
Ascential DataStage™

Enterprise Edition
SAS Stage Supplementary Guide
Version 1.0
Part No. 00D-003DS751

February 2005

This document, and the software described or referenced in it, are confidential and proprietary to Ascential

Software Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a

license agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise

provided to third parties, unless otherwise permitted by that agreement. No portion of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of Ascential. The specifications and

other information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

© 2005, 2004 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise

Data Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration,

Simplified®, Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential

QualityStage™, Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential

MetaStage™, and Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be

registered in the United States or other jurisdictions.

SAS is a registered trademark of SAS Institute Inc.

The software delivered to Licensee may contain third-party software code. See Legal Notices (LegalNotices.pdf)

for more information.

How to Use This Guide

DataStage Enterprise Edition (EE) makes it possible for you to execute

SAS applications using the computing power and data handling

capabilities of DataStage’s parallel processing system. You need to

make only minor modifications to your existing SAS applications for

execution within DataStage using the DataStage SAS stage.

Audience
This guide is intended for:

DataStage Enterprise Edition designers who create or modify jobs
that use the SAS stage.

DataStage administrators who install or upgrade DataStage
Enterprise Edition.

SAS administrators who install or upgrade SAS installations.

How This Book is Organized
The following table lists topics that may be of interest to you and it

provides links to these topics.

To learn about Read…

Structuring your SAS programs to take advantage of the
parallel processing capabilities of DataStage

"Using DataStage to Run SAS Code" on
page 1-1

Modifying to your existing SAS applications for
execution within DataStage

"Making SAS Steps Parallel" on page 1-19

Extracting data from a SAS file "Using DataStage to Do ETL" on
page 1-35

Converting a standard DataStage data set into an SAS
data set capable of being processed in parallel by the
SAS stage and defining the input data-set schema

"The sasin Component" on page 2-1
DataStage SAS Stage Supplementary Guide iii

Related Documentation How to Use This Guide
Related Documentation

To learn more about documentation from other Ascential products and third-party

documentation as they relate to the SAS stage, refer to the following sections/tables.

Ascential Software Documentation

Third-Party Documentation

SAS also makes a comprehensive web site available at www.sas.com.

Executing part or all of a SAS application in parallel,
taking SAS code in the form of DATA and PROC steps as
its argument

"The sas Component" on page 2-4

Converting the SAS data set output by the SAS stage to
the standard DataStage data set format and specifying
the schema of the output DataStage data set

"The sasout Component" on page 2-11

To learn about Read…

Guide Description

DataStage Install and Upgrade
Guide

Instructions for installing or
upgrading DataStage Enterprise
Edition and information about
environment variables.

DataStage Enterprise Edition:
Parallel Job Developer’s Guide

Techniques for designing parallel
jobs and specifically using the SAS
stage GUI.

DataStage Administrator Guide Information about environment
variables.

Product Guide Description

SAS The Little SAS Book Introduction to the SAS
language
iv DataStage SAS Stage Supplementary Guide

How to Use This Guide Conventions
Conventions

Contacting Support
To reach Customer Care and other sources of product information,

refer to the following:

Call toll-free: 1-866-INFONOW (1-866-463-6669)

Email: support@ascentialsoftware.com

Ascential Developer Net: http://developernet.ascential.com

Ascential eService: http://www.ascential.com/eservice

Please consult your support agreement for the location and

availability of customer support personnel.

To find the location and telephone number of the nearest Ascential

Software office outside of North America, please visit the Ascential

Software Corporation website at http://www.ascentialsoftware.com.

Convention Used for…

bold Field names, button names, menu items, and
keystrokes. Also used to indicate filenames, and
window and dialog box names.

user input Information that you need to enter as is.

code Code examples

variable

or

<variable>

Placeholders for information that you need to enter.
Do not type the greater-/less-than brackets as part of
the variable.

> Indicators used to separate menu options, such as:

Start >Programs >Ascential DataStage

[A] Options in command syntax. Do not type the brackets
as part of the option.

B… Elements that can repeat.

A|B Indicator used to separate mutually-exclusive
elements.

{ } Indicator used to identify sets of choices.
DataStage SAS Stage Supplementary Guide v

mailto:support@ascentialsoftware.com
http://developernet.ascential.com
http://www.ascentialsoftware.com
http://www.ascential.com/eservice/index.html

Contacting Support How to Use This Guide
vi DataStage SAS Stage Supplementary Guide

Contents
How to Use This Guide
Audience . iii

How This Book is Organized . iii

Related Documentation . iv

To learn more about documentation from other Ascential products and

third-party documentation as they relate to the SAS stage, refer to the

following sections/tables.. iv

Ascential Software Documentation . iv

Third-Party Documentation . iv

Conventions . v

Contacting Support . v

Chapter 1
The SAS Stage

Using DataStage to Run SAS Code . 1-1

Writing SAS Programs. 1-1

Using SAS on Sequential and Parallel Systems . 1-2

Pipeline Parallelism and SAS . 1-3

Required SAS Environment . 1-4

SAS Licenses . 1-4

Installation Requirements . 1-4

Configuring Your System to Use the DataStage SAS Stage 1-4

SAS Executables. 1-6

Long Name Support. 1-8

The SAS Stage GUI . 1-8

An Example Data Flow . 1-10

Representing SAS and Non-SAS Data in DataStage Enterprise Edition. . . . 1-12
DataStage SAS Stage Supplementary Guide vii

Contents
Getting Input from a SAS Data Set . 1-14

Getting Input from a DataStage or a Transitional SAS Data Set 1-15

Converting between Data Set Types . 1-16

Converting DataStage Data to SAS Data . 1-16

Converting SAS Data to DataStage Data . 1-17

A DataStage Example . 1-18

Making SAS Steps Parallel . 1-19

Executing DATA Steps in Parallel . 1-19

Example Applications . 1-20

Executing PROC Steps in Parallel. 1-25

Example Applications . 1-26

Points to Consider in Parallelizing SAS Code . 1-30

Rules of Thumb . 1-31

Using SAS with European Languages. 1-34

Using DataStage to Do ETL. 1-35

Running in NLS Mode . 1-36

Parallel SAS Data Sets and SAS International . 1-36

Automatic DataStage Step Insertion . 1-36

Handling SAS CHAR Fields Containing Multi-Byte Unicode Data 1-37

Specifying an Output Schema . 1-37

Controlling ustring Truncation . 1-38

DataStage-Inserted Partition and Sort Components 1-39

Environment Variables . 1-39

Chapter 2
DataStage SAS Stage Components

The sasin Component . 2-1

Properties . 2-2

Options . 2-3

The sas Component . 2-4

Properties . 2-4

Options . 2-5

The sasout Component . 2-11

Properties . 2-13

Options . 2-14

Index
viii DataStage SAS Stage Supplementary Guide

1
The SAS Stage

Using DataStage to Run SAS Code
DataStage Enterprise Edition lets SAS users optimally exploit the

performance potential of parallel relational database management

systems (RDBMS) running on scalable hardware platforms. DataStage

extends SAS by coupling the parallel data transport facilities of

DataStage with the rich data access, manipulation, and analysis

functions of SAS.

While DataStage allows you to execute your SAS code in parallel,

sequential SAS code can also take advantage of DataStage to increase

system performance by making multiple connections to a parallel

database for data reads and writes, as well as through pipeline

parallelism.

The SAS system consists of a powerful programming language and a

collection of ready-to-use programs called procedures (PROCS). This

section introduces SAS application development and explains the

differences in execution and performance of sequential and parallel

SAS programs.

Writing SAS Programs
You develop SAS applications by writing SAS programs. In the SAS

programming language, a group of statements is referred to as a SAS

step. SAS steps fall into one of two categories: DATA steps and PROC

steps.
DataStage SAS Stage Supplementary Guide 1-1

Using DataStage to Run SAS Code The SAS Stage
SAS DATA steps usually process data one row at a time and do not

look at the preceding or following records in the data stream. This

makes it possible for the DataStage SAS stage to process data steps

in parallel. SAS PROC steps, however, are precompiled routines which

cannot always be parallelized.

Using SAS on Sequential and Parallel Systems
The SAS system is available for use on a variety of computing

platforms, including single-processor UNIX workstations. Because

SAS is written as a sequential application, DataStage can provide a

way to exploit the full power of scalable computing technology within

the traditional SAS programming environment.

For example, the left side of the following figure shows a sequential

SAS application that reads its input from an RDBMS and writes its

output to the same database. This application contains a number of

sequential bottlenecks that can negatively impact its performance.

Figure 1-1 Comparison of Single and Multiple Executions

Sequential
Processing
Model

In a typical client/server environment, a sequential application such as

SAS establishes a single connection to a parallel RDBMS in order to

access the database. Therefore, while your database may be explicitly

designed to support parallel access, SAS requires that all input be

combined into a single input stream.

One effect of single input is that often the SAS program can process

data much faster than it can access the data over the single

SAS step

SAS step

SAS step

SAS step

SAS
single execution of steps

SAS with DataStage
multiple executions of steps
1-2 DataStage SAS Stage Supplementary Guide

The SAS Stage Pipeline Parallelism and SAS
connection, therefore the performance of a SAS program may be

bound by the rate at which it can access data. In addition, while a

parallel system, either MPP or SMP, contains multiple CPUs, a single

SAS job in SAS itself executes on only a single CPU; therefore, much

of the processing power of your system is unused by the SAS

application.

Parallel
Processing
Model

In contrast, the DataStage parallel processing model, shown above on

the right, allows the database reads and writes, as well as the SAS

program itself, to run simultaneously, reducing or eliminating the

performance bottlenecks that might otherwise occur when SAS is run

on a parallel computer.

DataStage enables SAS users to:

Access, for reading or writing, large volumes of data in parallel
from parallel relational databases, with much higher throughput
than is possible using PROC SQL.

Process parallel streams of data with parallel instances of SAS
DATA and PROC steps, enabling scoring or other data
transformations to be done in parallel with minimal changes to
existing SAS code.

Store large data sets in parallel, circumventing restrictions on
data-set size imposed by your file system or physical disk-size
limitations. Parallel data sets are accessed from SAS programs in
the same way as conventional SAS data sets, but at much higher
data I/O rates.

Realize the benefits of pipeline parallelism, in which some number
of DataStage SAS stages of the SAS stage run at the same time,
each receiving data from the previous process as it becomes
available.

Pipeline Parallelism and SAS

Pipeline
Parallelism

DataStage Enterprise Edition applications containing multiple

occurrences of the SAS stage take advantage of pipeline parallelism.

With pipeline parallelism, all occurrences of the SAS stage in your

application run at the same time. An occurrence of the SAS stage may

be active, meaning it has input data available to be processed, or it

may be blocked as it waits to receive input data from a previous

occurrence of the SAS stage or another DataStage stage.

Steps that are processing on a per-record or per-group basis, such as a

DATA step or a PROC MEANS with a BY clause, can feed individual

records or small groups of records into downstream occurrences of
DataStage SAS Stage Supplementary Guide 1-3

Required SAS Environment The SAS Stage
the SAS stage for immediate consumption, bypassing the usual write

to disk.

Sort
Limitations

Steps that process an entire data set at once, such as a PROC SORT,

can provide no output to downstream steps until the sort is complete.

The pipeline parallelism enabled by DataStage allows individual

records to feed the sort as they become available. The sort is therefore

occurring at the same time as the upstream steps. However, pipeline

parallelism is broken between the sort and the downstream steps,

since no records are output by the PROC SORT until all records have

been processed. A new pipeline is initiated following the sort.

Required SAS Environment

SAS Licenses
Utilizing the SAS stage requires a license for SAS on each physical

node in the configuration file that runs the SAS stage.

Installation Requirements
DataStage supports SAS versions 612, 8.2, 9.1, and 9.1.3. At

installation time, DataStage determines which version of SAS is

installed by looking at the values in $Path environment variable. An

example directory path is

/usr/local/sas/sas612

Configuring Your System to Use the DataStage SAS
Stage

You must configure your system to use the DataStage SAS stage. For

more detailed information on configuration files and their contents

and syntax, see Ascential DataStage Install and Upgrade Guide.

