
Copyright © 2004, 2001-2003 Ascential Software Corporation
All rights reserved.

Technical Bulletin
Part No. 00D-TB003

Ascential DataStage™

Hash Stage Disk Caching

This technical bulletin describes the use of in-memory cached hashed files
that allow a single instance of a file to be shared within a job, between any
number of DataStage jobs, or between multiple streams of data in the
same job. The use of cached files provides performance improvements.

© 2004, 2001-2003 Ascential Software Corporation. All rights reserved. Ascential, Ascential Software,
DataStage, MetaStage, and MetaBroker are trademarks of Ascential Software Corporation or its affili-
ates and may be registered in the United States or other jurisdictions. Adobe Acrobat is a trademark of
Adobe Systems, Inc. Microsoft, Windows, Windows NT, and Windows Server are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. UNIX
is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. Other marks mentioned are the property of the owners of those marks.

This product may contain or utilize third party components subject to the user documentation previ-
ously provided by Ascential Software Corporation or contained herein.

Printing History
First Edition (00D-TB003) for Release 5.1, September 2001
Second Edition (00D-TB003) for Release 6.0, August 2002
Updated for Release 6.0, February 2003
Updated for Release 6.0, April 2003
Updated for Release 6.0, July 2003
Updated for Release 6.0, May 2004

How to Order Technical Documents
To order copies of documents, contact your local Ascential subsidiary or distributor, or call our office at
(508) 366-3888.

Documentation Team: Marie E. Hedin

May 2004 00D-TB003
Introduction
Prior to Release 5.1, the DataStage Hashed File stage had only one method of
caching rows for both reading (reference links) and writing (output links). This
method is called link private caching (formerly called stage caching). This caching
mechanism is a private per-link cache. As a result, each link in a job using a hashed
stage must allocate and manage resources to support the cache. Sharing is allowed
within a job with a single data stream but not between jobs or multiple data
streams in one job. This results in significant resource usage and inefficient startup
times (in the case of reference links).

Also because the write cache buffers output rows until a threshold is met, cached
rows are not reflected in the database until the cache is flushed. This creates a
problem for job designs that use the same hashed file for both reference lookups
and updates.

With Release 5.1, Ascential DataStage provided the option to

• Cache blocks in the server’s memory

• Allow the same hashed file to be referenced by multiple links

• Make inserts and updates visible to all processes that have the file open

Centralized shared-memory system disk caching, hereafter called system caching,
reduces the use of system resources by implementing only one cache that can be
fully configured and that supports both reading and writing.

Release 6.0 introduces an additional option called link public caching. This option
allows multiple data streams within one job to use the same cache file. Link public
caching was developed to take full advantage of Ascential DataStage Parallel
Extender by maximizing efficiency with a symmetric multiprocessor (SMP) when
using a lookup file.

Ascential DataStage functions supporting disk caching are described in the
Ascential DataStage Server Job Developer’s Guide.

This technical bulletin describes user commands as well as the capabilities given
to the DataStage administrator to adjust a number of system configuration values
to maximize performance based on hardware configuration and DataStage steps.
Ascential DataStage Hash Stage Disk Caching 1

00D-TB003 May 2004
Functionality
Disk caching has the following functionality and benefits:

• Supports shareable update or write file access in a single data stream in a
single job (link private caching)

• Supports shareable update or write file access with

– multiple data streams within a single job
– multiple jobs
– a job running with the Parallel Extender under SMP

while maintaining files cached in memory (link public caching)

• Supports shareable update or write file access across jobs on one system
while maintaining files cached in memory (system caching)

• Allows the exploitation of the capabilities of SMP allowing multiple
concurrent data streams (link public caching)

• Supports quick in-memory access to data by an application including just
updated or newly created data

• Supports in-memory access to just updated or newly created data by other
processes

• Supports system tunables that allow an administrator to configure the disk
cache algorithms to best meet the system configuration and expected size
of files

The following functionality is not supported:

• Caching of files larger than half a terabyte

• System caching of file types 1, 19, 25 (‘B tree’), or 27 (partitioned)

• System caching of existing files with separation values (block sizes) other
than 1, 2, 4, 8, 16, 32 or 64

• Automatic designation of files as system cached

• Use of utilities (back-up, restore, resize, and filefix) against files designated
to be used by the system cache
2 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
Terminology
The following terminology is used in this technical bulletin.

