
Ascential DataStage
Manager Guide
Version 7.5.1
Part No. 00D-004DS751

December 2004

his document, and the software described or referenced in it, are confidential and proprietary to Ascential Software

Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a license

agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise provided to

third parties, unless otherwise permitted by that agreement. No portion of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of Ascential. The specifications and other

information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

This product or the use thereof may be covered by or is licensed under one or more of the following issued

patents: US6604110, US5727158, US5909681, US5995980, US6272449, US6289474, US6311265, US6330008,

US6347310, US6415286; Australian Patent No. 704678; Canadian Patent No. 2205660; European Patent No. 799450;

Japanese Patent No. 11500247.

© 2005 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise Data

Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration, Simplified®,

Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential QualityStage™,

Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential MetaStage™, and

Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be registered in the

United States or other jurisdictions.

The software delivered to Licensee may contain third party software code. See Legal Notices (legalnotices.pdf) for

more information.

legalnotices.pdf

How to Use this Guide

This manual describes the features of the DataStage® Manager. It is

intended for application developers and system administrators who

want to use DataStage to design and develop data warehousing

applications.

If you are new to DataStage, read the first chapter for an overview of

the concepts and use of DataStage. For a brief introduction to data

warehousing see Chapter 1 of the DataStage Designer Guide.

To find particular topics in this guide you can:

Use the Guide’s contents list (at the beginning of the Guide).

Use the Guide’s index (at the end of the Guide).

Use the Adobe Acrobat Reader bookmarks.

Use the Adobe Acrobat Reader search facility (select Edit ➤
Search).

The guide contains links both to other topics within the guide, and to

other guides in the DataStage manual set. The links are shown in blue.

Note that, if you follow a link to another manual, you will jump to that

manual and lose your place in this manual. Such links are shown in

italics.

Organization of This Manual
This manual contains the following:

Chapter 1 introduces the DataStage client and server components
and covers DataStage concepts and terminology.

Chapter 2 describes the DataStage Manager user interface.

Chapter 3 describes how you can use the DataStage Manager to
import or enter table definitions or stored procedure definitions.

Chapter 4 describes data elements and how to define them using
the DataStage Manager.

Chapter 5 describes how to use the DataStage Manager to
manage DataStage jobs and job sequences.
iii

Chapter 6 describes how to use the DataStage Manager to
manage shared containers.

Chapter 7 describes how you can use the DataStage Manager to
manage plug-in stages.

Chapter 8 gives an overview of the powerful programming
facilities available within DataStage which make it easy to
customize your applications.

Chapter 9 describes mainframe machine profiles and how to
define them.

Chapter 10 describes IMS Database and IMS Viewset objects.

Chapter 11 describes the configuration file used by parallel jobs.

Chapter 12 describes the Usage Analysis tool, which allows you to
keep track of where particular DataStage components are used in
job designs.

Chapter 13 describes the reporting and printing facilities available
within DataStage.

Chapter 14 describes the message handling facilities available for
parallel jobs.

Chapter 15 describes the import, export, and packaging facilities
that enable you to move job designs and job components
between different DataStage systems.

Chapter 16 describes how to use MetaBrokers to move meta data
between DataStage and other data warehousing tools.

Chapter 17 describes the facilities available for importing routines
from web service operations.

Appendix A covers how to navigate and edit the grids that appear
in many DataStage dialog boxes.

Appendix B provides troubleshooting advice.

Appendix C tells you how to define your own HTML templates in
order to customize Usage Analysis reports.

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, keywords,
and options that must be input exactly as shown. In text, bold
indicates keys to press, function names, and menu selections.
iv

The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.

All punctuation marks included in the syntax – for example,
commas, parentheses, or quotation marks – are required unless
otherwise indicated.

Syntax lines that do not fit on one line in this manual are
continued on subsequent lines. The continuation lines are
indented. When entering syntax, type the entire syntax entry,
including the continuation lines, on the same input line.

UPPERCASE In syntax, uppercase indicates BASIC statements and functions
and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and pathnames.

Plain In text, plain indicates Windows commands and options, file
names, and path names.

Lucida
Typewriter

The Lucida Typewriter font indicates examples of source code
and system output.

Lucida
Typewriter

In examples, Lucida Typewriter bold indicates characters that
the user types or keys the user presses (for example,
<Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu commands indicates you should
choose each command in sequence. For example, “Choose File
➤ Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

This line
➥ continues

The continuation character is used in source code examples to
indicate a line that is too long to fit on the page, but must be
entered as a single line on screen.

Convention Usage
v

User Interface Conventions
The following picture of a typical DataStage dialog box illustrates the

terminology used in describing user interface elements:

The DataStage user interface makes extensive use of tabbed pages,

sometimes nesting them to enable you to reach the controls you need

from within a single dialog box. At the top level, these are called

“pages”, at the inner level these are called “tabs”. In the example

above, we are looking at the General tab of the Inputs page. When

using context sensitive online help you will find that each page has a

separate help topic, but each tab uses the help topic for the parent

page. You can jump to the help pages for the separate tabs from

within the online help.

DataStage Documentation
The DataStage documentation includes the following:

DataStage Manager Guide: This guide describes the DataStage

Manager and describes how to use and maintain the DataStage

Repository.

DataStage Designer Guide: This guide describes the DataStage

Designer, and gives a general description of how to create, design,

and develop a DataStage application.

Option
Button

Button

Check
Box

Browse
Button

Drop

List
Down

The Inputs Page

The

Tab
General

Field
vi

DataStage Server: Server Job Developer’s Guide: This guide

describes the tools that are used in building a server job, and it

supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Developer’s
Guide: This guide describes the tools that are used in building a

parallel job, and it supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Advanced
Developer’s Guide: This guide gives more specialized

information about parallel job design.

DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide: This guide describes the tools that are used

in building a mainframe job, and it supplies programmer’s

reference information.

DataStage Director Guide: This guide describes the DataStage

Director and how to validate, schedule, run, and monitor

DataStage server jobs.

DataStage Administrator Guide: This guide describes

DataStage setup, routine housekeeping, and administration.

DataStage Install and Upgrade Guide. This guide contains

instructions for installing DataStage on Windows and UNIX

platforms, and for upgrading existing installations of DataStage.

DataStage NLS Guide. This Guide contains information about

using the NLS features that are available in DataStage when NLS

is installed.

These guides are also available online in PDF format. You can read

them with the Adobe Acrobat Reader supplied with DataStage. See

DataStage Install and Upgrade Guide for details about installing the

manuals and the Adobe Acrobat Reader.

You can use the Acrobat search facilities to search the whole

DataStage document set. To use this feature, select Edit ➤ Search

then choose the All PDF documents in option and specify the

DataStage docs directory (by default this is C:\Program

Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is especially useful when

you have become familiar with using DataStage and need to look up

particular pieces of information.
vii

viii

Contents
How to Use this Guide
Organization of This Manual . iii

Documentation Conventions . iv

User Interface Conventions . vi

DataStage Documentation . vi

Chapter 1
Introduction

About DataStage . 1-1

Client Components. 1-2

Server Components . 1-2

DataStage Projects. 1-3

DataStage Jobs . 1-3

DataStage NLS . 1-5

Character Set Maps and Locales. 1-5

DataStage Terms and Concepts . 1-6

Chapter 2
DataStage Manager Overview

Starting the Manager. 2-2

The DataStage Manager Window. 2-3

Title Bar . 2-5

Menu Bar. 2-6

Toolbar . 2-7

Project Tree . 2-7

Display Area . 2-8

Shortcut Menus . 2-9
Manager Guide ix

Contents
Managing the DataStage Repository . 2-9

Customizing the Tools Menu . 2-14

DataStage Manager Options. 2-15

Exiting the DataStage Manager . 2-16

Chapter 3
Managing Table Definitions

Table Definition Properties . 3-2

The Table Definition Dialog Box . 3-2

Importing a Table Definition . 3-13

Manually Entering a Table Definition. 3-17

Naming Columns and Table Definitions . 3-38

Viewing or Modifying a Table Definition . 3-39

Using the Data Browser. 3-40

Stored Procedure Definitions . 3-42

Importing a Stored Procedure Definition. 3-43

The Table Definition Dialog Box for Stored Procedures. 3-44

Manually Entering a Stored Procedure Definition. 3-46

Viewing or Modifying a Stored Procedure Definition. 3-48

Chapter 4
Managing Data Elements

Creating Data Elements. 4-2

Naming Data Elements . 4-4

Assigning Data Elements in Table Definitions . 4-4

Viewing or Editing Data Elements . 4-5

Built-In Data Elements . 4-5
x Manager Guide

Contents
Chapter 5
Managing Jobs and Job Sequences

Editing Job Properties . 5-1

Server Job and Parallel Job Properties . 5-2

Specifying Job Parameters . 5-4

Job Control Routines . 5-11

Specifying Job Dependencies . 5-14

Specifying Performance Enhancements . 5-15

Specifying Execution Page Options . 5-17

Generated OSH Page . 5-18

Specifying Parallel Job Defaults . 5-18

Mainframe Job Properties. 5-19

Specifying Mainframe Job Parameters . 5-20

Specifying Mainframe Job Environment Properties 5-22

Specifying Extension Variable Values . 5-23

Specifying Operational Meta Data . 5-24

Job Sequence Properties . 5-24

Using Extended Job View . 5-29

Chapter 6
Managing Shared Containers

Specifying Shared Container Parameters . 6-2

Chapter 7
Managing Stages

Custom Stages for Parallel Jobs. 7-1

Naming Parallel Stage Types . 7-2

Defining Custom Stages . 7-2

Defining Build Stages. 7-11

Defining Wrapped Stages . 7-22

Plug-In Stages. 7-31

Manually Registering a Plug-In Definition . 7-32

Viewing Plug-In Definition Details . 7-33

Specifying Character Set Mapping . 7-34

Removing a Registered Plug-In. 7-34

Packaging a Plug-In . 7-35

Using a Plug-In . 7-35
Manager Guide xi

Contents
Chapter 8
Managing Programming Components

Components for Server Jobs . 8-1

Working with Server Routines . 8-2

Importing External ActiveX (OLE) Functions . 8-16

Custom Transforms . 8-16

Components for Parallel Jobs . 8-20

Working with Parallel Routines. 8-20

Components for Mainframe Jobs . 8-25

Working with Mainframe Routines. 8-26

Chapter 9
Mainframe Machine Profiles

Naming Machine Profiles . 9-4

Chapter 10
Managing IMS Databases and IMS Viewsets

Importing IMS Definitions. 10-1

Viewing and Editing IMS Definitions . 10-4

IMS Database Editor . 10-5

IMS Viewset Editor. 10-6

Chapter 11
The Parallel Engine Configuration File

Configurations Editor . 11-1

Configuration Considerations. 11-3

Logical Processing Nodes . 11-4

Optimizing Parallelism. 11-4

Configuration Options for an SMP . 11-6

Example Configuration File for an SMP. 11-8

Configuration Options for an MPP System . 11-9

An Example of a Four-Node MPP System Configuration. 11-10

Configuration Options for an SMP Cluster . 11-11

An Example of an SMP Cluster Configuration. 11-12

Options for a Cluster with the Conductor Unconnected to the High-Speed

Switch . 11-13

Diagram of a Cluster Environment . 11-15
xii Manager Guide

Contents
Configuration Files. 11-15

The Default Path Name and the APT_CONFIG_FILE 11-16

Syntax . 11-16

Node Names . 11-17

Options . 11-18

Node Pools and the Default Node Pool . 11-22

Disk and Scratch Disk Pools and Their Defaults 11-23

Buffer Scratch Disk Pools. 11-24

The resource DB2 Option . 11-25

The resource INFORMIX Option . 11-26

The resource ORACLE option . 11-27

The SAS Resources . 11-28

Adding SAS Information to your Configuration File 11-28

Example. 11-29

Sort Configuration . 11-29

Allocation of Resources. 11-30

Selective Configuration with Startup Scripts. 11-30

Hints and Tips. 11-32

Chapter 12
Usage Analysis

Using the Usage Analysis Tool . 12-1

The DataStage Usage Analysis Window . 12-2

Visible Relationships . 12-6

Configuring Warnings . 12-6

Viewing the Report as HTML . 12-8

Chapter 13
Reporting

The Reporting Tool . 13-2

The Documentation Tool . 13-4

Chapter 14
Managing Message Handlers

The Message Handler Manager . 14-2

Message Handler File Format . 14-4
Manager Guide xiii

Contents
Chapter 15
Importing, Exporting, and Packaging Jobs

Using Import . 15-2

Using Import from the Command Line . 15-3

Importing from MetaStage . 15-6

Using Export. 15-7

Moving DataStage Projects and Jobs . 15-7

Generating an XML File . 15-10

Exporting Job Executables . 15-14

Using Export from the Command Line . 15-15

Export Error Log. 15-17

Exporting to MetaStage. 15-17

Using the Packager Wizard . 15-17

Releasing a Job . 15-19

Chapter 16
Using MetaBrokers

Importing Meta Data . 16-1

Exporting Meta Data . 16-6

Chapter 17
Importing Web Service Routines

Appendix A
Editing Grids

Grids . A-1

Grid Properties. A-2

Navigating in the Grid . A-3

Finding Rows in the Grid. A-4

Editing in the Grid . A-4

Editing the Grid Directly . A-5

Editing Column Definitions in a Table Definitions Dialog Box. A-6

Editing Column Definitions in a Mainframe Stage Editor. A-8

Editing Column Definitions in a Server Job Stage A-10

Editing Arguments in a Mainframe Routine Dialog Box. A-11

Editing Column Definitions in a Parallel Job Stage A-13
xiv Manager Guide

Contents
Appendix B
Troubleshooting

Cannot Start DataStage Clients . B-1

Problems While Working with UniData . B-1

Connecting to UniData Databases . B-1

Importing UniData Meta Data . B-2

Using the UniData Stage . B-2

Problems with the Documentation Tool . B-2

Installing the Documentation Tool . B-2

Using Plug-In Reports . B-3

Problems Running Jobs . B-3

Server Job Compiles Successfully but Will Not Run B-3

Server Job from Previous DataStage Release Will Not Run B-3

Miscellaneous Problems . B-3

Landscape Printing. B-3

Browsing for Directories . B-3

Appendix C
Usage Analysis HTML Template

Template Structure . C-1

Tokens. C-2

General Tokens. C-3

Report Tokens. C-3

Source Set Tokens . C-3

Used Set Tokens. C-3

Columns Set Tokens . C-4

Default Templates . C-4
Manager Guide xv

Contents
xvi Manager Guide

1
Introduction

This chapter is an overview of DataStage. For a general introduction to

data warehousing, see Chapter 1 of the DataStage Designer Guide.

About DataStage
DataStage has the following features to aid the design and processing

required to build a data warehouse:

Uses graphical design tools. With simple point-and-click
techniques you can draw a scheme to represent your processing
requirements.

Extracts data from any number or type of database.

Handles all the meta data definitions required to define your data
warehouse. You can view and modify the table definitions at any
point during the design of your application.

Aggregates data. You can modify SQL SELECT statements used to
extract data.

Transforms data. DataStage has a set of predefined transforms
and functions you can use to convert your data. You can easily
extend the functionality by defining your own transforms to use.

Loads the data warehouse.

DataStage consists of a number of client and server components. For

more information, see "Client Components" on page 1-2 and "Server

Components" on page 1-2.

DataStage jobs are compiled and run on the DataStage server. The job

will connect to databases on other machines as necessary, extract
Manager Guide 1-1

About DataStage Introduction
data, process it, then write the data to the target data warehouse. This

type of job is known as a server job.

Parallel jobs are compiled and run on the DataStage server in a

similar way to server jobs, but support parallel processing on SMP,

MPP, and cluster systems.

If you have Enterprise MVS Edition installed, DataStage is able to

generate jobs which are compiled and run on a mainframe. Data

extracted by such jobs is then loaded into the data warehouse. Such

jobs are called mainframe jobs.

Client Components
DataStage has four client components which are installed on any PC

running Windows 2000 or Windows XP:

DataStage Manager. A user interface used to view and edit the
contents of the Repository.

DataStage Designer. A design interface used to create
DataStage applications (known as jobs). Each job specifies the
data sources, the transforms required, and the destination of the
data. Jobs are compiled to create executables that are scheduled
by the Director and run by the Server (mainframe jobs are
transferred and run on the mainframe).

DataStage Director. A user interface used to validate, schedule,
run, and monitor DataStage server jobs.

DataStage Administrator. A user interface used to perform
administration tasks such as setting up DataStage users, creating
and moving projects, and setting up purging criteria.

Server Components
There are three server components:

Repository. A central store that contains all the information
required to build a data mart or data warehouse.

DataStage Server. Runs executable jobs that extract, transform,
and load data into a data warehouse.

DataStage Package Installer. A user interface used to install
packaged DataStage jobs and plug-ins.
1-2 Manager Guide

Introduction DataStage Projects
DataStage Projects
You always enter DataStage through a DataStage project. When you

start a DataStage client you are prompted to attach to a project. Each

project contains:

DataStage jobs.

Built-in components. These are predefined components used in a
job.

User-defined components. These are customized components
created using the DataStage Manager. Each user-defined
component performs a specific task in a job.

A complete project may contain several jobs and user-defined

components.

There is a special class of project called a protected project. Normally

nothing can be added, deleted, or changed in a protected project.

Users can view objects in the project, and perform tasks that affect the

way a job runs rather than the jobs design. Users with Production

Manager status can import existing DataStage components into a

protected project and manipulate projects in other ways.

DataStage Jobs
There are three basic types of DataStage job:

Server jobs. These are compiled and run on the DataStage
server. A server job will connect to databases on other machines
as necessary, extract data, process it, then write the data to the
target data warehouse.

Parallel jobs. These are compiled and run on the DataStage
server in a similar way to server jobs, but support parallel
processing on SMP, MPP, and cluster systems.

Mainframe jobs. These are available only if you have Enterprise
MVS Edition installed. A mainframe job is compiled and run on
the mainframe. Data extracted by such jobs is then loaded into the
data warehouse.

There are three other entities that are similar to jobs in the way they

appear in the DataStage Designer, and are handled by it. These are:

Server Shared containers. These are reusable job elements.
They typically comprise a number of stages and links. Copies of
shared containers can be used in any number of server jobs and
edited as required. They can also be used in parallel jobs as a way
of incorporating server functionality.
Manager Guide 1-3

DataStage Jobs Introduction
Parallel Shared containers. These are reusable job elements
for parallel jobs. They typically comprise a number of stages and
links. Copies of shared containers can be used in any number of
parallel jobs and edited as required.

Job Sequences. A job sequence allows you to specify a
sequence of DataStage jobs to be executed, and actions to take
depending on results.

DataStage jobs consist of individual stages. Each stage describes a

particular database or process. For example, one stage may extract

data from a data source, while another transforms it. Stages are

added to a job and linked together using the Designer.

There are three basic types of stage:

Built-in stages. Supplied with DataStage and used for extracting,
aggregating, transforming, or writing data. All types of job have
these stages.

Plug-in stages. Additional stages that can be installed in
DataStage to perform specialized tasks that the built-in stages do
not support. Only server jobs have these.

Job Sequence Stages. Special built-in stages which allow you to
define sequences of activities to run. Only Job Sequences have
these.

The following diagram represents one of the simplest jobs you could

have: a data source, a Transformer (conversion) stage, and the final

database. The links between the stages represent the flow of data into

or out of a stage.

You must specify the data you want at each stage, and how it is

handled. For example, do you want all the columns in the source data,

or only a select few? Should the data be aggregated or converted

before being passed on to the next stage?

You can use DataStage with MetaBrokers in order to exchange meta

data with other data warehousing tools. You might, for example,

import table definitions from a data modelling tool.

Data
Source

Transformer
Stage

Data
Warehouse
1-4 Manager Guide

Introduction DataStage NLS
DataStage NLS
DataStage has built-in National Language Support (NLS). With NLS

installed, DataStage can do the following:

Process data in a wide range of languages

Accept data in any character set into most DataStage fields

Use local formats for dates, times, and money

Sort data according to local rules

Convert data between different encodings of the same language
(for example, for Japanese it can convert JIS to EUC)

DataStage NLS is optionally installed as part of the DataStage server.

If NLS is installed, various extra features (such as dialog box pages

and drop-down lists) appear in the product. If NLS is not installed,

these features do not appear.

Using NLS, the DataStage server engine holds data in Unicode

format. This is an international standard character set that contains

nearly all the characters used in languages around the world.

DataStage maps data to or from Unicode format as required.

Character Set Maps and Locales
Each DataStage project has a language assigned to it during

installation. This equates to one or more character set maps and

locales which support that language. One map and one locale are

assigned as project defaults.

The maps define the character sets that the project can use.

The locales define the local formats for dates, times, sorting order,
and so on that the project can use.

The DataStage client and server components also have maps

assigned to them during installation to ensure that data is transferred

between them in the correct character set. For more information, see

DataStage Administrator Guide and DataStage NLS Guide.

When you design a DataStage job, you can override the project

default map at several levels:

For a job

For a stage within a job

For a column within a stage (for Sequential, ODBC, and generic
plug-in stages in server jobs and Sequential file stages in parallel
jobs)
Manager Guide 1-5

DataStage Terms and Concepts Introduction
For transforms and routines used to manipulate data within a
stage

For imported meta data and table definitions

The locale and character set information becomes an integral part of

the job. When you package and release a job, the NLS support can be

used on another system, provided that the correct maps and locales

are installed and loaded.

DataStage Terms and Concepts
The following terms are used in DataStage:

Term Description

administrator The person who is responsible for the maintenance and
configuration of DataStage, and for DataStage users.

after-job subroutine A routine that is executed after a job runs.

after-stage
subroutine

A routine that is executed after a stage processes data.