Configuration File Requirements

To enable use of the SAS stage, you or your DataStage administrator

should specify several SAS-related resources in your configuration

file. You need to specify the following information:

The location of the SAS executable

Optionally, a SAS work disk, which is defined as the path of the
SAS work directory
1-4 DataStage SAS Stage Supplementary Guide

The SAS Stage Required SAS Environment
Optionally, a disk pool specifically for parallel SAS data sets,
called sasdataset

An example of each of these declarations is below. The resource sas

declaration must be included; its pathname can be empty. If the

sas_cs option is specified, the resource sasint line must be included.

resource sas "[/usr/sas612/]" { }
resource sasint “[/usr/sas8.2int/]” { }
resource sasworkdisk "/usr/sas/work/" { }
resource disk "/data/sas/" {pool "" "sasdataset"}

In a configuration file with multiple nodes, you can use any directory

path for each resource disk in order to obtain the SAS parallel data

sets. Bold type is used for illustration purposes only to highlight the

resource directory paths.

{
node "elwood1"
{

fastname "elwood"
pools ""
resource sas "/usr/local/sas/sas8.2" { }
resource disk "/u1/dsadm/Ascential/DataStage/Datasets/node"

{pools "" "sasdataset" }
resource scratchdisk "/u1/dsadm/Ascential/DataStage/Scratch"

{pools ""}
}
node "solpxqa01-1"
{

fastname "solpxqa01"
pools ""
resource sas "/usr/local/sas/sas8.2" { }
resource disk "/u1/dsadm/Ascential/DataStage/Datasets/node"

{pools "" "sasdataset" }
resource scratchdisk "/u1/dsadm/Ascential/DataStage/Scratch"

{pools ""}
}

{

Note In DataStage Release 7.5.1 and earlier, the path for each

resource disk was required to be unique in order for the

SAS parallel data sets to function. For the SAS stage to

behave as it did at Release 7.5.1 or earlier, use the

environmental variable

APT_SAS_OLD_UNIQUE_DIRECTORY (see page 1-42).

The resource names sas and sasworkdisk and the disk pool name
sasdataset are reserved words.

Configuring International SAS

If you want to run international SAS, you must specify the icu-

character-set name for each language you use under international

SAS.
DataStage SAS Stage Supplementary Guide 1-5

Required SAS Environment The SAS Stage
In $APT_ORCHHOME/apt/etc/platform/ there are platform-specific

sascs.txt files that show the default ICU character set for each

DBCSLANG setting. The platform directory names are: sun, aix, osf1

(Tru64), hpux , and lunix. For example,

$APT_ORCHHOME/etc/aix/sascs.txt

When you specify a character setting, the sascs.txt file must be located

in the platform-specific directory for your operating system.

DataStage accesses the setting that is equivalent to your sas_cs

specification for your operating system. ICU settings can differ

between platforms.

DBCSLANG
Settings
and ICU
Equivalents

For the DBCSLANG settings you use, enter your ICU equivalents.

SAS Executables

US SAS and
International
SAS

There are two versions of the SAS executable: International SAS and

US SAS. At installation time, you can install one or the other or both.

However, a DataStage job runs either International SAS or US SAS. If

NLS is enabled, DataStage looks for International SAS. If NLS is not

enabled, DataStage looks for US SAS.

Use basic SAS to perform European-language data transformations,

not international SAS, which is designed for languages that require

double-byte character transformations. For additional information

about using SAS with European languages, see "Using SAS with

European Languages" on page 1-34.

DBCSLANG Setting ICU Character Set

JAPANESE icu_character_set

KATAKANA icu_character_set

KOREAN icu_character_set

HANGLE icu_character_set

CHINESE icu_character_set

TAIWANESE icu_character_set
1-6 DataStage SAS Stage Supplementary Guide

The SAS Stage Required SAS Environment
Finding
the SAS
Executable at
Run Time

To find the SAS executable at run time, DataStage does a hierarchical

search.

1 The environment variable APT_SAS_COMMAND or
APT_SASINT_COMMAND (international SAS). DataStage SAS-specific
environment variables are described in "Environment Variables"
on page 1-39.

2 A path in the resource sas entry in your configuration file. For
example,

resource sas "[/usr/sas8.2/]" { }

or for international SAS,

resource sasint "[/usr/sas8.2int/]" { }

3 The $PATH environment variable. An example directory path is

/usr/local/sas/sas8.2

See "Installation Requirements" on page 1-4.

Single SAS
Executable

When only a single SAS executable is used, include its directory path

in the $PATH environment variable. An example directory path is

/usr/local/sas/sas8.2

Multiple SAS
Executables

If both the US and International SAS executables are installed, include

the primary SAS executable directory path in the $PATH evnvironment

variable, and specify the secondary SAS executable using one of

these environment variables:

APT_SAS_COMMAND absolute_path

Overrides the $PATH directory for SAS with an absolute path to the

US SAS executable. An example path is

/usr/local/sas/sas8.2/sas/

APT_SASINT_COMMAND absolute_path

Overrides the $PATH directory for SAS with an absolute path to

the International SAS executable. An example path is

/usr/local/sas/sas/8.2int/dbcs/sas

SAS Log Output From the SAS log output you can determine whether a SAS

executable is in International mode or in US mode. Your SAS system

is capable of running in Internation mode if your SAS log output has

this type of header:

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2MO DBCS2944)

When you have invokded SAS in standard mode, your SAS log output

has this type of header:

NOTE: SAS (r) Proprietary Software Rlease 8.2 (TS2MO)
DataStage SAS Stage Supplementary Guide 1-7

The SAS Stage GUI The SAS Stage
Long Name Support
For SAS 8.2, DataStage handles SAS file and column names up to 32

characters. However, this functionality is dependent on your installing

a SAS patch. Obtain this patch from SAS:

SAS Hotfix 82BB40 for the SAS Toolkit

For SAS 6.12, DataStage handles SAS file and column names up to 8

characters.

The SAS Stage GUI
The SAS Stage GUI is documented in DataStage Parallel Extender Job

Developer’s Guide. The user designs a job using the stage properties.

The underlying components are executed at run time. You can see the

components by displaying the generated job using a text editor.
1-8 DataStage SAS Stage Supplementary Guide

The SAS Stage The SAS Stage GUI
The following table maps the stage properties to the underlying

components making up the stage.

Table 1-1 Mapping GUI Properties to Underlying Components

Stage Property Underlying Component

NLS enabledxxx -sas_cs icu_character_set

SAS Source

Source Method = Explicit -source

Source = -sourceFile

Inputs -input

Input Link Number = n a variable

Input SAS Data Set Name = m a variable

Output -output

Output Link Number = n a variable

Output SAS Data Set Name = m a variable

Schema Source SAS Data Set
Name = p

-schemaFile variable

Set Schema From Columns =
True

-schema record (variable)

Options

Convert Local = True not active as of December 2004

Debug Program =
[No|Yes|Verbose]

-debug [no | yes | verbose]

Disable Working Directory
Warning = True

-noworkingdirectory

SAS List File Location Type =
File | Job Log | None | Output

-listds file | dataset | none | display

SAS Log File Location Type =
File | Job Log | None | Output

-logds file | dataset | none| display

SAS Options = q… -options sas_options

Working Directory = r -workingdirectory variable
DataStage SAS Stage Supplementary Guide 1-9

An Example Data Flow The SAS Stage
An Example Data Flow

Figure 1-2 Example of a Data Flow
1-10 DataStage SAS Stage Supplementary Guide

The SAS Stage An Example Data Flow
The following is a visual depiction of the underlying data flow at

execution.

Figure 1-3 SAS Application Reading Data in Parallel

This example shows a SAS application reading data in parallel from

DB2.

The DB2/UDB Enterprise stage streams data from DB2 in parallel and

converts it automatically into the standard DataStage data set format.

The sasin component of the SAS stage then converts it, by default,

into an internal SAS data set usable by the SAS stage. Finally, the

sasout component of the SAS stage inputs the SAS data set and

outputs it as a standard DataStage data set.

The SAS stage can also input and output data sets in parallel SAS data

set format. Descriptions of the data set formats are in the next section.

db2read

data step

sas

sasin

sasout

standard DataStage data set

transitional SAS data set

transitional SAS data set

standard DataStage data set

non-sas-stage

SAS STAGE
DataStage SAS Stage Supplementary Guide 1-11

Representing SAS and Non-SAS Data in DataStage Enterprise Edition The SAS Stage
Representing SAS and Non-SAS Data in
DataStage Enterprise Edition

DataStage Enterprise Edition Data Set Format

This is data in the normal DataStage data set format. DataStage

stages, such as the database read and write stages, process data sets

in this format.

Sequential SAS Data Set Format

This is SAS data in its original SAS sequential format. The SAS stage

reads a SAS data set for processing. A SAS data set cannot be an

input to any other DataStage stage except through the SAS stage.

Parallel SAS Data Set Format

This is a DataStage-provided data-set format consisting of one or

more sequential SAS data sets. Each data set pointed to by the file

corresponds to a single partition of data flowing through DataStage.

The file name for this data set is *.psds. It is analogous to a

persistent *.ds data set.

On creation, fields of type ustring have names stored in a psds

description file along with the icu_map used. Reading of a SAS psds

converts any appropriate SAS CHAR fields to ustrings. You can

override this behavior with the environment variable

APT_SAS_NO_PSDS_USTRING (see "Environment Variables" on

page 1-39)

The header is an ASCII text file composed of a list of sequential SAS

data set files. By default, the header file lists the SAS CHAR fields that

are to be converted to ustring fields in DataStage, making it

unecessary to use the Modify stage to convert the data type of these

fields.

Format DataStage SAS Dataset
UstringFields[icu_mapname]; field_name_1;field_name_2 ...
field_name_n;
LFile:
platform_1:filename_1
LFile:
platform_2:filename_2
...
LFile:
platform_n:filename_n
1-12 DataStage SAS Stage Supplementary Guide

The SAS Stage Representing SAS and Non-SAS Data in DataStage Enterprise Edition
Example DataStage SAS Dataset
UstringFields[ISO-2022-JP];B_FIELD;C_FIELD;
LFile:
eartha-gbit 0:
/apt/eartha1sand0/jgeyer701/orch_master/apt/pds_files/
node0/test_saswu.psds.26521.135470472.1065459831/
test_saswu.sas7bdat

Set the APT_SAS_NO_PSDS_USTRING environment variable to output a

header file that does not list ustring fields. This format is consistent

with previous versions of DataStage:

DataStage SAS Dataset
Lfile:
HOSTNAME:DIRECTORY/FILENAME
Lfile:
HOSTNAME:DIRECTORY/FILENAME
Lfile:
HOSTNAME:DIRECTORY/FILENAME
. . .

Note The UstringFields line does not appear in the header file

when any one of these conditions is met:

– You are using a version of DataStage that is prior to
DataStage 7.0.1.

– Your data has no ustring schema values.

– You have set the APT_SAS_NO_PSDS_USTRING environment
variable.

If one of these conditions is met, but your data contains multi-

byte Unicode data, you must use the Modify stage to convert

the data schema type to ustring. This process is described in

"Handling SAS CHAR Fields Containing Multi-Byte Unicode

Data" on page 1-37.

A persistent parallel SAS data set is automatically converted to a

DataStage data set if the next stage in the flow is not an occurrence of

the SAS stage.

Transitional SAS Data Set Format

When data is being moved into or out of a parallel occurrence of the

SAS stage, the data must be in a format that allows DataStage to

partition it to multiple processing nodes. For this reason, DataStage

provides an internal data set representation called a transitional SAS

data set, which is specifically intended for capturing the record

structure of a SAS data set for use by DataStage.

This is a non-persistent DataStage version of the SAS data set format

that is the default output from the SAS stage. If the input data to be
DataStage SAS Stage Supplementary Guide 1-13

Getting Input from a SAS Data Set The SAS Stage
processed is in a SAS data set or a DataStage data set, the conversion

to a transitional SAS data set is done automatically by the SAS stage.