Term Meaning

block A group of records or rows. The DataStage engine puts
records that hash to the same group number into one block.
Block size is determined by the CREATE.FILE’s SEPARA-
TION value.

blockset buffer A unit of memory within the disk shared segments with a
size of n k plus the size of the blockset head structure. n can
be 4, 8, 16, or 32.

blockset freechain The chain of unused blockset buffers currently available
within any of the configured disk-shared segments.

cache A subsystem in which frequently used data is made acces-
sible for quick access.

cache daemon An asynchronous background process that does the write-
defer-state writes.

cache file chain A set of cache file entries either used (an open file) or
unused.

cache file entry A structure defining one DataStage engine file and the
related information about its state.

device number A unique number associated with the partition (a device)
on which the inode resides. See also inode number.

disk shared
memory segments

The segments into which the DataStage system cache
memory is allocated. This area is then broken into blockset
entries.

file A DataStage engine native file created with the
CREATE.FILE command.

flush The time when a currently allocated blockset is released
and may be taken from one file and used for another set of
blocks from the same or a different file.

inconsistent state The state of a file in which some, but not all, writes gener-
ated by an application have been physically written to disk
before the application terminates without a proper close
file.
Ascential DataStage Hash Stage Disk Caching 3

00D-TB003 May 2004
Multiple Data Streams
In Ascential DataStage, multiple data streams occur in one of three states:

• Processing multiple data streams within the same job

• Processing a single large data source in a number of partitioned sets using
the Ascential DataStage Parallel Extender (see Designing Parallel Extender
Jobs for additional information)

• Running multiple jobs that reference the same file

To gain processing efficiencies, you can process multiple data streams with a
single, common, cached lookup file.

inode number A unique number associated with each filename. This
number is used to look up an entry in the inode table which
gives information on the type, size, and location of the file
and the user id of the owner of the file. See also device
number.

overflow block A unique block or set of blocks in which the overflow
portion of a record’s fields are stored if all of that record’s
data fields cannot fit in its group.

pid A unique identifier of a process.

preread The act of reading one or more blocks of a file into cache
before a request for that block.

public
HEAPCHUNK

A consecutive set of blocksets (bset) allocated as one unit
(128 K) to a hash file server for a piece of a link public
cache.

semaphore An operating system structure that allows processes to gate
each other to single-thread through a procedure.

symmetric multi-
processing (SMP)

The processing of programs by multiple processors that
share a common operating system and memory. A single
copy of the operating system is in charge of all the proces-
sors. In SMP, hardware resources are usually shared among
processors

write defer A block currently in a blockset that has been modified from
the image on disk and made visible to other applications,
but that has not been updated on the disk file. The file is in
an inconsistent state until all write-deferred blocks are
written.

Term (Cont.) Meaning (Cont.)
4 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
Guidelines for Choosing a Type of Caching
Use the following as a guideline as you select the type of caching to use:

Preparing for Link Private Caching
In the Administrator, select a project on the Projects page. Click Properties. On the
Tunables tab, set the Read cache size (for reference files) and/or the Write cache
size (for output files) to the upper limit appropriate for your job and resources.
Ascential DataStage does not use all the memory specified at once. Rather it takes
memory in segments up to the limit specified. The default for each is 128 MB.

Preparing for Link Public Caching or
System Caching on UNIX Platforms
By default, Ascential DataStage is shipped with link public caching and system
caching disabled. To enable disk caching within the server, the DataStage
administrator must perform the following steps.

1. Log in as dsadm.

2. Use the following command to change your current directory to the
DSEngine install directory.

cd `cat /.dshome`

Edit the uvconfig file located in the DataStage server directory (specified in the
/.dshome file), and set the disk cache tunables to the desired values. At the very
least, set the DISKCACHE tunable to a desired size in megabytes. (See
“Tuning Link Public Caching and System Caching” on page 22.)

Note: The default values serve as a reasonable set of initial values.

To Use

Share between reference and output files in a
single data stream

Link private caching

Share among multiple data streams or within a
container running with the Parallel Extender

Link public caching

Share among multiple jobs running sequen-
tially or in parallel using the same reference file
and/or output file

System caching
Ascential DataStage Hash Stage Disk Caching 5

00D-TB003 May 2004
3. Ensure there are no active DataStage client connections or interactive
users.

4. Stop the DataStage server as follows:

./bin/uv -admin -stop

CAUTION: You cannot continue with step 5 until all DataStage applications
have stopped running. Use the following command to verify all
DataStage applications have stopped running:

./bin/uv -admin -info

If all applications have stopped, the output is:

DSEngine, rev xxxx not currently running

5. Generate a new engine configuration as follows:

./bin/uv -admin -regen

6. Restart the DataStage server as follows:

./bin/uv -admin -start

Link public caching and system caching is now enabled. Once caching is enabled,
new or existing job designs can use this functionality. See “Using Link Public
Caching” on page 10 or “Using System Caching” on page 10.

Note: If you receive a host operating system error indicating DataStage segments
can not be assigned, review information about operating system kernel
parameters in the Ascential DataStage Install and Upgrade Guide and make
any necessary changes to them.

