
Ascential DataStage
for Ascential DataStage™ Enterprise Edition
Parallel Job Advanced Developer’s
Guide
Version 7.5.1
Part No. 00D-030DS751

December 2004

his document, and the software described or referenced in it, are confidential and proprietary to Ascential Software

Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a license

agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise provided to

third parties, unless otherwise permitted by that agreement. No portion of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of Ascential. The specifications and other

information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

This product or the use thereof may be covered by or is licensed under one or more of the following issued

patents: US6604110, US5727158, US5909681, US5995980, US6272449, US6289474, US6311265, US6330008,

US6347310, US6415286; Australian Patent No. 704678; Canadian Patent No. 2205660; European Patent No. 799450;

Japanese Patent No. 11500247.

© 2005 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise Data

Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration, Simplified®,

Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential QualityStage™,

Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential MetaStage™, and

Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be registered in the

United States or other jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices (legalnotices.pdf) for

more information.

legalnotices.pdf

How to Use this Guide

Ascential DataStage™ is a powerful software suite that is used to

develop and run DataStage jobs. A DataStage job can extract from

different sources, and then cleanse, integrate, and transform the data

according to your requirements. The clean data is ready to be

imported into a data warehouse for analysis and processing by

business information software.

This manual gives information that might be required by advanced

users of parallel jobs. For basic information about using DataStage,

see DataStage Designer Guide and DataStage Manager Guide. For

basic information about designing parallel jobs, see Parallel Job

Developer’s Guide.

To find particular topics you can:

Use the Guide’s contents list (at the beginning of the Guide).

Use the Guide’s index (at the end of the Guide).

Use the Adobe Acrobat Reader bookmarks.

Use the Adobe Acrobat Reader search facility (select Edit ➤
Search).

The guide contains links both to other topics within the guide, and to

other guides in the DataStage manual set. The links are shown in blue.

Note that, if you follow a link to another manual, you will jump to that

manual and lose your place in this manual. Such links are shown in

italics.

Organization of This Manual
This manual contains the following:

Chapter 1 contains an inroduction to the manual, including some
of the terminology used.

Chapter 2 contains job design tips and gives a guide to good
design paractice for parallel jobs.

Chapter 3 gives some tips for improving theperformance of a
parallel job.
Parallel Job Advanced Developer’s Guide iii

Documentation Conventions How to Use this Guide
Chapter 4 explains the link buffering used by parallel jobs in detail.

Chapter 5 gives a guide to specifying your own, customized
parallel job stages.

Chapter 6 describes the environment variables available in the
parallel job environment.

Chapter 7 describes the job control interfaces that you can use to
run DataStage jobs from other programs or from the command
line.

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, keywords,
and options that must be input exactly as shown. In text, bold
indicates keys to press, function names, and menu selections.

UPPERCASE In syntax, uppercase indicates BASIC statements and functions
and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and pathnames.

Plain In text, plain indicates Windows commands and options, file
names, and path names.

Lucida
Typewriter

The Lucida Typewriter font indicates examples of source code
and system output.

Lucida
Typewriter

In examples, Lucida Typewriter bold indicates characters that
the user types or keys the user presses (for example,
<Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu commands indicates you should
choose each command in sequence. For example, “Choose File
➤ Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.
iv Parallel Job Advanced Developer’s Guide

How to Use this Guide Documentation Conventions
DataStage Documentation

DataStage documentation includes the following:

DataStage Director Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage parallel jobs.

DataStage Manager Guide: This guide describes the DataStage
Manager and describes how to use and maintain the DataStage
Repository.

DataStage Designer Guide: This guide describes the DataStage
Designer, and gives a general description of how to create, design,
and develop a DataStage application.

DataStage Server: Server Job Developer’s Guide: This guide
describes the tools that are used in building a server job, and it
supplies programmer’s reference information..

DataStage Enterprise Edition: Parallel Job Developer’s
Guide: This guide describes the tools that are used in building a
parallel job, and it supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Advanced
Developer’s Guide: This guide gives more specialized
information about parallel job design.

DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide: This guide describes the tools that are used
in building a mainframe job, and it supplies programmer’s
reference information..

DataStage Administrator Guide: This guide describes
DataStage setup, routine housekeeping, and administration.

DataStage Install and Upgrade Guide. This guide contains
instructions for installing DataStage on Windows and UNIX
platforms, and for upgrading existing installations of DataStage.

DataStage NLS Guide. This Guide contains information about
using the NLS features that are available in DataStage when NLS
is installed.

These guides are also available online in PDF format. You can read

them using the Adobe Acrobat Reader supplied with DataStage. See

Install and Upgrade Guide for details on installing the manuals and

the Adobe Acrobat Reader.

This line
➥ continues

The continuation character is used in source code examples to
indicate a line that is too long to fit on the page, but must be
entered as a single line on screen.

Convention Usage
Parallel Job Advanced Developer’s Guide v

Documentation Conventions How to Use this Guide
You can use the Acrobat search facilities to search the whole

DataStage document set. To use this feature, select Edit ➤ Search

then choose the All PDF documents in option and specify the

DataStage docs directory (by default this is C:\Program

Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is particularly useful when

you have become familiar with DataStage, and need to look up

specific information.
vi Parallel Job Advanced Developer’s Guide

Contents
How to Use this Guide
Organization of This Manual . iii

Documentation Conventions . iv

Chapter 1
Introduction

Terminology . 1-2

Chapter 2
Job Design Tips

DataStage Designer Interface . 2-1

Processing Large Volumes of Data. 2-2

Modular Development. 2-2

Designing for Good Performance. 2-3

Combining Data . 2-4

Sorting Data . 2-5

Default and Explicit Type Conversions . 2-5

Using Transformer Stages . 2-7

Using Sequential File Stages . 2-8

Using Database Stages . 2-8

Database Sparse Lookup vs. Join . 2-9

DB2 Database Tips . 2-9

Oracle Database Tips . 2-10

Teradata Database Tips . 2-11
Parallel Job Advanced Developer’s Guide vii

Contents
Chapter 3
Improving Performance

Understanding a Flow . 3-1

Score Dumps . 3-1

Example Score Dump . 3-2

Tips for Debugging . 3-2

Performance Monitoring. 3-3

JOB MONITOR . 3-3

Iostat . 3-4

Load Average . 3-4

Runtime Information . 3-5

OS/RDBMS Specific Tools. 3-6

Performance Analysis . 3-6

Selectively Rewriting the flow . 3-6

Identifying Superfluous Repartitions . 3-7

Identifying Buffering Issues . 3-7

Resolving Bottlenecks . 3-8

Choosing the Most Efficient Operators . 3-8

Partitioner Insertion, Sort Insertion . 3-8

Combinable Operators . 3-9

Disk I/O . 3-9

Ensuring Data is Evenly Partitioned . 3-10

Buffering . 3-10

Platform Specific Tuning. 3-11

Tru64 . 3-11

HP-UX . 3-12

AIX. 3-12

Disk Space Requirements of Post-Release 7.0.1 Datasets 3-12

Chapter 4
Link Buffering

Buffering Assumptions . 4-1

Controlling Buffering. 4-2

Buffering Policy . 4-2

Overriding Default Buffering Behavior. 4-3

Operators with Special Buffering Requirements. 4-5
viii Parallel Job Advanced Developer’s Guide

Contents
Chapter 5
Specifying Your Own Parallel Stages

Defining Custom Stages . 5-2

Defining Build Stages . 5-10

Build Stage Macros . 5-21

How Your Code is Executed . 5-23

Inputs and Outputs. 5-24

Example Build Stage . 5-25

Defining Wrapped Stages . 5-31

Example Wrapped Stage . 5-40

Chapter 6
Environment Variables

Buffering . 6-6

APT_BUFFER_FREE_RUN . 6-6

APT_BUFFER_MAXIMUM_MEMORY . 6-7

APT_BUFFER_MAXIMUM_TIMEOUT . 6-7

APT_BUFFER_DISK_WRITE_INCREMENT . 6-7

APT_BUFFERING_POLICY . 6-7

APT_SHARED_MEMORY_BUFFERS . 6-7

Building Custom Stages . 6-8

DS_OPERATOR_BUILDOP_DIR . 6-8

OSH_BUILDOP_CODE . 6-8

OSH_BUILDOP_HEADER . 6-8

OSH_BUILDOP_OBJECT . 6-8

OSH_BUILDOP_XLC_BIN . 6-8

OSH_CBUILDOP_XLC_BIN. 6-9

Compiler . 6-9

APT_COMPILER . 6-9

APT_COMPILEOPT . 6-9

APT_LINKER . 6-9

APT_LINKOPT . 6-9

DB2 Support . 6-10

APT_DB2INSTANCE_HOME . 6-10

APT_DB2READ_LOCK_TABLE . 6-10

APT_DBNAME. 6-10

APT_RDBMS_COMMIT_ROWS . 6-10

DB2DBDFT. 6-10
Parallel Job Advanced Developer’s Guide ix

Contents
Debugging . 6-10

APT_DEBUG_OPERATOR . 6-11

APT_DEBUG_MODULE_NAMES. 6-11

APT_DEBUG_PARTITION . 6-11

APT_DEBUG_SIGNALS . 6-11

APT_DEBUG_STEP. 6-12

APT_DEBUG_SUBPROC . 6-12

APT_EXECUTION_MODE . 6-12

APT_PM_DBX . 6-13

APT_PM_GDB . 6-13

APT_PM_LADEBUG . 6-13

APT_PM_SHOW_PIDS . 6-13

APT_PM_XLDB . 6-13

APT_PM_XTERM . 6-13

APT_SHOW_LIBLOAD . 6-14

Decimal Support . 6-14

APT_DECIMAL_INTERM_PRECISION . 6-14

APT_DECIMAL_INTERM_SCALE. 6-14

APT_DECIMAL_INTERM_ROUND_MODE . 6-14

Disk I/O . 6-14

APT_BUFFER_DISK_WRITE_INCREMENT . 6-14

APT_CONSISTENT_BUFFERIO_SIZE . 6-14

APT_EXPORT_FLUSH_COUNT . 6-15

APT_IO_MAP/APT_IO_NOMAP and

APT_BUFFERIO_MAP/APT_BUFFERIO_NOMAP 6-15

APT_PHYSICAL_DATASET_BLOCK_SIZE. 6-15

General Job Administration . 6-15

APT_CHECKPOINT_DIR . 6-15

APT_CLOBBER_OUTPUT. 6-16

APT_CONFIG_FILE . 6-16

APT_DISABLE_COMBINATION . 6-16

APT_EXECUTION_MODE . 6-16

APT_ORCHHOME . 6-17

APT_STARTUP_SCRIPT . 6-17

APT_NO_STARTUP_SCRIPT . 6-17

APT_STARTUP_STATUS . 6-18

APT_THIN_SCORE . 6-18
x Parallel Job Advanced Developer’s Guide

Contents
Job Monitoring. 6-18

APT_MONITOR_SIZE . 6-18

APT_MONITOR_TIME. 6-18

APT_NO_JOBMON . 6-18

APT_PERFORMANCE_DATA . 6-18

Miscellaneous. 6-19

APT_COPY_TRANSFORM_OPERATOR. 6-19

APT_DATE_CENTURY_BREAK_YEAR. 6-19

APT_IMPEXP_ALLOW_ZERO_LENGTH_FIXED_NULL. 6-19

APT_IMPORT_REJECT_STRING_FIELD_OVERRUNS 6-19

APT_INSERT_COPY_BEFORE_MODIFY . 6-19

APT_OLD_BOUNDED_LENGTH. 6-19

APT_OPERATOR_REGISTRY_PATH . 6-20

APT_PM_NO_SHARED_MEMORY. 6-20

APT_PM_NO_NAMED_PIPES . 6-20

APT_PM_SOFT_KILL_WAIT . 6-20

APT_PM_STARTUP_CONCURRENCY. 6-20

APT_RECORD_COUNTS. 6-21

APT_SAVE_SCORE . 6-21

APT_SHOW_COMPONENT_CALLS. 6-21

APT_STACK_TRACE . 6-21

APT_WRITE_DS_VERSION. 6-21

OSH_PRELOAD_LIBS . 6-22

Network. 6-22

APT_IO_MAXIMUM_OUTSTANDING . 6-22

APT_IOMGR_CONNECT_ATTEMPTS . 6-22

APT_PM_CONDUCTOR_HOSTNAME . 6-22

APT_PM_NO_TCPIP . 6-23

APT_PM_NODE_TIMEOUT . 6-23

APT_PM_SHOWRSH . 6-23

APT_PM_USE_RSH_LOCALLY. 6-23
Parallel Job Advanced Developer’s Guide xi

Contents
NLS Support. 6-23

APT_COLLATION_SEQUENCE . 6-23

APT_COLLATION_STRENGTH . 6-23

APT_ENGLISH_MESSAGES . 6-24

APT_IMPEXP_CHARSET . 6-24

APT_INPUT_CHARSET. 6-24

APT_OS_CHARSET . 6-24

APT_OUTPUT_CHARSET. 6-24

APT_STRING_CHARSET . 6-24

Oracle Support . 6-24

APT_ORACLE_LOAD_DELIMITED . 6-25

APT_ORACLE_LOAD_OPTIONS . 6-25

APT_ORACLE_NO_OPS . 6-25

APT_ORACLE_PRESERVE_BLANKS . 6-25

APT_ORA_IGNORE_CONFIG_FILE_PARALLELISM 6-26

APT_ORA_WRITE_FILES . 6-26

APT_ORAUPSERT_COMMIT_ROW_INTERVAL

APT_ORAUPSERT_COMMIT_TIME_INTERVAL 6-26

Partitioning. 6-26

APT_NO_PART_INSERTION . 6-26

APT_PARTITION_COUNT . 6-26

APT_PARTITION_NUMBER . 6-27

Reading and Writing Files . 6-27

APT_DELIMITED_READ_SIZE . 6-27

APT_FILE_IMPORT_BUFFER_SIZE . 6-27

APT_FILE_EXPORT_BUFFER_SIZE . 6-28

APT_IMPORT_PATTERN_USES_FILESET. 6-28

APT_MAX_DELIMITED_READ_SIZE . 6-28

APT_PREVIOUS_FINAL_DELIMITER_COMPATIBLE 6-28

APT_STRING_PADCHAR . 6-28
xii Parallel Job Advanced Developer’s Guide

Contents
Reporting . 6-28

APT_DUMP_SCORE . 6-29

APT_ERROR_CONFIGURATION . 6-29

APT_MSG_FILELINE . 6-30

APT_PM_PLAYER_MEMORY . 6-30

APT_PM_PLAYER_TIMING . 6-31

APT_RECORD_COUNTS. 6-31

OSH_DUMP. 6-31

OSH_ECHO . 6-31

OSH_EXPLAIN . 6-31

OSH_PRINT_SCHEMAS . 6-31

SAS Support . 6-32

APT_HASH_TO_SASHASH . 6-32

APT_NO_SASOUT_INSERT . 6-32

APT_NO_SAS_TRANSFORMS. 6-32

APT_SAS_ACCEPT_ERROR . 6-32

APT_SAS_CHARSET. 6-32

APT_SAS_CHARSET_ABORT . 6-33

APT_SAS_COMMAND . 6-33

APT_SASINT_COMMAND . 6-33

APT_SAS_DEBUG. 6-33

APT_SAS_DEBUG_IO . 6-33

APT_SAS_DEBUG_LEVEL . 6-33

APT_SAS_DEBUG_VERBOSE . 6-33

APT_SAS_NO_PSDS_USTRING . 6-34

APT_SAS_S_ARGUMENT . 6-34

APT_SAS_SCHEMASOURCE_DUMP . 6-34

APT_SAS_SHOW_INFO . 6-34

APT_SAS_TRUNCATION . 6-34

Sorting . 6-34

APT_NO_SORT_INSERTION . 6-35

APT_SORT_INSERTION_CHECK_ONLY . 6-35
Parallel Job Advanced Developer’s Guide xiii

Contents
Teradata Support . 6-35

APT_TERA_64K_BUFFERS. 6-35

APT_TERA_NO_ERR_CLEANUP . 6-35

APT_TERA_NO_SQL_CONVERSION. 6-35

APT_TERA_NO_PERM_CHECKS . 6-36

APT_TERA_SYNC_DATABASE . 6-36

APT_TERA_SYNC_PASSWORD . 6-36

APT_TERA_SYNC_USER . 6-36

Transport Blocks . 6-36

APT_AUTO_TRANSPORT_BLOCK_SIZE. 6-36

APT_LATENCY_COEFFICIENT. 6-37

APT_DEFAULT_TRANSPORT_BLOCK_SIZE. 6-37

APT_MAX_TRANSPORT_BLOCK_SIZE/

APT_MIN_TRANSPORT_BLOCK_SIZE . 6-37

Guide to Setting Environment Variables . 6-37

Environment Variable Settings for all Jobs . 6-37

Optional Environment Variable Settings . 6-38

Chapter 7
DataStage Development Kit (Job Control Interfaces)

DataStage Development Kit . 7-2

The dsapi.h Header File . 7-2

Data Structures, Result Data, and Threads . 7-2

Writing DataStage API Programs . 7-3

Building a DataStage API Application . 7-4

Redistributing Applications. 7-4

API Functions . 7-4

DSAddEnvVar. 7-7

Syntax . 7-7

Parameters . 7-7

Return Values . 7-7

Remarks . 7-8

DSAddProject . 7-9

Syntax . 7-9

Parameters . 7-9

Return Values . 7-9
xiv Parallel Job Advanced Developer’s Guide

Contents
DSCloseJob . 7-10

Syntax . 7-10

Parameter . 7-10

Return Values . 7-10

Remarks. 7-10

DSCloseProject . 7-11

Syntax . 7-11

Parameter . 7-11

Return Value . 7-11

Remarks. 7-11

DSDeleteEnvVar . 7-12

Syntax . 7-12

Parameters . 7-12

Return Values . 7-12

DSDeleteProject . 7-13

Syntax . 7-13

Parameter . 7-13

Return Value . 7-13

DSFindFirstLogEntry . 7-14

Syntax . 7-14

Parameters . 7-14

Return Values . 7-15

Remarks. 7-15

DSFindNextLogEntry . 7-16

Syntax . 7-16

Parameters . 7-16

Return Values . 7-16

Remarks. 7-16

DSGetProjectList . 7-17

Syntax . 7-17

Parameters . 7-17

Return Values . 7-17

DSGetJobInfo . 7-19

Syntax . 7-19

Parameters . 7-19

Return Values . 7-20

Remarks. 7-20
Parallel Job Advanced Developer’s Guide xv

Contents
DSGetLastError . 7-21

Syntax . 7-21

Return Values . 7-21

Remarks . 7-21

DSGetLastErrorMsg. 7-22

Syntax . 7-22

Parameter . 7-22

Return Values . 7-22

Rermarks. 7-22

DSGetLinkInfo . 7-23

Syntax . 7-23

Parameters . 7-23

Return Value . 7-24

Remarks . 7-24

DSGetLogEntry . 7-25

Syntax . 7-25

Parameters . 7-25

Return Values . 7-25

Remarks . 7-25

DSGetNewestLogId . 7-26

Syntax . 7-26

Parameters . 7-26

Return Values . 7-26

Remarks . 7-27

DSGetParamInfo . 7-28

Syntax . 7-28

Parameters . 7-28

Return Values . 7-28

Remarks . 7-28

DSGetProjectInfo . 7-30

Syntax . 7-30

Parameters . 7-30

Return Values . 7-30

Remarks . 7-30

DSGetProjectList . 7-31

Syntax . 7-31

Return Values . 7-31

Remarks . 7-31
xvi Parallel Job Advanced Developer’s Guide

Contents
DSGetReposInfo. 7-32

Syntax . 7-32

Parameters . 7-32

Return Value . 7-33

DSGetReposUsage. 7-34

Syntax . 7-34

Parameters . 7-34

Return Value . 7-35

DSGetStageInfo . 7-36

Syntax . 7-36

Parameters . 7-36

Return Values . 7-37

Remarks. 7-37

DSGetProjectList . 7-38

Syntax . 7-38

Parameters . 7-38

Return Values . 7-38

DSListEnvVars . 7-39

Syntax . 7-39

Parameter . 7-39

Return Values . 7-39

Remarks. 7-39

DSListProjectProperties. 7-40

Syntax . 7-40

Parameter . 7-40

Return Values . 7-40

Remarks. 7-41

DSLockJob . 7-42

Syntax . 7-42

Parameter . 7-42

Return Values . 7-42

Remarks. 7-42

DSLogEvent . 7-43

Syntax . 7-43

Parameters . 7-43

Return Values . 7-43

Remarks. 7-43
Parallel Job Advanced Developer’s Guide xvii

Contents
DSMakeJobReport. 7-44

Syntax . 7-44

Parameters . 7-44

Return Values . 7-44

DSOpenJob . 7-45

Syntax . 7-45

Parameters . 7-45

Return Values . 7-45

Remarks . 7-45

DSOpenProject. 7-46

Syntax . 7-46

Parameter . 7-46

Return Values . 7-46

Remarks . 7-46

DSRunJob. 7-47

Syntax . 7-47

Parameters . 7-47

Return Values . 7-47

Remarks . 7-47

DSSetEnvVar . 7-49

Syntax . 7-49

Parameters . 7-49

Return Values . 7-49

Remarks . 7-50

DSSetGenerateOpMetaData . 7-51

Syntax . 7-51

Parameters . 7-51

Return Values . 7-51

DSSetJobLimit . 7-52

Syntax . 7-52

Parameters . 7-52

Return Values . 7-52

Remarks . 7-52

DSSetParam . 7-54

Syntax . 7-54

Parameters . 7-54

Return Values . 7-54

Remarks . 7-55
xviii Parallel Job Advanced Developer’s Guide

Contents
DSSetProjectProperty . 7-56

Syntax . 7-56

Parameters . 7-56

Return Values . 7-57

Remarks. 7-57

DSSetServerParams . 7-58

Syntax . 7-58

Parameters . 7-58

Return Values . 7-58

Remarks. 7-58

DSStopJob . 7-59

Syntax . 7-59

Parameter . 7-59

Return Values . 7-59

Remarks. 7-59

DSUnlockJob . 7-60

Syntax . 7-60

Parameter . 7-60

Return Values . 7-60

Remarks. 7-60

DSWaitForJob . 7-61

Syntax . 7-61

Parameter . 7-61

Return Values . 7-61

Remarks. 7-61

Data Structures. 7-62

DSCUSTINFO . 7-63

Syntax . 7-63

Members . 7-63

DSJOBINFO . 7-64

Syntax . 7-64

Members . 7-64

DSLINKINFO . 7-67

Syntax . 7-67

Members . 7-67

DSLOGDETAIL . 7-68

Syntax . 7-68

Members . 7-68
Parallel Job Advanced Developer’s Guide xix

Contents
DSLOGEVENT . 7-69

Syntax . 7-69

Members. 7-69

DSPARAM. 7-70

Syntax . 7-70

Members. 7-70

DSPARAMINFO . 7-72

Syntax . 7-72

Members. 7-72

DSPROJECTINFO. 7-74

Syntax . 7-74

Members. 7-74

DSREPOSINFO . 7-75

Syntax . 7-75

Members. 7-75

DSREPOSUSAGE. 7-76

Syntax . 7-76

Members. 7-76

DSSTAGEINFO. 7-77

Syntax . 7-77

Members. 7-77

DSLINKINFO. 7-79

Syntax . 7-79

Members. 7-79

Error Codes. 7-80

DataStage BASIC Interface . 7-87

DSAttachJob . 7-90

Syntax . 7-90

Remarks . 7-90

Example . 7-90

DSCheckRoutine . 7-91

Syntax . 7-91

Example . 7-91

DSDetachJob . 7-92

Syntax . 7-92

Example . 7-92
xx Parallel Job Advanced Developer’s Guide

Contents
DSExecute. 7-93

Syntax . 7-93

Remarks. 7-93

DSGetCustInfo . 7-94

Syntax . 7-94

DSIPCPageProps . 7-95

Syntax . 7-95

Example. 7-95

DSGetJobInfo . 7-96

Syntax . 7-96

Remarks. 7-99

Examples. 7-99

DSGetJobMetaBag . 7-100

Syntax . 7-100

Example. 7-100

DSGetLinkInfo . 7-101

Syntax . 7-101

Remarks. 7-102

Example. 7-102

DSGetLinkMetaData. 7-103

Syntax . 7-103

Example. 7-103

DSGetLogEntry. 7-104

Syntax . 7-104

Example. 7-104

DSGetLogSummary. 7-105

Syntax . 7-105

Example. 7-106

DSGetNewestLogId . 7-107

Syntax . 7-107

Example. 7-107

DSGetParamInfo . 7-108

Syntax . 7-108

Remarks. 7-109

Example. 7-109

DSGetProjectInfo . 7-111

Syntax . 7-111
Parallel Job Advanced Developer’s Guide xxi

Contents
DSGetStageInfo . 7-112

Syntax . 7-112

Remarks . 7-114

Example . 7-114

DSGetStageLinks . 7-115

Syntax . 7-115

Example . 7-115

DSGetStagesOfType . 7-116

Syntax . 7-116

Example . 7-116

DSGetStagesTypes . 7-117

Syntax . 7-117

Example . 7-117

DSGetProjectInfo . 7-118

Syntax . 7-118

DSLogEvent . 7-119

Syntax . 7-119

Example . 7-119

DSLogFatal . 7-120

Syntax . 7-120

Remarks . 7-120

Example . 7-120

DSLogInfo. 7-121

Syntax . 7-121

Remarks . 7-121

Example . 7-121

DSLogToController . 7-122

Syntax . 7-122

Remarks . 7-122

Example . 7-122

DSLogWarn . 7-123

Syntax . 7-123

Remarks . 7-123

Example . 7-123

DSMakeJobReport. 7-124

Syntax . 7-124

Remarks . 7-124

Example . 7-124
xxii Parallel Job Advanced Developer’s Guide

Contents
DSMakeMsg . 7-125

Syntax . 7-125

Remarks. 7-125

Example. 7-125

DSPrepareJob . 7-126

Syntax . 7-126

Example. 7-126

DSRunJob. 7-127

Syntax . 7-127

Remarks. 7-127

Example. 7-127

DSSendMail . 7-128

Syntax . 7-128

Remarks. 7-129

Example. 7-129

DSSetGenerateOpMetaData . 7-130

Syntax . 7-130

Example. 7-130

DSSetJobLimit . 7-131

Syntax . 7-131

Example. 7-131

DSSetParam . 7-132

Syntax . 7-132

Example. 7-132

DSSetUserStatus . 7-133

Syntax . 7-133

Example. 7-133

DSStopJob . 7-134

Syntax . 7-134

Example. 7-134

DSTransformError . 7-135

Syntax . 7-135

Remarks. 7-135

Example. 7-135

DSTranslateCode . 7-136

Syntax . 7-136

Remarks. 7-136

Example. 7-136
Parallel Job Advanced Developer’s Guide xxiii

Contents
DSWaitForFile . 7-137

Syntax . 7-137

Examples . 7-137

DSWaitForJob . 7-138

Syntax . 7-138

Remarks . 7-138

Example . 7-138

Job Status Macros. 7-139

Command Line Interface. 7-140

Commands for Controlling DataStage Jobs . 7-140

Commands for Administering DataStage . 7-151

Commands for Searching Jobs . 7-157

XML Schemas and Sample Stylesheets . 7-162

Appendix A
Header Files

C++ Classes – Sorted By Header File . A-1

C++ Macros – Sorted By Header File . A-6
xxiv Parallel Job Advanced Developer’s Guide

1
Introduction

This manual is intended for the DataStage Enterprise Edition user who

has mastered the basics of parallel job design and now wants to

progress further.

The manual covers the following topics:

Job Design Tips. This chapter contains miscellaneous tips about
designing parallel jobs, from use of the DataStage Designer
interface to handling large volumes of data.

Improving Performance. This chapter describes methods by which
you can evaluate the performance of your parallel job designs and
come up with strategies for improving them.

Link Buffering. This chapter contains an in-depth description of
when and how DataStage buffers data within a job, and how you
can change the automatic settings if required.

Specifying Your Own Parallel Stages. This chapter describe the
interface DataStage provides for defining your own parallel job
stage types.

Environment Variables. This chapter list all the environment
variables that are available for affecting the set up and operation
of parallel jobs.

DataStage Development Kit (Job Control Interfaces). This chapter
lists the various interfaces that enable you to run and control
DataStage jobs without using the DataStage Director client.
Parallel Job Advanced Developer’s Guide 1-1

Terminology Introduction
Terminology
Because of the technical nature of some of the descriptions in this

manual, we sometimes talks about details of the engine that drives

parallel jobs. This involves the use of terms that may be unfamiliar to

ordinary parallel job users.

Operators. These underlie the stages in a DataStage job. A single
stage may correspond to a single operator, or a number of
operators, depending on the properties you have set, and whether
you have chosen to partition or collect or sort data on the input
link to a stage. At compilation, DataStage evaluates your job
design and will sometimes optimize operators out if they are
judged to be superfluous, or insert other operators if they are
needed for the logic of the job.

OSH. This is the scripting language used internally by the
DataStage Enterprise Edition engine.

Players. Players are the workhorse processes in a parallel job.
There is generally a player for each operator on each node. Players
are the children of section leaders; there is one section leader per
processing node. Section leaders are started by the conductor
process running on the conductor node (the conductor node is
defined in the configuration file).
1-2 Parallel Job Advanced Developer’s Guide

2
Job Design Tips

This chapter gives some hints and tips for the good design of parallel

jobs.

DataStage Designer Interface
The following are some tips for smooth use of the DataStage Designer

when actually laying out your job on the canvas.

To re-arrange an existing job design, or insert new stage types into
an existing job flow, first disconnect the links from the stage to be
changed, then the links will retain any meta data associated with
them.

A Lookup stage can only have one input stream, one output
stream, and, optionally, one reject stream. Depending on the type
of lookup, it can have several reference links. To change the use of
particular Lookup links in an existing job flow, disconnect the links
from the Lookup stage and then right-click to change the link type,
for example, Stream to Reference.

The Copy stage is a good placeholder between stages if you
anticipate that new stages or logic will be needed in the future
without damaging existing properties and derivations. When
inserting a new stage, simply drag the input and output links from
the Copy placeholder to the new stage. Unless the Force property
is set in the Copy stage, DataStage optimizes the actual copy out
at runtime.
Parallel Job Advanced Developer’s Guide 2-1

Processing Large Volumes of Data Job Design Tips
Processing Large Volumes of Data
The ability to process large volumes of data in a short period of time

depends on all aspects of the flow and the environment being

optimized for maximum throughput and performance. Performance

tuning and optimization are iterative processes that begin with job

design and unit tests, proceed through integration and volume

testing, and continue throughout the production life cycle of the

application. Here are some performance pointers:

When writing intermediate results that will only be shared
between parallel jobs, always write to persistent data sets (using
Data Set stages). You should ensure that the data is partitioned,
and that the partitions, and sort order, are retained at every stage.
Avoid format conversion or serial I/O.

Data Set stages should be used to create restart points in the
event that a job or sequence needs to be rerun. But, because data
sets are platform and configuration specific, they should not be
used for long-term backup and recovery of source data.

Depending on available system resources, it may be possible to
optimize overall processing time at run time by allowing smaller
jobs to run concurrently. However, care must be taken to plan for
scenarios when source files arrive later than expected, or need to
be reprocessed in the event of a failure.

Parallel configuration files allow the degree of parallelism and
resources used by parallel jobs to be set dynamically at runtime.
Multiple configuration files should be used to optimize overall
throughput and to match job characteristics to available hardware
resources in development, test, and production modes.

The proper configuration of scratch and resource disks and the

underlying filesystem and physical hardware architecture can

significantly affect overall job performance.

Within clustered ETL and database environments, resource-pool

naming can be used to limit processing to specific nodes,

including database nodes when appropriate.

Modular Development
You should aim to use modular development techniques in your job

designs in order to maximize the reuse of parallel jobs and

components and save yourself time.
2-2 Parallel Job Advanced Developer’s Guide

Job Design Tips Designing for Good Performance
Use job parameters in your design and supply values at run time.
This allows a single job design to process different data in
different circumstances, rather than producing multiple copies of
the same job with slightly different arguments.

Using job parameters allows you to exploit the DataStage
Director’s multiple invocation capability. You can run several
invocations of a job at the same time with different runtime
arguments.

Use shared containers to share common logic across a number of
jobs. Remember that shared containers are inserted when a job is
compiled. If the shared container is changed, the jobs using it will
need recompiling (you can use the Usage Analysis tool in the
DataStage Manager to help you identify the jobs, and the multiple
job compile tool to recompile them).

Designing for Good Performance
Here are some tips for designing good performance into your job

from the outset.

Avoid unnecessary type conversions.

Be careful to use proper source data types, especially from Oracle.

You can set the OSH_PRINT_SCHEMAS environment variable to verify

that runtime schemas match the job design column definitions.

If you are using stage variables on a Transformer stage, ensure that

their data types match the expected result types.

Use Transformer stages sparingly and wisely

Transformer stages can slow down your job. Do not have multiple

stages where the functionality could be incorporated into a single

stage, and use other stage types to perform simple transformation

operations (see "Using Transformer Stages" on page 2-7 for more

guidance).

Increase Sort performance where possible

Careful job design can improve the performance of sort operations,

both in standalone Sort stages and in on-link sorts specified in the

Inputs page Partitioning tab of other stage types. See "Sorting Data"

on page 2-5 for guidance.
Parallel Job Advanced Developer’s Guide 2-3

Combining Data Job Design Tips
Remove Unneeded Columns

Remove unneeded columns as early as possible within the job flow.

Every additional unused column requires additional buffer memory,

which can impact performance and make each row transfer from one

stage to the next more expensive. If possible, when reading from

databases, use a select list to read just the columns required, rather

than the entire table.

Avoid reading from sequential files using the Same
partitioning method.

Unless you have specified more than one source file, this will result in

the entire file being read into a single partition, making the entire

downstream flow run sequentially unless you explicitly repartition

(see "Using Sequential File Stages" on page 2-8 for more tips on using

Sequential file stages).

Combining Data
The two major ways of combining data in a DataStage job are via a

Lookup stage or a Join stage. How do you decide which one to use?

Lookup and Join stages perform equivalent operations: combining

two or more input datasets based on one or more specified keys.

When one unsorted input is very large or sorting is not feasible,

Lookup is preferred. When all inputs are of manageable size or are

pre-sorted, Join is the preferred solution.

The Lookup stage is most appropriate when the reference data for all

Lookup stages in a job is small enough to fit into available physical

memory. Each lookup reference requires a contiguous block of

physical memory. The Lookup stage requires all but the first input (the

primary input) to fit into physical memory.

If the reference to a lookup is directly from a DB2 or Oracle table and

the number of input rows is significantly smaller than the reference

rows, 1:100 or more, a Sparse Lookup may be appropriate.

If performance issues arise while using Lookup, consider using the

Join stage. The Join stage must be used if the datasets are larger than

available memory resources.
2-4 Parallel Job Advanced Developer’s Guide

Job Design Tips Sorting Data
Sorting Data
Look at job designs and try to reorder the job flow to combine

operations around the same sort keys if possible, and coordinate your

sorting strategy with your hashing strategy. It is sometimes possible

to rearrange the order of business logic within a job flow to leverage

the same sort order, partitioning, and groupings.

If data has already been partitioned and sorted on a set of key

columns, specify the “don’t sort, previously sorted” option for the key

columns in the Sort stage. This reduces the cost of sorting and takes

greater advantage of pipeline parallelism.

When writing to parallel data sets, sort order and partitioning are

preserved. When reading from these data sets, try to maintain this

sorting if possible by using Same partitioning method.

The stable sort option is much more expensive than non-stable sorts,

and should only be used if there is a need to maintain row order other

than as needed to perform the sort.

The performance of individual sorts can be improved by increasing

the memory usage per partition using the Restrict Memory Usage

(MB) option of the Sort stage. The default setting is 20 MB per

partition. Note that sort memory usage can only be specified for

standalone Sort stages, it cannot be changed for inline (on a link)

sorts.

Default and Explicit Type Conversions
When you are mapping data from source to target you may need to

perform data type conversions. Some conversions happen

automatically, and these can take place across the output mapping of

any parallel job stage that has an input and an output link. Other

conversions need a function to explicitly perform the conversion.

These functions can be called from a Modify stage or a Transformer

stage, and are listed in Appendix B of DataStage Parallel Job

Developer’s Guide. (Modify is the preferred stage for such conversions

– see "Using Transformer Stages" on page 2-7.)

The following table shows which conversions are performed

automatically and which need to be explicitly performed. “d”

indicates automatic (default) conversion, “m” indicates that manual
Parallel Job Advanced Developer’s Guide 2-5

Default and Explicit Type Conversions Job Design Tips
conversion is required, a blank square indicates that conversion is not

possible:

You should also note the following points about type conversion:

When converting from variable-length to fixed-length strings
using default conversions, parallel jobs pad the remaining length
with NULL (ASCII zero) characters.

Destination Field

Source
Field

in
t8

u
in

t8

in
t1

6

u
in

t1
6

in
t3

2

u
in

t3
2

in
t6

4

u
in

t6
4

s
fl

o
a
t

d
fl

o
a
t

d
e
c
im

a
l

s
tr

in
g

ra
w

d
a
te

ti
m

e

ti
m

e
s
ta

m
p

int8 d,
m

d d d d d d d d d,
m

d d,

m

m m m

uint8 d d d d d d d d d d d

int16 d,
m

d d d d d d d d d d,
m

uint16 d d d d d d d d d d d

int32 d,
m

d d d d d d d d d d,
m

m m

uint32 d d d d d d d d d d m m

int64 d,
m

d d d d d d d d d d

uint64 d d d d d d d d d d d

sfloat d,
m

d d d d d d d d d d

dfloat d,
m

d d d d d d d d d,
m

d,
m

d,
m

m m

decimal d,
m

d d d d,
m

d d,
m

d,
m

d d,
m

d,
m

d,
m

string d,
m

d d,
m

d d d,
m

d d d d,
m

d,
m

d,
m

m m m

raw m m d

date m m m m m m m

time m m m m d d,
m

timestamp m m m m m m d
2-6 Parallel Job Advanced Developer’s Guide

Job Design Tips Using Transformer Stages
The environment variable APT_STRING_PADCHAR can be used to
change the default pad character from an ASCII NULL (0x0) to
another character; for example, an ASCII space (Ox20) or a
unicode space (U+0020).

As an alternate solution, the PadString function can be used to
pad a variable-length (Varchar) string to a specified length using a
specified pad character. Note that PadString does not work with
fixed-length (Char) string types. You must first convert Char to
Varchar before using PadString.

Using Transformer Stages
In general, it is good practice not to use more Transformer stages than

you have to. You should especially avoid using multiple Transformer

stages where the logic can be combined into a single stage.

It is often better to use other stage types for certain types of operation:

Use a Copy stage rather than a Transformer for simple operations
such as:

– Providing a job design placeholder on the canvas. (Provided
you do not set the Force property to True on the Copy stage,
the copy will be optimized out of the job at run time.)

– Renaming columns.

– Dropping columns.

– Implicit type conversions (see "Default and Explicit Type
Conversions" on page 2-5).

Note that, if runtime column propagation is disabled, you can also

use output mapping on a stage to rename, drop, or convert

columns on a stage that has both inputs and outputs.

Use the Filter stage or the Switch stage to separate rows into
multiple output links based on SQL-like constraint expressions.

Use the Modify stage for explicit type conversion (see "Default
and Explicit Type Conversions" on page 2-5) and null handling.

Where complex, reusable logic is required, or where existing
Transformer-stage based job flows do not meet performance
requirements, consider building your own custom stage (see
Chapter 5, "Specifying Your Own Parallel Stages.")

Use a BASIC Transformer stage for large-volume job flows, or
where you want to take advantage of user-defined functions and
routines.
Parallel Job Advanced Developer’s Guide 2-7

Using Sequential File Stages Job Design Tips
Using Sequential File Stages
Certain considerations apply when reading and writing fixed-length

fields using the Sequential File stage.

If reading columns that have an inherently variable-width type (for
example, integer, decimal, or varchar) then you should set the
Field Width property to specify the actual fixed-width of the input
column. Do this by selecting Edit Row… from the shortcut menu
for a particular column in the Columns tab, and specify the width
in the Edit Column Meta Data dialog box.

If writing fixed-width columns with types that are inherently
variable-width, then set the Field Width property and the Pad char
property in the Edit Column Meta Data dialog box to match the
width of the output column.

Other considerations are as follows:

If a column is nullable, you must define the null field value and
length in the Edit Column Meta Data dialog box.

Be careful when reading delimited, bounded-length varchar
columns (i.e., varchars with the length option set). If the source file
has fields which are longer than the maximum varchar length,
these extra characters are silently discarded.

Avoid reading from sequential files using the Same partitioning
method. Unless you have specified more than one source file, this
will result in the entire file being read into a single partition,
making the entire downstream flow run sequentially unless you
explicitly repartition.

Using Database Stages
In general you are better using ‘native’ database stages to access

certain databases rather than plug-in stages as the former give

maximum parallel performance and features. The natives stages are:

DB2/UDB Enterprise

Informix Enterprise

Oracle Enterprise

Teradata Enterprise

You should avoid generating target tables in the database from your

DataStage job (i.e., using the Create write mode on the database

stage) unless they are intended for temporary storage only. This is

because this method does not allow you to, for example, specify

target table space, and you may inadvertently violate data-
2-8 Parallel Job Advanced Developer’s Guide

Job Design Tips Using Database Stages
management policies on the database. If you want to create a table on

a target database from within a job, use the Open command property

on the database stage to explicitly create the table and allocate

tablespace, or any other options required.

The Open command property allows you to specify a command (for

example some SQL) that will be executed by the database before it

processes any data from the stage. There is also a Close property that

allows you to specify a command to execute after the data from the

stage has been processed. (Note that, when using user-defined Open

and Close commands, you may need to explicitly specify locks where

appropriate.)

Database Sparse Lookup vs. Join
Data read by any database stage can serve as the reference input to a

Lookup stage. By default, this reference data is loaded into memory

like any other reference link.

When directly connected as the reference link to a Lookup stage, both

DB2/UDB Enterprise and Oracle Enterprise stages allow the lookup

type to be changed to Sparse and send individual SQL statements to

the reference database for each incoming Lookup row. Sparse Lookup

is only available when the database stage is directly connected to the

reference link, with no intermediate stages.

It is important to note that the individual SQL statements required by

a Sparse Lookup are an expensive operation from a performance

perspective. In most cases, it is faster to use a DataStage Join stage

between the input and DB2 reference data than it is to perform a

Sparse Lookup.

For scenarios where the number of input rows is significantly smaller

(1:100 or more) than the number of reference rows in a DB2 or Oracle

table, a Sparse Lookup may be appropriate.

DB2 Database Tips
Always use the DB2/UDB Enterprise stage in preference to the DB2/

API plugin stage for reading from, writing to, and performing lookups

against a DB2 Enterprise Server Edition with the Database Partitioning

Feature (DBF). The DB2/UDB Enterprise stage is designed for

maximum performance and scaleability against very large partitioned

DB2 UNIX databases.

The DB2/API plugin should only be used to read from and write to DB2

on other, non-UNIX platforms. You might, for example, use it to

access mainframe editions through DB2 Connect.
Parallel Job Advanced Developer’s Guide 2-9

Using Database Stages Job Design Tips
Write vs. Load

The DB2/UDB Enterprise stage offers the choice between SQL

methods (insert, update, upsert, delete) or fast loader methods when

writing to a DB2 database. The choice between these methods

depends on the required performance, database log usage, and

recoverability considerations as follows:

The write method (using insert, update, upsert, or delete)
communicates directly with DB2 database nodes to execute
instructions in parallel. All operations are logged to the DB2
database log, and the target table(s) can be accessed by other
users. Time and row-based commit intervals determine the
transaction size and availability of new rows to other applications.

The load method requires that the user running the job has
DBADM privilege on the target database. During a load operation
an exclusive lock is placed on the entire DB2 tablespace into which
the data is being loaded, and so this tablespace cannot be
accessed by anyone else while the load is taking place. The load is
also non-recoverable: if the load operation is terminated before it
is completed, the contents of the table are unusable and the
tablespace is left in the load pending state. If this happens, the
DataStage job must be re-run with the stage set to truncate mode
to clear the load pending state.

Oracle Database Tips
When designing jobs that use Oracle sources or targets, note that the

parallel engine will use its interpretation of the Oracle meta data (e.g,

exact data types) based on interrogation of Oracle, overriding what

you may have specified in the Columns tab. For this reason it is best

to import your Oracle table definitions using the Import ➤
Orchestrate Schema Definitions command from the Table

Definitions category of the Repository view in the DataStage Designer

(also available in the Manager under Import ➤ Table Definitions ➤
Orchestrate Schema Definitions). Choose the Database table

option and follow the instructions from the wizard.

Loading and Indexes

When you use the Load write method in an Oracle Enterprise stage,

you are using the Parallel Direct Path load method. If you want to use

this method to write tables that have indexes on them (including

indexes automatically generated by primary key constraints), you

must specify the Index Mode property (you can set it to Maintenance

or Rebuild). An alternative is to set the environment variable

APT_ORACLE_LOAD_OPTIONS to “OPTIONS (DIRECT=TRUE,
2-10 Parallel Job Advanced Developer’s Guide

Job Design Tips Using Database Stages
PARALLEL=FALSE). This allows the loading of indexed tables without

index maintenance, but the load is performed sequentially.