Aggregator stage A stage type that computes totals or other functions of sets
of data.

Annotation A note attached to a DataStage job in the Diagram window.

BCPLoad stage A plug-in stage supplied with DataStage that bulk loads
data into a Microsoft SQL Server or Sybase table. (Server
jobs only.)

before-job
subroutine

A routine that is executed before a job is run.

before-stage
subroutine

A routine that is executed before a stage processes any
data.

built-in data
elements

There are two types of built-in data elements: those that
represent the base types used by DataStage during
processing and those that describe different date/time
formats.

built-in transforms The transforms supplied with DataStage. See "Built-In
Transforms and Routines" in Server Job Developer’s Guide
for a complete list.

Change Apply stage A parallel job stage that applies a set of captured changes
to a data set.

Change Capture
stage

A parallel job stage that compares two data sets and
records the differences between them.
1-6 Manager Guide

Introduction DataStage Terms and Concepts
Cluster Type of system providing parallel processing. In cluster
systems, there are multiple processors, and each has its
own hardware resources such as disk and memory.

column definition Defines the columns contained in a data table. Includes the
column name and the type of data contained in the
column.

Column Export stage A parallel job stage that exports a column of another type
to a string or binary column.

Column Import stage A parallel job stage that imports a column from a string or
binary column.

Combine Records
stage

A parallel job stage that combines several columns
associated by a key field to build a vector.

Compare stage A parallel job stage that performs a column by column
compare of two pre-sorted data sets.

Complex Flat File
stage

A mainframe source stage or parallel stage that extracts
data from a flat file containing complex data structures,
such as arrays, groups, and redefines. The parallel stage
can also write to complex flat files.

Compress stage A parallel job stage that compresses a data set.

container A group of stages and links in a job design.

Container stage A built-in stage type that represents a group of stages and
links in a job design.

Copy stage A parallel job stage that copies a data set.

custom transform A transform function defined by the DataStage developer.

Data Browser A tool used from within the DataStage Manager or
DataStage Designer to view the content of a table or file.

data element A specification that describes the type of data in a column
and how the data is converted. (Server jobs only.)

DataStage
Administrator

A tool used to configure DataStage projects and users. For
more details, see DataStage Administrator Guide.

DataStage Designer A graphical design tool used by the developer to design
and develop a DataStage job.

DataStage Director A tool used by the operator to run and monitor DataStage
server jobs.

DataStage Manager A tool used to view and edit definitions in the Repository.

DataStage Package
Installer

A tool used to install packaged DataStage jobs and plug-
ins.

Data Set stage A parallel job stage. Stores a set of data.

Term Description
Manager Guide 1-7

DataStage Terms and Concepts Introduction
DB2stage A parallel stage that allows you to read and write a DB2
database.

DB2 Load Ready Flat
File stage

A mainframe target stage. It writes data to a flat file in Load
Ready format and defines the meta data required to
generate the JCL and control statements for invoking the
DB2 Bulk Loader.

Decode stage A parallel job stage that uses a UNIX command to decode
a previously encoded data set.

Delimited Flat File
stage

A mainframe target stage that writes data to a delimited
flat file.

developer The person designing and developing DataStage jobs.

Difference stage A parallel job stage that compares two data sets and works
out the difference between them.

Encode stage A parallel job stage that encodes a data set using a UNIX
command.

Expand stage A parallel job stage that expands a previously compressed
data set.

Expression Editor An interactive editor that helps you to enter correct
expressions into a Transformer stage in a DataStage job
design.

External Filter stage A parallel job stage that uses an external program to filter
a data set.

External Routine
stage

A mainframe processing stage that calls an external
routine and passes row elements to it.

External Source
stage

A mainframe source stage that allows a mainframe job to
read data from an external source.

A parallel job stage that allows a parallel job to read a data
source.

External Target stage A mainframe target stage that allows a mainframe job to
write data to an external source.

A parallel job stage that allows a parallel job to write to a
data source.

File Set stage Parallel job stage. A set of files used to store data.

Filter stage Parallel job stage. Filters out records from an

input data set.

Fixed-Width Flat File
stage

A mainframe source/target stage. It extracts data from
binary fixed-width flat files, or writes data to such a file.

Term Description
1-8 Manager Guide

Introduction DataStage Terms and Concepts
FTP stage A mainframe post-processing stage that generates JCL to
perform an FTP operation.

Funnel stage A parallel job stage that copies multiple data sets to a
single data set.

Generator stage A parallel job stage that generates a dummy data set.

Graphical
performance monitor

A monitor that displays status information and
performance statistics against links in a job open in the
DataStage Designer canvas as the job runs in the Director
or debugger.

Hashed File stage A stage that extracts data from or loads data into a
database that contains hashed files. (Server jobs only)

Head stage A parallel job stage that copies the specified number of
records from the beginning of a data partition.

Informix Enterprise
stage

A parallel job stage that allows you to read and write an
Informix XPS database.

Intelligent Assistant DataStage comes complete with a number of intelligent
assistants. These lead you step by step through some of
the basic DataStage operations.

Inter-process stage A server job stage that allows you to run server jobs in
parallel on an SMP system.

job A collection of linked stages, data elements, and
transforms that define how to extract, cleanse, transform,
integrate, and load data into a target database. Jobs can
either be server jobs or mainframe jobs.

job control routine A routine that is used to create a controlling job, which
invokes and runs other jobs.

job sequence A controlling job which invokes and runs other jobs, built
using the graphical job sequencer.

Join stage A mainframe processing stage or parallel job active stage
that joins two input sources.

Link collector stage A server job stage that collects previously partitioned data
together.

Link partitioner stage A server job stage that allows you to partition data so that
it can be processed in parallel on an SMP system.

local container A container which is local to the job in which it was
created.

Lookup stage A mainframe processing stage and Parallel active stage
that performs table lookups.

Term Description
Manager Guide 1-9

DataStage Terms and Concepts Introduction
Lookup File stage A parallel job stage that provides storage for a lookup
table.

mainframe job A job that is transferred to a mainframe, then compiled and
run there.

Make Subrecord
stage

A parallel job stage that combines a number of vectors to
form a subrecord.

Make Vector stage A parallel job stage that combines a number of fields to
form a vector.

Merge stage A parallel job stage that combines data sets.

meta data Data about data, for example, a table definition describing
columns in which data is structured.

MetaBroker A tool that allows you to exchange meta data between
DataStage and other data warehousing tools.

MPP Type of system providing parallel processing. In MPP
(massively parallel processing) systems, there are multiple
processors, and each has its own hardware resources such
as disk and memory.

Modify stage A parallel job stage that alters the column definitions of the
output data set.

Multi-Format Flat File
stage

A mainframe source stage that handles different formats in
flat file data sources.

NLS National Language Support. With NLS enabled, DataStage
can support the handling of data in a variety of character
sets.

normalization The conversion of records in NF2 (nonfirst-normal form)
format, containing multivalued data, into one or more 1NF
(first normal form) rows.

null value A special value representing an unknown value. This is not
the same as 0 (zero), a blank, or an empty string.

ODBC stage A stage that extracts data from or loads data into a
database that implements the industry standard Open
Database Connectivity API. Used to represent a data
source, an aggregation step, or a target data table. (Server
jobs only)

operator The person scheduling and monitoring DataStage jobs.

Oracle 7 Load stage A plug-in stage supplied with DataStage that bulk loads
data into an Oracle 7 database table. (Server jobs only)

Oracle Enterprise
stage

A parallel job stage that allows you to read and write an
Oracle database.

Term Description
1-10 Manager Guide

Introduction DataStage Terms and Concepts
parallel extender The DataStage option that allows you to run parallel jobs.

parallel job A type of DataStage job that allows you to take advantage
of parallel processing on SMP, MPP, and cluster systems.

Peek Stage A parallel job stage that prints column values to the screen
as records are copied from its input data set to one or
more output data sets.

plug-in A definition for a plug-in stage.

plug-in stage A stage that performs specific processing that is not
supported by the standard server job or parallel job stages.

Promote Subrecord
stage

A parallel job stage that promotes the members of a
subrecord to a top level field.

Relational stage A mainframe source/target stage that reads from or writes
to an MVS/DB2 database.

Remove duplicates
stage

A parallel job stage that removes duplicate entries from a
data set.

Repository A DataStage area where projects and jobs are stored as
well as definitions for all standard and user-defined data
elements, transforms, and stages.

SAS stage A parallel job stage that allows you to run SAS applications
from within the DataStage job.

Parallel SAS Data Set
stage

A parallel job stage that provides storage for SAS data
sets.

Sample stage A parallel job stage that samples a data set.

Sequential File stage A stage that extracts data from, or writes data to, a text file.
(Server job and parallel job only)

server job A job that is compiled and run on the DataStage server.

shared container A container which exists as a separate item in the
Repository and can be used by any server job in the
project. DataStage supports both server and parallel
shared containers.

SMP Type of system providing parallel processing. In SMP
(symmetric multiprocessing) systems, there are multiple
processors, but these share other hardware resources such
as disk and memory.

Sort stage A mainframe processing stage or parallel job active stage
that sorts input columns.

source A source in DataStage terms means any database, whether
you are extracting data from it or writing data to it.

Term Description
Manager Guide 1-11

DataStage Terms and Concepts Introduction
Split Subrecord
stage

A parallel job stage that separates a number of subrecords
into top level columns.

Split Vector stage A parallel job stage that separates a number of vector
members into separate columns.

stage A component that represents a data source, a processing
step, or the data mart in a DataStage job.

Switch stage A parallel job stage which splits an input data set into
different output sets depending on the value of a selector
field.

table definition A definition describing the data you want including
information about the data table and the columns
associated with it. Also referred to as meta data.

Tail stage A parallel job stage that copies the specified number of
records from the end of a data partition.

Teradata Enterprise
stage

A parallel stage that allows you to read and write a
Teradata database.

transform function A function that takes one value and computes another
value from it.

Transformer Editor A graphical interface for editing Transformer stages.

Transformer stage A stage where data is transformed (converted) using
transform functions.

Unicode A character set that provides unique code points for all
characters in every standard character set (with room for
some nonstandard characters too). Unicode forms part of
ISO 10646.

UniData stage A stage that extracts data from or loads data into a UniData
database. Used to represent a data source or a target data
table. (Server jobs only)

UniData 6 stage A stage that extracts data from or loads data into a UniData
6.x database.

UniVerse stage A stage that extracts data from or loads data into a
UniVerse database using SQL. Used to represent a data
source, an aggregation step, or a target data table. (Server
jobs only)

Write Range Map
stage

A parallel job stage that allows you to carry out range map
partitioning on a data set.

Term Description
1-12 Manager Guide

2
DataStage Manager Overview

This chapter describes the main features of the DataStage Manager. It

tells you how to start the Manager and takes a quick tour of the user

interface.

The DataStage Manager has many uses. It manages the DataStage

Repository, allowing you to view and edit the items held in the

Repository. These items are the building blocks that you use when

designing your DataStage jobs. You can also use the DataStage

Manager to define new building blocks, such as custom transforms or

routines. It allows you to import and export items between different

DataStage systems, or exchange meta data with other data

warehousing tools. You can analyze where particular items are used in

your project and request reports on items held in the Repository.

Before you start developing your own DataStage jobs, you must plan

your project and set it up using the DataStage Manager. Specifically,

you need to assess the data you will be handling and design and

create the target data mart or data warehouse. It is advisable to

consider the following before starting a job:

The number and type of data sources you will want to access.

The location of the data. Is your data on a networked disk or a
tape? You may find that if your data is on a tape, you need to
arrange for a plug-in stage to extract the data.

Whether you will need to extract data from a mainframe source. If
this is the case, you will need Enterprise MVS Edition installed and
you will use mainframe jobs that actually run on the mainframe.

The content of the data. What columns are in your data? Can you
import the table definitions, or do you need to define them
manually? Are the definitions of the data items consistent among
different data sources?
Manager Guide 2-1

Starting the Manager DataStage Manager Overview
The data warehouse. What do you want to store in the data
warehouse and how do you want to store it?

As well as assessing the data in your data sources, you must also

determine the data you want to load into your data mart or data

warehouse. The table definitions used to describe the tables you want

to populate are used in the final stage of your DataStage job. The data

warehouse must be configured before you can execute a DataStage

job.

Once you have information about the data you will be handling – meta

data – you can start entering this information into the DataStage

Repository, ready to be used by everyone involved in the project.

Starting the Manager
To start the DataStage Manager, choose Start ➤ Programs ➤

Ascential DataStage ➤ DataStage Manager. The Attach to
Project dialog box appears:

You can also start the Manager from the shortcut icon on the desktop,

or from the DataStage Suite applications bar if you have installed it#.

You specify which project to attach to when starting the DataStage

Manager. Once you have started the Manager you can switch to a

different project if required.

To connect to a project:

1 Enter the name of your host in the Host system field. This is the
name of the system where the DataStage Server components are
installed.

2 Enter your user name in the User name field. This is your user
name on the server system.

3 Enter your password in the Password field.
2-2 Manager Guide

DataStage Manager Overview The DataStage Manager Window
Note If you are connecting to the server via LAN Manager, you

can select the Omit check box. The User name and

Password fields gray out and you log on to the server

using your Windows Domain account details.

4 Choose the project to connect to from the Project drop-down list.
This list box displays the projects installed on your DataStage
server.

5 Click OK. The DataStage Manager window appears.

Note You can also start the DataStage Manager directly from the

DataStage Designer or Director by choosing Tools ➤ Run
Manager.

If you connect to a protected project, (Protected) appears in the

Manager title bar after the project name. You cannot edit the objects

within a protected project.

The DataStage Manager Window
The DataStage Manager window appears after you have entered your

project details.

The DataStage Manager operates in two modes, Host View or Project

View. By default, the DataStage Manager opens in Project View the

first time, showing the contents of the project that you opened. If you

switch to Host View, the server hosting DataStage is shown at the top

of the tree in the left pane, with all the DataStage projects currently

defined beneath it. You can switch to the other projects in the tree as

required. The next time you open DataStage Manager, it will reopen in

whichever mode you left it.

You can also specify whether the Manager will show you an Extended

Job View or not. With Extended Job View enabled, you can see the
Manager Guide 2-3

The DataStage Manager Window DataStage Manager Overview
individual elements of a job design (for example, links and stages) as

stored in the Repository.

Project View

Host View
2-4 Manager Guide

DataStage Manager Overview The DataStage Manager Window
The DataStage Manager window has the following components.

Title Bar
The title bar displays the name of the host where the DataStage

Server components are installed followed by the project you are

working in. The title bar is updated if you choose to view another

project in the Repository.

Extended Job View
Manager Guide 2-5

The DataStage Manager Window DataStage Manager Overview
Menu Bar
There are six pull-down menus:

– File. Creates data elements, table definitions, routines,
mainframe machine profiles, and transforms. Creates empty
categories under existing Repository branches. Allows you to
open a different DataStage project. Copies, renames, and
deletes components in the project tree. Allows you to move
items between categories and examine their properties.

– View. Specifies whether Host View and Extended Job View are
operational or not. Specifies how information is displayed in
the display area. Items can be displayed as large icons, small
icons, a list, or with details. There are also options to refresh
the display and to show or hide the toolbar and status bar.

– Import. Imports project or job components, and table
definitions from data sources or data targets. Also imports
meta data using MetaBrokers, external function definitions,
web service function definitions, and IMS definitions, or
directly from MetaStage.

– Export. Exports projects or job components or job
executables. Releases and packages jobs and job components
and exports meta data using MetaBrokers or directly to
MetaStage.
2-6 Manager Guide

DataStage Manager Overview The DataStage Manager Window
– Tools. Gives access to DataStage reporting facilities and usage
analysis tool and work on JCL templates (only enabled if
Enterprise MVS Edition is installed). Allows you to release jobs
and upload mainframe jobs to a mainframe. Starts the
DataStage Designer or Director, and, if they are installed,
MetaStage, QualityStage, AuditStage, or ProfileStage. Lets you
invoke third-party applications, or add third-party applications
to the Manager. Allows you to set Manager options. If you are
managing parallel jobs on a UNIX server, allows you to
manage data sets (see "Managing Data Sets" in Parallel Job
Developer’s Guide).

– Help. Invokes the Help system.

Toolbar
The Manager toolbar contains the following buttons:

Project Tree
The project tree is in the left pane of the DataStage Manager window

and contains a summary of project contents. In Project View, you only

see the contents of the project to which you are currently attached. In

host view, the DataStage Server is at the top of the tree with all the

projects hosted there beneath it.

The project tree has main branches, which in turn contain categories.

Categories can contain other categories or items, or a mixture of both.

The branches are:

Data Elements. A category exists for the built-in data elements
and the additional ones you define.

New

Copy

Host

Properties Large
Icons

Small
Icons

List

Details

Report

Help

Usage
Analysis

Delete View

Extended
Job View

Up
Manager Guide 2-7

The DataStage Manager Window DataStage Manager Overview
IMS Databases (DBDs). Each IMS database object describes the
physical structure of an IMS database (used in mainframe jobs).

IMS Viewsets (PSBs/PCBs). Each IMS viewset object describes
an application’s view of an IMS database (used in mainframe
jobs).

Jobs. A category exists for each group of jobs in the project. Job
sequences are also stored under this branch.

Machine Profiles. Mainframe machine profiles are stored under
this branch.

Routines. Routines you create or import are stored in categories
under this branch.

Shared Containers. Shared containers are stored in categories
under this branch. These provide reusable portions of DataStage
jobs and are defined in the DataStage Designer.

Stage Types. The plug-ins you create or import are stored in
categories under this branch.

Table Definitions. Table definitions are stored according to the
data source. If you import a table definition, a category is created
under the data source type. If you manually enter a table
definition, you can create a new category anywhere under the
main Table Definitions branch.

Transforms. A category exists for the built-in transforms and for
each group of custom transforms created.

Double-click a branch to expand it to category level. Double-click

categories in turn until you reach the items. You can display the

properties (definition) of an item by double-clicking it in the display

area.

Note Organizing your jobs into categories is recommended

because it gives faster operation of the DataStage Director

when displaying job status.

Display Area
The display area is in the right pane of the DataStage Manager

window and displays the contents of a chosen branch or category. You

can display items in the display area in four ways:

Large icons. Items are displayed as large icons arranged across
the display area.

Small icons. Items are displayed as small icons in the display
area.

List. Items are displayed in a list going down the display area.
2-8 Manager Guide

DataStage Manager Overview Managing the DataStage Repository
Details. Items are displayed in a table. The following information
is displayed for each item:

– Name. The name of the item.

– Description. The description of the item.

– Date/Time Modified. The date and time the branch or item
was last modified.

If you double-click an item in the display area, a dialog box appears

with the properties of the chosen item.

Shortcut Menus
There are a number of shortcut menus available which you display by

clicking the right mouse button. There are four types of menu:

General. Appears anywhere in the display area, other than on an
item. Use this menu to refresh the view of the Repository or to
create a new category, or to select all items in the display area.

Category level. Appears when you right-click a category or
branch in the project tree. Use this menu to refresh the view of the
Repository or to create a new category, or to delete a category. In
some branches, allows you to create a new item of that type.

Item level. Appears when you click a highlighted item in the
display area. Use this menu to copy, rename, delete, move,
display the properties of the chosen item, or invoke the Usage
Analysis tool. If the item is a job, you can open the DataStage
Designer with the job ready to edit.

Grid level. Appears when you are editing a grid. Use this menu to
edit a cell, find a row, or edit, insert, or delete a row.

Managing the DataStage Repository
The DataStage Manager provides a means of viewing and managing

the contents of the Repository. You can use the DataStage Manager

to:

Create items

Rename items

Select multiple items

View and edit item properties

Delete items
Manager Guide 2-9

Managing the DataStage Repository DataStage Manager Overview
Delete a category (including all items under that category)

Copy items

Move items between categories

Create empty categories

Creating Items in the Repository

You can create new data elements, table definitions, transforms,

routines, categories, or mainframe machine profiles. To create a new

item, select the top-level branch in the project tree and do one of the

following:

Choose File ➤ New. The New command describes the selected
item, for example, File ➤ New Transform… .

Choose New… from the shortcut menu.

Click the New button on the toolbar.

A dialog box appears for you to enter the properties of the new item.

Click OK to save the new item. An icon is created for the item in the

project tree. For details about creating a particular type of item, see

the chapter describing that item:

Chapter 3, "Managing Table Definitions."

Chapter 4, "Managing Data Elements."

Chapter 5, "Managing Jobs and Job Sequences."

Chapter 6, "Managing Shared Containers."

Chapter 7, "Managing Stages."

Chapter 8, "Managing Programming Components."

Chapter 9, "Mainframe Machine Profiles."

Chapter 10, "Managing IMS Databases and IMS Viewsets."

Renaming Items in the Repository

You can rename any of the items in the Repository, except for the top-

level branches, released jobs, and built-in items.

To rename an item, select it in the display area and do one of the

following:

Click the item again. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.
2-10 Manager Guide

DataStage Manager Overview Managing the DataStage Repository
Double-click the item. A properties dialog box appears and you
can edit the field containing the item’s name. Click OK to save the
new name.

Choose Rename from the shortcut menu. An edit box appears
and you can enter a different name or edit the existing one. Save
the new name by pressing Enter or by clicking outside the edit
box.

Selecting Multiple Items

To select all the items under a particular branch or category:

1 Open the branch or category so that the items are displayed in the
right pane of the DataStage Manager.

2 Do one of the following:

– Right-click to display the shortcut menu and choose Select
All.