Special Requirements for AIX to Size the Disk Cache
Because of the default address-space model for 32-bit processes on AIX systems,
additional preparation may be needed for all of the disk caching options. The
default allocation of space is 128 megabytes. The optimal maximum allocation is
512 megabytes.
6 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
If you want to allocate more than 128 megabytes of space for the disk cache on an
AIX system, do the following:

1. Log in as dsadm.

2. Use the following command to change your current directory to the
DSEngine install directory:

cd `cat /.dshome`

3. Edit the uvconfig file using a text editor such as vi.

a. Change DMEMOFF to 0x90000000

b. Change PMEMOFF to 0xa0000000

 Save the uvconfig file.

4. Ensure there are no active DataStage client connections or interactive
users.

5. Stop the DataStage server as follows:

. ./dsenv

./bin/uv -admin -stop

CAUTION: You cannot continue with step 6 until all DataStage applications
have stopped running. Use the following command to verify all
DataStage applications have stopped running:

./bin/uv -admin -info

If all applications have stopped, the output is:

DSENGINE, rev xxxx not currently running

6. Generate a new engine configuration as follows:

./bin/uv -admin -regen

If the command is successful, the output is:

uvregen: reconfiguration complete, disk segment size is xxxxxxx

7. Add the following environmental settings to the .dsenv file:

LDR_CNTRL=MAXDATA=0x30000000;export LDR_CNTRL

8. Apply the new environmental settings by executing

. ./dsenv
Ascential DataStage Hash Stage Disk Caching 7

00D-TB003 May 2004
9. Restart the DataStage server as follows:

./bin/uv -admin -start

Note: These settings can effect the amount of memory used for memory-intensive
plug-ins, and memory intensive plug-ins can limit the amount of memory
available for caching.

Preparing for Link Public Caching or
System Caching on Windows Platforms
By default, Ascential DataStage is shipped with link public caching and system
caching disabled. To enable disk caching within the server, the DataStage
administrator must perform the following steps.

1. Log in as a Windows Administrator.

2. Using a text editor such as Notepad, edit the uvconfig file located in the
DataStage server directory, and set the disk cache tunables to the desired
values. At the very least, set the DISKCACHE tunable to a desired size in
megabytes. (See “Tuning Link Public Caching and System Caching” on
page 22.)

Note: The default values serve as a reasonable set of initial values.

3. Ensure there are no active DataStage client connections or interactive
users.

4. Stop the DataStage server as follows:

a. Choose Start➤ Settings➤ Control Panel➤ DataStage. The DataStage
Control Panel dialog box appears.

b. Click Stop All Services and click Yes in response to the message that all of
the DataStage Services will be stopped.

c. Click OK to exit the Control Panel.

CAUTION: You cannot continue with step 5 until all DataStage applications
have stopped running. To verify no DataStage applications are
running, view the Processes tab in the Task Manager. You
should not find an entry called uvsh or any entries beginning
with the letters ds.
8 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
CAUTION: Generate a new engine configuration file as follows:

From an NT command prompt, change to the DataStage server
directory and issue the following command:

C:\Ascential\DataStage\Engine\bin\uvregen.exe

where C:\Ascential\DataStage\Engine is the installed
DataStage server location.

5. Restart the DataStage server as follows:

a. Choose Start➤ Settings➤ Control Panel➤ DataStage. The DataStage
Control Panel dialog box appears.

b. Click Start All Services and click Yes in response to the message that this
will start all DataStage services.

c. Click OK to exit the DataStage Control Panel.

Note: If you receive a host operating system error indicating DataStage segments
can not be assigned, review information about operating system kernel
parameters in the Ascential DataStage Install and Upgrade Guide and make
any necessary changes to them.

Link public caching and system caching are now enabled. Once caching is enabled,
new or existing job designs can use this functionality. See “Using Link Public
Caching” on page 10 or “Using System Caching” on page 10.

Using Link Private Caching
The DataStage engine uses private space if the following are true:

• Disk caching is enabled (either Enabled or Enabled Lock for Updates from
the Preload file in Memory drop-down list on the Output tab of the
Hashed File Stage dialog box)

• Enable hashed file cache sharing is not selected from the General tab for
the job (Edit ➤ Job Properties) prior to the compile. As the default, Enable
hashed file cache sharing is not selected.

With all of these conditions met, a new applications uses link private caching.
Runtime log messages refer to link private.
Ascential DataStage Hash Stage Disk Caching 9

00D-TB003 May 2004
If an existing application is recompiled, it may run with a different log file. A job
with a single stream works the same as it did with the prior release, but runtime
log messages now refer to link private.

Using Link Public Caching
The DataStage engine uses public space if all of the following are true:

• Disk caching is enabled (either Enabled or Enabled Lock for Updates from
the Preload file in Memory drop-down list on the Output tab of the
Hashed File Stage dialog box).

