 Load Ready
Flat File, and Teradata Load stages

in the Library path field of the Mainframe Routine dialog box

on the JCL page of the Mainframe Routine dialog box (external
source and target routines only)

%xtrndyn Dynamically
called external
routine name

Project Manager:

Mainframe Routine
dialog box|General|
Routine name

%xtrnincs Statically called
external routine
INCLUDE
statements for
linkage editor

Project Manager:

Mainframe Routine
dialog box| General|
External subroutine
name

%xtrnlibrary External
routine library
name

Project Manager:

Mainframe Routine
dialog box| General|
Library path

%xtrnname Statically called
external routine
name

Project Manager:

Mainframe Routine
dialog box| General|
Routine name

1 This variable cannot be used within a %.if ... %.endif block. The user-
specified JCL inserted after the variable can include stage or JCL extension
variables.

2 This variable cannot be used in conjunction with JCL extension variables.

Table E-4 JCL Template Variables (Continued)

Variable Definition Specification
Level

Specification
Location
Mainframe Job Developer’s Guide E-13

JCL Extension Variables JCL Templates
on the JCL tab of the External Source and External Target stage
editors

JCL extension variables cannot be used in machine profiles or during

job upload. They also cannot be used in conjunction with the variable

%srclib in the JCL templates.

Defining JCL Extension Variables
You define JCL extension variables on the Extensions page of the

Job Properties dialog box:

Names of JCL extension variables can be any length, must begin with

an alphabetic character, and can contain only alphabetic or numeric

characters. They can also be mixed upper and lower case, however,

the name specified in job properties must exactly match the name

used in the locations discussed on page E-13.

In the example shown above, the variable qualid represents the

owner of the object and load libraries, and rtlver represents the run-

time library version.

These variables are then inserted in the SYSLIB, SYSLIN, SYSLMOD,

and OBJLIB lines of the CompileLink JCL template, as shown on the

next page.
E-14 Mainframe Job Developer’s Guide

JCL Templates Conditional Statements in JCL Templates
You must prefix the variable name with %+. Notice that two periods

(..) separate the extension variables from the other JCL variables. This

is required for proper JCL generation.

When JCL is generated for the job, all occurrences of the variable

%+qualid will be replaced with KVJ1, and all occurrences of the

variable %+rtlver will be replaced by COBOLGEN.V100. The other

JCL variables in the SYSLIN, SYSLMOD, and OBJLIB lines are

replaced by the values specified in the Machine Profiles dialog box

during job upload.

Conditional Statements in JCL Templates
Ascential DataStage allows you to perform conditional processing in

the JCL templates. You must modify the JCL templates to determine

what JCL statements are included in the generated JCL. The construct

is:

%.if +varname op value
...
%.else
...
%.endif

In this case, +varname is formatted as +varname rather than

%+varname. Do not use the % in these names; use only the +. The

names must begin with an alphabetic character and can contain only
Mainframe Job Developer’s Guide E-15

% Symbols in JCL Templates JCL Templates
alphabetic or numeric characters. They can also be mixed upper and

lower case.

Each %. conditional construct must start in column 1 of the JCL

template being modified. You can use more than one conditional

statement in a single JCL template, however, you cannot have

multiple levels, or nested conditional statements.

When an operator and a value are included in the %.if construct, one

or more spaces are allowed before, between, and after each element.

The operator can be = or <>. The format of the value can be:

string_value or %+string_ext_var.

If +varname has a non-blank, non-null value assigned on the

Extensions page of the Job Properties dialog box, the test is true

and the statements following %.if and preceding %.else will be

generated during JCL generation. Otherwise the statements following

%.else will be generated during JCL generation.

As an example, you can use this capability to determine whether to

use a production or test data set in a job. The JCL statements could

be:

%.if +qual
//%ddname DD DISP=%disp,DSN=%+qual..%filename
%.else
//%ddname DD DISP=%disp,DSN=PROD.%filename
%.endif

If the extension variable qual has the value TEST specified on the

Extensions page of the Job Properties dialog box, and the filename

from the stage is CUSTOMER.DATA, the DSN that will be generated

is TEST.CUSTOMER.DATA. If qual has no value, the DSN will be

PROD.CUSTOMER.DATA.

% Symbols in JCL Templates
The % symbol in JCL templates is reserved for JCL generator usage,

such as control statements or substitution variables. If Ascential

DataStage cannot resolve the %<string>, it changes the symbol to

!<string>.

If you are customizing a JCL template and want to preserve %, you

must double it. For example, if your desired statement is this:

//* %A = %%B + %%%C

You should change it to this:

//* %%A = %%%%B + %%%%%%C
E-16 Mainframe Job Developer’s Guide

JCL Templates % Symbols in JCL Templates
Ascential DataStage will then remove the second occurrence of % in

each place that it appears.
Mainframe Job Developer’s Guide E-17

% Symbols in JCL Templates JCL Templates
E-18 Mainframe Job Developer’s Guide

F
Operational Meta Data

This appendix describes how to generate and use operational meta

data in mainframe jobs. If you have installed Ascential MetaStage™,

you can investigate this meta data to better understand the data and

processes involved in your data warehouse.

About Operational Meta Data
Operational meta data is a collection of events describing the

processing steps of a DataStage mainframe job. It includes:

Mainframe system information

Job start and finish times

Job status

Project and job names

Job parameter names and values

Dataset names for flat file stages

Number of records read from source stages

Number of records passed from source stages to target stages

Number of records written to target stages

Routine names for any External Source or External Target stages

It does not include:

Pre-run activities such as pre-sort or Teradata export

Post-run activities such as DB2 or Teradata bulk load or FTP file
transfer
Mainframe Job Developer’s Guide F-1

Generating Operational Meta Data Operational Meta Data
Note that DataStage mainframe jobs undergo optimization. The

operational meta data may not have one-to-one correspondence with

the job design.

Generating Operational Meta Data
You can generate operational meta data at the project level or job

level. The job-level setting overrides the project-level setting. With

either option, you must specify connection details for the MetaStage

machine in job properties. This is described in "Specifying MetaStage

Machine Connection Details" on page F-4.

During code generation, the COBOL program and run JCL capture

operational meta data from the job design. During the program run on

the mainframe, the operational meta data is written to an XML file.

The XML file is then placed in a directory on the MetaStage machine,

allowing you to import it into the MetaStage repository.

Creating the XML file can increase program execution time on the

mainframe. You can control when this occurs by modifying the run

JCL. This allows you to postpone XML file creation until you are

satisfied with the code generation results. See "Controlling XML File

Creation" on page F-6 for details.

Project-Level Operational Meta Data
To generate operational meta data at the project level:

1 Open the Administrator and click the Projects page of the
DataStage Administration window.

2 Select the project and click the Properties button. (If you are
starting a new project, click Add… to specify the name and
location of the project, then click Properties.)

3 Click Mainframe to bring this page to the front of the Project
Properties window.

4 Select the Generate operational meta data check box.
F-2 Mainframe Job Developer’s Guide

Operational Meta Data Generating Operational Meta Data
5 Click OK to save your changes, then click Close to exit the
DataStage Administrator.

Operational meta data will be captured for all new jobs in your project

unless you change the setting at the job level.

Job-Level Operational Meta Data
To generate operational meta data at the job level:

1 Open a job in the Designer and do one of the following:

Choose Edit Job Properties.

Click the Job Properties button on the toolbar.

The Job Properties dialog box appears with the General
page displayed.
Mainframe Job Developer’s Guide F-3

Generating Operational Meta Data Operational Meta Data
2 Select the Generate operational meta data check box:

3 Click OK.

Whenever you create a new job, the operational meta data setting in

the Job Properties dialog box defaults to the project-level setting.

Specifying MetaStage Machine Connection Details
After you select the operational meta data option in project or job

properties, you must specify connection details for the MetaStage

machine where the XML file will be transferred.

1 Open the Job Properties dialog box and click Operational meta
data to move this page to the front.

2 Enter machine connection details as follows:

a Machine profile. Type a name that identifies the MetaStage
machine or select an existing machine profile from the drop-
down box. If you load an existing machine profile, the rest of
the fields on this page are automatically filled in.

b IP address. Type the IP address of the MetaStage machine.

c File exchange method. Select FTP or Connect Direct.

d User name. Type the user name for logging in to the
MetaStage machine.

e Password. Type the password associated with the user name
for MetaStage machine login.
F-4 Mainframe Job Developer’s Guide

Operational Meta Data Generating Operational Meta Data
f XML file target directory. Type the name of the target
directory, relative to the default FTP directory, where the XML
file should be placed. Specify the name in the appropriate DOS
mode, including any slash marks required. If the directory
name contains blanks, enclose the full name in single quotes.

If you leave this field blank, the XML file will be placed in the

default FTP directory on the MetaStage machine.

g Dataset name for XML file. Type the dataset name for the
XML file on the mainframe machine. Be sure to create this file
on the mainframe prior to running the COBOL program. If you
want the system to generate a unique dataset name each time
a job runs, add (+1) after the name you specify. See "Using
GDG to Generate Unique Dataset Names" on page F-6 for more
information.

When you are finished, the Operational meta data page should

look similar to this:

3 Click OK to save your changes.

During code generation, the XML file is generated on the mainframe

as a dataset. The XML filename is determined by the system based on

the date and time of COBOL program execution, such as 20030304-

133249-0.xml.