In this format, each SAS record is represented by a single DataStage

raw field named SASdata:

record (SASdata:raw;)

Getting Input from a SAS Data Set
Using a SAS data set the SAS stage entails reading it in from the

library in which it is stored using a SAS step, typically, a DATA step.

The data is normally then output to the liborch library in transitional

SAS data set format.

liborch is the SAS engine provided by DataStage that you use to

reference transitional SAS data sets as inputs to and outputs from

your SAS code. The SAS stage converts a SAS data set or a standard

DataStage data set into the DataStage SAS data set format. The figure

below is a schematic of this process.

Figure 1-4 Conversion to the DataStage SAS Format:

In this example,

The code is provided through the Property tab on the Stage
page of the SAS Stage

libname temp '/tmp' specifies the library name of the SAS input

data liborch.p_out specifies the output transitional SAS data set

temp.p_in is the input SAS data set

The output transitional SAS data set is named using the following

syntax:

liborch.osds_name

As part of writing the SAS code executed by the SAS stage, you must

associate each input and output data set with an input and output of

output transitional SAS data set

SAS Stage

input SAS data set

libname temp '/tmp';
data liborch.p_out;

 set temp.p_in;
...

run;
1-14 DataStage SAS Stage Supplementary Guide

The SAS Stage Getting Input from a DataStage or a Transitional SAS Data Set
the SAS code. In the figure above, the SAS stage executes a DATA

step with a single input and a single output. Other SAS code to

process the data would normally be included.

In this example, the output data set is prefixed by liborch, a SAS

library name corresponding to the DataStage SAS engine, while the

input data set comes from another specified library; in this example

the data set file would normally be named /tmp/p_in.ssd01.

Getting Input from a DataStage or a
Transitional SAS Data Set

You may have data already formatted as a DataStage data set that you

want to process with SAS code, especially if there are other DataStage

stages earlier in the data flow. In that case, the SAS stage

automatically converts a data set into a DataStage SAS data set.

However, you still need to provide the SAS step that connects the data

to the inputs and outputs of the SAS stage.

For DataStage data sets (persistent data sets) or transitional SAS data

sets the liborch library is referenced. The SAS stage creates a

transitional SAS data set as a temporary output. Shown below is a
SAS Stagewith one input and one output data set:

Figure 1-5 SAS Stage with One Input and One Output

As part of writing the SAS code executed by the SAS stage, you must

associate each input and output data set with an input and output of

the SAS code. In the figure above, the SAS Stage executes a DATA

step with a single input and a single output. Other SAS code to

process the data would normally be included.

To define the input data set connected to the DATA step input, you use

the Inputs property of the SAS Stage.

output transitional SAS data set

SAS Stage

input DataStage or transitional SAS data set

data liborch.p_out;
set liborch.p_in;

...

run;
DataStage SAS Stage Supplementary Guide 1-15

Converting between Data Set Types The SAS Stage
Converting between Data Set Types
You may have an existing DataStage data set, which is the output of

an upstream stage or is the result of reading data from a database

such as INFORMIX or Oracle using a DataStage database stage. Also,

the DataStage database write stages take as input standard DataStage

data sets. Therefore, the SAS stage must convert DataStage data to

SAS data and also convert SAS data to DataStage data. These two

kinds of data-set conversion are covered in the following sections.

Converting DataStage Data to SAS Data
Once you have provided the liborch statements to tell the SAS stage
where to find the input data set, as described in "Getting Input from a

DataStage or a Transitional SAS Data Set" on page 1-15, the stage

automatically converts the DataStage data set into a transitional SAS

data set before executing your SAS code. In order to do so, the SAS

stage must convert both the field names and the field data types in the

input DataStage data set.

Field and Data
Set Names

DataStage supports 32-character field and data set names for SAS

Version 8. However, SAS Version 6 accepts names of only up to eight

characters. Therefore, you must specify whether you are using SAS

Version 6 or SAS Version 8 when you install DataStage. When you

specify SAS Version 6, DataStage automatically truncates names to

eight characters when converting a standard DataStage data set to an

transitional SAS data set.

Data Types The SAS stage converts DataStage data types to corresponding SAS

data types. All DataStage numeric data types, including integer, float,

decimal, date, time, and timestamp, are converted to the SAS numeric

data type. DataStage raw and string fields are converted to SAS string

fields. DataStage raw and string fields longer than 200 bytes are

truncated to 200 bytes, which is the maximum length of a SAS string.

The following table summarizes these data type conversions:

Table 1-2 Conversions to SAS Data Types

DataStage Data Type SAS Data Type

date SAS numeric date value

decimal[p,s]
(p is precision and s is

scale)

SAS numeric

int64 and uint64 not supported
1-16 DataStage SAS Stage Supplementary Guide

The SAS Stage Converting between Data Set Types
Important Chapter 2 of the DataStage Enterprise Edition Parallel

Job Developer’s Guide contains a table that maps

SQL data types to the underlying data type.

Converting SAS Data to DataStage Data
After your SAS code has run, it may be necessary for the SAS stage to

convert an output transitional SAS data set to the standard DataStage

data-set format. This is required if you want to further process the

data using the standard DataStage stages, including writing to a

database using a DataStage database write stage.

int8, int16, int32,
uint8, uint16, uint32,

SAS numeric

sfloat, dfloat SAS numeric

fixed-length raw, in the form:
raw[n]

SAS string with length n

The maximum string length is 200 bytes; strings
longer than 200 bytes are truncated to 200 bytes.

variable-length raw, in the
form: raw[max=n]

SAS string with a length of the actual string length

The maximum string length is 200 bytes; strings
longer than 200 bytes are truncated to 200 bytes.

variable-length raw in the
form: raw

not supported

fixed-length string or
ustring, in the form: string[n]
or ustring[n]

SAS string with length n

The maximum string length is 200 bytes; strings
longer than 200 bytes are truncated to 200 bytes.

variable-length string or
ustring, in the form:
string[max=n] or
ustring[max=n]

SAS string with a length of the actual string length

The maximum string length is 200 bytes; strings
longer than 200 bytes are truncated to 200 bytes.

variable-length string or

ustring in the form: string or

ustring

not supported

time SAS numeric time value

timestamp SAS numeric datetime value

Table 1-2 Conversions to SAS Data Types (Continued)

DataStage Data Type SAS Data Type
DataStage SAS Stage Supplementary Guide 1-17

A DataStage Example The SAS Stage
In order to do this, the SAS stage needs a record schema for the

output data set. You can provide a schema for the DataStage data set

in one of two ways:

Using the Set Schema from Columns option or the Schema
Source SAS Data Set Name option, you can define a schema
definition for the output data set.

A persistent parallel SAS data set is automatically converted to a
DataStage data set if the next stage in the flow is not an SAS
stage.

When converting a SAS numeric field to a DataStage numeric, you

can get a numeric overflow or underflow if the destination data type is

too small to hold the value of the SAS field. You can avoid the error

this causes by specifying all fields as nullable so that the destination

field is simply set to null and processing continues.

A DataStage Example
A Specialty Freight Carrier charges its customers based on distance,

equipment, packing, and license requirements. They need a report of

distance traveled and charges for the month of July grouped by

license type.

The table below shows some representative input data:

Ship Date District Distance Equipment Packing License Charge

...

Jun 2 2000 1 1540 D M BUN 1300

Jul 12 2000 1 1320 D C SUM 4800

Aug 2 2000 1 1760 D C CUM 1300

Jun 22 2000 2 1540 D C CUN 13500

Jul 30 2000 2 1320 D M SUM 6000

...
1-18 DataStage SAS Stage Supplementary Guide

The SAS Stage Making SAS Steps Parallel
Here is the SAS output:

The SAS System
17:39, October 26, 2002
...

LICENSE=SUM
Variable Label N Mean Sum

DISTANCE DISTANCE 720 1563.93 1126030.00
CHARGE CHARGE 720 28371.39 20427400.00

...
Step execution finished with status = OK.

Making SAS Steps Parallel
This section describes how to write SAS applications for parallel

execution. Parallel execution allows your SAS application and data to

be distributed to the multiple processing nodes within a scalable

system.

The first section describes how to execute SAS DATA steps in parallel;

the second section describes how to execute SAS PROC steps in

parallel. A third section provides rules of thumb that may be helpful

for parallelizing SAS code.

Executing DATA Steps in Parallel
This section describes how to convert a sequential SAS DATA step

into a parallel DATA step. Characteristics of DATA steps that are

candidates for parallelization using the roundrobin partitioning

method include:

Perform the same action for every record

No RETAIN, LAGN, SUM, or + statements

Order does not need to be maintained.

Good
Candidates for
Parallelization
of DATA Steps

Characteristics of DATA steps that are candidates for parallelization

using hash partitioning include:

BY clause

Summarization and/or accumulation in retained variables

Sorting or ordering of inputs.

Often, steps with these characteristics require that you group records

on a processing node or sort your data as part of a preprocessing

operation.
DataStage SAS Stage Supplementary Guide 1-19

Making SAS Steps Parallel The SAS Stage
Poor
Candidates for
Parallelization
of DATA Steps

Some DATA steps should not be parallelized. These include DATA

steps that:

Process small amounts of data (startup overhead outweighs
parallel speed improvement)

Perform sequential operations that cannot be parallelized (such as
a SAS import from a single file)

Need to see every record to produce a result

Parallelizing these kinds of steps would offer little or no advantage to

your code. Steps of these kinds should be executed within a

sequential SAS stage.

Example Applications
Three sample applications follow.

Example 1

Parallelizing a
SAS DATA Step

This section contains an example that executes a SAS DATA step in

parallel. The step takes a single SAS data set as input and writes its

results to a single SAS data set as output. The DATA step recodes the

salary field of the input data to replace a dollar amount with a salary-

scale value.

Data Flow
Diagram

Here is a figure describing this step:

Figure 1-6 Executing a SAS DATA Step in Parallel

Here is the original SAS code:

libname prod "/prod";
data prod.sal_scl;

set prod.sal;
if (salary < 10000)

then salary = 1;
else if (salary < 25000)

then salary = 2;
else if (salary < 50000)

then salary = 3;
else if (salary < 100000)

SAS data set

SAS data set

SAS DATA step
1-20 DataStage SAS Stage Supplementary Guide

The SAS Stage Making SAS Steps Parallel
then salary = 4;
else salary = 5;

run;

This DATA step requires little effort to parallelize because it processes

records without regard to record order or relationship to any other

record in the input. Also, the step performs the same operation on

every input record and contains no BY clauses or RETAIN statements.

DataStage
Data Flow
Diagram

The following figure shows the DataStage data flow diagram for

executing this DATA step in parallel:

Figure 1-7 Data Flow Diagram: Parallel Execution

Note Alternatively, the SAS stage can output a Parallel SAS data

set.

Explanation In this example, you:

Get the input from a SAS data set using a sequential SAS stage;

Execute the DATA step in a parallel SAS stage;

Output the results as a standard DataStage data set (you must
provide a schema for this) or as a parallel SAS data set. You may
also pass the output to another SAS stage for further processing.
The schema required may be generated by first outputting the
data to a Parallel SAS data set, then referencing that data set.
DataStage automatically generates the schema.

sas [par]

sas [seq]

DataStage data set

execute SAS DATA step

SAS data set

DATA step

sasout
DataStage SAS Stage Supplementary Guide 1-21

Making SAS Steps Parallel The SAS Stage
Comparison of
SAS Code

The first sequential SAS stage executes the following SAS code as

defined by the SAS Source option:

libname prod "/prod";
data liborch.out;

set prod.sal;
run;

This parallel SAS stage executes the following SAS code:

libname prod "/prod";
data liborch.p_sal;

set liborch.sal;
. . . (salary field code from previous page)

run;

The next SAS Stage can then do one of three things:

Output the results as a standard DataStage data set using the
Schema definition

Output the results as a parallel SAS data set

Pass the output directly to another SAS Stage as a transitional
SAS data set

The default output format is transitional SAS data set. When the

output is to a parallel SAS data set or to another SAS Stage, for

example, as a standard DataStage data set, the liborch statement

must be used. Conversion of the output to a standard DataStage data

set or a Parallel SAS data set is discussed in "Transitional SAS Data

Set Format" on page 1-13 and "Parallel SAS Data Set Format" on

page 1-12.
1-22 DataStage SAS Stage Supplementary Guide

The SAS Stage Making SAS Steps Parallel
Example 2

Using the hash
Partitioner

This example reads two INFORMIX tables as input, hash partitions on

the workloc field, then uses a SAS DATA step to merge the data and

score it before writing it out to a parallel SAS data set.