• Enable hashed file cache sharing is selected from the General tab for the
job (Edit ➤ Job Properties) prior to the compile. As the default, Enable
hashed file cache sharing is not selected.

• Disk caching is turned on in the uvconfig file on the server (see “Tuning
Link Public Caching and System Caching” on page 22).

• The lookup file will run in more than one stream, either in multiple data
streams within the same job or in partitioned sets with the DataStage
Parallel Extender.

If any of the last three above is not true, link private is used for the cache.

With all of these conditions met, a new applications uses link public caching.
Runtime log messages refer to link public.

To obtain the status of disk cache, see “Obtaining Status” on page 12.

Using System Caching
As a DataStage process is initiated, the set of shared memory segments that hold
the disk cache is made visible to the process. For disk caching, we recommend an
administrator use less than the maximum allowable shared disk cache memory to
allow applications to run in the remaining working space.

The layout of the shared disk cache segments allows efficient, serialized update
access to the list of blocks cached, on a per file (inode and device) basis.

Creating a Hash File for System Caching
To utilize system caching within the Hashed File stage, you must create a file with
the caching attributes write immediate or write deferred. You can create such a file
by selecting Allow stage write cache on the Input page of the Hashed File Stage
10 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
dialog box. Specify the desired attributes through the Create file options dialog
boxes. This dialog box includes the Caching attributes drop-down list box. The
drop-down list box has the following entries:

Server Commands
The DataStage administrator can administer and monitor the system cache
subsystem through the DataStage server command line interface as described
below.

To use any of these commands, prior to running a job or subsequent to running a
job, create before job or after job subroutine definitions. See DataStage
documentation for additional information.

Creating New and Altering Existing Hashed Files
The following command creates a new cached hashed file:

CREATE.FILE

The CREATE.FILE command has been extended by two options, WRITE.CACHE
and WRITE.CACHE.DEFER, if the file is to use the shared memory disk cache.
These options have the following meanings:

Note: The block size of the file must be 1KB, 2KB, 4KB, 8KB, 16KB, or 32KB. You
control this by setting the file separation to 2, 4, 8, 16, 32, or 64, respectively.

NONE Does not assign any special caching attributes. This is the
default.

WRITE DEFERRED Enables caching of the specified file using demand or
lazy updating. (In the uvconfig file, if the
DCWRITEDAEMON is enabled, then lazy updating is
enabled. See “Tuning Link Public Caching and System
Caching” on page 22.)

WRITE IMMEDIATE Enables caching of the specified file using synchronous
writes.

Option Description

WRITE.CACHE Caches files for reads and writes with immediate
writes.

WRITE.CACHE.DEFER Caches files for reads and writes with the writes
deferred until the close.
Ascential DataStage Hash Stage Disk Caching 11

00D-TB003 May 2004
The following command changes the mode of an existing hashed file:

SET.MODE filename [READ.ONLY | READ.WRITE | WRITE.CACHE |
WRITE.CACHE.DEFER | INFORM]

The command has the following options:

Note: The block size of the file must be 1KB, 2KB, 4KB, 8KB, 16KB, or 32KB. You
control this by setting the file separation to 2, 4, 8, 16, 32, or 64, respectively.

Obtaining Status
The administrator (or user) can obtain the current status of the disk cache by using
the following command:

LIST.FILE.CACHE [DEVICE xxx INODE yyy | FILE name | [EVERY]]
[[DETAIL][MRURO][MRUWD]]

Note: This command is available to both link public caching and system caching.

The command has the following options:

Option Description

READ.ONLY Forces the file to be read-only, cache reads.

READ.WRITE Restores file to normal read/write mode. This is
the default value.

WRITE.CACHE Caches files for reads and writes with immediate
writes.

WRITE.CACHE.DEFER Caches files for reads and writes with the writes
deferred until the close.

INFORM Displays the current setting of the “readonly” field
in the header.

Option Description

DEVICE xxx
INODE yyy

Supplies information for the cache file associated with the
unique device number and inode number on which the cached
file is located. xxx and yyy are decimal unless they start with
0[X|x], which indicates hexidecimal.

FILE name Supplies information for the named cached file.

EVERY Supplies information about all open files.
12 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
If the disk cache daemon is running, the following line is displayed first.

where x is the pause interval in milliseconds and y is the pid identification. For
additional information, see “Starting and Stopping the Cache Daemon” on
page 20.

A process can own one or more of the following semaphores: daemon request,
blockset freechain, and cache file chain. If one or more is owned, the appropriate
lines are output.

daemon request semaphore held by y

blockset freechain semaphore held by y

cache file chain semaphore held by y

where y is the pid identification.

When this command is executed, two lines show general cache status. For
example,

The meaning of the status information is as follows:

DETAIL Supplies additional information.