You must enable FTP and the default FTP directory on the MetaStage

machine before the XML file can be transferred to it. After the transfer

is complete, you import the XML file into the MetaStage repository.
Mainframe Job Developer’s Guide F-5

Generating Operational Meta Data Operational Meta Data
Controlling XML File Creation
For jobs that involve multiple cycles of code generation and program

runs, you may wish to postpone XML file creation until you are

satisfied with the results. You can do this by modifying the run JCL for

your job.

Open the run JCL file and find the parameter GENXMLFILE. Change

the statement to:

GENXMLFILE = NO

Operational meta data will still be collected during code generation,

but will not be written to the XML file. When you are ready to create

the XML file, change the value of GENXMLFILE to YES. The

operational meta data is then written to the XML file and transferred

to the MetaStage machine.

Using GDG to Generate Unique Dataset Names
You can use Generation Data Group (GDG) to have the system

generate a unique dataset name for the XML file each time a job runs.

This prevents the file from being overwritten if the disposition of the

file is OLD or SHR in the run JCL.

To use GDG:

1 Add (+1) to the dataset name you specify for the XML file on the
Operational meta data page in job properties or on the
Connection page of the Machine Profile dialog box. For
example:

USERID.XML.OUT(+1)

2 Use IDCAMS to define the GDG base entry on the mainframe. For
example:

USERID.XML.OUT

3 Modify the DD statement in the OMXML JCL template as follows:

//OMXML DD DSN=%omxml,DISP=(NEW,CATLG)
UNIT=SYSDA,SPACE=(TRK,(1,1),RLSE),
DCB=(MODLDSCB,RECFM=VB,LRECL=4092,BLKSIZE=4096

where MODLDSCB is your model DSCB for your GDG dataset.

Importing XML Files into MetaStage
You use MetaStage’s Run Importer component to import XML files

into Ascential MetaStage. First you must edit the configuration file for

the Run Importer to specify the name of the MetaStage directory you

want to import XML files into, the directory’s user name, and the

password.
F-6 Mainframe Job Developer’s Guide

Operational Meta Data Generating Operational Meta Data
To edit the configuration file:

1 Locate the file runimport.cfd in the RunImport folder of your
Ascential MetaStage installation (for example, C:\Program Files\
Ascential\MetaStage\RunImport\runimport.cfg).

2 Open runimport.cfg in a text editor and specify values for the
following variables in the file:

a MetaStageDirectory. Type the name of the MetaStage
directory you want to import the operational meta data into
(for example, MetaStageDirectory=DS390Jobs.) The Run
Importer imports to only one directory at a time. Change this
entry whenever you need to import meta data to a different
directory. There is no default.

b User. Type the user name required to access the directory, or
leave blank if there is none (for example, User=Admin or
User=).

c Password. Type the password required to access the directory
or leave blank if there is none (for example,
EncryptedPassword=Admin or EncryptedPassword=).

3 Save and close runimport.cfg.

To start the Run Importer:

1 From the command line of the MetaStage machine, go to the
directory where the Run Importer is installed. The default location
is C:\Program Files\Ascential\Metastage\Runimport>.

2 Type a command that invokes runimport.exe and provides the
necessary paths to the configuration file and the XML files. For
example:

runimport.exe -config C:\Program Files\Ascential\
MetaStage\RunImport\runimport.cfg C:\XMLRunFiles*.xml

This specifies that C:\Program Files\Ascential\MetaStage\
Runimport\runimport.cfg is the path to the configuration file

and C:\XMLRunFiles*.xml is the path to the XML files. If you did

not specify a target directory for the XML files in job properties,

use the default FTP directory on the MetaStage machine. To

import a single XML file, specify the actual XML filename such as

C:\XMLRunFiles\20030304-133249-0.xml.

For detailed instructions on importing operational meta data, see the

chapter “Capturing Operational Meta Data” in Ascential MetaStage

User’s Guide.
Mainframe Job Developer’s Guide F-7

Using Operational Meta Data Operational Meta Data
Using Operational Meta Data
Before you can use operational meta data in Ascential MetaStage, the

MetaStage administrator must configure the database and create a

directory. You can then start Ascential MetaStage and connect to this

directory. After the connection is established, the MetaStage Explorer

window appears and you are ready to begin.

The following sections describe the types of events captured in the

XML file and how to interpret the results using MetaStage’s Process

Analysis, Data Lineage, and Impact Analysis tools. For detailed

instructions on how to run these tools, refer to Ascential MetaStage

User’s Guide.

Understanding Events
To use MetaStage’s analysis tools, you first need to understand how

Ascential MetaStage views data warehousing events. When a

DataStage job runs, its software components (such as a stage or a

link) emit events when they run. The operational meta data XML file

describes the sequence of events that were created during the job run.

Each event identifies an action that occurred on physical data, such as

database tables or flat files, or on program elements that process

data.

There are four types of events:

Read. Describes a data source read. Includes start and finish
times, number of records read, and the output link name. For flat
file sources, it also includes the mainframe dataset names. For
relational sources, it includes the SQL SELECT statement. For
External Source stages, it includes the name of the external source
routine.

If stage columns are created by loading multiple tables in flat file

stages, then multiple Read events (one for each loaded table) are

generated. Similarly, if the output columns in a Relational source

stage are generated from multiple tables, multiple Read events

(one for each table) are generated for the link. In addition, if there

are multiple output links from a source stage, multiple Read

events are generated. Note that link names are generated as part

of the Read event and do not match the actual link names in the

job.

Write. Describes a write to a data target. Includes start and finish
times, number of records written, and the input link name. For flat
file targets, it also includes the mainframe dataset names. For
F-8 Mainframe Job Developer’s Guide

Operational Meta Data Using Operational Meta Data
relational sources, it includes the table name and the INSERT
statement. For External Target stages, it includes the name of the
external target routine.

If flat file stage columns are built by loading multiple tables, then

multiple Write events (one for each loaded table) are generated. If

there are multiple input links to a target stage, multiple Write

events are generated. Note that link names are generated as part

of the Write event and do not match the actual link names in the

job.

Reference. Describes a reference to a lookup table. Includes the
start and finish times, row count, mainframe system information,
and link name.

Fail. Describes the failure of a software component.

Read and Write events contain two resource locators, or paths that

identify objects stored in a MetaStage directory. The software

resource locator refers to the link which carries rows out of a stage. It

includes the names of the computer, software product, project, job,

stage, and link. The data resource locator represents the mainframe

dataset name or the logical table name used by the stage. It includes

table locator information such as the computer name, software

product name, data schema, table category, and table name.

If you push columns from one stage to another, or if you cut, copy,

and paste columns or stages from one job to another, there may be

duplicate table locator information in the XML file. To avoid this, be

sure to save these columns as a separate table definition in the

Repository whenever you use the push, cut, copy, and paste

functions.

No events are generated for mainframe processing stages. However,

a Read event connects the stage’s input link to its output link. For Link

Collector stages, a Read event is generated for each of the input links

to the stage. For Lookup stages, a Read event is generated for the

primary link and a Reference event is generated for the reference link.

For Join stages, Read events are generated for both the inner and

outer links to the stage.

For Complex Flat File stages, the number of rows read from the file

and the number of rows going out on the output link may not match if

arrays are normalized. For Aggregator stages, the number of rows on

the stage’s input and output links may differ due to the aggregation

operation itself.

Besides events, the operational meta data also includes design,

deployment, and run components. The design component provides

system information for the DataStage client, the project name, the job

name, and the names and values of any job parameters. The
Mainframe Job Developer’s Guide F-9

Using Operational Meta Data Operational Meta Data
deployment component describes the deployment of a software

component, including mainframe system information, the project

name, and the job name. The run component describes the DataStage

job run, including the job start and finish times, the job name, the

COBOL program name, and the job status. The status code is 0 if the

job runs successfully, 1 if the job run fails with an exit condition, or 2

if the job runs with warnings.

Process Analysis
Process Analysis lets you examine the execution history of warehouse

activity processes, such as DataStage job runs. You can discover

details about when jobs run, what parameters they use, and whether

or not they are successful. Process Analysis focuses on the path

between job designs and the events they generate.

There are two types of Process Analysis paths:

Find Runs. These paths start with a specified software executable
and continue through sets of events to the resources touched. A
job design is a software executable.

Find Executables. These paths start from a specified event or
activity (a run or component run) and continue to the software
executable from which it originated.

The following simple mainframe job demonstrates the results of

Process Analysis. This job reads data from a flat file, transforms it, and

writes it to another flat file.

In the Designer, the job looks similar to this:

The source stage filename is XQA1.CUSTOMERS.FWFF. The target

stage filename is XQA6.ACTCUST. The operational meta data XML file

name is 20030304-133249-0.xml.
F-10 Mainframe Job Developer’s Guide

Operational Meta Data Using Operational Meta Data
For this job, a Find Executables Process Analysis produces these

results:

The leftmost icon shows the instance of the job run. There are three

items connected to this run: a software executable (the COBOL

program) and two component runs (the source file read and the target

file write). The lines between notes in a path represent relationships

between objects and events. The text label on each line specifies the

name of an object, or the date and time an event occurred.