DataStage
Data Flow
Diagram

Figure 1-8 Data Flow Diagram: Two Input Tables

The SAS stage in this example runs the following DATA step to

perform the merge and score:

data liborch.emptabd;
 merge liborch.wltab liborch.emptab;
 by workloc;

 a_13 = (f1-f3)/2;
 a_15 = (f1-f5)/2;

.

.

.
run;

Records are hashed based on the workloc field. In order for the merge

to work correctly, all records with the same value for workloc must be

sent to the same processing node and the records must be ordered.

The merge is followed by a parallel SAS stage that scores the data,

then writes it out to a parallel SAS data set.

xpsread xpsread

step

hash hash

data.psds

DATA step does merging
and scoring of data

sas
DATA step
DataStage SAS Stage Supplementary Guide 1-23

Making SAS Steps Parallel The SAS Stage
Example 3

Using a SAS
SUM
Statement with
a DATA Step

This section contains an example using the SUM clause with a DATA

step. In this example, the DATA step outputs a SAS data set where

each record contains two fields: an account number and a total

transaction amount. The transaction amount in the output is

calculated by summing all the deposits and withdrawals for the

account in the input data where each input record contains one

transaction.

Here is the SAS code for this example, as defined by the SAS Source
option:

libname prod "/prod";
proc sort data=prod.trans;

out=prod.s_trans
by acctno;

data prod.up_trans (keep = acctno sum);
set prod.s_trans;
by acctno;
if first.acctno then sum=0;
if type = "D"

then sum + amt;
if type = "W"

then sum - amt;
if last.acctno then output;

run;

The SUM variable is reset at the beginning of each group of records

where the record groups are determined by the account number field.

Because this DATA step uses the BY clause, you use the Hash stage

with this step to make sure all records from the same group are

assigned to the same node.

Note that DATA steps using SUM without the BY clause view their

input as one large group. Therefore, if the step used SUM but not BY,

you would execute the step sequentially so that all records would be

processed on a single node.
1-24 DataStage SAS Stage Supplementary Guide

The SAS Stage Executing PROC Steps in Parallel
DataStage
Data Flow
Diagram

Shown below is the data flow diagram for this example:

Figure 1-9 Data Flow Diagram: Sum Statement

The SAS DATA step executed by the second SAS stage, as defined by

the SAS Source option, is:

data liborch.nw_trans (keep = acctno sum);
set liborch.p_trans;
by acctno;
if first.acctno then sum=0;
if type = "D"

then sum + amt;
if type = "W"

then sum - amt;
if last.acctno then output;

run;

Executing PROC Steps in Parallel
This section describes how to parallelize SAS PROC steps using

DataStage. Before you parallelize a PROC step, you should first

determine whether the step is a candidate for parallelization.

When deciding whether to parallelize a SAS PROC step, you should

look for those steps that take a long time to execute relative to the

other PROC steps in your application. By parallelizing only those

PROC steps that take the majority of your application execution time,

you can achieve significant performance improvements without

sas

step

hash

sas

import data as transitional SAS
data set

output parallel SAS data set

DATA step

hash on acctno

data.psds
DataStage SAS Stage Supplementary Guide 1-25

Executing PROC Steps in Parallel The SAS Stage
having to parallelize the entire application. Parallelizing steps with

short execution times may yield only marginal performance

improvements.

Good
Candidates for
Parallelization
of SAS PROC
Steps

Many of the characteristics that mark a SAS DATA step as a good

candidate for parallelization are also true for SAS PROC steps. Thus

PROC steps are likely candidates if they:

do not require sorted inputs

perform the same operation on all records.

PROC steps that generate human-readable reports may also not be

candidates for parallel execution unless they have a BY clause. You

may want to test this type of PROC step to measure the performance

improvement with parallel execution.

The following section contains two examples of running SAS PROC

steps in parallel.

Example Applications
Two sample applications follow.

Example 1

Parallelizing
PROC Steps

This example parallelizes a SAS application using PROC SORT and

PROC MEANS. In this example, you first sort the input to PROC

MEANS, then calculate the mean of all records with the same value

for the acctno field.
1-26 DataStage SAS Stage Supplementary Guide

The SAS Stage Executing PROC Steps in Parallel
Data Flow
Diagram

The following figure illustrates this SAS application:

Figure 1-10 Data Flow Diagram: Using Proc Sort and Proc Means

Shown below is the original SAS code:

libname prod "/prod";
proc means data=prod.dhist;

BY acctno;
run;

The BY clause in a SAS step signals that you want to hash partition the

input to the step. Hash partitioning guarantees that all records with

the same value for acctno are sent to the same processing node. The

SAS PROC step executing on each node is thus able to calculate the

mean for all records with the same value for acctno.

SAS data set

list file

SAS PROC SORT

SAS PROC MEANS
DataStage SAS Stage Supplementary Guide 1-27

Executing PROC Steps in Parallel The SAS Stage
DataStage
Data Flow
Diagram

Shown below is the DataStage implementation of this example:

Figure 1-11 Data Flow Diagram: Hash and PROC Step

PROC MEANS pipes its results to standard output, and the SAS stage
sends the results from each partition to standard output as well. Thus
the list file created by the SAS stage, which you specify using the SAS
List File Location Type option, contains the results of the PROC

MEANS sorted by processing node.

Shown below is the SAS PROC step for this application:

proc means data=liborch.p_dhist;
by acctno;

run;

Example

Parallelizing
PROC Steps
Using the
CLASS
Keyword

One type of SAS BY GROUP processing uses the SAS keyword

CLASS. CLASS allows a PROC step to perform BY GROUP processing

without your having to first sort the input data to the step. Note,

however, that the grouping technique used by the SAS CLASS option

requires that all your input data fit in memory on the processing node.

Note also that as your data size increases, you may want to replace

CLASS and NWAY with SORT and BY.

Considerations Whether you parallelize steps using CLASS depends on the following:

If the step also uses the NWAY keyword, parallelize it.

When the step specifies both CLASS and NWAY, you parallelize it

just like a step using the BY keyword, except the step input

doesn't have to be sorted. This means you hash partition the input

sas

step

hash

PROC step

hash on acctno

PROC MEANS

convert SAS data set to
transitional SAS data set

list file

sas
1-28 DataStage SAS Stage Supplementary Guide

The SAS Stage Executing PROC Steps in Parallel
data based on the fields specified to the CLASS option. See the

previous section for an example using the hash partitioning

method.

If the CLASS clause does not use NWAY, execute it sequentially.

If the PROC STEP generates a report, execute it sequentially,
unless it has a BY clause.

For example, the following SAS code uses PROC SUMMARY with

both the CLASS and NWAY keywords:

libname prod "/prod";
proc summary data=prod.txdlst

missing NWAY;
CLASS acctno lstrxd fpxd;
var xdamt xdcnt;
output out=prod.xnlstr(drop=_type_ _freq_) sum=;

run;

In order to parallelize this example, you hash partition the data based

on the fields specified in the CLASS option. Note that you do not have

to partition the data on all of the fields, only to specify enough fields

that your data is be correctly distributed to the processing nodes.

For example, you can hash partition on acctno if it ensures that your

records are properly grouped. Or you can partition on two of the

fields, or on all three. An important consideration with hash

partitioning is that you should specify as few fields as necessary to the

partitioner because every additional field requires additional overhead

to perform partitioning.
DataStage SAS Stage Supplementary Guide 1-29

Points to Consider in Parallelizing SAS Code The SAS Stage
DataStage
Data Flow
Diagram

The following figure shows the DataStage application data flow for

this example:

The SAS code (DATA step) for the first SAS stage, as defined by the
SAS Source option, is:

libname prod "/prod";
data liborch.p_txdlst

set prod.txdlst;
run;

The SAS code for the second SAS stage, as defined by the SAS
Source option, is:

proc summary data=liborch.p_txdlst
missing NWAY;
CLASS acctno lstrxd fpxd;
var xdamt xdcnt;
output out=liborch.p_xnlstr(drop=_type_ _freq_) sum=;

run;

Points to Consider in Parallelizing SAS Code
There are four basic points you should consider when parallelizing

your SAS code. If your SAS application satisfies any of the following

criteria it is probably a good candidate for parallelization, provided the

application is run against large volumes of data. SAS applications that

run quickly, against small volumes of data, do not benefit.

step

PROCstep

hash on acctno

convert SAS data set to
transitional SAS data set

data.psds

output Parallel data set

sas

hash

sas
1-30 DataStage SAS Stage Supplementary Guide

The SAS Stage Points to Consider in Parallelizing SAS Code
Number of
Records

1 Does your SAS application extract a large number of records from
a parallel relational database? A few million records or more is
usually sufficiently large to offset the cost of initializing
parallelization.

CPU Usage 2 Is your SAS program CPU intensive? CPU-intensive applications
typically perform multiple CPU-demanding operations on each
record. Operations that are CPU-demanding include arithmetic
operations, conditional statements, creation of new field values
for each record, etc. For SMP users, DataStage provides you with
the biggest performance gains if your code is CPU-intensive.

Size of Records 3 Does your SAS program pass large records of lengths greater
than 100 bytes? DataStage introduces a small record-size
independent CPU overhead when passing records into and out of
the SAS stage. You may notice this overhead if you are passing
small records that also perform little or no CPU-intensive
operations.

Sorting 4 Does your SAS program perform sorts? Sorting is a memory-
intensive procedure. By performing the sort in parallel, you can
reduce the overall amount of required memory. This is always a
win on an MPP platform and frequently a win on an SMP.

Rules of Thumb
There are rules of thumb you can use to specify how a SAS program

runs in parallel. Once you have identified a program as a potential

candidate for use in DataStage, you need to determine how to divide

the SAS code itself into DataStage steps.

The SAS stage can be run either parallel or sequentially. Any

converted SAS program that satisfies one of the four criteria outlined

above will contain at least one parallel segment. How much of the

program should be contained in this segment? Are there portions of

the program that need to be implemented in sequential segments?

When does a SAS program require multiple parallel segments? Here

are some guidelines you can use to answer such questions.

Identify Slow-
Running Steps

1 Identify the slow portions of the sequential SAS program by
inspecting the CPU and real-time values for each of the PROC and
DATA steps in your application. Typically, these are steps that
manipulate records (CPU-intensive) or that sort or merge
(memory-intensive). You should be looking for times that are a
relatively large fraction of the total run time of the application and
that are measured in units of many minutes to hours, not seconds
DataStage SAS Stage Supplementary Guide 1-31

Points to Consider in Parallelizing SAS Code The SAS Stage
to minutes. You may need to set the SAS fullstimer option on in
your config.sas612 or in your SAS program itself to generate a log
of these sequential run times.

Parallelize
Slow-Running
Steps First

2 Start by parallelizing only those slow portions of the application
that you have identified in guideline 1. As you include more code
within the parallel segment, remember that each parallel copy of
your code (referred to as a partition) sees only a fraction of the
data. This fraction is determined by the partitioning method you
specify on the input or inpipe lines of your SAS stage source code.

Use Only One
Pipe Between
SAS Stages

3 Any two SAS stages should only be connected by one pipe. This
ensures that all pipes in the DataStage program are
simultaneously flowing for the duration of the execution. If two
segments are connected by multiple pipes, each pipe must drain
entirely before the next one can start.

Minimize
Number of SAS
Stages

4 Keep the number of SAS stages to a minimum. There is a
performance cost associated with each stage that is included in
the data flow. Guideline 3 takes precedence over this guideline.
That is, when reducing the number of stages means connecting
any two stages with more than one pipe, don’t do it.