You can use the upsert write method to insert rows into an Oracle

table without bypassing indexes or constraints. In order to

automatically generate the SQL needed, set the Upsert Mode property

to Auto-generated and identify the key column(s) on the Columns tab

by selecting the Key check boxes.

Teradata Database Tips
You can use the Additional Connections Options property in the

Teradata Enterprise stage (which is a dependent of DB Options Mode)

to specify details about the number of connections to Teradata. The

possible values of this are:

sessionsperplayer. This determines the number of connections
each player in the job has to Teradata. The number should be
selected such that:

(sessions per player * number of nodes * players per node) = total
requested sessions

The default value is 2. Setting this too low on a large system can

result in so many players that the job fails due to insufficient

resources.

requestedsessions. This is a number between 1 and the number of
vprocs in the database. The default is the maximum number of
available sessions.
Parallel Job Advanced Developer’s Guide 2-11

Using Database Stages Job Design Tips
2-12 Parallel Job Advanced Developer’s Guide

3
Improving Performance

This chapter is intended to help resolve any performance problems. It

assumes that basic steps to assure performance have been taken: a

suitable configuration file has been set up (see "The Parallel Engine

Configuration File" in Parallel Job Developer’s Guide), reasonable

swap space configured etc. (see "Configuring for Enterprise Edition" in

DataStage Install and Upgrade Guide), and that you have followed the

design guidelines laid down in Chapter 1.

Understanding a Flow
In order to resolve any performance issues it is essential to have an

understanding of the flow of DataStage jobs.

Score Dumps
To help understand a job flow we suggest you take a score dump. Do

this by setting the APT_DUMP_SCORE environment variable true and

running the job (APT _DUMP_SCORE can be set in the Administrator

client, under the Parallel ➤ Reporting branch). This causes a report to

be produced which shows the operators, processes and data sets in

the job. The report includes information about:

Where and how data is repartitioned.

Whether DataStage had inserted extra operators in the flow.

The degree of parallelism each operator runs with, and on which
nodes.

Information about where data is buffered.
Parallel Job Advanced Developer’s Guide 3-1

Tips for Debugging Improving Performance
The dump score information is included in the job log when you run a

job.

The score dump is particularly useful in showing you where

DataStage is inserting additional components in the job flow. In

particular DataStage will add partition and sort operators where the

logic of the job demands it. Sorts in particular can be detrimental to

performance and a score dump can help you to detect superfluous

operators and amend the job design to remove them.

Example Score Dump
The following score dump shows a flow with a single data set, which

has a hash partitioner, partitioning on key “a”. It shows three

operators: generator, tsort, and peek. Tsort and peek are “combined”,

indicating that they have been optimized into the same process. All

the operators in this flow are running on one node.

##I TFSC 004000 14:51:50(000) <main_program>
This step has 1 dataset:
ds0: {op0[1p] (sequential generator)

eOther(APT_HashPartitioner { key={ value=a }
})->eCollectAny

op1[2p] (parallel APT_CombinedOperatorController:tsort)}

It has 2 operators:
op0[1p] {(sequential generator)

on nodes (
 lemond.torrent.com[op0,p0]
)}

op1[2p] {(parallel APT_CombinedOperatorController:
(tsort)
(peek)
) on nodes (

lemond.torrent.com[op1,p0]
lemond.torrent.com[op1,p1]

)}
It runs 3 processes on 2 nodes.

Tips for Debugging
Use the Data Set Management utility, which is available in the
Tools menu of the DataStage Designer or the DataStage Manager,
to examine the schema, look at row counts, and delete a Parallel
Data Set. You can also view the data itself.

Check the DataStage job log for warnings. These may indicate an
underlying logic problem or unexpected data type conversion.
3-2 Parallel Job Advanced Developer’s Guide

Improving Performance Performance Monitoring
Enable the APT_DUMP_SCORE and APT_RECORD_COUNTS
environment variables. Also enable OSH_PRINT_SCHEMAS to
ensure that a runtime schema of a job matches the design-time
schema that was expected.

The UNIX command od –xc displays the actual data contents of
any file, including any embedded ASCII NULL characters.

The UNIX command, wc –lc filename, displays the number of lines
and characters in the specified ASCII text file. Dividing the total
number of characters by the number of lines provides an audit to
ensure that all rows are the same length. It is important to know
that the wc utility works by counting UNIX line delimiters, so if the
file has any binary columns, this count may be incorrect.

Performance Monitoring
There are various tools you can you use to aid performance

monitoring, some provided with DataStage and some general UNIX

tools.

JOB MONITOR
You access the DataStage job monitor through the DataStage Director

(see "Monitoring Jobs" in DataStage Director Guide). You can also use

certain dsjob commands from the command line to access monitoring

functions (see "Retrieving Information" on page 7-145 for details).

The Job Monitor provides a useful snapshot of a job’s performance at

a moment of execution, but does not provide thorough performance

metrics. That is, a Job Monitor snapshot should not be used in place

of a full run of the job, or a run with a sample set of data. Due to

buffering and to some job semantics, a snapshot image of the flow

may not be a representative sample of the performance over the

course of the entire job.

The CPU summary information provided by the Job Monitor is useful

as a first approximation of where time is being spent in the flow.

However, it does not include any sorts or similar that may be inserted

automatically in a parallel job. For these components, the score dump

can be of assistance. See "Score Dumps" on page 3-1.

A worst-case scenario occurs when a job flow reads from a data set,

and passes immediately to a sort on a link. The job will appear to

hang, when, in fact, rows are being read from the data set and passed

to the sort.
Parallel Job Advanced Developer’s Guide 3-3

Performance Monitoring Improving Performance
The operation of the job monitor is controlled by two environment

variables: APT_MONITOR_TIME and APT_MONITOR_SIZE. By default

the job monitor takes a snapshot every five seconds. You can alter the

time interval by changing the value of APT_MONITOR_TIME, or you

can have the monitor generate a new snapshot every so-many rows

by following this procedure:

1 Select APT_MONITOR_TIME on the DataStage Administrator
environment variable dialog box, and press the set to default
button.

2 Select APT_MONITOR_SIZE and set the required number of rows
as the value for this variable.

Iostat
The UNIX tool Iostat is useful for examining the throughput of various

disk resources. If one or more disks have high throughput,

understanding where that throughput is coming from is vital. If there

are spare CPU cycles, IO is often the culprit.

The specifics of Iostat output vary slightly from system to system.

Here is an example from a Linux machine which slows a relatively

light load:

(The first set of output is cumulative data since the machine was

booted)

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
dev8-0 13.50 144.09 122.33 346233038 293951288
...
Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
dev8-0 4.00 0.00 96.00 0 96

Load Average
Ideally, a performant job flow should be consuming as much CPU as is

available. The load average on the machine should be two to three

times the value as the number of processors on the machine (for

example, an 8-way SMP should have a load average of roughly 16-24).

Some operating systems, such as HPUX, show per-processor load

average. In this case, load average should be 2-3, regardless of

number of CPUs on the machine.

If the machine is not CPU-saturated, it indicates a bottleneck may exist

elsewhere in the flow. A useful strategy in this case is to over-partition

your data, as more partitions cause extra processes to be started,

utilizing more of the available CPU power.

If the flow cause the machine to be fully loaded (all CPUs at 100%),

then the flow is likely to be CPU limited, and some determination
3-4 Parallel Job Advanced Developer’s Guide

Improving Performance Performance Monitoring
needs to be made as to where the CPU time is being spent (setting the

APT_PM_PLAYER _TIMING environment variable can be helpful here -

see the following section).

The commands top or uptime can provide the load average.

Runtime Information
When you set the APT_PM_PLAYER_TIMING environment variable,

information is provided for each operator in a job flow. This

information is written to the job log when the job is run.

An example output is:

##I TFPM 000324 08:59:32(004) <generator,0> Calling runLocally: step=1,
node=rh73dev04, op=0, ptn=0

##I TFPM 000325 08:59:32(005) <generator,0> Operator completed. status:
APT_StatusOk elapsed: 0.04 user: 0.00 sys: 0.00 suser: 0.09 ssys:
0.02 (total CPU: 0.11)

##I TFPM 000324 08:59:32(006) <peek,0> Calling runLocally: step=1,
node=rh73dev04, op=1, ptn=0

##I TFPM 000325 08:59:32(012) <peek,0> Operator completed. status:
APT_StatusOk elapsed: 0.01 user: 0.00 sys: 0.00 suser: 0.09 ssys:
0.02 (total CPU: 0.11)

##I TFPM 000324 08:59:32(013) <peek,1> Calling runLocally: step=1,
node=rh73dev04a, op=1, ptn=1

##I TFPM 000325 08:59:32(019) <peek,1> Operator completed. status:
APT_StatusOk elapsed: 0.00 user: 0.00 sys: 0.00 suser: 0.09 ssys:
0.02 (total CPU: 0.11)¨

This output shows us that each partition of each operator has

consumed about one tenth of a second of CPU time during its runtime

portion. In a real world flow, we’d see many operators, and many

partitions.

It is often useful to see how much CPU each operator (and each

partition of each component) is using. If one partition of an operator is

using significantly more CPU than others, it may mean the data is

partitioned in an unbalanced way, and that repartitioning, or choosing

different partitioning keys might be a useful strategy.

If one operator is using a much larger portion of the CPU than others,

it may be an indication that you’ve discovered a problem in your flow.

Common sense is generally required here; a sort is going to use

dramatically more CPU time than a copy. This will, however, give you

a sense of which operators are the CPU hogs, and when combined

with other metrics presented in this document can be very

enlightening.

Setting the environment variable APT_DISABLE_COMBINATION may

be useful in some situations to get finer-grained information as to
Parallel Job Advanced Developer’s Guide 3-5

Performance Analysis Improving Performance
which operators are using up CPU cycles. Be aware, however, that

setting this flag will change the performance behavior of your flow, so

this should be done with care.

Unlike the job monitor cpu percentages, setting

APT_PM_PLAYER_TIMING will provide timings on every operator

within the flow.

OS/RDBMS Specific Tools
Each OS and RDBMS has its own set of tools which may be useful in

performance monitoring. Talking to the sysadmin or DBA may provide

some useful monitoring strategies.

Performance Analysis
Once you have carried out some performance monitoring, you can

analyze your results.

Bear in mind that, in a parallel job flow, certain operators may

complete before the entire flow has finished, but the job isn’t

successful until the slowest operator has finished all its processing.

Selectively Rewriting the flow
One of the most useful mechanisms in detecting the cause of

bottlenecks in your flow is to rewrite portions of it to exclude stages

from the set of possible causes. The goal of modifying the flow is to

see the new, modified, flow run noticeably faster than the original

flow. If the flow is running at roughly an identical speed, change the

flow further.

While editing a flow for testing, it is important to keep in mind that

removing one stage may have unexpected affects in the flow.

Comparing the score dump between runs is useful before concluding

what has made the performance difference.

When modifying the flow, be aware of introducing any new

performance problems. For example, adding a Data Set stage to a

flow might introduce disk contention with any other data sets being

read. This is rarely a problem, but might be significant in some cases.

Moving data into and out of parallel operation are two very obvious

areas of concern. Changing a job to write into a Copy stage (with no

outputs) will throw the data away. Keep the degree of parallelism the

same, with a nodemap if necessary. Similarly, landing any read data
3-6 Parallel Job Advanced Developer’s Guide

Improving Performance Performance Analysis
to a data set can be helpful if the data’s point of origin is a flat file or

RDBMS.

This pattern should be followed, removing any potentially suspicious

operators while trying to keep the rest of the flow intact. Removing

any custom stages should be at the top of the list.

Identifying Superfluous Repartitions
Superfluous repartitioning should be identified. Due to operator or

license limitations (import, export, RDBMS ops, SAS, etc.) some

stages will run with a degree of parallelism that is different than the

default degree of parallelism. Some of these can’t be eliminated, but

understanding the where, when and why these repartitions occur is

important for flow analysis. Repartitions are especially expensive

when the data is being repartitioned on an MPP system, where

significant network traffic will result.

Sometimes you may be able to move a repartition upstream in order

to eliminate a previous, implicit repartition. Imagine an Oracle stage

performing a read (using the oraread operator). Some processing is

done on the data and it is then hashed and joined with another data

set. There might be a repartition after the oraread operator, and then

the hash, when only one repartitioning is really necessary.

Similarly, specifying a nodemap for an operator may prove useful to

eliminate repartitions. In this case, a transform stage sandwiched

between a DB2 stage reading (db2read) and another one writing

(db2write) might benefit from a nodemap placed on it to force it to run

with the same degree of parallelism as the two db2 operators to avoid

two repartitions.

Identifying Buffering Issues
Buffering is one of the more complex aspects to parallel job

performance tuning. Buffering is described in detail in Chapter 4, "Link

Buffering."

The goal of buffering on a specific link is to make the producing

operator’s output rate match the consumption rate of the downstream

operator. In any flow where this is incorrect behavior for the flow (for

example, the downstream operator has two inputs, and waits until it

had exhausted one of those inputs before reading from the next)

performance is degraded. Identifying these spots in the flow requires

an understanding of how each operator involved reads its record, and

is often only found by empirical observation.

You can diagnose a buffering tuning issue when a flow runs slowly

when it is one massive flow, but each component runs quickly when
Parallel Job Advanced Developer’s Guide 3-7

Resolving Bottlenecks Improving Performance
broken up. For example, replacing an Oracle write stage with a copy

stage vastly improves performance, and writing that same data to a

data set, then loading via an Oracle stage, also goes quickly. When the

two are put together, performance is poor.

"Buffering" on page 3-10 details specific, common buffering

configurations aimed at resolving various bottlenecks.

Resolving Bottlenecks

Choosing the Most Efficient Operators
Because DataStage Enterprise Edition offers a wide range of different

stage types, with different operators underlying them, there can be

several different ways of achieving the same effects within a job. This

section contains some hint as to preferred practice when designing

for performance is concerned. When analyzing your flow you should

try substituting preferred operators in particular circumstances.

Modify and Transform

Modify, due to internal implementation details, is a particularly

efficient operator. Any transformation which can be implemented in

the Modify stage will be more efficient than implementing the same

operation in a Transformer stage. Transformations that touch a single

column (for example, keep/drop, type conversions, some string

manipulations, null handling) should be implemented in a Modify

stage rather than a Transformer.

Lookup and Join

Lookup and join perform equivalent operations: combining two or

more input datasets based on one or more specified keys.

Lookup requires all but one (the first or primary) input to fit into

physical memory. Join requires all inputs to be sorted.

When one unsorted input is very large or sorting isn’t feasible, lookup

is the preferred solution. When all inputs are of manageable size or

are pre-sorted, join is the preferred solution.

Partitioner Insertion, Sort Insertion
Partitioner insertion and sort insertion each make writing a flow easier

by alleviating the need for a user to think about either partitioning or
3-8 Parallel Job Advanced Developer’s Guide

Improving Performance Resolving Bottlenecks
sorting data. By examining the requirements of operators in the flow,

the parallel engine can insert partitioners, collectors and sorts as

necessary within a dataflow.

However, there are some situations where these features can be a

hindrance.

If data is pre-partitioned and pre-sorted, and the DataStage job is

unaware of this, you could disable automatic partitioning and sorting

for the whole job by setting the following environment variables while

the job runs:

APT_NO_PART_INSERTION

APT_NO_SORT_INSERTION

You can also disable partitioning on a per-link basis within your job

design by explicitly setting a partitioning method of Same on the

Input page Partitioning tab of the stage the link is input to.

To disable sorting on a per-link basis, insert a Sort stage on the link,

and set the Sort Key Mode option to Don’t Sort (Previously Sorted).

We advise that average users leave both partitioner insertion and sort

insertion alone, and that power users perform careful analysis before

changing these options.

Combinable Operators
Combined operators generally improve performance at least slightly

(in some cases the difference is dramatic). There may also be

situations where combining operators actually hurts performance,

however. Identifying such operators can be difficult without trial and

error.

The most common situation arises when multiple operators are

performing disk I/O (for example, the various file stages and sort). In

these sorts of situations, turning off combination for those specific

stages may result in a performance increase if the flow is I/O bound.

Combinable operators often provide a dramatic performance increase

when a large number of variable length fields are used in a flow.

Disk I/O
Total disk throughput is often a fixed quantity that DataStage has no

control over. It can, however, be beneficial to follow some rules.

If data is going to be read back in, in parallel, it should never be
written as a sequential file. A data set or file set stage is a much
more appropriate format.
Parallel Job Advanced Developer’s Guide 3-9

Resolving Bottlenecks Improving Performance
When importing fixed-length data, the Number of Readers per
Node property on the Sequential File stage can often provide a
noticeable performance boost as compared with a single process
reading the data.

Some disk arrays have read ahead caches that are only effective
when data is read repeatedly in like-sized chunks. Setting the
environment variable APT_CONSISTENT_BUFFERIO_SIZE=N will
force stages to read data in chunks which are size N or a multiple
of N.

Memory mapped I/O, in many cases, contributes to improved
performance. In certain situations, however, such as a remote disk
mounted via NFS, memory mapped I/O may cause significant
performance problems. Setting the environment variables
APT_IO_NOMAP and APT_BUFFERIO_NOMAP true will turn off
this feature and sometimes affect performance. (AIX and HP-UX
default to NOMAP. Setting APT_IO_MAP and APT_BUFFERIO_MAP
true can be used to turn memory mapped I/O on for these
platforms.)

Ensuring Data is Evenly Partitioned
Because of the nature of parallel jobs, the entire flow runs only as fast

as its slowest component. If data is not evenly partitioned, the slowest

component is often slow due to data skew. If one partition has ten

records, and another has ten million, then a parallel job cannot make

ideal use of the resources.

Setting the environment variable APT_RECORD_COUNTS displays the

number of records per partition for each component. Ideally, counts

across all partititions should be roughly equal. Differences in data

volumes between keys often skew data slightly, but any significant

(e.g., more than 5-10%) differences in volume should be a warning

sign that alternate keys, or an alternate partitioning strategy, may be

required.

Buffering
Buffering is intended to slow down input to match the consumption

rate of the output. When the downstream operator reads very slowly,

or not at all, for a length of time, upstream operators begin to slow

down. This can cause a noticeable performance loss if the buffer’s

optimal behavior is something other than rate matching.

By default, each link has a 3 MB in-memory buffer. Once that buffer

reaches half full, the operator begins to push back on the upstream

operator’s rate. Once the 3 MB buffer is filled, data is written to disk in

1 MB chunks.
3-10 Parallel Job Advanced Developer’s Guide

Improving Performance Platform Specific Tuning
In most cases, the easiest way to tune buffering is to eliminate the

pushback and allow it to buffer the data to disk as necessary. Setting

APT_BUFFER_FREE_RUN=N or setting Buffer Free Run in the

Output page Advanced tab on a particular stage will do this. A

buffer will read N * max_memory (3 MB by default) bytes before

beginning to push back on the upstream. If there is enough disk space

to buffer large amounts of data, this will usually fix any egregious

slowdown issues cause by the buffer operator.

If there is a significant amount of memory available on the machine,

increasing the maximum in-memory buffer size is likely to be very

useful if buffering is causing any disk I/O. Setting the

APT_BUFFER_MAXIMUM_MEMORY environment variable or

Maximum memory buffer size on the Output page Advanced tab on

a particular stage will do this. It defaults to 3145728 (3 MB).

For systems where small to medium bursts of I/O are not desirable,

the 1 MB write to disk size chunk size may be too small. The

environment variable APT_BUFFER_DISK_WRITE_INCREMENT or

Disk write increment on the Output page Advanced tab on a

particular stage controls this and defaults to 1048576 (1 MB). This

setting may not exceed max_memory * 2/3.

Finally, in a situation where a large, fixed buffer is needed within the

flow, setting Queue upper bound on the Output page Advanced

tab (no environment variable exists) can be set equal to max_memory

to force a buffer of exactly max_memory bytes. Such a buffer will

block an upstream operator (until data is read by the downstream

operator) once its buffer has been filled, so this setting should be used

with extreme caution. This setting is rarely, if ever, necessary to

achieve good performance, but may be useful in an attempt to

squeeze every last byte of performance out of the system where it is

desirable to eliminate buffering to disk entirely. No environment

variable is available for this flag, and therefore this can only be set at

the individual stage level.

Platform Specific Tuning

Tru64
In some cases improved performance can been achieved by setting

the virtual memory “eager” setting (vm_aggressive_swap kernel

parameter). This will aggressively swap processes out of memory to

free up physical memory for the running processes.
Parallel Job Advanced Developer’s Guide 3-11

Disk Space Requirements of Post-Release 7.0.1 Datasets Improving Performance
Some environments have experienced better memory management

when the vm_swap_eager kernel is set. This swaps out idle processes

more quickly, allowing more physical memory for parallel jobs. A

higher degree of parallelism may be available as a result of this

setting, but system interactivity may suffer as a result.

We recommend that you set the environment variable

APT_PM_NO_SHARED memory for Tru64 version 51A (only).

HP-UX
HP-UX has a limitation when running in 32-bit mode, which limits

memory mapped I/O to 2 GB per machine. This can be an issue when

dealing with large lookups. The Memory Windows options can

provide a work around for this memory limitation. Ascential Product

Support can provide this document on request.

AIX
If you are running DataStage Enterprise Edition on an RS/6000 SP or a

network of workstations, verify your setting of the network parameter

thewall (see "Configuring for Enterprise Edition" in DataStage Install

and Upgrade Guide for details).

Disk Space Requirements of Post-Release
7.0.1 Datasets

Some parallel datasets generated with DataStage 7.0.1 and later

releases require more disk space when the columns are of type

VarChar when compared to 7.0. This is due to changes added for

performance improvements for bounded length VarChars in 7.0.1.

The preferred solution is to use unbounded length VarChars (don't set

any length) for columns where the maximum length is rarely used.

Alternatively, you can set the environment variable,

APT_OLD_BOUNDED_LENGTH (see page 6-19), but this is not

recommended, as it leads to performance degradation.
3-12 Parallel Job Advanced Developer’s Guide

4
Link Buffering

DataStage automatically performs buffering on the links of certain

stages. This is primarily intended to prevent deadlock situations

arising (where one stage is unable to read its input because a previous

stage in the job is blocked from writing to its output).

Deadlock situations can occur where you have a fork-join in your job.

This is where a stage has two output links whose data paths are

joined together later in the job. The situation can arise where all the

stages in the flow are waiting for each other to read or write, so none

of them can proceed. No error or warning message is output for

deadlock; your job will be in a state where it will wait forever for an

input.

DataStage automatically inserts buffering into job flows containing

fork-joins where deadlock situations might arise. In most

circumstances you should not need to alter the default buffering

implemented by DataStage. However you may want to insert buffers

in other places in your flow (to smooth and improve performance) or

you may want to explicitly control the buffers inserted to avoid

deadlocks. DataStage allows you to do this, but we advise caution

when altering the default buffer settings.

Buffering Assumptions
This section describes buffering in more detail, and in particular the

design assumptions underlying its default behavior.

Buffering in DataStage is designed around the following assumptions:

Buffering is primarily intended to remove the potential for
deadlock in flows with fork-join structure.
Parallel Job Advanced Developer’s Guide 4-1

Controlling Buffering Link Buffering
Throughput is preferable to overhead. The goal of the DataStage
buffering mechanism is to keep the flow moving with as little
memory and disk usage as possible. Ideally, data should simply
stream through the data flow and rarely land to disk. Upstream
operators should tend to wait for downstream operators to
consume their input before producing new data records.

Stages in general are designed so that on each link between
stages data is being read and written whenever possible. While
buffering is designed to tolerate occasional backlog on specific
links due to one operator getting ahead of another, it is assumed
that operators are at least occasionally attempting to read and
write data on each link.

Buffering is implemented by the automatic insertion of a hidden

buffer operator on links between stages. The buffer operator attempts

to match the rates of its input and output. When no data is being read

from the buffer operator by the downstream stage, the buffer operator

tries to throttle back incoming data from the upstream stage to avoid

letting the buffer grow so large that it must be written out to disk.

The goal is to avoid situations where data will be have to be moved to

and from disk needlessly, especially in situations where the consumer

cannot process data at the same rate as the producer (for example,

due to a more complex calculation).

Because the buffer operator wants to keep the flow moving with low

overhead, it is assumed in general that it is better to cause the

producing stage to wait before writing new records, rather than allow

the buffer operator to consume resources.

Controlling Buffering
DataStage offers two ways of controlling the operation of buffering:

you can use environment variables to control buffering on all links of

all stages in all jobs, or you can make individual settings on the links

of particular stages via the stage editors.

Buffering Policy
You can set this via the APT_BUFFERING_POLICY environment

variable, or via the Buffering mode field on the Inputs or Outputs

Page Advanced tab for individual stage editors.

The environment variable has the following possible values:
4-2 Parallel Job Advanced Developer’s Guide

Link Buffering Controlling Buffering
AUTOMATIC_BUFFERING. Buffer a data set only if necessary to
prevent a dataflow deadlock. This setting is the default if you do
not define the environment variable.

FORCE_BUFFERING. Unconditionally buffer all links.

NO_BUFFERING. Do not buffer links. This setting can cause
deadlock if used inappropriately.

The possible settings for the Buffering mode field are:

(Default). This will take whatever the default settings are as
specified by the environment variables (this will be Auto buffer
unless you have explicitly changed the value of the
APT_BUFFERING _POLICY environment variable).

Auto buffer. Buffer data only if necessary to prevent a dataflow
deadlock situation.

Buffer. This will unconditionally buffer all data output from/input
to this stage.

No buffer. Do not buffer data under any circumstances. This
could potentially lead to deadlock situations if not used carefully.

Overriding Default Buffering Behavior
Since the default value of APT_BUFFERING_POLICY is

AUTOMATIC_BUFFERING, the default action of DataStage is to

buffer a link only if required to avoid deadlock. You can, however,

override the default buffering operation in your job.

For example, some operators read an entire input data set before

outputting a single record. The Sort stage is an example of this. Before

a sort operator can output a single record, it must read all input to

determine the first output record. Therefore, these operators

internally buffer the entire output data set, eliminating the need of the

default buffering mechanism. For this reason, DataStage never inserts

a buffer on the output of a sort.

You may also develop a customized stage that does not require its

output to be buffered, or you may want to change the size parameters

of the DataStage buffering mechanism. In this case, you can set the

various buffering parameters. These can be set via environment

variables or via the Advanced tab on the Inputs or Outputs page for

individual stage editors. What you set in the Outputs page

Advanced tab will automatically appear in the Inputs page

Advanced tab of the stage at the other end of the link (and vice versa)

The available environment variables are as follows:
Parallel Job Advanced Developer’s Guide 4-3

Controlling Buffering Link Buffering
APT_BUFFER_MAXIMUM_MEMORY. Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB). If your step requires 10 buffers, each
processing node would use a maximum of 30 MB of virtual
memory for buffering. If DataStage has to buffer more data than
Maximum memory buffer size, the data is written to disk.

APT_BUFFER_DISK_WRITE_INCREMENT. Sets the size, in
bytes, of blocks of data being moved to/from disk by the buffering
operator. The default is 1048576 (1 MByte.) Adjusting this value
trades amount of disk access against throughput for small
amounts of data. Increasing the block size reduces disk access, but
may decrease performance when data is being read/written in
smaller units. Decreasing the block size increases throughput, but
may increase the amount of disk access.

APT_BUFFER_FREE_RUN. Specifies how much of the available
in-memory buffer to consume before the buffer offers resistance
to any new data being written to it, as a percentage of Maximum
memory buffer size. When the amount of buffered data is less
than the Buffer free run percentage, input data is accepted
immediately by the buffer. After that point, the buffer does not
immediately accept incoming data; it offers resistance to the
incoming data by first trying to output data already in the buffer
before accepting any new input. In this way, the buffering
mechanism avoids buffering excessive amounts of data and can
also avoid unnecessary disk I/O. The default percentage is 0.5
(50% of Maximum memory buffer size or by default 1.5 MB). You
must set Buffer free run greater than 0.0. Typical values are
between 0.0 and 1.0. You can set Buffer free run to a value greater
than 1.0. In this case, the buffer continues to store data up to the
indicated multiple of Maximum memory buffer size before writing
data to disk.

The available settings in the Input or Outputs page Advanced tab

of stage editors are:

Maximum memory buffer size (bytes). Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB).

Buffer free run (percent). Specifies how much of the available
in-memory buffer to consume before the buffer resists. This is
expressed as a percentage of Maximum memory buffer size.
When the amount of data in the buffer is less than this value, new
data is accepted automatically. When the data exceeds it, the
buffer first tries to write some of the data it contains before
accepting more.

The default value is 50% of the Maximum memory buffer size. You

can set it to greater than 100%, in which case the buffer continues
4-4 Parallel Job Advanced Developer’s Guide

Link Buffering Controlling Buffering
to store data up to the indicated multiple of Maximum memory

buffer size before writing to disk.

Queue upper bound size (bytes). Specifies the maximum
amount of data buffered at any time using both memory and disk.
The default value is zero, meaning that the buffer size is limited
only by the available disk space as specified in the configuration
file (resource scratchdisk). If you set Queue upper bound size
(bytes) to a non-zero value, the amount of data stored in the buffer
will not exceed this value (in bytes) plus one block (where the data
stored in a block cannot exceed 32 KB).

If you set Queue upper bound size to a value equal to or slightly

less than Maximum memory buffer size, and set Buffer free run to

1.0, you will create a finite capacity buffer that will not write to

disk. However, the size of the buffer is limited by the virtual

memory of your system and you can create deadlock if the buffer

becomes full.

(Note that there is no environment variable for Queue upper

bound size).

Disk write increment (bytes). Sets the size, in bytes, of blocks
of data being moved to/from disk by the buffering operator. The
default is 1048576 (1 MB). Adjusting this value trades amount of
disk access against throughput for small amounts of data.
Increasing the block size reduces disk access, but may decrease
performance when data is being read/written in smaller units.
Decreasing the block size increases throughput, but may increase
the amount of disk access.

Operators with Special Buffering Requirements
If you have built a custom stage that is designed to not consume one

of its inputs, for example to buffer all records before proceeding, the

default behavior of the buffer operator can end up being a

performance bottleneck, slowing down the job. This section describes

how to fix this problem.

Although the buffer operator is not designed for buffering an entire

data set as output by a stage, it is capable of doing so assuming

sufficient memory and/or disk space is available to buffer the data. To

achieve this you need to adjust the settings described above

appropriately, based on your job. You may be able to solve your

problem by modifying one buffering property, the Buffer free run

setting. This controls the amount of memory/disk space that the buffer

operator is allowed to consume before it begins to push back on the

upstream operator.
Parallel Job Advanced Developer’s Guide 4-5

Controlling Buffering Link Buffering
The default setting for Buffer free run is 0.5 for the environment

variable, (50% for Buffer free run on the Advanced tab), which

means that half of the internal memory buffer can be consumed

before pushback occurs. This biases the buffer operator to avoid

allowing buffered data to be written to disk.

If your stage needs to buffer large data sets, we recommend that you

initially set Buffer free run to a very large value such as 1000, and then

adjust according to the needs of your application. This will allow the

buffer operator to freely use both memory and disk space in order to

accept incoming data without pushback.

Ascential Software recommends that you set the Buffer free run
property only for those links between stages that require a non-

default value; this means altering the setting on the Inputs page or

Outputs page Advanced tab of the stage editors, not the

environment variable.
4-6 Parallel Job Advanced Developer’s Guide

5
Specifying Your Own Parallel Stages

In addition to the wide range of parallel stage types available,

DataStage allows you to define your own stage types, which you can

then use in parallel jobs.There are three different types of stage that

you can define:

Custom. This allows knowledgeable Orchestrate users to specify
an Orchestrate operator as a DataStage stage. This is then
available to use in DataStage Parallel jobs.

Build. This allows you to design and build your own operator as a
stage to be included in DataStage Parallel Jobs.

Wrapped. This allows you to specify a UNIX command to be
executed by a DataStage stage. You define a wrapper file that in
turn defines arguments for the UNIX command and inputs and
outputs.

The DataStage Manager provides an interface that allows you to

define a new DataStage Parallel job stage of any of these types. This

interface is also available from the Repository window of the

DataStage Designer. This chapter describes how to use this interface.
Parallel Job Advanced Developer’s Guide 5-1

Defining Custom Stages Specifying Your Own Parallel Stages
Defining Custom Stages
You can define a custom stage in order to include an Orchestrate

operator in a DataStage stage which you can then include in a

DataStage job. The stage will be available to all jobs in the project in

which the stage was defined. You can make it available to other

projects using the DataStage Manager Export/Import facilities. The

stage is automatically added to the job palette.

To define a custom stage type from the DataStage Manager:

1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Custom from the main
menu or New Parallel Stage ➤ Custom from the shortcut
menu. The Stage Type dialog box appears.

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages.

– Category. The category that the new stage will be stored in
under the stage types branch of the Repository tree view. Type
in or browse for an existing category or type in the name of a
new one. The category also determines what group in the
palette the stage will be added to. Choose an existing category
to add to an existing group, or specify a new category to create
a new palette group.
5-2 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Custom Stages
– Parallel Stage type. This indicates the type of new Parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.

– Execution Mode. Choose the execution mode. This is the mode
that will appear in the Advanced tab on the stage editor. You
can override this mode for individual instances of the stage as
required, unless you select Parallel only or Sequential only. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the execution mode.

– Mapping. Choose whether the stage has a Mapping tab or
not. A Mapping tab enables the user of the stage to specify
how output columns are derived from the data produced by
the stage. Choose None to specify that output mapping is not
performed, choose Default to accept the default setting that
DataStage uses.

– Preserve Partitioning. Choose the default setting of the
Preserve Partitioning flag. This is the setting that will appear in
the Advanced tab on the stage editor. You can override this
setting for individual instances of the stage as required. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the preserve partitioning flag.

– Partitioning. Choose the default partitioning method for the
stage. This is the method that will appear in the Inputs page
Partitioning tab of the stage editor. You can override this
method for individual instances of the stage as required. See
"Partitioning Tab" in Parallel Job Developer’s Guide for a
description of the partitioning methods.

– Collecting. Choose the default collection method for the
stage. This is the method that will appear in the Inputs page
Partitioning tab of the stage editor. You can override this
method for individual instances of the stage as required. See
"Partitioning Tab" in Parallel Job Developer’s Guide for a
description of the collection methods.

– Operator. Enter the name of the Orchestrate operator that you
want the stage to invoke.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.
Parallel Job Advanced Developer’s Guide 5-3

Defining Custom Stages Specifying Your Own Parallel Stages
Go to the Links page and specify information about the links

allowed to and from the stage you are defining.

Use this to specify the minimum and maximum number of input

and output links that your custom stage can have, and to enable

the ViewData feature for target data (you cannot enable target

ViewData if your stage has any output links). When the stage is

used in a job design, a ViewData button appears on the Input

page, which allows you to view the data on the actual data target

(provided some has been written there).

In order to use the target ViewData feature, you have to specify an

Orchestrate operator to read the data back from the target. This

will usually be different to the operator that the stage has used to

write the data (i.e., the operator defined in the Operator field of

the General page). Specify the reading operator and associated

arguments in the Operator and Options fields.

If you enable target ViewData, a further field appears in the

Properties grid, called ViewData (see page 5-7).

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
version number to the stage so you can keep track of any
subsequent changes.

You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed
5-4 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Custom Stages
in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the

32 x 32 Bitmap button and browse for the large bitmap file. Click

the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage..

5 Go to the Properties page. This allows you to specify the options
that the Orchestrate operator requires as properties that appear in
the Stage Properties tab. For custom stages the Properties tab
always appears under the Stage page.

6 Fill in the fields as follows:
Parallel Job Advanced Developer’s Guide 5-5

Defining Custom Stages Specifying Your Own Parallel Stages
– Property name. The name of the property.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage is

included in a job a drop-down list will offer a choice of the defined

input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what appears in

the list.

– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Repeats. Set this true if the property repeats (i.e., you can
have multiple instances of it).

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

operator as the option value. This will normally be a hidden

property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

operator as the option name, and any value specified in the

stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the operator as the option name. Typically used to

group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.
5-6 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Custom Stages
Input Schema. Specifies that the property will contain a

schema string whose contents are populated from the Input

page Columns tab.

Output Schema. Specifies that the property will contain a

schema string whose contents are populated from the Output

page Columns tab.

None. This allows the creation of properties that do not

generate any osh, but can be used for conditions on other

properties (for example, for use in a situation where you have

mutually exclusive properties, but at least one of them must be

specified).

– Schema properties require format options. Select this
check box to specify that the stage being specified will have a
Format tab.

If you have enabled target ViewData on the Links page, the

following property is also displayed:

– ViewData. Select Yes to indicate that the value of this
property should be used when viewing data. For example, if
this property specifies a file to write to when the stage is used
in a job design, the value of this property will be used to read
the data back if ViewData is used in the stage.

If you select a conversion type of Input Schema or Output
Schema, you should note the following:

– Data Type is set to String.

– Required is set to Yes.

– The property is marked as hidden and will not appear on the
Properties page when the custom stage is used in a job
design.

If your stage can have multiple input or output links there would

be a Input Schema property or Output Schema property per-link.

When the stage is used in a job design, the property will contain

the following OSH for each input and/or output link:

–property_name record {format_props} (column_definition
{format_props}; …)

Where:

– property_name is the name of the property (usually ‘schema’)

– format_properties are formatting information supplied on the
Format page (if the stage has one).
Parallel Job Advanced Developer’s Guide 5-7

Defining Custom Stages Specifying Your Own Parallel Stages
– there is one column_definition for each column defined in the
Columns tab for that link. The format_props in this case refers
to per-column format information specified in the Edit
Column Meta Data dialog box.

Schema properties are mutually exclusive with schema file

properties. If your custom stage supports both, you should use the

Extended Properties dialog box to specify a condition of

“schemafile= “ for the schema property. The schema property is

then only valid provided the schema file property is blank (or does

not exist).

7 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:

– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– Specify that the property will be hidden and not appear in the
stage editor. This is primarily intended to support the case
where the underlying operator needs to know the JobName.
This can be passed using a mandatory String property with a
default value that uses a DS Macro. However, to prevent the
user from changing the value, the property needs to be hidden.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.
5-8 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Custom Stages
– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.

8 If your custom stage will create columns, go to the Mapping
Additions page. It contains a grid that allows for the specification
of columns created by the stage. You can also specify that column
details are filled in from properties supplied when the stage is
used in a job design, allowing for dynamic specification of
columns.

The grid contains the following fields:

– Column name. The name of the column created by the stage.
You can specify the name of a property you specified on the
Property page of the dialog box to dynamically allocate the
column name. Specify this in the form #property_name#, the
created column will then take the value of this property, as
specified at design time, as the name of the created column.
Parallel Job Advanced Developer’s Guide 5-9

Defining Build Stages Specifying Your Own Parallel Stages
– Parallel type. The type of the column (this is the underlying
data type, not the SQL data type). Again you can specify the
name of a property you specified on the Property page of the
dialog box to dynamically allocate the column type. Specify
this in the form #property_name#, the created column will then
take the value of this property, as specified at design time, as
the type of the created column. (Note that you cannot use a
repeatable property to dynamically allocate a column type in
this way.)

– Nullable. Choose Yes or No to indicate whether the created
column can contain a null.

– Conditions. Allows you to enter an expression specifying the
conditions under which the column will be created. This could,
for example, depend on the setting of one of the properties
specified in the Property page.

You can propagate the values of the Conditions fields to other

columns if required. Do this by selecting the columns you want to

propagate to, then right-clicking in the source Conditions field

and choosing Propagate from the shortcut menu. A dialog box

asks you to confirm that you want to propagate the conditions to

all columns.

Defining Build Stages
You define a Build stage to enable you to provide a custom operator

that can be executed from a DataStage Parallel job stage. The stage

will be available to all jobs in the project in which the stage was

defined. You can make it available to other projects using the

DataStage Manager Export facilities. The stage is automatically added

to the job palette.

When defining a Build stage you provide the following information:

Description of the data that will be input to the stage.

Whether records are transferred from input to output. A transfer
copies the input record to the output buffer. If you specify auto
transfer, the operator transfers the input record to the output
record immediately after execution of the per record code. The
code can still access data in the output buffer until it is actually
written.

Any definitions and header file information that needs to be
included.

Code that is executed at the beginning of the stage (before any
records are processed).
5-10 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Build Stages
Code that is executed at the end of the stage (after all records have
been processed).

Code that is executed every time the stage processes a record.

Compilation and build details for actually building the stage.

The Code for the Build stage is specified in C++. There are a number of

macros available to make the job of coding simpler (see "Build Stage

Macros" on page 5-21). There are also a number of header files

available containing many useful functions, see Appendix A.

When you have specified the information, and request that the stage

is generated, DataStage generates a number of files and then

compiles these to build an operator which the stage executes. The

generated files include:

Header files (ending in .h)

Source files (ending in .c)

Object files (ending in .so)

The following shows a build stage in diagrammatic form:

To define a Build stage from the DataStage Manager:

Input
buffer

Output
buffer

Transfer directly copies records from input buffer
to output buffer. Records can still be accessed by

code while in the buffer.

Per-record code.
Used to process

each record

Input port - records from
 input link

Output port - records to
output link

Build Stage

Post-loop code -
executed after all

records are processed

Pre-loop code -
executed before any

records are processed
Parallel Job Advanced Developer’s Guide 5-11

Defining Build Stages Specifying Your Own Parallel Stages
1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Build from the main
menu or New Parallel Stage ➤ Build from the shortcut menu.
The Stage Type dialog box appears:

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages.

– Category. The category that the new stage will be stored in
under the stage types branch. Type in or browse for an existing
category or type in the name of a new one. The category also
determines what group in the palette the stage will be added
to. Choose an existing category to add to an existing group, or
specify a new category to create a new palette group.

– Class Name. The name of the C++ class. By default this takes
the name of the stage type.

– Parallel Stage type. This indicates the type of new parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.

– Execution mode. Choose the default execution mode. This is
the mode that will appear in the Advanced tab on the stage
editor. You can override this mode for individual instances of
the stage as required, unless you select Parallel only or
Sequential only. See "Advanced Tab" in Parallel Job
Developer’s Guide for a description of the execution mode.
5-12 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Build Stages
– Preserve Partitioning. This shows the default setting of the
Preserve Partitioning flag, which you cannot change in a Build
stage. This is the setting that will appear in the Advanced tab
on the stage editor. You can override this setting for individual
instances of the stage as required. See "Advanced Tab" in
Parallel Job Developer’s Guide for a description of the preserve
partitioning flag..

– Partitioning. This shows the default partitioning method,
which you cannot change in a Build stage. This is the method
that will appear in the Inputs Page Partitioning tab of the
stage editor. You can override this method for individual
instances of the stage as required. See "Partitioning Tab" in
Parallel Job Developer’s Guide for a description of the
partitioning methods.

– Collecting. This shows the default collection method, which
you cannot change in a Build stage. This is the method that will
appear in the Inputs Page Partitioning tab of the stage editor.
You can override this method for individual instances of the
stage as required. See "Partitioning Tab" in Parallel Job
Developer’s Guide for a description of the collection methods.

– Operator. The name of the operator that your code is defining
and which will be executed by the DataStage stage. By default
this takes the name of the stage type.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
release number to the stage so you can keep track of any
subsequent changes.

You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed

in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the

32 x 32 Bitmap button and browse for the large bitmap file. Click
Parallel Job Advanced Developer’s Guide 5-13

Defining Build Stages Specifying Your Own Parallel Stages
the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage.

5 Go to the Properties page. This allows you to specify the options
that the Build stage requires as properties that appear in the Stage
Properties tab. For custom stages the Properties tab always
appears under the Stage page.

Fill in the fields as follows:
5-14 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Build Stages
– Property name. The name of the property. This will be passed
to the operator you are defining as an option, prefixed with ‘-’
and followed by the value selected in the Properties tab of the
stage editor.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage is

included in a job a drop-down list will offer a choice of the defined

input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what appears in

the list.

– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

operator as the option value. This will normally be a hidden

property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

operator as the option name, and any value specified in the

stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the operator as the option name. Typically used to

group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.
Parallel Job Advanced Developer’s Guide 5-15

Defining Build Stages Specifying Your Own Parallel Stages
6 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:

– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.

– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.
5-16 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Build Stages
7 Click on the Build page. The tabs here allow you to define the
actual operation that the stage will perform.

The Interfaces tab enable you to specify details about inputs to

and outputs from the stage, and about automatic transfer of

records from input to output. You specify port details, a port being

where a link connects to the stage. You need a port for each

possible input link to the stage, and a port for each possible output

link from the stage.

You provide the following information on the Input sub-tab:

– Port Name. Optional name for the port. The default names for
the ports are in0, in1, in2 … . You can refer to them in the code
using either the default name or the name you have specified.

– Alias. Where the port name contains non-ascii characters, you
can give it an alias in this column.

– AutoRead. This defaults to True which means the stage will
automatically read records from the port. Otherwise you
explicitly control read operations in the code.