The following flow of data is represented in the diagram:

Design. The design flow. From left to right, this path includes the
following objects:

The program run

The COBOL program filename

The project name

The software product

The computer on which the job was designed
Mainframe Job Developer’s Guide F-11

Using Operational Meta Data Operational Meta Data
Deployment. The deployment of the software executable. From
left to right, this path includes:

The program run

The project name

The software product

The mainframe where the COBOL program ran

Read. The source file read. There are two paths from the
component run:

One to the source stage output link (DSLink1000),

which corresponds to the CustomersOut link in the

job design.

One to the Read event. This touches the data

collection resource called XQA1.CUSTOMER. FWFF,

which is the filename specified in the Customers

source stage.

Write. The write to the target file.There are three paths from the
component run:

One to the target stage input link (DSLink1001),

which corresponds to TransformOut link in the job

design.

One to the Write event. This touches the data

collection resource called XQA6.ACTCUST, which

is the filename specified in the Active-Customers

target stage.

One to the Read event. This touches the

Transformer stage input link (DSLink1000), which

corresponds to the CustomersOut link in the job

design.

Data Lineage
Data Lineage describes the history of an item of data, such as where it

comes from, when it was last modified, and its status. It focuses on

source tables in a warehouse job and the events and steps that

connect it to a target table.
F-12 Mainframe Job Developer’s Guide

Operational Meta Data Using Operational Meta Data
For the sample mainframe job, a Data Lineage path produces these

results:

From left to right, this represents the data flow from source to target.

It shows that 90 records were read from the source file,

XQA1.CUSTOMER.FWFF, and were written to the output link

DSLink1000, which corresponds to the CustomersOut link in the job

design. The 90 records were then sent down another link, DSLink1001,

which corresponds to the TransformOut link in the job design. Notice

that although the Transformer stage is not represented in this

diagram, its input and output links are included in the data flow. The

90 records were then written to the target file, XQA6.ACTCUST.

Impact Analysis
Impact Analysis helps you identify the impact of making a change to a

data warehouse object. It shows the relationships between objects

and their dependencies. For example, data resource locators relate

the tables used in job designs to the tables stored in the DataStage

Repository. There are two types of Impact Analysis paths:

Depends On. Displays the object the path was created from, all
the objects it depends on or contains, all the objects connected to
any objects in this path, and all the relationships between objects.

Where Used. Displays the object the path was created from, all
the objects that depend on or contain it, all the objects connected
to any objects in this path, and all the relationships between
objects.
Mainframe Job Developer’s Guide F-13

Using Operational Meta Data Operational Meta Data
Following is an example of a Where Used Impact Analysis path for the

XQA1.CUSTOMER.FWFF source file in the mainframe job:

This shows that the data collection XQA1.CUSTOMER.FWFF is

contained by a file (/XQA1.CUSTOMER.FWFF) that is hosted by a

computer (INTEGRAL). The second path shows that this data

collection is touched by a Read event (2003-03-04 05:18:36), which was

emitted by an activity (a component run, 2003-03-04 05:18:36), which

was produced by the program run on the mainframe (2003-03-04

05:18:36).
F-14 Mainframe Job Developer’s Guide

G
Run-time Library

This appendix describes the Ascential DataStage run-time library

(RTL) for mainframe jobs. The RTL contains routines that are used

during mainframe job execution. Depending on your job design, the

COBOL program for the job may invoke one or more of these routines.

RTL routines are used to sort data, create hash tables, create DB2

load-ready files, create delimited flat files, and run utilities.

The RTL is installed during DataStage server installation. It must be

installed on the execution platform before jobs are link edited. Make

sure you have completed RTL setup by following the instructions

during installation.

Sort Routines
Table G-1 describes the functions that are called to initialize and open

a sort so that records can be inserted. These functions are called once.

Table G-1 Start Sort Functions

Function Description

DSSRINI Initialization.

DSSROPI Open for inserting records into the sort.
Mainframe Job Developer’s Guide G-1

Sort Routines Run-time Library
Table G-2 describes the functions that are called for each record

inserted into a sort.

Table G-3 describes the functions that are called after all records have

been inserted into a sort.

Table G-4 describes the functions that are called for each record

fetched from a sort.

Table G-2 Record Insert Functions

Function Description

DSSRSWB Set write (insert) buffer.

DSBFWKA Write key ascending. This is called for each ascending key field.

DSBFWKD Write key descending. This is called for each descending key
field.

DSSRWKF Write key finish. This is called after all key fields have been
processed.

DSBFWDT Write data. This is called for each data (nonkey) field.

DSSRINS Insert record into sort.

Table G-3 Sort Execution Functions

Function Description

DSSROPF Invoke sort. This launches the actual sorting and then opens it
for fetching.

DSSRSRB Set read (fetch) buffer.

Table G-4 Record Fetching Functions

Function Description

DSSRGET Get (fetch) record from sort.

DSBFRKA Read key ascending. This is called for each ascending key field.

DSBFRKD Read key descending. This is called for each descending key
field.

DSSRRKF Read key finish. This is called after all key fields have been
processed.

DSBFRDT Read data. This is called for each nonkey field.
G-2 Mainframe Job Developer’s Guide

Run-time Library Hash Routines
Table G-5 describes the function that is called to close a sort.

Hash Routines
Table G-6 describes the function that is called to initialize a hash table.

This function is called once for each hash table.

Table G-7 describes the functions that are called to insert records into

a hash table. These functions are called once for each record.

Table G-8 describes the functions that are called to retrieve a record

from a hash table.

Table G-5 Close Sort Function

Function Description

DSSRCLS Close.

Table G-6 Hash Table Initialization Function

Function Description

DSHSINI Initialization.

Table G-7 Record Insert Functions

Function Description

DSHSGEN Compute a hash value based on the right hash key.

DSHSNEW

DSHSSET

These functions work together to add a new record to a hash
table.

Table G-8 Retrieve Record Functions

Function Description

DSHSRST Reset so that the first matching hash record is retrieved by
DSHSGET.

DSHSGNL Generate a hash value based on the left hash key.

DSHSGET Get the next hash record (or the first record if DSHSRST was
called).
Mainframe Job Developer’s Guide G-3

Hash Routines Run-time Library
Table G-9 describes the functions that are called to perform a full join

using a hash table.

Table G-10 describes the function that is called to close a hash table.

Calculating Hash Table Memory Requirements
Ascential DataStage builds a hash table for jobs that perform a lookup

or join using the hash technique. From a performance standpoint, it

may be helpful to calculate the amount of space required for the hash

table. You can do this after you generate code for a job.

To calculate hash table memory requirements:

1 Click the View button in the Code generation dialog box and
select Cobol program file.

2 Look for a call to the DSHSINI RTL function. There are two
arguments to this call:

a The first argument is the hash control structure and is at an 01
level. It describes the hash keys. The structure has a name such
as HASHn or HJn where n is an integer.

b The second argument describes the non-key data being
hashed and is also at an 01 level. The name of this structure
may be HJn-INFO, HASHTBLn, or a DD name.

3 Find the initialization code for the first argument by searching the
COBOL program for statements that move values to the
RKEYLENGTH field of the first argument. Then perform the
following computation:

a Add the RKEYLENGTH values for all of the hash key fields.

b Multiply the number of hash key fields by 2 (which represents
two bytes of overhead for each field’s length and null
indicator).

c Add the results of steps a and b to get a total.

Table G-9 Full Join Functions

Function Description

DSHSNXMT Get the next unhashed record from the hash table.

DSHSNOMH Make the record unhashed in the hash table.

Table G-10 Close Hash Table Function

Function Description

DSHSCLN Clean up the hash table.
G-4 Mainframe Job Developer’s Guide

Run-time Library Delimited Flat File Creation Routines
4 Next locate the initialization code for the second argument by
searching for statements that move values to the OUTLENGTH
field of the second argument. Then perform the following
computation:

a Add the OUTLENGTH values for all of the fields.

b Multiply the number of fields by 2.

c Add the results of steps a and b to get a total.

5 Add the results of steps 3 and 4, plus 21. This is the amount of
space required for each hashed row.

6 Multiply the result of step 5 by the number of rows being hashed.

7 Add 4 KB to the total. (This represents the space required for the
hash table itself, regardless of the number of rows.)

The result is the space required for the hash table. Repeat these

calculations for each hash table in your job.

Delimited Flat File Creation Routines
Table G-11 describes the functions that are called to create a delimited

flat file.

Table G-11 Delimited Flat File Creation Functions

Function Description

DSDLOPR Open the file for reading.

DSDLOPN Open the file for writing.

DSDLRD Read a record, parse the record based on the delimiter
information, and perform data type conversions.

DSDLWRT Write a record.

DSDLCLS Close the file.
Mainframe Job Developer’s Guide G-5

Utility Routines Run-time Library
Utility Routines
Table G-12 describes the functions that are called to perform certain

utilities.

Data Type Conversion Routines
Table G-13 describes the functions that are called to convert values

from one data type to another. For details about data type

conversions, see Appendix B, "Data Type Definitions and Mappings."

Table G-12 Utility Functions

Function Description

DSINIT Initialize the run-time library.

DSHEXVAL Return the hexadecimal value of a variable.

DSUTDAT Dump a record or variable in hexadecimal and EBCDIC format.

DSUTPAR Return the indented COBOL paragraph name.

DSUTPOS POSITION function.

DSUTSBS SUBSTRING function.

DSUTADR Return the address of a variable.

DSUTNUL Set null indicator(s) and set value to space or zero.