– Left-click while pressing Shift.

– Left-click while pressing Ctrl.

Viewing or Editing Items in the Repository

You can view or edit the properties of any item in the project tree.

Note You cannot edit the properties of built-in items.

To view or edit the properties of an item, select the item in the display

area and do one of the following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Double-click the item in the display area.

Click the Properties button on the toolbar.

A dialog box appears with the item’s properties. The content of the

dialog box depends on the type of item you are viewing or editing.

Click OK to save any changes and to close the dialog box.

Deleting Items in the Repository

You can delete any item in the project tree, except the built-in items.

Warning You must be absolutely certain you want to remove an

item in the Repository before you delete it. If it is used

by another item in the project, your jobs will fail to

compile. Use the Usage Analysis tool to check if in

doubt.
Manager Guide 2-11

Managing the DataStage Repository DataStage Manager Overview
To delete an item, select it in the display area and do one of the

following:

Choose File ➤ Delete.

Choose Delete from the shortcut menu.

Press Delete.

Click the Delete button on the toolbar.

A message box appears asking you to confirm the deletion. Click Yes

to delete the item.

Deleting a Category in the Repository

You can delete a category in the Repository and all the items and

subcategories that the category contains. You cannot delete the top-

level branches, or categories that contain built-in items (for example

built-in transforms).

To delete a category select it in the project tree, then do one of the

following:

Choose File ➤ Delete.

Choose Delete from the shortcut menu.

Press Delete.

Click the Delete button on the toolbar.

A message box appears asking you to confirm the deletion. Click Yes.

Copying Items in the Repository

You can copy items in the same branch in the project tree. To copy an

item, select the item in the display area and do one of the following:

Choose File ➤ Copy.

Choose Copy from the shortcut menu.

Click the Copy button on the toolbar.

The item is copied and a new item is created under the same category

in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen item. An edit box

appears allowing you to rename the copy immediately.

Copying a job only copies design time information. You cannot copy a

released job.
2-12 Manager Guide

DataStage Manager Overview Managing the DataStage Repository
Moving Items Between Categories

You can move items between different categories under the same

branch in the project tree. So, for example, you move a job from one

category to another, or a data element from one category to another.

To move an item:

1 Click the item that you want to move to select it.

2 Choose File ➤ Move To… or choose Move To… from the
shortcut menu. The Select Category dialog box appears:

– Current category. The category currently containing the
selected item.

– Branch categories. Shows the categories available under the
current branch in a tree structure.

3 Select the category you want to move the selected item to and
click OK.

Alternatively you can drag and drop items between different

categories under the same branch.

Note Be aware that, if you move table definitions between

categories, you may affect the operation of jobs that use

these definitions. You may need to edit stages which refer

to these table definitions.

Creating Empty Categories

You can create an empty category under any of the branches in the

Repository. To create a new category:
Manager Guide 2-13

Customizing the Tools Menu DataStage Manager Overview
1 Select the branch under which you want to create a new category
(i.e., Data Elements, IMS Databases, IMS Viewsets, Table
Definitions, Jobs, Machine Profiles, Shared Containers, Stage
Types, Routines, or Transforms).

2 Choose File ➤ New Category… , the Create Category dialog
box appears.

3 Do one of the following:

– Type the new category name directly into the Current
category field, using the \ character to denote subcategories.

– Navigate the tree in the Branch categories field, select an
existing category, then append the new category name in the
Current category field.

4 Click OK to create the specified category.

Customizing the Tools Menu
You can configure the DataStage Manager so that you can invoke

third-party applications from the Tools menu. You could use this, for

example, to add data modelling or business analysis tools to the

menu so they can be started from DataStage. To configure the menu:

1 Choose Tools ➤ Custom ➤ Customize… . The Customize
dialog box appears.

2 Click the Add… button to display the Add Tool dialog box.

3 Type in, or browse for, the executable of the application that you
are adding and click OK to return to the Customize dialog box.
The application appears in the Menu contents list box.
2-14 Manager Guide

DataStage Manager Overview DataStage Manager Options
4 Type in the menu name for the application in the Menu text field,
and specify its order in the menu using the arrow keys and the
Menu contents field.

5 Specify any required command line arguments for the tool in the
Arguments field. Alternatively click the > button and choose from
a predefined list of argument tokens.

6 Click OK to add the application to the Manager’s Tools menu
(Tools ➤ Custom).

Note Any applications that you add to the DataStage Manager’s

Tools menu are added automatically to the Tools menu of

other DataStage applications (e.g., Designer and Director).

DataStage Manager Options
The Options dialog box allows you to specify:

Whether the Ascential banner is shown at the top of the Manager.

What action is taken when you double-click on a job or container
item in the right pane of the Manager window.

Levels of warning that the Usage Analysis tool generates when
carrying out operations on referenced items.

To specify that the banner should not be visible:

1 Choose Tools ➤ Options…, to open the Options dialog box.

2 Click on the Appearance/General node in the left pane.
Manager Guide 2-15

Exiting the DataStage Manager DataStage Manager Overview
3 Clear the Show Ascential banner check box.

To specify job/container opening action:

1 Choose Tools ➤ Options…, to open the Options dialog box.

2 Click on the Default/General node in the left pane, then choose one
of the following in the right pane:

– Edit in Designer to specify that double-clicking should cause
the DataStage Designer to open with the selected job or shared
container ready for editing.

– Edit Properties to specify that the Job Properties or Shared
Container Properties dialog box should open. This is the
default.

For details about specifying Usage Analysis warnings, see

"Configuring Warnings" on page 12-6.

Exiting the DataStage Manager
To exit the DataStage Manager, choose File ➤ Exit from the

DataStage Manager window.
2-16 Manager Guide

3
Managing Table Definitions

Table definitions are the key to your DataStage project and specify the

data to be used at each stage of a DataStage job. Table definitions are

stored in the Repository and are shared by all the jobs in a project.

You need, as a minimum, table definitions for each data source and

one for each data target in the data warehouse.

You can import, create, or edit a table definition using the DataStage

Manager.
Manager Guide 3-1

Table Definition Properties

The Table Definition Dialog Box
When you create, edit, or view a table definition using the DataStage

Manager, the Table Definition dialog box appears:

This dialog box has up to eight pages:

General

Columns

Format

NLS

Relationships

Parallel

Layout

Locator

Table Definition Dialog Box - General Page

The General page contains general information about the table

definition. The following fields are on this page:
Manager Guide 3-2

Data source type. The type of data source, for example,
UniVerse.

Data source name. If you imported the table definition, this
contains a reference to where the original data is found. For
UniVerse and ODBC data sources, this is the data source name.
For hashed file data sources, this is an account name. For
sequential file sources, this is the last component of the directory
path where the sequential file is found.

Table definition. The name of the table definition.

Mainframe platform type. The type of mainframe platform that
the table definition applies to. Where the table definition does not
apply to a mainframe data source, it displays <Not applicable>.
Where this field is filled in, the dialog box also contains an Owner
field.

Mainframe access type. Where the table definition has been
imported from a mainframe or is applicable to a mainframe, this
specifies the type of database. If it is not a mainframe-type table
definition, the field is set to <Not applicable>.

Fully Qualified Table Name. This read-only field shows the fully
qualified table name, as derived from the locator (see "Table
Definition Dialog Box - Locator Page" on page 3-12).

Meta data supports Multi-valued fields. Select this check box
if the meta data supports multivalued data. If the check box is
selected, three extra grid columns used for multivalued data
support will appear on the Columns page. The check box is
disabled for ODBC, mainframe, and stored procedure table
definitions.

ODBC quote character. Allows you to specify what character an
ODBC data source uses as a quote character. Specify 000 to
suppress the quote character.

Short description. A brief description of the data.

Long description. A long description of the data.

The combination of the data source type, data source name, and table

or file name forms a unique identifier for the table definition. No two

table definitions can have the same identifier.
Manager Guide 3-3

Table Definition Dialog Box - Columns Page

The Columns page contains a grid displaying the column definitions

for each column in the table definition. The grid has the following

columns:

Column name. The name of the column.

Key. Indicates whether the column is part of the primary key.

SQL type. The SQL data type.

Length. The data precision. This is the length for CHAR data and
the maximum length for VARCHAR data.

Scale. The data scale factor.

Nullable. Specifies whether the column can contain null values.
This is set to indicate whether the column is subject to a NOT
NULL constraint. It does not itself enforce a NOT NULL constraint.

Display. The maximum number of characters required to display
the column data.

Data element. The type of data in the column.

Description. A text description of the column.

The following columns appear if you selected the Meta data
supports Multi-valued fields check box on the General page:

Association. The name of the association (if any) that the column
belongs to.

Position. The field number.

Type. The nesting type, which can be S, M, MV, or MS.
Manager Guide 3-4

The following column may appear if NLS is enabled and the data

source is sequential, ODBC, or a generic plug-in in a server job, or a

sequential file stage in a parallel job:

NLS Map. This property is visible only if NLS is enabled and
Allow per-column mapping has been selected on the NLS page
of the Table Definition dialog box. It allows you to specify a
separate character set map for a column (which overrides the map
set for the project or table).

The following columns appear if the table definition is derived from a

COBOL file definition mainframe data source:

Level number. The COBOL level number.

Mainframe table definitions also have the following columns, but due

to space considerations, these are not displayed on the columns page.

To view them, choose Edit Row… from the Columns page shortcut

menu, the Edit Column Meta Data dialog appears, displaying the

following field in the COBOL tab:

Occurs. The COBOL occurs clause.

Sign indicator. Indicates whether the column can be signed or
not.

Sign option. If the column is signed, gives the location of the
sign in the data.

Sync indicator. Indicates whether this is a COBOL-synchronized
clause or not.

Usage. The COBOL usage clause.

Redefined field. The COBOL REDEFINED clause.

Depending on. A COBOL OCCURS-DEPENDING-ON clause.

Storage length. Gives the storage length in bytes of the column
as defined.

Picture. The COBOL PICTURE clause.

For more information about these fields, see page 3-21.

The Columns page for each link also contains a Clear All and a

Load… button. The Clear All button deletes all the column

definitions. The Load… button loads (copies) the column definitions

from a table definition elsewhere in the Repository.

A shortcut menu available in grids allows you to edit a cell, delete a

row, or add a row. For more information about editing the columns

grid, see Appendix A, “Editing Grids.”
Manager Guide 3-5

Server jobs Table Definition Dialog Box - Format Page

The Format page contains file format parameters for sequential files

used in server jobs. These fields are automatically set when you

import a table definition from a sequential file.

There are three check boxes on this page:

Fixed-width columns. Specifies whether the sequential file
contains fixed-width fields. This check box is cleared by default,
that is, the file does not contain fixed-width fields. When this check
box is selected, the Spaces between columns field is enabled.

First line is column names. Specifies whether the first line in
the file contains the column names. This check box is cleared by
default, that is, the first row in the file does not contain the column
names.

Omit last new-line. Specifies whether the last newline character
in the file is ignored. By default this check box is cleared, that is, if
a newline character exists in the file, it is used.

The rest of this page contains five fields. The available fields depend

on the settings for the check boxes.

Spaces between columns. Specifies the number of spaces used
between the columns in the file. This field appears when you
select Fixed-width columns.

Delimiter. Contains the delimiter that separates the data fields.
By default this field contains a comma. You can enter a single
printable character or a decimal or hexadecimal number to
represent the ASCII code for the character you want to use. Valid
Manager Guide 3-6

ASCII codes are in the range 1 to 253. Decimal values 1 through 9
must be preceded with a zero. Hexadecimal values must be
prefixed with &h. Enter 000 to suppress the delimiter.

Quote character. Contains the character used to enclose strings.
By default this field contains a double quotation mark. You can
enter a single printable character or a decimal or hexadecimal
number to represent the ASCII code for the character you want to
use. Valid ASCII codes are in the range 1 to 253. Decimal values 1
through 9 must be preceded with a zero. Hexadecimal values must
be prefixed with &h. Enter 000 to suppress the quote character.

NULL string. Contains characters that are written to the file when
a column contains SQL null values.

Padding character. Contains the character used to pad missing
columns. This is # by default.

An additional button appears if your system supports parallel jobs:

Sync Parallel. Click this to cause the properties set on the
Parallel tab to mirror the properties set on this page. A dialog box
appears asking you to confirm this action, if you do, the Parallel
tab comes to the top and lets you view the settings.

Table Definition Dialog Box - NLS Page

If NLS is enabled, this page contains the name of the map to use for

the table definitions. The map should match the character set used in

the definitions. Because parallel and server jobs use different

mechanisms in their implementation of NLS, they use different maps.

Choose Show all server maps to list all the maps that are shipped

with DataStage for server jobs. Choose Show loaded Server maps
only to show the maps loaded for use with server jobs (you have to
Manager Guide 3-7

load a map before you can use it). Choose Show all Parallel Maps

to show the set of maps that are available for parallel jobs.

Note You cannot use a server map unless it is loaded into

DataStage. You can load different maps using the

DataStage Administrator. For more information, see "NLS

Configuration" in DataStage Administrator Guide.

Select Allow per-column mapping if you want to assign
different character set maps to individual columns.
Manager Guide 3-8

Server jobs
and
Parallel jobs

Table Definition Dialog Box - Relationships Page

The Relationships page shows you details of any relationships this

table definition has with other tables, and allows you to define new

relationships.

The page contains two grids:

Foreign Keys. This shows which columns in the table definition
are foreign keys and which columns and tables they reference.
You can define foreign keys manually by entering the information
yourself. The table you reference does not have to exist in the
DataStage Repository, but you will be informed if it doesn’t.
Referencing and referenced table do have to be in the same
category.

Tables which reference this table. This gives details of where
other table definitions in the Repository reference this one using a
foreign key. You cannot edit the contents of this grid.
Manager Guide 3-9

Parallel jobs Table Definition Dialog Box - Parallel Page

This page is used when table definitions are used in parallel jobs and

gives detailed format information for the defined meta data.

The information given here is the same as on the Format tab in one

of the following parallel job stages:

Sequential File Stage

File Set Stage

External Source Stage

External Target Stage

Column Export Stage

Column Import Stage

See Parallel Job Developer’s Guide for details.

The Defaults button gives access to a shortcut menu offering the

choice of:

Save current as default. Saves the settings you have made in
this dialog box as the default ones for your table definition.

Reset defaults from factory settings. Resets to the defaults
that DataStage came with.

Set current from default. Set the current settings to the default
(this could be the factory default, or your own default if you have
set one up).

Click the Show schema button to open a window showing how the

current table definition is generated into an OSH schema. This shows
Manager Guide 3-10

how DataStage will interpret the column definitions and format

properties of the table definition in the context of a parallel job stage.

Table Definition Dialog Box – Layout Page

The Layout page displays the schema format of the column definitions

in a table.

Select a button to view the data representation in one of three

formats:

Parallel. Displays the OSH record schema. You can right-click to
save the layout as a text file in *.osh format.

COBOL. Displays the COBOL representation, including the
COBOL picture clause, starting and ending offsets, and column
storage length. You can right-click to save the file view layout as
an HTML file.

Standard. Displays the SQL representation, including SQL type,
length, and scale.

The following diagrams show three different views of the same table.
Manager Guide 3-11

Table Definition Dialog Box - Locator Page

The Locator page allows you to view and edit the data resource

locator associated with the table definition. The data resource locator

is a property of the table definition that describes the real world

object.

When capturing process meta data, you define a table containing this

information in the source/target database (see "Capturing Process

Meta Data" in DataStage Administrator Guide). This table provides

some of the information displayed in this tab.

Locators are filled in when table definitions are imported using meta

data import, and are manipulated when table definitions are copied,
Manager Guide 3-12

renamed, or moved. The fields can be edited, but you are advised not

to do this unless you are well versed in MetaStage.

The labels and contents of the fields in this dialog box varies

according to the type of data source/target the locator originates from.

See MetaStage documentation for details.

Importing a Table Definition
The easiest way to specify a table definition is to import it directly

from the source or target database. A new table definition is created

and the properties are automatically filled in with the details of your

data source or data target.

You can import table definitions from:

Assembler source file definitions

Assembler source file listings

COBOL file definitions

DCLGen file definitions

ODBC table definitions

Orchestrate schema definitions

Plug-in meta data definitions

PL/I file definitions

Sequential file definitions
Manager Guide 3-13

Stored procedure definitions

UniData file definitions

UniVerse file definitions

UniVerse table definitions

UniData 6 table definitions

Web services WSDL definitions

XML table definitions

DataStage connects to the specified data source and extracts the

required table definition meta data. You can use the Data Browser to

view the actual data in data sources from which you are importing

table definitions.

Note that DataStage also enables you to import information about the

structure of IMS databases and IMS viewsets, which can then be used

in a mainframe job. IMS databases are hierarchical, and so this

information is stored in a separate type of repository object, not as a

table definition, see Chapter 10 for details.

Standard Data Sources

To import table definitions from ODBC table definitions, Sequential

files, UniData, UniData 6, and UniVerse files and tables:

1 Choose the type of data source you want to import from by
choosing Import ➤ Table Definitions.

For most data source types, a dialog box appears enabling you to

connect to the data source (for plug-in data sources and

Orchestrate schemas, a wizard appears and guides you through

the process).

2 Fill in the required connection details and click OK. Once a
connection to the data source has been made successfully, the
updated dialog box gives details of the table definitions available
for import.

3 Select the required table definitions and click OK. The table
definition meta data is imported into the DataStage Repository.

Specific information about importing from particular types of data

source is in DataStage Developer’s Help.

CFD and DCLGen Files

The import derives the meta data from table definition files which are

generated on a mainframe and transferred to the DataStage client.
Manager Guide 3-14

The table definitions are then derived from these files. The Data

Browser is not available when importing meta data in this way.

To import table definitions:

1 Choose Import ➤ Table Definitions ➤ COBOL File
Definitions to import CFD files or Import ➤ Table Definitions
➤ DCLGen File Definitions to import DCLGen files. The Import
Meta Data dialog box appears, allowing you to enter details of
the file to import.

2 Enter details of the file, including name, location, and start
position then click Refresh. A list of table definitions appears in
the Tables list.

3 Select the table definitions you want to import, or click Select all
to select all of them. Click OK. The table definition meta data is
imported into the DataStage Repository.

More detailed information about importing from mainframe data

sources is in DataStage Developer’s Help.

XML Documents

To import, choose Import ➤ Table Definitions ➤ XML Table
Definition. The XML Meta Data Importer tool appears. This

allows you considerable control over what types of XML source you

can import meta data from and what meta data to import.

To import table definitions from an XML source:

1 Open a file to scan; this can be an XML file, a schema (based on
XML-Data or XDR), or a DTD.

2 Select the elements and attributes in the tree area that you want in
the table definition.

3 Edit any individual columns that require fine-tuning.

4 Save as a new or existing table definition in the DataStage
Repository.

You can set various options which affect the way that the tool

generates the column definitions. When manually editing the table

definitions a Find facility allows you to search for particular nodes, or

particular text.

For more detail on the XML facilities provided by DataStage, and the

XML Meta Data importer in particular, see XML Pack Designer Guide.

MetaBrokers

You can also import table definitions from other data warehousing

tools via a MetaBroker. This allows you, for example, to define table
Manager Guide 3-15

definitions in a data modelling tool and then import them for use in

your DataStage job designs. For more information about

MetaBrokers, see Chapter 16, "Using MetaBrokers."

Assembler Source Files

The import derives the meta data from Assembler Source File

Definition files or Assembler Source File Listing files. Both type of file

originate on a mainframe. For more information about these file type,

see DataStage Enterprise MVS Edition: Mainframe Job Developer’s

Guide.

To import meta data from an Assembler Source File Definition or

Listing file:

1 Choose Import ➤ Table Definitions ➤ Assembler File
Definitions. The Import Meta Data (ASM) dialog box appears,
allowing you to enter details of the file to import.

2 Enter, or browse for, the location of the file, then click Refresh. A
list of table definitions appears in the Tables list.

3 Select the table definitions you want to import, or click Select all
to select all of them. Click OK. The table definition meta data is
imported into the DataStage Repository.

More detailed information is given in DataStage Developer’s Help.

Web Service WSDL Definitions

The import derives meta data from a WSDL file. The file can be

located on a disk or given as a URL. You can specify which operations

you are interested in and convert input and output arguments to

column definitions.

To import meta data from a WSDL file:

1 Choose Import ➤ Table Definitions ➤ Web Services WSDL
Definitions. The Web Service Meta Data Importer appears. This
is a browser which allows you to locate the web services you want
to import meta data from. You can specify a URL or a disk location
in the Address field, or you can browse from the directories you
are offered when the browser opens.

2 Browse to the location of the required WSDL file. When you select
a WSDL file and the web service is recognized, its description is
shown in the upper right pane. Navigate through the tree to find
the required operation. When you select an operation, its details
are displayed in the bottom right pane (provided it has
documentation). You can select individual arguments and
parameters of those arguments if required.
Manager Guide 3-16

3 When you have selected the required item, click the Import
button. The item is imported into the DataStage Repository as a
table definition.

4 Repeat the operation to import other items if required.

5 When you have finished, click the Close button.

More detailed information is given in Web Services Developer’s

Guide.

Stored Procedures

To import a definition for a stored procedure via an ODBC connection:

1 Choose Import ➤ Table Definitions ➤ Stored Procedure
Definitions… . A dialog box appears enabling you to connect to
the data source containing the stored procedures.

2 Fill in the required connection details and click OK. Once a
connection to the data source has been made successfully, the
updated dialog box gives details of the stored procedures
available for import.