Input One
Sequential File
Per Stage

5 If you are reading or writing a sequential file such as a flat ASCII
text file or a SAS data set, you should include the SAS code that
does this in a sequential SAS stage. Use one sequential stage for
each such file. You will see better performance inputting one
sequential file per stage than if you lump many inputs into one
segment followed by multiple pipes to the next segment, in line
with guideline 2 above.

Give Each
Partition Equal
Amounts of
Data

6 When you choose a partition key or combination of keys for a
parallel stage, you should keep in mind that the best overall
performance of the parallel application occurs if each of the
partitions is given approximately equal quantities of data. For
instance, if you are hash partitioning by the key field year (which
has five values in your data) into five parallel segments, you will
end up with poor performance if there are big differences in the
quantities of data for each of the five years. The application is held
up by the partition that has the most data to process. If there is no
data at all for one of the years, the application will fail because the
SAS process that gets no data will issue an error statement.
Furthermore, the failure will occur only after the slowest partition
has finished processing, which may be well into your application.
The solution may be to partition by multiple keys, for example,
year and storeNumber, to use roundrobin partitioning where
possible, to use a partitioning key that has many more values than
there are partitions in your DataStage application, or to keep the
1-32 DataStage SAS Stage Supplementary Guide

The SAS Stage Points to Consider in Parallelizing SAS Code
same key field but reduce the number of partitions. All of these
methods should serve to balance the data distribution over the
partitions.

Use Multiple
Parallel
Segments with
Different Keys

7 Multiple parallel segments in your DataStage application are
required when you need to parallelize portions of code that are
sorted by different key fields. For instance, if one portion of the
application performs a merge of two data sets using the patientID
field as the BY key, this PROC MERGE will need to be in a parallel
segment that is hash partitioned on the key field patientID. If
another portion of the application performs a PROC MEANS of a
data set using the procedureCode field as the CLASS key, this
PROC MEANS will have to be in a parallel SAS stage that is hash
partitioned on the procedureCode key field.

Sort in Parallel 8 If you are running a query that includes an ORDER BY clause
against a relational database, you should remove it and do the
sorting in parallel, either using SAS PROC SORT or a DataStage
input line order statement. Performing the sort in parallel outside
of the database removes the sequential bottleneck of sorting
within the RDBMS.

Resort when
Required

9 A sort that has been performed in a parallel stage will order the
data only within that stage. If the data is then streamed into a
sequential stage, the sort order will be lost. You will need to re-
sort within the sequential stage to guarantee order.

Do Not Use
Custom-
Specified SAS
Library

10 Within a parallel SAS stage you may only use SAS work
directories for intermediate writes to disk. SAS generates unique
names for the work directories of each of the parallel stages. In an
SMP environment this is necessary because it prevents the
multiple CPUs from writing to the same work file. Do not use a
custom-specified SAS library within a parallel stage.

Use liborch
Properly

11 Do not use a liborch directory within a parallel segment unless it
is connected to an inpipe or an outpipe. A liborch directory may
not be both written and read within the same parallel stage.

Write Contents
to Disk When
Necessary

12 A liborch directory can be used only once for an input, inpipe,
output or outpipe. If you need to read or write the contents of a
liborch directory more than once, you should write the contents
to disk via a SAS work directory and copy this as needed.

Use Pipes to
Connect
between
Stages

13 Remember that all DataStage stages in a step run simultaneously.
This means that you cannot write to a custom-specified SAS
library as output from one DataStage stage and simultaneously
read from it in a subsequent stage. Connections between stages
must be via DataStage pipes which are virtual data sets normally
in transitional SAS data set format.
DataStage SAS Stage Supplementary Guide 1-33

Using SAS with European Languages The SAS Stage
Using SAS with European Languages
Use basic SAS to perform European-language data transformations.

Do not use international SAS, which is designed for languages that

require double-byte character transformations.

The basic SAS executable sold in Europe may require you to create

work arounds for handling some European characters. DataStage has

not made any modifications to SAS that eliminate the need for this

special character handling.

Specify the
Location of
Your
Executable

To use DataStage with European languages:

1 At installation, specify the location of your basic SAS executable
using one of the methods below. The SAS international syntax in
these methods directs DataStage to perform European-language
transformations.

– Set the APT_SASINT_COMMAND environment variable to the
absolute path name of your basic SAS executable. For
example:

APT_SASINT_COMMAND /usr/local/sas/sas8.2/sas

– Include a resource sas entry in your configuration file. For
example:

resource sasint "[/usr/sas8.2/]" { }

Use sascs.txt
file for
specifications

2 At installation, in the table of your sascs.txt file enter the
designations of the ICU character sets you use in the right-hand
columns of the table. There can be multiple entries. Use the left-
hand column of the table to enter a symbol that describes the
character sets. The symbol cannot contain space characters, and
both columns must be filled in. The platform-specific sascs.txt
files are in:

$APT_ORCHHOME/apt/etc/platform/

The platform directory names are: sun, aix, osf1 (Tru64), hpux, and

lunix. For example:

$APT_ORCHHOME/etc/aix/sascs.txt

Example table entries:

CANADIAN_FRENCH fr_CA-iso-8859

ENGLISH ISO-8859-5
1-34 DataStage SAS Stage Supplementary Guide

The SAS Stage Using DataStage to Do ETL
Specify an ICU
Character Set
for European
Languages

3 Using the NLS tab of the SAS-interface stages, specify an ICU
character set to be used by DataStage to map between your
ustring values and the CHAR data stored in SAS files. For
additional information, see "Configuring International SAS" on
page 1-5.

Using DataStage to Do ETL
Only a simple SAS step is required to extract data from a SAS file. The

Little SAS Book from the SAS Institute provides a good introduction to

the SAS step language.

In the following example, SAS is directed to read the SAS file cl_ship,

and to deliver that data as a DataStage data stream to the next

DataStage stage. In this example, the next step consists of the Peek

stage.

See "Representing SAS and Non-SAS Data in DataStage Enterprise

Edition" on page 1-12 for information on data-set formats, and

"Getting Input from a SAS Data Set" on page 1-14 for a description of

liborch.

The schemaFile option instructs DataStage to generate the schema

that defines the DataStage virtual data stream from the meta data in

the SAS file cl_ship.

The following code is generated from the SAS Source, Output, and

Options options of the GUI:

sas -source 'libname curr_dir \'.\';
DATA liborch.out_data;
SET curr_dir.cl_ship;
RUN;'

 -output 0 out_data -schemaFile 'cl_ship'
-workingdirectory '.';

If you know the fields contained in the SAS file and use the Set
Schema From Columns option, performance is improved. The

generated code follows:

sas -source 'libname curr_dir \'.\';
DATA liborch.out_data;
SET curr_dir.cl_ship;
RUN;'

-output 0 out_data
-schema record(SHIP_DATE:nullable string[50];

DISTRICT:nullable string[10];
DISTANCE:nullable sfloat;
EQUIPMENT:nullable string[10];
PACKAGING:nullable string[10];
LICENSE:nullable string[10];
CHARGE:nullable sfloat;)
DataStage SAS Stage Supplementary Guide 1-35

Running in NLS Mode The SAS Stage
It is also easy to write a SAS file from a DataStage virtual datastream.

Use the SAS Source and Input options of the SAS Stage to generate

the SAS file described above. The following code is generated:

sas -source 'libname curr_dir \'.\';
DATA curr_dir.cl_ship;
SET liborch.in_data;
RUN;'

-input 0 in_data [seq] 0< DSLink2a.v;

Running in NLS Mode
If the client is running in NLS mode, international SAS is invoked. If

NLS is off, basic SAS is invoked. When you have invoked SAS in

standard mode, your SAS log output has this type of header:

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2MO)

When you have invoked SAS in international mode, your SAS log

output has this type of header:

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2MO DBCS2944)

If NLS is off for the SAS stage, SAS is invoked in standard mode. In

standard mode, SAS processes your string fields and step source

code using single-byte LATIN1 characters. SAS standard mode, is also

called "the basic US SAS product".

If NLS is on and your DataStage data includes ustring values, SAS

Stage use the current value in icu_char_set to determine which code

conversion to use. SAS Stage uses the environment variable settings

(see "Environment Variables" on page 1-39) to detrmine what to do if a

ustring is truncated when converted to a SAS character fixed-length

field. It also determines what to do if it encounters a ustring value

when NLS is not enabled.

Parallel SAS Data Sets and SAS International
Under certain circumstances, DataStage automatically inserts a step

in the process and determines your character setting.

Automatic DataStage Step Insertion
When you save a .ds data set as a parallel SAS data set by using the

[psds] directive or adding a .psds suffix to the output file, DataStage

automatically inserts a step in your data flow which contains the
1-36 DataStage SAS Stage Supplementary Guide

The SAS Stage Specifying an Output Schema
sasin, sas, and sasout components. Using the SAS Source option,

the SAS Stage specifies specialized SAS code to be executed by SAS.

The SAS executable used is the one on your $PATH unless its path is

overwritten by the APT_SAS_COMMAND or APT_SASINT_COMMAND
environment variable. DataStage SAS-specific variables are

described in "Environment Variables" on page 1-39. The DBCS,

DBCSLANG, and DBCSTYPE environment variables are not set for the

step.

If the DataStage-inserted step fails, you can see the reason for its

failure by rerunning the job with the APT_SAS_SHOW_INFO
environment variable set.

For more information on Parallel SAS Data Sets, see "Parallel SAS

Data Set Format" on page 1-12.

Handling SAS CHAR Fields Containing Multi-Byte
Unicode Data

When you set the APT_SAS_NO_PSDS_USTRING environment variable,

DataStage imports all SAS CHAR fields as DataStage string fields

when reading a .psds data set. Use the Modify stage to import those

CHAR fields that contain multi-byte Unicode characters as ustrings,

and specify a character set to be used for the ustring value. Use the

Modify stage to convert each appropriate field.

When the APT_SAS_NO_PSDS_USTRING environment variable is not set,

the .psds header file lists the SAS CHAR fields that are to be

converted to ustring fields in DataStage, making it unecessary to use

the Modify stage to convert the data type of these fields. For more

information, see "Parallel SAS Data Set Format" on page 1-12.

Specifying an Output Schema
You must specify an output schema to the SAS stage when the

downstream stage is a standard DataStage stage such as Peek or

Copy. DataStage uses the schema to convert the transitional SAS data

used by the SAS stage to a DataStage data set suitable for processing

by a standard DataStage stage.
DataStage SAS Stage Supplementary Guide 1-37

Controlling ustring Truncation The SAS Stage
There are two ways to specify the schema:

Use the Set Schema from Columns option to supply a
DataStage schema. By supplying an explicit schema, you obtain
better job performance and gain control over which SAS CHAR
data is to be output as ustring values and which SAS CHAR data
is to be output as string values.

Use the Schema Source SAS Data Set Name option to specify
a SAS file that has the same meta data description as the SAS
output stream. DataStage generates the schema from that file.

Note If both the Schema Source SAS Data Set Name option

is set and NLS is on, all of your SAS CHAR fields are

converted to DataStage ustring values. If NLS is not on, all

of your SAS CHAR values are converted to DataStage

string values.

To obtain a mixture of string and ustring values, use the Set
Schema from Columns option.

SAS
CONTENTS
Report

You can use the APT_SAS_SCHEMASOURCE_DUMP environment

variable to see the SAS CONTENTS report used by the Schema
Source SAS Data Set Name option. The output also displays

the command line given to SAS to produce the report and the

pathname of the report. The input file and output file created by

SAS is not deleted when this variable is set.

You can then fine tune the schema and specify it to the Set
Schema from Columns option to take advantage of

performance improvements.

You can see the DataStage schema generated by Schema
Source SAS Data Set Name by setting Debug Program = Yes
and looking at a INFO line in the DataStage log.

Controlling ustring Truncation
Your ustring values may be truncated before the space pad

characters and \0 because a ustring value of n characters does not fit

into n bytes of a SAS CHAR value. You can use the

APT_SAS_TRUNCATION environment variable to specify how the

truncation is done. This variable is described in "Environment

Variables" on page 1-39.