Table G-13 Data Type Conversion Functions

Function Description

DSC2SI Convert a character string to a small integer.

DSC2I Convert a character string to an integer.

DSC2D Convert a character string to a packed decimal number.

DSC2DT Convert a character string to a date.

DSC2TM Convert a character string to a time.

DSC2TS Convert a character string to a timestamp.

DSSI2C Convert a small integer to a character string.

DSI2C Convert an integer to a character string.

DSD2C Convert a decimal to a character string.

DSC2DTU Convert a character string to a date in USA date format.

DSC2DTE Convert a character string to a date in European date format.
G-6 Mainframe Job Developer’s Guide

Run-time Library Operational Meta Data Routines
Operational Meta Data Routines
Table G-14 describes the functions that are called to generate

operational meta data for a mainframe job.

DSB2C Convert a binary integer to a character string.

DSL2C Convert a long integer to a character string.

Table G-13 Data Type Conversion Functions (Continued)

Function Description

Table G-14 Operational Meta Data Functions

Function Description

DSINIT Read GENXMLFILE parameter from JCL to create the
operational meta data XML file.

DSPMDWR Write operational meta data to the XML file.
Mainframe Job Developer’s Guide G-7

Operational Meta Data Routines Run-time Library
G-8 Mainframe Job Developer’s Guide

H
Reserved Words

This appendix lists COBOL and SQL reserved words. SQL reserved

words cannot be used in the names of stages, links, tables, columns,

stage variables, or job parameters.

COBOL Reserved Words
The following table lists COBOL reserved words on OS/390 platforms.

Table H-1 COBOL Reserved Words

A ACCEPT

ACCESS

ADD

ADDRESS

ADVANCING

AFTER

ALL

ALPHABET

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

ALPHANUMERIC

ALPHANUMERIC-EDITED

ALSO

ALTER

ALTERNATE

AND

ANY

APPLY

ARE

AREA

AREAS

ASCENDING

ASSIGN

AT

AUTHOR

B BASIS

BEFORE

BEGINNING

BINARY

BLANK

BLOCK

BOTTOM

BY
Mainframe Job Developer’s Guide H-1

COBOL Reserved Words Reserved Words
C CALL

CANCEL

CBL

CD

CF

CH

CHARACTER

CHARACTERS

CLASS

CLASS-ID

CLOCK-UNITS

CLOSE

COBOL

CODE

CODE-SET

COLLATING

COLUMN

COM-REG

COMMA

COMMON

COMMUNICATION

COMP

COMP-1

COMP-2

COMP-3

COMP-4

COMP-5

COMPUTATIONAL

COMPUTATIONAL-1

COMPUTATIONAL-2

COMPUTATIONAL-3

COMPUTATIONAL-4

COMPUTATIONAL-5

COMPUTE

CONFIGURATION

CONTAINS

CONTENT

CONTINUE

CONTROL

CONTROLS

CONVERTING

COPY

CORR

CORRESPONDING

COUNT

CURRENCY

D DATA

DATE-COMPILED

DATE-WRITTEN

DAY

DAY-OF-WEEK

DBCS

DE

DEBUG-CONTENTS

DEBUG-ITEM

DEBUG-LINE

DEBUG-NAME

DEBUG-SUB-1

DEBUG-SUB-2

DEBUG-SUB-3

DEBUGGING

DECIMAL-POINT

DECLARATIVES

DELETE

DELIMITED

DELIMITER

DEPENDING

DESCENDING

DESTINATION

DETAIL

DISPLAY

DISPLAY-1

DIVIDE

DIVISION

DOWN

DUPLICATES

DYNAMIC

E EGCS

EGI

EJECT

ELSE

EMI

ENABLE

END

END-ADD

END-CALL

END-COMPUTE

END-DELETE

END-DIVIDE

END-EVALUATE

END-IF

END-INVOKE

END-MULTIPLY

END-OF-PAGE

END-PERFORM

END-READ

END-RECEIVE

END-RETURN

END-REWRITE

END-SEARCH

END-START

END-STRING

END-SUBTRACT

END-UNSTRING

END-WRITE

ENDING

ENTER

ENTRY

ENVIRONMENT

EOP

EQUAL

ERROR

ESI

EVALUATE

EVERY

EXCEPTION

EXIT

EXTEND

EXTERNAL

F FALSE

FD

FILE

FILE-CONTROL

FILLER

FINAL

FIRST

FOOTING

FOR

FROM

FUNCTION

Table H-1 COBOL Reserved Words (Continued)
H-2 Mainframe Job Developer’s Guide

Reserved Words COBOL Reserved Words
G GENERATE

GIVING

GLOBAL

GO

GOBACK

GREATER

GROUP

H HEADING HIGH-VALUE HIGH-VALUES

I I-O

I-O-CONTROL

ID

IDENTIFICATION

IF

IN

INDEX

INDEXED

INDICATE

INHERITS

INITIAL

INITIALIZE

INITIATE

INPUT

INPUT-OUTPUT

INSERT

INSPECT

INSTALLATION

INTO

INVALID

INVOKE

IS

J JUST JUSTIFIED

K KANJI KEY

L LABEL

LAST

LEADING

LEFT

LENGTH

LESS

LIMIT

LIMITS

LINAGE

LINAGE-COUNTER

LINE

LINE-COUNTER

LINES

LINKAGE

LOCAL-STORAGE

LOCK

LOW-VALUE

LOW-VALUES

M MEMORY

MERGE

MESSAGE

METACLASS

METHOD

METHOD-ID

MODE

MODULES

MORE-LABELS

MOVE

MULTIPLE

MULTIPLY

N NATIVE

NATIVE_BINARY

NEGATIVE

NEXT

NO

NOT

NULL

NULLS

NUMBER

NUMERIC

NUMERIC-EDITED

O OBJECT

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

ON

OPEN

OPTIONAL

OR

ORDER

ORGANIZATION

OTHER

OUTPUT

OVERFLOW

OVERRIDE

P PACKED-DECIMAL

PADDING

PAGE

PAGE-COUNTER

PASSWORD

PERFORM

PF

PH

PIC

PICTURE

PLUS

POINTER

POSITION

POSITIVE

PRINTING

PROCEDURE

PROCEDURE-POINTER

PROCEDURES

PROCEED

PROCESSING

PROGRAM

PROGRAM-ID

PURGE

Table H-1 COBOL Reserved Words (Continued)
Mainframe Job Developer’s Guide H-3

COBOL Reserved Words Reserved Words
Q QUEUE QUOTE QUOTES

R RANDOM

RD

READ

READY

RECEIVE

RECORD

RECORDING

RECORDS

RECURSIVE

REDEFINES

REEL

REFERENCE

REFERENCES

RELATIVE

RELEASE

RELOAD

REMAINDER

REMOVAL

RENAMES

REPLACE

REPLACING

REPORT

REPORTING

REPORTS

REPOSITORY

RERUN

RESERVE

RESET

RETURN

RETURN-CODE

RETURNING

REVERSED

REWIND

REWRITE

RF

RH

RIGHT

ROUNDED

RUN

S SAME

SD

SEARCH

SECTION

SECURITY

SEGMENT

SEGMENT-LIMIT

SELECT

SELF

SEND

SENTENCE

SEPARATE

SEQUENCE

SEQUENTIAL

SERVICE

SET

SHIFT-IN

SHIFT-OUT

SIGN

SIZE

SKIP1

SKIP2

SKIP3

SORT

SORT-CONTROL

SORT-CORE-SIZE

SORT-FILE-SIZE

SORT-MERGE

SORT-MESSAGE

SORT-MODE-SIZE

SORT-RETURN

SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

STANDARD

STANDARD-1

STANDARD-2

START

STATUS

STOP

STRING

SUB-QUEUE-1

SUB-QUEUE-2

SUB-QUEUE-3

SUBTRACT

SUM

SUPER

SUPPRESS

SYMBOLIC

SYNC

SYNCHRONIZED

T TABLE

TALLY

TALLYING

TAPE

TERMINAL

TERMINATE

TEST

TEXT

THAN

THEN

THROUGH

THRU

TIME

TIMES

TITLE

TO

TOP

TRACE

TRAILING

TRUE

TYPE

U UNIT

UNSTRING

UNTIL

UP

UPON

USAGE

USE

USING

V VALUE VALUES VARYING

Table H-1 COBOL Reserved Words (Continued)
H-4 Mainframe Job Developer’s Guide

Reserved Words SQL Reserved Words
SQL Reserved Words
Table H-2 lists SQL reserved words on OS/390 platforms.