3 Select the required stored procedures and click OK. The stored
procedures are imported into the DataStage Repository.

Specific information about importing stored procedures is in

DataStage Developer’s Help. Further information about working with

stored procedure definitions is given in "Stored Procedure

Definitions" on page 3-42.

Manually Entering a Table Definition
If you are unable to import the table definitions for your source or

target data, you must enter this information manually.

To manually enter table definition properties, you must first create a

new table definition. You can then enter suitable settings for the

general properties before specifying the column definitions. You only

need to specify file format settings for a sequential file table definition.

Creating a Table Definition

To create a table definition:

1 From the DataStage Manager, select the Table Definitions
branch and do one of the following:

– Choose File ➤ New Table Definition… .

– Choose New Table Definition… from the shortcut menu.

– Click the New button on the toolbar.
Manager Guide 3-17

The Table Definition dialog box appears. You must enter

suitable values in the fields on the General page.

2 Enter the type of data source in the Data source type field. The
name entered here determines how the definition appears under
the Table Definitions branch.

3 Enter the name of the data source in the Data source name field.
This forms the second part of the table definition identifier and is
the name of the branch created under the data source type branch.

4 Enter the name of the table or file containing the data in the
Table/file name field. This is the last part of the table definition
identifier and is the name of the leaf created under the data source
branch.

5 Where the Data source type specifies a relational database, type
the name of the database owner in Owner.

6 If you are entering a mainframe table definition, choose the
platform type from the Mainframe platform type drop-down
list, and the access type from the Mainframe access type drop-
down list. Otherwise leave both of these items set to <Not
applicable>.

7 Select the Meta data supports Multi-valued fields check box if
the meta data supports multivalued data.

8 If required, specify what character an ODBC data source uses as a
quote character in ODBC quote character.

9 Enter a brief description of the data in the Short description
field. This is an optional field. The text entered here is displayed
when you choose View ➤ Details from the DataStage Manager
window.

10 Enter a more detailed description of the data in the Long
description field. This is an optional field.

11 Click the Columns tab. The Columns page appears at the front of
the Table Definition dialog box. You can now enter or load
column definitions for your data.

Entering Column Definitions

You can enter column definitions directly in the Columns grid using

the standard controls described in Appendix A or you can use the

Edit Column Meta Data dialog box to add one row at a time. To use

the dialog box:

1 Do one of the following:

– Right-click in the column area and choose Edit row… from the
shortcut menu.

– Press Ctrl-E.
Manager Guide 3-18

– Double-click on the row number cell at the left of the grid.

The Edit Column Meta Data dialog box appears. It has a

general area containing fields that are common to all data source

types, plus two tabs containing fields specific to meta data used in

server jobs or parallel jobs and information specific to COBOL

data sources.

The exact fields that appear in this dialog box depend on the type

of table definition as set on the General page of the Table
Definition dialog box.

2 Enter the general information for each column you want to define
as follows:

– Column name. Type in the name of the column. This is the
only mandatory field in the definition.

– Key. Select Yes or No from the drop-down list.

– Native type. For data sources with a platform type of OS390,
choose the native data type from the drop-down list. The
contents of the list are determined by the Access Type you
specified on the General page of the Table Definition dialog
box. (The list is blank for non-mainframe data sources.)

– SQL type. Choose from the drop-down list of supported SQL
types. If you are a adding a table definition for platform type
OS390, you cannot manually enter an SQL type, it is
automatically derived from the Native type.

– Length. Type a number representing the length or precision of
the column.
Manager Guide 3-19

– Scale. If the column is numeric, type a number to define the
number of decimal places.

– Nullable. Select Yes or No from the drop-down list. This is set
to indicate whether the column is subject to a NOT NULL
constraint. It does not itself enforce a NOT NULL constraint.

– Date format. Choose the date format that the column uses
from the drop-down list of available formats.

– Description. Type in a description of the column.

Server Jobs

If you are specifying meta data for a server job type data source or

target, then click the Server tab on top. Enter any required

information that is specific to server jobs:

Data element. Choose from the drop-down list of available data
elements.

Display. Type a number representing the display length for the
column.

Position. Visible only if you have specified Meta data supports
Multi-valued fields on the General page of the Table
Definition dialog box. Enter a number representing the field
number.

Type. Visible only if you have specified Meta data supports
Multi-valued fields on the General page of the Table
Definition dialog box. Choose S, M, MV, MS, or blank from the
drop-down list.

Association. Visible only if you have specified Meta data
supports Multi-valued fields on the General page of the Table
Definition dialog box. Type in the name of the association that
the column belongs to (if any).

NLS Map. Visible only if NLS is enabled and Allow per-column
mapping has been selected on the NLS page of the Table
Definition dialog box. Choose a separate character set map for a
column, which overrides the map set for the project or table. (The
per-column mapping feature is available only for sequential,
ODBC, or generic plug-in data source types.)

Null String. This is the character that represents null in the data.

Padding. This is the character used to pad missing columns. Set
to # by default.
Manager Guide 3-20

Mainframe Jobs

If you are specifying meta data for a mainframe job type data source,

then click the COBOL tab. Enter any required information that is

specific to mainframe jobs:

Level number. Type in a number giving the COBOL level number
in the range 02 – 49. The default value is 05.

Occurs. Type in a number giving the COBOL occurs clause. If the
column defines a group, gives the number of elements in the
group.

Usage. Choose the COBOL usage clause from the drop-down list.
This specifies which COBOL format the column will be read in.
These formats map to the formats in the Native type field, and
changing one will normally change the other. Possible values are:

– COMP – Binary

– COMP-1 – single-precision Float

– COMP-2 – packed decimal Float

– COMP-3 – packed decimal

– COMP-5 – used with NATIVE BINARY native types

– DISPLAY – zone decimal, used with Display_numeric or
Character native types

– DISPLAY-1 – double-byte zone decimal, used with Graphic_G
or Graphic_N

Sign indicator. Choose Signed or blank from the drop-down list
to specify whether the column can be signed or not. The default is
blank.

Sign option. If the column is signed, choose the location of the
sign in the data from the drop-down list. Choose from the
following:

– LEADING – the sign is the first byte of storage

– TRAILING – the sign is the last byte of storage

– LEADING SEPARATE – the sign is in a separate byte that has
been added to the beginning of storage

– TRAILING SEPARATE – the sign is in a separate byte that has
been added to the end of storage

Selecting either LEADING SEPARATE or TRAILING SEPARATE

will increase the storage length of the column by one byte.

Sync indicator. Choose SYNC or blank from the drop-down list
to indicate whether this is a COBOL-synchronized clause or not.
Manager Guide 3-21

Redefined field. Optionally specify a COBOL REDEFINES clause.
This allows you to describe data in the same storage area using a
different data description. The redefining column must be the
same length, or smaller, than the column it redefines. Both
columns must have the same level, and a column can only
redefine the immediately preceding column with that level.

Depending on. Optionally choose a COBOL OCCURS-
DEPENDING ON clause from the drop-down list.

Storage length. Gives the storage length in bytes of the column
as defined. The field cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the column definition. The field cannot be edited.

The Server tab is still accessible, but the Server page only

contains the Data Element and Display fields.

The following table shows the relationships between native

COBOL types and SQL types:

Native
Data
Type

Native
Length
(bytes)

COBOL Usage
Representation

SQL
Type

Precision (p) Scale (s) Storage
Length
(bytes)

BINARY 2
4
8

PIC S9 to S9(4)
COMP
PIC S9(5) to S9(9)
COMP
PIC S9(10) to S9(18)
COMP

SmallInt
Integer
Decimal

1 to 4
5 to 9
10 to 18

n/a
n/a
n/a

2
4
8

CHARACTE
R

n n PIC X(n) Char n n/a n

DECIMAL (p+s)/2+1 PIC S9(p)V9(s)
COMP-3

Decimal p+s s (p+s)/2+1

DISPLAY_
NUMERIC

p+s PIC S9(p)V9(s) Decimal p+s s (p+s)/2+1

FLOAT
(single)
(double)

4

8

PIC COMP-1
PIC COMP-2

Decimal
Decimal

p+s (default 18)
p+s (default 18)

s (default 4)
s (default 4)

4

8

GRAPHIC_G n*2 PIC G(n) DISPLAY-1 NChar n n/a n*2

GRAPHIC_N n*2 PIC N(n) NChar n n/a n*2

GROUP n (sum of all
the column
lengths that
make up the
group)

Char n n/a n
Manager Guide 3-22

Parallel Jobs

If you are specifying meta data for a parallel job click the Parallel tab.

This allows you to enter detailed information about the format of the

meta data.

Field Level. This has the following properties:

Bytes to Skip. Skip the specified number of bytes from the end
of the previous column to the beginning of this column.

Delimiter. Specifies the trailing delimiter of the column. Type an
ASCII character or select one of whitespace, end, none, null,
comma, or tab.

whitespace. The last column of each record will not include any
trailing white spaces found at the end of the record.

end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

none. No delimiter (used for fixed-width).

null. ASCII Null character is used.

comma. ASCII comma character used.

tab. ASCII tab character used.

Delimiter string. Specify a string to be written at the end of the
column. Enter one or more characters. This is mutually exclusive
with Delimiter, which is the default. For example, specifying ‘, ‘
(comma space – you do not need to enter the inverted commas)
would have the column delimited by ‘, ‘.

NATIVE
BINARY

2
4
8

PIC S9 to S9(4)
COMP-5
PIC S9(5) to S9(9)
COMP-5
PIC S9(10) to S9(18)
COMP-5

SmallInt
Integer
Decimal

1 to 4
5 to 9
10 to 18

n/a
n/a
n/a

2
4
8

VARCHAR n+2 PIC S9(4) COMP
PIC X(n)

VarChar n+2 n/a n+2

VARGRAPHI
C _G

(n*2)+2 PIC S9(4) COMP
PIC G(n) DISPLAY-1

NVarCh
ar

n+2 n/a (n*2)+2

VARGRAPHI
C _N

(n*2)+2 PIC S9(4) COMP
PIC N(n)

NVarCh
ar

n+2 n/a (n*2)+2

Native
Data
Type

Native
Length
(bytes)

COBOL Usage
Representation

SQL
Type

Precision (p) Scale (s) Storage
Length
(bytes)
Manager Guide 3-23

Drop on input. Select this property when you must fully define
the meta data for a data set, but do not want the column actually
read into the data set.

Prefix bytes. Specifies that this column is prefixed by 1, 2, or 4
bytes containing, as a binary value, either the column’s length or
the tag value for a tagged column. You can use this option with
variable-length fields. Variable-length fields can be either
delimited by a character or preceded by a 1-, 2-, or 4-byte prefix
containing the field length. DataStage inserts the prefix before
each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for each of the
columns it reads. The message has the format:

Importing N: D

where:

– N is the column name.

– D is the imported data of the column. Non-printable characters
contained in D are prefixed with an escape character and written
as C string literals; if the column contains binary data, it is
output in octal format.

Quote. Specifies that variable length columns are enclosed in
single quotes, double quotes, or another ASCII character or pair of
ASCII characters. Choose Single or Double, or enter a character.

Start position. Specifies the starting position of a column in the
record. The starting position can be either an absolute byte offset
from the first record position (0) or the starting position of another
column.

Tag case value. Explicitly specifies the tag value corresponding
to a subfield in a tagged subrecord. By default the fields are
numbered 0 to N-1, where N is the number of fields. (A tagged
subrecord is a column whose type can vary. The subfields of the
tagged subrecord are the possible types. The tag case value of the
tagged subrecord selects which of those types is used to interpret
the column’s value for the record.)
Manager Guide 3-24

String Type. This has the following properties:

Character Set. Choose from ASCII or EBCDIC (not available for
ustring type (Unicode)).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters (not available for ustring
type (Unicode)).

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters (not available for ustring
type (Unicode)).

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Date Type. This has the following properties:

Byte order. Specifies how multiple byte data types are ordered.
Choose from:
Manager Guide 3-25

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

– Character Set. Choose from ASCII or EBCDIC.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see DataStage NLS Guide).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For dates, binary is equivalent to specifying the julian property for

the date field, text specifies that the data to be written contains a

text-based date in the form %yyyy-%mm-%dd or in the default

date format if you have defined a new one on an NLS system (see

DataStage NLS Guide).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.
Manager Guide 3-26

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time Type. This has the following properties:

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text
Manager Guide 3-27

For time, binary is equivalent to midnight_seconds, text specifies

that the field represents time in the text-based form %hh:%nn:%ss

or in the default date format if you have defined a new one on an

NLS system (see DataStage NLS Guide).

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp Type. This has the following properties:

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For timestamp, binary specifies that the first integer contains a

Julian day count for the date portion of the timestamp and the

second integer specifies the time portion of the timestamp as the

number of seconds from midnight. A binary timestamp specifies

that two 32-but integers are written. Text specifies a text-based

timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in the
Manager Guide 3-28

default date format if you have defined a new one on an NLS

system (see DataStage NLS Guide).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).

Integer Type. This has the following properties:

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.
Manager Guide 3-29

C_format. Perform non-default conversion of data from a string
to integer data. This property specifies a C-language format string
used for reading/writing integer strings. This is passed to sscanf()
or sprintf().

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to integer. This is passed to sscanf(). By default, DataStage
invokes the C sscanf() function to convert a numeric field
formatted as a string to either integer or floating point data. If this
function does not output data in a satisfactory format, you can
specify the in_format property to pass formatting arguments to
sscanf().

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
integer to a string. This is passed to sprintf(). By default,
DataStage invokes the C sprintf() function to convert a numeric
field formatted as integer data to a string. If this function does not
output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf().
Manager Guide 3-30

Pad char. Specifies the pad character used when the integer is
written to an external string representation. Enter a character
(single-bye for strings, can be multi-byte for ustrings) or choose
null or space. The pad character is used when the external string
representation is larger than required to hold the written field. In
this case, the external string is filled with the pad character to its
full length. Space is the default.

Decimal Type. This has the following properties:

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No.

Character Set. Choose from ASCII or EBCDIC.

Decimal separator. Specify the character that acts as the
decimal separator (period by default).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For decimals, binary means packed. Text represents a decimal in a

string format with a leading space or '-' followed by decimal digits

with an embedded decimal point if the scale is not zero. The

destination string format is: [+ | -]ddd.[ddd] and any precision and

scale arguments are ignored.

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.
Manager Guide 3-31

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing

decimal columns. Select No to write a positive sign (0xf)

regardless of the columns’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
represented in text format. Enter a number. When a decimal is
written to a string representation, DataStage uses the precision
and scale defined for the source decimal field to determine the
length of the destination string. The precision and scale properties
override this default. When they are defined, DataStage truncates
or pads the source decimal to fit the size of the destination string.
If you have also specified the field width property, DataStage
truncates or pads the source decimal to fit the size specified by
field width.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.
Manager Guide 3-32

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.
Specifies how to round a source decimal when its precision and
scale are greater than those of the destination.

Float Type. This has the following properties:

C_format. Perform non-default conversion of data from a string
to floating-point data. This property specifies a C-language format
string used for reading floating point strings. This is passed to
sscanf().

Character Set. Choose from ASCII or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
Manager Guide 3-33

fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to floating point. This is passed to sscanf(). By default, DataStage
invokes the C sscanf() function to convert a numeric field
formatted as a string to floating point data. If this function does
not output data in a satisfactory format, you can specify the
in_format property to pass formatting arguments to sscanf().

Is link field. Selected to indicate that a column holds the length
of a another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
floating point to a string. This is passed to sprintf(). By default,
DataStage invokes the C sprintf() function to convert a numeric
field formatted as floating point data to a string. If this function
does not output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf().

Pad char. Specifies the pad character used when the floating
point number is written to an external string representation. Enter
a character (single-bye for strings, can be multi-byte for ustrings)
or choose null or space. The pad character is used when the
external string representation is larger than required to hold the
written field. In this case, the external string is filled with the pad
character to its full length. Space is the default.

Nullable. This appears for nullable fields.

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
Manager Guide 3-34

null. When a variable-length field is written, DataStage writes a
length value of null field length if the field contains a null. This
property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field. On reading, specifies the value given

to a field containing a null. On writing, specifies the value given to

a field if the source is set to null. Can be a number, string, or C-

type literal escape character.

Generator. If the column is being used in a Row Generator or

Column Generator stage, this allows you to specify extra details about

the mock data being generated. The exact fields that appear depend

on the data type of the column being generated. They allow you to

specify features of the data being generated, for example, for integers

they allow you to specify if values are random or whether they cycle.

If they cycle you can specify an initial value, an increment, and a limit.

If they are random, you can specify a seed value for the random

number generator, whether to include negative numbers, and a limit.

See "Generator" in Parallel Job Developer’s Guide for more details.

Vectors. If the row you are editing represents a column which is a

variable length vector, tick the Variable check box. The Vector

properties appear, these give the size of the vector in one of two ways:

Link Field Reference. The name of a column containing the
number of elements in the variable length vector. This should
have an integer or float type, and have its Is Link field property set.

Vector prefix. Specifies 1-, 2-, or 4-byte prefix containing the
number of elements in the vector.

If the row you are editing represents a column which is a vector of

known length, enter the number of elements in the Vector Occurs

box.

Subrecords. If the row you are editing represents a column which is

part of a subrecord the Level Number column indicates the level of the

column within the subrecord structure.
Manager Guide 3-35

If you specify Level numbers for columns, the column immediately

preceding will be identified as a subrecord. Subrecords can be nested,

so can contain further subrecords with higher level numbers (i.e.,

level 06 is nested within level 05). Subrecord fields have a Tagged

check box to indicate that this is a tagged subrecord.

Extended. For certain data types the Extended check box appears to

allow you to modify the data type as follows:

Char, VarChar, LongVarChar. Select to specify that the
underlying data type is a ustring.

Time. Select to indicate that the time field includes microseconds.

Timestamp. Select to indicate that the timestamp field includes
microseconds.

TinyInt, SmallInt, Integer, BigInt types. Select to indicate that
the underlying data type is the equivalent uint field.

Use the buttons at the bottom of the Edit Column Meta Data dialog

box to continue adding or editing columns, or to save and close. The

buttons are:

Previous and Next. View the meta data in the previous or next
row. These buttons are enabled only where there is a previous or
next row enabled. If there are outstanding changes to the current
row, you are asked whether you want to save them before moving
on.

Close. Close the Edit Column Meta Data dialog box. If there are
outstanding changes to the current row, you are asked whether
you want to save them before closing.

Apply. Save changes to the current row.

Reset. Remove all changes made to the row since the last time
you applied changes.

Click OK to save the column definitions and close the Edit Column
Meta Data dialog box.

Remember, you can also edit a columns definition grid using the

general grid editing controls, described in "Editing the Grid Directly"

on page A-5.

Loading Column Definitions

Instead of entering column definitions, you can load (copy) the

column definitions from an existing table definition. To load column

definitions:
Manager Guide 3-36

1 Click Load… . The Table Definitions dialog box appears:

This dialog box displays all the table definitions in the project in

the form of a table definition tree.

2 Double-click the appropriate branch to display the table definitions
available.

3 Select the table definition you want to use.

Note You can use the Find… button to enter the name of the

table definition you want. The table definition is

automatically highlighted in the tree when you click OK.

You can use the Import button to import a table definition

from a data source.

4 Click OK. The Select Columns dialog box appears. It allows you
to specify which column definitions from the table definition you
want to load.

Use the arrow keys to move columns back and forth between the

Available columns list and the Selected columns list. The

single arrow buttons move highlighted columns, the double arrow
Manager Guide 3-37

buttons move all items. By default all columns are selected for

loading. Click Find… to open a dialog box which lets you search

for a particular column. The shortcut menu also gives access to

Find… and Find Next. Click OK when you are happy with your

selection. This closes the Select Columns dialog box and loads

the selected columns into the stage.

For mainframe stages and certain parallel stages where the

column definitions derive from a CFD file, the Select Columns

dialog box may also contain a Create Filler check box. This

happens when the table definition the columns are being loaded

from represents a fixed-width table. Select this to cause

sequences of unselected columns to be collapsed into filler items.

Filler columns are sized appropriately, their datatype set to

character, and name set to FILLER_XX_YY where XX is the start

offset and YY the end offset. Using fillers results in a smaller set of

columns, saving space and processing time and making the

column set easier to understand.

If you are importing column definitions that have been derived

from a CFD file into server or parallel job stages, you are warned if

any of the selected columns redefine other selected columns. You

can choose to carry on with the load or go back and select

columns again.

5 Save the table definition by clicking OK.

You can edit the table definition to remove unwanted column

definitions, assign data elements, or change branch names.

Naming Columns and Table Definitions
The rules for naming columns depend on the type of job the table

definition will be used in:

Server and Parallel Jobs. Column names can be any length.
They must begin with an alphabetic character or $ and contain
alphanumeric, underscore, period, and $ characters.

Mainframe Jobs. Column names can be any length. They must
begin with an alphabetic character and contain alphanumeric,
underscore, #, @, and $ characters.

The rules for naming table definitions are as follows:

Table names can be any length.

They must begin with an alphabetic character.

They can contain alphanumeric, period, and underscore
characters.
Manager Guide 3-38

Table definition category names can be any length and consist of any

characters, including spaces.

Viewing or Modifying a Table Definition
You can view or modify any table definition in your project. To view a

table definition, select it in the display area and do one of the

following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Double-click the table definition in the display area.

Click the Properties button on the toolbar.

The Table Definition dialog box appears. You can edit any of the

column definition properties or delete unwanted definitions.

Editing Column Definitions

To edit a column definition in the grid, click the cell you want to

change then choose Edit cell… from the shortcut menu or press Ctrl-
E to open the Edit Column Meta Data dialog box.

For more information about adding and deleting rows, or moving

between the cells of a grid, see Appendix A, “Editing Grids.”