MRURO Lists all blocksets on the file cache read-only blockset queue.
These blocksets are displayed at the end of all cache file entries,
one entry per line.

MRUWD Lists each blockset on the file’s write-deferred queue.

DAEMON.FILE.CACHE daemon active with pause of x, pid of y

fileentries blocksets freechain flushedro flushedwd blockkhits

11 61 61 50 32 23292

Category Meaning

fileentries Number of cache file entries.

blocksets Total number of blocksets in disk cache.

freechain Number of blocksets currently available for use.

flushedro Total number of read-only blocksets flushed.

flushedwd Total number of write-deferred blocksets flushed.

blockhits Total number of blocks found in cache.

Option (Cont.) Description (Cont.)
Ascential DataStage Hash Stage Disk Caching 13

14

00D-TB003 May 2004

0

If DETAIL is specified, four additional lines provide detailed disk cache status:

The meaning of the detailed status is as follows:

The following information is provided for each file:

The meaning of this information is as follows:

blocksize arraysize flushpc maxpc catpc

16384 256 80 40 50

nophyread nophywrite nobsetwhits

29 445 4473

Category Meaning

blocksize Configured size of blockset buffer. See DCBLOCKSIZE on
page 22.

arraysize Configured number of arrays per cache file entry. See
DCMODULUS on page 22.

flushpc Configured flushpc percent. See DCFLUSHPCT on page 23.

maxpc Configured maxpc percent. See DCMAXPCT on page 22.

catpc Configured catpc percent. See DCCATALOGPCT on page 23.

nophyread Total number of reads done to the operating system.

nophywrite Total number of writes done to the operating system.

nobsetwhits Total number of blocksets found in cache.

Device… Inode… open openwd c t r d time fullname

8912917 1297708 1 1 C D W 1 11:46:17 tress/REL7.DY.1/DATA.3

blocksets bsetswd flushedro flushedwd bsethits hblockf

12 3 0 144 5667 0x30000

Category Meaning

Device A number that identifies the logical partition of the disk
where the file system is located.

Inode A number that identifies the file that is being accessed.

open The number of current opens to this file.

openwd The number of current write-deferred opens to this file.
Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
If a file-entry semaphore used for this cache file entry is currently held, a line is
output with this information:

this cache file entry semaphore (x) held by y

c The file’s catalogue status:

• C if the file is catalogued
• A space if it is not.

t The file type:

• D represents type 30 data
• O represents type 30 overflow
• S represents a DataStage link public file
• A space represents a hashed file

r The read/write status of the file:

• R represents read only
• W represents write deferred
• A space if any other status

d The status of the cache daemon. The value is

• 1 if the cache daemon is actively monitoring the
status of the file

• ? if the daemon abnormally terminated
• A space if the cache daemon is not actively moni-

toring the status of the file and the daemon has not
abnormally terminated

time The time the file was opened.

fullname The last 23 bytes of the full path.

blocksets The number of blocksets currently used by this file.

bsetswd The number of blocksets currently with at least one write-
deferred block.

flushedro The number of read-only blocksets that have flushed.

flushedwd The number of blocksets flushed that had deferred writes.

bsethits The number of blocksets found in the cache for this file.

hblockf The highest block number in the file expressed in
hexidecimal.

Category (Cont.) Meaning (Cont.)
Ascential DataStage Hash Stage Disk Caching 15

00D-TB003 May 2004
where x is the number of the semaphore and y is the pid.

If DETAIL is specified, current file status information is displayed.

For each blockset entry, the meaning of this information is as follows:

If a cache file array semaphore corresponding to a displayed blockset is currently
held by a process, a line is output with the following information.

Array entry z has cache file array semaphore (x) held by y

where x is the number of the semaphore, y is the pid, and z is the array entry
number.

If DETAIL is specified and link public caching is in effect, this additional
information is provided. For example:

bset 0x4001 first of 8 bsets make up this public HEAPCHUNK
next 247 public HEAPCHUNKs of 8 bsets are consecutive

bset 0x7C4001 first of 2 bsets make up this public HEAPCHUNK

0xbaseblock inset mru latch cntovf writedef time

0 8 WD 0x0 0 0x80000000 11:46:17

10000 8 RO 0x0 0 0x0 11:46:17

20000 8 0x80000000 0 0x0 11:46:17

Category Meaning

0xbaseblock The block number in hexidecimal (0x prefix).

inset The number of blocks in this set.

mru The read-only or write-deferred status:

• WD for the cache file’s write-deferred list
• RO for the cache file’s read-only list

latched Four hexidecimal characters showing the latch settings (0x
prefix), 1 bit for each block latched in the current block set from
left to right.

cntovf The number of processes referencing an overflow group in this
blockset.

writedef Four hexidecimal characters showing the deferred setting (0x
prefix), 1 bit for each block in the current block set from left to
right.

time The time the blockset was last referenced.
16 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
The above indicates the link public file is using 248 HEAPCHUNKs of 128 K each
and 1 HEAPCHUNK of 32 K

A second form of this command is also available.