W WHEN

WHEN-COMPILED

WITH

WORDS

WORKING-STORAGE

WRITE

WRITE-ONLY

Z ZERO ZEROES ZEROS

Table H-1 COBOL Reserved Words (Continued)

Table H-2 SQL Reserved Words

A ALL

AND

AND_BITS

ARRAY

AS

ASC

AVG

B BEGIN

BETWEEN

BIND

BOTH

BY

C CACHE

CALL

CARDINALITY

CASE

CAST

CHAR

CHAR_LENGTH

CHAR_LENGTH_B

CHAR_LENGTH_MB

CHARACTER

CHARACTER_LENGTH

CHARACTER_LENGTH_B

CHARACTER_LENGTH_MB

CHECK

COMMENT

COMMIT

CONCATENATE

COND

CORRESPONDING

COUNT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURSOR

D DATAXEL

DATE

DAY

DBMS_IN_MEMORY

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DESC

DIRECTIVE_ERROR

DISTINCT

DO

DOUBLE

DOUBLEGREATETHAN

E ENDOFDATA

ELSE

ELSEIF

END

EOF

ESCAPE

EXCEPT

EXIT

EXPAND

EXTRACT

F FALSE

FIRST

FOR

FROM

FULL

G GREATEEQ GROUP GROUP_BY

H HASH

HAVING

HIGH_VALUES

HINTEND

HINTSTART

HINT_ERROR

HOUR
Mainframe Job Developer’s Guide H-5

SQL Reserved Words Reserved Words
I IF

IFELSE

IN

IN_MEMORY

INNER

INSERT

INT

INTEGER

INTERSECT

INTERVAL

INTO

IS

ITERATE

J JOIN

L LAST

LEADING

LEAVE

LEFT

LESSEQ

LIKE

LOOP

LOWER

LOWER_MB

LOW_VALUES

LPAD

M MAX

MEMORY_SIZE

MERGE

META_HINT

MIN

MINUTE

MONTH

N NATURAL

NCHAR

NESTED_LOOP

NO_CACHE

NOT

NOTEQ

NULL

NUMERIC

O OCTET_LENGTH

OF

ON

OR

OR_BITS

ORDER

ORDERED

OUTER

OVERLAPS

P POSITION

POSITION_B

POSITION_MB

PRECISION

R REAL

RIGHT

ROUND

ROW

RPAD

S SAME_SOURCE

SECOND

SELECT

SEQUENTIALLY

SET

SIMPLE_NESTED_LOOP

SMALLINT

STDOUT

SUBARRAY

SUBSTRING

SUBSTRING_MB

SUM

T TABLE

THEN

TIME

TIMESTAMP

TIMESTEN

TO

TRAILING

TRIM

TRIM_B

TRIM_MB

TRUE

U UNION

UNKNOWN

UPDATE

UPPER

UPPER_MB

USING

V VALUES VARCHAR VARYING

W WHEN WHERE

X XOR_BITS

Y YEAR

Table H-2 SQL Reserved Words (Continued)
H-6 Mainframe Job Developer’s Guide

Index
A
aggregating data

aggregation functions 20–6

in Aggregator stages 20–5

types of aggregation

control break 20–4

group by 20–4

Aggregator stages

aggregation column meta data 20–6

aggregation functions 20–6

control break aggregation 20–4

editing 20–1

group by aggregation 20–4

input data to 20–2

Inputs page 20–2

mapping data 20–7

output data from 20–3

Outputs page 20–4

specifying aggregation criteria 20–5

Stage page 20–2

arguments, routine 13–4, 14–4, 22–4

arrays

flattening 3–6, 4–6, 5–4, 13–13

normalizing 3–6, 4–6, 13–13

OCCURS DEPENDING ON 3–6, 4–6, 6–4,
13–4, 13–13, 14–4

selecting as output

nested normalized columns 3–15

nested parallel normalized

columns 3–16

parallel normalized columns 3–15

single normalized columns 3–14

Ascential Developer Net viii

Assembler file definitions, importing 2–8

auto

joins 18–2

lookups 19–2
Mainframe Job Developer’s Guide
B
batch job compilation 24–16

boolean expressions

constraints 15–18

HAVING clauses 9–11, 10–11, 11–9

join conditions 18–7

lookup conditions 19–4, 19–6

WHERE clauses 9–7, 9–10, 10–7, 10–10,
11–8, 12–6

Business Rule stages

defining business rule logic 16–4

defining stage variables 16–2

editing 16–1

input data to 16–9

Inputs page 16–10

mapping data 16–5

output data from 16–10

Outputs page 16–11

SQL constructs 16–6

Stage page 16–2

C
call interface

external source routines 13–10

external target routines 14–9

CFDs, importing 2–2

Char data type

definition B–1

mappings B–4

COBOL

compiler options 24–11, E–3

FDs, importing 2–2

program filename 24–2

reserved words H–1

code customization 24–5

Code generation dialog box 24–2

code generation, see generating code
Index-1

Index
column auto-match facility

in Transformer stages 15–13

on Mapping tab 18–9, 19–11, 20–9, 21–8,
22–15

column definitions

editing D–1

propagating values D–2

saving D–6

column push option

in Aggregator stages 20–7

in Business Rule stages 16–6

in Complex Flat File stages 3–12

in Delimited Flat File stages 7–10

in External Routine stages 22–13

in External Source stages 13–15

in Fixed-Width Flat File stages 6–12

in IMS stages 5–5

in Join stages 18–7

in Link Collector stages 17–5

in Lookup stages 19–9

in Multi-Format Flat File stages 4–8

in Sort stages 21–6

compiler options 24–11, E–3

compiling multiple jobs 24–16

Complex file load option dialog box 3–6, 4–6,
13–13

Complex Flat File stages

array handling 3–6

create fillers option 3–5

data access types 3–2

defining constraints 3–13

editing 3–1

end-of-data indicator 3–2, 5–2

file view layout 3–3

output data from 3–11

Outputs page 3–12

pre-sorting data 3–7

selecting normalized array columns as

output 3–14

specifying

sort file parameters 3–10

stage column definitions 3–3

Stage page 3–2

start row/end row option 3–3

Computed Column dialog box 9–12, 10–12,
11–10

computed columns

in Relational stages 9–12

in Teradata Export stages 11–10

in Teradata Relational stages 10–12

conditional lookups 19–1, 19–15
Index-2
conditional statements, in JCL templates E–15