Deleting Column Definitions

If, after importing or defining a table definition, you subsequently

decide that you do not want to read or write the data in a particular

column you must delete the corresponding column definition.

Unwanted column definitions can be easily removed from the

Columns grid. To delete a column definition, click any cell in the row

you want to remove and press the Delete key or choose Delete row
from the shortcut menu. Click OK to save any changes and to close

the Table Definition dialog box.

To delete several column definitions at once, hold down the Ctrl key

and click in the row selector column for the rows you want to remove.

Press the Delete key or choose Delete row from the shortcut menu

to remove the selected rows.

Finding Column Definitions

The Find facility allows you to locate a particular column definition in

a table definition. To find a particular column definition, choose Find
row… from the shortcut menu. The Find dialog box appears,
Manager Guide 3-39

allowing you to enter a string to be searched for in the specified

column.

Propagating Values

You can propagate the values for the properties set in a column to

several columns. Select the column whose values you want to

propagate, then hold down shift and select the columns you want to

propagate to. Chose Propagate values... from the shortcut menu to

open the dialog box.

In the Property column, click the check box for the property or

properties whose values you want to propagate. The Usage field tells

you if a particular property is applicable to certain types of job only

(e.g. server, mainframe, or parallel) or certain types of table definition

(e.g. COBOL). The Value field shows the value that will be propagated

for a particular property.

Using the Data Browser
Non-mainframe data
sources

When importing table definitions from a data source, you can view the

actual data in the tables using the Data Browser. The Data Browser

can be used when importing table definitions from the following

sources:
Manager Guide 3-40

ODBC table

UniVerse table

Hashed (UniVerse) file

UniData file

Sequential file

Some types of plug-in

The Data Browser is opened by clicking the View Data… button on

the Import Meta Data dialog box. The Data Browser window

appears:

The Data Browser uses the meta data defined in the data source. If

there is no data, a Data source is empty message appears instead

of the Data Browser.

The Data Browser grid has the following controls:

You can select any row or column, or any cell with a row or
column, and press CTRL-C to copy it.

You can select the whole of a very wide row by selecting the first
cell and then pressing SHIFT+END.

If a cell contains multiple lines, you can double-click the cell to
expand it. Single-click to shrink it again.

You can view a row containing a specific data item using the Find…

button. The Find dialog box repositions the view to the row
Manager Guide 3-41

containing the data you are interested in. The search is started from

the current row.

The Display… button opens the Column Display dialog box. It

allows you to simplify the data displayed by the Data Browser by

choosing to hide some of the columns. It also allows you to normalize

multivalued data to provide a 1NF view in the Data Browser.

This dialog box lists all the columns in the display, and initially these

are all selected. To hide a column, clear it.

The Normalize on drop-down list box allows you to select an

association or an unassociated multivalued column on which to

normalize the data. The default is Un-Normalized, and choosing Un-
Normalized will display the data in NF2 form with each row shown

on a single line. Alternatively you can select Un-Normalize
(formatted), which displays multivalued rows split over several lines.

In the example, the Data Browser would display all columns except

STARTDATE. The view would be normalized on the association

PRICES.

Stored Procedure Definitions
You can access data in a database using a stored procedure, if

required. To do so, you use an ODBC stage in a server job, or the STP

plugin stage in a server or parallel job (the plugin stage has its own

documentation, which is available when you install the plugin).
Manager Guide 3-42

A stored procedure can:

Have associated parameters, which may be input or output

Return a value (like a function call)

Create a result set in the same way as an SQL SELECT statement

Note ODBC stages support the use of stored procedures with or

without input arguments and the creation of a result set, but

do not support output arguments or return values. In this

case a stored procedure may have a return value defined,

but it is ignored at run time. A stored procedure may not

have output parameters.

The definition for a stored procedure (including the associated

parameters and meta data) can be stored in the Repository. These

stored procedure definitions can be used when you edit an ODBC

stage or STP plugin stage in your job design. For more information

about the use of stored procedures in ODBC stages, see "ODBC

Stages" in Server Job Developer’s Guide. For more information about

the use of stored procedures with STP stages, see the documentation

supplied with the plugin.

You can import, create, or edit a stored procedure definition using the

DataStage Manager.

Importing a Stored Procedure Definition
The easiest way to specify a definition for a stored procedure is to

import it directly from the stored procedure on the source or target

database using an ODBC connection. A new definition for the stored

procedure is created and stored in the Repository.

To import a definition for a stored procedure via an ODBC connection:

1 Choose Import ➤ Table Definitions ➤ Stored Procedure
Definitions… . A dialog box appears enabling you to connect to
the data source containing the stored procedures.

2 Fill in the required connection details and click OK. Once a
connection to the data source has been made successfully, the
updated dialog box gives details of the stored procedures
available for import.

3 Select the required stored procedures and click OK. The stored
procedures are imported into the DataStage Repository.

Specific information about importing stored procedures is in

DataStage Developer’s Help.
Manager Guide 3-43

The Table Definition Dialog Box for Stored Procedures
When you create, edit, or view a stored procedure definition, the

Table Definition dialog box appears. This dialog box is described in

"The Table Definition Dialog Box" on page 3-2.

The dialog box for stored procedures has additional pages, having up

to six pages in all:

General. Contains general information about the stored
procedure. The Data source type field on this page must contain
StoredProcedures to display the additional Parameters page.

Columns. Contains a grid displaying the column definitions for
each column in the stored procedure result set. You can add new
column definitions, delete unwanted definitions, or edit existing
ones. For more information about editing a grid, see "Editing
Column Definitions" on page 3-39.

Parameters. Contains a grid displaying the properties of each
input parameter.

Note If you cannot see the Parameters page, you must enter

StoredProcedures in the Data source type field on

the General page.

The grid has the following columns:

– Column name. The name of the parameter column.

– Key. Indicates whether the column is part of the primary key.

– SQL type. The SQL data type.

– Extended. This column gives you further control over data
types used in parallel jobs when NLS is enabled. Selecting a
value from the extended drop-down list is the equivalent to
Manager Guide 3-44

selecting the Extended option in the Edit Column Meta
Data dialog box Parallel tab. The available values depend on
the base data type

– I/O Type. Specifies the type of parameter. Can be one of IN,
INOUT, OUT, or RETURN. Note that the ODBC stage only
supports IN and INOUT parameters. The STP stage supports all
parameter types.

– Length. The data precision. This is the length for CHAR data
and the maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null
values. This is set to indicate whether the column is subject to
a NOT NULL constraint. It does not itself enforce a NOT NULL
constraint.

– Display. The maximum number of characters required to
display the column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

Format. Contains file format parameters for sequential files. This
page is not used for a stored procedure definition.

NLS. Contains the name of the character set map to use with the
table definitions.

Error codes. The Error Codes page allows you to specify which
raiserror calls within the stored procedure produce a fatal error
and which produce a warning.

This page has the following fields:
Manager Guide 3-45

– Fatal errors. Enter the raiserror values that you want to be
regarded as a fatal error. The values should be separated by a
space.

– Warnings. Enter the raiserror values that you want to be
regarded as a warning. The values should be separated by a
space.

Manually Entering a Stored Procedure Definition
If you are unable to import the definition for your stored procedure,

you must enter this information manually.

To manually enter a stored procedure definition, first create the

definition using the DataStage Manager. You can then enter suitable

settings for the general properties, before specifying definitions for

the columns in the result set and the input parameters.

Note You do not need to edit the Format page for a stored

procedure definition.

Creating a Stored Procedure Definition

To create a stored procedure definition:

1 From the DataStage Manager, select the Table Definitions
branch and do one of the following:

– Choose File ➤ New Table Definition… .

– Choose New Table Definition… from the shortcut menu.

– Click the New button on the toolbar.

The Table Definition dialog box appears. You must enter

suitable values in the fields on the General page.

2 Enter StoredProcedures in the Data source type field. This
specifies that the new definition will be stored under the Table
Definitions ➤ StoredProcedures branch in the Repository. The
Parameters page appears in the Table Definition dialog box.

3 Enter the name of the data source in the Data source name field.
This forms the second part of the table definition identifier and is
the name of the branch created under the data source type branch.

4 Enter the name of the procedure in the Procedure name field.
This is the last part of the table definition identifier and is the
name of the leaf created under the data source branch.

5 Optionally enter a brief description of the data in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window.
Manager Guide 3-46

6 Optionally enter a detailed description of the data in the Long
description field.

7 Specify the column definitions for the result set on the Columns
page and the input parameters (if any) for the stored procedure on
the Parameters page.

8 If NLS is enabled and you do not want to use the default project
NLS map, select the required map from the NLS page.

Specifying Column Definitions for the Result Set

To specify the column definitions for the result set, click the Columns

tab in the Table Definition dialog box. The Columns page appears

at the front of the Table Definition dialog box. You can now enter or

load column definitions. For more information, see "Entering Column

Definitions" on page 3-18 and "Loading Column Definitions" on

page 3-36.

Note You do not need a result set if the stored procedure is used

for input (writing to a database). However, in this case, you

must have input parameters.

Specifying Parameters

To specify parameters for the stored procedure, click the Parameters

tab in the Table Definition dialog box. The Parameters page

appears at the front of the Table Definition dialog box.

You can enter parameter definitions are entered directly in the

Parameters grid using the general grid controls described in

Appendix A, “Editing Grids.”, or you can use the Edit Column Meta
Data dialog box. To use the dialog box:.

1 Do one of the following:

– Right-click in the column area and choose Edit row… from the
shortcut menu.

– Press Ctrl-E.

The Edit Column Meta Data dialog box appears.

In the main page, specify the SQL data type by choosing an

appropriate type from the drop-down list in the SQL type cell.

2 Enter an appropriate value for the data precision in the Length
cell.

3 Enter an appropriate data scale factor in the Scale cell.

4 Specify whether the parameter can contain null values by
choosing an appropriate option from the drop-down list in the
Nullable cell.
Manager Guide 3-47

5 Enter text to describe the column in the Description cell. This cell
expands to a drop-down text entry box if you enter more
characters than the display width of the column. You can increase
the display width of the column if you want to see the full text
description.

6 Fill in further information in the Server and/or Parallel tab,
depending on whether the stage that will be using the meta data
will be part of a server or parallel job.

7 Click APPLY and CLOSE to save and close the Edit Column
Meta Data dialog box.

8 You can continue to add more parameter definitions by editing the
last row in the grid. New parameters are always added to the
bottom of the grid, but you can select and drag the row to a new
position in the grid.

When you have defined the parameters, use the I/O Type field in the

parameters grid to specify whether the parameter is IN, INOUT, OUT,

or RETURN. (Note that ODBC stages only support parameters of type

IN and INOUT).

Specifying NLS Mapping

If NLS is enabled and you want to use a different character set map

than that defined as the project default, click the NLS tab in the Table
Definition dialog box. The NLS page appears at the front of the

Table Definition dialog box.

Choose the name of the map to use from the list box. By default, the

list box shows all the server job maps that are loaded and ready to

use. Show all maps lists all the maps that are shipped with

DataStage.

If you intend to use the stored procedure in a parallel job, ensure that

the Show all Parallel maps option is selected.

Click Allow per-column mapping if you want to assign different

character set maps to individual columns.

Note You cannot use a map unless it is loaded into DataStage.

You can load different maps using the DataStage

Administrator. For more information, see "NLS

Configuration" in DataStage Administrator Guide.

Viewing or Modifying a Stored Procedure Definition
You can view or modify any stored procedure definition in your

project. To view a stored procedure definition, select it in the display

area and do one of the following:
Manager Guide 3-48

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Double-click the stored procedure definition in the display area.

Click the Properties button on the toolbar.

The Table Definition dialog box appears. You can edit or delete any

of the column or parameter definitions.

Editing Column or Parameter Definitions

You can edit the settings for a column or parameter definition by

editing directly in the Columns or Parameters grid. To edit a definition,

click the cell you want to change. The way you edit the cell depends on

the cell contents. If the cell contains a drop-down list, choose an

alternative option from the drop-down list. If the cell contains text,

you can start typing to change the value, or press F2 or choose Edit
cell… from the shortcut menu to put the cell into edit mode.

Alternatively you can edit rows using the Edit Column Meta Data

dialog box.

For more information about adding and deleting rows, or moving

between the cells of a grid, see Appendix A, “Editing Grids.”

Deleting Column or Parameter Definitions

If, after importing or defining stored procedure columns, you

subsequently decide that you do not want to read or write the data in

a particular column you must delete the corresponding column

definition.

Unwanted column or parameter definitions can be easily removed

from the Columns or Parameters grid. To delete a column or

parameter definition, click any cell in the row you want to remove and

press the Delete key or choose Delete row from the shortcut menu.

(You can delete all the rows by clicking Clear All). Click OK to save

any changes and to close the Table Definition dialog box.

To delete several column or parameter definitions at once, hold down

the Ctrl key and click in the row selector column for the rows you want

to remove. Press the Delete key or choose Delete row from the

shortcut menu to remove the selected rows.
Manager Guide 3-49

Manager Guide 3-50

4
Managing Data Elements

data sources for
server jobs

Each column within a table definition may have a data element

assigned to it. A data element specifies the type of data a column

contains, which in turn determines the transforms that can be applied

in a Transformer stage.

The use of data elements is optional. You do not have to assign a data

element to a column, but it enables you to apply stricter data typing in

the design of server jobs. The extra effort of defining and applying

data elements can pay dividends in effort saved later on when you are

debugging your design.

You can choose to use any of the data elements supplied with

DataStage, or you can create and use data elements specific to your

application. For a list of the built-in data elements, see "Built-In Data

Elements" on page 4-5. You can also import data elements from

another data warehousing tool using a MetaBroker. For more

information, see Chapter 16, "Using MetaBrokers."

Application-specific data elements allow you to describe the data in a

particular column in more detail. The more information you supply to

DataStage about your data, the more DataStage can help to define the

processing needed in each Transformer stage.

For example, if you have a column containing a numeric product

code, you might assign it the built-in data element Number. There is a

range of built-in transforms associated with this data element.

However, all of these would be unsuitable, as it is unlikely that you

would want to perform a calculation on a product code. In this case,

you could create a new data element called PCode.

Each data element has its own specific set of transforms which relate

it to other data elements. When the data elements associated with the

columns of a target table are not the same as the data elements of the

source data, you must ensure that you have the transforms needed to
Manager Guide 4-1

Creating Data Elements Managing Data Elements
convert the data as required. For each target column, you should have

either a source column with the same data element, or a source

column that you can convert to the required data element.

For example, suppose that the target table requires a product code

using the data element PCode, but the source table holds product

data using an older product numbering scheme. In this case, you

could create a separate data element for old-format product codes

called Old_PCode, and you then create a custom transform to link the

two data elements; that is, its source data element is Old_PCode,

while its target data element is PCode. This transform, which you

could call Convert_PCode, would convert an old product code to a

new product code. See"Defining Custom Transforms" in Server Job

Developer’s Guide for details on how to use and create custom

transforms.

A data element can also be used to “stamp” a column with SQL

properties when you manually create a table definition or define a

column definition for a link in a job.

Creating Data Elements
data sources for
server jobs

To create a data element:

1 From the DataStage Manager, select the Data Elements branch
in the project tree and do one of the following:

– Choose File ➤ New Data Element… .

– Choose New Data Element… from the shortcut menu.

– Click the New button on the toolbar.

The Data Element dialog box appears:

This dialog box has four pages:
4-2 Manager Guide

Managing Data Elements Creating Data Elements
– General. Displayed by default. Contains general information
about the data element.

– SQL Properties. Contains fields that describe the properties
of the associated SQL data type. This page is used when this
data element is used to manually create a new column
definition for use with an SQL data source. If you import the
column definition from an SQL data source, the SQL properties
are already defined.

– Generated From. Lists the transforms that result in this data
element. You cannot edit the field in this page, it is populated
when you define the transforms that use the data element.

– Converts To. Lists the transforms that can be used to convert
this data element into another data element. You cannot edit
the field in this page, it is populated when you define the
transforms that use the data element.

2 Enter the name of the data element in the Data element name
field. This name is used to create an icon under the category
branch. The name entered here must be unique as no two data
elements can have the same name.

3 Enter a category name in the Category field. This name is used to
create a branch under the main Data Elements branch. If you do
not enter a name in this field, the data type is created under the
main Data Elements branch.

You can create more than one branch level for the category by

including \ in the name. For example, if you enter

Custom\Elements, the following branches are created:
Data Elements ➤ Custom ➤ Elements

The new data element is stored under the Elements branch.

4 Choose the most appropriate base data type from the Base type
drop-down list box. The base types are the fundamental data
types used internally by DataStage for processing.

There are five base types:

– Date. The column contains a date, represented in DataStage
internal format. There are many built-in transforms available to
convert dates to character strings. See DataStage Developer’s
Help or "Built-In Transforms and Routines" in Server Job
Developer’s Guide for a list of the built-in transforms available.

– Number. The column contains a numeric value.

– String. The column contains data as a string of characters.
DataStage interprets the string as a number if needed.

– Time. The column contains data as a time.
Manager Guide 4-3

Assigning Data Elements in Table Definitions Managing Data Elements
– Default. The data has an SQL data type already assigned and
the most appropriate base type is used.

5 Optionally enter a brief description of the data in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window or
print a data elements report.

6 Optionally enter a detailed description of the data in the Long
description field. This description is displayed only when you
view the properties of a data element.

7 Click OK to save the data element and to close the Data Element
dialog box. You must edit your table definition to assign this new
data element.

Naming Data Elements
The rules for naming data elements are as follows:

Data element names can be any length.

They must begin with an alphabetic character.

They can contain alphanumeric, period, and underscore
characters.

Data element category names can be any length and consist of any

characters, including spaces.

Assigning Data Elements in Table Definitions
data sources for
server jobs

If you created a new data element or you want to use one of the data

elements supplied with DataStage, you need to assign it. Data

elements are assigned by editing the column definitions which are

then used in your DataStage job, or you can assign them in individual

stages as you design your job. If you want to set up the data elements

before you develop your job, you can edit the column definitions in

the table definition.

To assign a data element in a table definition:

1 Expand the Table Definitions branch until you can see the table
definition you want to edit in the display area.

2 Select the table definition and do one of the following:

– Choose File ➤ Properties… .

– Choose Properties… from the shortcut menu.

– Double-click the table definition in the display area.
4-4 Manager Guide

Managing Data Elements Viewing or Editing Data Elements
– Click the Properties button on the toolbar.

The Table Definition dialog box appears.

3 Click the Columns tab. The Columns page appears at the front of
the Table Definition dialog box.

4 Click the Data element cell for the column definition you want to
edit.

5 Choose the data element you want to use from the drop-down list.
This list contains all the built-in data elements supplied with
DataStage and any data elements you created. For a description of
the built-in data elements supplied with DataStage, see "Built-In
Data Elements" on page 4-5.

6 Click OK to save the column definition and to close the Table
Definition dialog box.

Viewing or Editing Data Elements
data sources for
server jobs

You can view the properties of any data element in your project. To

view the properties of a data element, select it in the display area and

do one of the following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Double-click the data element in the display area.

Click the Properties button on the toolbar.

The Data Element dialog box appears. Click OK to close the dialog

box.

If you are viewing the properties of a data element that you created,

you can edit any of the fields on the General or SQL Properties
page. The changes are saved when you click OK.

If you are viewing the properties of a built-in data element, you cannot

edit any of the settings on the General or SQL Properties page.

Built-In Data Elements
data sources for
server jobs

DataStage has a number of built-in data elements. There are six data

elements that represent each of the base types used internally by

DataStage:
Manager Guide 4-5

Built-In Data Elements Managing Data Elements
Date. The column contains a date, represented in DataStage
internal format. There are many built-in transforms available to
convert dates to character strings.

Number. The column contains a numeric value.

String. The column contains data as a string of characters.
DataStage interprets the string as a number if needed.

Time. The column contains data as a time.

Default. The data has an SQL data type already assigned and the
most appropriate base type is used.

Timestamp. The column contains a string that represents a
combined date/time:

YYYY-MM-DD HH:MM:SS

In addition, there are some data elements that are used to express

dates in alternative ways:

DATE.TAG. The data specifies a date and is stored in the
following format:

1993-02-14 (February 14, 1993)

WEEK.TAG. The data specifies a week and is stored in the
following format:

1993W06 (week 6 of 1993)

MONTH.TAG. The data specifies a month and is stored in the
following format:

1993-02 (February 1993)

QUARTER.TAG. The data specifies a quarter and is stored in the
following format:

1993Q1 (quarter 1, 1993)

YEAR.TAG. The data specifies a year and is stored in the
following format:

1993

Each of these data elements has a base type of String. The format of

the date complies with various ISO 8601 date formats.

You can view the properties of these data elements. You cannot edit

them.
4-6 Manager Guide

5
Managing Jobs and

Job Sequences

DataStage jobs are defined in the DataStage Designer and run from

the DataStage Director or from a mainframe. Jobs perform the actual

extraction and translation of data and the writing to the target data

warehouse or data mart. There are certain basic management tasks

that you can perform on jobs in the DataStage Manager, by editing the

job’s properties. Each job in a project has properties, including

optional descriptions and job parameters. You can view and edit the

job properties from the DataStage Designer or the DataStage

Manager.

Job sequences are control jobs defined in the DataStage Designer

using the graphical job sequence editor. Job sequences specify a

sequence of server or parallel jobs to run, together with different

activities to perform depending on success or failure of each step. Like

jobs, job sequences have properties which you can edit from the

DataStage Manager.

You can also use the Extended Job View feature of the DataStage

Manager to view the various components of a job or job sequence

held in the DataStage Repository. Note that you cannot actually edit

any job components from within the Manager, however.