LIST.FILE.CACHE [DEVICE xxx INODE yyy|FILE name] BLOCK zzz
[OVER.30]

When this command is executed, a dump of the block is displayed in hexidecimal,
and record keys are listed. If an overflow block of a type 30 file is desired, enter the
OVER.30 option. After two header lines, each 64 bytes of data are displayed on a
line with all zero lines skipped. For each key, one line is output. The key is a value
of up to 511 bytes. The dump terminates when a key is longer than 511 bytes. xxx,
yyy, and zzz are decimal unless they start with 0[X|x], which indicates hexidecimal.

Changing the Status
The DataStage administrator can change the status of the shared memory disk
cache.

Note: This command is available to both link public caching and system caching.

CAUTION: You must be logged into the dshome account to change the status.
See “Logging into the dshome Account” on page 20 for information
about logging into the dshome account.

The command is

CLEAR.FILE.CACHE
[[FILE filename [GROUP zzz]]
[FORCEWRITE | FLUSHRO | CLOSE | CLEAR.STAT]
| ALL| DCFILE | ENTRY | ARRAY | FREECHAIN | DAEMON]
[USER x | SEMNO y]
[STOP {DAEMON}]
[ABORT] {DETAIL}

The command has the following options:

Options Description

FILE filename Names the file for which the status is to be
changed. If not specified, the status of all cache files
is changed.
Ascential DataStage Hash Stage Disk Caching 17

00D-TB003 May 2004
GROUP zzz Identifies the group number for which the status is
to be changed. If not specified, the status of all
groups is changed.

FORCEWRITE Causes all deferred writes to be written.

FLUSHRO Releases the read-only blocksets from the cache,
sets the timestamp entry to 0, and puts an entry at
the end of the most recently used chain.

CLOSE Working in conjunction with FORCEWRITE, puts
entries onto blockset free chain and closes the
designated cache file entry.

CLEAR.STAT Clears the statistics from a specific file or from the
global cache.

ALL Releases all semaphores. ALL is mutually exclusive
of DCFILE, ENTRY, ARRAY, FREECHAIN, and
DAEMON.

DCFILE Releases the cache file chain semaphore. DCFILE is
mutually exclusive of ALL but can be included in
combination with ENTRY, ARRAY, FREECHAIN,
and/or DAEMON.

ENTRY Releases the cache file entry semaphore. ENTRY is
mutually exclusive of ALL but can be included in
combination with DCFILE, ARRAY, FREECHAIN,
and/or DAEMON.

ARRAY Releases the cache file array semaphore. ARRAY is
mutually exclusive of ALL but can be included in
combination with DCFILE, ENTRY, FREECHAIN,
and/or DAEMON.

FREECHAIN Releases the blockset freechain semaphore.
FREECHAIN is mutually exclusive of ALL but can
be included in combination with DCFILE, ENTRY,
ARRAY, and/or DAEMON.

DAEMON Releases the cache daemon semaphore. DAEMON
is mutually exclusive of ALL but can be included in
combination with DCFILE, ENTRY, ARRAY,
and/or FREECHAIN.

Options (Cont.) Description (Cont.)
18 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
Placing Files Permanently in the Disk Cache
The administrator can place specific files permanently in the disk cache with the
following DataStage engine command:

CATALOG.FILE.CACHE filename {PRE.LOAD|WRITE.DEFER}
The command has the following components:

The administrator can preload a read-only or write-cached mode file into cache
memory. It remains there between normal uses. At a minimum, its modified
records are written to disk when the last user closes it while in write-defer mode.

USER x Identifies the pid of the user owning the sema-
phore to be released. If omitted, all users is
assumed. USER can be specified with ALL,
DCFILE, ENTRY, ARRAY, FREECHAIN, and
DAEMON to limit these options to a specific user.

SEMNO y Specifies the number of array or entry semaphores
to be released. ENTRY or ARRAY must also be
specified. If omitted, all entry and/or array sema-
phores is assumed.

STOP {DAEMON} Stops the disk cache asynchronous write daemon.

ABORT [DETAIL] Stops everything, flushes all the files, clears all
semaphores and statistics, and stops the daemon. If
DETAIL is specified, steps are shown. If ABORT is
specified, DETAIL is the only other parameter
permitted.

Components Description

FILE filename Names the file to be permanently placed in disk
cache.

PRE.LOAD Loads the data of the file into cache memory.

WRITE.DEFER Defers writing to the file.