ConnectDirect

in FTP stages 23–2

JCL template E–2

constants A–2

constraints A–2

in Complex Flat File stages 3–13

in Delimited Flat File stages 7–11

in External Source stages 13–15

in Fixed-Width Flat File stages 6–13

in IMS stages 5–6

in Multi-Format Flat File stages 4–9

in Transformer stages 15–7, 15–18—15–20

control break aggregation 20–4

conventions

documentation vi

user interface vii

conversion functions, data type A–5

create fillers option

in Complex Flat File stages 3–5

in Fixed-Width Flat File stages 6–5

in Multi-Format Flat File stages 4–5

creating

machine profiles 24–12

routine definitions

external 22–2

external source 13–2

external target 14–2

cursor lookups

definition 19–1

examples 19–14

Customer Care viii

Customer Care, telephone viii

customizing

COBOL code 24–5

JCL templates E–4

D
data type conversion functions A–5

data types

allowable mappings B–2

definitions B–1

mapping implementations B–3

native

in source stages C–1

in target stages C–7

storage lengths C–11

DataStage Batch Job Compilation

Wizard 24–16

date and time functions A–6
Mainframe Job Developer’s Guide

Index
Date data type

definition B–2

mappings B–11

date mappings B–13

DB2 Load Ready Flat File stages

editing 8–1

input data to 8–8

Inputs page 8–9

output data from 8–10

Outputs page 8–10

specifying

DB2 bulk loader parameters 8–4

delimiter information 8–5

load data file parameters 8–6

stage column definitions 8–3

Stage page 8–2

write option 8–2

DBMSCODE variable 15–20, A–19

DCLGen files, importing 2–5

decimal arithmetic C–13

Decimal data type

definition B–2

mappings B–10

defining

business rule logic 16–4

computed columns 9–12, 10–12, 11–10

constraints

in Complex Flat File stages 3–13

in Delimited Flat File stages 7–11

in External Source stages 13–15

in Fixed-Width Flat File stages 6–13

in IMS stages 5–6

in Multi-Format Flat File stages 4–9

in Transformer stages 15–18—15–20

expressions A–3

JCL extension variables E–14

join conditions 18–6

lookup conditions 19–5

output column derivations 15–12

pre-lookup conditions 19–3

stage variables

in Business Rule stages 16–2

in Transformer stages 15–21

Delimited Flat File stages

defining constraints 7–11

delimiter settings 7–5

editing 7–1

end-of-data indicator 7–2

input data to 7–8

Inputs page 7–9

output data from 7–10
Mainframe Job Developer’s Guide
Outputs page 7–10

specifying

stage column definitions 7–3

target file parameters 7–7

Stage page 7–2

start row/end row option 7–3

write option 7–3

Designer

Diagram window 1–4

Repository window 1–4

status bar 1–4

toolbar 1–4

Diagram window 1–4

documentation

conventions vi

drag and drop

in Transformer stages 15–8

on Mapping tab 18–9, 19–11, 20–9, 21–7,
22–15

E
Edit Column Meta Data dialog box D–4

Edit Routine Argument Meta Data dialog

box 13–5, 14–5, 22–5

editing

Aggregator stages 20–1

Business Rule stages 16–1

column meta data D–1

Complex Flat File stages 3–1

DB2 Load Ready Flat File stages 8–1

Delimited Flat File stages 7–1

External Routine stages 22–8

External Source stages 13–10

External Target stages 14–9

Fixed-Width Flat File stages 6–1

FTP stages 23–1

IMS stages 5–1

job properties 1–9

Join stages 17–1, 18–1

Link Collector stages 17–1

Lookup stages 19–1

Multi-Format Flat File stages 4–1

Relational stages 9–1

Sort stages 21–1

Teradata Export stages 11–1

Teradata Load stages 12–1

Teradata Relational stages 10–1

Transformer stages 15–8

end-of-data indicator

in Complex Flat File stages 3–2, 5–2

in Delimited Flat File stages 7–2
Index-3

Index
in External Source stages 13–11

in Fixed-Width Flat File stages 6–2

in IMS stages 5–2

in Multi-Format Flat File stages 4–2

in Relational stages 9–2

in Teradata Relational stages 10–2

ENDOFDATA variable A–19, A–20

expiration date, for a new data set

in DB2 Load Ready Flat File stages 8–7,
12–11

in Delimited Flat File stages 7–8

in Fixed-Width Flat File stages 3–11, 6–10,
11–5

in Teradata Load stages 12–11

Expression Editor A–4, A–17

in Business Rule stages 16–6

in Relational stages 9–6

in Teradata Load stages 12–5

in Teradata Relational stages 10–6

in Transformer stages 15–24—15–26

expression grid A–4, A–17

expressions 15–26

definition A–3

entering 15–24

validating 15–25

extension variables, JCL E–13

External Routine stages

creating routine definitions 22–2

editing 22–8

input data to 22–9

Inputs page 22–10

mapping routines 22–12

output data from 22–11

Outputs page 22–11

external routines 22–1—22–8

copying 22–7

creating 22–2

renaming 22–8

viewing and editing 22–7

external source routines 13–1—13–10

call interface 13–10

copying 13–9

creating 13–2

renaming 13–9

viewing and editing 13–8

External Source stages

array handling 13–13

creating source routine definition 13–2

defining constraints 13–15

editing 13–10

end-of-data indicator 13–11
Index-4
file view layout 13–12

output data from 13–14

Outputs page 13–14

specifying external source routine 13–12

Stage page 13–11

external target routines 14–1—14–9

call interface 14–9

copying 14–8

creating 14–2

renaming 14–8

viewing and editing 14–7

External Target stages

creating target routine definition 14–2

editing 14–9

file view layout 14–10

input data to 14–12

Inputs page 14–12

specifying external target routine 14–11

Stage page 14–10

F
FastExport, Teradata 11–1

FastLoad, Teradata 12–2

file view layout

in Complex Flat File stages 3–3

in External Source stages 13–12

in External Target stages 14–10

in Fixed-Width Flat File stages 6–3

in Table Definition dialog box 2–19

filler creation, see create fillers option

find facility, on Mapping tab 18–8, 19–10, 20–8,
21–7, 22–14

find/replace facility, in Transformer stages 15–9

Fixed-Width Flat File stages

create fillers option 6–5

defining constraints 6–13

editing 6–1

end-of-data indicator 6–2

file view layout 6–3

input data to 6–10

Inputs page 6–11

output data from 6–12

Outputs page 6–12

pre-sorting data 6–5

specifying

stage column definitions 6–4

target file parameters 6–9

Stage page 6–2

start row/end row option 6–3

write option 6–3
Mainframe Job Developer’s Guide

Index
FTP stages

editing 23–1

file exchange method 23–2

input data to 23–4

Inputs page 23–4

specifying target machine attributes 23–2

Stage page 23–2

transfer mode options 23–3

transfer type options 23–3

full joins

definition 18–1

example 18–13

functions

aggregation 20–6

data type conversion A–5

date and time A–6

definition A–4

logical A–7

multi-byte string A–13

numerical A–9

string A–10

G
generating code 1–9, 24–1—24–4

base location, specifying 24–2

COBOL program 24–2

compile JCL 24–2, E–3

compiling multiple jobs 24–16

customizing code 24–5

files produced 24–4

job validation 24–4

run JCL 24–2, E–3

tracing runtime information 24–3

generating operational meta data F–2

group by aggregation 20–4

GROUP BY clause 9–10, 10–10, 11–8

H
hash

joins 18–2

lookups 19–2

hash table memory requirements G–4

HAVING clause 9–10, 10–10, 11–8

Help system, one-line help 1–4

HTML file

saving file view layout as 3–3, 6–3, 13–12,
14–10

saving records view layout as 4–3
Mainframe Job Developer’s Guide
I
importing

Assembler file definitions 2–8

COBOL FDs 2–2

DCLGen files 2–5

IMS definitions 2–19

PL/I file definitions 2–11

Teradata tables 2–17

IMS Database (DBD) dialog box 2–24

IMS definitions

importing 2–19

viewing and editing 2–23

IMS Segment/Associated Table Mapping dialog

box 2–26

IMS stages

defining constraints 5–6

editing 5–1

end-of-data indicator 5–2

flattening arrays 5–4

output data from 5–3

selecting columns 5–5

selecting segments 5–4

Outputs page 5–3

processing partial paths 5–4

Stage page 5–2

IMS Viewset (PSB/PCB) dialog box 2–25

inner joins

definition 18–1

example 18–12

input data

to Aggregator stages 20–2

to Business Rule stages 16–9

to DB2 Load Ready Flat File stages 8–8

to Delimited Flat File stages 7–8

to External Routine stages 22–9

to External Target stages 14–12

to Fixed-Width Flat File stages 6–10

to FTP stages 23–4

to Join stages 17–2, 18–3

to Link Collector stages 17–2

to Lookup stages 19–6

to Relational stages 9–3

to Sort stages 21–2

to Teradata Load stages 12–12

to Teradata Relational stages 10–3

Integer data type

definition B–2

mappings B–9
Index-5

Index
J
JCL

compile JCL 24–2, E–3

definition E–1

run JCL 24–2, E–3

JCL extension variables E–13

JCL templates

% variables E–5

conditional statements E–15

customizing E–4

preserving % symbol E–16

usage E–3

JCL Templates dialog box E–5

job parameters 1–9

job properties, editing 1–9

Job Upload dialog box 24–10

jobs, see mainframe jobs

Join stages

defining the join condition 18–6

editing 17–1, 18–1

examples 18–11

full joins 18–1, 18–13

inner joins 18–1, 18–12

input data to 17–2, 18–3

Inputs page 17–3, 18–4

join techniques 18–2

mapping data from 17–5, 18–7

outer joins 18–1, 18–12

outer link 18–2

output data from 17–4, 18–5

Outputs page 17–4, 18–5

Stage page 17–2, 18–2

joins

defining join conditions 18–6

full joins

definition 18–1

example 18–13

inner joins

definition 18–1

example 18–12

outer joins

definition 18–1

example 18–12

outer link 18–2

techniques

auto 18–2

hash 18–2

nested 18–3

two file match 18–3
Index-6
L
Link Collector stages

editing 17–1

input data to 17–2

Inputs page 17–3

mapping data 17–4

output data from 17–4

Outputs page 17–4

Stage page 17–2

links

between mainframe stages 1–8

execution order, in Transformer

stages 15–20

local stage variables

in Transformer stages 15–21

logical functions A–7

Lookup stages

action if lookup fails options 19–5

conditional lookups 19–1, 19–3, 19–15

cursor lookups 19–1, 19–14

defining

lookup condition 19–5

pre-lookup condition 19–3

editing 19–1

examples 19–13

input data to 19–6

Inputs page 19–7

lookup techniques 19–2

mapping data 19–9

output data from 19–8

Outputs page 19–8

singleton lookups 19–1, 19–15

sorting the reference link 19–6

Stage page 19–2

lookups

cursor

definition 19–1

examples 19–14

defining

lookup conditions 19–5

pre-lookup conditions 19–3

singleton

definition 19–1

examples 19–15

techniques

auto 19–2

hash 19–2

LPAD examples A–14