Editing Job Properties
To edit job properties in the DataStage Manager, double-click a job in

the project tree in the DataStage Manager window or, alternatively,

select the job and choose File ➤ Properties… .
Manager Guide 5-1

Editing Job Properties Managing Jobs and Job Sequences
The Job Properties dialog box appears. The dialog box differs

depending on whether it is a server job, parallel job, or a mainframe

job. A server job has up to five pages: General, Parameters, Job

control, Dependencies, and Performance. Parallel job properties

are the same as server job properties except they have an Execution

page rather than a Performance page, and also have a Generated
OSH and Defaults page. A mainframe job has five pages: General,
Parameters, Environment, Extensions, and Operational meta
data.

Server Job and Parallel Job Properties
Server jobs
and
Parallel jobs

The General page is as follows:

It has the following fields:

Category. The category to which the job belongs.

Job version number. The version number of the job. A job
version number has several components:

– The version number N.n.n. This number checks the
compatibility of the job with the version of DataStage installed.
This number is automatically set when DataStage is installed
and cannot be edited.

– The release number n.N.n. This number is automatically
incremented every time you release a job. For more
information about releasing jobs, see "Debugging, Compiling,
and Releasing a Job" in Server Job Developer’s Guide.
5-2 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
– The bug fix number n.n.N. This number reflects minor changes
to the job design or properties. To change this number, select it
and enter a new value directly or use the arrow buttons to
increase the number.

Before-job subroutine and Input value. Optionally contain the
name (and input parameter value) of a subroutine that is executed
before the job runs. For example, you can specify a routine that
prepares the data before processing starts.

Choose a routine from the drop-down list box. This list box

contains all the built routines defined as a Before/After
Subroutine under the Routines branch in the Repository. Enter

an appropriate value for the routine’s input argument in the Input

value field.

If you use a routine that is defined in the Repository, but which

was edited and not compiled, a warning message reminds you to

compile the routine when you close the Job Properties dialog

box.

If you installed or imported a job, the Before-job subroutine

field may reference a routine which does not exist on your system.

In this case, a warning message appears when you close the Job
Properties dialog box. You must install or import the “missing”

routine or choose an alternative one to use.

A return code of 0 from the routine indicates success. Any other

code indicates failure and causes a fatal error when the job is run.

After-job subroutine and Input value. Optionally contains the
name (and input parameter value) of a subroutine that is executed
after the job has finished. For example, you can specify a routine
that sends an electronic message when the job finishes.

Choose a routine from the drop-down list box. This list box

contains all the built routines defined as a Before/After
Subroutine under the Routines branch in the Repository. Enter

an appropriate value for the routine’s input argument in the Input

value field.

If you use a routine that is defined in the Repository, but which

was edited but not compiled, a warning message reminds you to

compile the routine when you close the Job Properties dialog

box.

A return code of 0 from the routine indicates success. Any other

code indicates failure and causes a fatal error when the job is run.
Manager Guide 5-3

Editing Job Properties Managing Jobs and Job Sequences
Only run after-job subroutine on successful job
completion. This option is enabled if you have selected an After-
job subroutine. If you select the option, then the After-job
subroutine will only be run if the job has successfully completed
running all its stages.

Web Service Enabled. This checkbox only appears only appears
for server jobs. It is only enabled if you have Web Services
installed.

Allow Multiple Instance. Select this to enable the DataStage
Director to run multiple instances of this job.

Enable hashed file cache sharing. Check this to enable
multiple processes to access the same hash file in cache (the
system checks if this is appropriate). This can save memory
resources and speed execution where you are, for example,
running multiple instances of the same job. This applies to server
jobs and to parallel jobs that used server functionality in container
stages.

Collation sequence file. Parallel jobs only. Allows you to specify
a file which contains collation specification sequences. This allows
you to sort data using the sequences that apply to different
locales.

Short job description. An optional brief description of the job.

Full job description. An optional detailed description of the job.

Parallel job properties have an additional check box:

Enable Runtime Column Propagation for new links. This checkbox
appears if you have selected Enable Runtime Column propagation
for Parallel jobs for this project in the DataStage Administrator.
Check it to enable runtime column propagation by default for all
new links on this job (see "Runtime Column Propagation" in
Parallel Job Developer’s Guide for a description).

If you installed or imported a job, the After-job subroutine field may

reference a routine that does not exist on your system. In this case, a

warning message appears when you close the Job Properties dialog

box. You must install or import the “missing” routine or choose an

alternative one to use.

Specifying Job Parameters
Server jobs
and
Parallel jobs

Job parameters allow you to design flexible, reusable jobs. If you

want to process data based on the results for a particular week,

location, or product you can include these settings as part of your job

design. However, when you want to use the job again for a different

week or product, you must edit the design and recompile the job.
5-4 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
Instead of entering inherently variable factors as part of the job

design, you can set up parameters which represent processing

variables.

For server and parallel jobs, you are prompted for values when you

run or schedule the job.

Job parameters are defined, edited, and deleted in the Parameters p

age of the Job Properties dialog box.

All job parameters are defined by editing the empty row in the Job

Parameters grid. For more information about adding and deleting

rows, or moving between the cells of a grid, see Appendix A, “Editing

Grids.”

Warning Before you remove a job parameter definition, you

must make sure that you remove the references to this

parameter in your job design. If you do not do this,

your job may fail to run.

You can also use the Parameters page to set different values for

environment variables while the job runs. The settings only take effect

at run-time, they do not affect the permanent settings of environment

variables.

The server job Parameters page is as follows:

The Job Parameters grid has the following columns:

Parameter name. The name of the parameter.

Prompt. Text used as the field name in the run-time dialog box.
Manager Guide 5-5

Editing Job Properties Managing Jobs and Job Sequences
Type. The type of the parameter (to enable validation).

Default Value. The default setting for the parameter.

Help text. The text that appears if a user clicks Property Help in
the Job Run Options dialog box when running the job.

Job Parameters

Specify the type of the parameter by choosing one of the following

from the drop-down list in the Type column:

String. The default type.

Encrypted. Used to specify a password. The default value is set
by double-clicking the Default Value cell to open the Setup
Password dialog box. Type the password in the Encrypted
String field and retype it in the Confirm Encrypted String field.
It is displayed as asterisks.

Integer. Long int (–2147483648 to +2147483647).

Float. Double (1.79769313486232E308 to –4.94065645841247E–
324 and 4.94065645841247E–324 to –1.79769313486232E308).

Pathname. Enter a default pathname or file name by typing it into
Default Value or double-click the Default Value cell to open the
Browse dialog box.

List. A list of valid string variables. To set up a list, double-click the
Default Value cell to open the Setup List and Default dialog
box. Build a list by typing in each item into the Value field, then
5-6 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
clicking Add. The item then appears in the List box. To remove an
item, select it in the List box and click Remove. Select one of the
items from the Set Default drop-down list box to be the default.

Date. Date in the ISO format yyyy-mm-dd.

Time. Time in the format hh:mm:ss.

DataStage uses the parameter type to validate any values that are

subsequently supplied for that parameter, be it in the Director or the

Designer.

Job Parameter Defaults

You can supply default values for parameters, which are used unless

another value is specified when the job is run. For most parameter

types, you simply type an appropriate default value into the Default
Value cell. When specifying a password or a list variable, double-click

the Default Value cell to open further dialog boxes which allow you

to supply defaults.

Using Job Parameters in Server Jobs

To use the defined job parameters, you must specify them when you

edit a stage. When you edit a field that you wish to use a parameter

for, enter #Param#, where Param is the name of the job parameter.

The string #Param# is replaced by the value for the job parameter

when the job is run. (For more details about editing stages, see

DataStage Designer Guide).

A job parameter can be used in any stage or link property, for

example:

In Transformer stages. You can use job parameters in the
following fields when you edit a Transformer stage:
Manager Guide 5-7

Editing Job Properties Managing Jobs and Job Sequences
– Key Expression cell of a reference input link

– Constraint on an output link

– Derivation cell of an output link

You can use the Expression Editor to insert a job parameter in

these fields. For information about the Expression Editor, see "The

DataStage Expression Editor" in Server Job Developer’s Guide.

In Sequential File stages. You can use job parameters in the
following fields in the Sequential File Stage dialog box:

– File name field on the Inputs or Outputs page

In ODBC, UniVerse, or UniData 6 stages. You can use job
parameters in the following fields in the stage dialog box:

– Data source name field on the General tab on the Stage
page

– User name and Password fields on the General tab on the
Stage page

– Account name or Use directory path fields on the Details
tab on the Stage page (UniVerse and UniData 6 stages only)

– Table name field on the General tab on the Inputs or
Outputs page

– WHERE clause field on the Selection tab on the Outputs
page

– Value cell on the Parameters tab, which appears in the
Outputs page when you use a stored procedure (ODBC stage
only)

– Expression field on the Derivation dialog box, opened from
the Derivation column in the Outputs page of a UniVerse or
ODBC Stage dialog box

In Hashed File stages. You can use job parameters in the following
fields in the Hashed File Stage dialog box:

– Use account name or Use directory path fields on the
Stage page

– File name field on the General tab on the Inputs or Outputs
page

In UniData stages. You can use job parameters in the following
fields in the UniData Stage dialog box:

– Server, Database, User name, and Password fields on the
Stage page

– File name field on the General tab on the Inputs or Outputs
page
5-8 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
In Folder stages. You can use job parameters in the following
fields in the Folder stage dialog box:

– Properties in the Properties tab of the Stage page

– Properties in the Properties tab of the Outputs page

Before and after subroutines. You can use job parameters to
specify argument values for before and after subroutines.

Note You can also use job parameters in the Property name

field on the Properties tab in the stage type dialog box

when you create a plug-in. For more information, see

Server Job Developer’s Guide.

Using Job Parameters in Parallel Jobs

You can use the defined parameters by specifying them in place of

properties in a parallel job stage editor. Properties that you can

substitute a job parameter for have a right arrow next to the property

value field. Click on this to open a menu and click on the Job

Parameter item. This allows you to choose from the list of defined job

parameters.
Manager Guide 5-9

Editing Job Properties Managing Jobs and Job Sequences
Environment Variables

To set a runtime value for an environment variable:

1 Click Add Environment Variable… . The Choose environment
variable list appears.

This shows a list of the available environment variables (the

example shows parallel job environment variables).
5-10 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
2 Click on the environment variable you want to set at runtime. It
appears in the parameter grid, distinguished from job parameters
by being preceded by a $.

You can also click New… to define a new environment variable. A

dialog box appears allowing you to specify name and prompt. The

new variable is added to the Choose environment variable list

and you can click on it to add it to the parameters grid.

3 Set the required value in the Default Value column. This is the
only field you can edit for an environment variable. Depending on
the type of variable a further dialog box may appear to help you
enter a value.

Environment variables are set up using the DataStage Administrator,

see "Setting Environment Variables" in DataStage Administrator

Guide.

Job Control Routines
Server jobs
and
Parallel jobs

A job control routine provides the means of controlling other jobs

from the current job. A set of one or more jobs can be validated, run,

reset, stopped, and scheduled in much the same way as the current

job can be. You can, if required, set up a job whose only function is to

control a set of other jobs. The graphical job sequence editor (see

Chapter 6) produces a job control routine when you compile a job

sequence (you can view this in the job Sequence properties), but you

can set up you own control job by entering your own routine on the

Job control page of the Job Properties dialog box. The routine

uses a set of BASIC functions provided for the purpose. For more

information about these routines, see DataStage Developer’s Help or
Manager Guide 5-11

Editing Job Properties Managing Jobs and Job Sequences
"DataStage Development Kit (Job Control Interfaces)" in Server Job

Developer’s Guide. You can use this same code for running parallel

jobs. The Job control page provides a basic editor to let you

construct a job control routine using the functions.

The toolbar contains buttons for cutting, copying, pasting, and

formatting code, and for activating Find (and Replace). The main part

of this page consists of a multiline text box with scroll bars. The Add
Job button provides a drop-down list box of all the server and parallel

jobs in the current project. When you select a compiled job from the

list and click Add, the Job Run Options dialog box appears, allowing

you to specify any parameters or run-time limits to apply when the

selected job is run. The job will also be added to the list of

dependencies (see "Specifying Job Dependencies" on page 5-14).

When you click OK in the Job Run Options dialog box, you return to

the Job control page, where you will find that DataStage has added

job control code for the selected job. The code sets any required job

parameters and/or limits, runs the job, waits for it to finish, then tests

for success.

Alternatively, you can type your routine directly into the text box on

the Job control page, specifying jobs, parameters, and any run-time

limits directly in the code.

The following is an example of a job control routine. It schedules two

jobs, waits for them to finish running, tests their status, and then

schedules another one. After the third job has finished, the routine

gets its finishing status.

* get a handle for the first job
Hjob1 = DSAttachJob("DailyJob1",DSJ.ERRFATAL)
* set the job's parameters
5-12 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
Dummy = DSSetParam(Hjob1,"Param1","Value1")
* run the first job
Dummy = DSRunJob(Hjob1,DSJ.RUNNORMAL)

* get a handle for the second job
Hjob2 = DSAttachJob("DailyJob2",DSJ.ERRFATAL)
* set the job's parameters
Dummy = DSSetParam(Hjob2,"Param2","Value2")
* run the second job
Dummy = DSRunJob(Hjob2,DSJ.RUNNORMAL)

* Now wait for both jobs to finish before scheduling the third job
Dummy = DSWaitForJob(Hjob1)
Dummy = DSWaitForJob(Hjob2)

* Test the status of the first job (failure causes routine to exit)
J1stat = DSGetJobInfo(Hjob1, DSJ.JOBSTATUS)
If J1stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob1 failed","JobControl")
End

* Test the status of the second job (failure causes routine to
* exit)
J2stat = DSGetJobInfo(Hjob2, DSJ.JOBSTATUS)
If J2stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob2 failed","JobControl")
End

* Now get a handle for the third job
Hjob3 = DSAttachJob("DailyJob3",DSJ.ERRFATAL)
* and run it
Dummy = DSRunJob(Hjob3,DSJ.RUNNORMAL)
* then wait for it to finish
Dummy = DSWaitForJob(Hjob3)

* Finally, get the finishing status for the third job and test it
J3stat = DSGetJobInfo(Hjob3, DSJ.JOBSTATUS)
If J3stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob3 failed","JobControl")
End

Possible status conditions returned for a job are as follows.

A job that is in progress is identified by:

DSJS.RUNNING – Job running; this is the only status that means
the job is actually running.

Jobs that are not running may have the following statuses:

DSJS.RUNOK – Job finished a normal run with no warnings.

DSJS.RUNWARN – Job finished a normal run with warnings.

DSJS.RUNFAILED – Job finished a normal run with a fatal error.

DSJS.VALOK – Job finished a validation run with no warnings.

DSJS.VALWARN – Job finished a validation run with warnings.

DSJS.VALFAILED – Job failed a validation run.
Manager Guide 5-13

Editing Job Properties Managing Jobs and Job Sequences
DSJS.RESET – Job finished a reset run.

DSJS.STOPPED – Job was stopped by operator intervention
(cannot tell run type).

Specifying Job Dependencies
Server jobs
and
Parallel jobs

The Dependencies page of the Job Properties dialog box allows

you to specify any dependencies a server or parallel job has. These

may be functions, routines, or other jobs that the job requires in order

to run successfully. This is to ensure that, if the job is packaged for use

on another system, all the required components will be included in

the package.

Enter details as follows:

Type. The type of item upon which the job depends. Choose from
the following:

– Job. Released or unreleased job. If you have added a job on
the Job control page (see page 5-11), this will automatically
be included in the dependencies. If you subsequently delete
the job from the job control routine, you must remove it from
the dependencies list manually.

– Local. Locally cataloged BASIC functions and subroutines (i.e.,
Transforms and Before/After routines).

– Global. Globally cataloged BASIC functions and subroutines
(i.e., Custom UniVerse functions).

– File. A standard file.
5-14 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
– ActiveX. An ActiveX (OLE) object (not available on UNIX-
based systems).

Name. The name of the function or routine. The name required
varies according to the Type of the dependency:

– Job. The name of a released, or unreleased, job.

– Local. The catalog name.

– Global. The catalog name.

– File. The file name.

– ActiveX. Server jobs only. The Name entry is actually
irrelevant for ActiveX objects. Enter something meaningful to
you (ActiveX objects are identified by the Location field).

Location. The location of the dependency. A browse dialog box is
available to help with this. This location can be an absolute path,
but it is recommended you specify a relative path using the
following environment variables:

– %SERVERENGINE% – DataStage engine account directory
(normally C:\Ascential\DataStage\ServerEngine).

– %PROJECT% – Current project directory.

– %SYSTEM% – System directory on Windows or /usr/lib on
UNIX.

The Browse Files dialog box is shown below. You cannot navigate to

the parent directory of an environment variable.

Specifying Performance Enhancements
Server Jobs The Performance page allows you to improve the performance of

the job by specifying the way the system divides jobs into processes.
Manager Guide 5-15

Editing Job Properties Managing Jobs and Job Sequences
For a full explanation of this, see "Optimizing Performance in Server

Jobs" in Server Job Developer’s Guide.

These settings can also be made on a project-wide basis using the

DataStage Administrator (see "Tunables Page" in DataStage

Administrator Guide).

The settings are:

Use Project Defaults. Select this to use whatever settings have
been made in the DataStage Administrator for the project to which
this job belongs.

Enable Row Buffering. There are two types of mutually
exclusive row buffering:

– In process. You can improve the performance of most
DataStage Server jobs by turning in-process row buffering on
and recompiling the job. This allows connected active stages
to pass data via buffers rather than row by row.

– Inter process. Use this if you are running server jobs on an
SMP parallel system. This enables the job to run using a
separate process for each active stage, that will run
simultaneously on a separate processor.

Note You cannot use row-buffering of either sort if your job

uses COMMON blocks in transform functions to pass

data between stages. This is not recommended

practice, and it is advisable to redesign your job to use

row buffering rather than COMMON blocks.
5-16 Manager Guide

Managing Jobs and Job Sequences Editing Job Properties
Buffer size. Specifies the size of the buffer used by in-process or
inter-process row buffering. defaults to 128 Kb.

Timeout. Only applies when inter-process row buffering is used.
Specifies the time one process will wait to communicate with
another via the buffer before timing out. Defaults to 10 seconds.

Specifying Execution Page Options
Parallel jobs You can switch tracing on for parallel jobs to help you debug them.

The page has the following options:

Compile in trace mode. Select this so that you can use the
tracing facilities after you have compiled this job.

Force Sequential Mode. Select this to force the job to run
sequentially on the conductor node.

Limits per partition. These options enable you to limit data in
each partition to make problems easier to diagnose:

– Number of Records per Link. This limits the number of
records that will be included in each partition.

Log Options Per Partition. These options enable you to specify
how log data is handled for partitions. This can cut down the data
in the log to make problems easier to diagnose.

– Skip count. Set this to N to skip the first N records in each
partition.

– Period. Set this to N to print every Nth record per partition,
starting with the first record. N must be >= 1.
Manager Guide 5-17

Editing Job Properties Managing Jobs and Job Sequences
Enable Runtime Column Propagation for new links. This
checkbox appears if you have selected Enable Runtime Column
propagation for Parallel jobs for this project in the DataStage
Administrator. Check it to enable runtime column propagation by
default for all new links on this job (see "Runtime Column
Propagation" in Parallel Job Developer’s Guide for a description).

Advanced Runtime Options. This field allows experienced
Orchestrate users to enter parameters that are added to the OSH
command line. Under normal circumstances this should be left
blank.

Generated OSH Page
This page appears for parallel jobs if you have selected the

Generated OSH visible option in the DataStage Administrator (see

"Parallel Page" in DataStage Administrator Guide). The page allows

you to view the code generated by parallel jobs when they are

compiled.

Specifying Parallel Job Defaults
You specify date/time and number formats for a job on the Defaults

page:

The page shows the current defaults for date, time, timestamp, and

decimal separator. To change the default, clear the corresponding

Project default check box, then either select a new format from the

drop down list or type in a new format.
5-18 Manager Guide

Managing Jobs and Job Sequences Mainframe Job Properties
Mainframe Job Properties
Mainframe jobs The mainframe job General page is as follows:

Category. The category to which the job belongs.

Job version number. The version number of the job. A job
version number has several components:

– The version number N.n.n. This number checks the
compatibility of the job with the version of DataStage installed.
This number is automatically set when DataStage is installed
and cannot be edited.

– The release number n.N.n. This number is automatically
incremented every time you release a job.

– The bug fix number n.n.N. This number reflects minor changes
to the job design or properties. To change this number, select it
and enter a new value directly or use the arrow buttons to
increase the number.

Century break year. Where a two-digit year is used in the data,
this is used to specify the year that is used to separate 19nn years
from 20nn years.

Perform expression semantic checking. Click this to enable
semantic checking in the mainframe expression editor. Be aware
that selecting this can incur performance overheads. This is most
likely to affect jobs with large numbers of column derivations.
Manager Guide 5-19

Mainframe Job Properties Managing Jobs and Job Sequences
Generate operational meta data. Click this to have the job
generate operational meta data for use in MetaStage. Clicking this
enables the Operational meta data page.

NULL indicator location. Select Before column or After
column to specify the position of NULL indicators in mainframe
column definitions.