If the last character in a truncated value is a multi-byte character, the

SAS CHAR field is padded with C null (zero) characters. For all other

values, including non-truncated values, spaces are used for padding.
1-38 DataStage SAS Stage Supplementary Guide

The SAS Stage DataStage-Inserted Partition and Sort Components
You can avoid truncation of your ustring values by specifying them in

your schema as variable-length strings with an upper bound. The

syntax is:

ustring[max=n_codepoint_units]

Specify a value for n_codepoint_units that is 2.5 or 3 times larger

than the number of characters in the ustring. This forces the SAS

CHAR fixed-length field size to be the value of n_codepoint_units. The

maximum value for n_codepoint_units is 200.

DataStage-Inserted Partition and Sort
Components

By default, DataStage inserts partition and sort components to meet

the partitioning and sorting needs of the SAS-interface stages and

other stages. For a SAS-interface stage, DataStage selects the

appropriate component from DataStage or from SAS.

Environment Variables
Add or modify environment variables:

In DataStage Designer in the Choose Environment Variable
dialog box. See DataStage Designer Guide for additional
information.

In DataStage Administrator in the Environment Variables dialog
box. See DataStage Administrator Guide for additional
information.

These are the SAS-specific environment variables:

APT_SAS_COMMAND absolute_path

Overrides the $PATH directory for SAS and resource sas entry with

an absolute path to the US SAS executable. An example path is:

/usr/local/sas/sas8.2/sas

APT_SASINT_COMMAND absolute_path

Overrides the $PATH directory for SAS and resource sasint entry

with an absolute path to the International SAS executable. An

example path is:

/usr/local/sas/sas8.2int/dbcs/sas
DataStage SAS Stage Supplementary Guide 1-39

Environment Variables The SAS Stage
APT_SAS_CHARSET icu_character_set

When the NLS option is not selected and a SAS-interface stage

encounters a ustring, DataStage interrogates this variable to

determine what character set to use. If this variable is not set, but

APT_SAS_CHARSET_ABORT is set, the stage aborts; otherwise

DataStage accesses the APT_IMPEXP_CHARSET environment

variable.

APT_SAS_CHARSET_ABORT

Causes a SAS-interface stage to abort if DataStage encounters a

ustring in the schema and the NLS option is not selected and the

APT_SAS_CHARSET environment variable is not set.

APT_SAS_PARAM_ARGUMENT

Allows you to add arguments to the SAS execution line. A sample

argument is

-config filename

For a complete list of all arguments, see your SAS documentation.

APT_SAS_TRUNCATION ABORT | NULL | TRUNCATE

Because a ustring of n characters does not fit into n bytes of a

SAS CHAR value, the ustring value may be truncated before the

space pad characters and \0. The SAS stage use this variable to

determine how to truncate a ustring value to fit into a SAS CHAR

field. TRUNCATE, which is the default, causes the ustring to be

truncated; ABORT causes the stage to abort; and NULL exports a null

field. For NULL and TRUNCATE, the first five occurrences for each

column cause an information message to be issued to the log.

APT_SAS_ACCEPT_ERROR

When a SAS procedure causes SAS to exit with an error, this

variable prevents the SAS-interface stage from terminating. The

default behavior is for DataStage to terminate the stage with an

error.

APT_SAS_DEBUG_LEVEL=[0-2]

Specifies the level of debugging messages to output from the SAS

driver. The values of 0, 1, and 2 duplicate the output for the

Debug Program option of the Sas stage: no, yes, and verbose.

APT_SAS_DEBUG=1,
APT_SAS_DEBUG_IO=1,
APT_SAS_DEBUG_VERBOSE=1

Specifies various debug messages which are found in the SAS

Log.
1-40 DataStage SAS Stage Supplementary Guide

The SAS Stage Environment Variables
APT_HASH_TO_SASHASH

The DataStage Hash stage partitioner contains support for

hashing SAS data. In addition, DataStage provides the sashash

partitioner for backward compatibility which uses an alternative

non-standard hashing algorithm. Setting the

APT_HASH_TO_SASHASH environment variable causes all

appropriate instances of hash to be replaced by sashash. If the

APT_NO_SAS_TRANSFORMS environment variable is set,

APT_HASH_TO_SASHASH has no affect.

APT_NO_SAS_TRANSFORMS

DataStage automatically performs certain types of SAS-specific

component transformations, such as inserting a sasout

component and substituting sasRoundRobin for eRoundRobin.

Setting the APT_NO_SAS_TRANSFORMS variable prevents DataStage

from making these transformations.

APT_NO_SASOUT_INSERT

This variable selectively disables the sasout component

insertions. It maintains the other SAS-specific transformations.

APT_SAS_SHOW_INFO

Displays the standard SAS executable log from an import or

export transaction (the SAS Parallel Data Set stage). The SAS

output is normally deleted since a transaction is usually

successful.

APT_SAS_SCHEMASOURCE_DUMP

Displays the SAS CONTENTS report used by the Schema Source
SAS Data Set Name option. The output also displays the

command line given to SAS to produce the report and the

pathname of the report. The input file and output file created by

SAS is not deleted when this variable is set.

APT_SAS_S_ARGUMENT number_of_characters

Overrides the value of the SAS s option which specifies how many

characters should be skipped from the beginning of the line when

reading input SAS source records. The s option is typically set to 0

indicating that records be read starting with the first character on

the line. This environment variable allows you to change that

offset.
DataStage SAS Stage Supplementary Guide 1-41

Environment Variables The SAS Stage
For example, to skip the line numbers and the following space

character in the SAS code below, set the value of the

APT_SAS_S_ARGUMENT variable to 6.

0001 data temp; x=1; run;
0002 proc print; run;

APT_SAS_NO_PSDS_USTRING

Outputs a header file that does not list ustring fields.

APT_SAS_OLDDEFAULT_LOGDS

Overrides the message type and makes all -logds messages

W(arnings). Use this environment variable to regress to the

behavior of the SAS stage in Release 7.5.1 and earlier. (See

page 2-8.)

APT_SAS_METADATA_ONLY

Causes a psds to process only one row (from each SAS parallel

data set) and the SAS Stage to display the DataStage schema for

the psds.

APT_SAS_OLD_UNIQUE_DIRECTORY

Restricts the configuration file to having a unique SAS directory

on each node of the configuration file. Use this environment

variable to regress to the behavior of the SAS stage in Release

7.5.1 and earlier. (See page 1-5.)

In addition to the SAS-specific debugging variables, you can set the

APT_DEBUG_SUBPROC environment variable to display debug

information about each subprocess component.

Each release of SAS also has an associated environment variable for

storing SAS system options specific to the release. The environment

variable name includes the version of SAS it applies to; for example,

SAS612_OPTIONS and SASV8_OPTIONS. The usage is the same

regardless of release.

Any SAS option that can be specified in the configuration file or on the

command line at startup, can also be defined using the version-

specific environment variable. SAS looks for the environment variable

in the current shell and then applies the defined options to that

session.

The environment variables are defined as any other shell environment

variable. A ksh example is:

export SASV8_OPTIONS='-xwait -news SAS_news_file'

A option set using an environment variable overrides the same option

set in the configuration file; and an option set in SASx_OPTIONS is

overridden by its setting on the SAS startup command line or the
1-42 DataStage SAS Stage Supplementary Guide

The SAS Stage Environment Variables
OPTIONS statement in the SAS code (as applicable to where options

can be defined).
DataStage SAS Stage Supplementary Guide 1-43

Environment Variables The SAS Stage
1-44 DataStage SAS Stage Supplementary Guide

2
DataStage SAS Stage Components

The graphical user interface of the DataStage SAS stage generates a

job that contains a script. This script contains the sas component.

When you execute a job containing a sas component, the the sasin

and sasout components are generated as needed. There is a direct

link between the values you provide in the graphical user interface

and the component properties. By understanding these three

components, you can better understand the flow of data and what is

happening to it. These components are visible in the DataStage Log,

which is often used as a debuggin tool. Click the Log icon in

DataStage Director to see the Log.

The SAS stage components are described in the following sections.

The SAS executable terminology is used throughout this section.

Within each component, however, the first occurrence of a SAS

executable term in the Options table is followed in parentheses by the

appropriate stage property name.

The sasin Component
DataStage uses the sasin component to convert a standard DataStage

data set to a transitional SAS data set suitable for input to the sas

component.

The sasin component takes a number of options that control how the

DataStage data is converted to a transitional SAS data set. For

example, the schema option specifies a schema for the input data set.

Because a ustring value of n characters does not fit into n bytes of a

SAS CHAR value, the ustring value may be truncated before the

space pad characters and \0. Use the APT_SAS_TRUNCATION
DataStage SAS Stage Supplementary Guide 2-1

The sasin Component DataStage SAS Stage Components
environment variable to specify how the truncation is done. It is

described in "Environment Variables" on page 1-39.

If your job does not need to use any of the sasin options, DataStage

bypasses the sasin component and inputs your DataStage data set

directly to the sas component.

Note When the sasin component executes sequentially and the

input DataStage data set has multiple partitions, the sasin

component also performs the conversion sequentially.

Figure 2-1 sasin Data Flow Diagram

Properties
The following tables describes the sasin component properties and

their values.

input DataStage data set

output transitional SAS data set

 sasin

Table 2-1 sasin Component Properties

Property Value

Number of input data sets 1 standard DataStage data set

Number of output data sets 1 transitional SAS data set

Input interface schema from upstream DataStage stage or specified by the
sasin component schema option

Output interface schema If no key option is specified:

record (sasData:raw;)
If a key option is specified:

record (sastsort:raw;
 sasdata:raw;)

Transfer behavior schemanone

Execution mode Parallel by default or sequential

Partitioning method any (parallel mode)
2-2 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sasin Component
Options
The options for the sasin component are shown below. All options

are optional.

Collection method any (sequential mode)

Preserve-partitioning flag in
output data set

set

Table 2-1 sasin Component Properties (Continued)

Property Value

Table 2-2 sasin Component Options

Option Use

-debug (Debug
Program)

-debug yes | no | verbose
A setting of -debug yes causes the component to
ignore errors in the SAS program and continue
execution of the application. This allows your
application to generate output even if a SAS step has
an error.

By default, the setting is -debug no.

Setting -debug verbose is the same as -debug yes, but
in addition it causes the component to echo the SAS
source code executed by the component.

-sas_cs (NLS enabled) -sas_cs icu_character_set

Specifies a character set that maps between DataStage
ustrings and the CHAR data stored in SAS files if your
DataStage data includes ustring values. DataStage
uses the same -sas_cs character setting, which is the
NLS enabled setting on the GUI, for all the SAS-
interface components in your data flow. See "Running
in NLS Mode" on page 1-36 for more details.

-schema (Set Schema
From Columns)

-schema schema_definition

Specifies the record schema of the input DataStage
data set. Only those fields specified in the record
schema are written to the output data set.
DataStage SAS Stage Supplementary Guide 2-3

The sas Component DataStage SAS Stage Components
The sas Component
DataStage uses the sas component to execute SAS code in parallel or

sequentially as part of a DataStage application.

Figure 2-2 sas Data Flow Diagram

Properties
The following table describes the sas component properties and their

values.

input data sets

output data sets

. . .

 sas

. . .

log data set (optional)

list data set (optional)

Table 2-3 sas Component Properties

Property Value

Number of input data sets N

Can be either DataStage data sets or transitional
SAS data set.

Number of output data sets M

All output data sets can be either Transitional SAS
data sets or Parallel SAS data sets. If you are
passing output to another sas component, the data
remains in transitional-SAS-data-set format.

If requested, DataStage writes the SAS log file to
the last output data set. For SAS 8.2, the log file
contains a header and additional information at the
beginning of the file.

If requested, DataStage writes the SAS list file to
the second to last output data set if you also
request a log file output, and to the last data set if
no log file is requested.