Mainframe Job Developer’s Guide

Index
M
Machine Profile dialog box

Connection page 24–13

General page 24–12

machine profiles 24–11—24–16

copying 24–15

creating 24–12

renaming 24–16

viewing and editing 24–15

mainframe jobs

creating 1–2

editing job properties 1–9

generating code 1–9, 24–1, 24–16

linking stages 1–8

overview 1–1

programming components A–1

programming resources 1–11

stage types 1–5

tool palette 1–4, 1–5—1–7

uploading 1–10, 24–8, 24–16

validating 24–4

Mainframe Routine dialog box

Arguments page 13–4, 14–4, 22–4

Creator page 13–3, 14–3, 22–3

General page 13–2, 14–2, 22–2

JCL page 13–8, 14–7

mapping

data

from Aggregator stages 20–7

from Business Rule stages 16–5

from External Routine stages 22–12

from Join stages 17–5, 18–7

from Link Collector stages 17–4

from Lookup stages 19–9

from Sort stages 21–5

from Transformer stages 15–12

data types B–2

dates B–13

routines 22–12

meta data

editing D–1

importing 2–1

operational F–1

multi-byte string functions A–13

Multi-Format Flat File stages

array handling 4–6

create fillers option 4–5

data access types 4–2

defining constraints 4–9

editing 4–1

end-of-data indicator 4–2
Mainframe Job Developer’s Guide
master record 4–4

maximum file record size 4–2

output data from 4–8

Outputs page 4–8

record ID 4–7

records view layout 4–3

selecting normalized array columns as

output 4–11

specifying stage record definitions 4–3

Stage page 4–2

start row/end row option 4–2

MultiLoad, Teradata 12–2

N
native data types

in source stages C–1

in target stages C–7

storage lengths C–11

NChar data type

definition B–1

mappings B–7

nested joins 18–3

numerical functions A–9

NVarChar data type

definition B–1

mappings B–7

O
OCCURS DEPENDING ON clause

in Complex Flat File stages 3–6

in DB2 Load Ready Flat File stages 8–4

in Delimited Flat File stages 7–4

in external source routines 13–4

in External Source stages 13–13

in external target routines 14–4

in Fixed-Width Flat File stages 6–4

in Multi-Format Flat File stages 4–6

operational meta data

controlling XML file creation F–6

definition F–1

generating F–2

using in MetaStage F–8

operators A–16

ORDER BY clause 9–11, 10–11, 11–9

outer joins

definition 18–1

example 18–12

outer link, Join stages 18–2

output data

from Aggregator stages 20–3

from Business Rule stages 16–10
Index-7

Index
from Complex Flat File stages 3–11

from DB2 Load Ready Flat File stages 8–10

from Delimited Flat File stages 7–10

from External Routine stages 22–11

from External Source stages 13–14

from Fixed-Width Flat File stages 6–12

from IMS stages 5–3

from Join stages 17–4, 18–5

from Link Collector stages 17–4

from Lookup stages 19–8

from Multi-Format Flat File stages 4–8

from Relational stages 9–8

from Sort stages 21–3

from Teradata Export stages 11–6

from Teradata Relational stages 10–8

output links, execution order in Transformer

stages 15–20

overview, mainframe jobs 1–1

P
parameters 1–9, A–18

PL/I file definitions, importing 2–11

post-processing stage 1–7

pre-sorting data

in Complex Flat File stages 3–7

in Fixed-Width Flat File stages 6–5

processing stages 1–6

programming components A–1—A–21

constants A–2

constraints A–2

expressions A–3

functions A–4—A–16

operators A–16

parameters A–18

routines A–19

variables A–19

programming, in mainframe jobs 1–11

propagating column values D–2

R
records view layout

in Multi-Format Flat File stages 4–3

reference link, sorting in Lookup stages 19–6

reject links, in Transformer

stages 15–18—15–20

REJECTEDCODE variable 15–19, 16–4, A–19

Relational stages

defining computed columns 9–12

editing 9–1

end-of-data indicator 9–2

input data to 9–3
Index-8
Inputs page 9–3

output data from 9–8

Outputs page 9–8

SQL statement

GROUP BY clause 9–10

HAVING clause 9–10

modifying 9–14

ORDER BY clause 9–11

viewing 9–11, 11–9

WHERE clause 9–9

Stage page 9–2

update action 9–3

updating input columns 9–5

WHERE clause 9–7

Remote System dialog box 24–8

Repository window 1–4

reserved words

COBOL H–1

SQL H–5

retention period, for a new data set

in DB2 Load Ready Flat File stages 8–8,
12–11

in Delimited Flat File stages 7–8

in Fixed-Width Flat File stages 3–11, 6–10,
11–5

in Teradata Load stages 12–11

ROUND examples A–9

routines

definition A–19

external 22–1

external source 13–1

external target 14–1

RPAD examples A–14

RTL, see run-time library

runtime information, tracing 24–3

run-time library G–1

data type conversion routines G–6

delimited flat file creation routines G–4

hash routines G–3

operational meta data routines G–7

sort routines G–1

utility routines G–6

S
semantic checking 15–26

shortcut menus, in Transformer

Editor 15–3—15–5

singleton lookups

definition 19–1

examples 19–15
Mainframe Job Developer’s Guide

Index
SmallInt data type

definition B–2

mappings B–8

Sort stages

editing 21–1

input data to 21–2

Inputs page 21–2

mapping data 21–5

output data from 21–3

Outputs page 21–3

specifying sort order 21–5

Stage page 21–2

sorting data

in Relational stages 9–11

in Sort stages 21–4

in Teradata Export stages 11–9

in Teradata Relational stages 10–11

source stages 1–5

SQL constructs, in Business Rule stages 16–6

SQL reserved words H–5

SQL statement

modifying

in Relational stages 9–14

in Teradata Export stages 11–11

in Teradata Relational stages 10–14

viewing

in Relational stages 9–11

in Teradata Export stages 11–9

in Teradata Relational stages 10–11

SQLCA.SQLCODE variable 16–4, 16–7, A–19,
A–21

stage variables

in Transformer stages 15–21

stage

in Business Rule stages 16–2

stages

editing

Aggregator 20–1

Business Rule 16–1

Complex Flat File 3–1

DB2 Load Ready Flat File 8–1

Delimited Flat File 7–1

External Routine 22–8

External Source 13–10

External Target 14–9

Fixed-Width Flat File 6–1

FTP 23–1

IMS 5–1

Join 17–1, 18–1

Link Collector 17–1

Lookup 19–1
Mainframe Job Developer’s Guide
Multi-Format Flat File 4–1

Relational 9–1

Sort 21–1

Teradata Export 11–1

Teradata Load 12–1

Teradata Relational 10–1

Transformer 15–8

links allowed 1–8

types, in mainframe jobs 1–5

start row/end row option

in Complex Flat File stages 3–3

in Delimited Flat File stages 7–3

in Fixed-Width Flat File stages 6–3

in Multi-Format Flat File stages 4–2

status bar, Designer 1–4

storage lengths, data type C–11

string functions A–10

SUBSTRING rules A–15

syntax checking, in expressions 15–25

T
Table Definition dialog box 2–18

table definitions

importing 2–1

saving columns as 2–1

viewing and editing 2–18

target file parameters

in DB2 Load Ready Flat File stages 8–6

in Delimited Flat File stages 7–7

in Fixed-Width Flat File stages 6–9

in Teradata Load stages 12–10

target stages 1–6

Teradata Export stages

defining computed columns 11–10

editing 11–1

output data from 11–6

Outputs page 11–6

specifying

FastExport execution parameters 11–3

file options 11–4

Teradata connection parameters 11–2

SQL statement

GROUP BY clause 11–8

HAVING clause 11–8

modifying 11–11

ORDER BY clause 11–9

WHERE clause 11–7

Teradata FastExport 11–1

Teradata FastLoad 12–2

Teradata Load stages

editing 12–1
Index-9

Index
input data to 12–12

Inputs page 12–12

specifying

file options 12–10

stage column definitions 12–4

Teradata connection parameters 12–3

Teradata load utility parameters 12–7

Stage page 12–2

table preparation 12–2

update action 12–2

updating input columns 12–4

WHERE clause 12–6

Teradata MultiLoad 12–2

Teradata Relational stages

defining computed columns 10–12

editing 10–1

end-of-data indicator 10–2

input data to 10–3

Inputs page 10–3

output data from 10–8

Outputs page 10–8

SQL statement

GROUP BY clause 10–10

HAVING clause 10–10

modifying 10–14

ORDER BY clause 10–11

viewing 10–11

WHERE clause 10–9

Stage page 10–2

update action 10–3

updating input columns 10–5

WHERE clause 10–7

Teradata tables, importing 2–17

Teradata TPump 12–2

Time data type

definition B–2

mappings B–12

Timestamp data type

definition B–2

mappings B–12

tool palette, mainframe jobs 1–4, 1–5—1–7

toolbar

Designer 1–4

Transformer Editor 15–2

TPump, Teradata 12–2

tracing runtime information 24–3

Transformer Editor 15–2

link area 15–2

meta data area 15–3

shortcut menus 15–3—15–5

toolbar 15–2
Index-10
Transformer stages 15–1

basic concepts 15–6

column auto-match facility 15–13

defining constraints 15–18—15–20

editing 15–8

Expression Editor 15–24—15–26

find/replace facility 15–9

input links 15–7

mapping data 15–12

output columns

creating and deleting 15–11

defining derivations 15–12

editing meta data 15–12

editing multiple derivations 15–15

moving 15–12

output links 15–7

reject links 15–18—15–20

select facilities 15–10

specifying output link order 15–20

stage properties 15–6

stage variables 15–21

two file match joins 18–3

U
update action

in Relational stages 9–3

in Teradata Load stages 12–2

in Teradata Relational stages 10–3

updating input columns

in Relational stages 9–5

in Teradata Load stages 12–4

in Teradata Relational stages 10–5

uploading jobs 1–10, 24–8, 24–16

user interface conventions vii

V
validating

expressions 15–25

jobs 24–4

VarChar data type

definition B–1

mappings B–5

variables

built-in A–19

definition A–19

JCL extension E–13

JCL template E–5

stage

in Business Rule stages 16–2

in Transformer stages 15–21
Mainframe Job Developer’s Guide

Index
W
WHERE clause 9–7, 9–9, 10–7, 10–9, 11–7, 12–6

wizard, DataStage Batch Job

Compilation 24–16

write option

in DB2 Load Ready Flat File stages 8–2

in Delimited Flat File stages 7–3

in Fixed-Width Flat File stages 6–3

X
XML file, operational meta data F–2, F–5, F–6
Mainframe Job Developer’s Guide
Index-11

Index
Index-12
 Mainframe Job Developer’s Guide

	Mainframe Job Developer’s Guide
	How to Use this Guide
	How This Book is Organized
	Related Documentation
	Ascential Software Documentation

	Documentation Conventions
	User Interface Conventions
	Contacting Support

	Contents
	Introduction
	Developing Mainframe Jobs
	Importing Meta Data
	Creating a Mainframe Job
	Designing Job Stages
	Editing Job Properties

	After Development
	Generating Code
	Uploading Jobs
	Compiling and Uploading Multiple Jobs