– Table Name. Specify a table definition in the DataStage
Repository which describes the meta data for the port. You can
browse for a table definition by choosing Select Table from
the menu that appears when you click the browse button. You
can also view the schema corresponding to this table definition
by choosing View Schema from the same menu. You do not
have to supply a Table Name. If any of the columns in your
table definition have names that contain non-ascii characters,
Parallel Job Advanced Developer’s Guide 5-17

Defining Build Stages Specifying Your Own Parallel Stages
you should choose Column Aliases from the menu. The
Build Column Aliases dialog box appears. This lists the
columns that require an alias and let you specify one.

– RCP. Choose True if runtime column propagation is allowed for
inputs to this port. Defaults to False. You do not need to set this
if you are using the automatic transfer facility.

You provide the following information on the Output sub-tab:

– Port Name. Optional name for the port. The default names for
the links are out0, out1, out2 … . You can refer to them in the
code using either the default name or the name you have
specified.

– Alias. Where the port name contains non-ascii characters, you
can give it an alias in this column.

– AutoWrite. This defaults to True which means the stage will
automatically write records to the port. Otherwise you
explicitly control write operations in the code. Once records are
written, the code can no longer access them.

– Table Name. Specify a table definition in the DataStage
Repository which describes the meta data for the port. You can
browse for a table definition. You do not have to supply a Table
Name. A shortcut menu accessed from the browse button
offers a choice of Clear Table Name, Select Table, Create
Table,View Schema, and Column Aliases. The use of these
is as described for the Input sub-tab.

– RCP. Choose True if runtime column propagation is allowed for
outputs from this port. Defaults to False. You do not need to set
this if you are using the automatic transfer facility.

The Transfer sub-tab allows you to connect an input buffer to an

output buffer such that records will be automatically transferred

from input to output. You can also disable automatic transfer, in

which case you have to explicitly transfer data in the code.
5-18 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Build Stages
Transferred data sits in an output buffer and can still be accessed

and altered by the code until it is actually written to the port.

You provide the following information on the Transfer tab:

– Input. Select the input port to connect to the buffer from the
drop-down list. If you have specified an alias, this will be
displayed here.

– Output. Select the output port to transfer input records from
the output buffer to from the drop-down list. If you have
specified an alias, this will be displayed here.

– Auto Transfer. This defaults to False, which means that you
have to include code which manages the transfer. Set to True to
have the transfer carried out automatically.

– Separate. This is False by default, which means this transfer
will be combined with other transfers to the same port. Set to
True to specify that the transfer should be separate from other
transfers.

The Logic tab is where you specify the actual code that the stage

executes.

The Definitions sub-tab allows you to specify variables, include

header files, and otherwise initialize the stage before processing

any records.
Parallel Job Advanced Developer’s Guide 5-19

Defining Build Stages Specifying Your Own Parallel Stages
The Pre-Loop sub-tab allows you to specify code which is

executed at the beginning of the stage, before any records are

processed.

The Per-Record sub-tab allows you to specify the code which is

executed once for every record processed.

The Post-Loop sub-tab allows you to specify code that is

executed after all the records have been processed.

You can type straight into these pages or cut and paste from

another editor. The shortcut menu on the Pre-Loop, Per-Record,

and Post-Loop pages gives access to the macros that are

available for use in the code.

The Advanced tab allows you to specify details about how the

stage is compiled and built. Fill in the page as follows:

– Compile and Link Flags. Allows you to specify flags that are
passed to the C++ compiler.

– Verbose. Select this check box to specify that the compile and
build is done in verbose mode.

– Debug. Select this check box to specify that the compile and
build is done in debug mode. Otherwise, it is done in optimize
mode.

– Suppress Compile. Select this check box to generate files
without compiling, and without deleting the generated files.
This option is useful for fault finding.

– Base File Name. The base filename for generated files. All
generated files will have this name followed by the appropriate
suffix. This defaults to the name specified under Operator on
the General page.

– Source Directory. The directory where generated .c files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

– Header Directory. The directory where generated .h files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

– Object Directory. The directory where generated .so files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).
5-20 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Build Stage Macros
– Wrapper directory. The directory where generated .op files
are placed. This defaults to the buildop folder in the current
project directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

8 When you have filled in the details in all the pages, click Generate
to generate the stage. A window appears showing you the result
of the build.

Build Stage Macros
There are a number of macros you can use when specifying Pre-Loop,

Per-Record, and Post-Loop code. Insert a macro by selecting it from

the short cut menu. They are grouped into the following categories:

Informational

Flow-control

Input and output

Transfer

Informational Macros

Use these macros in your code to determine the number of inputs,

outputs, and transfers as follows:

inputs(). Returns the number of inputs to the stage.

outputs(). Returns the number of outputs from the stage.

transfers(). Returns the number of transfers in the stage.

Flow-Control Macros

Use these macros to override the default behavior of the Per-Record

loop in your stage definition:

endLoop(). Causes the operator to stop looping, following
completion of the current loop and after writing any auto outputs
for this loop.

nextLoop() Causes the operator to immediately skip to the start of
next loop, without writing any outputs.

failStep() Causes the operator to return a failed status and
terminate the job.
Parallel Job Advanced Developer’s Guide 5-21

Build Stage Macros Specifying Your Own Parallel Stages
Input and Output Macros

These macros allow you to explicitly control the read and write and

transfer of individual records.

Each of the macros takes an argument as follows:

input is the index of the input (0 to n). If you have defined a name
for the input port you can use this in place of the index in the form
portname.portid_.

output is the index of the output (0 to n). If you have defined a
name for the output port you can use this in place of the index in
the form portname.portid_.

index is the index of the transfer (0 to n).

The following macros are available:

readRecord(input). Immediately reads the next record from input,
if there is one. If there is no record, the next call to inputDone() will
return true.

writeRecord(output). Immediately writes a record to output.

inputDone(input). Returns true if the last call to readRecord() for
the specified input failed to read a new record, because the input
has no more records.

holdRecord(input). Causes auto input to be suspended for the
current record, so that the operator does not automatically read a
new record at the start of the next loop. If auto is not set for the
input, holdRecord() has no effect.

discardRecord(output). Causes auto output to be suspended for
the current record, so that the operator does not output the record
at the end of the current loop. If auto is not set for the output,
discardRecord() has no effect.

discardTransfer(index). Causes auto transfer to be suspended, so
that the operator does not perform the transfer at the end of the
current loop. If auto is not set for the transfer, discardTransfer()
has no effect.

Transfer Macros

These macros allow you to explicitly control the transfer of individual

records.

Each of the macros takes an argument as follows:

input is the index of the input (0 to n). If you have defined a name
for the input port you can use this in place of the index in the form
portname.portid_.
5-22 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Build Stage Macros
output is the index of the output (0 to n). If you have defined a
name for the output port you can use this in place of the index in
the form portname.portid_.

index is the index of the transfer (0 to n).

The following macros are available:

doTransfer(index). Performs the transfer specified by index.

doTransfersFrom(input). Performs all transfers from input.

doTransfersTo(output). Performs all transfers to output.

transferAndWriteRecord(output). Performs all transfers and writes
a record for the specified output. Calling this macro is equivalent
to calling the macros doTransfersTo() and writeRecord().

How Your Code is Executed
This section describes how the code that you define when specifying

a Build stage executes when the stage is run in a DataStage job.

The sequence is as follows:

1 Handles any definitions that you specified in the Definitions sub-
tab when you entered the stage details.

2 Executes any code that was entered in the Pre-Loop sub-tab.

3 Loops repeatedly until either all inputs have run out of records, or
the Per-Record code has explicitly invoked endLoop(). In the
loop, performs the following steps:

a Reads one record for each input, except where any of the
following is true:

– The input has no more records left.

– The input has Auto Read set to false.

– The holdRecord() macro was called for the input last time
around the loop.

b Executes the Per-Record code, which can explicitly read and
write records, perform transfers, and invoke loop-control
macros such as endLoop().

c Performs each specified transfer, except where any of the
following is true:

– The input of the transfer has no more records.

– The transfer has Auto Transfer set to False.

– The discardTransfer() macro was called for the transfer during
the current loop iteration.
Parallel Job Advanced Developer’s Guide 5-23

Build Stage Macros Specifying Your Own Parallel Stages
d Writes one record for each output, except where any of the
following is true:

– The output has Auto Write set to false.

– The discardRecord() macro was called for the output during
the current loop iteration.

4 If you have specified code in the Post-loop sub-tab, executes it.

5 Returns a status, which is written to the DataStage Job Log.

Inputs and Outputs
The input and output ports that you defined for your Build stage are

where input and output links attach to the stage. By default, links are

connected to ports in the order they are connected to the stage, but

where your stage allows multiple input or output links you can change

the link order using the Link Order tab on the stage editor.

When you specify details about the input and output ports for your

Build stage, you need to define the meta data for the ports. You do this

by loading a table definition from the DataStage Repository.

When you actually use your stage in a job, you have to specify meta

data for the links that attach to these ports. For the job to run

successfully the meta data specified for the port and that specified for

the link should match. An exception to this is where you have runtime

column propagation enabled for the job. In this case the input link

meta data can be a super-set of the port meta data and the extra

columns will be automatically propagated.

Using Multiple Inputs

Where you require your stage to handle multiple inputs, there are

some special considerations. Your code needs to ensure the

following:

The stage only tries to access a column when there are records
available. It should not try to access a column after all records
have been read (use the inputDone() macro to check), and should
not attempt to access a column unless either Auto Read is enabled
on the link or an explicit read record has been performed.

The reading of records is terminated immediately after all the
required records have been read from it. In the case of a port with
Auto Read disabled, the code must determine when all required
records have been read and call the endLoop() macro.

In most cases we recommend that you keep Auto Read enabled when

you are using multiple inputs, this minimizes the need for explicit

control in your code. But there are circumstances when this is not
5-24 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Build Stage Macros
appropriate. The following paragraphs describes some common

scenarios:

Using Auto Read for all Inputs

All ports have Auto Read enabled and so all record reads are handled

automatically. You need to code for Per-record loop such that each

time it accesses a column on any input it first uses the inputDone()

macro to determine if there are any more records.

This method is fine if you want your stage to read a record from every

link, every time round the loop.

Using Inputs with Auto Read Enabled for Some and Disabled
for Others

You define one (or possibly more) inputs as Auto Read, and the rest

with Auto Read disabled. You code the stage in such a way as the

processing of records from the Auto Read input drives the processing

of the other inputs. Each time round the loop, your code should call

inputDone() on the Auto Read input and call exitLoop() to complete

the actions of the stage.

This method is fine where you process a record from the Auto Read

input every time around the loop, and then process records from one

or more of the other inputs depending on the results of processing the

Auto Read record.

Using Inputs with Auto Read Disabled.

Your code must explicitly perform all record reads. You should define

Per-Loop code which calls readRecord() once for each input to start

processing. Your Per-record code should call inputDone() for every

input each time round the loop to determine if a record was read on

the most recent readRecord(), and if it did, call readRecord() again for

that input. When all inputs run out of records, the Per-Loop code

should exit.

This method is intended where you want explicit control over how

each input is treated.

Example Build Stage
This section shows you how to define a Build stage called Divide,

which basically divides one number by another and writes the result

and any remainder to an output link. The stage also checks whether

you are trying to divide by zero and, if you are, sends the input record

down a reject link.
Parallel Job Advanced Developer’s Guide 5-25

Build Stage Macros Specifying Your Own Parallel Stages
To demonstrate the use of properties, the stage also lets you define a

minimum divisor. If the number you are dividing by is smaller than

the minimum divisor you specify when adding the stage to a job, then

the record is also rejected.

The input to the stage is defined as auto read, while the two outputs

have auto write disabled. The code has to explicitly write the data to

one or other of the output links. In the case of a successful division the

data written is the original record plus the result of the division and

any remainder. In the case of a rejected record, only the original

record is written.

The input record has two columns: dividend and divisor. Output 0 has

four columns: dividend, divisor, result, and remainder. Output 1 (the

reject link) has two columns: dividend and divisor.

If the divisor column of an input record contains zero or is less than

the specified minimum divisor, the record is rejected, and the code

uses the macro transferAndWriteRecord(1) to transfer the data to port

1 and write it. If the divisor is not zero, the code uses doTransfersTo(0)

to transfer the input record to Output 0, assigns the division results to

result and remainder and finally calls writeRecord(0) to write the

record to output 0.

The following screen shots show how this stage is defined in

DataStage using the Stage Type dialog box:
5-26 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Build Stage Macros
1 First general details are supplied in the General tab:

2 Details about the stage’s creation are supplied on the Creator
page:
Parallel Job Advanced Developer’s Guide 5-27

Build Stage Macros Specifying Your Own Parallel Stages
3 The optional property of the stage is defined in the Properties
tab:

4 Details of the inputs and outputs is defined on the interfaces tab of
the Build page.

Details about the single input to Divide are given on the Input

sub-tab of the Interfaces tab. A table definition for the inputs link

is available to be loaded from the DataStage Repository.
5-28 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Build Stage Macros
Details about the outputs are given on the Output sub-tab of the

Interfaces tab.

Note When you use the stage in a job, make sure that you use

table definitions compatible with the tables defined in

the input and output sub-tabs.

Details about the transfers carried out by the stage are defined on

the Transfer sub-tab of the Interfaces tab.
Parallel Job Advanced Developer’s Guide 5-29

Build Stage Macros Specifying Your Own Parallel Stages
5 The code itself is defined on the Logic tab. In this case all the
processing is done in the Per-Record loop and so is entered on the
Per-Record sub-tab.

6 As this example uses all the compile and build defaults, all that
remains is to click Generate to build the stage.
5-30 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
Defining Wrapped Stages
You define a Wrapped stage to enable you to specify a UNIX

command to be executed by a DataStage stage. You define a wrapper

file that handles arguments for the UNIX command and inputs and

outputs. The DataStage Manager provides an interface that helps you

define the wrapper. The stage will be available to all jobs in the project

in which the stage was defined. You can make it available to other

projects using the DataStage Manager Export facilities. You can add

the stage to your job palette using palette customization features in

the DataStage Designer.

When defining a Wrapped stage you provide the following

information:

Details of the UNIX command that the stage will execute.

Description of the data that will be input to the stage.

Description of the data that will be output from the stage.

Definition of the environment in which the command will execute.

The UNIX command that you wrap can be a built-in command, such

as grep, a utility, such as SyncSort, or your own UNIX application. The

only limitation is that the command must be ‘pipe-safe’ (to be pipe-

safe a UNIX command reads its input sequentially, from beginning to

end).

You need to define meta data for the data being input to and output

from the stage. You also need to define the way in which the data will

be input or output. UNIX commands can take their inputs from

standard in, or another stream, a file, or from the output of another

command via a pipe. Similarly data is output to standard out, or

another stream, to a file, or to a pipe to be input to another command.

You specify what the command expects.

DataStage handles data being input to the Wrapped stage and will

present it in the specified form. If you specify a command that expects

input on standard in, or another stream, DataStage will present the

input data from the jobs data flow as if it was on standard in. Similarly

it will intercept data output on standard out, or another stream, and

integrate it into the job’s data flow.

You also specify the environment in which the UNIX command will be

executed when you define the wrapped stage.

To define a Wrapped stage from the DataStage Manager:
Parallel Job Advanced Developer’s Guide 5-31

Defining Wrapped Stages Specifying Your Own Parallel Stages
1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Wrapped from the main
menu or New Parallel Stage ➤ Wrapped from the shortcut
menu. The Stage Type dialog box appears:

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages or the name of the actual UNIX command you
are wrapping.

– Category. The category that the new stage will be stored in
under the stage types branch. Type in or browse for an existing
category or type in the name of a new one. The category also
determines what group in the palette the stage will be added
to. Choose an existing category to add to an existing group, or
specify a new category to create a new palette group.

– Parallel Stage type. This indicates the type of new Parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.

– Wrapper Name. The name of the wrapper file DataStage will
generate to call the command. By default this will take the
same name as the Stage type name.

– Execution mode. Choose the default execution mode. This is
the mode that will appear in the Advanced tab on the stage
editor. You can override this mode for individual instances of
5-32 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
the stage as required, unless you select Parallel only or
Sequential only. See "Advanced Tab" in Parallel Job
Developer’s Guide for a description of the execution mode.

– Preserve Partitioning. This shows the default setting of the
Preserve Partitioning flag, which you cannot change in a
Wrapped stage. This is the setting that will appear in the
Advanced tab on the stage editor. You can override this
setting for individual instances of the stage as required. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the preserve partitioning flag.

– Partitioning. This shows the default partitioning method,
which you cannot change in a Wrapped stage. This is the
method that will appear in the Inputs Page Partitioning tab
of the stage editor. You can override this method for individual
instances of the stage as required. See "Partitioning Tab" in
Parallel Job Developer’s Guide for a description of the
partitioning methods.

– Collecting. This shows the default collection method, which
you cannot change in a Wrapped stage. This is the method that
will appear in the Inputs Page Partitioning tab of the stage
editor. You can override this method for individual instances of
the stage as required. See "Partitioning Tab" in Parallel Job
Developer’s Guide for a description of the collection methods.

– Command. The name of the UNIX command to be wrapped,
plus any required arguments. The arguments that you enter
here are ones that do not change with different invocations of
the command. Arguments that need to be specified when the
Wrapped stage is included in a job are defined as properties for
the stage.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
release number to the stage so you can keep track of any
subsequent changes.

You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed

in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the
Parallel Job Advanced Developer’s Guide 5-33

Defining Wrapped Stages Specifying Your Own Parallel Stages
32 x 32 Bitmap button and browse for the large bitmap file. Click

the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage.

5 Go to the Properties page. This allows you to specify the
arguments that the UNIX command requires as properties that
appear in the stage Properties tab. For wrapped stages the
Properties tab always appears under the Stage page.

Fill in the fields as follows:
5-34 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
– Property name. The name of the property that will be
displayed on the Properties tab of the stage editor.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage

is included in a job a drop-down list will offer a choice of the

defined input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what

appears in the list.

– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Repeats. Set this true if the property repeats (i.e. you can have
multiple instances of it).

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

command as the argument value. This will normally be a

hidden property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

command as the argument name, and any value specified in

the stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the command as the argument name. Typically

used to group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.
Parallel Job Advanced Developer’s Guide 5-35

Defining Wrapped Stages Specifying Your Own Parallel Stages
6 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:

– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.

– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.

7 Go to the Wrapped page. This allows you to specify information
about the command to be executed by the stage and how it will be
handled.
5-36 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
The Interfaces tab is used to describe the inputs to and outputs

from the stage, specifying the interfaces that the stage will need to

function.

Details about inputs to the stage are defined on the Inputs sub-

tab:

– Link. The link number, this is assigned for you and is read-
only. When you actually use your stage, links will be assigned
in the order in which you add them. In our example, the first
link will be taken as link 0, the second as link 1 and so on. You
can reassign the links using the stage editor’s Link Ordering
tab on the General page.

– Table Name. The meta data for the link. You define this by
loading a table definition from the Repository. Type in the
name, or browse for a table definition. Alternatively, you can
specify an argument to the UNIX command which specifies a
table definition. In this case, when the wrapped stage is used in
a job design, the designer will be prompted for an actual table
definition to use.
Parallel Job Advanced Developer’s Guide 5-37

Defining Wrapped Stages Specifying Your Own Parallel Stages
– Stream. Here you can specify whether the UNIX command
expects its input on standard in, or another stream, or whether
it expects it in a file. Click on the browse button to open the
Wrapped Stream dialog box.

In the case of a file, you should also specify whether the file to be

read is given in a command line argument, or by an environment

variable.

Details about outputs from the stage are defined on the Outputs

sub-tab:

– Link. The link number, this is assigned for you and is read-
only. When you actually use your stage, links will be assigned
in the order in which you add them. In our example, the first
link will be taken as link 0, the second as link 1 and so on. You
can reassign the links using the stage editor’s Link Ordering
tab on the General page.

– Table Name. The meta data for the link. You define this by
loading a table definition from the Repository. Type in the
name, or browse for a table definition.

– Stream. Here you can specify whether the UNIX command
will write its output to standard out, or another stream, or
whether it outputs to a file. Click on the browse button to open
the Wrapped Stream dialog box.

In the case of a file, you should also specify whether the file to

be written is specified in a command line argument, or by an

environment variable.
5-38 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
The Environment tab gives information about the environment

in which the command will execute.

Set the following on the Environment tab:

– All Exit Codes Successful. By default DataStage treats an
exit code of 0 as successful and all others as errors. Select this
check box to specify that all exit codes should be treated as
successful other than those specified in the Failure codes
grid.

– Exit Codes. The use of this depends on the setting of the All
Exits Codes Successful check box.

If All Exits Codes Successful is not selected, enter the codes in

the Success Codes grid which will be taken as indicating

successful completion. All others will be taken as indicating

failure.

If All Exits Codes Successful is selected, enter the exit codes in

the Failure Code grid which will be taken as indicating failure. All

others will be taken as indicating success.

– Environment. Specify environment variables and settings that
the UNIX command requires in order to run.

8 When you have filled in the details in all the pages, click Generate
to generate the stage.
Parallel Job Advanced Developer’s Guide 5-39

Defining Wrapped Stages Specifying Your Own Parallel Stages
Example Wrapped Stage
This section shows you how to define a Wrapped stage called exhort

which runs the UNIX sort command in parallel. The stage sorts data in

two files and outputs the results to a file. The incoming data has two

columns, order number and code. The sort command sorts the data

on the second field, code. You can optionally specify that the sort is

run in reverse order.

Wrapping the sort command in this way would be useful if you had a

situation where you had a fixed sort operation that was likely to be

needed in several jobs. Having it as an easily reusable stage would

save having to configure a built-in sort stage every time you needed it.

When included in a job and run, the stage will effectively call the Sort

command as follows:

sort -r -o outfile -k 2 infile1 infile2

The following screen shots show how this stage is defined in

DataStage using the Stage Type dialog box:
5-40 Parallel Job Advanced Developer’s Guide

Specifying Your Own Parallel Stages Defining Wrapped Stages
1 First general details are supplied in the General tab. The
argument defining the second column as the key is included in the
command because this does not vary:

2 The reverse order argument (-r) are included as properties
because it is optional and may or may not be included when the
stage is incorporated into a job.

3 The fact that the sort command expects two files as input is
defined on the Input sub-tab on the Interfaces tab of the
Wrapper page.
Parallel Job Advanced Developer’s Guide 5-41

Defining Wrapped Stages Specifying Your Own Parallel Stages
4 The fact that the sort command outputs to a file is defined on the
Output sub-tab on the Interfaces tab of the Wrapper page.

Note When you use the stage in a job, make sure that you use

table definitions compatible with the tables defined in

the input and output sub-tabs.

5 Because all exit codes other than 0 are treated as errors, and
because there are no special environment requirements for this
command, you do not need to alter anything on the Environment
tab of the Wrapped page. All that remains is to click Generate to
build the stage.
5-42 Parallel Job Advanced Developer’s Guide

6
Environment Variables

There are many environment variables that affect the design and

running of parallel jobs in DataStage. Commonly used ones are

exposed in the DataStage Administrator client, and can be set or

unset using the Administrator (see"Setting Environment Variables" in

DataStage Administrator Guide). There are additional environment

variables, however. This chapter describes all the environment

variables that apply to parallel jobs. They can be set or unset as you

would any other UNIX system variables, or you can add them to the

User Defined section in the DataStage Administrator environment

variable tree.

The available environment variables are grouped according to

function. They are summarized in the following table.

The final section in this chapter gives some guidance to setting the

environment variables..

Category Environment Variable

Buffering APT_BUFFER_FREE_RUN

APT_BUFFER_MAXIMUM_MEMORY

APT_BUFFER_MAXIMUM_TIMEOUT

APT_BUFFER_DISK_WRITE_INCREMENT

APT_BUFFERING_POLICY

APT_SHARED_MEMORY_BUFFERS

Building Custom Stages DS_OPERATOR_BUILDOP_DIR

OSH_BUILDOP_CODE

OSH_BUILDOP_HEADER
Parallel Job Advanced Developer’s Guide 6-1

Environment Variables
OSH_BUILDOP_OBJECT

OSH_BUILDOP_XLC_BIN

OSH_CBUILDOP_XLC_BIN

Compiler APT_COMPILER

APT_COMPILEOPT

APT_LINKER

APT_LINKOPT

DB2 Support APT_DB2INSTANCE_HOME

APT_DB2READ_LOCK_TABLE

APT_DBNAME

APT_RDBMS_COMMIT_ROWS

DB2DBDFT

Debugging APT_DEBUG_OPERATOR

APT_DEBUG_MODULE_NAMES

APT_DEBUG_PARTITION

APT_DEBUG_SIGNALS

APT_DEBUG_STEP

APT_DEBUG_SUBPROC

APT_EXECUTION_MODE

APT_PM_DBX

APT_PM_GDB

APT_PM_LADEBUG

APT_PM_SHOW_PIDS

APT_PM_XLDB

APT_PM_XTERM

APT_SHOW_LIBLOAD

Decimal Support APT_DECIMAL_INTERM_PRECISION

APT_DECIMAL_INTERM_SCALE

APT_DECIMAL_INTERM_ROUND_MODE

Disk I/O APT_BUFFER_DISK_WRITE_INCREMENT

APT_CONSISTENT_BUFFERIO_SIZE

Category Environment Variable
6-2 Parallel Job Advanced Developer’s Guide

Environment Variables
APT_EXPORT_FLUSH_COUNT

APT_IO_MAP/APT_IO_NOMAP and
APT_BUFFERIO_MAP/APT_BUFFERIO_NOMAP

APT_PHYSICAL_DATASET_BLOCK_SIZE

General Job
Administration

APT_CHECKPOINT_DIR

APT_CLOBBER_OUTPUT

APT_CONFIG_FILE

APT_DISABLE_COMBINATION

APT_EXECUTION_MODE

APT_ORCHHOME

APT_STARTUP_SCRIPT

APT_NO_STARTUP_SCRIPT

APT_STARTUP_STATUS

APT_THIN_SCORE

Job Monitoring APT_MONITOR_SIZE

APT_MONITOR_TIME

APT_NO_JOBMON

APT_PERFORMANCE_DATA

Miscellaneous APT_COPY_TRANSFORM_OPERATOR

APT_DATE_CENTURY_BREAK_YEAR

APT_IMPEXP_ALLOW_ZERO_LENGTH_FIXED_NULL

APT_IMPORT_REJECT_STRING_FIELD_OVERRUNS

APT_INSERT_COPY_BEFORE_MODIFY

APT_OLD_BOUNDED_LENGTH

APT_OPERATOR_REGISTRY_PATH

APT_PM_NO_SHARED_MEMORY

APT_PM_NO_NAMED_PIPES

APT_PM_SOFT_KILL_WAIT

APT_PM_STARTUP_CONCURRENCY

APT_RECORD_COUNTS

APT_SAVE_SCORE

Category Environment Variable
Parallel Job Advanced Developer’s Guide 6-3

Environment Variables
APT_SHOW_COMPONENT_CALLS

APT_STACK_TRACE

APT_WRITE_DS_VERSION

OSH_PRELOAD_LIBS

Network APT_IO_MAXIMUM_OUTSTANDING

APT_IOMGR_CONNECT_ATTEMPTS

APT_PM_CONDUCTOR_HOSTNAME

APT_PM_NO_TCPIP

APT_PM_NODE_TIMEOUT

APT_PM_SHOWRSH

APT_PM_USE_RSH_LOCALLY

NLS APT_COLLATION_SEQUENCE

APT_COLLATION_STRENGTH

APT_ENGLISH_MESSAGES

APT_IMPEXP_CHARSET

APT_INPUT_CHARSET

APT_OS_CHARSET

APT_OUTPUT_CHARSET

APT_STRING_CHARSET

Oracle Support APT_ORACLE_LOAD_DELIMITED

APT_ORACLE_LOAD_OPTIONS

APT_ORACLE_NO_OPS

APT_ORACLE_PRESERVE_BLANKS

APT_ORA_IGNORE_CONFIG_FILE_PARALLELISM

APT_ORA_WRITE_FILES

APT_ORAUPSERT_COMMIT_ROW_INTERVAL
APT_ORAUPSERT_COMMIT_TIME_INTERVAL

Partitioning APT_NO_PART_INSERTION

APT_PARTITION_COUNT

APT_PARTITION_NUMBER

Reading and Writing
Files

APT_DELIMITED_READ_SIZE

Category Environment Variable
6-4 Parallel Job Advanced Developer’s Guide

Environment Variables
APT_FILE_IMPORT_BUFFER_SIZE

APT_FILE_EXPORT_BUFFER_SIZE

APT_IMPORT_PATTERN_USES_FILESET

APT_MAX_DELIMITED_READ_SIZE

APT_PREVIOUS_FINAL_DELIMITER_COMPATIBLE

APT_STRING_PADCHAR

Reporting APT_DUMP_SCORE

APT_ERROR_CONFIGURATION

APT_MSG_FILELINE

APT_PM_PLAYER_MEMORY

APT_PM_PLAYER_TIMING

APT_RECORD_COUNTS

OSH_DUMP

OSH_ECHO

OSH_EXPLAIN

OSH_PRINT_SCHEMAS

SAS Support APT_HASH_TO_SASHASH

APT_NO_SASOUT_INSERT

APT_NO_SAS_TRANSFORMS

APT_SAS_ACCEPT_ERROR

APT_SAS_CHARSET

APT_SAS_CHARSET_ABORT

APT_SAS_COMMAND

APT_SASINT_COMMAND

APT_SAS_DEBUG

APT_SAS_DEBUG_IO

APT_SAS_DEBUG_LEVEL

APT_SAS_DEBUG_VERBOSE

APT_SAS_NO_PSDS_USTRING

APT_SAS_S_ARGUMENT

APT_SAS_SCHEMASOURCE_DUMP

Category Environment Variable
Parallel Job Advanced Developer’s Guide 6-5

Buffering Environment Variables
Buffering
These environment variable are all concerned with the buffering

DataStage performs on stage links to avoid deadlock situations. These

settings can also be made on the Inputs page or Outputs page

Advanced tab of the parallel stage editors.

APT_BUFFER_FREE_RUN
This environment variable is available in the DataStage Administrator,

under the Parallel category. It specifies how much of the available in-

memory buffer to consume before the buffer resists. This is expressed

as a decimal representing the percentage of Maximum memory buffer

size (for example, 0.5 is 50%). When the amount of data in the buffer is

less than this value, new data is accepted automatically. When the

data exceeds it, the buffer first tries to write some of the data it

contains before accepting more.

The default value is 50% of the Maximum memory buffer size. You can

set it to greater than 100%, in which case the buffer continues to store

APT_SAS_SHOW_INFO

APT_SAS_TRUNCATION

Sorting APT_NO_SORT_INSERTION

APT_SORT_INSERTION_CHECK_ONLY

Teradata Support APT_TERA_64K_BUFFERS

APT_TERA_NO_ERR_CLEANUP

APT_TERA_NO_PERM_CHECKS

APT_TERA_NO_SQL_CONVERSION

APT_TERA_SYNC_DATABASE

APT_TERA_SYNC_USER

Transport Blocks APT_AUTO_TRANSPORT_BLOCK_SIZE

APT_LATENCY_COEFFICIENT

APT_DEFAULT_TRANSPORT_BLOCK_SIZE

APT_MAX_TRANSPORT_BLOCK_SIZE/
APT_MIN_TRANSPORT_BLOCK_SIZE

Category Environment Variable
6-6 Parallel Job Advanced Developer’s Guide

Environment Variables Buffering
data up to the indicated multiple of Maximum memory buffer size

before writing to disk.

APT_BUFFER_MAXIMUM_MEMORY
Sets the default value of Maximum memory buffer size. The default

value is 3145728 (3 MB). Specifies the maximum amount of virtual

memory, in bytes, used per buffer.

APT_BUFFER_MAXIMUM_TIMEOUT
DataStage buffering is self tuning, which can theoretically lead to long

delays between retries. This environment variable specified the

maximum wait before a retry in seconds, and is by default set to 1.

APT_BUFFER_DISK_WRITE_INCREMENT
Sets the size, in bytes, of blocks of data being moved to/from disk by

the buffering operator. The default is 1048576 (1 MB). Adjusting this

value trades amount of disk access against throughput for small

amounts of data. Increasing the block size reduces disk access, but

may decrease performance when data is being read/written in smaller

units. Decreasing the block size increases throughput, but may

increase the amount of disk access.

APT_BUFFERING_POLICY
This environment variable is available in the DataStage Administrator,

under the Parallel category. Controls the buffering policy for all virtual

data sets in all steps. The variable has the following settings:

AUTOMATIC_BUFFERING (default). Buffer a data set only if
necessary to prevent a data flow deadlock.

FORCE_BUFFERING. Unconditionally buffer all virtual data sets.
Note that this can slow down processing considerably.

NO_BUFFERING. Do not buffer data sets. This setting can cause
data flow deadlock if used inappropriately.

APT_SHARED_MEMORY_BUFFERS
Typically the number of shared memory buffers between two

processes is fixed at 2. Setting this will increase the number used. The

likely result of this is POSSIBLY both increased latency and increased

performance. This setting can significantly increase memory use.
Parallel Job Advanced Developer’s Guide 6-7

Building Custom Stages Environment Variables
Building Custom Stages
These environment variables are concerned with the building of

custom operators that form the basis of customized stages (as

described in Chapter 5, "Specifying Your Own Parallel Stages.")

DS_OPERATOR_BUILDOP_DIR
Identifies the directory in which generated buildops are created. By

default this identifies a directory called buildop under the current

project directory. If the directory is changed, the corresponding entry

in APT_OPERATOR_REGISTRY_PATH needs to change to match the

buildop folder.

OSH_BUILDOP_CODE
Identifies the directory into which buildop writes the generated .C file

and build script. It defaults to the current working directory. The -C

option of buildop overrides this setting.

OSH_BUILDOP_HEADER
Identifies the directory into which buildop writes the generated .h file.

It defaults to the current working directory. The -H option of buildop
overrides this setting.

OSH_BUILDOP_OBJECT
Identifies the directory into which buildop writes the dynamically

loadable object file, whose extension is .so on Solaris, .sl on HP-UX, or

.o on AIX. Defaults to the current working directory.

The -O option of buildop overrides this setting.

OSH_BUILDOP_XLC_BIN
AIX only. Identifies the directory specifying the location of the shared

library creation command used by buildop.

On older AIX systems this defaults to /usr/lpp/xlC/bin/

makeC++SharedLib_r for thread-safe compilation. On newer AIX

systems it defaults to /usr/ibmcxx/bin/makeC++SharedLib_r. For non-

thread-safe compilation, the default path is the same, but the name of

the file is makeC++SharedLib.
6-8 Parallel Job Advanced Developer’s Guide

Environment Variables Compiler
OSH_CBUILDOP_XLC_BIN
AIX only. Identifies the directory specifying the location of the shared

library creation command used by cbuildop. If this environment

variable is not set, cbuildop checks the setting of

OSH_BUILDOP_XLC_BIN for the path. On older AIX systems

OSH_CBUILDOP_XLC_BIN defaults to /usr/lpp/xlC/bin/

makeC++SharedLib_r for thread-safe compilation. On newer AIX

systems it defaults to /usr/ibmcxx/bin/makeC++SharedLib_r. For non-

threadsafe compilation, the default path is the same, but the name of

the command is makeC++SharedLib.

Compiler
These environment variables specify details about the C++ compiler

used by DataStage in connection with parallel jobs.

APT_COMPILER
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Compiler branch. Specifies the full path to the

C++ compiler.

APT_COMPILEOPT
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Compiler branch. Specifies extra options to be

passed to the C++ compiler when it is invoked.

APT_LINKER
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Compiler branch. Specifies the full path to the

C++ linker.

APT_LINKOPT
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Compiler branch. Specifies extra options to be

passed to the C++ linker when it is invoked.
Parallel Job Advanced Developer’s Guide 6-9

DB2 Support Environment Variables
DB2 Support
These environment variables are concerned with setting up access to

DB2 databases from DataStage.

APT_DB2INSTANCE_HOME
Specifies the DB2 installation directory. This variable is set by

DataStage to values obtained from the DB2Server table, representing

the currently selected DB2 server.

APT_DB2READ_LOCK_TABLE
If this variable is defined and the open option is not specified for the

DB2 stage, DataStage performs the following open command to lock

the table:

lock table 'table_name' in share mode

APT_DBNAME
Specifies the name of the database if you choose to leave out the

Database option for DB2 stages. If APT_DBNAME is not defined as

well, DB2DBDFT is used to find the database name. These variables

are set by DataStage to values obtained from the DB2Server table,

representing the currently selected DB2 server.

APT_RDBMS_COMMIT_ROWS
Specifies the number of records to insert into a data set between

commits. The default value is 2048.

DB2DBDFT
For DB2 operators, you can set the name of the database by using the

-dbname option or by setting APT_DBNAME. If you do not use either

method, DB2DBDFT is used to find the database name. These

variables are set by DataStage to values obtained from the DB2Server

table, representing the currently selected DB2 server.

Debugging
These environment variables are concerned with the debugging of

DataStage parallel jobs.
6-10 Parallel Job Advanced Developer’s Guide

Environment Variables Debugging
APT_DEBUG_OPERATOR
Specifies the operators on which to start debuggers. If not set, no

debuggers are started. If set to an operator number (as determined

from the output of APT_DUMP_SCORE), debuggers are started for

that single operator. If set to -1, debuggers are started for all

operators.

APT_DEBUG_MODULE_NAMES
This comprises a list of module names separated by white space that

are the modules to debug, i.e., where internal IF_DEBUG statements

will be run. The subproc operator module (module name is

"subproc") is one example of a module that uses this facility.

APT_DEBUG_PARTITION
Specifies the partitions on which to start debuggers. One instance, or

partition, of an operator is run on each node running the operator. If

set to a single number, debuggers are started on that partition; if not

set or set to -1, debuggers are started on all partitions.

See the description of APT_DEBUG_OPERATOR for more information

on using this environment variable.

For example, setting APT_DEBUG_STEP to 0,

APT_DEBUG_OPERATOR to 1, and APT_DEBUG_PARTITION to -1

starts debuggers for every partition of the second operator in the first

step.

APT_DEBUG_SIGNALS
You can use the APT_DEBUG_SIGNALS environment variable to

specify that signals such as SIGSEGV, SIGBUS, etc., should cause a

APT_DEBUG_
OPERATOR

APT_DEBUG_
PARTITION

Effect

not set any value no debugging

-1 not set or -1 debug all partitions of all operators

-1 >= 0 debug a specific partition of all
operators

>= 0 -1 debug all partitions of a specific
operator

>= 0 >= 0 debug a specific partition of a specific
operator
Parallel Job Advanced Developer’s Guide 6-11

Debugging Environment Variables
debugger to start. If any of these signals occurs within an

APT_Operator::runLocally() function, a debugger such as dbx is

invoked.

Note that the UNIX and DataStage variables DEBUGGER, DISPLAY,

and APT_PM_XTERM, specifying a debugger and how the output

should be displayed, must be set correctly.

APT_DEBUG_STEP
Specifies the steps on which to start debuggers. If not set or if set to -

1, debuggers are started on the processes specified by

APT_DEBUG_OPERATOR and APT_DEBUG_PARTITION in all steps. If

set to a step number, debuggers are started for processes in the

specified step.

APT_DEBUG_SUBPROC
Display debug information about each subprocess operator.

APT_EXECUTION_MODE
This environment variable is available in the DataStage Administrator

under the Parallel branch. By default, the execution mode is parallel,

with multiple processes. Set this variable to one of the following

values to run an application in sequential execution mode:

ONE_PROCESS one-process mode

MANY_PROCESS many-process mode

NO_SERIALIZE many-process mode, without serialization

In ONE_PROCESS mode:

The application executes in a single UNIX process. You need only
run a single debugger session and can set breakpoints anywhere
in your code.

Data is partitioned according to the number of nodes defined in
the configuration file.

Each operator is run as a subroutine and is called the number of
times appropriate for the number of partitions on which it must
operate.

In MANY_PROCESS mode the framework forks a new process for

each instance of each operator and waits for it to complete rather than

calling operators as subroutines.

In both cases, the step is run entirely on the Conductor node rather

than spread across the configuration.
6-12 Parallel Job Advanced Developer’s Guide

Environment Variables Debugging
NO_SERIALIZE mode is similar to MANY_PROCESS mode, but the

DataStage persistence mechanism is not used to load and save

objects. Turning off persistence may be useful for tracking errors in

derived C++ classes.

APT_PM_DBX
Set this environment variable to the path of your dbx debugger, if a

debugger is not already included in your path. This variable sets the

location; it does not run the debugger.

APT_PM_GDB
Linux only. Set this environment variable to the path of your xldb

debugger, if a debugger is not already included in your path. This

variable sets the location; it does not run the debugger.

APT_PM_LADEBUG
Tru64 only. Set this environment variable to the path of your dbx

debugger, if a debugger is not already included in your path. This

variable sets the location; it does not run the debugger.

APT_PM_SHOW_PIDS
If this variable is set, players will output an informational message

upon startup, displaying their process id.

APT_PM_XLDB
Set this environment variable to the path of your xldb debugger, if a

debugger is not already included in your path. This variable sets the

location; it does not run the debugger.

APT_PM_XTERM
If DataStage invokes dbx, the debugger starts in an xterm window;

this means DataStage must know where to find the xterm program.

The default location is /usr/bin/X11/xterm. You can override this

default by setting the APT_PM_XTERM environment variable to the

appropriate path. APT_PM_XTERM is ignored if you are using xldb.
Parallel Job Advanced Developer’s Guide 6-13

Decimal Support Environment Variables
APT_SHOW_LIBLOAD
If set, dumps a message to stdout every time a library is loaded. This

can be useful for testing/verifying the right library is being loaded.

Note that the message is output to stdout, NOT to the error log.

Decimal Support

APT_DECIMAL_INTERM_PRECISION
Specifies the default maximum precision value for any decimal

intermediate variables required in calculations. Default value is 38.

APT_DECIMAL_INTERM_SCALE
Specifies the default scale value for any decimal intermediate

variables required in calculations. Default value is 10.

APT_DECIMAL_INTERM_ROUND_MODE
Specifies the default rounding mode for any decimal intermediate

variables required in calculations. The default is round_inf.

Disk I/O
These environment variables are all concerned with when and how

DataStage parallel jobs write information to disk.

APT_BUFFER_DISK_WRITE_INCREMENT
For systems where small to medium bursts of I/O are not desirable,

the default 1MB write to disk size chunk size may be too small.

APT_BUFFER_DISK_WRITE_INCREMENT controls this and can be set

larger than 1048576 (1 MB). The setting may not exceed

max_memory * 2/3.

APT_CONSISTENT_BUFFERIO_SIZE
Some disk arrays have read ahead caches that are only effective when

data is read repeatedly in like-sized chunks. Setting
6-14 Parallel Job Advanced Developer’s Guide

Environment Variables General Job Administration
APT_CONSISTENT_BUFFERIO_SIZE=N will force stages to read data

in chunks which are size N or a multiple of N.

APT_EXPORT_FLUSH_COUNT
Allows the export operator to flush data to disk more often than it

typically does (data is explicitly flushed at the end of a job, although

the OS may choose to do so more frequently). Set this variable to an

integer which, in number of records, controls how often flushes

should occur. Setting this value to a low number (such as 1) is useful

for real time applications, but there is a small performance penalty

associated with setting this to a low value.

APT_IO_MAP/APT_IO_NOMAP and APT_BUFFERIO_MAP/
APT_BUFFERIO_NOMAP

In many cases memory mapped I/O contributes to improved

performance. In certain situations, however, such as a remote disk

mounted via NFS, memory mapped I/O may cause significant

performance problems. Setting the environment variables

APT_IO_NOMAP and APT_BUFFERIO_NOMAP true will turn off this

feature and sometimes affect performance. (AIX and HP-UX default to

NOMAP. Setting APT_IO_MAP and APT_BUFFERIO_MAP true can be

used to turn memory mapped I/O on for these platforms.)

APT_PHYSICAL_DATASET_BLOCK_SIZE
Specify the block size to use for reading and writing to a data set

stage. The default is 128 KB.

General Job Administration
These environment variables are concerned with details about the

running of DataStage parallel jobs.

APT_CHECKPOINT_DIR
This environment variable is available in the DataStage Administrator

under the Parallel branch. By default, when running a job, DataStage

stores state information in the current working directory. Use

APT_CHECKPOINT_DIR to specify another directory.
Parallel Job Advanced Developer’s Guide 6-15

General Job Administration Environment Variables
APT_CLOBBER_OUTPUT
This environment variable is available in the DataStage Administrator

under the Parallel branch. By default, if an output file or data set

already exists, DataStage issues an error and stops before overwriting

it, notifying you of the name conflict. Setting this variable to any value

permits DataStage to overwrite existing files or data sets without a

warning message.

APT_CONFIG_FILE
This environment variable is available in the DataStage Administrator

under the Parallel branch. Sets the path name of the configuration file.

(You may want to include this as a job parameter, so that you can

specify the configuration file at job run time).

APT_DISABLE_COMBINATION
This environment variable is available in the DataStage Administrator

under the Parallel branch. Globally disables operator combining.

Operator combining is DataStage’s default behavior, in which two or

more (in fact any number of) operators within a step are combined

into one process where possible.