NULL indicator value. Specify the character used to indicate
nullability of mainframe column definitions. NULL indicators must
be single-byte, printable characters. Specify one of the following:

– A single character value (1 is the default)

– An ASCII code in the form of a three-digit decimal number
from 000 to 255

– An ASCII code in hexadecimal form of %Hnn or %hnn where
'nn' is a hexadecimal digit (0-9, a-f, A-F)

Non-NULL Indicator Value. Specify the character used to
indicate non-NULL column definitions in mainframe flat files.
NULL indicators must be single-byte, printable characters. Specify
one of the following:

– A single character value (0 is the default)

– An ASCII code in the form of a three-digit decimal number
from 000 to 255

– An ASCII code in hexadecimal form of %Hnn or %hnn where
'nn' is a hexadecimal digit (0-9, a-f, A-F)

Short job description. An optional brief description of the job.

Full job description. An optional detailed description of the job.

Click OK to record your changes in the job design. Changes are not

saved to the Repository until you save the job design.

Specifying Mainframe Job Parameters
Mainframe jobs Instead of entering inherently variable factors as part of the job design

you can set up parameters which represent processing variables.

For mainframe jobs the parameter values are placed in a file that is

accessed when the job is compiled and run on the mainframe.

Job parameters are defined, edited, and deleted in the Parameters p

age of the Job Properties dialog box.

All job parameters are defined by editing the empty row in the Job

Parameters grid. For more information about adding and deleting

rows, or moving between the cells of a grid, see Appendix A, “Editing

Grids.”
5-20 Manager Guide

Managing Jobs and Job Sequences Mainframe Job Properties
Warning Before you remove a job parameter definition, you

must make sure that you remove the references to this

parameter in your job design. If you do not do this,

your job may fail to run.

The mainframe job Parameters page is as follows:

It contains the following fields and columns:

Parameter file name. The name of the file contain the
parameters.

COBOL DD name. The DD name for the location of the file.

Name. The name of the parameter.

Type. The type of the parameter. It can be one of:

– Char. A fixed-length string where the Length attribute is used
to determine its length. The COBOL program defines this
parameter with PIC X(length).

– Decimal. A COBOL signed zoned-decimal number, the
precision is indicated by Length and the scale by Scale. The
COBOL program defines this parameter with PIC S9(length-
scale)V9(scale).

– Integer. A COBOL signed zoned-decimal number, where the
Length attribute is used to define its length. The COBOL
program defines this parameter with PIC S9(length).

Length. The length of a char or a decimal parameter.

Scale. The precision of a decimal parameter.

Description. Optional description of the parameter.
Manager Guide 5-21

Mainframe Job Properties Managing Jobs and Job Sequences
Using Mainframe Job Parameters

You can use job parameters as part of mainframe expressions. The

Expression Editor offers a list of the job parameters that have been

defined. See DataStage Enterprise MVS Edition: Mainframe Job

Developer’s Guide for a description of the Expression Editor.

The actual values for job parameters are specified in a separate file

which is uploaded to the mainframe with the job. See DataStage

Enterprise MVS Edition: Mainframe Job Developer’s Guide for more

details.

Specifying Mainframe Job Environment Properties
Mainframe jobs The environment properties of a mainframe job in the Job

Properties dialog box allow you to specify information that is used

when code is generated for mainframe jobs.

It contains the following fields:

DBMS. If your design includes relational stages, the code
generation process looks here for database details to include in
the JCL files. If these fields are blank, it will use the project
defaults as specified in the DataStage Administrator.

– System name. The name of the database used by the
relational stages in the job. If not specified, the project default
is used.

– User name and Password. These will be used throughout the
job. If not specified, the project default is used.
5-22 Manager Guide

Managing Jobs and Job Sequences Mainframe Job Properties
– Rows per commit. Defines the number of rows that are
written to a DB2 database before they are committed. The
default setting is 0, which means to commit after all rows are
processed. If you enter a number, the commit occurs after the
specified number of rows are processed. For inserts, only one
row is written. For updates or deletes, multiple rows may be
written. However, if an error is detected, a rollback occurs.

Teradata. If your design includes Teradata stages, the code
generation process looks here for database details to include in
the JCL files.

– TDP id and Account id. The connection details used in
Teradata stages throughout the job.

– User ID and Password. These will be used throughout the
job.

Specifying Extension Variable Values
If you have customized the JCL templates and added extension

variables, you can supply values for these variables for a particular job

in the Extension page of the Job Properties dialog box.

It contains a grid with the following columns:

Name. The name of the extension variable. The name must begin
with an alphabetic character and can contain only alphabetic or
numeric characters. It can be upper or lower case or mixed.

Value. The value that the extension variable will take in this job.
No validation is done on the value.
Manager Guide 5-23

Job Sequence Properties Managing Jobs and Job Sequences
Specifying Operational Meta Data
If your job is going to generate operational meta data for use with

MetaStage you can specify the details of how the meta data will be

handled on this page.

The fields are:

Machine Profile. If you have already specified a machine profile
that contains some or all of the required details, you can select it
from the drop-down list and the relevant fields will be
automatically filled in.

IP address. IP Host name/address for the machine running your
program and generating the operational meta data.

File exchange method. Choose between FTP and connect direct.

User name. The user name for connecting to the machine.

Password. The password for connecting to the machine

XML file target directory and Dataset name for XML file.
Specify the target directory and dataset name for the XML file
which will record the operational meta data.

Job Sequence Properties
To edit job properties in the DataStage Manager, double-click a job

sequence in the project tree in the DataStage Manager window or,

alternatively, select the job sequence and choose File ➤ Properties…
. The Properties dialog box appears, it has four pages; General,
Parameters, Job Control, and Dependencies.
5-24 Manager Guide

Managing Jobs and Job Sequences Job Sequence Properties
The General page is as follows:

The General page contains:

Category. The job category containing the job sequence.

Version number. The version number of the job sequence. A
version number has several components:

– The version number N.n.n. This number checks the
compatibility of the job with the version of DataStage installed.
This number is automatically set when DataStage is installed
and cannot be edited.

– The release number n.N.n. This number is automatically
incremented every time you release a job sequence. (You can
release a job sequence in the same way as you release a job.)

– The bug fix number n.n.N. This number reflects minor changes
to the job sequence design or properties. To change this
number, select it and enter a new value directly or use the
arrow buttons to increase the number.

Allow Multiple Instance. Select this to enable the DataStage
Director to run multiple instances of this job sequence.

The compilation options specify details about restarting the sequence

if one of the jobs fails for some reason.

Add checkpoints so sequence is restartable on failure.
Select this to enable restarting for this job sequence. If you have
enabled this feature on a project-wide basis in the DataStage
Administrator, this check box is selected by default when the
sequence is first created.
Manager Guide 5-25

Job Sequence Properties Managing Jobs and Job Sequences
Automatically handle job runs that fail. Select this to have
DataStage automatically handle failing jobs within a sequence
(this means that you do not have to have a specific trigger for job
failure). When you select this option, the following happens
during job sequence compilation:

– For each job activity that does not have a specific trigger for
error handling, code is inserted that branches to an error
handling point. (If an activity has either a specific failure
trigger, or if it has an OK trigger and an otherwise trigger, it is
judged to be handling its own aborts, so no code is inserted.)

If the compiler has inserted error-handling code the following

happens if a job within the sequence fails:

– A warning is logged in the sequence log about the job not
finishing OK.

– If the job sequence has an exception handler defined, the code
will go to it.

– If there is no exception handler, the sequence aborts with a
suitable message.

If you have enabled this feature on a project-wide basis in the

DataStage Administrator, this check box is selected by default

when the sequence is first created.

Note that, when using this feature, you should avoid using any

routines within the job sequence that return any value other than

0 to indicate success, as non-zero values will always be taken as

indicating failure (all routines supplied with DataStage return 0).

Log warnings after activities that finish with status other
than OK. Select this to have the sequence log a message in the
sequence log if it runs a job that finished with a non-zero
completion code (for example, warnings or fatal errors). Messages
are also logged for routine or command activities that fail (i.e.,
return a non-zero completion code).

Log report messages after each job run. Select this to have
the sequence log a status report for a job immediately the job run
finishes. The following is an example of the information that will
be logged:

**
STATUS REPORT FOR JOB: jobname
Generated: 2003-10-31 16:13:09
Job start time=2003-10-31 16:13:07
Job end time=2003-10-31 16:13:07
Job elapsed time=00:00:00
Job status=1 (Finished OK)

Stage: stagename1, 10000 rows input
Stage start time=2003-10-31 16:17:27, end time=2003
-10-31 16:17:27, elapsed=00:00:00
5-26 Manager Guide

Managing Jobs and Job Sequences Job Sequence Properties
Link: linkname1, 10000 rows
Stage: stagename2, 10000 rows input
Stage start time=2003-10-31 16:17:28, end time=2003
-10-31 16:17:28, elapsed=00:00:00

Link: linkname2, 10000 rows
Link: linkname3, 10000 rows

Short Description. An optional brief description of the job
sequence.

Full Description. An optional detailed description of the job
sequence.

The Parameters page is as follows:

The Parameters page allows you to specify parameters for the job

sequence. Values for the parameters are collected when the job

sequence is run in the Director. The parameters you define here are

available to all the activities in the job sequence.

The Parameters grid has the following columns:

Parameter name. The name of the parameter.

Prompt. Text used as the field name in the run-time dialog box.

Type. The type of the parameter (to enable validation).

Default Value. The default setting for the parameter.

Help text. The text that appears if a user clicks Property Help in
the Job Run Options dialog box when running the job sequence.

The Job Control page displays the code generated when the job

sequence is compiled.
Manager Guide 5-27

Job Sequence Properties Managing Jobs and Job Sequences
The Dependencies page is as follows:

The Dependencies page of the Properties dialog box shows you

the dependencies the job sequence has. These may be functions,

routines, or jobs that the job sequence runs. Listing the dependencies

of the job sequence here ensures that, if the job sequence is packaged

for use on another system, all the required components will be

included in the package.

The details as follows:

Type. The type of item upon which the job sequence depends:

– Job. Released or unreleased job. If you have added a job to the
sequence, this will automatically be included in the
dependencies. If you subsequently delete the job from the
sequence, you must remove it from the dependencies list
manually.

– Local. Locally cataloged BASIC functions and subroutines (i.e.,
Transforms and Before/After routines).

– Global. Globally cataloged BASIC functions and subroutines
(i.e., Custom UniVerse functions).

– File. A standard file.

– ActiveX. An ActiveX (OLE) object (not available on UNIX-
based systems).

Name. The name of the function or routine. The name required
varies according to the Type of the dependency:
5-28 Manager Guide

Managing Jobs and Job Sequences Using Extended Job View
– Job. The name of a released, or unreleased, job.

– Local. The catalog name.

– Global. The catalog name.

– File. The file name.

– ActiveX. The Name entry is actually irrelevant for ActiveX
objects. Enter something meaningful to you (ActiveX objects
are identified by the Location field).

Location. The location of the dependency. A browse dialog box is
available to help with this. This location can be an absolute path,
but it is recommended you specify a relative path using the
following environment variables:

– %SERVERENGINE% – DataStage engine account directory
(normally C:\Ascential\DataStage\ServerEngine).

– %PROJECT% – Current project directory.

– %SYSTEM% – System directory on Windows or /usr/lib on
UNIX.

Using Extended Job View
Extended Job View enables you to view the various components of a

job or job sequence from within the Manager. To use it, select View ➤
Extended Job View.

With Extended Job View on, the hierarchy of Job components

becomes visible in the DataStage Manager. The hierarchy is displayed

in the tree view (left pane), and items in the list view (right pane).

The hierarchy for jobs is as follows:

1 Job Containers

2 Jobs

3 Stages

4 Links

5 Columns

When a column is selected in the tree view, the list view displays a

derivation trail for that column. This shows the columns from which

the selected column was derived in the form Stage.Link.Column.

Extended Job View also indicates where one job is dependent on

another. Jobs controlled by a job will be shown as subitems of that

job under a Dependencies item.
Manager Guide 5-29

Using Extended Job View Managing Jobs and Job Sequences
The hierarchy for job sequences is as follows:

1 Job Containers

2 Jobs Sequences

3 Activities

4 Triggers

The dependencies of the job sequence are shown as subitems under a

Dependencies item.

When you select a job or job sequence in the tree view, a shortcut

menu becomes available:

Edit. Opens the job or job sequence in the DataStage Designer,
ready for editing.

Event Log. Opens the job or job sequence in the DataStage
Director, showing the relevant job log.

Properties. Opens the Properties dialog box for the job or job
sequence.
5-30 Manager Guide

6
Managing Shared Containers

Shared containers allow you to define portions of job design in a form

that can be reused by other jobs. Shared containers are defined in the

DataStage Designer, and stored in the DataStage Repository. You can

perform certain management tasks on shared containers from the

DataStage Manager in a similar way to managing DataStage Jobs

from the Manager.

Each shared container in a project has properties, including optional

descriptions and job parameters. You can view and edit the job

properties from the DataStage Designer or the DataStage Manager.

To edit shared container properties in the DataStage Manager, double-

click a shared container in the project tree in the DataStage Manager

window, alternatively you can select the shared container and choose

File ➤ Properties… or click the Properties button on the toolbar.
Manager Guide 6-1

Managing Shared Containers
The Container Properties dialog box appears, it has two pages

General and Parameters.

The General page has the following fields:

Category. The category to which the job belongs.

Container version number. The version number of the
container. A container version number has several components:

– The version number N.n.n. This number checks the
compatibility of the job with the version of DataStage installed.
This number is automatically set when DataStage is installed
and cannot be edited.

– The bug fix number n.n.N. This number reflects minor changes
to the container design or properties. To change this number,
select it and enter a new value directly or use the arrow buttons
to increase the number.

Short job description. An optional brief description of the
container.

Full job description. An optional detailed description of the
container.

Specifying Shared Container Parameters
Container parameters allow you to design flexible, reusable

containers. Instead of entering inherently variable factors as part of

the container design, you can set up parameters which represent

processing variables, this allows you to reuse the container in

different jobs.
6-2 Manager Guide

Managing Shared Containers
Container parameters are defined, edited, and deleted in the

Parameters page of the Container Properties dialog box. When

you use the container in an actual job design, you specify actual

values for the parameters in the Shared Container stage Properties

page in the job design.

All container parameters are defined by editing the empty row in the

Parameters grid. For more information about adding and deleting

rows, or moving between the cells of a grid, see Appendix A, “Editing

Grids.”

The Parameters page is as follows

The Job Parameters grid has the following columns:

Parameter name. The name of the parameter.

Type. The type of the parameter (to enable validation).

Help text. The text that appears at the bottom of the Shared
Container stage Properties page when you select this parameter
ready to specify a value for it.

Specify the type of the parameter by choosing one of the following

from the drop-down list in the Type column:

String. The default type.

Integer. Long int (–2147483648 to +2147483647).

Float. Double (1.79769313486232E308 to –4.94065645841247E–
324 and 4.94065645841247E–324 to –1.79769313486232E308).

Pathname. Enter a default pathname or file name by typing it into
Default Value or double-click the Default Value cell to open the
Browse dialog box.
Manager Guide 6-3

Managing Shared Containers
Date. Date in the format yyyy-mm-dd

Time. Time in the format hh:mm:ss.
6-4 Manager Guide

7
Managing Stages

All the stage types that you can use in your DataStage jobs have

definitions which you can view under the Stage Type category in the

project tree. All of the definitions for built-in stage types are read-only.

This is true for Server jobs, Parallel Jobs and Mainframe jobs. The

definitions for plug-in stages supplied by Ascential are also read-only.

There are two types of stage whose definitions you can alter:

Parallel job custom stages. You can define new stage types for
Parallel jobs by creating a new stage type and editing its definition
in the DataStage Manager.

Custom plug-in stages. Where you have defined your own
plug-in stages you can register these with the DataStage
Repository and specify their definitions in the DataStage Manager.

Custom Stages for Parallel Jobs
There are three different types of stage that you can define:

Custom. This allows knowledgeable Orchestrate users to specify
an Orchestrate operator as a DataStage stage. This is then
available to use in DataStage Parallel jobs.

Build. This allows you to design and build your own operator as a
stage to be included in DataStage Parallel Jobs.

Wrapped. This allows you to specify a UNIX command to be
executed by a DataStage stage. You define a wrapper file that in
turn defines arguments for the UNIX command and inputs and
outputs.

The DataStage Manager provides an interface that allows you to

define a new DataStage Parallel job stage of any of these types. This
Manager Guide 7-1

Custom Stages for Parallel Jobs Managing Stages
interface is also available from the Repository window of the

DataStage Designer.

Naming Parallel Stage Types
The rules for naming parallel stage typesare as follows:

Stage type names can be any length.

They must begin with an alphabetic character.

They can contain alphanumeric, period, and underscore
characters.

Stage type category names can be any length and consist of any

characters, including spaces.

Defining Custom Stages
You can define a custom stage in order to include an Orchestrate

operator in a DataStage stage which you can then include in a

DataStage job. The stage will be available to all jobs in the project in

which the stage was defined. You can make it available to other

projects using the DataStage Manager Export/Import facilities. The

stage is automatically added to the job palette.

To define a custom stage type from the DataStage Manager:
7-2 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Custom from the main
menu or New Parallel Stage ➤ Custom from the shortcut
menu. The Stage Type dialog box appears.

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages.

– Category. The category that the new stage will be stored in
under the stage types branch of the Repository tree view. Type
in or browse for an existing category or type in the name of a
new one. The category also determines what group in the
palette the stage will be added to. Choose an existing category
to add to an existing group, or specify a new category to create
a new palette group.

– Parallel Stage type. This indicates the type of new Parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.

– Execution Mode. Choose the execution mode. This is the mode
that will appear in the Advanced tab on the stage editor. You
can override this mode for individual instances of the stage as
required, unless you select Parallel only or Sequential only. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the execution mode.
Manager Guide 7-3

Custom Stages for Parallel Jobs Managing Stages
– Mapping. Choose whether the stage has a Mapping tab or
not. A Mapping tab enables the user of the stage to specify
how output columns are derived from the data produced by
the stage. Choose None to specify that output mapping is not
performed, choose Default to accept the default setting that
DataStage uses.

– Preserve Partitioning. Choose the default setting of the
Preserve Partitioning flag. This is the setting that will appear in
the Advanced tab on the stage editor. You can override this
setting for individual instances of the stage as required. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the preserve partitioning flag.

– Partitioning. Choose the default partitioning method for the
stage. This is the method that will appear in the Inputs page
Partitioning tab of the stage editor. You can override this
method for individual instances of the stage as required. See
"Partitioning Tab" in Parallel Job Developer’s Guide for a
description of the partitioning methods.

– Collecting. Choose the default collection method for the
stage. This is the method that will appear in the Inputs page
Partitioning tab of the stage editor. You can override this
method for individual instances of the stage as required. See
"Partitioning Tab" in Parallel Job Developer’s Guide for a
description of the collection methods.

– Operator. Enter the name of the Orchestrate operator that you
want the stage to invoke.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.
7-4 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
Go to the Links page and specify information about the links

allowed to and from the stage you are defining.

Use this to specify the minimum and maximum number of input

and output links that your custom stage can have, and to enable

the ViewData feature for target data (you cannot enable target

ViewData if your stage has any output links). When the stage is

used in a job design, a ViewData button appears on the Input

page, which allows you to view the data on the actual data target

(provided some has been written there).

In order to use the target ViewData feature, you have to specify an

Orchestrate operator to read the data back from the target. This

will usually be different to the operator that the stage has used to

write the data (i.e., the operator defined in the Operator field of

the General page). Specify the reading operator and associated

arguments in the Operator and Options fields.

If you enable target ViewData, a further field appears in the

Properties grid, called ViewData (see page 7-8).

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
version number to the stage so you can keep track of any
subsequent changes.

You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed
Manager Guide 7-5

Custom Stages for Parallel Jobs Managing Stages
in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the

32 x 32 Bitmap button and browse for the large bitmap file. Click

the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage..

5 Go to the Properties page. This allows you to specify the options
that the Orchestrate operator requires as properties that appear in
the Stage Properties tab. For custom stages the Properties tab
always appears under the Stage page.

6 Fill in the fields as follows:
7-6 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
– Property name. The name of the property.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage is

included in a job a drop-down list will offer a choice of the defined

input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what appears in

the list.

– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Repeats. Set this true if the property repeats (i.e., you can
have multiple instances of it).

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

operator as the option value. This will normally be a hidden

property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

operator as the option name, and any value specified in the

stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the operator as the option name. Typically used to

group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.
Manager Guide 7-7

Custom Stages for Parallel Jobs Managing Stages
Input Schema. Specifies that the property will contain a

schema string whose contents are populated from the Input

page Columns tab.

Output Schema. Specifies that the property will contain a

schema string whose contents are populated from the Output

page Columns tab.

None. This allows the creation of properties that do not

generate any osh, but can be used for conditions on other

properties (for example, for use in a situation where you have

mutually exclusive properties, but at least one of them must be

specified).

– Schema properties require format options. Select this
check box to specify that the stage being specified will have a
Format tab.

If you have enabled target ViewData on the Links page, the

following property is also displayed:

– ViewData. Select Yes to indicate that the value of this
property should be used when viewing data. For example, if
this property specifies a file to write to when the stage is used
in a job design, the value of this property will be used to read
the data back if ViewData is used in the stage.

If you select a conversion type of Input Schema or Output
Schema, you should note the following:

– Data Type is set to String.

– Required is set to Yes.

– The property is marked as hidden and will not appear on the
Properties page when the custom stage is used in a job
design.

If your stage can have multiple input or output links there would

be a Input Schema property or Output Schema property per-link.