	Programming Resources

	Importing Meta Data for Mainframe Jobs
	Importing Table Definitions
	COBOL File Definitions
	DB2 DCLGen Files
	Assembler File Definitions
	PL/I File Definitions
	BIT Data Type Examples

	Teradata Tables

	Viewing and Editing Table Definitions
	Importing IMS Definitions
	IMS Data Base Descriptions
	IMS Program Specification Blocks

	Viewing and Editing IMS Definitions
	IMS Database Editor
	IMS Viewset Editor

	Complex Flat File Stages
	Using a Complex Flat File Stage
	Specifying Stage Column Definitions
	Create Fillers Option
	Array Handling

	Pre-Sorting Data
	Specifying Sort File Parameters

	Defining Complex Flat File Output Data
	Selecting Normalized Arrays
	Selecting a Single Normalized Column
	Selecting a Nested Normalized Column
	Selecting Parallel Normalized Columns
	Selecting Nested Parallel Normalized Columns

	Multi-Format Flat File Stages
	Using a Multi-Format Flat File Stage
	Specifying Stage Record Definitions
	Create Fillers Option
	Array Handling

	Specifying Record ID Constraints

	Defining Multi-Format Flat File Output Data
	Selecting Normalized Arrays

	IMS Stages
	Using an IMS Stage
	Defining IMS Output Data

	Fixed-Width Flat File Stages
	Using a Fixed-Width Flat File Stage
	Specifying Stage Column Definitions
	Create Fillers Option

	Pre-Sorting Data
	Specifying Target File Parameters

	Defining Fixed-Width Flat File Input Data
	Defining Fixed-Width Flat File Output Data

	Delimited Flat File Stages
	Using a Delimited Flat File Stage
	Specifying Stage Column Definitions
	Specifying Delimiter Information
	Specifying Target File Parameters

	Defining Delimited Flat File Input Data
	Defining Delimited Flat File Output Data

	DB2 Load Ready Flat File Stages
	Using a DB2 Load Ready Flat File Stage
	Specifying Stage Column Definitions
	Setting DB2 Bulk Loader Parameters
	Specifying Delimiter Information
	Specifying Load Data File Parameters

	Defining DB2 Load Ready Input Data
	Defining DB2 Load Ready Output Data

	Relational Stages
	Using a Relational Stage
	Defining Relational Input Data
	Updating Input Columns
	Using a WHERE Clause

	Defining Relational Output Data
	Defining Computed Columns
	Modifying the SQL Statement

	Teradata Relational Stages
	Using a Teradata Relational Stage
	Defining Teradata Relational Input Data
	Updating Input Columns
	Using a WHERE Clause

	Defining Teradata Relational Output Data
	Defining Computed Columns
	Modifying the SQL Statement

	Teradata Export Stages
	Using a Teradata Export Stage
	Specifying Teradata FastExport Parameters
	Specifying File Options

	Defining Teradata Export Output Data
	Defining Computed Columns
	Modifying the SQL Statement

	Teradata Load Stages
	Using a Teradata Load Stage
	Specifying Stage Column Definitions
	Updating Input Columns
	Defining a WHERE Clause
	Specifying Teradata Load Utility Parameters
	Specifying Error Handling Options
	Specifying File Options

	Defining Teradata Load Input Data

	External Source Stages
	Working with External Sources
	Creating an External Source Routine
	Viewing and Editing an External Source Routine
	Copying an External Source Routine
	Renaming an External Source Routine

	Defining the External Source Call Interface
	Using an External Source Stage
	Specifying the External Source Routine
	Array Handling

	Defining External Source Output Data

	External Target Stages
	Working with External Targets
	Creating an External Target Routine
	Viewing and Editing an External Target Routine
	Copying an External Target Routine
	Renaming an External Target Routine

	Defining the External Target Call Interface
	Using an External Target Stage
	Specifying the External Target Routine

	Defining External Target Input Data

	Transformer Stages
	Using a Transformer Stage
	Transformer Editor Components
	Toolbar
	Link Area
	Meta Data Area
	Shortcut Menus

	Transformer Stage Properties
	Transformer Stage Basic Concepts
	Input Links
	Output Links

	Editing Transformer Stages
	Using Drag and Drop
	Find and Replace Facility
	Select Facilities
	Creating and Deleting Output Columns
	Moving Output Columns Within a Link
	Editing Output Column Meta Data
	Defining Output Column Derivations
	Column Auto-Match Facility

	Editing Multiple Derivations
	Whole Expression
	Part of Expression

	Defining Constraints and Handling Rejects
	Specifying Output Link Order
	Defining Local Stage Variables

	The DataStage Expression Editor
	Entering Expressions
	Validating the Expression
	Exiting the Expression Editor

	Business Rule Stages
	Using a Business Rule Stage
	Defining Stage Variables
	Specifying Business Rule Logic
	SQL Constructs

	Defining Business Rule Input Data
	Defining Business Rule Output Data

	Link Collector Stages
	Using a Link Collector Stage
	Defining Link Collector Input Data
	Defining Link Collector Output Data
	Mapping Data

	Join Stages
	Using a Join Stage
	Defining Join Input Data
	Defining Join Output Data
	Defining the Join Condition
	Mapping Data
	Find Facility
	Using Drag and Drop
	Using Column Auto-Match

	Join Examples

	Lookup Stages
	Using a Lookup Stage
	Performing Conditional Lookups
	Defining the Lookup Condition
	Sorting the Reference Link

	Defining Lookup Input Data
	Defining Lookup Output Data
	Mapping Data
	Find Facility
	Using Drag and Drop
	Using Column Auto-Match

	Lookup Examples
	Conditional Lookup Examples
	Null Fill, Skip Row Combination
	Skip Row, Skip Row Combination
	Use Previous Values, Skip Row Combination
	Use Previous Values, Skip Row Combination 2
	Use Previous Values, Null Fill Combination
	Null Fill, Null Fill Combination

	Aggregator Stages
	Using an Aggregator Stage
	Defining Aggregator Input Data
	Defining Aggregator Output Data
	Aggregating Data
	Mapping Data
	Find Facility
	Using Drag and Drop
	Using Column Auto-Match

	Sort Stages
	Using a Sort Stage
	Defining Sort Input Data
	Defining Sort Output Data
	Sorting Data
	Mapping Data
	Find Facility
	Using Drag and Drop
	Using Column Auto-Match

	External Routine Stages
	Working with Mainframe Routines
	Creating a Routine
	Viewing and Editing a Routine
	Copying a Routine
	Renaming a Routine

	Using an External Routine Stage
	Defining External Routine Input Data
	Defining External Routine Output Data
	Mapping Routines and Data
	Find Facility
	Using Drag and Drop
	Using Column Auto-Match

	FTP Stages
	Using an FTP Stage
	Specifying Target Machine Attributes

	Defining FTP Input Data

	Code Generation and Job Upload
	Generating Code
	Job Validation
	Generated Files
	Code Customization
	Changing Warning and Error Message Text
	Generating COPY Statements for Customization
	Using the COPYLIB Prefix
	COPY Statement Results

	Uploading Jobs
	COBOL Compiler Options

	Working with Machine Profiles
	Creating a Machine Profile
	Viewing and Editing a Machine Profile
	Copying a Machine Profile
	Renaming a Machine Profile

	Compiling Multiple Jobs

	Programmer’s Reference
	Programming Components
	Constants
	Constraints
	Expressions
	Functions
	Date Type Conversion Functions
	Date and Time Functions
	Logical Functions
	Numerical Functions
	ROUND Examples

	String Functions
	Multi-Byte String Functions
	LPAD and RPAD Examples
	SUBSTRING Rules

	Operators
	Parameters
	Routines
	Variables
	REJECTEDCODE and DBMSCODE
	ENDOFDATA
	SQLCA.SQLCODE

	Data Type Definitions and Mappings
	Data Type Definitions
	Data Type Mappings
	Processing Rules

	Data Type Mapping Implementations
	Mapping Dates

	Native Data Types
	Source Stages
	Target Stages
	Storage Lengths
	Variable Calculation for Decimal Arithmetic
	Addition and Subtraction (D1 + D2 or D1 - D2)
	Multiplication (D1 * D2)
	Division (D1 / D2)

	Editing Column Meta Data
	Editing Mainframe Column Definitions
	Propagating Column Values

	Using the Edit Column Meta Data Dialog Box

	JCL Templates
	JCL Template Descriptions
	JCL Template Usage
	Customizing a JCL Template
	JCL Template Variables
	JCL Extension Variables
	Defining JCL Extension Variables

	Conditional Statements in JCL Templates
	% Symbols in JCL Templates

	Operational Meta Data
	About Operational Meta Data
	Generating Operational Meta Data
	Project-Level Operational Meta Data
	Job-Level Operational Meta Data
	Specifying MetaStage Machine Connection Details
	Controlling XML File Creation
	Using GDG to Generate Unique Dataset Names
	Importing XML Files into MetaStage

	Using Operational Meta Data
	Understanding Events
	Process Analysis
	Data Lineage
	Impact Analysis

	Run-time Library
	Sort Routines
	Hash Routines
	Calculating Hash Table Memory Requirements

	Delimited Flat File Creation Routines
	Utility Routines
	Data Type Conversion Routines
	Operational Meta Data Routines

	Reserved Words
	COBOL Reserved Words
	SQL Reserved Words

	Index