Options (Cont.) Description (Cont.)
Ascential DataStage Hash Stage Disk Caching 19

00D-TB003 May 2004
Removing Files from the Disk Cache
The administrator can remove a file from cache memory with the following
command:

DECATALOG.FILE.CACHE filename

The command has the following component:

The file is flushed and removed from cache when the last current user closes the
file.

Starting and Stopping the Cache Daemon
The administrator can start and stop the asynchronous background cache (writer)
daemon.

CAUTION: You must be logged into the dshome account. See “Logging into the
dshome Account” on page 20 for information about logging into the
dshome account.

The command is:

DAEMON.FILE.CACHE [[START x] | STOP]
The command has the following components:

Logging into the dshome Account

The CLEAR.FILE.CACHE command and the DAEMON.FILE.CACHE command
require that you log in as administrator and be logged into the DataStage home
(dshome) account.

Components Description

FILE filename Names the file to be removed from disk cache.

Components Description

START Starts the asynchronous background cache
daemon.

x Identifies the pause period between scans. x is
expressed in 10-millisecond units.

STOP Stops the asynchronous background cache
daemon.
20 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
In Unix. To log in to the DataStage home account:

1. Log in as dsadm.

2. Determine the path for dshome:

cat /.dshome

3. Change the directory to the specified path. For example, if the path is
/u1/uv, the command is:

cd /u1/uv

4. Log in to the home account

bin/dssh

You are now in the DataStage home account.

In Windows. To log in to the DataStage home account:

From a command prompt, change to the DataStage server directory and issue the
following command:

C:\Ascential\DataStage\Engine\bin\dssh

where C:\Ascential\DataStage\Engine is the installed DataStage server location.
You are now in the DataStage home account.
Ascential DataStage Hash Stage Disk Caching 21

00D-TB003 May 2004
Tuning Link Public Caching and
System Caching
The administrator can use the following tunables in the uvconfig file to tune the
performance of disk caching.

Tunable Description

DISKCACHE Specifies the state of the disk cache subsystem. This
tunable must have a positive value when using
either link public caching or system caching. The
following are the valid values:

• -1, meaning ALLOW. The disk cache is inac-
tive. Files opened in read-only or write-
cache mode are processed as if opened in
read/write mode. This is the default value.

• 0, meaning REJECT. The disk cache
subsystem is inactive. Files opened in read-
only or write-cache mode produce an error.

• n. The disk cache subsystem is active. n
represents the size of the disk cache shared
memory in megabytes. Values 1 – 512 are
allowed. The shared cache is limited to 512
mb on all platforms except Compaq Tru64,
which has a limit of 176 mb.

DCBLOCKSIZE Specifies the size of a shared memory disk cache
buffer in 1K units (1024 bytes). Valid values are 4, 8,
16, and 32. 16 is the default value.

DCMODULUS Specifies the number of chains of shared memory
disk cache buffers into which a file is divided. Valid
values are 128, 256, 512, and 1024. 256 is the default
value. This tunable is specific to system caching.

DCMAXPCT Specifies the percentage of the total shared
memory disk cache buffers that can be owned by a
file. Valid values are 1 – 100. 80 is the default value.
This tunable is specific to system caching.
22 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
Using the Euro Symbol on Non-NLS systems
If you wish to include the Euro symbol in hashed files on non-NLS systems, you
have to take some steps to support the symbol. See the Ascential DataStage Server
Job Developer’s Guide for information.

Considerations for Performance
Single versus Multiple Jobs. System caching allows multiple jobs or stages
running concurrently to share the same DataStage engine files, either as read only
or for writing and updating. System caching is not intended to be used if only a
single stage is creating or reading the file.

Write-Deferred Caching. This type of system caching offers the best performance
because expensive synchronous writes to the physical disk file are deferred. For
demand updating, no separate write cache daemon is active, and updated blocks
are only written to disk when a file’s blockset quota is exceeded or the last opened
reference to the file has been closed. Lazy updating is demand updating
augmented by a separate asynchronous writer daemon. The write daemon is not

DCFLUSHPCT Specifies the percentage of the total shared
memory disk cache buffers owned by a file that can
be in a write-deferred state before they are flushed
to disk. Valid values are 1 – 100. 80 is the default
value. This tunable is specific to system caching.

DCCATALOGPCT Specifies the percentage of the total shared
memory disk cache buffers that can be owned by
data files that are cataloged for disk caching. Valid
values are 1 – 100. 50 is the default value. This
tunable is specific to system caching.

DCWRITEDAEMON Specifies the state of the shared memory disk cache
background write daemon. The following are the
valid values:

• 0 is the default value and indicates the back-
ground write daemon is inactive.

n indicates the write daemon is active. n is the
amount of time the write daemon pauses between
writes, expressed in 10-millisecond units. This
tunable is specific to system caching.