You may need to disable combining to facilitate debugging. Note that

disabling combining generates more UNIX processes, and hence

requires more system resources and memory. It also disables internal

optimizations for job efficiency and run times.

APT_EXECUTION_MODE
This environment variable is available in the DataStage Administrator

under the Parallel branch. By default, the execution mode is parallel,

with multiple processes. Set this variable to one of the following

values to run an application in sequential execution mode:

ONE_PROCESS one-process mode

MANY_PROCESS many-process mode

NO_SERIALIZE many-process mode, without serialization

In ONE_PROCESS mode:

The application executes in a single UNIX process. You need only
run a single debugger session and can set breakpoints anywhere
in your code.

Data is partitioned according to the number of nodes defined in
the configuration file.
6-16 Parallel Job Advanced Developer’s Guide

Environment Variables General Job Administration
Each operator is run as a subroutine and is called the number of
times appropriate for the number of partitions on which it must
operate.

In MANY_PROCESS mode the framework forks a new process for

each instance of each operator and waits for it to complete rather than

calling operators as subroutines.

In both cases, the step is run entirely on the Conductor node rather

than spread across the configuration.

NO_SERIALIZE mode is similar to MANY_PROCESS mode, but the

DataStage persistence mechanism is not used to load and save

objects. Turning off persistence may be useful for tracking errors in

derived C++ classes.

APT_ORCHHOME
Must be set by all DataStage Enterprise Edition users to point to the

top-level directory of the DataStage Enterprise Edition installation.

APT_STARTUP_SCRIPT
As part of running an application, DataStage creates a remote shell on

all DataStage processing nodes on which the job runs. By default, the

remote shell is given the same environment as the shell from which

DataStage is invoked. However, you can write an optional startup

shell script to modify the shell configuration of one or more

processing nodes. If a startup script exists, DataStage runs it on

remote shells before running your application.

APT_STARTUP_SCRIPT specifies the script to be run. If it is not

defined, DataStage searches ./startup.apt, $APT_ORCHHOME/etc/

startup.apt and $APT_ORCHHOME/etc/startup, in that order.

APT_NO_STARTUP_SCRIPT disables running the startup script.

APT_NO_STARTUP_SCRIPT
Prevents DataStage from executing a startup script. By default, this

variable is not set, and DataStage runs the startup script. If this

variable is set, DataStage ignores the startup script. This may be

useful when debugging a startup script. See also

APT_STARTUP_SCRIPT.
Parallel Job Advanced Developer’s Guide 6-17

Job Monitoring Environment Variables
APT_STARTUP_STATUS
Set thi sto cause messages to be generated as parallel job startup

moves from phase to phase. This can be useful as a diagnostic if

parallel job startup is failing.

APT_THIN_SCORE
Setting this variable decreases the memory usage of steps with 100

operator instances or more by a noticable amount. To use this

optimization, set APT_THIN_SCORE=1 in your environment. There are

no performance benefits in setting this variable unless you are

running out of real memory at some point in your flow or the

additional memory is useful for sorting or buffering. This variable

does not affect any specific operators which consume large amounts

of memory, but improves general parallel job memory handling.

Job Monitoring
These environment variables are concerned with the Job Monitor on

DataStage.

APT_MONITOR_SIZE
This environment variable is available in the DataStage Administrator

under the Parallel branch. Determines the minimum number of

records the DataStage Job Monitor reports. The default is 5000

records.

APT_MONITOR_TIME
This environment variable is available in the DataStage Administrator

under the Parallel branch. Determines the minimum time interval in

seconds for generating monitor information at runtime. The default is

5 seconds. This variable takes precedence over APT_MONITOR_SIZE.

APT_NO_JOBMON
Turn off job monitoring entirely.

APT_PERFORMANCE_DATA
Set this variable to turn on performance data output generation.

APT_PERFORMANCE_DATA can be either set with no value, or be set
6-18 Parallel Job Advanced Developer’s Guide

Environment Variables Miscellaneous
to a valid path which will be used as the default location for

performance data output.

Miscellaneous

APT_COPY_TRANSFORM_OPERATOR
If set, distributes the shared object file of the sub-level transform

operator and the shared object file of user-defined functions (not

extern functions) via distribute-component in a non-NFS MPP.

APT_DATE_CENTURY_BREAK_YEAR
Four digit year which marks the century two-digit dates belong to. It is

set to 1900 by defult.

APT_IMPEXP_ALLOW_ZERO_LENGTH_FIXED_NULL
When set, allows zero length null_field value with fixed length fields.

This should be used with care as poorly formatted data will cause

incorrect results. By default a zero length null_field value will cause

an error.

APT_IMPORT_REJECT_STRING_FIELD_OVERRUNS
When set, DataStage will reject any string or ustring fields read that

go over their fixed size. By default these records are truncated.

APT_INSERT_COPY_BEFORE_MODIFY
When defined, turns on automatic insertion of a copy operator before

any modify operator (WARNING: if this variable is not set and the

operator immediately preceding 'modify' in the data flow uses a

modify adapter, the 'modify' operator will be removed from the data

flow).

Only set this if you write your own custom operators AND use modify

within those operators.

APT_OLD_BOUNDED_LENGTH
Some parallel datasets generated with DataStage 7.0.1 and later

releases require more disk space when the columns are of type
Parallel Job Advanced Developer’s Guide 6-19

Miscellaneous Environment Variables
VarChar when compared to 7.0. This is due to changes added for

performance improvements for bounded length VarChars in 7.0.1.

Set APT_OLD_BOUNDED_LENGTH to any value to revert to pre-7.0.1

storage behavior when using bounded length varchars. Setting this

variable can have adverse performance effects. The preferred and

more performant solution is to use unbounded length VarChars (don't

set any length) for columns where the maximum length is rarely used,

rather than set this environment variable.

APT_OPERATOR_REGISTRY_PATH

Used to locate operator .apt files, which define what operators are

available and which libraries they are found in.

APT_PM_NO_SHARED_MEMORY
By default, shared memory is used for local connections. If this

variable is set, named pipes rather than shared memory are used for

local connections. If both APT_PM_NO_NAMED_PIPES and

APT_PM_NO_SHARED_MEMORY are set, then TCP sockets are used

for local connections.

APT_PM_NO_NAMED_PIPES
Specifies not to use named pipes for local connections. Named pipes

will still be used in other areas of DataStage, including subprocs and

setting up of the shared memory transport protocol in the process

manager.

APT_PM_SOFT_KILL_WAIT
Delay between SIGINT and SIGKILL during abornal job shutdown.

Gives time for processes to run cleanups if they catch SIGINT. Defaults

to ZERO.

APT_PM_STARTUP_CONCURRENCY
Setting this to a small integer determines the number of simultaneous

section leader startups to be allowed. Setting this to 1 forces

sequential startup. The default is defined by SOMAXCONN in sys/

socket.h (currently 5 for Solaris, 10 for AIX).
6-20 Parallel Job Advanced Developer’s Guide

Environment Variables Miscellaneous
APT_RECORD_COUNTS
Causes DataStage to print, for each operator Player, the number of

records consumed by getRecord() and produced by putRecord().
Abandoned input records are not necessarily accounted for. Buffer

operators do not print this information.

APT_SAVE_SCORE
Sets the name and path of the file used by the performance monitor to

hold temporary score data. The path must be visible from the host

machine. The performance monitor creates this file, therefore it need

not exist when you set this variable.

APT_SHOW_COMPONENT_CALLS
This forces DataStage to display messages at job check time as to

which user overloadable functions (such as checkConfig and

describeOperator) are being called. This will not produce output at

runtime and is not guaranteed to be a complete list of all user-

overloadable functions being called, but an effort is made to keep this

synchronized with any new virtual functions provided.

APT_STACK_TRACE
This variable controls the number of lines printed for stack traces. The

values are:

unset. 10 lines printed

0. infinite lines printed

N. N lines printed

none. no stack trace

The last setting can be used to disable stack traces entirely.

APT_WRITE_DS_VERSION
By default, DataStage saves data sets in the Orchestrate Version 4.1

format. APT_WRITE_DS_VERSION lets you save data sets in formats

compatible with previous versions of Orchestrate.

The values of APT_WRITE_DS_VERSION are:

v3_0. Orchestrate Version 3.0

v3. Orchestrate Version 3.1.x

v4. Orchestrate Version 4.0
Parallel Job Advanced Developer’s Guide 6-21

Network Environment Variables
v4_0_3. Orchestrate Version 4.0.3 and later versions up to but not
including Version 4.1

v4_1. Orchestrate Version 4.1 and later versions through and
including Version 4.6

OSH_PRELOAD_LIBS
Specifies a colon-separated list of names of libraries to be loaded

before any other processing. Libraries containing custom operators

must be assigned to this variable or they must be registered. For

example, in Korn shell syntax:

$ export OSH_PRELOAD_LIBS="orchlib1:orchlib2:mylib1"

Network
These environment variables are concerned with the operation of

DataStage parallel jobs over a network.

APT_IO_MAXIMUM_OUTSTANDING
Sets the amount of memory, in bytes, allocated to a DataStage job on

every physical node for network communications. The default value is

2097152 (2MB).

When you are executing many partitions on a single physical node,

this number may need to be increased.

APT_IOMGR_CONNECT_ATTEMPTS
Sets the number of attempts for a TCP connect in case of a connection

failure. This is necessary only for jobs with a high degree of

parallelism in an MPP environment. The default value is 2 attempts (1

retry after an initial failure).

APT_PM_CONDUCTOR_HOSTNAME
The network name of the processing node from which you invoke a

job should be included in the configuration file as either a node or a

fastname. If the network name is not included in the configuration file,

DataStage users must set the environment variable

APT_PM_CONDUCTOR_HOSTNAME to the name of the node invoking

the DataStage job.
6-22 Parallel Job Advanced Developer’s Guide

Environment Variables NLS Support
APT_PM_NO_TCPIP
This turns off use of UNIX sockets to communicate between player

processes at runtime. If the job is being run in an MPP (non-shared

memory) environment, do not set this variable, as UNIX sockets are

your only communications option.

APT_PM_NODE_TIMEOUT
This controls the number of seconds that the conductor will wait for a

section leader to start up and load a score before deciding that

something has failed. The default for starting a section leader process

is 30. The default for loading a score is 120.

APT_PM_SHOWRSH
Displays a trace message for every call to RSH.

APT_PM_USE_RSH_LOCALLY
If set, startup will use rsh even on the conductor node.

NLS Support
These environment variables are concerned with DataStage’s

implementation of NLS.

Warning You should not change the settings of any of these

environment variables other than APT_COLLATION

_STRENGTH if NLS is enabled on your server.

APT_COLLATION_SEQUENCE
This variable is used to specify the global collation sequence to be

used by sorts, compares, etc. This value can be overriden at the stage

level.

APT_COLLATION_STRENGTH
Set this to specify the defines the specifics of the collation algorithm.

This can be used to ignore accents, punctuation or other details.

It is set to one of Identical, Primary, Secondary, Tertiary, or Quartenary.

Setting it to Default unsets the environment variable. For an

explanation of possible settings, see:
Parallel Job Advanced Developer’s Guide 6-23

Oracle Support Environment Variables
http://oss.software.ibm.com/icu/userguide/Collate_Concepts.html

APT_ENGLISH_MESSAGES
If set to 1, outputs every message issued with its English equivalent.

APT_IMPEXP_CHARSET
Controls the character encoding of ustring data imported and

exported to and from DataStage, and the record and field properties

applied to ustring fields. Its syntax is:

APT_IMPEXP_CHARSET icu_character_set

APT_INPUT_CHARSET
Controls the character encoding of data input to schema and

configuration files. Its syntax is:

APT_INPUT_CHARSET icu_character_set

APT_OS_CHARSET
Controls the character encoding DataStage uses for operating system

data such as the names of created files and the parameters to system

calls. Its syntax is:

APT_OS_CHARSET icu_character_set

APT_OUTPUT_CHARSET
Controls the character encoding of DataStage output messages and

operators like peek that use the error logging system to output data

input to the osh parser. Its syntax is:

APT_OUTPUT_CHARSET icu_character_set

APT_STRING_CHARSET
Controls the character encoding DataStage uses when performing

automatic conversions between string and ustring fields. Its syntax is:

APT_STRING_CHARSET icu_character_set

Oracle Support
These environment variables are concerned with the interaction

between DataStage and Oracle databases.
6-24 Parallel Job Advanced Developer’s Guide

Environment Variables Oracle Support
APT_ORACLE_LOAD_DELIMITED
If this is defined, the orawrite operator creates delimited records when

loading into Oracle sqlldr. This method preserves leading and trailing

blanks within string fields (VARCHARS in the database). The value of

this variable is used as the delimiter. If this is defined without a value,

the default delimiter is a comma. Note that you cannot load a string

which has embedded double quotes if you use this.

APT_ORACLE_LOAD_OPTIONS
You can use the environment variable APT_ORACLE_LOAD_OPTIONS

to control the options that are included in the Oracle load control

file.You can load a table with indexes without using the Index Mode or

Disable Constraints properties by setting the

APT_ORACLE_LOAD_OPTIONS environment variable appropriately.

You need to set the Direct option and/or the PARALLEL option to

FALSE, for example:

APT_ORACLE_LOAD_OPTIONS='OPTIONS(DIRECT=FALSE,PARALLEL=TRUE)'

In this example the stage would still run in parallel, however, since

DIRECT is set to FALSE, the conventional path mode rather than the

direct path mode would be used.

If loading index organized tables (IOTs), you should not set both

DIRECT and PARALLEL to true as direct parallel path load is not

allowed for IOTs.

For more details about loading Oracle tables with indexes, see

"Loading Tables" in Parallel Job Developer’s Guide.

APT_ORACLE_NO_OPS
Set this if you do not have Oracle Parallel server installed on an AIX

system. It disables the OPS checking mechanism on the Oracle

Enterprise stage.

APT_ORACLE_PRESERVE_BLANKS
Set this to set the PRESERVE BLANKS option in the control file. This

preserves leading and trailing spaces. When PRESERVE BLANKS is

not set Oracle removes the spaces and considers fields with only

spaces to be NULL values.
Parallel Job Advanced Developer’s Guide 6-25

Partitioning Environment Variables
APT_ORA_IGNORE_CONFIG_FILE_PARALLELISM
By default DataStage determines the number of processing nodes

available for a parallel write to Oracle from the configuration file. Set

APT_ORA_IGNORE_CONFIG_FILE_PARALLELISM to use the number

of data files in the destination table’s tablespace instead.

APT_ORA_WRITE_FILES
Set this to prevent the invocation of the Oracle loader when write

mode is selceted on an Oracle Enterprise destination stage. Instead,

the sqlldr commands are written to a file, the name of which is

specified by this environment variable. The file can be invoked once

the job has finished to run the loaders sequentially. This can be useful

in tracking down export and pipe-safety issues related to the loader.

APT_ORAUPSERT_COMMIT_ROW_INTERVAL
APT_ORAUPSERT_COMMIT_TIME_INTERVAL

These two environment variables work together to specify how often

target rows are committed when using the Upsert method to write to

Oracle.

Commits are made whenever the time interval period has passed or

the row interval is reached, whichever comes first. By default,

commits are made every 2 seconds or 5000 rows.

Partitioning
The following environment variables are concerned with how

DataStage automatically partitions data.

APT_NO_PART_INSERTION
DataStage automatically inserts partition components in your

application to optimize the performance of the stages in your job. Set

this variable to prevent this automatic insertion.

APT_PARTITION_COUNT
Read only. DataStage sets this environment variable to the number of

partitions of a stage. The number is based both on information listed

in the configuration file and on any constraints applied to the stage.

The number of partitions is the degree of parallelism of a stage. For
6-26 Parallel Job Advanced Developer’s Guide

Environment Variables Reading and Writing Files
example, if a stage executes on two processing nodes,

APT_PARTITION_COUNT is set to 2.

You can access the environment variable APT_PARTITION_COUNT to

determine the number of partitions of the stage from within:

an operator wrapper

a shell script called from a wrapper

getenv() in C++ code

sysget() in the SAS language.

APT_PARTITION_NUMBER
Read only. On each partition, DataStage sets this environment

variable to the index number (0, 1, ...) of this partition within the stage.

A subprocess can then examine this variable when determining which

partition of an input file it should handle.

Reading and Writing Files
These environment variables are concerned with reading and writing

files.

APT_DELIMITED_READ_SIZE
By default, the DataStage will read ahead 500 bytes to get the next

delimiter. For streaming inputs (socket, FIFO, etc.) this is sub-optimal,

since the DataStage may block (and not output any records).

DataStage, when reading a delimited record, will read this many bytes

(minimum legal value for this is 2) instead of 500. If a delimiter is NOT

available within N bytes, N will be incremented by a factor of 2 (when

this environment variable is not set, this changes to 4).

APT_FILE_IMPORT_BUFFER_SIZE
The value in kilobytes of the buffer for reading in files. The default is

128 (i.e., 128 KB). It can be set to values from 8 upward, but is clamped

to a minimum value of 8. That is, if you set it to a value less than 8,

then 8 is used. Tune this upward for long-latency files (typically from

heavily loaded file servers).
Parallel Job Advanced Developer’s Guide 6-27

Reporting Environment Variables
APT_FILE_EXPORT_BUFFER_SIZE
The value in kilobytes of the buffer for writing to files. The default is

128 (i.e., 128 KB). It can be set to values from 8 upward, but is clamped

to a minimum value of 8. That is, if you set it to a value less than 8,

then 8 is used. Tune this upward for long-latency files (typically from

heavily loaded file servers).

APT_IMPORT_PATTERN_USES_FILESET
When this is set, DataStage will turn any file pattern into a fileset

before processing the files. This allows the files to be processed in

parallel as apposed to sequentially. By default file pattern will cat the

files together to be used as the input.

APT_MAX_DELIMITED_READ_SIZE
By default, when reading, DataStage will read ahead 500 bytes to get

the next delimiter. If it is not found, DataStage looks ahead

4*500=2000 (1500 more) bytes, and so on (4X) up to 100,000 bytes.

This variable controls the upper bound which is by default 100,000

bytes. Note that this variable should be used instead of

APT_DELIMITED_READ_SIZE when a larger than 500 bytes read-

ahead is desired.

APT_PREVIOUS_FINAL_DELIMITER_COMPATIBLE
Set this to revert to the pre-release 7.5 behavior of the final delimiter

whereby, when writing data, a space is inserted after every field in a

record including the last one. (The new behavior is that the a space is

written after every field except the last one).

APT_STRING_PADCHAR
Overrides the pad character of 0x0 (ASCII null), used by default when

DataStage extends, or pads, a string field to a fixed length.

Reporting
These environment variables are concerned with various aspects of

DataStage jobs reporting their progress.
6-28 Parallel Job Advanced Developer’s Guide

Environment Variables Reporting
APT_DUMP_SCORE
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. Configures DataStage to print

a report showing the operators, processes, and data sets in a running

job.

APT_ERROR_CONFIGURATION
Controls the format of DataStage output messages.

Warning Changing these settings can seriously interfere with

DataStage logging.

This variable’s value is a comma-separated list of keywords (see table

below). Each keyword enables a corresponding portion of the

message. To disable that portion of the message, precede it with a “!”.

Default formats of messages displayed by DataStage include the

keywords severity, moduleId, errorIndex, timestamp, opid, and

message.

The following table lists keywords, the length (in characters) of the

associated components in the message, and the keyword’s meaning.

The characters "##" precede all messages. The keyword lengthprefix

appears in three locations in the table. This single keyword controls

the display of all length prefixes.

Keyword Length Meaning

severity 1 Severity indication: F, E, W, or I.

vseverity 7 Verbose description of error severity (Fatal,
Error, Warning, Information).

jobid 3 The job identifier of the job. This allows you to
identify multiple jobrunning at once. The
default job identifier is 0.

moduleId 4 The module identifier. For DataStage-defined
messages, this value is a four byte string
beginning with T. For user-defined messages
written to the error log, this string is USER. For
all outputs from a subprocess, the string is
USBP.

errorIndex 6 The index of the message specified at the time
the message was written to the error log.

timestamp 13 The message time stamp. This component
consists of the string "HH:MM:SS(SEQ)", at the
time the message was written to the error log.
Messages generated in the same second have
ordered sequence numbers.
Parallel Job Advanced Developer’s Guide 6-29

Reporting Environment Variables
APT_MSG_FILELINE
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. Set this to have DataStage log

extra internal information for parallel jobs.

APT_PM_PLAYER_MEMORY
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. Setting this variable causes

each player process to report the process heap memory allocation in

the job log when returning.

ipaddr 15 The IP address of the processing node
generating the message. This 15-character
string is in octet form, with individual octets
zero filled, for example, 104.032.007.100.

lengthprefix 2 Length in bytes of the following field.

nodename variable The node name of the processing node
generating the message.

lengthprefix 2 Length in bytes of the following field.

opid variable The string <main_program> for error messages
originating in your main program (outside of a
step or within the
APT_Operator::describeOperator()

override). The string <node_nodename>
representing system error messages
originating on a node, where nodename is the
name of the node. The operator originator
identifier, represented by

"ident, partition_number", for errors originating
within a step. This component identifies the
instance of the operator that generated the
message. ident is the operator name (with the
operator index in parenthesis if there is more
than one instance of it). partition_number
defines the partition number of the

operator issuing the message.

lengthprefix 5 Length, in bytes, of the following field.
Maximum length is 15 KB.

message variable Error text.

1 Newline character

Keyword Length Meaning
6-30 Parallel Job Advanced Developer’s Guide

Environment Variables Reporting
APT_PM_PLAYER_TIMING
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. Setting this variable causes

each player process to report its call and return in the job log. The

message with the return is annotated with CPU times for the player

process.

APT_RECORD_COUNTS
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. Causes DataStage to print to

the job log, for each operator player, the number of records input and

output. Abandoned input records are not necessarily accounted for.

Buffer operators do not print this information.

OSH_DUMP
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. If set, it causes DataStage to

put a verbose description of a job in the job log before attempting to

execute it.

OSH_ECHO
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. If set, it causes DataStage to

echo its job specification to the job log after the shell has expanded all

arguments.

OSH_EXPLAIN
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. If set, it causes DataStage to

place a terse description of the job in the job log before attempting to

run it.

OSH_PRINT_SCHEMAS
This environment variable is available in the DataStage Administrator

under the Parallel ➤ Reporting branch. If set, it causes DataStage to

print the record schema of all data sets and the interface schema of all

operators in the job log.
Parallel Job Advanced Developer’s Guide 6-31

SAS Support Environment Variables
SAS Support
These environment variables are concerned with DataStage

interaction with SAS.

APT_HASH_TO_SASHASH
The DataStage hash partitioner contains support for hashing SAS

data. In addition, DataStage provides the sashash partitioner which

uses an alternative non-standard hashing algorithm. Setting the

APT_HASH_TO_SASHASH environment variable causes all

appropriate instances of hash to be replaced by sashash. If the

APT_NO_SAS_TRANSFORMS environment variable is set,

APT_HASH_TO_SASHASH has no affect.

APT_NO_SASOUT_INSERT
This variable selectively disables the sasout operator insertions. It

maintains the other SAS-specific transformations.

APT_NO_SAS_TRANSFORMS
DataStage automatically performs certain types of SAS-specific

component transformations, such as inserting an sasout operator and

substituting sasRoundRobin for RoundRobin. Setting the

APT_NO_SAS_TRANSFORMS variable prevents DataStage from

making these transformations.

APT_SAS_ACCEPT_ERROR
When a SAS procedure causes SAS to exit with an error, this variable

prevents the SAS-interface operator from terminating. The default

behavior is for DataStage to terminate the operator with an error.

APT_SAS_CHARSET
When the -sas_cs option of a SAS-interface operator is not set and a

SAS-interface operator encounters a ustring, DataStage interrogates

this variable to determine what character set to use. If this variable is

not set, but APT_SAS_CHARSET_ABORT is set, the operator will abort;

otherwise the -impexp_charset option or the APT_IMPEXP_CHARSET

environment variable is accessed. Its syntax is:

APT_SAS_CHARSET icu_character_set | SAS_DBCSLANG
6-32 Parallel Job Advanced Developer’s Guide

Environment Variables SAS Support
APT_SAS_CHARSET_ABORT
Causes a SAS-interface operator to abort if DataStage encounters a

ustring in the schema and neither the -sas_cs option nor the

APT_SAS_CHARSET environment variable is set.

APT_SAS_COMMAND
Overrides the $PATH directory for SAS with an absolute path to the

basic SAS executable. An example path is:

/usr/local/sas/sas8.2/sas

APT_SASINT_COMMAND
Overrides the $PATH directory for SAS with an absolute path to the

International SAS executable. An example path is:

/usr/local/sas/sas8.2int/dbcs/sas

APT_SAS_DEBUG
Set this to set debug in the SAS process coupled to the SAS stage.

Messages appear in the SAS log, which may then be copied into the

DataStage log. Use APT_SAS_DEBUG=1, APT_SAS_DEBUG_IO=1, and

APT_SAS_DEBUG_VERBOSE=1 to get all debug messages.

APT_SAS_DEBUG_IO
Set this to set input/output debug in the SAS process coupled to the

SAS stage. Messages appear in the SAS log, which may then be

copied into the DataStage log.

APT_SAS_DEBUG_LEVEL
Its syntax is:

APT_SAS_DEBUG_LEVEL=[0-3]

Specifies the level of debugging messages to output from the SAS

driver. The values of 1, 2, and 3 duplicate the output for the -debug

option of the SAS operator:

no, yes, and verbose.

APT_SAS_DEBUG_VERBOSE
Set this to set verbose debug in the SAS process coupled to the SAS

stage. Messages appear in the SAS log, which may then be copied

into the DataStage log.
Parallel Job Advanced Developer’s Guide 6-33

Sorting Environment Variables
APT_SAS_NO_PSDS_USTRING
Set this to prevent DataStage from automatically converting SAS char

types to ustrings in an SAS parallel data set.

APT_SAS_S_ARGUMENT
By default, DataStage executes SAS with -s 0. When this variable is

set, its value is be used instead of 0. Consult the SAS documentation

for details.

APT_SAS_SCHEMASOURCE_DUMP
When using SAS Schema Source, sauses the command line to be

written to the log when executing SAS. You use it to inspect the data

contained in a -schemaSource. Set this if you ar egetting an error

when specifying the SAS data set containing the schema source.

APT_SAS_SHOW_INFO
Displays the standard SAS output from an import or export

transaction. The SAS output is normally deleted since a transaction is

usually successful.

APT_SAS_TRUNCATION
Its syntax is:

APT_SAS_TRUNCATION ABORT | NULL | TRUNCATE

Because a ustring of n characters does not fit into n characters of a

SAS char value, the ustring value must be truncated beyond the space

pad characters and \0.

The sasin and sas operators use this variable to determine how to

truncate a ustring value to fit into a SAS char field. TRUNCATE, which

is the default, causes the ustring to be truncated; ABORT causes the

operator to abort; and NULL exports a null field. For NULL and

TRUNCATE, the first five occurrences for each column cause an

information message to be issued to the log.

Sorting
The following environment variables are concerned with how

DataStage automatically sorts data.
6-34 Parallel Job Advanced Developer’s Guide

Environment Variables Teradata Support
APT_NO_SORT_INSERTION
DataStage automatically inserts sort components in your job to

optimize the performance of the operators in your data flow. Set this

variable to prevent this automatic insertion.

APT_SORT_INSERTION_CHECK_ONLY
When sorts are inserted automatically by DataStage, if this is set, the

sorts will just check that the order is correct, they won't actually sort.

This is a better alternative to shutting partitioning and sorting off

insertion off using APT_NO_PART_INSERTION and

APT_NO_SORT_INSERTION.

Teradata Support
The following environment variables are concerned with DataStage

interaction with Teradata databases.

APT_TERA_64K_BUFFERS
DataStage assumes that the terawrite operator writes to buffers

whose maximum size is 32 KB. Enable the use of 64 KB buffers by

setting this variable. The default is that it is not set.

APT_TERA_NO_ERR_CLEANUP
Setting this variable prevents removal of error tables and the partially

written target table of a terawrite operation that has not successfully

completed. Set this variable for diagnostic purposes only. In some

cases, setting this variable forces completion of an unsuccessful write

operation.

APT_TERA_NO_SQL_CONVERSION
Set this to prevent the SQL statements you are generating from being

converted to the character set specified for your stage (character sets

can be specified at project, job, or stage level). The SQL statements

are converted to LATIN1 instead.
Parallel Job Advanced Developer’s Guide 6-35

Transport Blocks Environment Variables
APT_TERA_NO_PERM_CHECKS
Set this to bypass permission checking on the several system tables

that need to be readable for the load process. This can speed up the

start time of the load process slightly.

APT_TERA_SYNC_DATABASE
Specifies the database used for the terasync table. By default, the

database used for the terasync table is specified as part of

APT_TERA_SYNC_USER. If you want the database to be different, set

this variable. You must then give APT_TERA_SYNC_USER read and

write permission for this database.

APT_TERA_SYNC_PASSWORD
Specifies the password for the user identified by

APT_TERA_SYNC_USER.

APT_TERA_SYNC_USER
Specifies the user that creates and writes to the terasync table.

Transport Blocks
The following environment variables are all concerned with the block

size used for the internal transfer of data as jobs run. Some of the

settings only apply to fixed length records The following variables are

used only for fixed-length records.:

APT_MIN_TRANSPORT_BLOCK_SIZE

APT_MAX_TRANSPORT_BLOCK_SIZE

APT_DEFAULT_TRANSPORT_BLOCK_SIZE

APT_LATENCY_COEFFICIENT

APT_AUTO_TRANSPORT_BLOCK_SIZE

APT_AUTO_TRANSPORT_BLOCK_SIZE
This environment variable is available in the DataStage Administrator,

under the Parallel category. When set, Orchestrate calculates the block

size for transferring data internally as jobs run. It uses this algorithm:
6-36 Parallel Job Advanced Developer’s Guide

Environment Variables Guide to Setting Environment Variables
if (recordSize * APT_LATENCY_COEFFICIENT
< APT_MIN_TRANSPORT_BLOCK_SIZE)
blockSize = minAllowedBlockSize
else if (recordSize * APT_LATENCY_COEFFICIENT
> APT_MAX_TRANSPORT_BLOCK_SIZE)
blockSize = maxAllowedBlockSize
else blockSize = recordSize * APT_LATENCY_COEFFICIENT

APT_LATENCY_COEFFICIENT
Specifies the number of writes to a block which transfers data

between players. This variable allows you to control the latency of

data flow through a step. The default value is 5. Specify a value of 0 to

have a record transported immediately. This is only used for fixed

length records.

Note Many operators have a built-in latency and are not affected

by this variable.

APT_DEFAULT_TRANSPORT_BLOCK_SIZE
Specify the default block size for transferring data between players. It

defaults to 131072 (128 KB).

APT_MAX_TRANSPORT_BLOCK_SIZE/
APT_MIN_TRANSPORT_BLOCK_SIZE

Specify the minimum and maximum allowable block size for

transferring data between players.

APT_MIN_TRANSPORT_BLOCK_SIZE cannot be less than 8192 which

is its default value. APT_MAX_TRANSPORT_BLOCK_SIZE cannot be

greater than 1048576 which is its default value. These variables are

only meaningful when used in combination with

APT_LATENCY_COEFFICIENT and

APT_AUTO_TRANSPORT_BLOCK_SIZE.

Guide to Setting Environment Variables
This section gives some guide as to which environment variables

should be set in what circumstances.

Environment Variable Settings for all Jobs
We recommend that you set the following environment variables for

all jobs:
Parallel Job Advanced Developer’s Guide 6-37

Guide to Setting Environment Variables Environment Variables
APT_CONFIG_FILE (see page 6-16).

APT_DUMP_SCORE (see page 6-29).

APT_RECORD_COUNTS (see page 6-31)

Optional Environment Variable Settings
We recommend setting the following environment variables as

needed on a per-job basis. These variables can be used to turn the

performance of a particular job flow, to assist in debugging, and to

change the default behavior of specific parallel job stages.

Performance Tuning

APT_BUFFER_MAXIMUM_MEMORY (see page 6-7).

APT_BUFFER_FREE_RUN (see page 6-6)

TMPDIR. This defaults to /tmp. It is used for miscellaneous internal
temporary data, including FIFO queues and Transformer
temporary storage. As a minor optimization, it can be better to
ensure that it is set to a file system separate to the DataStage
install directory.

Job Flow Debugging

OSH_PRINT_SCHEMAS (see page 6-31).

APT_DISABLE_COMBINATION (see page 6-16).

APT_PM_PLAYER_TIMING (see page 6-31).

APT_PM_PLAYER_MEMORY (see page 6-30).

APT_BUFFERING_POLICY (set to FORCE_BUFFERING – see
page 6-7).

Job Flow Design

APT_STRING_PADCHAR (see page 6-28).
6-38 Parallel Job Advanced Developer’s Guide

7
DataStage Development Kit (Job

Control Interfaces)

DataStage provides a range of methods that enable you to run

DataStage server or parallel jobs directly on the server, without using

the DataStage Director. The methods are:

C/C++ API (the DataStage development kit)

DataStage BASIC calls

Command line Interface commands (CLI)

DataStage macros

These methods can be used in different situations as follows:

API. Using the API you can build a self-contained program that can
run anywhere on your system, provided that it can connect to a
DataStage server across the network.

BASIC. Programs built using the DataStage BASIC interface can be
run from any DataStage server on the network. You can use this
interface to define jobs that run and control other jobs. The
controlling job can be run from the Director client like any other
job, or directly on the server machine from the TCL prompt. (Job
sequences provide another way of producing control jobs – see
DataStage Designer Guide for details.)

CLI. The CLI can be used from the command line of any DataStage
server on the network. Using this method, you can run jobs on
other servers too.

Macros. A set of macros can be used in job designs or in BASIC
programs. These are mostly used to retrieve information about
other jobs.
Parallel Job Advanced Developer’s Guide 7-1

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
DataStage Development Kit
The DataStage Development Kit provides the DataStage API, a C or

C++ application programming interface.

This section gives general information about using the DataStage API.

Specific information about API functions is in "API Functions" on

page 7-4.

A listing for an example program which uses the API is in Appendix A.

The dsapi.h Header File
DataStage API provides a header file that should be included with all

API programs. The header file includes prototypes for all DataStage

API functions. It is located in the directory $DSHOME/include Their

format depends on which tokens you have defined:

If the _STDC_ or WIN32 tokens are defined, the prototypes are in
ANSI C style.

If the _cplusplus token is defined, the prototypes are in C++
format with the declarations surrounded by:

extern "C" {…}

Otherwise the prototypes are in Kernighan and Ritchie format.

Data Structures, Result Data, and Threads
DataStage API functions return information about objects as pointers

to data items. This is either done directly, or indirectly by setting

pointers in the elements of a data structure that is provided by the

caller.

Each thread within a calling application is allocated a separate storage

area. Each call to a DataStage API routine overwrites any existing

contents of this data area with the results of the call, and returns a

pointer into the area for the requested data.

For example, the DSGetProjectList function obtains a list of

DataStage projects, and the DSGetProjectInfo function obtains a list

of jobs within a project. When the DSGetProjectList function is

called it retrieves the list of projects, stores it in the thread’s data area,

and returns a pointer to this area. If the same thread then calls

DSGetProjectInfo, the job list is retrieved and stored in the thread’s

data area, overwriting the project list. The job list pointer in the

supplied data structure references the thread data area.

This means that if the results of a DataStage API function need to be

reused later, the application should make its own copy of the data
7-2 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage Development Kit
before making a new DataStage API call. Alternatively, the calls can be

used in multiple threads.

DataStage API stores errors for each thread: a call to the

DSGetLastError function returns the last error generated within the

calling thread.

Writing DataStage API Programs
Your application should use the DataStage API functions in a logical

order to ensure that connections are opened and closed correctly, and

jobs are run effectively. The following procedure suggests an outline

for the program logic to follow, and which functions to use at each

step:

1 If required, set the server name, user name, and password to use
for connecting to DataStage (DSSetServerParams).

2 Obtain the list of valid projects (DSGetProjectList).

3 Open a project (DSOpenProject).

4 Obtain a list of jobs (DSGetProjectInfo).

5 Open one or more jobs (DSOpenJob).

6 List the job parameters (DSGetParamInfo).

7 Lock the job (DSLockJob).

8 Set the job’s parameters and limits (DSSetJobLimit,
DSSetParam).

9 Start the job running (DSRunJob).

10 Poll for the job or wait for job completion (DSWaitForJob,
DSStopJob, DSGetJobInfo).

11 Unlock the job (DSUnlockJob).

12 Display a summary of the job’s log entries
(DSFindFirstLogEntry, DSFindNextLogEntry).

13 Display details of specific log events (DSGetNewestLogId,
DSGetLogEntry).

14 Examine and display details of job stages (DSGetJobInfo – stage
list, DSGetStageInfo).

15 Examine and display details of links within active stages
(DSGetStageInfo – link list, DSGetLinkInfo).

16 Close all open jobs (DSCloseJob).

17 Detach from the project (DSCloseProject).
Parallel Job Advanced Developer’s Guide 7-3

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
Building a DataStage API Application
Everything you need to create an application that uses the DataStage

API is in a subdirectory called dsdk (DataStage Development Kit) in

the Ascential\DataStage installation directory on the server machine.

To build an application that uses the DataStage API:

1 Write the program, including the dsapi.h header file in all source
modules that uses the DataStage API.

2 Compile the code. Ensure that the WIN32 token is defined. (This
happens automatically in the Microsoft Visual C/C++ compiler
environment.)

3 Link the application, including vmdsapi.lib, in the list of libraries to
be included.

Redistributing Applications
If you intend to run your DataStage API application on a computer

where DataStage Server is installed, you do not need to include

DataStage API DLLs or libraries as these are installed as part of

DataStage Server.

If you want to run the application from a computer used as a

DataStage client, you should redistribute the following library with

your application:

vmdsapi.dll

If you intend to run the program from a computer that has neither

DataStage Server nor any DataStage client installed, in addition to the

library mentioned above, you should also redistribute the following:

dsclnt32.dll

dsrpc32.dll

You should locate these files where they will be in the search path of

any user who uses the application, for example, in the

%SystemRoot%\System32 directory.

API Functions
This section details the functions provided in the DataStage API.

These functions are described in alphabetical order. The following

table briefly describes the functions categorized by usage:

Usage Function Description

Accessing
projects

DSCloseProject Closes a project that was opened with
DSOpenProject.
7-4 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage Development Kit
DSGetProjectList Retrieves a list of all projects on the
server.

DSGetProjectInfo Retrieves a list of jobs in a project.

DSOpenProject Opens a project.

DSSetServerParams Sets the server name, user name, and
password to use for a job.

Accessing jobs DSCloseJob Closes a job that was opened with
DSOpenJob.

DSGetJobInfo Retrieves information about a job, such
as the date and time of the last run,
parameter names, and so on.

DSLockJob Locks a job prior to setting job
parameters or starting a job run.

DSOpenJob Opens a job.

DSRunJob Runs a job.

DSStopJob Aborts a running job.

DSUnlockJob Unlocks a job, enabling other processes
to use it.

DSWaitForJob Waits until a job has completed.

Accessing job
parameters

DSGetParamInfo Retrieves information about a job
parameter.

DSSetJobLimit Sets row processing and warning limits
for a job.

DSSetParam Sets job parameter values.

Accessing
stages

DSGetStageInfo Retrieves information about a stage
within a job.

Accessing links DSGetLinkInfo Retrieves information about a link of an
active stage within a job.

Accessing log
entries

DSFindFirstLogEntry Retrieves entries in a log that meet the
specified criteria.

DSFindNextLogEntry Finds the next log entry that meets the
criteria specified in
DSFindFirstLogEntry.

DSGetLogEntry Retrieves the specified log entry.

DSGetNewestLogId Retrieves the newest entry in the log.

DSLogEvent Adds a new entry to the log.

Usage Function Description
Parallel Job Advanced Developer’s Guide 7-5

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
Administering
Projects and
jobs

DSAddEnvVar Adds a new environment variable.

DSAddProject Add a project.

DSDeleteEnvVar Delete an environment variable.

DSDeleteProject Delete a project.

DSListEnvVars List environment variables.

DSListProjectProperties List the properties of a project.

DSSetEnvVar Set an environment variable.

DSSetProjectProperty Set property for a project.

Handling
errors

DSGetLastError Retrieves the last error code value
generated by the calling thread.

DSGetLastErrorMsg Retrieves the text of the last reported
error.

Usage Function Description
7-6 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSAddEnvVar
DSAddEnvVar
Add an environment variable to the specified project. It is added to the

User Defined category.

Syntax
int DSAddEnvVar(

DSPROJECT hProject,
char *EnvVarName,
char *Type,
char *PromptText,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject

EnvVarName is the name of the environment variable

Type is DSA_ENVVAR_TYPE_STRING for string type environment

variables or DSA_ENVVAR_TYPE_ENCRYPTED for encrypted

environment variables.

PromptText is the user-visible text describing the environment

variable.

Value is value to set the environment variable to or “”.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_BADENVVARNAME invalid environment variable name

DSJE_BADENVVARTYPE invalid type

DSJE_BADENVVARPROMPT no prompt supplied

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_WRITEENVVARDEFNS failed to write environment variable
definitions

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_DUPENVVARNAME environment variable already exists
Parallel Job Advanced Developer’s Guide 7-7

DSAddEnvVar DataStage Development Kit (Job Control Interfaces)
DSJE_ENCODEFAILED failed to encode an encrypted value

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.
7-8 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSAddProject
DSAddProject
Creates a new project. The user who runs the code containing this

function must be a DataStage Administrator.

Syntax
int DSAddProject(

char *ProjectName,
char *ProjectLocation

);

Parameters
ProjectName is the name of the project to create.

ProjectLocation is the pathname of the directory to create the project

in. To create a project in the default project directory (server install

path/Projects/projectName), this argument should be set to “”.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is
an administrator

DSJE_BADPROJNAME invalid project name supplied

DSJE_GETDEFAULTPATHFAILED failed to determine default
project directory

DSJE_BADPROJLOCATION invalid pathname supplied

DSJE_INVALIDPROJECTLOCATION invalid pathname supplied

DSJE_OPENFAILED failed to open UV.ACCOUNT file

DSJE_READUFAILED failed to lock project create lock
record

DSJE_ADDPROJECTBLOCKED another user is adding a project

DSJE_ADDPROJECTFAILED failed to add project

DSJE_LICENSEPROJECTFAILED failed to license project

DSJE_RELEASEFAILED failed to release project create lock
record
Parallel Job Advanced Developer’s Guide 7-9

DSCloseJob DataStage Development Kit (Job Control Interfaces)
DSCloseJob
Closes a job that was opened using DSOpenJob.

Syntax
int DSCloseJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLEInvalid JobHandle.

Remarks
If the job is locked when DSCloseJob is called, it is unlocked.

If the job is running when DSCloseJob is called, the job is allowed to

finish, and the function returns a value of DSJE_NOERROR

immediately.
7-10 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSCloseProject
DSCloseProject
Closes a project that was opened using the DSOpenProject function.

Syntax
int DSCloseProject(

DSPROJECT ProjectHandle
);

Parameter
ProjectHandle is the value returned from DSOpenProject.

Return Value
This function always returns a value of DSJE_NOERROR.

Remarks
Any open jobs in the project are closed, running jobs are allowed to

finish, and the function returns immediately.
Parallel Job Advanced Developer’s Guide 7-11

DSDeleteEnvVar DataStage Development Kit (Job Control Interfaces)
DSDeleteEnvVar
Delete a user-defined environment variable in a specified project.

Syntax
int DSDeleteEnvVar(

DSPROJECT hProject,
char *EnvVar

);

Parameters
hProject is the value returned from DSOpenProject

EnvVarName is the name of the environment variable

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_BADENVVAR environment variable does not exist

DSJE_WRITEENVVARDEFNS failed to write environment variable
definitions

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_NOTUSERDEFINED environment variable is not user-
defined and therefore cannot be deleted

If the function fails, then the return value is one of the following:
7-12 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSDeleteProject
DSDeleteProject
Deletes a project. The user who runs the code containing this function

must be a DataStage Administrator. Note that any jobs scheduled to

be run that are included in this project will also be deleted.

Syntax
int DSDeleteProject(

char *ProjectName
);

Parameter
ProjectName is the name of the project to delete.

Return Value
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is an
administrator

DSJE_OPENFAILED failed to open UV.ACCOUNT file

DSJE_READUFAILED failed to lock project record

DSJE_RELEASEFAILED failed to release project record

DSJE_LISTSCHEDULEFAILED failed to get list of scheduled jobs
for project

DSJE_CLEARSCHEDULEFAILED failed to clear scheduled jobs for
project

DSJE_DELETEPROJECTBLOCKED project locked by another user

DSJE_NOTAPROJECT failed to log to project

DSJE_ACCOUNTPATHFAILED failed to get account path

DSJE_LOGTOFAILED failed to log to UV account

DSJE_DELPROJFAILED failed to delete project definition

DSJE_DELPROJFILESFAILED failed to delete project files
Parallel Job Advanced Developer’s Guide 7-13

DSFindFirstLogEntry DataStage Development Kit (Job Control Interfaces)
DSFindFirstLogEntry
Retrieves all the log entries that meet the specified criteria, and writes

the first entry to a data structure. Subsequent log entries can then be

read using the DSFindNextLogEntry function.