Input interface schema Derived from the input data set
2-4 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sas Component
Options
The options for the sas component is shown below. The -source
option or the -sourceFile option are required. And, DataStage uses

the -output option to supply an output schema if a sasout

component is not used. All the other options are optional.

Output interface schema For output data sets:

As specified by the -schema option or the
schemaFile option (Schema Source SAS Data
Set Name) when the sasout component is not
used.

When the sasout component is used and the
downstream component expects a transitional SAS
data set, the schema is:

record (sasData:raw;)

For list and log data sets:

record (partitionNumber:uint16;
recordNumber:uint32;
rec:string;

)

Execution mode Parallel (default) or sequential

Partitioning method Any parallel mode except modulus

Collection method Any sequential mode

Preserve-partitioning flag in
output data set

Set on all output data sets; clear on log and list data
sets

Table 2-3 sas Component Properties (Continued)

Property Value

Table 2-4 sas Component Options

Option Use

-source (Source
Method)

-source SAS_code

Specifies the SAS code to be executed by SAS. The SAS
code may contain both PROC steps and DATA steps.

DataStage specifies either the -source or -sourcefile
option.

-sourceFile (Source) -sourceFile SAS_code_filepath

Specifies the path to a file containing the SAS source
code to be executed. The file path and file contents
should be in the UTF-8 character set.

DataStage specifies either the -sourceFile or the
-source option.
DataStage SAS Stage Supplementary Guide 2-5

The sas Component DataStage SAS Stage Components
-debug (Debug
Program)

-debug yes | no | verbose

A setting of -debug yes causes the sas component to
ignore errors in the SAS program and continue execution
of the application. This allows your application to
generate output even if a SAS step has an error.

By default, the setting is -debug no, which causes the
component to abort when it detects an error in the SAS
program.

A setting -debug verbose is the same as -debug yes, but
in addition it causes the component to echo the SAS
source code executed by the component.

-input (Inputs) [-input in_port_# sas_ds_name]

Specifies the name of the SAS data set, sas_ds_name,
receiving its input from the data set connected to
in_port_#.

The component uses -input to connect each input data
set of the component to an input of the SAS code
executed by the component. For example, your SAS
code contains a DATA step whose input you want to read
from input data set 0 of the component. The following
SAS statements might be contained within the SAS
Source property:

libname temp ‘/tmp’;
data liborch.parallel_out;
set temp.parallel_in;

In this case, you would use Inputs and set the Input
Link Number to 0, and the Input SAS Data Set
Name to the member name parallel_in. You only need to
specify the member name here; do not include any SAS
library name prefix.

sas_ds_name, which equates to Input SAS Data Set
Name on the GUI, is the member name of a SAS data set
used as an input to the SAS code executed by the
component.

When referencing sas_ds_name as part of the SAS code
executed by the component, always prefix it with
liborch, the name of the DataStage SAS engine.

in_port_#, which is Input Link Number on the GUI, is
the number of an input data set of the component. Input
data sets are numbered from 0, thus the first input data
set is data set 0, the next is data set 1, etc.

Table 2-4 sas Component Options (Continued)

Option Use
2-6 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sas Component
-listds (SAS List File
Location Type)

-listds file | dataset | none | display

Optionally specify that sas should generate a SAS list
file.

Specifying -listds file causes the sas component to

write the SAS list file generated by the executed SAS
code to a plain text file in the working directory. The list
is sorted before being written out. The name of the list

file, which cannot be modified, is orchident.lst, where
ident is the name of the component, including an index
in parentheses if there are more than one with the same
name. For example, orchsas(1).lst is the list file from the
second sas component in a step.

-listds dataset causes the list file to be written to the
last output data set. DataStage writes the list file to the
second to last output data set if there is a request that the
SAS log file be written to a data set using -logds.The
data set from a parallel sas component containing the
list information is not sorted.

-listds none means the list is not generated.

-listds display is the default. It causes the list to be
written to the SAS executable’s standard error, which is
then copied to the DataStage log.

Table 2-4 sas Component Options (Continued)

Option Use
DataStage SAS Stage Supplementary Guide 2-7

The sas Component DataStage SAS Stage Components
-logds (SAS Log File
Location Type)

-logds file | dataset | none | display

Optionally specifies that sas writes a SAS log file.

-logds file causes the component to write the SAS log

file generated by the executed SAS code to a plain text
file in the working directory. The name of the log file,

which cannot be modified, is orchident.log, where

ident is the name of the component, including its index
in parentheses if there are more than one with the same

name. For example, orchsas(1).log is the log file from

the second sas component in a step.

For SAS 8.2, the log file contains a header and additional
information at the beginning of the file.

-logds dataset causes the log file to be written to the
last output data set of the component. The data set from
a parallel sas component containing the SAS log
information is not sorted.

-logds none causes the log to be suppressed.

-logds display is the default. It causes the log to be
written to the SAS executable’s standard error, which is
then copied to the DataStage log.

The default -logds output has a message type of E(rror),
W(arning), or I(nfo) depending on the presence of the
word ERROR or WARNING or the absence of both in each
displayed line. The enviroment variable
APT_SAS_OLDDEFAULT_LODGDS (see page 1-42)
causes all messages to have the type W(arning). This is
the behavior of the SAS stage at Release 7.5.1 and earlier.

-noworkingdirectory
or -nowd (Disable
Working Directory
Warning)

-noworkingdirectory

Disables the warning message generated by DataStage if
the
-workingdirectory option is omitted.

If the -workingdirectory argument is omitted, the SAS

working directory is indeterminate, and DataStage
automatically generates a warning message. See the -
workingdirectory option below. The two options are
mutually exclusive.

Table 2-4 sas Component Options (Continued)

Option Use
2-8 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sas Component
-options (SAS
Options)

-options sas_options

Optionally specifies a quoted string containing any
options that can be specified to a SAS OPTIONS
directive. These options are executed before the
component executes your SAS code. For example, this
argument van be used to enable the SAS fullstimer.

Multiple options can be specified, separated by spaces.

By default, the component executes your SAS code with

the SAS options notes and source. Specifying any string

for sas_options configures the component to execute
your code using only the specified options. Therefore if

notes and source are not included in sas_options, you

cannot use them.

Table 2-4 sas Component Options (Continued)

Option Use
DataStage SAS Stage Supplementary Guide 2-9

The sas Component DataStage SAS Stage Components
-output (Output) -output out_port_# ods_name
[-schemaFile schema_file_name | -schema

schema_definition]

Optionally specifies the name of the transitional SAS
data set, ods_name, writing its output to the data set
connected to out_port_# of the component.

The component uses -output to connect each output
data set of the component to an output of the SAS code
executed by the component. For example, your SAS
code contains a DATA step whose output you want to
write to output data set 0 of the component. The
following SAS statements might be contained within the
SAS Source property:

data liborch.parallel_out;

In this case, DataStage would use Output and set the
Output Link Number to 0, and the Output SAS Data
Set Name to the member name parallel_out.

osds_name (Output SAS Data Set Name), corresponds
to the name of a transitional SAS data set used as an
output by the SAS code executed by the component. The
user specifies only the member name here; do not
include any SAS library name prefix.

When referencing osds_name as part of the SAS code
executed by the component, the user always prefixes it
with liborch, the name of the DataStage SAS engine.

out_port_#, (Output Link Number), is the number of
an output data set of the component. Output data sets
are numbered starting from 0.

The user uses the -schemaFile suboption (Schema
Source SAS Data Set Name) to specify the name of a
SAS file containing the metadata column information
which DataStage uses to generate a schema; or you use
the -schema suboption (Set Schema From Columns)
followed by the schema definition. See "Specifying an
Output Schema" on page 1-37 for more details.

If both the -schemaFile option and the -sas_cs option,
which is the NLS enabled setting on the GUI, are set, all
of your SAS CHAR fields are converted to DataStage
ustring values. If the -sas_cs option is not set, all of
your SAS CHAR values are converted to DataStage
string values. To obtain a mixture of string and ustring
values, DataStage uses the -schema option. See
"Specifying an Output Schema" on page 1-37 for more
details.

Note: The -schemaFile and -schema suboptions are
designated as optional. DataStage does not specify them
for the sas component if it specifies them for the sasout
component. It is an error to specify them for both the sas
and sasout components.

Table 2-4 sas Component Options (Continued)

Option Use
2-10 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sasout Component
The sasout Component
DataStage uses the sasout component to convert a transitional SAS

data set to the standard DataStage data set format suitable for input to

standard DataStage stages. When your data includes ustring values,

DataStage inserts the -sas_cs option of the SAS interface

components to specify the character set used by DataStage to convert

between the CHAR data stored in SAS files and DataStage ustring

values. DataStage uses the same value for this option for the sasin,

sas, and sasout components.

This component is used only when a standard DataStage stage

follows a SAS stage.

The sasout component requires that DataStage specify either the

-schema option or the -schemaFile option to pass a record schema

that defines the layout of its output data set. DataStage supplies a

-sas_cs (NLS enabled) -sas_cs icu_character_set
When your DataStage data includes ustring values,
DataStage uses the -sas_cs option, which is NLS
enabled on the GUI, to specify a character set
that maps between DataStage ustrings and the CHAR
data stored in SAS files.DataStage uses the same -
sas_cs character setting for all the SAS stages in
your data flow. See "Running in NLS Mode" on
page 1-36 for more details.

-workingdirectory
or -wd (Disable
Working Directory
Warning)

-workingdirectory dir_name

Specifies the name of the working directory on all
processing nodes executing the SAS application. All
relative pathnames in your application are relative to the
specified directory.

If this argument is not present, the directory is
indeterminate and DataStage generates a warning
message. You can use -noworkingdirectory to disable
the warning.

This option also determines the location of the file
config.sasversion. By default, the component searches
the directory specified by -workingdirectory, then your
home directory, then the SAS install directory for
config.sasversion.

Legal values for dir_name are fully qualified pathnames
(which must be valid on all processing nodes) or "."
(period), corresponding to the name of the current
working directory on the workstation invoking the
application. Relative pathnames for dir_name are illegal.

Table 2-4 sas Component Options (Continued)

Option Use
DataStage SAS Stage Supplementary Guide 2-11

The sasout Component DataStage SAS Stage Components
DataStage schema definition to the -schema option. For the

-schemaFile option, DataStage specifies the file path of a SAS file

that has the same meta data description as the SAS output stream,

and DataStage derives the schema definition from that file. See

"Specifying an Output Schema" on page 1-37 for more details.

See the section "sasout Data Flow Diagram" on page 2-13 for

information on the schema that is derived from a SAS file when the

-schemaFile option is used.

As part of converting a transitional SAS data set to a standard

DataStage data set, the sasout component converts input SAS data

types to the corresponding DataStage data types using that record

schema.

For example, if the DataStage SAS data set contains a SAS numeric

field named a_field that you want to convert to an int16, the sasout

record schema must include the following line:

record (
...
a_field:int16;
...
)

DataStage requires the appropriate decimal definition, including

precision and scale, if you want to convert the field to a decimal.

When converting a SAS numeric field to a DataStage numeric, a

numeric overflow or underflow can occur if the destination data type

is too small to hold the value of the SAS field. By default, DataStage

issues an error message and aborts the program if this occurs.

However, if the record schema passed to sasout defines a field as

nullable, the numeric overflow or underflow does not cause an error.

Instead, the destination field is set to null and processing continues.
2-12 DataStage SAS Stage Supplementary Guide

DataStage SAS Stage Components The sasout Component
Figure 2-3 sasout Data Flow Diagram

Properties
The following table descirbes the sasout component properties and

their values.

input transitional SAS data set

output DataStage data set

 sasout

Table 2-5 sasout Component Properties

Property Value

Number of input data sets 1 transitional SAS data set

Number of output data sets 1 DataStage data set

Input interface schema none

Output interface schema as specified by the -schema option or the -
schemaFile option

Transfer behavior none

Execution mode parallel (default) or sequential

Partitioning method any (parallel mode)

Collection method any (sequential mode)

Preserve-partitioning flag in
output data set

clear
DataStage SAS Stage Supplementary Guide 2-13

The sasout Component DataStage SAS Stage Components
Options
The following table describes the sasout component options.