Tunable (Cont.) Description (Cont.)
Ascential DataStage Hash Stage Disk Caching 23

00D-TB003 May 2004
required for deferred updating. However when active, it can help to minimize
blockset quota limits and reduce the possibility of file corruption by keeping the
file in a more consistent state.

With write-deferred caching, the actual deferred blocks of a blockset that are
written to a disk are determined by a least-recently-used aging algorithm. While
this option provides the best overall performance, if the server engine crashes, the
file may be corrupted.

Write-Immediate Caching. This type of system caching has slower performance
than write-deferred caching because writes to the physical disk file are happening
at the same time the cache is updated. While this option reduces performance, it
avoids file corruption as much as possible should the DataStage engine crash.

Performance Improvements. A set of DataStage engine files can be cached in
shared memory segments of a size determined by the uvconfig file. If a majority of
the referenced groups are in this dynamic cache, performance is improved. If all
groups of a file are referenced randomly and do not all fit in the disk cache,
performance can be worse than if no caching is in effect. Also, if the host operating
system has less physical memory than the size of the configured disk cache,
performance suffers.

The uvconfig file in the DataStage home directory has a number of tunables that
are used by the disk cache (see “Tuning Link Public Caching and System Caching”
on page 22). Any platform can hold a subset of a file or table in cache with aged
blocksets released when new blocksets are needed. When a number of large files
are in cache, only a small subset of a file’s blocks will reside in the cache, but the
administrator can modify the tunables to allow a small subset to be handled
efficiently. DCFLUSHPCT gives the administrator control over the blockset
replacement algorithm to prevent read-only starvation. DCMAXPCT controls the
maximum percent of the cache that can be occupied by one file. The disk cache
knows when no active process requires access to a file’s block and releases it if
necessary.

Optimal performance is achieved when the size of the disk cache shared memory,
which is set with the tunable DISKCACHE, is set high enough to contain the whole
file or to contain a high proportion (90-95%) of the referenced groups. If the
DISKCACHE size is inappropriately small, thrashing occurs in the disk cache.

DCMODULUS has some effect on run time, especially for large files. As this
number decreases, the length of active chains of DCBLOCKSIZE buffers increases
resulting in increased time to execute a sequential search for an entry. Setting
DCMODULUS to 1024 generally is optimal for large files (greater than 75 mb). The
penalty is that fewer disk cache file structures fit in one cache buffer, thus removing
a few from the pool of available buffers.
24 Ascential DataStage Hash Stage Disk Caching

May 2004 00D-TB003
The default setting of DCBLOCKSIZE is 16. Making it smaller results in increased
physical I/O and array chains with increasing length, both slowing down the
system. DCBLOCKSIZE should be made larger than 16 only if the platform can
handle the extended physical I/O requests in one I/O to its disk subsystem. One
way to recognize this is if the platform has disk arrays.

Disk cache blocks are stored in n block sets (where n is configured as 4k, 8k, 16k or
32k with 16k as the default) to reduce sequential search time and allow prereading
of blocks in the area of the one requested. For this reason, file separation size is
restricted to a power of 1024 bytes. Each file will own m blockset chains (where m
is configured as 64, 128, 256, 512, or 1024 with 256 as the default).

The following are examples of tunable settings such that a single file is held in
memory with acceptable array-referenced blockset chain lengths that must be
scanned sequentially to find a block.

Type 30 files are really two files: one for primary groups and the other for overflow
blocks. Therefore, files both must be considered when setting DCMAXPCT.

The value of DCWRITEDAEMON determines the amount of time the write
daemon pauses between writes. On a multi-processor platform, the write daemon
pause period, which is specified in DCWRITEDAEMON, can be set quite low; on
a single-processor the value should be 10 or greater.

Examples of Tunable Settings

File Size DCBLOCKSIZE DCMODULUS Average Blockset
Chain Length

32mb 8k 128 32

32mb 8k 256 16

64mb 8k 256 32

64mb 16k 256 16

160mb 16k 256 40

320mb 16k 512 40

1024mb 16k 256 256

1024mb 16k 512 128

1024mb 16k 1024 64

1024mb 32k 1024 32

2048mb 32k 1024 64
Ascential DataStage Hash Stage Disk Caching 25

00D-TB003 May 2004
26 Ascential DataStage Hash Stage Disk Caching

	Introduction
	Functionality
	Terminology
	Multiple Data Streams

	Guidelines for Choosing a Type of Caching
	Preparing for Link Private Caching
	Preparing for Link Public Caching or System Caching on UNIX Platforms
	Preparing for Link Public Caching or System Caching on Windows Platforms
	Using Link Private Caching
	Using Link Public Caching
	Using System Caching
	Creating a Hash File for System Caching
	Server Commands

	Tuning Link Public Caching and System Caching
	Using the Euro Symbol on Non-NLS systems
	Considerations for Performance