Syntax
int DSFindFirstLogEntry(

DSJOB JobHandle,
int EventType,
time_t StartTime,
time_t EndTime,
int MaxNumber,
DSLOGEVENT *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is one of the following keys:

StartTime limits the returned log events to those that occurred on or

after the specified date and time. Set this value to 0 to return the

earliest event.

EndTime limits the returned log events to those that occurred before

the specified date and time. Set this value to 0 to return all entries up

to the most recent.

MaxNumber specifies the maximum number of log entries to retrieve,

starting from the latest.

This key… Retrieves this type of message…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER All other log types

DSJ_LOGANY Any type of event
7-14 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSFindFirstLogEntry
Event is a pointer to a data structure to use to hold the first retrieved

log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR, and

summary details of the first log entry are written to Event.

If the function fails, the return value is one of the following:

Remarks
The retrieved log entries are cached for retrieval by subsequent calls

to DSFindNextLogEntry. Any cached log entries that are not

processed by a call to DSFindNextLogEntry are discarded at the

next DSFindFirstLogEntry call (for any job), or when the project is

closed.

Note The log entries are cached by project handle. Multiple

threads using the same open project handle must

coordinate access to DSFindFirstLogEntry and

DSFindNextLogEntry.

Token Description

DSJE_NOMORE There are no events matching the filter criteria.

DSJE_NO_MEMORY Failed to allocate memory for results from server.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid EventType value.

DSJE_BADTIME Invalid StartTime or EndTime value.

DSJE_BADVALUE Invalid MaxNumber value.
Parallel Job Advanced Developer’s Guide 7-15

DSFindNextLogEntry DataStage Development Kit (Job Control Interfaces)
DSFindNextLogEntry
Retrieves the next log entry from the cache.

Syntax
int DSFindNextLogEntry(

DSJOB JobHandle,
DSLOGEVENT *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

Event is a pointer to a data structure to use to hold the next log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR and

summary details of the next available log entry are written to Event.

If the function fails, the return value is one of the following:

Remarks
This function retrieves the next log entry from the cache of entries

produced by a call to DSFindFirstLogEntry.

Note The log entries are cached by project handle. Multiple

threads using the same open project handle must

coordinate access to DSFindFirstLogEntry and

DSFindNextLogEntry.

Token Description

DSJE_NOMORE All events matching the filter criteria have been
returned.

DSJE_SERVER_ERROR Internal error. The DataStage Server returned invalid
data.
7-16 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectList
DSGetProjectList
Obtains information reported at the end of execution of certain

parallel stages. The information collected, and available to be

interrogated, is specified at design time. For example, transformer

stage information is specified in the Triggers tab of the Transformer

stage Properties dialog box.

Syntax
int DSGetCustInfo(

DSJOB JobHandle,
char *StageName,
char *CustinfoName
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

CustinfoName is a pointer to a null-terminated string specifiying the

name of the variable to be interrogated (as set up on the Triggers

tab).

InfoType is one of the following keys:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

This key… Returns this information…

DSJ_CUSTINFOVALUE The value of the specified variable.

DSJ_CUSTINFODESC Description of the variable.

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.
Parallel Job Advanced Developer’s Guide 7-17

DSGetProjectList DataStage Development Kit (Job Control Interfaces)
DSJE_BADCUSTINFO CustinfoName does not refer to a known custinfo item.

DSJE_BADTYPE Invalid InfoType.

Token Description
7-18 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
DSGetJobInfo
Retrieves information about the status of a job.

Syntax
int DSGetJobInfo(

DSJOB JobHandle,
int InfoType,
DSJOBINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

InfoType is a key indicating the information to be returned and can

have any of the following values:

This key… Returns this information…

DSJ_JOBSTATUS The current status of the job.

DSJ_JOBNAME The name of the job referenced by
JobHandle.

DSJ_JOBCONTROLLER The name of the job controlling the job
referenced by JobHandle.

DSJ_JOBSTARTTIMESTAMP The date and time when the job started.

DSJ_JOBWAVENO The wave number of last or current run.

DSJ_JOBDESC The Job Description specified in the Job
Properties dialog box.

DSJ_JOBFULLDESSC The Full Description specified in the Job
Properties dialog box.

DSJ_JOBDMISERVICE Set to true if this is a web service job.

DSJ_JOBMULTIINVOKABLE Set to true if this job supports multiple
invocations.

DSJ_PARAMLIST A list of job parameter names. Separated
by nulls.

DSJ_STAGELIST A list of active stages in the job. Separated
by nulls.

DSJ_USERSTATUS The value, if any, set as the user status by
the job.

DSJ_JOBCONTROL Whether a stop request has been issued
for the job referenced by JobHandle.
Parallel Job Advanced Developer’s Guide 7-19

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
ReturnInfo is a pointer to a DSJOBINFO data structure where the

requested information is stored. The DSJOBINFO data structure

contains a union with an element for each of the possible return

values from the call to DSGetJobInfo. For more information, see

"Data Structures" on page 7-62.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
For controlled jobs, this function can be used either before or after a

call to DSRunJob.

DSJ_JOBPID Process id of DSD.RUN process.

DSJ_JOBLASTTIMESTAMP The date and time when the job last
finished.

DSJ_JOBINVOCATIONS List of job invocation ids. The ids are
separated by nulls.

DSJ_JOBINTERIMSTATUS The status of a job after it has run all
stages and controlled jobs, but before it
has attempted to run an after-job
subroutine. (Designed to be used by an
after-job subroutine to get the status of the
current job.)

DSJ_JOBINVOCATIONID Invocation name of the job referenced by
JobHandle.

DSJ_JOBDESC A description of the job.

DSJ_STAGELIST2 A list of passive stages in the job.
Separated by nulls.

DSJ_JOBELAPSED The elapsed time of the job in seconds.

This key… Returns this information…

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the job.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid InfoType.
7-20 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLastError
DSGetLastError
Returns the calling thread’s last error code value.

Syntax
int DSGetLastError(void);

Return Values
The return value is the last error code value. The "Return Values"
section of each reference page notes the conditions under which the

function sets the last error code.

Remarks
Use DSGetLastError immediately after any function whose return

value on failure might contain useful data, otherwise a later,

successful function might reset the value back to 0 (DSJE_NOERROR).

Note Multiple threads do not overwrite each other’s error codes.
Parallel Job Advanced Developer’s Guide 7-21

DSGetLastErrorMsg DataStage Development Kit (Job Control Interfaces)
DSGetLastErrorMsg
Retrieves the text of the last reported error from the DataStage server.

Syntax
char *DSGetLastErrorMsg(

DSPROJECT ProjectHandle
);

Parameter
ProjectHandle is either the value returned from DSOpenProject or

NULL.

Return Values
The return value is a pointer to a series of null-terminated strings, one

for each line of the error message associated with the last error

generated by the DataStage Server in response to a DataStage API

function call. Use DSGetLastError to determine what the error

number is.

The following example shows the buffer contents with <null>

representing the terminating NULL character:

line1<null>line2<null>line3<null><null>

The DSGetLastErrorMsg function returns NULL if there is no error

message.

Rermarks
If ProjectHandle is NULL, this function retrieves the error message

associated with the last call to DSOpenProject or

DSGetProjectList, otherwise it returns the last message associated

with the specified project.

The error text is cleared following a call to DSGetLastErrorMsg.

Note The text retrieved by a call to DSGetLastErrorMsg relates

to the last error generated by the server and not necessarily

the last error reported back to a thread using DataStage API.

Multiple threads using DataStage API must cooperate in

order to obtain the correct error message text.
7-22 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLinkInfo
DSGetLinkInfo
Retrieves information relating to a specific link of the specified active

stage of a job.

Syntax
int DSGetLinkInfo(

DSJOB JobHandle,
char *StageName,
char *LinkName,
int InfoType,
DSLINKINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated character string

specifying the name of the active stage to be interrogated.

LinkName is a pointer to a null-terminated character string specifying

the name of a link (input or output) attached to the stage.

InfoType is a key indicating the information to be returned and is one

of the following values:

ReturnInfo is a pointer to a DSJOBINFO data structure where the

requested information is stored. The DSJOBINFO data structure

contains a union with an element for each of the possible return

values from the call to DSGetLinkInfo. For more information, see

"Data Structures" on page 7-62.

Value Description

DSJ_LINKLASTERR Last error message reported by the link.

DSJ_LINKNAME Name of the link.

DSJ_LINKROWCOUNT Number of rows that have passed down the link.

DSJ_LINKSQLSTATE SQLSTATE value from last error message.

DSJ_LINKDBMSCODE DBMSCODE value from last error message.

DSJ_LINKDESC Description of the link.

DSJ_LINKSTAGE Name of the stage at the other end of the link.

DSJ_INSTROWCOUNT Null-separated list of rowcounts, one per instance for
parallel jobs.
Parallel Job Advanced Developer’s Guide 7-23

DSGetLinkInfo DataStage Development Kit (Job Control Interfaces)
Return Value
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function can be used either before or after a call to DSRunJob.

Token Description

DSJE_NOT_AVAILABLE There is no instance of the requested information
available.

DSJE_BADHANDLE JobHandle was invalid.

DSJE_BADTYPE InfoType was unrecognized.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADLINK LinkName does not refer to a known link for the stage in
question.
7-24 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLogEntry
DSGetLogEntry
Retrieves detailed information about a specific entry in a job log.

Syntax
int DSGetLogEntry(

DSJOB JobHandle,
int EventId,
DSLOGDETAIL *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventId is the identifier for the event to be retrieved, see "Remarks"

Event is a pointer to a data structure to hold details of the log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR and the

event structure contains the details of the requested event.

If the function fails, the return value is one of the following:

Remarks
Entries in the log file are numbered sequentially starting from 0. The

latest event ID can be obtained through a call to

DSGetNewestLogId. When a log is cleared, there always remains a

single entry saying when the log was cleared.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_SERVER_ERROR Internal error. DataStage server returned invalid data.

DSJE_BADEVENTID Invalid event if for a specified job.
Parallel Job Advanced Developer’s Guide 7-25

DSGetNewestLogId DataStage Development Kit (Job Control Interfaces)
DSGetNewestLogId
Obtains the identifier of the newest entry in the jobs log.

Syntax
int DSGetNewestLogId(

DSJOB JobHandle,
int EventType

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is a key specifying the type of log entry whose identifier

you want to retrieve and can be one of the following:

Return Values
If the function succeeds, the return value is the positive identifier of

the most recent entry of the requested type in the job log file.

If the function fails, the return value is –1. Use DSGetLastError to

retrieve one of the following error codes:

This key… Retrieves this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGOTHER Any other log event type

DSJ_LOGBATCH Batch control

DSJ_LOGANY Any type of event

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid EventType value.
7-26 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetNewestLogId
Remarks
Use this function to determine the ID of the latest entry in a log file

before starting a job run. Once the job has started or finished, it is then

possible to determine which entries have been added by the job run.
Parallel Job Advanced Developer’s Guide 7-27

DSGetParamInfo DataStage Development Kit (Job Control Interfaces)
DSGetParamInfo
Retrieves information about a particular parameter within a job.

Syntax
int DSGetParamInfo(

DSJOB JobHandle,
char *ParamName,
DSPARAMINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

ParamName is a pointer to a null-terminated string specifying the

name of the parameter to be interrogated.

ReturnInfo is a pointer to a DSPARAMINFO data structure where the

requested information is stored. For more information, see "Data

Structures" on page 7-62.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Unlike the other information retrieval functions, DSGetParamInfo

returns all the information relating to the specified item in a single

call. The DSPARAMINFO data structure contains all the information

required to request a new parameter value from a user and partially

validate it. See "Data Structures" on page 7-62.

This function can be used either before or after a DSRunJob call has

been issued:

If called after a successful call to DSRunJob, the information
retrieved refers to that run of the job.

Token Description

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.

DSJE_BADHANDLE Invalid JobHandle.
7-28 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetParamInfo
If called before a call to DSRunJob, the information retrieved
refers to any previous run of the job, and not to any call to
DSSetParam that may have been issued.
Parallel Job Advanced Developer’s Guide 7-29

DSGetProjectInfo DataStage Development Kit (Job Control Interfaces)
DSGetProjectInfo
Obtains a list of jobs in a project.

Syntax
int DSGetProjectInfo(

DSPROJECT ProjectHandle,
int InfoType,
DSPROJECTINFO *ReturnInfo

);

Parameters
ProjectHandle is the value returned from DSOpenProject.

InfoType is a key indicating the information to be returned.

ReturnInfo is a pointer to a DSPROJECTINFO data structure where

the requested information is stored.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The DSPROJECTINFO data structure contains a union with an

element for each of the possible return values from a call to

DSGetProjectInfo.

Note The returned list contains the names of all jobs known to

the project, whether they can be opened or not.

.

This key… Retrieves this type of log entry…

DSJ_JOBLIST Lists all jobs within the project.

DSJ_PROJECTNAME Name of current project.

DSJ_HOSTNAME Host name of the server.

Token Description

DSJE_NOT_AVAILABLE There are no compiled jobs defined within the project.

DSJE_BADTYPE Invalid InfoType.
7-30 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectList
DSGetProjectList
Obtains a list of all projects on the host system

Syntax
char* DSGetProjectList(void);

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each project on the host system,

ending with a second null character. The following example shows the

buffer contents with <null> representing the terminating null

character:

project1<null>project2<null><null>

If the function fails, the return value is NULL. And the DSGetLast-
Error function retrieves the following error code:

DSJE_SERVER_ERRORUnexpected/unknown server error occurred.

Remarks
This function can be called before any other DataStage API function.

Note DSGetProjectList opens, uses, and closes its own

communications link with the server, so it may take some

time to retrieve the project list.
Parallel Job Advanced Developer’s Guide 7-31

DSGetReposInfo DataStage Development Kit (Job Control Interfaces)
DSGetReposInfo
Provides searching capabilities for design-time objects.

Syntax
int DSGetReposInfo (

DSPROJECT hProject,
int ObjectType,
int InfoType,
const char *SearchCriteria,
const char *StartingCategory,
int Subcategories,
DSREPOSINFO *ReturnInfo

);

Parameters
hProject is the value returned from DSOpenProject for the project

whose jobs you want to search.

ObjectType must currently be set to DSS_JOBS to indicate that you

want to search for jobs.

InfoType is one or more of the following keys:

SearchCriteria is the name to match against. Partial name matching

can be used, with multiple * characters used as wild cards anywhere

in the search string.

StartingCategory is the category to start the search in. If no category

name is supplied, or a NULL or empty string, then the root category is

assumed.

SearchSubcategories can have one of two values: 1 (TRUE) and 0

(FALSE). These define whether the search is to include subcategories.

ReturnInfo is a pointer to a structure containing the required return

information (see "DSREPOSINFO" on page 7-75).

This key… Returns this information…

DSS_JOB_ALL Lists all jobs

DSS_JOB_SERVER Lists all server jobs

DSS_JOB_PARALLEL Lists all parallel jobs

DSS_JOB_MAINFRAME Lists all mainframe jobs

DSS_JOB_SEQUENCE Lists all job sequences
7-32 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetReposInfo
Return Value
On success, DSGetReposInfo returns the number of objects that

have been found.

On failure an error code is returned as follows:

DSJE_BADTYPE ObjectType or InfoType values was not
recognised

DSJE_REPERROR An error occurred while trying to access the
reposotory. Call DSGetLastErrorMsg to get the error message
associated with the error code

DSJE_NO_DATASTAGE The attached project does not appear to
be a valid DataStage project
Parallel Job Advanced Developer’s Guide 7-33

DSGetReposUsage DataStage Development Kit (Job Control Interfaces)
DSGetReposUsage
Returns a list of objects based on the required relationship.

Syntax
int DSGetReposUsage(

DSPROJECT hProject,
int RelationshipType,
const char *ObjectName,
int Recursive,
DSREPOSUSAGE *ReturnInfo

);

Parameters
hProject is the value returned from DSOpenProject for the project
whose jobs you want to search.

RelationshipType is one of the following keys:

ObjectName specifies the job or table, and varies according to which

RelationshipType is specified:

for DSS_JOB_USES_JOB and DSS_JOB_USEDBY_JOB
relationships, the job name (without category qualification)
should be given.

for remaining relationships, the fully qualified table name should
be given.

For the DRS Stage table definition relationships, partial matching
of the table name using * characters as wild cards is allowed.
Multiple wildcard characters can be used

Recursive is used by the DSS_JOB_USES_JOB and

DSS_JOB_USEDBY_JOB relationships. It can have 2 values, 1 (TRUE)

and 0 (FALSE). If set to TRUE, then for each job found that uses the

This key… Returns this information…

DSS_JOB_USES_JOB Return a list of jobs that the specified job uses.

DSS_JOB_USEDBY_JOB Return a list of jobs the specified job is used by.

DSS_JOB_HASSOURCE_
DRSTABLE

Return a list of jobs that use the specified table in as a
source in a DRS Stage.

DSS_JOB_HASTARGET_
DRSTABLE

Return a list of jobs that use the specified table as a
target in a DRS Stage.

DSS_JOB_HASSOURCEO
RTARGET_DRSTABLE

Returns a list of jobs that use the specified table as a
source or target of a DRS Stage.
7-34 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetReposUsage
ObjectName, the jobs that that job is used in are found and so on. For

all other relationship types the parameter is ignored.

ReturnInfo is a pointer to a structure containing the returned values

(see"DSREPOSUSAGE" on page 7-76). The order in which jobs appear

in the ReturnInfo structure is defined by the RelationshipType. For the

DSS_JOB_USES_JOB RelationshipType, the jobs will apear in the

order in which they appear in the jobs dependency list. This list is on

the Dependencies tab on the Job Properties dialog.

Return Value
On success, DSGetReposUsage returns the number of objects that

have been found.

On failure an error code is returned as follows:

DSJE_REPERROR An error occurred while trying to access the
repository. Call nDSGetLastErrorMsg to get the error
message associated with the error code.

DSJE_NO_DATASTAGE The attached project does not appear
to be a valid DataStage project.

DSJE_UNKNOWN_JOBNAME When the RelationshipType is
DSS_JOB_USES_JOB or DSS_JOB_USEDBY_JOB the supplied job
name cannot be found in the project.
Parallel Job Advanced Developer’s Guide 7-35

DSGetStageInfo DataStage Development Kit (Job Control Interfaces)
DSGetStageInfo
Obtains information about a particular stage within a job.

Syntax
int DSGetStageInfo(

DSJOB JobHandle,
char *StageName,
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

InfoType is one of the following keys:

This key… Returns this information…

DSJ_LINKLIST Null-separated list of names of links in
stage.

DSJ_STAGELASTERR Last error message reported from any link
of the stage.

DSJ_STAGENAME Stage name.

DSJ_STAGETYPE Stage type name.

DSJ_STAGEINROWNUM Primary links input row number.

DSJ_VARLIST Null-separated list of stage variable
names in the stage.

DSJ_STAGESTARTTIMESTAMP Date and time when stage started.

DSJ_STAGEENDTIMESTAMP Date and time when stage finished.

DSJ_STAGEDESC Stage description (from stage properties)

DSJ_STAGEINST Null-separated list of instance ids (parallel
jobs).

DSJ_STAGECPU List of CPU time in seconds.

DSJ_LINKTYPES Null-separated list of link types.

DSJ_STAGEELAPSED Elapsed time in seconds.

DSJ_STAGEPID Null-separated list of process ids.

DSJ_STAGESTATUS Stage status.
7-36 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageInfo
ReturnInfo is a pointer to a DSSTAGEINFO data structure where the

requested information is stored. See "Data Structures" on page 7-62.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function can be used either before or after a DSRunJob function

has been issued.

The DSSTAGEINFO data structure contains a union with an element

for each of the possible return values from the call to

DSGetStageInfo.

DSJ_CUSTINFOLIST Null-separated list of custinfo items.

This key… Returns this information…

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADTYPE Invalid InfoType.
Parallel Job Advanced Developer’s Guide 7-37

DSGetProjectList DataStage Development Kit (Job Control Interfaces)
DSGetProjectList
Obtains information about variables used in transformer stages.

Syntax
int DSGetVarInfo(

DSJOB JobHandle,
char *StageName,
char *VarName
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

VarName is a pointer to a null-terminated string specifiying the name

of the variable to be interrogated.

InfoType is one of the following keys:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

This key… Returns this information…

DSJ_VARVALUE The value of the specified variable.

DSJ_VARDESC Description of the variable.

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADVAR VarName does not refer to a known variable in the job.

DSJE_BADTYPE Invalid InfoType.
7-38 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSListEnvVars
DSListEnvVars
Obtain a list of environment variables and their values in a specified

project.

Syntax
char *DSListEnvVars(

DSPROJECT hProject
);

Parameter
hProject is the value returned from DSOpenProject for the project

whose environment variables you want to list.

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each environment variable, ending

with a second null character. Each string is of the format

EnvVarName=EnvVarValue.

If the function fails, the return value is NULL and the DSGetLastError

function can be used to retrieve an error code as follows:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE.ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

Environment variables in the parallel category will only be listed if

Enterprise Edition is installed.
Parallel Job Advanced Developer’s Guide 7-39

DSListProjectProperties DataStage Development Kit (Job Control Interfaces)
DSListProjectProperties
Obtain a list of the values of project properties for specified project.

Properties supported are:

Whether generated OSH is visible in parallel jobs.

Whether runtime column propagation is enabled in parallel jobs.

The base directory name for parallel jobs.

Advanced runtime options for parallel jobs.

Custom deployment commands for parallel jobs.

Deployment job template directory.

Whether job administration is enabled in the DataStage Director
or not.

Syntax
char *DSListProjectProperties(

DSPROJECT hProject
);

Parameter
hProject is the value returned from DSOpenProject for the project
whose properties you want to list.

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each variable, ending with a second

null character. Each string is of the format

PropertyName=PropertyValue where PropertyName will be one of the

following:

This key… Indicates this property…

DSA_OSHVISIBLEFLAG Generated OSH is visible in
parallel jobs. Enterprise Edition
only.

DSA_PRJ_RTCP_ENABLED Runtime column propagation is
enabled in parallel jobs. Enterprise
Edition only.

DSA_PRJ_PX_ADVANCED_RUNTIME_OPTS Specifies advanced runtime
properties for parallel jobs.
Enterprise Edition only.
7-40 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSListProjectProperties
These tokens are defined in dsapi.h (see "The dsapi.h Header File" on

page 7-2).

If the function fails, the return value is NULL and the DSGetLastError

function can be used to retrieve one of the following error code:

DSJE_READPROJPROPERTY failed to read property

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

DSJE_OSHVISIBLEFLAG failed to get value for OSHVisible

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

If Enterprise Edition is not installed, only the setting of the

DSA_PRJ_JOBADMIN_ENABLED will be returned.

DSListProjectProperties

DSA_PRJ_PX_BASEDIR Specifies the base directory for
parallel jobs. Enterprise Edition
only.

DSA_PRJ_PX_DEPLOY_JOBDIR_TEMPLATE Specifies the deployment directory
template for parallel jobs.
Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_CUSTOM_ACTION Specifies custom deployment
commands for parallel jobs. Value
is the commands. Enterprise
Edition only.

DSA_PRJ_JOBADMIN_ENABLED Job administration commands are
enabled in the DataStage Director
for jobs in this project.

DSA_PRJ_PX_DEPLOY_GENERATE_XML Generation of XML reports is
enabled for Parallel job
deployment packages.

This key… Indicates this property…
Parallel Job Advanced Developer’s Guide 7-41

DSLockJob DataStage Development Kit (Job Control Interfaces)
DSLockJob
Locks a job. This function must be called before setting a job’s run

parameters or starting a job run.

Syntax
int DSLockJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Locking a job prevents any other process from modifying the job

details or status. This function must be called before any call of

DSSetJobLimit, DSSetParam, or DSRunJob.

If you try to lock a job you already have locked, the call succeeds. If

you have the same job open on several DataStage API handles,

locking the job on one handle locks the job on all the handles.

Token Description

DSJE_BADHANDLE Invalid JobHandle.
7-42 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogEvent
DSLogEvent
Adds a new entry to a job log file.

Syntax
int DSLogEvent(

DSJOB JobHandle,
int EventType,
char *Reserved,
char *Message

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is one of the following keys specifying the type of event to

be logged:

Reserved is reserved for future use, and should be specified as null.

Message points to a null-terminated character string specifying the

text of the message to be logged.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Messages that contain more that one line of text should contain a

newline character (\n) to indicate the end of a line.

This key… Specifies this type of event…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.

DSJE_BADTYPE Invalid EventType value.
Parallel Job Advanced Developer’s Guide 7-43

DSMakeJobReport DataStage Development Kit (Job Control Interfaces)
DSMakeJobReport
Generates a report describing the complete status of a valid attached

job.

Syntax
int DSMakeJobReport(

DSJOB JobHandle,
int ReportType,
char *LineSeparator,
DSREPORTINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

ReportType is one of the following values specifying the type of report

to be generated:

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

LineSeparator points to a null-terminated character string specifying

the line separator in the report. Special values recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows, else LF.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

This value… Specifies this type of report…

0 Basic, text string containing start/end time, time elapsed and
status of job.

1 Stage/link detail. As basic report, but also contains information
about individual stages and links within the job.

2 Text string containing full XML report.
7-44 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSOpenJob
DSOpenJob
Opens a job. This function must be called before any other function

that manipulates the job.

Syntax
DSJOB DSOpenJob(

DSPROJECT ProjectHandle,
char *JobName

);

Parameters
ProjectHandle is the value returned from DSOpenProject.

JobName is a pointer to a null-terminated string that specifies the

name of the job that is to be opened. This may be in either of the

following formats:

Return Values
If the function succeeds, the return value is a handle to the job.

If the function fails, the return value is NULL. Use DSGetLastError to

retrieve one of the following:

Remarks
The DSOpenJob function must be used to return a job handle before

a job can be addressed by any of the DataStage API functions. You can

gain exclusive access to the job by locking it with DSLockJob.

The same job may be opened more than once and each call to

DSOpenJob will return a unique job handle. Each handle must be

separately closed.

job Finds the latest version of the job.

job%Reln.n.n Finds a particular release of the job on a

development system.

Token Description

DSJE_OPENFAIL Server failed to open job.

DSJE_NO_MEMORY Memory allocation failure.
Parallel Job Advanced Developer’s Guide 7-45

DSOpenProject DataStage Development Kit (Job Control Interfaces)
DSOpenProject
Opens a project. It must be called before any other DataStage API

function, except DSGetProjectList or DSGetLastError.

Syntax
DSPROJECT DSOpenProject(

char *ProjectName
);

Parameter
ProjectName is a pointer to a null-terminated string that specifies the

name of the project to open.

Return Values
If the function succeeds, the return value is a handle to the project.

If the function fails, the return value is NULL. Use DSGetLastError to

retrieve one of the following:

Remarks
The DSGetProjectList function can return the name of a project that

does not contain valid DataStage jobs, but this is detected when

DSOpenProject is called. A process can only have one project open

at a time.

Token Description

DSJE_BAD_VERSION The DataStage server is an older version than
the DataStage API.

DSJE_INCOMPATIBLE_SERVER The DataStage Server is either older or newer
than that supported by this version of
DataStage API.

DSJE_SERVER_ERROR Internal error. DataStage Server returned
invalid data.

DSJE_BADPROJECT Invalid project name.

DSJE_NO_DATASTAGE DataStage is not correctly installed on the
server system.
7-46 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSRunJob
DSRunJob
Starts a job run.

Syntax
int DSRunJob(

DSJOB JobHandle,
int RunMode

);

Parameters
JobHandle is a value returned from DSOpenJob.

RunMode is a key determining the run mode and should be one of the

following values:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSRunJob function is called.

This key… Indicates this action…

DSJ_RUNNORMAL Start a job run.

DSJ_RUNRESET Reset the job.

DSJ_RUNVALIDATE Validate the job.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (must be

compiled and not running).

DSJE_BADTYPE RunMode is not recognized.

DSJE_SERVER_ERROR Internal error. DataStage Server returned

invalid data.
Parallel Job Advanced Developer’s Guide 7-47

DSRunJob DataStage Development Kit (Job Control Interfaces)
If no limits were set by calling DSSetJobLimit, the default limits are

used.
7-48 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetEnvVar
DSSetEnvVar
Set the value for an environment variable in a specified project.

Syntax
int DSSetEnvVar(

DSPROJECT hProject,
char *EnvVarName,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject.

EnvVarName is the name of the environment variable.

Value is the value to set the environment variable to.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_BADENVVAR environment variable does not exist

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_ENCODEFAILED failed to encode an encrypted value

DSJE_BADBOOLEANVALUE invalid value given for a boolean
environment variable

DSJE_BADNUMERICVALUE invalid value given for an integer
environment variable

DSJE_BADLISTVALUE invalid value given for an
environment variable with a fixed list of values

DSJE_PXNOTINSTALLED Environment variable is specific to
Enterprise Edition which is not installed

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed
Parallel Job Advanced Developer’s Guide 7-49

DSSetEnvVar DataStage Development Kit (Job Control Interfaces)
Remarks
You can only set values for environment variables in the parallel

category if Enterprise Edition is installed.

If setting a list type environment variable (for example,

APT_EXECUTION _MODE) , then you should set it to one of the

permissable internal values, rather than one of the list members as

they are shown in the DataStage Administrator client. For example, if

you wanted to set APT_EXECUTION_MODE so that parallel jobs

executed in one process mode, you would set the environment

variable value to ‘ONE_PROCESS’, not ‘One process’ as offered in the

Administrator client. Internal values are given in "Environment

Variables," in the Parallel Job Advanced Developer’s Guide.

If you are setting a boolean type environment variable, set teh value

to 1 for TRUE and 0 for FALSE.
7-50 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetGenerateOpMetaData
DSSetGenerateOpMetaData
Use this to specify whether the job generates operational meta data or

not. This overrides the default setting for the project. In order to

generate operational meta data the Process MetaBroker must be

installed on your DataStage machine.

Syntax
int DSSetGenerateOpMetaData (

JobHandle,
value

);

Parameters
JobHandle is a value returned from DSOpenJob.

value is TRUE (1) to generate operational meta data, FALSE (0) to not

generate operational meta data.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE value is not recognized.
Parallel Job Advanced Developer’s Guide 7-51

DSSetJobLimit DataStage Development Kit (Job Control Interfaces)
DSSetJobLimit
Sets row or warning limits for a job.

Syntax
int DSSetJobLimit(

DSJOB JobHandle,
int LimitType,
int LimitValue

);

Parameters
JobHandle is a value returned from DSOpenJob.

LimitType is one of the following keys specifying the type of limit:

LimitValue is the value to set the limit to.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSSetJobLimit function is called.

This key… Specifies this type of limit…

DSJ_LIMITWARN Job to be stopped after LimitValue warning events.

DSJ_LIMITROWS Stages to be limited to LimitValue rows.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (compiled, not running).

DSJE_BADTYPE LimitType is not the name of a known limiting condition.

DSJE_BADVALUE LimitValue is not appropriate for the limiting condition
type.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.
7-52 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetJobLimit
Any job limits that are not set explicitly before a run will use the

default values. Make two calls to DSSetJobLimit in order to set both

types of limit.

Set the value to 0 to indicate that there should be no limit for the job.
Parallel Job Advanced Developer’s Guide 7-53

DSSetParam DataStage Development Kit (Job Control Interfaces)
DSSetParam
Sets job parameter values before running a job. Any parameter that is

not explicitly set uses the default value.

Syntax
int DSSetParam(

DSJOB JobHandle,
char *ParamName,
DSPARAM *Param

);

Parameters
JobHandle is the value returned from DSOpenJob.

ParamName is a pointer to a null-terminated string that specifies the

name of the parameter to set.

Param is a pointer to a structure that specifies the name, type, and

value of the parameter to set.

Note The type specified in Param need not match the type

specified for the parameter in the job definition, but it must

be possible to convert it. For example, if the job defines the

parameter as a string, it can be set by specifying it as an

integer. However, it will cause an error with unpredictable

results if the parameter is defined in the job as an integer

and a nonnumeric string is passed by DSSetParam.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (compiled, not running).

DSJE_BADPARAM Param does not reference a known parameter of the job.

DSJE_BADTYPE Param does not specify a valid parameter type.

DSJE_BADVALUE Param does not specify a value that is appropriate for the
parameter type as specified in the job definition.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.
7-54 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetParam
Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSSetParam function is called.
Parallel Job Advanced Developer’s Guide 7-55

DSSetProjectProperty DataStage Development Kit (Job Control Interfaces)
DSSetProjectProperty
Sets the value of a property in a specified project. The user who runs

the code containing this function must be a DataStage Administrator.

Syntax
int DSSetProjectProperty(

DSPROJECT hProject,
char *Property,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject

Propertyis the name of the property to set. The following properties

are supported:

This key… Indicates this property…

DSA_OSHVISIBLEFLAG Generated OSH is visible in
parallel jobs, Value is 0 for false or
1 for true. Enterprise Edition only.

DSA_PRJ_RTCP_ENABLED Runtime column propagation is
enabled in parallel jobs, Value is 0
for false or 1 for true. Enterprise
Edition only.

DSA_PRJ_PX_ADVANCED_RUNTIME_OPTS Specifies advanced runtime
properties for parallel jobs, Value is
the advanced properties to set.
Enterprise Edition only.

DSA_PRJ_PX_BASEDIR Specifies the base directory for
parallel jobs. Value is the base
directory. Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_JOBDIR_TEMPLATE Specifies the deployment directory
template for parallel jobs. Value is
the deployment directory
template. Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_CUSTOM_ACTION Specifies custom deployment
commands for parallel jobs. Value
is the commands. Enterprise
Edition only

DSA_PRJ_JOBADMIN_ENABLED Job administration commands are
enabled in the DataStage Director
for jobs in this project. Value is 0
for false or 1 for true.
7-56 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetProjectProperty
Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is
an administrator

DSJE_READPROJPROPERTY failed to read property

DSJE_WRITEPROJPROPERTY failed to write property

DSJE_PROPNOTSUPPORTED property not supported

DSJE_BADPROPERTY unknown property name

DSJE_BADPROPVALUE invalid value for this property

DSJE_PXNOTINSTALLED Enterprise Edition not installed

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

DSJE_OSHVISIBLEFLAG failed to set value for OSHVisible

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

DSA_PRJ_PX_DEPLOY_GENERATE_XML Generation of XML reports is
enabled for Parallel job
deployment packages. Value is 0
for false or 1 for true.

This key… Indicates this property…
Parallel Job Advanced Developer’s Guide 7-57

DSSetServerParams DataStage Development Kit (Job Control Interfaces)
DSSetServerParams
Sets the logon parameters to use for opening a project or retrieving a

project list.

Syntax
void DSSetServerParams(

char *ServerName,
char *UserName,
char *Password

);

Parameters
ServerName is a pointer to either a null-terminated character string

specifying the name of the server to connect to, or NULL.

UserName is a pointer to either a null-terminated character string

specifying the user name to use for the server session, or NULL.

Password is a pointer to either a null-terminated character string

specifying the password for the user specified in UserName, or NULL.

Return Values
This function has no return value.

Remarks
By default, DSOpenProject and DSGetProjectList attempt to

connect to a DataStage Server on the same computer as the client

process, then create a server process that runs with the same user

identification and access rights as the client process.

DSSetServerParams overrides this behavior and allows you to

specify a different server, user name, and password.

Calls to DSSetServerParams are not cumulative. All parameter

values, including NULL pointers, are used to set the parameters to be

used on the subsequent DSOpenProject or DSGetProjectList call.
7-58 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSStopJob
DSStopJob
Aborts a running job.

Syntax
int DSStopJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLEInvalid JobHandle.

Remarks
The DSStopJob function should be used only after a DSRunJob
function has been issued. The stop request is sent regardless of the

job’s current status. To ascertain if the job has stopped, use the

DSWaitForJob function or the DSJobStatus macro.
Parallel Job Advanced Developer’s Guide 7-59

DSUnlockJob DataStage Development Kit (Job Control Interfaces)
DSUnlockJob
Unlocks a job, preventing any further manipulation of the job’s run

state and freeing it for other processes to use.

Syntax
int DSUnlockJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJ_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLE Invalid JobHandle.

Remarks
The DSUnlockJob function returns immediately without waiting for

the job to finish. Attempting to unlock a job that is not locked does not

cause an error. If you have the same job open on several handles,

unlocking the job on one handle unlocks it on all handles.
7-60 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSWaitForJob
DSWaitForJob
Waits to the completion of a job run.

Syntax
int DSWaitForJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function is only valid if the current job has issued a DSRunJob

call on the given JobHandle. It returns if the job was started since the

last DSRunJob, and has since finished. The finishing status can be

found by calling DSGetJobInfo.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_WRONGJOB Job for this JobHandle was not started from a call to
DSRunJob by the current process.

DSJE_TIMEOUT Job appears not to have started after waiting for a
reasonable length of time. (About 30 minutes.)
Parallel Job Advanced Developer’s Guide 7-61

Data Structures DataStage Development Kit (Job Control Interfaces)
Data Structures
The DataStage API uses the data structures described in this section

to hold data passed to, or returned from, functions. (See"Data

Structures, Result Data, and Threads" on page 7-2). The data

structures are summarized below, with full descriptions in the

following sections:

This data
structure…

Holds this type of data… And is used by
this function…

DSCUSTINFO Custinfo items from certain types of
parallel stage

DSGetCustinfo

DSJOBINFO Information about a DataStage job DSGetJobInfo

DSLINKINFO Information about a link to or from an
active stage in a job, that is, a stage
that is not a data source or
destination

DSGetLinkInfo

DSLOGDETAIL Full details of an entry in a job log file DSGetLogEntry

DSLOGEVENT Details of an entry in a job log file DSLogEvent,
DSFindFirstLogEntry,
DSFindNextLogEntry

DSPARAM The type and value of a job parameter DSSetParam

DSPARAMINFO Further information about a job
parameter, such as its default value
and a description

DSGetParamInfo

DSPROJECTINFO A list of jobs in the project DSGetProjectInfo

DSREPOSINGFO A list of design time jobs DSGetReposInfo

DSREPOSUSGE A list of design time jobs satisfying a
relationship

DSGetReposUsage

DSSTAGEINFO Information about a stage in a job DSGetStageInfo

DSVARINFO Information about stage variables in
transformer stages

DSGetVarInfo
7-62 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSCUSTINFO
DSCUSTINFO
The DSCUSTINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSCUSTINFO {
int infoType:/
union {

char *custinfoValue;
char *custinfoDesc;

} info;

} DSCUSTINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

This key… Indicates this information…

DSJ_CUSTINFOVALUE The value of the specified custinfo item.

DSJ_CUSTINFODESC The description of the specified custinfo item.
Parallel Job Advanced Developer’s Guide 7-63

DSJOBINFO DataStage Development Kit (Job Control Interfaces)
DSJOBINFO
The DSJOBINFO structure represents information values about a

DataStage job.

Syntax
typedef struct _DSJOBINFO {

int infoType;
union {

int jobStatus;
char *jobController;
time_t jobStartTime;
int jobWaveNumber;
char *userStatus;
char *paramList;
char *stageList;
char *jobname;
int jobcontrol;
int jobPid;
time_t jobLastTime;
char *jobInvocations;
int jobInterimStatus;
char *jobInvocationid;
char *jobDesc;
char *stageList2;
char *jobElapsed;
char *jobFullDesc;
int jobDMIService;
int jobMultiInvokable;

} info;

} DSJOBINFO;

Members
infoType is one of the following keys indicating the type of

information:

This key… Indicates this information…

DSJ_JOBSTATUS The current status of the job.

DSJ_JOBNAME Name of job referenced by JobHandle

DSJ_JOBCONTROLLER The name of the controlling job.

DSJ_JOBSTARTTIMESTAMP The date and time when the job started.

DSJ_JOBWAVENO Wave number of the current (or last) job run.

DSJ_PARAMLIST A list of the names of the job’s parameters.
Separated by nulls.
7-64 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSJOBINFO
jobStatus is returned when infoType is set to DSJ_JOBSTATUS. Its

value is one of the following keys:

DSJ_STAGELIST A list of active stages in the job. Separated by
nulls.

DSJ_USERSTATUS The status reported by the job itself as defined in
the job’s design.

DSJ_JOBCONTROL Whether a stop request has been issued for the
job.

DSJ_JOBPID Process id of DSD.RUN process.

DSJ_JOBLASTTIMESTAMP The date and time on the server when the job last
finished.

DSJ_JOBINVOCATIONS List of job invocation ids. Separated by nulls.

DSJ_JOBINTERIMSTATUS Current Interim status of the job.

DSJ_JOBINVOVATIONID Invocation name of the job referenced.

DSJ_JOBDESC A description of the job.

DSJ_STAGELIST2 A list of passive stages in the job. Separated by
nulls.

DSJ_JOBELAPSED The elapsed time of the job in seconds.

DSJ_JOBFULLDESSC The Full Description specified in the Job
Properties dialog box.

DSJ_JOBDMISERVICE Set to true if this is a web service job.

DSJ_JOBMULTIINVOKABLE Set to true if this job supports multiple
invocations.

This key… Indicates this status…

DSJS_RUNNING Job running.

DSJS_RUNOK Job finished a normal run with no warnings.

DSJS_RUNWARN Job finished a normal run with warnings.

DSJS_RUNFAILED Job finished a normal run with a fatal error.

DSJS_VALOK Job finished a validation run with no warnings.

DSJS_VALWARN Job finished a validation run with warnings.

DSJS_VALFAILED Job failed a validation run.

DSJS_RESET Job finished a reset run.

DSJS_CRASHED Job was stopped by some indeterminate action.

This key… Indicates this information…
Parallel Job Advanced Developer’s Guide 7-65

DSJOBINFO DataStage Development Kit (Job Control Interfaces)
jobController is the name of the job controlling the job reference and

is returned when infoType is set to DSJ_JOBCONTROLLER. Note that

this may be several job names, separated by periods, if the job is

controlled by a job which is itself controlled, and so on.

jobStartTime is the date and time when the last or current job run

started and is returned when infoType is set to

DSJ_JOBSTARTTIMESTAMP.

jobWaveNumber is the wave number of the last or current job run and

is returned when infoType is set to DSJ_JOBWAVENO.

userStatus is the value, if any, set by the job as its user defined status,

and is returned when infoType is set to DSJ_USERSTATUS.

paramList is a pointer to a buffer that contains a series of null-

terminated strings, one for each job parameter name, that ends with a

second null character. It is returned when infoType is set to

DSJ_PARAMLIST. The following example shows the buffer contents

with <null> representing the terminating null character:

first<null>second<null><null>

stageList is a pointer to a buffer that contains a series of null-

terminated strings, one for each stage in the job, that ends with a

second null character. It is returned when infoType is set to

DSJ_STAGELIST. The following example shows the buffer contents

with <null> representing the terminating null character:

first<null>second<null><null>

DSJS_STOPPED Job was stopped by operator intervention (can’t tell
run type).

DSJS_NOTRUNNABLE Job has not been compiled.

DSJS_NOTRUNNING Any other status. Job was stopped by operator
intervention (can’t tell run type).

This key… Indicates this status…
7-66 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLINKINFO
DSLINKINFO
The DSLINKINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSLINKINFO {
int infoType:/
union {

DSLOGDETAIL lastError;
int rowCount;
char *linkName;
char *linkSQLState;
char *linkDBMSCode;
char *linkDesc;
char *linkedStage;
char *rowCountList;

} info;

} DSLINKINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

lastError is a data structure containing the error log entry for the last

error message reported from a link and is returned when infoType is

set to DSJ_LINKLASTERR.

rowCount is the number of rows that have been passed down a link so

far and is returned when infoType is set to DSJ_LINKROWCOUNT.

This key… Indicates this information…

DSJ_LINKLASTERR The last error message reported from a link.

DSJ_LINKNAME Actual name of link.

DSJ_LINKROWCOUNT The number of rows that have been passed down a link.

DSJ_LINKSQLSTATE SQLSTATE value from last error message.

DSJ_LINKDBMSCODE DBMSCODE value from last error message.

DSJ_LINKDESC Description of the link.

DSJ_LINKSTAGE Name of the stage at the other end of the link.

DSJ_INSTROWCOUNT Comma-separated list of rowcounts, one per

instance (parallel jobs)
Parallel Job Advanced Developer’s Guide 7-67

DSLOGDETAIL DataStage Development Kit (Job Control Interfaces)
DSLOGDETAIL
The DSLOGDETAIL structure represents detailed information for a

single entry from a job log file.

Syntax
typedef struct _DSLOGDETAIL {

int eventId;
time_t timestamp;
int type;
char *reserved;
char *fullMessage;

} DSLOGDETAIL;

Members
eventId is a a number, 0 or greater, that uniquely identifies the log

entry for the job.

timestamp is the date and time at which the entry was added to the

job log file.

type is a key indicting the type of the event, and is one of the following

values:

reserved is reserved for future use with a later release of DataStage.

fullMessage is the full description of the log entry.

This key… Indicates this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal error

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER Any other type of log entry
7-68 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLOGEVENT
DSLOGEVENT
The DSLOGEVENT structure represents the summary information

for a single entry from a job’s event log.