Table 2-6 sasout Component Options

Option Use

-schema (Set Schema
From Columns)

-schema schema_definition

Specifies the record schema of the output DataStage
data set. Only those fields specified in the record
schema are written to the output data set. DataStage
specifies either the -schema option or the
-schemaFile option, which is on the GUI. See
"Specifying an Output Schema" on page 1-37 for more
details.

-schemaFile (Schema
source SAS Data Set
Name)

-schemaFile filepath

Specifies the name of a SAS file containing the meta
data column information which DataStage uses to
generate a DataStage schema; alternatively the
-schema suboption, followed by the schema definition
can be used. See "Specifying an Output Schema" on
page 1-37 for more details.

If both the -schemaFile option and the -sas_cs option,
which is NLS enabled setting, are set, all of your SAS
CHAR fields are converted to DataStage ustring
values. If the -sas_cs option is not set, all of your SAS
CHAR values are converted to DataStage string values.
To obtain a mixture of string and ustring values, the
use must use the -schema option.

-debug (Debug
Program)

-debug -yes | -no | -verbose

A setting of -debug -yes causes the component to
ignore errors in the SAS program and continue
execution of the application. This allows your
application to generate output even if a SAS step has
an error.

By default, the setting is -debug -no, which causes the
component to abort when it detects an error in the SAS
program.

Setting -debug -verbose is the same as -debug -yes,
but in addition it causes the component to echo the
SAS source code executed by the component.

-sas_cs (NLS enabled) -sas_cs icu_character_set

When your DataStage data includes ustring values,
DataStage uses the -sas_cs option to specify a
character set that maps between DataStage ustrings
and the CHAR data stored in SAS files. Use the same -
sas_cs character setting for all the SAS-interface
components in your data flow. See "Running in NLS
Mode" on page 1-36 for more details.
2-14 DataStage SAS Stage Supplementary Guide

Index
A
APT_DEBUG_SUBPROC 1–42

APT_NO_SAS_TRANSFORMS 1–41

APT_NO_SASINSERT 1–41

APT_S_ARGUMENT 1–41

APT_SAS_ACCEPT_ERROR 1–40

APT_SAS_CHARSET 1–40

APT_SAS_CHARSET_ABORT 1–40

APT_SAS_COMMAND 1–39

APT_SAS_DEBUG 1–40

APT_SAS_DEBUG_IO 1–40

APT_SAS_DEBUG_LEVEL 1–40

APT_SAS_METADATA_ONLY 1–42

APT_SAS_NO_PSDS_USTRING 1–37, 1–42

APT_SAS_OLD_UNIQUE_DIRECTORY 1–42

APT_SAS_OLDDEFAULT_LOGDS 1–42

APT_SAS_PARAM_ARGUMENT 1–40

APT_SAS_SCHEMASOURCE_DUMP 1–38, 1–41

APT_SAS_TO_SASHASH 1–41

APT_SAS_TRUNCATION 1–38, 1–40, 2–1

APT_SASINT_COMMAND 1–39

arguments in SAS execution line 1–40

Ascential Developer Net v

Ascential Enterprise Edition iii

C
candidates for parallelization

using CLASS 1–26, 1–28

using DATA steps 1–19

using PROC steps 1–26

character sets 1–36

CLASS 1–28

comparison of single and multiple

executions 1–2
DataStage SAS Stage Supplementary Guide
components

sas 1–21, 2–4—2–11

sasin 2–1—2–3

sasout 1–21, 2–11—2–14

components, mapped to stage properties 1–9

configuration file requirements

description 1–4

examples 1–5

configuring your system 1–4

considerations for parallelizing SAS code

CPU usage 1–31

number of records 1–31

size of records 1–31

sorting 1–31

Copy stage 1–37

Customer Care, contacting v

D
data representations 1–12

data set formats

parallel 1–12

sequential 1–12

DataStage Enterprise Edition iii

DataStage SAS Stage, description iii

DBCS 1–6, 1–37

DBCSLANG 1–37

DBCSLANG settings and ICU equivalents 1–6

DBCSTYPE 1–37

debug option 1–40, 2–3, 2–6, 2–14

displaying the schema 1–42

double-byte character set 1–6, 1–7

E
environment

configuring your system 1–4

executables 1–6
Index-1

Index
licenses 1–4

long name support 1–8

environment variables

APT_DEBUG_SUBPROC 1–42

APT_HASH_TO_SASHASH 1–41

APT_NO_SAS_TRANSFORMS 1–41

APT_NO_SASOUT_INSERT 1–41

APT_SAS_ACCEPT_ERROR 1–40

APT_SAS_CHARSET 1–40

APT_SAS_CHARSET_ABORT 1–40

APT_SAS_COMMAND 1–39

APT_SAS_DEBUG 1–40

APT_SAS_DEBUG_IO 1–40

APT_SAS_DEBUG_LEVEL 1–40

APT_SAS_METADATA_ONLY 1–42

APT_SAS_NO_PSDS_USTRING 1–37, 1–42

APT_SAS_OLD_UNIQUE_DIRECTORY 1–42

APT_SAS_OLDDEFAULT_LOGDS 1–42

APT_SAS_PARAM_ARGUMENT 1–40

APT_SAS_S_ARGUMENT 1–41

APT_SAS_SCHEMASOURCE_DUMP 1–38,
1–41

APT_SAS_SHOW_INFO 1–41

APT_SAS_TRUNCATION 1–38, 1–40, 2–1

APT_SASINT_COMMAND 1–39

DBCS 1–37

DBCSLANG 1–37

DBCSTYPE 1–37

ETL 1–35

European languages 1–34

executables 1–6

multiple 1–7

single 1–7

Extract, Transform, and Load. See ETL

H
hash partitioning 1–19, 1–23, 1–24, 1–25, 1–29,

1–41

hotfix 1–8

I
ICU character set 1–6, 1–35

input option 2–6

international SAS 1–6, 1–36

L
liborch 1–15, 1–16, 1–22, 1–33, 1–35

listds option 2–7

logds messages 1–42
Index-2
logds option 2–8

long name support 1–8

M
multi-byte Unicode 1–37

multiple nodes 1–5, 1–42

multiple parallel segments

guidelines for 1–31

use with slow-running steps 1–31

multiple SAS executables 1–7

N
NLS 1–36

non-SAS data 1–12

nonworkingdirectory option 2–8

NWAY 1–28

O
options

sas component 2–5

debug 2–6

input 2–6

listds 2–7

logds 2–8

nonworkingdirectory 2–8

options 2–9

output 2–10

sas_cs 2–11

source 2–5

sourceFile 2–5

workingdirectory 2–11

sasin component 2–3

debug 2–3

sas_cs 2–3

schema 2–3

sasout component 2–14

debug 2–14

sas_cs 2–14

schema 2–14

schemaFile 2–14

options option 2–9

output option 2–10

P
parallel processing and sorting 1–4

parallel processing model

advantages 1–3

description 1–3

parallel SAS data set 1–5, 1–11, 1–12, 1–13,
1–18, 1–21, 1–22, 1–36
DataStage SAS Stage Supplementary Guide

Index
parallel SAS data set format 1–12

parallel systems 1–2

parallelization, good candidates 1–19, 1–26,
1–28

parallelizing PROC steps 1–26

parallelizing SAS DATA steps 1–20

Peek stage 1–35, 1–37

phone support v

pipeline parallelism 1–3

pipes 1–33

PROC MEANS 1–26

PROC MERGE 1–33

PROC SORT 1–26, 1–33

properties

sas component 2–4

sasin component 2–2

sasout component 2–13

psds. See parallel SAS data set

R
roundrobin partitioning 1–32

S
SAS code 1–1

sas component 1–21, 2–4—2–11

data-flow diagram 2–4

options 2–5

properties 2–4

SAS CONTENTS report 1–38, 1–41

SAS DATA

description 1–23

example 1–20

in data flow diagram 1–20

SAS data 1–12

SAS DATA steps, executing in parallel 1–19

SAS environment. See environment

SAS executables. See executables

SAS execution line, adding arguments 1–40

SAS interface operators

specifying a character set 1–36

SAS licenses 1–4

SAS PROC 1–25, 1–26

SAS PROC steps, executing in parallel 1–25

SAS programs 1–1

SAS Stage

configuring your system 1–4

converting between DataStage and SAS

data types 1–16

data representations 1–12

DataStage example 1–18

executing DATA steps in parallel 1–19
DataStage SAS Stage Supplementary Guide
executing PROC steps in parallel 1–25

getting input from a DataStage or

transitional SAS data set 1–15

getting input from a SAS data set 1–14

parallel SAS data set format 1–12

parallelizing SAS code

rules of thumb for parallelizing 1–31

SAS programs that benefit from

parallelization 1–30

pipeline parallelism and SAS 1–3

sample data flow 1–10

sequential SAS data set format 1–12

transitional SAS data set format 1–13

using SAS on sequential and parallel

systems 1–2

writing SAS programs 1–1

SAS stage components

controlling ustring truncation 1–38

environment variables 1–39

generating a Proc Contents report 1–39

specifying a character set 1–36

specifying an output schema 1–37

SAS SUM 1–24

sas_cs option 1–40, 2–3, 2–11, 2–14

sascs.txt file 1–34

sashash 1–41

sasin component 2–1—2–3

data-flow diagram 2–2

options 2–3

properties 2–2

syntax and options 2–3

sasout component 1–21, 2–11—2–14

options 2–14

properties 2–13

schema definition 1–22

schema option 1–18, 2–1, 2–3, 2–11, 2–14

schema, displaying 1–42

schemaFile option 1–18, 1–35, 1–38, 2–11, 2–14

sequential processing model, description 1–2

sequential SAS data set format 1–12

sequential systems 1–2

single SAS executable 1–7

source option 2–5

sourceFile option 2–5

stage properties, mapped to underlying

components 1–9

stages

Copy 1–37

Peek 1–35, 1–37
Index-3

Index
T
third-party documentation iv

transitional SAS data set format 1–13

truncation, ustring 1–38

U
US SAS 1–6

using pipes 1–33

ustring 1–40, 2–1

ustring truncation 1–38

W
workingdirectory option 2–11
Index-4
 DataStage SAS Stage Supplementary Guide

	SAS Stage Supplementary Guide
	Audience
	How This Book is Organized
	Related Documentation
	To learn more about documentation from other Ascential products and third-party documentation as they relate to the SAS stage, refer to the following sections/tables.
	Ascential Software Documentation
	Third-Party Documentation

	Conventions
	Contacting Support
	The SAS Stage
	Using DataStage to Run SAS Code
	Writing SAS Programs
	Using SAS on Sequential and Parallel Systems

	Pipeline Parallelism and SAS
	Required SAS Environment
	SAS Licenses
	Installation Requirements
	Configuring Your System to Use the DataStage SAS Stage
	SAS Executables
	Long Name Support

	The SAS Stage GUI
	An Example Data Flow
	Representing SAS and Non-SAS Data in DataStage Enterprise Edition
	Getting Input from a SAS Data Set
	Getting Input from a DataStage or a Transitional SAS Data Set
	Converting between Data Set Types
	Converting DataStage Data to SAS Data
	Converting SAS Data to DataStage Data

	A DataStage Example
	Making SAS Steps Parallel
	Executing DATA Steps in Parallel
	Example Applications

	Executing PROC Steps in Parallel
	Example Applications

	Points to Consider in Parallelizing SAS Code
	Rules of Thumb

	Using SAS with European Languages
	Using DataStage to Do ETL
	Running in NLS Mode
	Parallel SAS Data Sets and SAS International
	Automatic DataStage Step Insertion
	Handling SAS CHAR Fields Containing Multi-Byte Unicode Data

	Specifying an Output Schema
	Controlling ustring Truncation
	DataStage-Inserted Partition and Sort Components
	Environment Variables

	DataStage SAS Stage Components
	The sasin Component
	Properties
	Options

	The sas Component
	Properties
	Options

	The sasout Component
	Properties
	Options

	Index