Syntax
typedef struct _DSLOGEVENT {

int eventId;
time_t timestamp;
int type;
char *message;

} DSLOGEVENT;

Members
eventId is a a number, 0 or greater, that uniquely identifies the log

entry for the job.

timestamp is the date and time at which the entry was added to the

job log file.

type is a key indicating the type of the event, and is one of the

following values:

message is the first line of the description of the log entry.

This key… Indicates this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal error

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER Any other type of log entry
Parallel Job Advanced Developer’s Guide 7-69

DSPARAM DataStage Development Kit (Job Control Interfaces)
DSPARAM
The DSPARAM structure represents information about the type and

value of a DataStage job parameter.

Syntax
typedef struct _DSPARAM {
int paramType;
union {

char *pString;
char *pEncrypt;
int pInt;
float pFloat;
char *pPath;
char *pListValue;
char *pDate;
char *pTime;

} paramValue;

} DSPARAM;

Members
paramType is a key specifying the type of the job parameter. Possible

values are as follows:

pString is a null-terminated character string that is returned when

paramType is set to DSJ_PARAMTYPE_STRING.

pEncrypt is a null-terminated character string that is returned when

paramType is set to DSJ_PARAMTYPE_ENCRYPTED. The string

should be in plain text form when passed to or from DataStage API

where it is encrypted. The application using the DataStage API should

This key… Indicates this type of parameter…

DSJ_PARAMTYPE_STRING A character string.

DSJ_PARAMTYPE_ENCRYPTED An encrypted character string (for example, a
password).

DSJ_PARAMTYPE_INTEGER An integer.

DSJ_PARAMTYPE_FLOAT A floating-point number.

DSJ_PARAMTYPE_PATHNAME A file system pathname.

DDSJ_PARAMTYPE_LIST A character string specifying one of the values
from an enumerated list.

DDSJ_PARAMTYPE_DATE A date in the format YYYY-MM-DD.

DSJ_PARAMTYPE_TIME A time in the format HH:MM:SS.
7-70 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPARAM
present this type of parameter in a suitable display format, for

example, an asterisk for each character of the string rather than the

character itself.

pInt is an integer and is returned when paramType is set to

DSJ_PARAMTYPE_INTEGER.

pFloat is a floating-point number and is returned when paramType is

set to DSJ_PARAMTYPE_FLOAT.

pPath is a null-terminated character string specifying a file system

pathname and is returned when paramType is set to

DSJ_PARAMTYPE_PATHNAME.

Note This parameter does not need to specify a valid pathname

on the server. Interpretation and validation of the pathname

is performed by the job.

pListValue is a null-terminated character string specifying one of the

possible values from an enumerated list and is returned when

paramType is set to DDSJ_PARAMTYPE_LIST.

pDate is a null-terminated character string specifying a date in the

format YYYY-MM-DD and is returned when paramType is set to

DSJ_PARAMTYPE_DATE.

pTime is a null-terminated character string specifying a time in the

format HH:MM:SS and is returned when paramType is set to

DSJ_PARAMTYPE_TIME.
Parallel Job Advanced Developer’s Guide 7-71

DSPARAMINFO DataStage Development Kit (Job Control Interfaces)
DSPARAMINFO
The DSPARAMINFO structure represents information values about a

parameter of a DataStage job.

Syntax
typedef struct _DSPARAMINFO {

DSPARAM defaultValue;
char *helpText;
char *paramPrompt;
int paramType;
DSPARAM desDefaultValue;
char *listValues;
char *desListValues;
int promptAtRun;

} DSPARAMINFO;

Members
defaultValue is the default value, if any, for the parameter.

helpText is a description, if any, for the parameter.

paramPrompt is the prompt, if any, for the parameter.

paramType is a key specifying the type of the job parameter. Possible

values are as follows:

desDefaultValue is the default value set for the parameter by the job’s

designer.

This key… Indicates this type of parameter…

DSJ_PARAMTYPE_STRING A character string.

DSJ_PARAMTYPE_ENCRYPTED An encrypted character string (for example, a
password).

DSJ_PARAMTYPE_INTEGER An integer.

DSJ_PARAMTYPE_FLOAT A floating-point number.

DSJ_PARAMTYPE_PATHNAME A file system pathname.

DDSJ_PARAMTYPE_LIST A character string specifying one of the values
from an enumerated list.

DDSJ_PARAMTYPE_DATE A date in the format YYYY-MM-DD.

DSJ_PARAMTYPE_TIME A time in the format HH:MM:SS.
7-72 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPARAMINFO
Note Default values can be changed by the DataStage

administrator, so a value may not be the current value for

the job.

listValues is a pointer to a buffer that receives a series of null-

terminated strings, one for each valid string that can be used as the

parameter value, ending with a second null character as shown in the

following example (<null> represents the terminating null character):

first<null>second<null><null>

desListValues is a pointer to a buffer containing the default list of

values set for the parameter by the job’s designer. The buffer contains

a series of null-terminated strings, one for each valid string that can be

used as the parameter value, that ends with a second null character.

The following example shows the buffer contents with <null>

representing the terminating null character:

first<null>second<null><null>

Note Default values can be changed by the DataStage

administrator, so a value may not be the current value for

the job.

promptAtRun is either 0 (False) or 1 (True). 1 indicates that the

operator is prompted for a value for this parameter whenever the job

is run; 0 indicates that there is no prompting.
Parallel Job Advanced Developer’s Guide 7-73

DSPROJECTINFO DataStage Development Kit (Job Control Interfaces)
DSPROJECTINFO
The DSPROJECTINFO structure represents information values for a

DataStage project.

Syntax
typedef struct _DSPROJECTINFO {

int infoType;
union {
char *jobList;
} info;

} DSPROJECTINFO;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobList is a pointer to a buffer that contains a series of null-terminated

strings, one for each job in the project, and ending with a second null

character, as shown in the following example (<null> represents the

terminating null character):

first<null>second<null><null>

This key… Indicates this information…

DSJ_JOBLIST List of jobs in project.

DSJ_PROJECTNAME Name of current project.

DSJ_HOSTNAME Host name of the server.
7-74 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSREPOSINFO
DSREPOSINFO
The DSREPOSINFO structure gives information about design-time

objects that have been searched for.

Syntax
struct _DSREPOSJOBINFO;
typedef struct _DSREPOSJOBINFO DSREPOSJOBINFO;

struct _DSREPOSJOBINFO
{

char* jobname; /* Includes category */
int jobtype; /* InfoType constant */
DSREPOSJOBINFO* nextjob; /* ptr next job or NULL */

};

typedef struct _DSREPOSINFO
{

int infoType;
union
{

DSREPOSJOBINFO* jobs; /*linkedlist of found jobs */
} info;

} DSREPOSINFO;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobs is a pointer to a structure linked to another structure, or

terminated with a null. There is one structure for each job returned.

Each structure contains the job name (including category) and the job

type as follows:

This key… Indicates this information…

DSS_JOBS List of jobs.

This key… Returns this information…

DSS_JOB_SERVER Server job

DSS_JOB_PARALLEL Parallel job

DSS_JOB_MAINFRAME Mainframe job

DSS_JOB_SEQUENCE Job sequence
Parallel Job Advanced Developer’s Guide 7-75

DSREPOSUSAGE DataStage Development Kit (Job Control Interfaces)
DSREPOSUSAGE
The DSREPOSUSAGE structure gives information about objects

meeting a specified relationship.

DSREPOSUSAGE

Syntax
struct _DSREPOSUSAGEJOB;
typedef struct _DSREPOSUSAGEJOB DSREPOSUSAGEJOB;

struct _DSREPOSUSAGEJOB
{

char *jobname; /* Job and cat name */
int jobtype; /* type of job */
DSREPOSUSAGEJOB *nextjob; /* next sibling job */
DSREPOSUSAGEJOB *childjob;

};

typedef struct _DSREPOSUSAGE
{

int infoType;
union
{

DSREPOSUSAGEJOB *jobs; /*linkedlist of jobs*/
} info

} DSREPOSUSAGE;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobs is a pointer to a structure linked to another structure, or

terminated with a null. There is one structure for each job returned.

Each structure contains the job name (including category) and the job

type as follows:

This key… Indicates this information…

DSS_JOBS List of jobs.

This key… Returns this information…

DSS_JOB_SERVER Server job

DSS_JOB_PARALLEL Parallel job

DSS_JOB_MAINFRAME Mainframe job

DSS_JOB_SEQUENCE Job sequence
7-76 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSTAGEINFO
DSSTAGEINFO
The DSSTAGEINFO structure represents various information values

about an active stage within a DataStage job.

Syntax
typedef struct _DSSTAGEINFO {
int infoType;
union {

DSLOGDETAIL lastError;
char *typeName;
int inRowNum;
char *linkList;
char *stagename;
char *varlist;
char *stageStartTime;
char *stageEndTime;
char *linkTypes;
char *stageDesc;
char *instList;
char *cpuList;
time_t stageElapsed;
char *pidList;
int stageStatus;
char *custInfoList

} info;

} DSSTAGEINFO;

Members
infoType is a key indicating the information to be returned and is one

of the following:

This key… Indicates this information…

DSJ_LINKLIST Null-separated list of link names.

DSJ_STAGELASTERR The last error message generated from any
link in the stage.

DSJ_STAGENAME Name of stage.

DSJ_STAGETYPE The stage type name, for example,
Transformer or BeforeJob.

DSJ_STAGEINROWNUM The primary link’s input row number.

DSJ_VARLIST List of stage variable names.

DSJ_STAGESTARTTIME-STAMP Date and time when stage started.

DSJ_STAGEENDTIME-STAMP Date and time when stage finished.

DSJ_STAGEDESC Stage description (from stage properties)
Parallel Job Advanced Developer’s Guide 7-77

DSSTAGEINFO DataStage Development Kit (Job Control Interfaces)
lastError is a data structure containing the error message for the last

error (if any) reported from any link of the stage. It is returned when

infoType is set to DSJ_STAGELASTERR.

typeName is the stage type name and is returned when infoType is set

to DSJ_STAGETYPE.

inRowNum is the primary link’s input row number and is returned

when infoType is set to DSJ_STAGEINROWNUM.

linkList is a pointer to a buffer that contains a series of null-terminated

strings, one for each link in the stage, ending with a second null

character, as shown in the following example (<null> represents the

terminating null character):

first<null>second<null><null>

DSJ_STAGEINST Null-separated list of instance ids (parallel
jobs).

DSJ_STAGECPU Null-separated list of CPU time in seconds

DSJ_LINKTYPES Null-separated list of link types.

DSJ_STAGEELAPSED Elapsed time in seconds.

DSJ_STAGEPID Null-separated list of process ids.

DSJ_STAGESTATUS Stage status.

DSJ_CUSTINFOLIST Null-separated list of custinfo item names.

This key… Indicates this information…
7-78 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLINKINFO
DSLINKINFO
The DSLINKINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSVARINFO {
int infoType:/
union {

char *varValue;
char *varDesc;

} info;

} DSVARINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

This key… Indicates this information…

DSJ_VARVALUE The value of the specified variable.

DSJ_VARDESC The description of the specified
variable.
Parallel Job Advanced Developer’s Guide 7-79

Error Codes DataStage Development Kit (Job Control Interfaces)
Error Codes
The following table lists DataStage API error codes in alphabetical

order:

Table 7-1 API Error Codes

Error Token Code Description

DSJE_ACCOUNTPATHFAILED -140 Failed to get account path.

DSJE_ADDPROJECTBLOCKED -134 Another user is adding a project.

DSJE_ADDPROJECTFAILED -135 Failed to add project.

DSJEBADBOOLEANVALUE -118 Invalid value given for a boolean
environment variable.

DSJE_BADENVVAR -116 Environment variable does not
exist.

DSJE_BADENVVARNAME -108 Invalid environment variable
name.

DSJE_BADENVVARTYPE -109 Invalid environment variable
type.

DSJE_BADENVVARPROMPT -110 No prompt supplied.

DSJE_BADHANDLE –1 Invalid JobHandle.

DSJE_BADLINK –9 LinkName does not refer to a
known link for the stage in
question.

DSJE_BADLISTVALUE -120 Invalid value given for a list
environment variable.

DSJE_BADNAME –12 Invalid project name.

DSJE_BADNUMERICVALUE -119 Invalid value given for an
integer environment variable.

DSJE_BADPARAM –3 ParamName is not a parameter
name in the job.

DSJE_BADPROJECT –1002 ProjectName is not a known
DataStage project.

DSJE_BADPROJLOCATION -130 Invalid pathname supplied.

DSJE_BADPROJNAME -128 Invalid project name supplied.

DSJE_BADPROPERTY -104 Unknown property name.

DSJE_BADPROPVALUE -106 Invalid value for this property.

DSJE_BADSTAGE –7 StageName does not refer to a
known stage in the job.
7-80 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
DSJE_BADSTATE –2 Job is not in the right state
(compiled, not running).

DSJE_BADTIME –13 Invalid StartTime or EndTime
value.

DSJE_BADTYPE –5 Information or event type was
unrecognized.

DSJE_BAD_VERSION –1008 The DataStage server does not
support this version of the
DataStage API.

DSJE_BADVALUE –4 Invalid MaxNumber value.

DSJE_CLEARSCHEDULEFAILED -127 Failed to clear scheduled jobs for
project.

DSJE_DECRYPTERR –15 Failed to decrypt encrypted
values.

DSJE_DELETEPROJECTBLOCKED -138 Project locked by another user.

DSJE_DELPROJFAILED -124 Failed to delete project
definition.

DSJE_DELPROJFILESFAILED -125 Failed to delete project files.

DSJE_DUPENVVARNAME -115 Environment variable being
added already exists.

DSJE_ENCODEFAILED -123 Failed to encode an encrypted
value.

DSJE_GETDEFAULTPATHFAILED -129 Failed to determine default
project directory.

DSJE_INCOMPATIBLE_SERVER –1009 The server version is
incompatible with this version
of the DataStage API.

DSJE_ISADMINFAILED -101 Failed to determine whether
user is an administrator.

DSJE_ISPARALLELLICENCED -122 Failed to determine if Enterprise
Edition installed.

DSJE_INVALIDPROJECTLOCATION -131 Invalid pathname supplied.

DSJE_JOBDELETED –11 The job has been deleted.

DSJE_JOBLOCKED –10 The job is locked by another
process.

DSJE_LICENSEPROJECTFAILED -136 Failed to license project.

Table 7-1 API Error Codes

Error Token Code Description
Parallel Job Advanced Developer’s Guide 7-81

Error Codes DataStage Development Kit (Job Control Interfaces)
DSJE_LISTSCEDULEFAILED -126 Failed to get list of scheduled
jobs for project.

DSJE_LOGTOFAILED -141 Failed to log to UV account.

DSJE_NOACCESS –16 Cannot get values, default
values or design default values
for any job except the current
job.

DSJE_NO_DATASTAGE –1003 DataStage is not installed on the
server system.

DSJE_NOERROR 0 No DataStage API error has
occurred.

DSJE_NO_MEMORY –1005 Failed to allocate dynamic
memory.

DSJE_NOMORE –1001 All events matching the filter
criteria have been returned.

DSJE_NOTADMINUSER -100 User is not an administrator.

DSJE_NOTAPROJECT -139 Failed to log to project.

DSJE_NOT_AVAILABLE –1007 The requested information was
not found.

DSJE_NOTINSTAGE –8 Internal server error.

DSJE_NOTUSERDEFINED -117 Environment variable is not
user-defined and therefore
cannot be deleted.

DSJE_OPENFAIL -1004 The attempt to open the job
failed – perhaps it has not been
compiled.

DSJE_OPENFAILED -132 Failed to open UV.ACCOUNT
file.

DSJE_OSHVISIBLEFLAG -107 Failed to get value for
OSHVisible.

DSJE_PROPNOTSUPPORTED -105 Unsupported property.

DSJE_PXNOTINSTALLED -121 Environment variable is specific
to Enterprise Edition which is
not installed.

DSJE_READENVVARDEFNS -111 Failed to read environment
variable definitions.

DSJE_READENVVARVALUES -112 Failed to read environment
variable values.

Table 7-1 API Error Codes

Error Token Code Description
7-82 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
The following table lists DataStage API error codes in numerical order:

DSJE_READPROJPROPERTY -102 Failed to read property.

DSJE_READUFAILED -133 Failed to lock project create lock
record.

DSJE_RELEASEFAILED -137 Failed to release project create
lock record.

DSJE_REPERROR –99 General server error.

DSJE_SERVER_ERROR –1006 An unexpected or unknown
error occurred in the DataStage
server engine.

DSJE_TIMEOUT –14 The job appears not to have
started after waiting for a
reasonable length of time.
(About 30 minutes.)

DSJE_UNKNOWN_JOBNAME -201 The supplied jobname cannot be
found in the project.

DSJE_WRITEENVVARDEFNS -113 Failed to write environment
variable definitions.

DSJE_WRITEENVVARVALUES -114 Failed to write environment
variable values.

DSJE_WRITEPROJPROPERTY -103 Property not supported.

DSJE_WRONGJOB –6 Job for this JobHandle was not
started from a call to
DSRunJob by the current
process.

Code Error Token Description

0 DSJE_NOERROR No DataStage API error has
occurred.

–1 DSJE_BADHANDLE Invalid JobHandle.

–2 DSJE_BADSTATE Job is not in the right state
(compiled, not running).

–3 DSJE_BADPARAM ParamName is not a parameter
name in the job.

–4 DSJE_BADVALUE Invalid MaxNumber value.

–5 DSJE_BADTYPE Information or event type was
unrecognized.

Table 7-1 API Error Codes

Error Token Code Description
Parallel Job Advanced Developer’s Guide 7-83

Error Codes DataStage Development Kit (Job Control Interfaces)
–6 DSJE_WRONGJOB Job for this JobHandle was not
started from a call to DSRunJob
by the current process.

–7 DSJE_BADSTAGE StageName does not refer to a
known stage in the job.

–8 DSJE_NOTINSTAGE Internal server error.

–9 DSJE_BADLINK LinkName does not refer to a
known link for the stage in
question.

–10 DSJE_JOBLOCKED The job is locked by another
process.

–11 DSJE_JOBDELETED The job has been deleted.

–12 DSJE_BADNAME Invalid project name.

–13 DSJE_BADTIME Invalid StartTime or EndTime
value.

–14 DSJE_TIMEOUT The job appears not to have started
after waiting for a reasonable
length of time. (About 30 minutes.)

–15 DSJE_DECRYPTERR Failed to decrypt encrypted values.

–16 DSJE_NOACCESS Cannot get values, default values or
design default values for any job
except the current job.

–99 DSJE_REPERROR General server error.

-100 DSJE_NOTADMINUSER User is not an administrator.

-101 DSJE_ISADMINFAILED Failed to determine whether user is
an administrator.

-102 DSJE_READPROJPROPERTY Failed to read property.

-103 DSJE_WRITEPROJPROPERTY Property not supported.

-104 DSJE_BADPROPERTY Unknown property name.

-105 DSJE_PROPNOTSUPPORTED Unsupported property.

-106 DSJE_BADPROPVALUE Invalid value for this property.

-107 DSJE_OSHVISIBLEFLAG Failed to get value for OSHVisible.

-108 DSJE_BADENVVARNAME Invalid environment variable name.

-109 DSJE_BADENVVARTYPE Invalid environment variable type.

-110 DSJE_BADENVVARPROMPT No prompt supplied.

Code Error Token Description
7-84 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
-111 DSJE_READENVVARDEFNS Failed to read environment variable
definitions.

-112 DSJE_READENVVARVALUES Failed to read environment variable
values.

-113 DSJE_WRITEENVVARDEFNS Failed to write environment
variable definitions.

-114 DSJE_WRITEENVVARVALUES Failed to write environment
variable values.

-115 DSJE_DUPENVVARNAME Environment variable being added
already exists.

-116 DSJE_BADENVVAR Environment variable does not
exist.

-117 DSJE_NOTUSERDEFINED Environment variable is not user-
defined and therefore cannot be
deleted.

-118 DSJE_BADBOOLEANVALUE Invalid value given for a boolean
environment variable.

-119 DSJE_BADNUMERICVALUE Invalid value given for an integer
environment variable.

-120 DSJE_BADLISTVALUE Invalid value given for a list
environment variable.

-121 DSJE_PXNOTINSTALLED Environment variable is specific to
Enterprise Edition which is not
installed.

-122 DSJE_ISPARALLELLICENCED Failed to determine if Enterprise
Edition installed.

-123 DSJE_ENCODEFAILED Failed to encode an encrypted
value.

-124 DSJE_DELPROJFAILED Failed to delete project definition.

-125 DSJE_DELPROJFILESFAILED Failed to delete project files.

-126 DSJE_LISTSCHEDULEFAILED Failed to get list of scheduled jobs
for project.

-127 DSJE_CLEARSCHEDULEFAILED Failed to clear scheduled jobs for
project.

-128 DSJE_BADPROJNAME Invalid project name supplied.

-129 DSJE_GETDEFAULTPATHFAILED Failed to determine default project
directory.

-130 DSJE_BADPROJLOCATION Invalid pathname supplied.

-131 DSJE_INVALIDPROJECTLOCATION Invalid pathname supplied.

Code Error Token Description
Parallel Job Advanced Developer’s Guide 7-85

Error Codes DataStage Development Kit (Job Control Interfaces)
-132 DSJE_OPENFAILED Failed to open UV.ACCOUNT file.

-133 DSJE_READUFAILED Failed to lock project create lock
record.

-134 DSJE_ADDPROJECTBLOCKED Another user is adding a project.

-135 DSJE_ADDPROJECTFAILED Failed to add project.

-136 DSJE_LICENSEPROJECTFAILED Failed to license project.

-137 DSJE_RELEASEFAILED Failed to release project create lock
record.

-138 DSJE_DELETEPROJECTBLOCKED Project locked by another user.

-139 DSJE_NOTAPROJECT Failed to log to project.

-140 DSJE_ACCOUNTPATHFAILED Failed to get account path.

-141 DSJE_LOGTOFAILED Failed to log to UV account.

-201 DSJE_UNKNOWN_JOBNAME The supplied jobname cannot be
found in the project.

–1001 DSJE_NOMORE All events matching the filter
criteria have been returned.

–1002 DSJE_BADPROJECT ProjectName is not a known
DataStage project.

–1003 DSJE_NO_DATASTAGE DataStage is not installed on the
server system.

–1004 DSJE_OPENFAIL The attempt to open the job failed –
perhaps it has not been compiled.

–1005 DSJE_NO_MEMORY Failed to allocate dynamic memory.

–1006 DSJE_SERVER_ERROR An unexpected or unknown error
occurred in the DataStage server
engine.

–1007 DSJE_NOT_AVAILABLE The requested information was not
found.

–1008 DSJE_BAD_VERSION The DataStage server does not
support this version of the
DataStage API.

–1009 DSJE_INCOMPATIBLE_SERVER The server version is incompatible
with this version of the DataStage
API.

Code Error Token Description
7-86 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage BASIC Interface
The following table lists some common errors that may be returned

from the lower-level communication layers:

DataStage BASIC Interface
These functions can be used in a job control routine, which is defined

as part of a job’s properties and allows other jobs to be run and be

controlled from the first job. Some of the functions can also be used

for getting status information on the current job; these are useful in

active stage expressions and before- and after-stage subroutines.

These functions are also described in Chapter 18,"BASIC

Programming,"

Table 7-2 API Communication Layer Error Codes

Error
Number

Description

39121 The DataStage server license has expired.

39134 The DataStage server user limit has been reached.

80011 Incorrect system name or invalid user name or password provided.

80019 Password has expired.

Table 7-3 BASIC Functions

To do this… Use this…

Specify the job you want to control DSAttachJob

Set parameters for the job you want to
control

DSSetParam

Set limits for the job you want to control DSSetJobLimit

Request that a job is run DSRunJob

Wait for a called job to finish DSWaitForJob

Get information from certain parallel
stages.

DSGetCustInfo

Get information about the current
project

DSGetProjectInfo

Get information about the controlled job
or current job

DSGetJobInfo

Get information about a stage in the
controlled job or current job

DSGetStageInfo
Parallel Job Advanced Developer’s Guide 7-87

DataStage BASIC Interface DataStage Development Kit (Job Control Interfaces)
Get information about a link in a
controlled job or current job

DSGetLinkInfo

Get information about a controlled job’s
parameters

DSGetParamInfo

Get the log event from the job log DSGetLogEntry

Get a number of log events on the
specified subject from the job log

DSGetLogSummary

Get the newest log event, of a specified
type, from the job log

DSGetNewestLogId

Log an event to the job log of a different
job

DSLogEvent

Stop a controlled job DSStopJob

Return a job handle previously obtained
from DSAttachJob

DSDetachJob

Log a fatal error message in a job's log
file and aborts the job.

DSLogFatal

Log an information message in a job's
log file.

DSLogInfo

Put an info message in the job log of a
job controlling current job.

DSLogToController

Log a warning message in a job's log
file.

DSLogWarn

Generate a string describing the
complete status of a valid attached job.

DSMakeJobReport

Insert arguments into the message
template.

DSMakeMsg

Ensure a job is in the correct state to be
run or validated.

DSPrepareJob

Interface to system send mail facility. DSSendMail

Log a warning message to a job log file. DSTransformError

Convert a job control status or error
code into an explanatory text message.

DSTranslateCode

Suspend a job until a named file either
exists or does not exist.

DSWaitForFile

Checks if a BASIC routine is cataloged,
either in VOC as a callable item, or in the
catalog space.

DSCheckRoutine

Table 7-3 BASIC Functions

To do this… Use this…
7-88 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage BASIC Interface
Execute a DOS or DataStage Engine
command from a befor/after subroutine.

DSExecute

Set a status message for a job to return
as a termination message when it
finishes

DSSetUserStatus

Specifies whether a job should generate
operational meta data as it runs. This
overrides the default setting for the
project.

DSSetGenerateOpMetaData

Table 7-3 BASIC Functions

To do this… Use this…
Parallel Job Advanced Developer’s Guide 7-89

DSAttachJob DataStage Development Kit (Job Control Interfaces)
DSAttachJob
Attaches to a job in order to run it in job control sequence. A handle is

returned which is used for addressing the job. There can only be one

handle open for a particular job at any one time.

Syntax
JobHandle = DSAttachJob (JobName, ErrorMode)

JobHandle is the name of a variable to hold the return value which is

subsequently used by any other function or routine when referring to

the job. Do not assume that this value is an integer.

JobName is a string giving the name of the job to be attached to.

ErrorMode is a value specifying how other routines using the handle

should report errors. It is one of:

DSJ.ERRFATAL Log a fatal message and abort the controlling job
(default).

DSJ.ERRWARNINGLog a warning message but carry on.

DSJ.ERRNONENo message logged - caller takes full
responsibility (failure of DSAttachJob itself will be logged,
however).

Remarks
A job cannot attach to itself.

The JobName parameter can specify either an exact version of the job

in the form job%Reln.n.n, or the latest version of the job in the form

job. If a controlling job is itself released, you will get the latest

released version of job. If the controlling job is a development

version, you will get the latest development version of job.

Example
This is an example of attaching to Release 11 of the job Qsales:

Qsales_handle = DSAttachJob ("Qsales%Rel1",
➥ DSJ.ERRWARN)
7-90 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSCheckRoutine
DSCheckRoutine
Checks if a BASIC routine is cataloged, either in the VOC as a callable

item, or in the catalog space.

Syntax
Found = DSCheckRoutine(RoutineName)

RoutineName is the name of BASIC routine to check.

Found Boolean. @False if RoutineName not findable, else @True.

Example
rtn$ok = DSCheckRoutine(“DSU.DSSendMail”)
If(NOT(rtn$ok)) Then

* error handling here
End.
Parallel Job Advanced Developer’s Guide 7-91

DSDetachJob DataStage Development Kit (Job Control Interfaces)
DSDetachJob
Gives back a JobHandle acquired by DSAttachJob if no further

control of a job is required (allowing another job to become its

controller). It is not necessary to call this function, otherwise any

attached jobs will always be detached automatically when the

controlling job finishes.

Syntax
ErrCode = DSDetachJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

The only possible error is an attempt to close DSJ.ME. Otherwise, the

call always succeeds.

Example
The following command detaches the handle for the job qsales:

Deterr = DSDetachJob (qsales_handle)
7-92 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSExecute
DSExecute
Executes a DOS or DataStage Engine command from a before/after

subroutine.

Syntax
Call DSExecute (ShellType, Command, Output, SystemReturnCode)

ShellType (input) specifies the type of command you want to execute

and is either NT or UV (for DataStage Engine).

Command (input) is the command to execute. Command should not

prompt for input when it is executed.

Output (output) is any output from the command. Each line of output

is separated by a field mark, @FM. Output is added to the job log file

as an information message.

SystemReturnCode (output) is a code indicating the success of the

command. A value of 0 means the command executed successfully. A

value of 1 (for a DOS command) indicates that the command was not

found. Any other value is a specific exit code from the command.

Remarks
Do not use DSExecute from a transform; the overhead of running a

command for each row processed by a stage will degrade

performance of the job.
Parallel Job Advanced Developer’s Guide 7-93

DSGetCustInfo DataStage Development Kit (Job Control Interfaces)
DSGetCustInfo
Obtains information reported at the end of execution of certain

parallel stages. The information collected, and available to be

interrogated, is specified at design time. For example, transformer

stage information is specified in the Triggers tab of the Transformer

stage Properties dialog box.

Syntax
Result = DSGetCustInfo (JobHandle, StageName, CustInfoName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.CUSTINFOVALUE

DSJ.CUSTINFODESC

Result depends on the specified InfoType, as follows:

DSJ.CUSTINFOVALUE String - the value of the specified
custinfo item.

DSJ.CUSTINFODESC String - description of the specified
custinfo item.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.

DSJE.BADCUSTINFOCustInfoName does not refer to a known
custinfo item.
7-94 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSIPCPageProps
DSIPCPageProps
Returns the size (in KB) of the Send/Recieve buffer of an IPC (or Web

Service) stage.

Syntax
Result = DSGetIPCStageProps (JobName, StageName)
or
Call DSGetIPCStageProps (Result, JobName, StageName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

StageName is the name of an IPC stage in the specified job for which

information is required. If StageName does not exist, or is not an IPC

stage within JobName, Result will be set to an empty string.

Result is an array containing the following fields:

the size (in kilobytes) of the Send/Receive buffer of the IPC (or Web
Service) stage StageName within JobName.

the seconds timeout value of the IPC (or Web Service) stage
StageName within JobName.

Example
The following returns the size and timeout of the stage “IPC1” in the

job “testjob”:

buffersize = DSGetIPCStageProps (testjob, IPC1)
Parallel Job Advanced Developer’s Guide 7-95

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
DSGetJobInfo
Provides a method of obtaining information about a job, which can be

used generally as well as for job control. It can refer to the current job

or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetJobInfo (JobHandle, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

InfoType specifies the information required and can be one of:

DSJ.JOBSTATUS

DSJ.JOBNAME

DSJ.JOBCONTROLLER

DSJ.JOBSTARTTIMESTAMP

DSJ.JOBWAVENO

DSJ.PARAMLIST

DSJ.STAGELIST

DSJ.USERSTATUS

DSJ.JOBCONTROL

DSJ.JOBPID

DSJ.JPBLASTTIMESTAMP

DSJ.JOBINVOCATIONS

DSJ.JOBINTERIMSTATUS

DSJ.JOBINVOCATIONID

DSJ.JOBDESC

DSJ.JOBFULLDESC

DSJ.STAGELIST2

DSJ.JOBELAPSED

DSJ.JOBEOTCOUNT

DSJ.JOBEOTTIMESTAMP

DSJ.JOBRTISERVICE

DSJ.JOBMULTIINVOKABLE

DSJ.JOBFULLSTAGELIST
7-96 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
Result depends on the specified InfoType, as follows:

DSJ.JOBSTATUS Integer. Current status of job overall. Possible
statuses that can be returned are currently divided into two
categories:

Firstly, a job that is in progress is identified by:

DSJS.RESETJob finished a reset run.

DSJS.RUNFAILEDJob finished a normal run with a fatal

error.

DSJS.RUNNINGJob running - this is the only status that

 means the job is actually running.

Secondly, jobs that are not running may have the following

statuses:

DSJS.RUNOKJob finished a normal run with no

warnings.

DSJS.RUNWARNJob finished a normal run with

warnings.

DSJS.STOPPEDJob was stopped by operator

intervention (can't tell run type).

DSJS.VALFAILEDJob failed a validation run.

DSJS.VALOKJob finished a validation run with no

warnings.

DSJS.VALWARNJob finished a validation run with

warnings.

DSJ.JOBNAME String. Actual name of the job referenced by the
job handle.

DSJ.JOBCONTROLLER String. Name of the job controlling the
job referenced by the job handle. Note that this may be several job
names separated by periods if the job is controlled by a job which
is itself controlled, etc.

DSJ.JOBSTARTTIMESTAMP String. Date and time when the job
started on the server in the form YYYY-MM-
DD HH:NN:SShh:nn:ss.

DSJ.JOBWAVENO Integer. Wave number of last or current run.

DSJ.PARAMLIST. Returns a comma-separated list of parameter
names.

DSJ.STAGELIST. Returns a comma-separated list of active stage
names.
Parallel Job Advanced Developer’s Guide 7-97

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
DSJ.USERSTATUS String. Whatever the job's last call of
DSSetUserStatus last recorded, else the empty string.

DSJ.JOBCONTROL Integer. Current job control status, i.e.,
whether a stop request has been issued for the job.

DSJ. JOBPID Integer. Job process id.

DSJ.JOBLASTTIMESTAMP String. Date and time when the job
last finished a run on the server in the form YYYY-MM-
DD HH:NN:SS.

DSJ.JOBINVOCATIONS. Returns a comma-separated list of
Invocation IDs.

DSJ.JOBINTERIMSTATUS. Returns the status of a job after it
has run all stages and controlled jobs, but before it has attempted
to run an after-job subroutine. (Designed to be used by an after-job
subroutine to get the status of the current job).

DSJ.JOBINVOCATIONID. Returns the invocation ID of the
specified job (used in the DSJobInvocationId macro in a job
design to access the invocation ID by which the job is invoked).

DSJ.STAGELIST2. Returns a comma-separated list of passive
stage names.

DSJ.JOBELAPSED String. The elapsed time of the job in
seconds.

DSJ.JOBDESC string. The Job Description specified in the Job
Properties dialog box.

DSJ.JOBFULLDESSC string. The Full Description specified in
the Job Properties dialog box.

DSJ.JOBRTISERVICE integer. Set to true if this is a web service
job.

DSJ.JOBMULTIINVOKABLE integer. Set to true if this job
supports multiple invocations

DSJ.JOBEOTCOUNT integer. Count of EndOfTransmission
blocks processed by this job so far.

DSJ.JOBEOTTIMESTAMP timestamp. Date/time of the last
EndOfTransmission block processed by this job.

DSJ.FULLSTAGELIST. Returns a comma-separated list of all
stage names.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.
7-98 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
Remarks
When referring to a controlled job, DSGetJobInfo can be used either

before or after a DSRunJob has been issued. Any status returned

following a successful call to DSRunJob is guaranteed to relate to

that run of the job.

Examples
The following command requests the job status of the job qsales:

q_status = DSGetJobInfo(qsales_handle, DSJ.JOBSTATUS)

The following command requests the actual name of the current job:

whatname = DSGetJobInfo (DSJ.ME, DSJ.JOBNAME)
Parallel Job Advanced Developer’s Guide 7-99

DSGetJobMetaBag DataStage Development Kit (Job Control Interfaces)
DSGetJobMetaBag
Returns a dynamic array containing the MetaBag properties

associated with the named job.

Syntax
Result = DSGetJobMetaBag(JobName, Owner)
or
Call DSGetJobMetaBag(Result, JobName, Owner)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project Result will be set to an empty string.

Owner is an owner name whose metabag properties are to be

returned. If Owner is not a valid owner within the current job, Result

will be set to an empty string. If Owner is an empty string, a field

mark delimited string of metabag property owners within the current

job will be returned in Result.

Result returns a dynamic array of metabag property sets, as follows:

RESULT<1> = MetaPropertyName01 @VM MetaPropertyValue01

RESULT<..> = MetaPropertyName.. @VM MetaPropertyValue..

RESULT<N>= MetaPropertyNameN @VM MetaPropertyValueN

Example
The following returns the metabag properties for owner mbowner in

the job “testjob”:

linksmdata = DSGetJobMetaBag (testjob, mbowner)
7-100 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLinkInfo
DSGetLinkInfo
Provides a method of obtaining information about a link on an active

stage, which can be used generally as well as for job control. This

routine may reference either a controlled job or the current job,

depending on the value of JobHandle.

Syntax
Result = DSGetLinkInfo (JobHandle, StageName, LinkName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it can be DSJ.ME to refer to the current job.

StageName is the name of the active stage to be interrogated. May

also be DSJ.ME to refer to the current stage if necessary.

LinkName is the name of a link (input or output) attached to the stage.

May also be DSJ.ME to refer to current link (e.g. when used in a

Transformer expression or transform function called from link code).

InfoType specifies the information required and can be one of:

DSJ.LINKLASTERR

DSJ.LINKNAME

DSJ.LINKROWCOUNT

DSJ.LINKSQLSTATE

DSJ.LINKDBMSCODE

DSJ.LINKDESC

DSJ.LINKSTAGE

DSJ.INSTROWCOUNT

DSJ.LINKEOTROWCOUNT

Result depends on the specified InfoType, as follows:

DSJ.LINKLASTERR String – last error message (if any) reported
from the link in question.

DSJ.LINKNAME String – returns the name of the link, most
useful when used with JobHandle = DSJ.ME and StageName =
DSJ.ME and LinkName = DSJ.ME to discover your own name.

DSJ.LINKROWCOUNT Integer – number of rows that have
passed down a link so far.

DSJ.LINKSQLSTATE – the SQL state for the last error occurring
on this link.

DSJ.LINKDBMSCODE – the DBMS code for the last error
occurring on this link.
Parallel Job Advanced Developer’s Guide 7-101

DSGetLinkInfo DataStage Development Kit (Job Control Interfaces)
DSJ.LINKDESC – description of the link.

DSJ.LINKSTAGE – name of the stage at the other end of the link.

DSJ.INSTROWCOUNT – comma-separated list of rowcounts,
one per instance (parallel jobs)

DSJ.LINKEOTROWCOUNT – row count since last
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.BADSTAGE StageName does not refer to a known stage
in the job.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADLINK LinkName does not refer to a known link
for the stage in question.

Remarks
When referring to a controlled job, DSGetLinkInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the number of rows that have

passed down the order_feed link in the loader stage of the job qsales:

link_status = DSGetLinkInfo(qsales_handle, "loader",
➥ "order_feed", DSJ.LINKROWCOUNT)
7-102 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLinkMetaData
DSGetLinkMetaData
Returns a dynamic array containing the column metadata of the

specified stage.

Syntax
Result = DSGetLinkMetaData(JobName, LinkName)

or
Call DSGetLinkMetaData(Result, JobName, LinkName)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

LinkName is the name of the link in the specified job for which

information is required. If the LinkName does not exist in the specified

job then the function will return an empty string.

Result returns a dynamic array of nine fields, each field will contain N

values where N is the number of columns on the link.

Result<1,1…N> is the column name

Result<2,1…N> is 1 for primary key columns otherwise 0

Result<3,1…N> is the column sql type. See ODBC.H.

Result<4,1…N> is the column precision

Result<5,1…N> is the column scale

Result<6,1…N> is the column desiplay width

Result<7,1…N> is 1 for nullable columns otherwise 0

Result<8,1…N> is the column descriptions

Result<9,1…N> is the column derivation

Example
The following returns the meta data of the link ilink1 in the job

“testjob”:

linksmdata = DSGetLinkMetaData (testjob, ilink1)
Parallel Job Advanced Developer’s Guide 7-103

DSGetLogEntry DataStage Development Kit (Job Control Interfaces)
DSGetLogEntry
Reads the full event details given in EventId.

Syntax
EventDetail = DSGetLogEntry (JobHandle, EventId)

JobHandle is the handle for the job as derived from DSAttachJob.

EventId is an integer that identifies the specific log event for which

details are required. This is obtained using the DSGetNewestLogId
function.

EventDetail is a string containing substrings separated by \. The

substrings are as follows:

Substring1Timestamp in form YYYY-MM-DD HH:NN:SS

Substring2User information

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADVALUE Error accessing EventId.

Example
The following commands first get the EventID for the required log

event and then reads full event details of the log event identified by

LatestLogid into the string LatestEventString:

latestlogid =
➥ DSGetNewestLogId(qsales_handle,DSJ.LOGANY)
LatestEventString =
➥ DSGetLogEntry(qsales_handle,latestlogid)
7-104 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLogSummary
DSGetLogSummary
Returns a list of short log event details. The details returned are

determined by the setting of some filters. (Care should be taken with

the setting of the filters, otherwise a large amount of information can

be returned.)

Syntax
SummaryArray = DSGetLogSummary (JobHandle, EventType, StartTime,
EndTime, MaxNumber)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

StartTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-

MM-DD.

EndTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-MM-

DD.

MaxNumber is an integer that restricts the number of events to return.

0 means no restriction. Use this setting with caution.

SummaryArray is a dynamic array of fields separated by @FM. Each

field comprises a number of substrings separated by \, where each

field represents a separate event, with the substrings as follows:

Substring1EventId as per DSGetLogEntry

Substring2Timestamp in form YYYY-MM-DD

HH:NN:SS

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.
Parallel Job Advanced Developer’s Guide 7-105

DSGetLogSummary DataStage Development Kit (Job Control Interfaces)
DSJE.BADTIME Invalid StartTime or EndTime.

DSJE.BADVALUE Invalid MaxNumber.

Example
The following command produces an array of reject link active events

recorded for the qsales job between 18th August 1998, and 18th

September 1998, up to a maximum of MAXREJ entries:

RejEntries = DSGetLogSummary (qsales_handle,
➥ DSJ.LOGREJECT, "1998-08-18 00:00:00", "1998-09-18
➥ 00:00:00", MAXREJ)
7-106 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetNewestLogId
DSGetNewestLogId
Gets the ID of the most recent log event in a particular category, or in

any category.

Syntax
EventId = DSGetNewestLogId (JobHandle, EventType)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

EventId is an integer that identifies the specific log event. EventId can

also be returned as an integer, in which case it contains an error code

as follows:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.

Example
The following command obtains an ID for the most recent warning

message in the log for the qsales job:

Warnid = DSGetNewestLogId (qsales_handle,
➥ DSJ.LOGWARNING)
Parallel Job Advanced Developer’s Guide 7-107

DSGetParamInfo DataStage Development Kit (Job Control Interfaces)
DSGetParamInfo
Provides a method of obtaining information about a parameter, which

can be used generally as well as for job control. This routine may

reference either a controlled job or the current job, depending on the

value of JobHandle.

Syntax
Result = DSGetParamInfo (JobHandle, ParamName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

ParamName is the name of the parameter to be interrogated.

InfoType specifies the information required and may be one of:

DSJ.PARAMDEFAULT

DSJ.PARAMHELPTEXT

DSJ.PARAMPROMPT

DSJ.PARAMTYPE

DSJ.PARAMVALUE

DSJ.PARAMDES.DEFAULT

DSJ.PARAMLISTVALUES

DSJ.PARAMDES.LISTVALUES

DSJ.PARAMPROMPT.AT.RUN

Result depends on the specified InfoType, as follows:

DSJ.PARAMDEFAULT String – Current default value for the
parameter in question. See also DSJ.PARAMDES.DEFAULT.

DSJ.PARAMHELPTEXT String – Help text (if any) for the
parameter in question.

DSJ.PARAMPROMPT String – Prompt (if any) for the parameter
in question.

DSJ.PARAMTYPE Integer – Describes the type of validation test
that should be performed on any value being set for this
parameter. Is one of:

DSJ.PARAMTYPE.STRING

DSJ.PARAMTYPE.ENCRYPTED

DSJ.PARAMTYPE.INTEGER
7-108 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetParamInfo
DSJ.PARAMTYPE.FLOAT (the parameter may contain periods

and E)

DSJ.PARAMTYPE.PATHNAME

DSJ.PARAMTYPE.LIST (should be a string of Tab-separated

strings)

DSJ.PARAMTYPE.DATE (should be a string in form YYYY-MM-

DD)

DSJ.PARAMTYPE.TIME (should be a string in form HH:MM)

DSJ.PARAMVALUE String – Current value of the parameter for
the running job or the last job run if the job is finished.

DSJ.PARAMDES.DEFAULT String – Original default value of the
parameter - may differ from DSJ.PARAMDEFAULT if the latter
has been changed by an administrator since the job was installed.

DSJ.PARAMLISTVALUES String – Tab-separated list of allowed
values for the parameter. See also
DSJ.PARAMDES.LISTVALUES.

DSJ.PARAMDES.LISTVALUES String – Original Tab-separated
list of allowed values for the parameter – may differ from
DSJ.PARAMLISTVALUES if the latter has been changed by an
administrator since the job was installed.

DSJ.PROMPT.AT.RUN String – 1 means the parameter is to be
prompted for when the job is run; anything else means it is not
(DSJ.PARAMDEFAULT String to be used directly).

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADPARAM ParamName is not a parameter name in the
job.

DSJE.BADTYPE InfoType was unrecognized.

Remarks
When referring to a controlled job, DSGetParamInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the default value of the quarter

parameter for the qsales job:
Parallel Job Advanced Developer’s Guide 7-109

DSGetParamInfo DataStage Development Kit (Job Control Interfaces)
Qs_quarter = DSGetparamInfo(qsales_handle, "quarter",
➥ DSJ.PARAMDEFAULT)
7-110 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectInfo
DSGetProjectInfo
Provides a method of obtaining information about the current project.

Syntax
Result = DSGetProjectInfo (InfoType)

InfoType specifies the information required and can be one of:

DSJ.JOBLIST

DSJ.PROJECTNAME

DSJ.HOSTNAME

Result depends on the specified InfoType, as follows:

DSJ.JOBLIST String - comma-separated list of names of all jobs
known to the project (whether the jobs are currently attached or
not).

DSJ.PROJECTNAME String - name of the current project.

DSJ.HOSTNAME String - the host name of the server holding
the current project.

Result may also return an error condition as follows:

– DSJE.BADTYPE InfoType was unrecognized.
Parallel Job Advanced Developer’s Guide 7-111

DSGetStageInfo DataStage Development Kit (Job Control Interfaces)
DSGetStageInfo
Provides a method of obtaining information about a stage, which can

be used generally as well as for job control. It can refer to the current

job, or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetStageInfo (JobHandle, StageName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

InfoType specifies the information required and may be one of:

DSJ.LINKLIST

DSJ.STAGELASTERR

DSJ.STAGENAME

DSJ.STAGETYPE

DSJ.STAGEINROWNUM

DSJ.VARLIST

DSJ.STAGESTARTTIMESTAMP

DSJ.STAGEENDTIMESTAMP

DSJ.STAGEDESC

DSJ.STAGEINST

DSJ.STAGECPU

DSJ.LINKTYPES

DSJ.STAGEELAPSED

DSJ.STAGEPID

DSJ.STAGESTATUS

DSJ.STAGEEOTCOUNT

DSJ.STAGEEOTTIMESTAMP

DSJ.CUSTINFOLIST

DSJ.STAGEEOTSTART

Result depends on the specified InfoType, as follows:

DSJ.LINKLIST – comma-separated list of link names in the stage.
7-112 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageInfo
DSJ.STAGELASTERR String – last error message (if any)
reported from any link of the stage in question.

DSJ.STAGENAME String – most useful when used with
JobHandle = DSJ.ME and StageName = DSJ.ME to discover
your own name.

DSJ.STAGETYPE String – the stage type name (e.g.
"Transformer", "BeforeJob").

DSJ. STAGEINROWNUM Integer – the primary link's input row
number.

DSJ.VARLIST – comma-separated list of stage variable names.

DSJ.STAGESTARTTIMESTAMP – date/time that stage started
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEENDTIMESTAMP – date/time that stage finished
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEDESC – stage description.

DSJ.STAGEINST – comma-separated list of instance ids (parallel
jobs).

DSJ.STAGECPU – list of CPU times in seconds.

DSJ.LINKTYPES – comma-separated list of link types.

DSJ.STAGEELAPSED – elapsed time in seconds.

DSJ.STAGEPID – comma-separated list of process ids.

DSJ.STAGESTATUS – stage status.

DSJ.STAGEEOTCOUNT – Count of EndOfTransmission blocks
processed by this stage so far.

DSJ.STAGEEOTTIMESTAMP – Data/time of last
EndOfTransmission block received by this stage.

DSJ.CUSTINFOLIST – custom information generated by stages
(parallel jobs).

DSJ.STAGEEOTSTART – row count at start of current
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEI nfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
Parallel Job Advanced Developer’s Guide 7-113

DSGetStageInfo DataStage Development Kit (Job Control Interfaces)
Remarks
When referring to a controlled job, DSGetStageInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the last error message for the

loader stage of the job qsales:

stage_status = DSGetStageInfo(qsales_handle, "loader",
➥ DSJ.STAGELASTERR)
7-114 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageLinks
DSGetStageLinks
Returns a field mark delimited list containing the names of all of the

input/output links of the specified stage.

Syntax
Result = DSGetStageLinks(JobName, StageName, Key)

or
Call DSGetStageLinks(Result, JobName, StageName, Key)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project, then the function will return an empty string.

StageName is the name of the stage in the specified job for which

information is required. If the StageName does not exist in the

specified job then the function will return an empty string.

Key depending on the value of Key the returned list will contain all of

the stages links (Key=0), only the stage’s input links (Key=1) or only

the stage’s output links (Key=2).

Result returns a field mark delimited list containing the names of the

links.

Example
The following returns a list of all the input links on the stage called

“join1” in the job “testjob”:

linkslist = DSGetStageLinks (testjob, join1, 1)
Parallel Job Advanced Developer’s Guide 7-115

DSGetStagesOfType DataStage Development Kit (Job Control Interfaces)
DSGetStagesOfType
Returns a field mark delimited list containing the names of all of the

stages of the specified type in a named job..

Syntax
Result = DSGetStagesOfType (JobName, StageType)
or
Call DSGetStagesOfType (Result, JobName, StageType)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

StageType is the name of the stage type, as shown by the Manager

stage type properties form eg CTransformerStage or ORAOCI8. If the

StageType does not exist in the current project or there are no stages

of that type in the specifed job, then the function will return an empty

string.

Result returns a field mark delimited list containing the names of all of

the stages of the specified type in a named job.

Example
The following returns a list of all the aggregator stages in the parallel

job “testjob”:

stagelist = DSGetStagesOfType (testjob, PxAggregator)
7-116 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStagesTypes
DSGetStagesTypes
Returns a field mark delimited string of all active and passive stage

types that exist within a named job..

Syntax
Result = DSGetStageTypes(JobName)
or
Call DSGetStageTypes(Result, JobName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

Result is a sorted, field mark delimited string of stage types within

JobName.

Example
The following returns a list of all the types of stage in the job

“testjob”:

stagetypelist = DSGetStagesOfType (testjob)
Parallel Job Advanced Developer’s Guide 7-117

DSGetProjectInfo DataStage Development Kit (Job Control Interfaces)
DSGetProjectInfo
Provides a method of obtaining information about variables used in

transformer stages.

Syntax
Result = DSGetVarInfo (JobHandle, StageName, VarName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.VARVALUE

DSJ.VARDESCRIPTION

Result depends on the specified InfoType, as follows:

DSJ.VARVALUE String - the value of the specified variable.

DSJ.VARDESCRIPTION String - description of the specified
variable.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was not recognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADVAR VarName was not recognized.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
7-118 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogEvent
DSLogEvent
Logs an event message to a job other than the current one. (Use

DSLogInfo, DSLogFatal, or DSLogWarn to log an event to the

current job.)

Syntax
ErrCode = DSLogEvent (JobHandle, EventType, EventMsg)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

EventMsg is a string containing the event message.

ErrCode is 0 if there is no error. Otherwise it contains one of the

following errors:

DSJE.BADHANDLEInvalid JobHandle.

DSJE.BADTYPEInvalid EventType (particularly note that you
cannot place a fatal message in another job’s log).

Example
The following command, when included in the msales job, adds the

message “monthly sales complete” to the log for the qsales job:

Logerror = DsLogEvent (qsales_handle, DSJ.LOGINFO,
➥ "monthly sales complete")
Parallel Job Advanced Developer’s Guide 7-119

DSLogFatal DataStage Development Kit (Job Control Interfaces)
DSLogFatal
Logs a fatal error message in a job's log file and aborts the job.

Syntax
Call DSLogFatal (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogFatal subroutine.

Remarks
DSLogFatal writes the fatal error message to the job log file and

aborts the job. DSLogFatal never returns to the calling before/after

subroutine, so it should be used with caution. If a job stops with a fatal

error, it must be reset using the DataStage Director before it can be

rerun.

In a before/after subroutine, it is better to log a warning message

(using DSLogWarn) and exit with a nonzero error code, which allows

DataStage to stop the job cleanly.

DSLogFatal should not be used in a transform. Use

DSTransformError instead.

Example
Call DSLogFatal("Cannot open file", "MyRoutine")
7-120 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogInfo
DSLogInfo
Logs an information message in a job's log file.

Syntax
Call DSLogInfo (Message, CallingProgName)

Message (input) is the information message you want to log. Message

is automatically prefixed with the name of the current stage and the

calling program.

CallingProgName (input) is the name of the transform or before/after

subroutine that calls the DSLogInfo subroutine.

Remarks
DSLogInfo writes the message text to the job log file as an

information message and returns to the calling routine or transform. If

DSLogInfo is called during the test phase for a newly created routine

in the DataStage Manager, the two arguments are displayed in the

results window.

Unlimited information messages can be written to the job log file.

However, if a lot of messages are produced the job may run slowly

and the DataStage Director may take some time to display the job log

file.

Example
Call DSLogInfo("Transforming: ":Arg1, "MyTransform")
Parallel Job Advanced Developer’s Guide 7-121

DSLogToController DataStage Development Kit (Job Control Interfaces)
DSLogToController
This routine may be used to put an info message in the log file of the

job controlling this job, if any. If there isn't one, the call is just ignored.

Syntax
Call DSLogToController(MsgString)

MsgString is the text to be logged. The log event is of type

Information.

Remarks
If the current job is not under control, a silent exit is performed.

Example
Call DSLogToController(“This is logged to parent”)
7-122 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogWarn
DSLogWarn
Logs a warning message in a job's log file.

Syntax
Call DSLogWarn (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogWarn subroutine.

Remarks
DSLogWarn writes the message to the job log file as a warning and

returns to the calling before/after subroutine. If the job has a warning

limit defined for it, when the number of warnings reaches that limit,

the call does not return and the job is aborted.

DSLogWarn should not be used in a transform. Use

DSTransformError instead.

Example
If InputArg > 100 Then

Call DSLogWarn("Input must be =< 100; received
":InputArg,"MyRoutine")

End Else
* Carry on processing unless the job aborts

End
Parallel Job Advanced Developer’s Guide 7-123

DSMakeJobReport DataStage Development Kit (Job Control Interfaces)
DSMakeJobReport
Generates a report describing the complete status of a valid attached

job.

Syntax
ReportText = DSMakeJobReport(JobHandle, ReportLevel, LineSeparator)

JobHandle is the string as returned from DSAttachJob.

ReportLevel specifies the type of report and is one of the following:

0 – basic report. Text string containing start/end time, time elapsed
and status of job.

1 – stage/link detail. As basic report, but also contains information
about individual stages and links within the job.

2 – text string containing full XML report.

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

LineSeparator is the string used to separate lines of the report. Special

values recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows, else LF.

Remarks
If a bad job handle is given, or any other error is encountered,

information is added to the ReportText.

Example
h$ = DSAttachJob(“MyJob”, DSJ.ERRNONE)
rpt$ = DSMakeJobReport(h$,0,”CRLF”)
7-124 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSMakeMsg
DSMakeMsg
Insert arguments into a message template. Optionally, it will look up a

template ID in the standard DataStage messages file, and use any

returned message template instead of that given to the routine.

DSMakeMsg

Syntax
FullText = DSMakeMsg(Template, ArgList)

FullText is the message with parameters substituted

Template is the message template, in which %1, %2 etc. are to be

substituted with values from the equivalent position in ArgList. If the

template string starts with a number followed by "\", that is assumed

to be part of a message id to be looked up in the DataStage message

file.

Note: If an argument token is followed by "[E]", the value of that

argument is assumed to be a job control error code, and an

explanation of it will be inserted in place of "[E]". (See the

DSTranslateCode function.)

ArgList is the dynamic array, one field per argument to be substituted.

Remarks
This routine is called from job control code created by the

JobSequence Generator. It is basically an interlude to call

DSRMessage which hides any runtime includes.

It will also perform local job parameter substitution in the message

text. That is, if called from within a job, it looks for substrings such as

"#xyz#" and replaces them with the value of the job parameter named

"xyz".

Example
t$ = DSMakeMsg(“Error calling DSAttachJob(%1)<L>%2”,
➥jb$:@FM:DSGetLastErrorMsg())
Parallel Job Advanced Developer’s Guide 7-125

DSPrepareJob DataStage Development Kit (Job Control Interfaces)
DSPrepareJob
Used to ensure that a compiled job is in the correct state to be run or

validated.

Syntax
JobHandle = DSPrepareJob(JobHandle)

JobHandle is the handle, as returned from DSAttachJob(), of the job

to be prepared.

JobHandle is either the original handle or a new one. If returned as 0,

an error occurred and a message is logged.

Example
h$ = DSPrepareJob(h$)
7-126 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSRunJob
DSRunJob
Starts a job running. Note that this call is asynchronous; the request is

passed to the run-time engine, but you are not informed of its

progress.

Syntax
ErrCode = DSRunJob (JobHandle, RunMode)

JobHandle is the handle for the job as derived from DSAttachJob.

RunMode is the name of the mode the job is to be run in and is one of:

DSJ.RUNNORMAL (Default) Standard job run.

DSJ.RUNRESET Job is to be reset.

DSJ.RUNVALIDATE Job is to be validated only.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPE RunMode is not a known mode.

Remarks
If the controlling job is running in validate mode, then any calls of

DSRunJob will act as if RunMode was DSJ.RUNVALIDATE,

regardless of the actual setting.

A job in validate mode will run its JobControl routine (if any) rather

than just check for its existence, as is the case for before/after routines.

This allows you to examine the log of what jobs it started up in

validate mode.

After a call of DSRunJob, the controlled job’s handle is unloaded. If

you require to run the same job again, you must use DSDetachJob

and DSAttachJob to set a new handle. Note that you will also need

to use DSWaitForJob, as you cannot attach to a job while it is

running.

Example
The following command starts the job qsales in standard mode:

RunErr = DSRunJob(qsales_handle, DSJ.RUNNORMAL)
Parallel Job Advanced Developer’s Guide 7-127

DSSendMail DataStage Development Kit (Job Control Interfaces)
DSSendMail
This routine is an interface to a sendmail program that is assumed to

exist somewhere in the search path of the current user (on the server).

It hides the different call interfaces to various sendmail programs, and

provides a simple interface for sending text. For example:

Syntax
Reply = DSSendMail(Parameters)

Parameters is a set of name:value parameters, separated by either a

mark character or "\n".

Currently recognized names (case-insensitive) are:

"From"Mail address of sender, e.g. Me@SomeWhere.com

Can only be left blank if the local template file does not contain a

"%from%" token.

"To" Mail address of recipient, e.g. You@ElseWhere.com

Can only be left blank if the local template file does not contain a

"%to%" token.

"Subject" Something to put in the subject line of the message.

Refers to the "%subject%" token. If left as "", a standard subject

line will be created, along the lines of "From DataStage job:

jobname"

"Server" Name of host through which the mail should be sent.

May be omitted on systems (such as Unix) where the SMTP host

name can be and is set up externally, in which case the local

template file presumably will not contain a "%server%" token.

"Body" Message body.

Can be omitted. An empty message will be sent. If used, it must be

the last parameter, to allow for getting multiple lines into the

message, using "\n" for line breaks. Refers to the "%body%" token.

Note The text of the body may contain the tokens "%report% or

%fullreport% anywhere within it, which will cause a report

on the current job status to be inserted at that point. A full

report contains stage and link information as well as job

status.

Reply. Possible replies are:

DSJE.NOERROR (0) OK
7-128 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSendMail
DSJE.NOPARAM Parameter name missing - field does not look
like 'name:value'

DSJE.NOTEMPLATE Cannot find template file

DSJE.BADTEMPLATE Error in template file

Remarks
The routine looks for a local file, in the current project directory, with a

well-known name. That is, a template to describe exactly how to run

the local sendmail command.

Example
code = DSSendMail("From:me@here\nTo:You@there\nSubject:Hi
ya\nBody:Line1\nLine2")
Parallel Job Advanced Developer’s Guide 7-129

DSSetGenerateOpMetaData DataStage Development Kit (Job Control Interfaces)
DSSetGenerateOpMetaData
Use this to specify whether the job generates operational meta data or

not. This overrides the default setting for the project. In order to

generate operational meta data the Process MetaBroker must be

installed on your DataStage machine.

Syntax
ErrCode = DSSetGenerateOpMetaData (JobHandle, value)

JobHandle is the handle for the job as derived from DSAttachJob.

value is TRUE to generate operational meta data, FALSE to not

generate operational meta data.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE value is wrong.

Example
The following command causes the job qsales to generate operational

meta data whatever the project default specifies:

GenErr = DSSetGenerateOpMetaData(qsales_handle, TRUE)
7-130 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetJobLimit
DSSetJobLimit
By default a controlled job inherits any row or warning limits from the

controlling job. These can, however, be overridden using the

DSSetJobLimit function.

Syntax
ErrCode = DSSetJobLimit (JobHandle, LimitType, LimitValue)

JobHandle is the handle for the job as derived from DSAttachJob.

LimitType is the name of the limit to be applied to the running job and

is one of:

DSJ.LIMITWARN Job to be stopped after LimitValue warning
events.

DSJ.LIMITROWS Stages to be limited to LimitValue rows.

LimitValue is an integer specifying the value to set the limit to. Set this

to 0 to specify unlimited warnings.

ErrCode is 0 if DSSetJobLimit is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPELimitType is not a known limiting condition.

DSJE.BADVALUELimitValue is not appropriate for the limiting
condition type.

Example
The following command sets a limit of 10 warnings on the qsales job

before it is stopped:

LimitErr = DSSetJobLimit(qsales_handle,
➥ DSJ.LIMITWARN, 10)
Parallel Job Advanced Developer’s Guide 7-131

DSSetParam DataStage Development Kit (Job Control Interfaces)
DSSetParam
Specifies job parameter values before running a job. Any parameter

not set will be defaulted.

Syntax
ErrCode = DSSetParam (JobHandle, ParamName, ParamValue)

JobHandle is the handle for the job as derived from DSAttachJob.

ParamName is a string giving the name of the parameter.

ParamValue is a string giving the value for the parameter.

ErrCode is 0 if DSSetParam is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADPARAMParamName is not a known parameter of the
job.

DSJE.BADVALUEParamValue is not appropriate for that
parameter type.

Example
The following commands set the quarter parameter to 1 and the

startdate parameter to 1/1/97 for the qsales job:

paramerr = DSSetParam (qsales_handle, "quarter", "1")
paramerr = DSSetParam (qsales_handle, "startdate",
➥ "1997-01-01")
7-132 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetUserStatus
DSSetUserStatus
Applies only to the current job, and does not take a JobHandle

parameter. It can be used by any job in either a JobControl or After

routine to set a termination code for interrogation by another job. In

fact, the code may be set at any point in the job, and the last setting is

the one that will be picked up at any time. So to be certain of getting

the actual termination code for a job the caller should use

DSWaitForJob and DSGetJobInfo first, checking for a successful

finishing status.

This routine is defined as a subroutine not a function because there

are no possible errors.

Syntax
Call DSSetUserStatus (UserStatus)

UserStatus String is any user-defined termination message. The string

will be logged as part of a suitable "Control" event in the calling job’s

log, and stored for retrieval by DSGetJobInfo, overwriting any

previous stored string.

This string should not be a negative integer, otherwise it may be

indistinguishable from an internal error in DSGetJobInfo calls.

Example
The following command sets a termination code of “sales job done”:

Call DSSetUserStatus("sales job done")
Parallel Job Advanced Developer’s Guide 7-133

DSStopJob DataStage Development Kit (Job Control Interfaces)
DSStopJob
This routine should only be used after a DSRunJob has been issued.

It immediately sends a stop request to the run-time engine. The call is

asynchronous. If you need to know that the job has actually stopped,

you must call DSWaitForJob or use the Sleep statement and poll for

DSGetJobStatus. Note that the stop request gets sent regardless of

the job's current status.

Syntax
ErrCode = DSStopJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

Example
The following command requests that the qsales job is stopped:

stoperr = DSStopJob(qsales_handle)
7-134 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSTransformError
DSTransformError
Logs a warning message to a job log file. This function is called from

transforms only.

Syntax
Call DSTransformError (Message, TransformName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling transform.

TransformName (input) is the name of the transform that calls the

DSTransformError subroutine.

Remarks
DSTransformError writes the message (and other information) to

the job log file as a warning and returns to the transform. If the job has

a warning limit defined for it, when the number of warnings reaches

that limit, the call does not return and the job is aborted.

In addition to the warning message, DSTransformError logs the

values of all columns in the current rows for all input and output links

connected to the current stage.

Example
Function MySqrt(Arg1)
If Arg1 < 0 Then

Call DSTransformError("Negative value:"Arg1, "MySqrt")
Return("0") ;*transform produces 0 in this case

End
Result = Sqrt(Arg1) ;* else return the square root

Return(Result)
Parallel Job Advanced Developer’s Guide 7-135

DSTranslateCode DataStage Development Kit (Job Control Interfaces)
DSTranslateCode
Converts a job control status or error code into an explanatory text

message.

Syntax
Ans = DSTranslateCode(Code)

Code is:

If Code > 0, it's assumed to be a job status.

If Code < 0, it's assumed to be an error code.

(0 should never be passed in, and will return "no error")

Ans is the message associated with the code.

Remarks
If Code is not recognized, then Ans will report it.

Example
code$ = DSGetLastErrorMsg()
ans$ = DSTranslateCode(code$)
7-136 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSWaitForFile
DSWaitForFile
Suspend a job until a named file either exists or does not exist.

Syntax
Reply = DSWaitForFile(Parameters)

Parameters is the full path of file to wait on. No check is made as to

whether this is a reasonable path (for example, whether all directories

in the path exist). A path name starting with "-", indicates a flag to

check the non-existence of the path. It is not part of the path name.

Parameters may also end in the form " timeout:NNNN" (or

"timeout=NNNN") This indicates a non-default time to wait before

giving up. There are several possible formats, case-insensitive:

nnn number of seconds to wait (from now)

nnnS ditto

nnnM number of minutes to wait (from now)

nnnH number of hours to wait (from now)

nn:nn:nn wait until this time in 24HH:NN:SS. If this or nn:nn time
has passed, will wait till next day.

The default timeout is the same as "12H".

The format may optionally terminate "/nn", indicating a poll delay

time in seconds. If omitted, a default poll time is used.

Reply may be:

DSJE.NOERROR (0) OK - file now exists or does not exist,
depending on flag.

DSJE.BADTIME Unrecognized Timeout format

DSJE.NOFILEPATH File path missing

DSJE.TIMEOUT Waited too long

Examples
Reply = DSWaitForFile("C:\ftp\incoming.txt timeout:2H")

(wait 7200 seconds for file on C: to exist before it gives up.)
Reply = DSWaitForFile("-incoming.txt timeout=15:00")

(wait until 3 pm for file in local directory to NOT exist.)
Reply = DSWaitForFile("incoming.txt timeout:3600/60")

(wait 1 hour for a local file to exist, looking once a minute.)
Parallel Job Advanced Developer’s Guide 7-137

DSWaitForJob DataStage Development Kit (Job Control Interfaces)
DSWaitForJob
This function is only valid if the current job has issued a DSRunJob

on the given JobHandle(s). It returns if the/a job has started since the

last DSRunJob has since finished.

Syntax
ErrCode = DSWaitForJob (JobHandle)

JobHandle is the string returned from DSAttachJob. If commas are

contained, it's a comma-delimited set of job handles, representing a

list of jobs that are all to be waited for.

ErrCode is 0 if no error, else possible error values (<0) are:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.WRONGJOB Job for this JobHandle was not run from
within this job.

ErrCode is >0 => handle of the job that finished from a multi-job wait.

Remarks
DSWaitForJob will wait for either a single job or multiple jobs.

Example
To wait for the return of the qsales job:

WaitErr = DSWaitForJob(qsales_handle)
7-138 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Job Status Macros
Job Status Macros
A number of macros are provided in the JOBCONTROL.H file to

facilitate getting information about the current job, and links and

stages belonging to the current job. These macros provide the

functionality of using the DataStage BASIC DSGetProjectInfo,

DSGetJobInfo, DSGetStageInfo, and DSGetLinkInfo functions

with the DSJ.ME token as the JobHandle and can be used in all active

stages and before/after subroutines. The macros provide the

functionality for all the possible InfoType arguments for the

DSGet…Info functions.

The available macros are:

DSHostName

DSProjectName

DSJobStatus

DSJobName

DSJobController

DSJobStartDate

DSJobStartTime

DSJobWaveNo

DSJobInvocations

DSJobInvocationID

DSStageName

DSStageLastErr

DSStageType

DSStageInRowNum

DSStageVarList

DSLinkRowCount

DSLinkLastErr

DSLinkName

For example, to obtain the name of the current job:

MyName = DSJobName

To obtain the full current stage name:

MyName = DSJobName : "." : DSStageName

In addition, the following macros are provided to manipulate

Transformer stage variables:
Parallel Job Advanced Developer’s Guide 7-139

Command Line Interface DataStage Development Kit (Job Control Interfaces)
DSGetVar(VarName) returns the current value of the named
stage variable. If the current stage does not have a stage variable
called VarName, then "" is returned and an error message is
logged. If the named stage variable is defined but has not been
initialized, the "" is returned and an error message is logged.

DSSetVar(VarName, VarValue) sets the value of the named stage
variable. If the current stage does not have a stage variable called
VarName, then an error message is logged.

Command Line Interface
The DataStage CLI comprises three groups of commands, those

concerned with running DataStage Jobs, those concerned with

administering DataStage projects, and those concerned with

searching jobs.

Commands for Controlling DataStage Jobs
These command options give you access to the same functionality as

the DataStage API functions described on page 7-4 or the BASIC

functions described on page 7-87. There is a single command, dsjob,

with a large range of options. These options are described in the

following topics:

The logon clause

Starting a job

Stopping a job

Listing projects, jobs, stages, links, and parameters

Setting an alias for a job

Retrieving information

Accessing log files

Importing job executables

Generating a report

All output from the dsjob command is in plain text without column

headings on lists, or any other sort of description. This enables the

command to be used in shell or batch scripts without extra

processing.

The DataStage CLI returns a completion code of 0 to the operating

system upon successful execution, or one of the DataStage API error

codes on failure. See "Error Codes" on page 7-80. The return code is
7-140 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
also printed to the standard error stream in all cases. On UNIX

servers, a code of 255 is returned if the error code is negative or

greater than 254, to see the “real” return code in these cases, capture

and process the standard error stream.

The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dsjob command.

Starting a Job

You can start, stop, validate, and reset jobs using the –run option.

dsjob –run

[–mode [NORMAL | RESET | VALIDATE]]
[–param name=value]
[–warn n]
[–rows n]
[–wait]
[–stop]
[–jobstatus]
[–userstatus]
[–local]
[–opmetadata [TRUE | FALSE]]
[-disableprjhandler]
Parallel Job Advanced Developer’s Guide 7-141

Command Line Interface DataStage Development Kit (Job Control Interfaces)
[-disablejobhandler]

[useid] project job|job_id

–mode specifies the type of job run. NORMAL starts a job run, RESET

resets the job and VALIDATE validates the job. If –mode is not

specified, a normal job run is started.

–param specifies a parameter value to pass to the job. The value is in

the format name=value, where name is the parameter name, and

value is the value to be set. If you use this to pass a value of an

environment variable for a job (as you may do for parallel jobs), you

need to quote the environment variable and its value, for example -
param '$APT_CONFIG_FILE=chris.apt' otherwise the current

value of the environment variable will be used.

–warn n sets warning limits to the value specified by n (equivalent to

the DSSetJobLimit function used with DSJ_LIMITWARN specified as

the LimitType parameter).

–rows n sets row limits to the value specified by n (equivalent to the

DSSetJobLimit function used with DSJ_LIMITROWS specified as the

LimitType parameter).

–wait waits for the job to complete (equivalent to the DSWaitForJob

function).

–stop terminates a running job (equivalent to the DSStopJob

function).

–jobstatus waits for the job to complete, then returns an exit code

derived from the job status.

–userstatus waits for the job to complete, then returns an exit code

derived from the user status if that status is defined. The user status is

a string, and it is converted to an integer exit code. The exit code 0

indicates that the job completed without an error, but that the user

status string could not be converted. If a job returns a negative user

status value, it is interpreted as an error.

-local use this when running a DataStage job from withing a

shellscript on a UNIX server. Provided the script is run in the project

directory, the job will pick up the settings for any environment

variables set in the script and any setting specific to the user

environment.

-opmetadata use this to have the job generate operational meta data

as it runs. If MetaStage, or the Process Meta Data MetaBroker, is not

installed on the machine, then the option has no effect. If you specify

TRUE, operational meta data is generated, whatever the default

setting for the project. If you specify FALSE, the job will not generate

operational meta data, whatever the default setting for the project.
7-142 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
-disableprjhandler use this to disable any error message handler

that has been set on a project wide basis (see "Managing Message

Handlers," in DataStage Manager Guide for a description of message

handlers).

-disablejobhandler use this to disable any error message handler

that has been set for this job (see "Managing Message Handlers," in
DataStage Manager Guide for a description of message handlers).

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing the job.

job is the name of the job. To run a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

Stopping a Job

You can stop a job using the –stop option.

dsjob –stop [useid] project job|job_id

–stop terminates a running job (equivalent to the DSStopJob

function).

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing the job.

job is the name of the job. To stop a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145)

Listing Projects, Jobs, Stages, Links, and Parameters

You can list projects, jobs, stages, links, and job parameters using the

dsjob command. The different versions of the syntax are described in

the following sections.

Listing Projects

The following syntax displays a list of all known projects on the

server:

dsjob –lprojects

This syntax is equivalent to the DSGetProjectList function.
Parallel Job Advanced Developer’s Guide 7-143

Command Line Interface DataStage Development Kit (Job Control Interfaces)
Listing Jobs

The following syntax displays a list of all jobs in the specified project:

dsjob –ljobs project

project is the name of the project containing the jobs to list.

This syntax is equivalent to the DSGetProjectInfo function.

Listing Stages

The following syntax displays a list of all stages in a job:

dsjob –lstages [useid] project job|job_id

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing the stages to list. To identify a

job invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145)

This syntax is equivalent to the DSGetJobInfo function with

DSJ_STAGELIST specified as the InfoType parameter.

Listing Links

The following syntax displays a list of all the links to or from a stage:

dsjob –llinks [useid] project job|job_id stage

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

stage is the name of the stage containing the links to list.

This syntax is equivalent to the DSGetStageInfo function with

DSJ_LINKLIST specified as the InfoType parameter.

Listing Parameters

The following syntax display a list of all the parameters in a job and

their values:

dsjob –lparams [useid] project job|job_id
7-144 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job whose parameters are to be listed. To

identify a job invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

This syntax is equivalent to the DSGetJobInfo function with

DSJ_PARAMLIST specified as the InfoType parameter.

Listing Invocations

The following syntax displays a list of the invocations of a job:

dsjob -linvocations

Setting an Alias for a Job

The dsjob command can be used to specify your own ID for a

DataStage job. Other commands can then use that alias to refer to the

job.

dsjob –jobid [my_ID] project job

my_ID is the alias you want to set for the job. If you omit my_ID, the

command will return the current alias for the specified job. An alias

must be unique within the project, if the alias already exists an error

message is displayed

project is the name of the project containing job.

job is the name of the job. To identify a job invocation, use the format

job.invocation_id.

Retrieving Information

The dsjob command can be used to retrieve and display the available

information about specific projects, jobs, stages, or links. The different

versions of the syntax are described in the following sections.

Displaying Job Information

The following syntax displays the available information about a

specified job:

dsjob –jobinfo [useid] project job|job_id

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.
Parallel Job Advanced Developer’s Guide 7-145

Command Line Interface DataStage Development Kit (Job Control Interfaces)
job is the name of the job. To identify a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

The following information is displayed:

The current status of the job

The name of any controlling job for the job

The date and time when the job started

The wave number of the last or current run (internal DataStage
reference number)

User status

This syntax is equivalent to the DSGetJobInfo function.

Displaying Stage Information

The following syntax displays all the available information about a

stage:

dsjob –stageinfo [useid] project job|job_id stage

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

stage is the name of the stage.

The following information is displayed:

The last error message reported from any link to or from the stage

The stage type name, for example, Transformer or Aggregator

The primary links input row number

This syntax is equivalent to the DSGetStageInfo function.

Displaying Link Information

The following syntax displays information about a specified link to or

from a stage:

dsjob –linkinfo [useid] project job|job_id stage link
7-146 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

stage is the name of the stage containing link.

link is the name of the stage.

The following information is displayed:

The last error message reported by the link

The number of rows that have passed down a link

This syntax is equivalent to the DSGetLinkInfo function.

Displaying Parameter Information

This syntax displays information about the specified parameter:

dsjob –paraminfo [useid] project job|job_id param

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing parameter. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

parameter is the name of the parameter.

The following information is displayed:

The parameter type

The parameter value

Help text for the parameter that was provided by the job’s
designer

Whether the value should be prompted for

The default value that was specified by the job’s designer

Any list of values

The list of values provided by the job’s designer

This syntax is equivalent to the DSGetParamInfo function.
Parallel Job Advanced Developer’s Guide 7-147

Command Line Interface DataStage Development Kit (Job Control Interfaces)
Accessing Log Files

The dsjob command can be used to add entries to a job’s log file, or

retrieve and display specific log entries. The different versions of the

syntax are described in the following sections.

Adding a Log Entry

The following syntax adds an entry to the specified log file. The text

for the entry is taken from standard input to the terminal, ending with

Ctrl-D.

dsjob –log [–info | –warn] [useid] project job|job_id
–info specifies an information message. This is the default if no log

entry type is specified.

–warn specifies a warning message.

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job that the log entry refers to. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

This syntax is equivalent to the DSLogEvent function.

Displaying a Short Log Entry

The following syntax displays a summary of entries in a job log file:

dsjob –logsum [–type type] [–max n] [useid] project job|job_id
–type type specifies the type of log entry to retrieve. If –type type is

not specified, all the entries are retrieved. type can be one of the

following options:

This
option…

Retrieves this type of log entry…

INFO Information.

WARNING Warning.

FATAL Fatal error.

REJECT Rejected rows from a Transformer stage.

STARTED All control logs.

RESET Job reset.
7-148 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
–max n limits the number of entries retrieved to n.

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

Displaying a Specific Log Entry

The following syntax displays the specified entry in a job log file:

dsjob –logdetail [useid] project job|job_id entry

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

entry is the event number assigned to the entry. The first entry in the

file is 0.

This syntax is equivalent to the DSGetLogEntry function.

Identifying the Newest Entry

The following syntax displays the ID of the newest log entry of the

specified type:

dsjob –lognewest [useid] project job|job_id type

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

BATCH Batch control.

ANY All entries of any type. This is the default if type is not specified.

This
option…

Retrieves this type of log entry…
Parallel Job Advanced Developer’s Guide 7-149

Command Line Interface DataStage Development Kit (Job Control Interfaces)
job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

type can be one of the following options:

This syntax is equivalent to the DSGetNewestLogId function.

Importing Job Executables

The dsjob command can be used to import job executables from a

DSX file into a specified project. Note that this command is only

available on UNIX servers.

dsjob –import project DSXfilename [-OVERWRITE] [-JOB[S] jobname …] |
[-LIST]

project is the project to import into.

DSXfilename is the DSX file containing the job executables.

-OVERWRITE specifies that any existing jobs in the project with the

same name will be overwritten.

-JOB[S] jobname specifies that one or more named job executables

should be imported (otherwise all the executable in the DSX file are

imported).

-LIST causes DataStage to list the executables in a DSX file rather

than import them.

For details of how to export job executables to a DSX file see

DataStage Manager Guide.

Generating a Report

The dsjob command can be used to generate an XML format report

containing job, stage, and link information.

dsjob –report [useid] project job|jobid [report_type]

This option… Retrieves this type of log entry…

INFO Information

WARNING Warning

FATAL Fatal error

REJECT Rejected rows from a Transformer stage

STARTED Job started

RESET Job reset

BATCH Batch
7-150 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job specifies the job to be reported on by job name. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 7-145).

report_type is one of the following:

BASIC – Text string containing start/end time, time elapsed and
status of job.

DETAIL – As basic report, but also contains information about
individual stages and links within the job.

LIST – Text string containing full XML report.

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

The generated report is written to stdout.

This syntax is equivalent to the DSMakeJobReport
function.DETAIL – As basic report, but also contains information
about individual stages and links within the job.

LIST – Text string containing full XML report.

Commands for Administering DataStage
There is a single command, dsadmin, with a large range of options.

These options are described in the following topics:

The logon clause

Creating a project

Deleting a project

Enabling/Disabling the display of generated OSH in parallel jobs.

Enabling/Disabling runtime column propagation in parallel jobs.

Enabling/Disabling the availability of job administartion features
in the DataStage Director for a particular project.

Setting the advanced runtime options for parallel jobs.

Setting the base directory name for parallel jobs.
Parallel Job Advanced Developer’s Guide 7-151

Command Line Interface DataStage Development Kit (Job Control Interfaces)
Setting the deployed job template directory for parallel jobs.

Setting custom deployment options for parallel jobs.

Creating a new environment variable.

Deleting an environment variable.

Setting the value of an environment variable

Listing projects on a server.

Listing project properties.

Listing environment variables.

The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dsadmin command.

Creating a Project

The dsadmin command can be used for creating projects. You need to

have DataStage administrator status in order to use this command:

dsadmin -createproject ProjectName [-location ProjectLocation]

ProjectName is the name of the project.

-location ProjectLocation is the location of the project in the form of a

pathname.
7-152 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
If no location is specified, the project is created in the Projects

directory in the server install directory.

Deleting a Project

The dsadmin command can be used for deleting existing projects.

You need to have DataStage administrator status in order to use this

command:

dsadmin -deleteproject ProjectName

ProjectName is the project to be deleted.

Enabling/Disabling OSH Display

The dsadmin command can be used for enabling or disabling the

display of generated OSH in parallel jobs. You need to have DataStage

administrator status in order to use this command:

dsadmin -oshvisible TRUE | FALSE ProjectName

Note Although this command requires a project name, this

setting applies to ALL projects on the server

This command is only available for Enterprise Edition.

Enabling/Disabling Runtime Column Propagation

The dsadmin command can be used for enabling or disabling runtime

column propagation in parallel jobs in a particular project. You need to

have DataStage administrator status in order to use this command:

dsadmin -enablercp TRUE | FALSE ProjectName

ProjectName is the project whose parallel jobs are to have runtime

column propagation enabled or disabled.

This command is only available for Enterprise Edition.

Enabling/Disabling Job Administration from the
Director

The dsadmin command can be used for enabling or disabling the job

administration features in the DataStage Director for jobs in a

particular project. You need to have DataStage administrator status in

order to use this command:

dsadmin -enablejobadmin TRUE | FALSE ProjectName

ProjectName is the project for which job administration in the Director

will be enabled or disabled.
Parallel Job Advanced Developer’s Guide 7-153

Command Line Interface DataStage Development Kit (Job Control Interfaces)
Enabling/Disabling Generation of XML Report

This option is only relevant for Parallel jobs being compiled into a

deployment package. The deployment package can include a job

report in XML format, and this command enables or disables the

generation of this report.

dsadmin -enablegeneratexml TRUE | FALSE ProjectName

ProjectName is the project whose parallel jobs are to have XML

reports enabled or disabled.

This command is only available for Enterprise Edition.

Enabling/Disabling Advanced Runtime Properties

The dsadmin command can be used for setting advanced runtime

properties for parallel jobs in a particular project. You need to have

DataStage administrator status in order to use this command:

dsadmin -advancedruntime "AdvancedRuntimeOptions" ProjectName

ProjectName is the project whose parallel jobs will have the specified

advanced runtime options set.

AdvancedRuntimeOptions is the value to set the property to and must

be quoted.

This command is only available for Enterprise Edition.

To unset the properties repeat the command with an empty string, for

example:

dsadmin -advancedruntime "“ myproject

Setting the Base Directory

The dsadmin command can be used for setting the base directory for

parallel jobs in a particular project. You need to have DataStage

administrator status in order to use this command:

dsadmin -basedirectory BaseDirectoryName ProjectName

ProjectName is the project whose parallel jobs the base directory is

being set for.

BaseDirectoryName is the value to set the property to.

This command is only available for Enterprise Edition.

Setting the Deployment Directory Template

The dsadmin command can be used for setting the deployment

directory template for parallel jobs in a particular project. You need to

have DataStage administrator status in order to use this command:
7-154 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
dsadmin -deploymentdirectory DirectoryTemplate ProjectName

ProjectName is the project whose parallel jobs are having the

deployment directory template defined.

DirectoryTemplate is the value to set the property to.

This command is only available for Enterprise Edition.

Setting Custom Deployment Options

The dsadmin command can be used for setting the custom

deployment options for parallel jobs in a particular project. You need

to have DataStage administrator status in order to use this command:

dsadmin -customdeployment “Commands” ProjectName

ProjectName is the project whose parallel jobs the custom

deployment options are being set for.

Commands is the value to set the property to and must be quoted.

This command is only available for Enterprise Edition.

Adding an Environment Variable

The dsadmin command can be used for creating a new environment

variable in a particular project. The environment variable is added to

the “User Defined” category

dsadmin -envadd EnvVarName -type STRING | ENCRYPTED
-prompt "PromptText" [-value "Value"] ProjectName

EnvVarName is the name of the environment variable being created.

-type specified the type of the environment variable and should be set

to either STRING or ENCRYPTED.

-prompt PromptText is the prompt to be associated with this

environment value The PromptText must be quoted as it can contain

spaces

-value Value is the value for the new environment variable. Value

must be quoted. If this is not given, the value for the environment

variable will need to be set using the dsadmin –envset command.

ProjectName is the project to which the environment variable is being

added.

Deleting an Environment Variable

The dsadmin command can be used for deleting an environment

variable in a particular project. It is not possible to delete a built-in

environment variables.
Parallel Job Advanced Developer’s Guide 7-155

Command Line Interface DataStage Development Kit (Job Control Interfaces)
dsadmin -envdelete EnvVarName ProjectName

EnvVarName is the environment variable being deleted.

ProjectName is the project the environment variable is being deleted

from.

Setting the Value of an Environment Variable

The dsadmin command can be used for setting the value of an

environment variable in a particular project. If setting a list type

environment variable (for example, APT_EXECUTION _MODE) , then

you should set it to one of the permissable internal values, rather than

one of the list members as they are shown in the DataStage

Administrator client. For example, if you wanted to set

APT_EXECUTION_MODE so that parallel jobs executed in one process

mode, you would set the environment variable value to

‘ONE_PROCESS’, not ‘One process’ as offered in the Administrator

client. Internal values are given in "Environment Variables," in the

Parallel Job Advanced Developer’s Guide.

If you are setting a boolean type environment variable, set the value

to 1 for TRUE and 0 for FALSE.

If you are using $ENV to set the value of an environment variable to its

current setting in the environment, then you should use single quotes

to ensure that it picks up the correct value (e.g., dsadmin -envset NEW3

-value '$ENV' dstage).

dsadmin -envset EnvVarName -value "Value" ProjectName

EnvVarName is the environment variable whose value is being set.

-value “Value” is the value for the environment variable and must be

quoted.

ProjectName is the project for which the environment variable is

being set.

Listing Projects

The dsadmin command can be used for listing the projects on a

server.

dsadmin -listprojects

Lists all the projects on the server.

Listing Properties

The dsadmin command can be used for listing the properties of a

project. The following properties are listed:
7-156 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
Whether generated OSH is visible in parallel jobs.

Whether runtime column propagation is enabled in parallel jobs.

The base directory name for parallel jobs.

Advanced runtime options for parallel jobs.

Custom deployment commands for parallel jobs.

Deployed job directory template.

Whether job administration is enabled in the DataStage Director
or not.

The parallel job properties will only be listed if Enterprise Edition is

enabled.

dsadmin -listproperties ProjectName

ProjectName is the project for which the properties are to be listed.

Listing Environment Variables

The dsadmin command can be used for listing the environment

variables in a project.

dsadmin -listenv ProjectName

Commands for Searching Jobs
There is a single command, dssearch, that allows you to search for

jobs and usage information about jobs. The command has a number

of options described in the following sections:

The logon clause.

Search for jobs whose name match, or partially match, the
supplied text.

Search for jobs used by job sequences.

Search for job sequences that use the specified job.

Search for jobs that use the specified database table in a DRS
stage.

Note The dsjob command has an option for listing the jobs in a

project, but this is aimed at jobs that are compiled and

ready to run (or reset and run). The dssearch command

searchs design time information to allow you to search jobs

currently under development.
Parallel Job Advanced Developer’s Guide 7-157

Command Line Interface DataStage Development Kit (Job Control Interfaces)
The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dssearch command.

Search for Jobs by Name

The dssearch command can be used for searching for a job by name.

dssearch -ljobs -matches [-sub[categories]
[-c[ategory] CategoryName]
[-j[obtype] s[erver] |p[arallel] |
m[ainframe] | seq[uence]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName [JobName]

JobName is the full or partial name of the job to search for. For partial

job name matching, any number of * characters can be used for

missing parts using wildcard matching. If the job name is not

supplied, then all jobs will be returned.

ProjectName the project containing the job specified by JobName.

-ljobs indicates that jobs are to be searched.

-matches indicates that jobs are to be searched by name.

- sub[categories] optionally indicates that the the supplied starting

category and all subcategories will be searched. When no category is

specified and the subcategories option is specified, the whole project

is searched.
7-158 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
- c[ategory] CategoryName optionally restricts the search to the

named category.

- j[obtype] s[erver] |p[arallel] |m[ainframe] | seq[uence] optionally

restricts the search by type of job. You can specify multiple jobtypes

by separating the types with a single space, e.g., -jobtype server

parallel.

- oc[ategory] specify this to have all the jobs found in the full

category path returned.

-oj[obtype] specify this to have the jobtype, as well as the job name,

reported.

For example:

dssearch –ljobs –matches –subcategories sub –oc –oj dstage Job*

returns all the jobs in the project called dstage project that start with

the text “Job”. The order of the returned jobs is based on category

order, and then job type within the category. An example result might

look like:

Job1,server job
Job2,sequence job
Category1\Job3,server job
Category1\Job4,server job
Category1\SubCategory1\Job5,sequence job
Category2\SubCategory2\Job6,server job

If –ocategory is defined, the job’s category appears on the line before

the job name. If –ojobtype is defined, the job type appears after the

job name with a comma separating it from the job name.

Search for Job Sequences that Use Specified Job

Use this option to search for job sequences which use the specified

job. In this context, a job sequence can also include a job with job

control code that runs other jobs, provided the other jobs have been

specified as dependencies (see "Job Control Routines" in DataStage

Designer Guide).

dssearch –ljobs –usedby [-r[ecursive]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName JobName

JobName is the full name of the job whose inclusion in job sequences

you are searching. Remember, job names are unique throughout the

whole project, so do not have to be qualified by category.

ProjectName the project containing the job specified by JobName.

-ljobs indicates that jobs are to be searched.
Parallel Job Advanced Developer’s Guide 7-159

Command Line Interface DataStage Development Kit (Job Control Interfaces)
–usedby finds where the supplied job is used. In other words it finds

all jobs that have the supplied job in its dependency list.

-recursive takes each sequence job that the supplied job is in, and

recursively searches for sequence jobs that in turn contain them.

-ocategory specifies that, for each job found, the full category path

should be output.

-ojobtype specifies that, for each job found, its job type is output after

a comma.

Each sequence job found is output on a new line. When the –

recursive option is supplied, the tab character is used to show the

tree of jobs being used by other jobs. When the –ojobtype option is

supplied, the job type is output after each job name, separated from

the name by a comma.

For example:

dssearch –ljobs –usedby –r –oc –oj dstage JobE

An example output from this command-line shows that JobE is used

in JobD and JobH. JobD is used in JobB. JobB is used in

ContainingJob:

CategoryA\CategoryB\JobD,sequence job
CategoryA\JobB,sequence job

ContainingJob,sequence job
CategoryC\JobH,server job

Search for Jobs used in a Specified Job Sequence

Use this option to search for jobs which are used by a specified job

sequence. In this context, a job sequence can also include a job with

job control code that runs other jobs, provided the other jobs have

been specified as dependencies (see "Job Control Routines" in

DataStage Designer Guide).

dssearch –ljobs –uses [-r[ecursive]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName JobName

-ljobs indicates that jobs are to be searched.

JobName is the full name of the sequence job whose jobs our are

searching for. Partial job name matches are not allowed. Remember,

job names are unique throughout the whole project, so do not have to

be qualified by category.

ProjectName the project containing the sequence job specified by

JobName.

-recursive specifies that, if any of the jobs found are themselves

sequence job, these will be searched as well.
7-160 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
-ocategory specifies that, for each job found, the full category path

will be output.

-ojobtype specifies that, for each job found, its job type should be

output.

Each job found is output on a new line. When the –recursive option is

supplied, the tab character is used to show the tree of jobs using other

jobs. When the –ojobtype option is supplied, the job type is output

after each job name, separated from the name by a comma.

For example:

dssearch –ljobs –uses -recursive –ocategory dstage ContainingJob

An example output from this command shows that JobA and JobB

jobs are used by the sequence ContainingJob. The jobs named JobC

and JobD are used by the job named JobB. JobE is a job that is used

by JobD.

CategoryA\JobA
CategoryA\JobB

CategoryA\CategoryB\JobC
CategoryA\CategoryB\JobD

CategoryA\JobE

Search for Job Using Specified Table Definition

Use this option to search for jobs that use the specified table

definition.

dssearch –ljobs –usesdrstable
[-s[ource] | -t[arget]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName TableName

TableName is the full or partial name of the table to search for. For

partial table name matching, any number of * characters can be used

for missing parts using wildcard matching. All jobs containing a DRS

stage that accesses this table will be returned by the search.

ProjectName is the project containing the jobs being searched.

-ljobs indicates that jobs are to be searched.

-usesdrstable indicates that jobs are to be searched for DSR stages

containing the table.

-source specify this if you only want jobs returned that use the table

as a source

-target specify this if you only want jobs returned that use the table

as a target.

-ocategory specifies that, for each job found, the full category path

will be output.
Parallel Job Advanced Developer’s Guide 7-161

XML Schemas and Sample Stylesheets DataStage Development Kit (Job Control Interfaces)
-ojobtype specifies that, for each job found, its job type should be

output.

For example:

dssearch –ljobs –usesdrstable -source dstage customers

returns a list of jobs containing DRS stages that use the customers

table as a data source.

dssearch –ljobs –usesdrstable –s –oc –oj dstage *.Person

This command-line returns all the jobs, with category and job type,

containing DRS Stages with a source table whose name ends in

“.Person”. A possible result could be:

CategoryA\DRSJobA,server job
CategoryB\DRSJobB,server job

XML Schemas and Sample Stylesheets
You can generate an XML report giving information about a job using

the following methods:

DSMakeJobReport API function (see page 7-44)

DSMakeJobReport BASIC function (see page 7-124)

dsjob command (see page 7-150)

DataStage provides the following files to assist in the handling of

generated XML reports:

DSReportSchema.xsd. An XML schema document that fully
describes the structure of the XML job report documents.

DSmonitor.xsl. An example XSLT stylesheet that creates an html
web page similar to the Director Monitor view from the XML
report.

DSwaterfall.xsl. An example XSLT stylesheet that creates an
html web page showing a waterfall report describing how data
flowed between all the processes in the job from the XML report.

The files are all located in the DataStage client directory (\Program

Files\Ascential\DataStage).

You can embed a reference to a stylesheet when you create the report

using any of the commands listed above. Once the report is generated

you can view it in an Internet browser.

Alternatively you can use an xslt processor such as saxon or msxsl to

convert an already generated report. For example:

java - jar saxon.jar jobreport.xml DSMonitor.xsl > jobmonitor.htm
7-162 Parallel Job Advanced Developer’s Guide

DataStage Development Kit (Job Control Interfaces) XML Schemas and Sample Stylesheets
Would generate an html file called jobmonitor.htm from the report

jobreport.xml, while:

maxsl jobreport.xml DSwaterfall.xsl > jobwaterfall.htm

Would generate an html file called jobwaterfall.htm from the report

jobreport.xml.
Parallel Job Advanced Developer’s Guide 7-163

XML Schemas and Sample Stylesheets DataStage Development Kit (Job Control Interfaces)
7-164 Parallel Job Advanced Developer’s Guide

A
Header Files

DataStage comes with a range of header files that you can include in

code when you are defining a Build stage. The following sections list

the header files and the classes and macros that they contain. See the

header files themselves for more details about available functionality.

C++ Classes – Sorted By Header File
apt_ framework/ accessorbase. h

APT_ AccessorBase

APT_ AccessorTarget

APT_ InputAccessorBase

APT_ InputAccessorInterface

APT_ OutputAccessorBase

APT_ OutputAccessorInterface

apt_ framework/ adapter. h

APT_ AdapterBase

APT_ ModifyAdapter

APT_ TransferAdapter

APT_ ViewAdapter

apt_ framework/ collector. h

APT_ Collector

apt_ framework/ composite. h

APT_ CompositeOperator
Parallel Job Advanced Developer’s Guide A-1

C++ Classes – Sorted By Header File Header Files
apt_ framework/ config. h

APT_ Config

APT_ Node

APT_ NodeResource

APT_ NodeSet

apt_ framework/ cursor. h

APT_ CursorBase

APT_ InputCursor

APT_ OutputCursor

apt_ framework/ dataset. h

APT_ DataSet

apt_ framework/ fieldsel. h

APT_ FieldSelector

apt_ framework/ fifocon. h

APT_ FifoConnection

apt_ framework/ gsubproc. h

APT_ GeneralSubprocessConnection

APT_ GeneralSubprocessOperator

apt_ framework/ impexp/ impexp_ function. h

APT_ GFImportExport

apt_ framework/ operator. h

APT_ Operator

apt_ framework/ partitioner. h

APT_ Partitioner

APT_ RawField

apt_ framework/ schema. h

APT_ Schema

APT_ SchemaAggregate

APT_ SchemaField

APT_ SchemaFieldList

APT_ SchemaLengthSpec

apt_ framework/ step. h

APT_ Step
A-2 Parallel Job Advanced Developer’s Guide

Header Files C++ Classes – Sorted By Header File
apt_ framework/ subcursor. h

APT_ InputSubCursor

APT_ OutputSubCursor

APT_ SubCursorBase

apt_ framework/ tagaccessor. h

APT_ InputTagAccessor

APT_ OutputTagAccessor

APT_ ScopeAccessorTarget

APT_ TagAccessor

apt_ framework/ type/ basic/ float. h

APT_ InputAccessorToDFloat

APT_ InputAccessorToSFloat

APT_ OutputAccessorToDFloat

APT_ OutputAccessorToSFloat

apt_ framework/ type/ basic/ integer. h

APT_ InputAccessorToInt16

APT_ InputAccessorToInt32

APT_ InputAccessorToInt64

APT_ InputAccessorToInt8

APT_ InputAccessorToUInt16

APT_ InputAccessorToUInt32

APT_ InputAccessorToUInt64

APT_ InputAccessorToUInt8

APT_ OutputAccessorToInt16

APT_ OutputAccessorToInt32

APT_ OutputAccessorToInt64

APT_ OutputAccessorToInt8

APT_ OutputAccessorToUInt16

APT_ OutputAccessorToUInt32

APT_ OutputAccessorToUInt64

APT_ OutputAccessorToUInt8

apt_ framework/ type/ basic/ raw. h

APT_ InputAccessorToRawField

APT_ OutputAccessorToRawField

APT_ RawFieldDescriptor

apt_ framework/ type/ conversion. h

APT_ FieldConversion

APT_ FieldConversionRegistry
Parallel Job Advanced Developer’s Guide A-3

C++ Classes – Sorted By Header File Header Files
apt_ framework/ type/ date/ date. h

APT_ DateDescriptor

APT_ InputAccessorToDate

APT_ OutputAccessorToDate

apt_ framework/ type/ decimal/ decimal. h

APT_ DecimalDescriptor

APT_ InputAccessorToDecimal

APT_ OutputAccessorToDecimal

apt_ framework/ type/ descriptor. h

APT_ FieldTypeDescriptor

APT_ FieldTypeRegistry

apt_ framework/ type/ function. h

APT_ GenericFunction

APT_ GenericFunctionRegistry

APT_ GFComparison

APT_ GFEquality

APT_ GFPrint

apt_ framework/ type/ protocol. h

APT_ BaseOffsetFieldProtocol

APT_ EmbeddedFieldProtocol

APT_ FieldProtocol

APT_ PrefixedFieldProtocol

APT_ TraversedFieldProtocol

apt_ framework/ type/ time/ time. h

APT_ TimeDescriptor

APT_ InputAccessorToTime

APT_ OutputAccessorToTime

apt_ framework/ type/ timestamp/ timestamp. h

APT_ TimeStampDescriptor

APT_ InputAccessorToTimeStamp

APT_ OutputAccessorToTimeStamp

apt_ framework/ utils/fieldlist. h

APT_ FieldList

apt_ util/archive. h

APT_ Archive

APT_ FileArchive

APT_ MemoryArchive
A-4 Parallel Job Advanced Developer’s Guide

Header Files C++ Classes – Sorted By Header File
apt_ util/ argvcheck. h

APT_ ArgvProcessor

apt_util/basicstring.h

APT_BasicString

apt_ util/ date. h

APT_ Date

apt_ util/ dbinterface. h

APT_ DataBaseDriver

APT_ DataBaseSource

APT_ DBColumnDescriptor

apt_ util/ decimal. h

APT_ Decimal

apt_ util/ endian. h

APT_ ByteOrder

apt_ util/ env_ flag. h

APT_ EnvironmentFlag

apt_ util/ errind. h

APT_ Error

apt_ util/ errlog. h

APT_ ErrorLog

apt_ util/ errorconfig. h

APT_ ErrorConfiguration

apt_ util/ fast_ alloc. h

APT_ FixedSizeAllocator

APT_ VariableSizeAllocator

apt_ util/ fileset. h

APT_ FileSet

apt_ util/ identifier. h

APT_ Identifier

apt_ util/keygroup. h

APT_ KeyGroup
Parallel Job Advanced Developer’s Guide A-5

C++ Macros – Sorted By Header File Header Files
apt_ util/locator. h

APT_ Locator

apt_ util/persist. h

APT_ Persistent

apt_ util/proplist. h

APT_ Property

APT_ PropertyList

apt_ util/random. h

APT_ RandomNumberGenerator

apt_ util/rtti. h

APT_ TypeInfo

apt_ util/ string. h

APT_ String

APT_ StringAccum

apt_ util/ time. h

APT_ Time

APT_ TimeStamp

apt_util/ustring.h

APT_UString

C++ Macros – Sorted By Header File
apt_ framework/ accessorbase. h

APT_ DECLARE_ ACCESSORS()

APT_ IMPLEMENT_ ACCESSORS()

apt_ framework/ osh_ name. h

APT_ DEFINE_ OSH_ NAME()

APT_ REGISTER_ OPERATOR()

apt_ framework/ type/ basic/ conversions_ default. h

APT_ DECLARE_ DEFAULT_ CONVERSION()

APT_ DECLARE_ DEFAULT_ CONVERSION_ WARN()

apt_ framework/ type/ protocol. h

APT_ OFFSET_ OF()
A-6 Parallel Job Advanced Developer’s Guide

Header Files C++ Macros – Sorted By Header File
apt_ util/ archive. h

APT_ DIRECTIONAL_ SERIALIZATION()

apt_ util/assert. h

APT_ ASSERT()

APT_ DETAIL_ FATAL()

APT_ DETAIL_ FATAL_ LONG()

APT_ MSG_ ASSERT()

APT_ USER_ REQUIRE()

APT_ USER_ REQUIRE_ LONG()

apt_ util/condition. h

CONST_ CAST()

REINTERPRET_ CAST()

apt_ util/errlog. h

APT_ APPEND_ LOG()

APT_ DUMP_ LOG()

APT_ PREPEND_ LOG()

apt_ util/ exception. h

APT_ DECLARE_ EXCEPTION()

APT_ IMPLEMENT_ EXCEPTION()

apt_ util/ fast_ alloc. h

APT_ DECLARE_ NEW_ AND_ DELETE()

apt_ util/ logmsg. h

APT_ DETAIL_ LOGMSG()

APT_ DETAIL_ LOGMSG_ LONG()

APT_ DETAIL_ LOGMSG_ VERYLONG()

apt_ util/ persist. h

APT_ DECLARE_ ABSTRACT_ PERSISTENT()

APT_ DECLARE_ PERSISTENT()

APT_ DIRECTIONAL_ POINTER_ SERIALIZATION()

APT_ IMPLEMENT_ ABSTRACT_ PERSISTENT()

APT_ IMPLEMENT_ ABSTRACT_ PERSISTENT_ V()

APT_ IMPLEMENT_ NESTED_ PERSISTENT()

APT_ IMPLEMENT_ PERSISTENT()

APT_ IMPLEMENT_ PERSISTENT_ V()

apt_ util/ rtti. h

APT_ DECLARE_ RTTI()

APT_ DYNAMIC_ TYPE()
Parallel Job Advanced Developer’s Guide A-7

C++ Macros – Sorted By Header File Header Files
APT_ IMPLEMENT_ RTTI_ BASE()

APT_ IMPLEMENT_ RTTI_ BEGIN()

APT_ IMPLEMENT_ RTTI_ END()

APT_ IMPLEMENT_ RTTI_ NOBASE()

APT_ IMPLEMENT_ RTTI_ ONEBASE()

APT_ NAME_ FROM_ TYPE()

APT_ PTR_ CAST()

APT_ STATIC_ TYPE()

APT_ TYPE_ INFO()
A-8 Parallel Job Advanced Developer’s Guide

Index
Symbols
_cplusplus token 7–2

STDC token 7–2

A
administration

C API functions 7–6

API 7–2

APT_AUTO_TRANSPORT_BLOCK_SIZE 6–36

APT_BUFFER_DISK_WRITE_INCREMENT 6–7,
6–14

APT_BUFFER_FREE_RUN 6–6

APT_BUFFER_MAXIMUM_TIMEOUT 6–7

APT_BUFFERING_POLICY 6–7

APT_CHECKPOINT_DIR 6–15

APT_CLOBBER_OUTPUT 6–16

APT_COLLATION_STRENGTH 6–23

APT_COMPILEOPT 6–9

APT_COMPILER 6–9

APT_CONFIG_FILE 6–16

APT_CONSISTENT_BUFFERIO_SIZE 6–14

APT_DATE_CENTURY_BREAK_YEAR 6–19

APT_DB2INSTANCE_HOME 6–10

APT_DB2READ_LOCK_TABLE 6–10

APT_DBNAME 6–10

APT_DEBUG_OPERATOR 6–11

APT_DEBUG_PARTITION 6–11

APT_DEBUG_STEP 6–12

APT_DEFAULT_TRANSPORT_BLOCK_SIZE 6–3

7

APT_DISABLE_COMBINATION 6–16

APT_DUMP_SCORE 6–29

APT_ERROR_CONFIGURATION 6–29

APT_EXECUTION_MODE 6–12, 6–16

APT_FILE_EXPORT_BUFFER_SIZE 6–28

APT_FILE_IMPORT_BUFFER_SIZE 6–27

APT_IMPEXP_CHARSET 6–24
Parallel Job Advanced Developer’s Guide
APT_IMPORT_PATTERN_USES_FILESET 6–28

APT_INPUT_CHARSET 6–24

APT_IO_MAP/APT_IO_NOMAP and

APT_BUFFERIO_MAP/

APT_BUFFERIO_NOMAP 6–15

APT_IO_MAXIMUM_OUTSTANDING 6–22

APT_IOMGR_CONNECT_ATTEMPTS 6–22

APT_LATENCY_COEFFICIENT 6–37

APT_LINKER 6–9

APT_LINKOPT 6–9

APT_MAX_TRANSPORT_BLOCK_SIZE/

APT_MIN_TRANSPORT_BLOCK_SIZE 6–37

APT_MONITOR_SIZE 6–18

APT_MONITOR_TIME 6–18

APT_MSG_FILELINE 6–30

APT_NO_PART_INSERTION 6–26

APT_NO_SAS_TRANSFORMS 6–34

APT_NO_SORT_INSERTION 6–35

APT_NO_STARTUP_SCRIPT 6–17

APT_OLD_BOUNDED_LENGTH 6–19

APT_OPERATOR_REGISTRY_PATH 6–20

APT_ORA_IGNORE_CONFIG_FILE_PARALLELIS

M 6–26

APT_ORA_WRITE_FILES 6–26

APT_ORACLE_NO_OPS 6–25

APT_ORACLE_PRESERVE_BLANKS 6–25

APT_ORAUPSERT_COMMIT_ROW_INTERVAL 6

–26

APT_ORAUPSERT_COMMIT_TIME_INTERVAL 6

–26

APT_ORCHHOME 6–17

APT_OS_CHARSET 6–24

APT_OUTPUT_CHARSET 6–24

APT_PARTITION_COUNT 6–26

APT_PARTITION_NUMBER 6–27

APT_PM_CONDUCTOR_HOSTNAME 6–22

APT_PM_DBX 6–13
Index-1

Index
APT_PM_NO_NAMED_PIPES 6–20

APT_PM_NO_TCPIP 6–23

APT_PM_PLAYER_MEMORY 6–30

APT_PM_PLAYER_TIMING 6–31

APT_PM_XLDB 6–13

APT_PM_XTERM 6–13

APT_PREVIOUS_FINAL_DELIMITER_COMPATIB

LE 6–28

APT_RDBMS_COMMIT_ROWS 6–10

APT_RECORD_COUNTS 6–21, 6–31

APT_SAS_ACCEPT_ERROR 6–32

APT_SAS_CHARSET 6–32

APT_SAS_CHARSET_ABORT 6–33

APT_SAS_DEBUG 6–33

APT_SAS_DEBUG_IO 6–33

APT_SAS_DEBUG_LEVEL 6–33

APT_SAS_NO_PSDS_USTRING 6–34

APT_SAS_S_ARGUMENT 6–34

APT_SAS_SCHEMASOURCE_DUMP 6–34

APT_SAVE_SCORE 6–21

APT_SHOW_COMPONENT_CALLS 6–21

APT_STACK_TRACE 6–21

APT_STARTUP_SCRIPT 6–17

APT_STARTUP_STATUS 6–18

APT_STRING_CHARSET 6–24

APT_STRING_PADCHAR 6–28

APT_TERA_64K_BUFFERS 6–35

APT_TERA_NO_ERR_CLEANUP 6–35

APT_TERA_NO_PERM_CHECKS 6–36

APT_TERA_NO_SQL_CONVERSION 6–35

APT_TERA_SYNC_DATABASE 6–36

APT_TERA_SYNC_PASSWORD 6–36

APT_TERA_SYNC_USER 6–36

APT_THIN_SCORE 6–18

APT_WRITE_DS_VERSION 6–21

B
batch log entries 7–149

build stage macros 5–21

build stages 5–1

C
command line interface 7–140

commands

dsadmin 7–151

dsjob 7–140

custom stages 5–1

D
data structures
Index-2
description 7–64

how used 7–2

summary of usage 7–62

DataStage API

building applications that use 7–4

header file 7–2

programming logic example 7–3

redistributing programs 7–4

DataStage CLI

completion codes 7–140

logon clause 7–141, 7–152, 7–158

overview 7–140

using to run jobs 7–141

DataStage Development Kit 7–2

API functions 7–4

command line interface 7–140

data structures 7–62

dsjob command 7–141

error codes 7–80

job status macros 7–140

writing DataStage API programs 7–3

DataStage server engine 7–141, 7–152, 7–158

DB2DBDFT 6–10

DLLs 7–4

documentation conventions iv
dsadmin command

description 7–151

dsapi.h header file

description 7–2

including 7–4

DSCloseJob function 7–10

DSCloseProject function 7–11

DSCUSTINFO data structure 7–63

DSDetachJob function 7–92

dsdk directory 7–4

DSExecute subroutione 7–93

DSFindFirstLogEntry function 7–14

DSFindNextLogEntry function 7–14, 7–16

DSGetCustInfo function 7–94

DSGetIPCPageProps function 7–95

DSGetJobInfo function 7–19, 7–96

and controlled jobs 7–20

DSGetJobMetaBag function 7–100

DSGetLastError function 7–21

DSGetLastErrorMsg function 7–22

DSGetLinkInfo function 7–23, 7–101

DSGetLinkMetaData function 7–103

DSGetLogEntry function 7–25, 7–104

DSGetLogSummary function 7–105

DSGetNewestLogId function 7–26, 7–107

DSGetParamInfo function 7–28, 7–108
Parallel Job Advanced Developer’s Guide

Index
DSGetProjectInfo function 7–29, 7–111

DSGetProjectList function 7–31

DSGetStageInfo function 7–36, 7–112

DSGetStageLinks function 7–115

DSGetStagesOfType function 7–116

DSGetStageTypes function 7–117

DSGetVarInfo function 7–17, 7–38, 7–118

DSHostName macro 7–139

dsjob command

description 7–140

DSJobController macro 7–139

DSJOBINFO data structure 7–64

and DSGetJobInfo 7–20

and DSGetLinkInfo 7–23

DSJobInvocationID macro 7–139

DSJobInvocations macro 7–139

DSJobName macro 7–139

DSJobStartDate macro 7–139

DSJobStartTime macro 7–139

DSJobStatus macro 7–139

DSJobWaveNo macro 7–139

DSLINKINFO data structure 7–67

DSLinkLastErr macro 7–139

DSLinkName macro 7–139

DSLinkRowCount macro 7–139

DSLockJob function 7–42

DSLOGDETAIL data structure 7–68

DSLOGEVENT data structure 7–69

DSLogEvent function 7–43, 7–119

DSLogFatal function 7–120

DSLogInfo function 7–121

DSLogWarn function 7–123

DSMakeJobReport function 7–44

DSOpenJob function 7–45

DSOpenProject function 7–46

DSPARAM data structure 7–70

DSPARAMINFO data structure 7–72

and DSGetParamInfo 7–28

DSPROJECTINFO data structure 7–74

and DSGetProjectInfo 7–30

DSProjectName macro 7–139

DSREPOSINFO data structure 7–75

DSREPOSUSAGE data structure 7–76

DSRunJob function 7–47

DSSetGenerateOpMetaData function 7–50,
7–130

DSSetJobLimit function 7–50, 7–52, 7–130

DSSetParam function 7–54, 7–132

DSSetServerParams function 7–58

DSSetUserStatus subroutine 7–133

DSSTAGEINFO data structure 7–77
Parallel Job Advanced Developer’s Guide
and DSGetStageInfo 7–37

DSStageInRowNum macro 7–139

DSStageLastErr macro 7–139

DSStageName macro 7–139

DSStageType macro 7–139

DSStageVarList macro 7–139

DSStopJob function 7–59, 7–134

DSTransformError function 7–135

DSUnlockJob function 7–60

DSVARINFO data structure 7–79

DSWaitForJob function 7–61

E
error codes 7–80

errors

and DataStage API 7–80

functions used for handling 7–6

retrieving message text 7–22

retrieving values for 7–21

Event Type parameter 7–14

example build stage 5–25

F
fatal error log entries 7–148

functions, table of 7–4

I
information log entries 7–148

J
job control interface 7–1

job handle 7–45

job parameters

displaying information about 7–147

functions used for accessing 7–5

listing 7–144

retrieving information about 7–28

setting 7–54

job status macros 7–140

jobs

closing 7–10

displaying information about 7–145

functions used for accessing 7–5

listing 7–29, 7–143

locking 7–42

opening 7–45

resetting 7–47, 7–141

retrieving status of 7–19

running 7–47, 7–141

stopping 7–59, 7–143
Index-3

Index
unlocking 7–60

validating 7–47, 7–141

waiting for completion 7–61

L
library files 7–4

limits 7–52

links

displaying information about 7–146

functions used for accessing 7–5

listing 7–143

retrieving information about 7–23

log entries

adding 7–43, 7–148

batch control 7–149

fatal error 7–148

finding newest 7–26, 7–149

functions used for accessing 7–5

job reset 7–148

job started 7–148

new lines in 7–43

rejected rows 7–148

retrieving 7–14, 7–16

retrieving specific 7–25, 7–149

types of 7–14

warning 7–148

logon clause 7–141, 7–152, 7–158

M
macros, job status 7–140

N
new lines in log entries 7–43

O
OSH_BUILDOP_CODE 6–8

OSH_BUILDOP_HEADER 6–8

OSH_BUILDOP_OBJECT 6–8

OSH_BUILDOP_XLC_BIN 6–8

OSH_CBUILDOP_XLC_BIN 6–9

OSH_DUMP 6–31

OSH_ECHO 6–31

OSH_EXPLAIN 6–31

OSH_PRELOAD_LIBS 6–22

OSH_PRINT_SCHEMAS 6–31

OSH_STDOUT_MSG 6–22

P
parameters, see job parameters

passwords, setting 7–58
Index-4
projects

closing 7–11

functions used for accessing 7–4

listing 7–31, 7–143

opening 7–46

PT_DEBUG_SIGNALS 6–11

R
redistributable files 7–4

rejected rows 7–148

result data

reusing 7–2

storing 7–2

row limits 7–52, 7–142

S
server names, setting 7–58

stages

displaying information about 7–146

functions used for accessing 7–5

listing 7–143

retrieving information about 7–36

T
threads

and DSFindFirstLogEntry 7–16

and DSFindNextLogEntry 7–16

and DSGetLastErrorMsg 7–22

and error storage 7–3

and errors 7–21

and log entries 7–15

and result data 7–2

using multiple 7–3

tokens

_cplusplus 7–2

STDC 7–2

WIN32 7–2

U
user names, setting 7–58

V
vmdsapi.dll 7–4

vmdsapi.lib library 7–4

W
warning limits 7–52, 7–142

warnings 7–148

WIN32 token 7–2

wrapped stages 5–1
Parallel Job Advanced Developer’s Guide

Index
writing

DataStage API programs 7–3
Parallel Job Advanced Developer’s Guide
 Index-5

Index
Index-6
 Parallel Job Advanced Developer’s Guide

	Parallel Job Advanced Developer’s Guide
	How to Use this Guide
	Organization of This Manual
	Documentation Conventions

	Contents
	Introduction
	Terminology

	Job Design Tips
	DataStage Designer Interface
	Processing Large Volumes of Data
	Modular Development
	Designing for Good Performance
	Avoid unnecessary type conversions.
	Use Transformer stages sparingly and wisely
	Increase Sort performance where possible
	Remove Unneeded Columns
	Avoid reading from sequential files using the Same partitioning method.

	Combining Data
	Sorting Data
	Default and Explicit Type Conversions
	Using Transformer Stages
	Using Sequential File Stages
	Using Database Stages
	Database Sparse Lookup vs. Join
	DB2 Database Tips
	Write vs. Load

	Oracle Database Tips
	Loading and Indexes

	Teradata Database Tips

	Improving Performance
	Understanding a Flow
	Score Dumps
	Example Score Dump

	Tips for Debugging
	Performance Monitoring
	JOB MONITOR
	Iostat
	Load Average
	Runtime Information
	OS/RDBMS Specific Tools

	Performance Analysis
	Selectively Rewriting the flow
	Identifying Superfluous Repartitions
	Identifying Buffering Issues

	Resolving Bottlenecks
	Choosing the Most Efficient Operators
	Modify and Transform
	Lookup and Join

	Partitioner Insertion, Sort Insertion
	Combinable Operators
	Disk I/O
	Ensuring Data is Evenly Partitioned
	Buffering

	Platform Specific Tuning
	Tru64
	HP-UX
	AIX

	Disk Space Requirements of Post-Release 7.0.1 Datasets

	Link Buffering
	Buffering Assumptions
	Controlling Buffering
	Buffering Policy
	Overriding Default Buffering Behavior
	Operators with Special Buffering Requirements

	Specifying Your Own Parallel Stages
	Defining Custom Stages
	Defining Build Stages
	Build Stage Macros
	Informational Macros
	Flow-Control Macros
	Input and Output Macros
	Transfer Macros
	How Your Code is Executed
	Inputs and Outputs
	Using Multiple Inputs
	Using Auto Read for all Inputs
	Using Inputs with Auto Read Enabled for Some and Disabled for Others
	Using Inputs with Auto Read Disabled.

	Example Build Stage

	Defining Wrapped Stages
	Example Wrapped Stage

	Environment Variables
	Buffering
	APT_BUFFER_FREE_RUN
	APT_BUFFER_MAXIMUM_MEMORY
	APT_BUFFER_MAXIMUM_TIMEOUT
	APT_BUFFER_DISK_WRITE_INCREMENT
	APT_BUFFERING_POLICY
	APT_SHARED_MEMORY_BUFFERS

	Building Custom Stages
	DS_OPERATOR_BUILDOP_DIR
	OSH_BUILDOP_CODE
	OSH_BUILDOP_HEADER
	OSH_BUILDOP_OBJECT
	OSH_BUILDOP_XLC_BIN
	OSH_CBUILDOP_XLC_BIN

	Compiler
	APT_COMPILER
	APT_COMPILEOPT
	APT_LINKER
	APT_LINKOPT

	DB2 Support
	APT_DB2INSTANCE_HOME
	APT_DB2READ_LOCK_TABLE
	APT_DBNAME
	APT_RDBMS_COMMIT_ROWS
	DB2DBDFT

	Debugging
	APT_DEBUG_OPERATOR
	APT_DEBUG_MODULE_NAMES
	APT_DEBUG_PARTITION
	APT_DEBUG_SIGNALS
	APT_DEBUG_STEP
	APT_DEBUG_SUBPROC
	APT_EXECUTION_MODE
	APT_PM_DBX
	APT_PM_GDB
	APT_PM_LADEBUG
	APT_PM_SHOW_PIDS
	APT_PM_XLDB
	APT_PM_XTERM
	APT_SHOW_LIBLOAD

	Decimal Support
	APT_DECIMAL_INTERM_PRECISION
	APT_DECIMAL_INTERM_SCALE
	APT_DECIMAL_INTERM_ROUND_MODE

	Disk I/O
	APT_BUFFER_DISK_WRITE_INCREMENT
	APT_CONSISTENT_BUFFERIO_SIZE
	APT_EXPORT_FLUSH_COUNT
	APT_IO_MAP/APT_IO_NOMAP and APT_BUFFERIO_MAP/ APT_BUFFERIO_NOMAP
	APT_PHYSICAL_DATASET_BLOCK_SIZE

	General Job Administration
	APT_CHECKPOINT_DIR
	APT_CLOBBER_OUTPUT
	APT_CONFIG_FILE
	APT_DISABLE_COMBINATION
	APT_EXECUTION_MODE
	APT_ORCHHOME
	APT_STARTUP_SCRIPT
	APT_NO_STARTUP_SCRIPT
	APT_STARTUP_STATUS
	APT_THIN_SCORE

	Job Monitoring
	APT_MONITOR_SIZE
	APT_MONITOR_TIME
	APT_NO_JOBMON
	APT_PERFORMANCE_DATA

	Miscellaneous
	APT_COPY_TRANSFORM_OPERATOR
	APT_DATE_CENTURY_BREAK_YEAR
	APT_IMPEXP_ALLOW_ZERO_LENGTH_FIXED_NULL
	APT_IMPORT_REJECT_STRING_FIELD_OVERRUNS
	APT_INSERT_COPY_BEFORE_MODIFY
	APT_OLD_BOUNDED_LENGTH
	APT_OPERATOR_REGISTRY_PATH
	APT_PM_NO_SHARED_MEMORY
	APT_PM_NO_NAMED_PIPES
	APT_PM_SOFT_KILL_WAIT
	APT_PM_STARTUP_CONCURRENCY
	APT_RECORD_COUNTS
	APT_SAVE_SCORE
	APT_SHOW_COMPONENT_CALLS
	APT_STACK_TRACE
	APT_WRITE_DS_VERSION
	OSH_PRELOAD_LIBS

	Network
	APT_IO_MAXIMUM_OUTSTANDING
	APT_IOMGR_CONNECT_ATTEMPTS
	APT_PM_CONDUCTOR_HOSTNAME
	APT_PM_NO_TCPIP
	APT_PM_NODE_TIMEOUT
	APT_PM_SHOWRSH
	APT_PM_USE_RSH_LOCALLY

	NLS Support
	APT_COLLATION_SEQUENCE
	APT_COLLATION_STRENGTH
	APT_ENGLISH_MESSAGES
	APT_IMPEXP_CHARSET
	APT_INPUT_CHARSET
	APT_OS_CHARSET
	APT_OUTPUT_CHARSET
	APT_STRING_CHARSET

	Oracle Support
	APT_ORACLE_LOAD_DELIMITED
	APT_ORACLE_LOAD_OPTIONS
	APT_ORACLE_NO_OPS
	APT_ORACLE_PRESERVE_BLANKS
	APT_ORA_IGNORE_CONFIG_FILE_PARALLELISM
	APT_ORA_WRITE_FILES
	APT_ORAUPSERT_COMMIT_ROW_INTERVAL APT_ORAUPSERT_COMMIT_TIME_INTERVAL

	Partitioning
	APT_NO_PART_INSERTION
	APT_PARTITION_COUNT
	APT_PARTITION_NUMBER

	Reading and Writing Files
	APT_DELIMITED_READ_SIZE
	APT_FILE_IMPORT_BUFFER_SIZE
	APT_FILE_EXPORT_BUFFER_SIZE
	APT_IMPORT_PATTERN_USES_FILESET
	APT_MAX_DELIMITED_READ_SIZE
	APT_PREVIOUS_FINAL_DELIMITER_COMPATIBLE
	APT_STRING_PADCHAR

	Reporting
	APT_DUMP_SCORE
	APT_ERROR_CONFIGURATION
	APT_MSG_FILELINE
	APT_PM_PLAYER_MEMORY
	APT_PM_PLAYER_TIMING
	APT_RECORD_COUNTS
	OSH_DUMP
	OSH_ECHO
	OSH_EXPLAIN
	OSH_PRINT_SCHEMAS

	SAS Support
	APT_HASH_TO_SASHASH
	APT_NO_SASOUT_INSERT
	APT_NO_SAS_TRANSFORMS
	APT_SAS_ACCEPT_ERROR
	APT_SAS_CHARSET
	APT_SAS_CHARSET_ABORT
	APT_SAS_COMMAND
	APT_SASINT_COMMAND
	APT_SAS_DEBUG
	APT_SAS_DEBUG_IO
	APT_SAS_DEBUG_LEVEL
	APT_SAS_DEBUG_VERBOSE
	APT_SAS_NO_PSDS_USTRING
	APT_SAS_S_ARGUMENT
	APT_SAS_SCHEMASOURCE_DUMP
	APT_SAS_SHOW_INFO
	APT_SAS_TRUNCATION

	Sorting
	APT_NO_SORT_INSERTION
	APT_SORT_INSERTION_CHECK_ONLY

	Teradata Support
	APT_TERA_64K_BUFFERS
	APT_TERA_NO_ERR_CLEANUP
	APT_TERA_NO_SQL_CONVERSION
	APT_TERA_NO_PERM_CHECKS
	APT_TERA_SYNC_DATABASE
	APT_TERA_SYNC_PASSWORD
	APT_TERA_SYNC_USER

	Transport Blocks
	APT_AUTO_TRANSPORT_BLOCK_SIZE
	APT_LATENCY_COEFFICIENT
	APT_DEFAULT_TRANSPORT_BLOCK_SIZE
	APT_MAX_TRANSPORT_BLOCK_SIZE/ APT_MIN_TRANSPORT_BLOCK_SIZE

	Guide to Setting Environment Variables
	Environment Variable Settings for all Jobs
	Optional Environment Variable Settings
	Performance Tuning
	Job Flow Debugging
	Job Flow Design

	DataStage Development Kit (Job Control Interfaces)
	DataStage Development Kit
	The dsapi.h Header File
	Data Structures, Result Data, and Threads
	Writing DataStage API Programs
	Building a DataStage API Application
	Redistributing Applications
	API Functions

	DSAddEnvVar
	Syntax
	Parameters
	Return Values
	Remarks

	DSAddProject
	Syntax
	Parameters
	Return Values

	DSCloseJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSCloseProject
	Syntax
	Parameter
	Return Value
	Remarks

	DSDeleteEnvVar
	Syntax
	Parameters
	Return Values

	DSDeleteProject
	Syntax
	Parameter
	Return Value

	DSFindFirstLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSFindNextLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Parameters
	Return Values

	DSGetJobInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetLastError
	Syntax
	Return Values
	Remarks

	DSGetLastErrorMsg
	Syntax
	Parameter
	Return Values
	Rermarks

	DSGetLinkInfo
	Syntax
	Parameters
	Return Value
	Remarks

	DSGetLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetNewestLogId
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetParamInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Return Values
	Remarks

	DSGetReposInfo
	Syntax
	Parameters
	Return Value

	DSGetReposUsage
	Syntax
	Parameters
	Return Value

	DSGetStageInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Parameters
	Return Values

	DSListEnvVars
	Syntax
	Parameter
	Return Values
	Remarks

	DSListProjectProperties
	Syntax
	Parameter
	Return Values
	Remarks

	DSLockJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSLogEvent
	Syntax
	Parameters
	Return Values
	Remarks

	DSMakeJobReport
	Syntax
	Parameters
	Return Values

	DSOpenJob
	Syntax
	Parameters
	Return Values
	Remarks

	DSOpenProject
	Syntax
	Parameter
	Return Values
	Remarks

	DSRunJob
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetEnvVar
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetGenerateOpMetaData
	Syntax
	Parameters
	Return Values

	DSSetJobLimit
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetParam
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetProjectProperty
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetServerParams
	Syntax
	Parameters
	Return Values
	Remarks

	DSStopJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSUnlockJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSWaitForJob
	Syntax
	Parameter
	Return Values
	Remarks

	Data Structures
	DSCUSTINFO
	Syntax
	Members

	DSJOBINFO
	Syntax
	Members

	DSLINKINFO
	Syntax
	Members

	DSLOGDETAIL
	Syntax
	Members

	DSLOGEVENT
	Syntax
	Members

	DSPARAM
	Syntax
	Members

	DSPARAMINFO
	Syntax
	Members

	DSPROJECTINFO
	Syntax
	Members

	DSREPOSINFO
	Syntax
	Members

	DSREPOSUSAGE
	Syntax
	Members

	DSSTAGEINFO
	Syntax
	Members

	DSLINKINFO
	Syntax
	Members

	Error Codes
	DataStage BASIC Interface
	DSAttachJob
	Syntax
	Remarks
	Example

	DSCheckRoutine
	Syntax
	Example

	DSDetachJob
	Syntax
	Example

	DSExecute
	Syntax
	Remarks

	DSGetCustInfo
	Syntax

	DSIPCPageProps
	Syntax
	Example

	DSGetJobInfo
	Syntax
	Remarks
	Examples

	DSGetJobMetaBag
	Syntax
	Example

	DSGetLinkInfo
	Syntax
	Remarks
	Example

	DSGetLinkMetaData
	Syntax
	Example

	DSGetLogEntry
	Syntax
	Example

	DSGetLogSummary
	Syntax
	Example

	DSGetNewestLogId
	Syntax
	Example

	DSGetParamInfo
	Syntax
	Remarks
	Example

	DSGetProjectInfo
	Syntax

	DSGetStageInfo
	Syntax
	Remarks
	Example

	DSGetStageLinks
	Syntax
	Example

	DSGetStagesOfType
	Syntax
	Example

	DSGetStagesTypes
	Syntax
	Example

	DSGetProjectInfo
	Syntax

	DSLogEvent
	Syntax
	Example

	DSLogFatal
	Syntax
	Remarks
	Example

	DSLogInfo
	Syntax
	Remarks
	Example

	DSLogToController
	Syntax
	Remarks
	Example

	DSLogWarn
	Syntax
	Remarks
	Example

	DSMakeJobReport
	Syntax
	Remarks
	Example

	DSMakeMsg
	Syntax
	Remarks
	Example

	DSPrepareJob
	Syntax
	Example

	DSRunJob
	Syntax
	Remarks
	Example

	DSSendMail
	Syntax
	Remarks
	Example

	DSSetGenerateOpMetaData
	Syntax
	Example

	DSSetJobLimit
	Syntax
	Example

	DSSetParam
	Syntax
	Example

	DSSetUserStatus
	Syntax
	Example

	DSStopJob
	Syntax
	Example

	DSTransformError
	Syntax
	Remarks
	Example

	DSTranslateCode
	Syntax
	Remarks
	Example

	DSWaitForFile
	Syntax
	Examples

	DSWaitForJob
	Syntax
	Remarks
	Example

	Job Status Macros
	Command Line Interface
	Commands for Controlling DataStage Jobs
	The Logon Clause
	Starting a Job
	Stopping a Job
	Listing Projects, Jobs, Stages, Links, and Parameters
	Listing Projects
	Listing Jobs
	Listing Stages
	Listing Links
	Listing Parameters
	Listing Invocations

	Setting an Alias for a Job
	Retrieving Information
	Displaying Job Information
	Displaying Stage Information
	Displaying Link Information
	Displaying Parameter Information

	Accessing Log Files
	Adding a Log Entry
	Displaying a Short Log Entry
	Displaying a Specific Log Entry
	Identifying the Newest Entry

	Importing Job Executables
	Generating a Report

	Commands for Administering DataStage
	The Logon Clause
	Creating a Project
	Deleting a Project
	Enabling/Disabling OSH Display
	Enabling/Disabling Runtime Column Propagation
	Enabling/Disabling Job Administration from the Director
	Enabling/Disabling Generation of XML Report
	Enabling/Disabling Advanced Runtime Properties
	Setting the Base Directory
	Setting the Deployment Directory Template
	Setting Custom Deployment Options
	Adding an Environment Variable
	Deleting an Environment Variable
	Setting the Value of an Environment Variable
	Listing Projects
	Listing Properties
	Listing Environment Variables

	Commands for Searching Jobs
	The Logon Clause
	Search for Jobs by Name
	Search for Job Sequences that Use Specified Job
	Search for Jobs used in a Specified Job Sequence
	Search for Job Using Specified Table Definition

	XML Schemas and Sample Stylesheets

	Header Files
	C++ Classes - Sorted By Header File
	C++ Macros - Sorted By Header File

	Index