When the stage is used in a job design, the property will contain

the following OSH for each input and/or output link:

–property_name record {format_props} (column_definition
{format_props}; …)

Where:

– property_name is the name of the property (usually ‘schema’)

– format_properties are formatting information supplied on the
Format page (if the stage has one).
7-8 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
– there is one column_definition for each column defined in the
Columns tab for that link. The format_props in this case refers
to per-column format information specified in the Edit
Column Meta Data dialog box.

Schema properties are mutually exclusive with schema file

properties. If your custom stage supports both, you should use the

Extended Properties dialog box to specify a condition of

“schemafile= “ for the schema property. The schema property is

then only valid provided the schema file property is blank (or does

not exist).

7 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:

– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– Specify that the property will be hidden and not appear in the
stage editor. This is primarily intended to support the case
where the underlying operator needs to know the JobName.
This can be passed using a mandatory String property with a
default value that uses a DS Macro. However, to prevent the
user from changing the value, the property needs to be hidden.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.
Manager Guide 7-9

Custom Stages for Parallel Jobs Managing Stages
– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.

8 If your custom stage will create columns, go to the Mapping
Additions page. It contains a grid that allows for the specification
of columns created by the stage. You can also specify that column
details are filled in from properties supplied when the stage is
used in a job design, allowing for dynamic specification of
columns.

The grid contains the following fields:

– Column name. The name of the column created by the stage.
You can specify the name of a property you specified on the
Property page of the dialog box to dynamically allocate the
column name. Specify this in the form #property_name#, the
created column will then take the value of this property, as
specified at design time, as the name of the created column.
7-10 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
– Parallel type. The type of the column (this is the underlying
data type, not the SQL data type). Again you can specify the
name of a property you specified on the Property page of the
dialog box to dynamically allocate the column type. Specify
this in the form #property_name#, the created column will then
take the value of this property, as specified at design time, as
the type of the created column. (Note that you cannot use a
repeatable property to dynamically allocate a column type in
this way.)

– Nullable. Choose Yes or No to indicate whether the created
column can contain a null.

– Conditions. Allows you to enter an expression specifying the
conditions under which the column will be created. This could,
for example, depend on the setting of one of the properties
specified in the Property page.

You can propagate the values of the Conditions fields to other

columns if required. Do this by selecting the columns you want to

propagate to, then right-clicking in the source Conditions field

and choosing Propagate from the shortcut menu. A dialog box

asks you to confirm that you want to propagate the conditions to

all columns.

Defining Build Stages
You define a Build stage to enable you to provide a custom operator

that can be executed from a DataStage Parallel job stage. The stage

will be available to all jobs in the project in which the stage was

defined. You can make it available to other projects using the

DataStage Manager Export facilities. The stage is automatically added

to the job palette.

When defining a Build stage you provide the following information:

Description of the data that will be input to the stage.

Whether records are transferred from input to output. A transfer
copies the input record to the output buffer. If you specify auto
transfer, the operator transfers the input record to the output
record immediately after execution of the per record code. The
code can still access data in the output buffer until it is actually
written.

Any definitions and header file information that needs to be
included.

Code that is executed at the beginning of the stage (before any
records are processed).
Manager Guide 7-11

Custom Stages for Parallel Jobs Managing Stages
Code that is executed at the end of the stage (after all records have
been processed).

Code that is executed every time the stage processes a record.

Compilation and build details for actually building the stage.

The Code for the Build stage is specified in C++. There are a number of

macros available to make the job of coding simpler . There are also a

number of header files available containing many useful functions.

See Parallel Job Advanced Developer’s Guide.

When you have specified the information, and request that the stage

is generated, DataStage generates a number of files and then

compiles these to build an operator which the stage executes. The

generated files include:

Header files (ending in .h)

Source files (ending in .c)

Object files (ending in .so)

The following shows a build stage in diagrammatic form:

To define a Build stage from the DataStage Manager:

Input
buffer

Output
buffer

Transfer directly copies records from input buffer
to output buffer. Records can still be accessed by

code while in the buffer.

Per-record code.
Used to process

each record

Input port - records from
 input link

Output port - records to
output link

Build Stage

Post-loop code -
executed after all

records are processed

Pre-loop code -
executed before any

records are processed
7-12 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Build from the main
menu or New Parallel Stage ➤ Build from the shortcut menu.
The Stage Type dialog box appears:

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages.

– Category. The category that the new stage will be stored in
under the stage types branch. Type in or browse for an existing
category or type in the name of a new one. The category also
determines what group in the palette the stage will be added
to. Choose an existing category to add to an existing group, or
specify a new category to create a new palette group.

– Class Name. The name of the C++ class. By default this takes
the name of the stage type.

– Parallel Stage type. This indicates the type of new parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.

– Execution mode. Choose the default execution mode. This is
the mode that will appear in the Advanced tab on the stage
editor. You can override this mode for individual instances of
the stage as required, unless you select Parallel only or
Sequential only. See "Advanced Tab" in Parallel Job
Developer’s Guide for a description of the execution mode.
Manager Guide 7-13

Custom Stages for Parallel Jobs Managing Stages
– Preserve Partitioning. This shows the default setting of the
Preserve Partitioning flag, which you cannot change in a Build
stage. This is the setting that will appear in the Advanced tab
on the stage editor. You can override this setting for individual
instances of the stage as required. See "Advanced Tab" in
Parallel Job Developer’s Guide for a description of the preserve
partitioning flag.

– Partitioning. This shows the default partitioning method,
which you cannot change in a Build stage. This is the method
that will appear in the Inputs Page Partitioning tab of the
stage editor. You can override this method for individual
instances of the stage as required. See "Partitioning Tab" in
Parallel Job Developer’s Guide for a description of the
partitioning methods.

– Collecting. This shows the default collection method, which
you cannot change in a Build stage. This is the method that will
appear in the Inputs Page Partitioning tab of the stage editor.
You can override this method for individual instances of the
stage as required. See "Partitioning Tab" in Parallel Job
Developer’s Guide for a description of the collection methods.

– Operator. The name of the operator that your code is defining
and which will be executed by the DataStage stage. By default
this takes the name of the stage type.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
release number to the stage so you can keep track of any
subsequent changes.

You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed

in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the

32 x 32 Bitmap button and browse for the large bitmap file. Click
7-14 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage.

5 Go to the Properties page. This allows you to specify the options
that the Build stage requires as properties that appear in the Stage
Properties tab. For custom stages the Properties tab always
appears under the Stage page.

Fill in the fields as follows:
Manager Guide 7-15

Custom Stages for Parallel Jobs Managing Stages
– Property name. The name of the property. This will be passed
to the operator you are defining as an option, prefixed with ‘-’
and followed by the value selected in the Properties tab of the
stage editor.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage is

included in a job a drop-down list will offer a choice of the defined

input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what appears in

the list.

– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

operator as the option value. This will normally be a hidden

property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

operator as the option name, and any value specified in the

stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the operator as the option name. Typically used to

group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.
7-16 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
6 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:

– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.

– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.
Manager Guide 7-17

Custom Stages for Parallel Jobs Managing Stages
7 Click on the Build page. The tabs here allow you to define the
actual operation that the stage will perform.

The Interfaces tab enable you to specify details about inputs to

and outputs from the stage, and about automatic transfer of

records from input to output. You specify port details, a port being

where a link connects to the stage. You need a port for each

possible input link to the stage, and a port for each possible output

link from the stage.

You provide the following information on the Input sub-tab:

– Port Name. Optional name for the port. The default names for
the ports are in0, in1, in2 … . You can refer to them in the code
using either the default name or the name you have specified.

– Alias. Where the port name contains non-ascii characters, you
can give it an alias in this column.

– AutoRead. This defaults to True which means the stage will
automatically read records from the port. Otherwise you
explicitly control read operations in the code.

– Table Name. Specify a table definition in the DataStage
Repository which describes the meta data for the port. You can
browse for a table definition by choosing Select Table from
the menu that appears when you click the browse button. You
can also view the schema corresponding to this table definition
by choosing View Schema from the same menu. You do not
have to supply a Table Name. If any of the columns in your
table definition have names that contain non-ascii characters,
7-18 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
you should choose Column Aliases from the menu. The
Build Column Aliases dialog box appears. This lists the
columns that require an alias and let you specify one.

– RCP. Choose True if runtime column propagation is allowed for
inputs to this port. Defaults to False. You do not need to set this
if you are using the automatic transfer facility.

You provide the following information on the Output sub-tab:

– Port Name. Optional name for the port. The default names for
the links are out0, out1, out2 … . You can refer to them in the
code using either the default name or the name you have
specified.

– Alias. Where the port name contains non-ascii characters, you
can give it an alias in this column.

– AutoWrite. This defaults to True which means the stage will
automatically write records to the port. Otherwise you
explicitly control write operations in the code. Once records are
written, the code can no longer access them.

– Table Name. Specify a table definition in the DataStage
Repository which describes the meta data for the port. You can
browse for a table definition. You do not have to supply a Table
Name. A shortcut menu accessed from the browse button
offers a choice of Clear Table Name, Select Table, Create
Table,View Schema, and Column Aliases. The use of these
is as described for the Input sub-tab.

– RCP. Choose True if runtime column propagation is allowed for
outputs from this port. Defaults to False. You do not need to set
this if you are using the automatic transfer facility.

The Transfer sub-tab allows you to connect an input buffer to an

output buffer such that records will be automatically transferred

from input to output. You can also disable automatic transfer, in

which case you have to explicitly transfer data in the code.
Manager Guide 7-19

Custom Stages for Parallel Jobs Managing Stages
Transferred data sits in an output buffer and can still be accessed

and altered by the code until it is actually written to the port.

You provide the following information on the Transfer tab:

– Input. Select the input port to connect to the buffer from the
drop-down list. If you have specified an alias, this will be
displayed here.

– Output. Select the output port to transfer input records from
the output buffer to from the drop-down list. If you have
specified an alias, this will be displayed here.

– Auto Transfer. This defaults to False, which means that you
have to include code which manages the transfer. Set to True to
have the transfer carried out automatically.

– Separate. This is False by default, which means this transfer
will be combined with other transfers to the same port. Set to
True to specify that the transfer should be separate from other
transfers.

The Logic tab is where you specify the actual code that the stage

executes.

The Definitions sub-tab allows you to specify variables, include

header files, and otherwise initialize the stage before processing

any records.
7-20 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
The Pre-Loop sub-tab allows you to specify code which is

executed at the beginning of the stage, before any records are

processed.

The Per-Record sub-tab allows you to specify the code which is

executed once for every record processed.

The Post-Loop sub-tab allows you to specify code that is

executed after all the records have been processed.

You can type straight into these pages or cut and paste from

another editor. The shortcut menu on the Pre-Loop, Per-Record,

and Post-Loop pages gives access to the macros that are

available for use in the code.

The Advanced tab allows you to specify details about how the

stage is compiled and built. Fill in the page as follows:

– Compile and Link Flags. Allows you to specify flags that are
passed to the C++ compiler.

– Verbose. Select this check box to specify that the compile and
build is done in verbose mode.

– Debug. Select this check box to specify that the compile and
build is done in debug mode. Otherwise, it is done in optimize
mode.

– Suppress Compile. Select this check box to generate files
without compiling, and without deleting the generated files.
This option is useful for fault finding.

– Base File Name. The base filename for generated files. All
generated files will have this name followed by the appropriate
suffix. This defaults to the name specified under Operator on
the General page.

– Source Directory. The directory where generated .c files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

– Header Directory. The directory where generated .h files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

– Object Directory. The directory where generated .so files are
placed. This defaults to the buildop folder in the current project
directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).
Manager Guide 7-21

Custom Stages for Parallel Jobs Managing Stages
– Wrapper directory. The directory where generated .op files
are placed. This defaults to the buildop folder in the current
project directory. You can also set it using the
DS_OPERATOR_BUILDOP_DIR environment variable in the
DataStage Administrator (see DataStage Administrator Guide).

8 When you have filled in the details in all the pages, click Generate
to generate the stage. A window appears showing you the result
of the build.

Defining Wrapped Stages
You define a Wrapped stage to enable you to specify a UNIX

command to be executed by a DataStage stage. You define a wrapper

file that handles arguments for the UNIX command and inputs and

outputs. The DataStage Manager provides an interface that helps you

define the wrapper. The stage will be available to all jobs in the project

in which the stage was defined. You can make it available to other

projects using the DataStage Manager Export facilities. You can add

the stage to your job palette using palette customization features in

the DataStage Designer.

When defining a Wrapped stage you provide the following

information:

Details of the UNIX command that the stage will execute.

Description of the data that will be input to the stage.

Description of the data that will be output from the stage.

Definition of the environment in which the command will execute.

The UNIX command that you wrap can be a built-in command, such

as grep, a utility, such as SyncSort, or your own UNIX application. The

only limitation is that the command must be ‘pipe-safe’ (to be pipe-

safe a UNIX command reads its input sequentially, from beginning to

end).

You need to define meta data for the data being input to and output

from the stage. You also need to define the way in which the data will

be input or output. UNIX commands can take their inputs from

standard in, or another stream, a file, or from the output of another

command via a pipe. Similarly data is output to standard out, or

another stream, to a file, or to a pipe to be input to another command.

You specify what the command expects.

DataStage handles data being input to the Wrapped stage and will

present it in the specified form. If you specify a command that expects

input on standard in, or another stream, DataStage will present the

input data from the jobs data flow as if it was on standard in. Similarly
7-22 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
it will intercept data output on standard out, or another stream, and

integrate it into the job’s data flow.

You also specify the environment in which the UNIX command will be

executed when you define the wrapped stage.

To define a Wrapped stage from the DataStage Manager:

1 Select the Stage Types category in the Repository tree.

2 Choose File ➤ New Parallel Stage ➤ Wrapped from the main
menu or New Parallel Stage ➤ Wrapped from the shortcut
menu. The Stage Type dialog box appears:

3 Fill in the fields on the General page as follows:

– Stage type name. This is the name that the stage will be
known by to DataStage. Avoid using the same name as
existing stages or the name of the actual UNIX command you
are wrapping.

– Category. The category that the new stage will be stored in
under the stage types branch. Type in or browse for an existing
category or type in the name of a new one. The category also
determines what group in the palette the stage will be added
to. Choose an existing category to add to an existing group, or
specify a new category to create a new palette group.

– Parallel Stage type. This indicates the type of new Parallel
job stage you are defining (Custom, Build, or Wrapped). You
cannot change this setting.
Manager Guide 7-23

Custom Stages for Parallel Jobs Managing Stages
– Wrapper Name. The name of the wrapper file DataStage will
generate to call the command. By default this will take the
same name as the Stage type name.

– Execution mode. Choose the default execution mode. This is
the mode that will appear in the Advanced tab on the stage
editor. You can override this mode for individual instances of
the stage as required, unless you select Parallel only or
Sequential only. See "Advanced Tab" in Parallel Job
Developer’s Guide for a description of the execution mode.

– Preserve Partitioning. This shows the default setting of the
Preserve Partitioning flag, which you cannot change in a
Wrapped stage. This is the setting that will appear in the
Advanced tab on the stage editor. You can override this
setting for individual instances of the stage as required. See
"Advanced Tab" in Parallel Job Developer’s Guide for a
description of the preserve partitioning flag.

– Partitioning. This shows the default partitioning method,
which you cannot change in a Wrapped stage. This is the
method that will appear in the Inputs Page Partitioning tab
of the stage editor. You can override this method for individual
instances of the stage as required. See "Partitioning Tab" in
Parallel Job Developer’s Guide for a description of the
partitioning methods.

– Collecting. This shows the default collection method, which
you cannot change in a Wrapped stage. This is the method that
will appear in the Inputs Page Partitioning tab of the stage
editor. You can override this method for individual instances of
the stage as required. See "Partitioning Tab" in Parallel Job
Developer’s Guide for a description of the collection methods.

– Command. The name of the UNIX command to be wrapped,
plus any required arguments. The arguments that you enter
here are ones that do not change with different invocations of
the command. Arguments that need to be specified when the
Wrapped stage is included in a job are defined as properties for
the stage.

– Short Description. Optionally enter a short description of the
stage.

– Long Description. Optionally enter a long description of the
stage.

4 Go to the Creator page and optionally specify information about
the stage you are creating. We recommend that you assign a
release number to the stage so you can keep track of any
subsequent changes.
7-24 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
You can specify that the actual stage will use a custom GUI by

entering the ProgID for a custom GUI in the Custom GUI Prog ID

field.

You can also specify that the stage has its own icon. You need to

supply a 16 x 16 bibitmap and a 32 x 32 bit bitmap to be displayed

in vatious place in the DataStage user interface. Click the 16 x 16
Bitmap button and browse for the smaller bitmap file. Click the

32 x 32 Bitmap button and browse for the large bitmap file. Click

the Reset Bitmap Info button to revert to using the default

DataStage icon for this stage.
Manager Guide 7-25

Custom Stages for Parallel Jobs Managing Stages
5 Go to the Properties page. This allows you to specify the
arguments that the UNIX command requires as properties that
appear in the stage Properties tab. For wrapped stages the
Properties tab always appears under the Stage page.

Fill in the fields as follows:

– Property name. The name of the property that will be
displayed on the Properties tab of the stage editor.

– Data type. The data type of the property. Choose from:

Boolean

Float

Integer

String

Pathname

List

Input Column

Output Column

If you choose Input Column or Output Column, when the stage

is included in a job a drop-down list will offer a choice of the

defined input or output columns.

If you choose list you should open the Extended Properties
dialog box from the grid shortcut menu to specify what

appears in the list.
7-26 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
– Prompt. The name of the property that will be displayed on
the Properties tab of the stage editor.

– Default Value. The value the option will take if no other is
specified.

– Required. Set this to True if the property is mandatory.

– Repeats. Set this true if the property repeats (i.e. you can have
multiple instances of it).

– Conversion. Specifies the type of property as follows:

-Name. The name of the property will be passed to the

command as the argument value. This will normally be a

hidden property, i.e., not visible in the stage editor.

-Name Value. The name of the property will be passed to the

command as the argument name, and any value specified in

the stage editor is passed as the value.

-Value. The value for the property specified in the stage editor

is passed to the command as the argument name. Typically

used to group operator options that are mutually exclusive.

Value only. The value for the property specified in the stage

editor is passed as it is.

6 If you want to specify a list property, or otherwise control how
properties are handled by your stage, choose Extended
Properties from the Properties grid shortcut menu to open the
Extended Properties dialog box.

The settings you use depend on the type of property you are

specifying:
Manager Guide 7-27

Custom Stages for Parallel Jobs Managing Stages
– Specify a category to have the property appear under this
category in the stage editor. By default all properties appear in
the Options category.

– If you are specifying a List category, specify the possible values
for list members in the List Value field.

– If the property is to be a dependent of another property, select
the parent property in the Parents field.

– Specify an expression in the Template field to have the actual
value of the property generated at compile time. It is usually
based on values in other properties and columns.

– Specify an expression in the Conditions field to indicate that
the property is only valid if the conditions are met. The
specification of this property is a bar '|' separated list of
conditions that are AND'ed together. For example, if the
specification was a=b|c!=d, then this property would only be
valid (and therefore only available in the GUI) when property a
is equal to b, and property c is not equal to d.

Click OK when you are happy with the extended properties.

7 Go to the Wrapped page. This allows you to specify information
about the command to be executed by the stage and how it will be
handled.

The Interfaces tab is used to describe the inputs to and outputs

from the stage, specifying the interfaces that the stage will need to

function.
7-28 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
Details about inputs to the stage are defined on the Inputs sub-

tab:

– Link. The link number, this is assigned for you and is read-
only. When you actually use your stage, links will be assigned
in the order in which you add them. In our example, the first
link will be taken as link 0, the second as link 1 and so on. You
can reassign the links using the stage editor’s Link Ordering
tab on the General page.

– Table Name. The meta data for the link. You define this by
loading a table definition from the Repository. Type in the
name, or browse for a table definition. Alternatively, you can
specify an argument to the UNIX command which specifies a
table definition. In this case, when the wrapped stage is used in
a job design, the designer will be prompted for an actual table
definition to use.

– Stream. Here you can specify whether the UNIX command
expects its input on standard in, or another stream, or whether
it expects it in a file. Click on the browse button to open the
Wrapped Stream dialog box.

In the case of a file, you should also specify whether the file to be

read is given in a command line argument, or by an environment

variable.

Details about outputs from the stage are defined on the Outputs

sub-tab:

– Link. The link number, this is assigned for you and is read-
only. When you actually use your stage, links will be assigned
in the order in which you add them. In our example, the first
Manager Guide 7-29

Custom Stages for Parallel Jobs Managing Stages
link will be taken as link 0, the second as link 1 and so on. You
can reassign the links using the stage editor’s Link Ordering
tab on the General page.

– Table Name. The meta data for the link. You define this by
loading a table definition from the Repository. Type in the
name, or browse for a table definition.

– Stream. Here you can specify whether the UNIX command
will write its output to standard out, or another stream, or
whether it outputs to a file. Click on the browse button to open
the Wrapped Stream dialog box.

In the case of a file, you should also specify whether the file to

be written is specified in a command line argument, or by an

environment variable.

The Environment tab gives information about the environment

in which the command will execute.

Set the following on the Environment tab:

– All Exit Codes Successful. By default DataStage treats an
exit code of 0 as successful and all others as errors. Select this
check box to specify that all exit codes should be treated as
successful other than those specified in the Failure codes
grid.

– Exit Codes. The use of this depends on the setting of the All
Exits Codes Successful check box.
7-30 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
If All Exits Codes Successful is not selected, enter the codes in

the Success Codes grid which will be taken as indicating

successful completion. All others will be taken as indicating

failure.

If All Exits Codes Successful is selected, enter the exit codes in

the Failure Code grid which will be taken as indicating failure. All

others will be taken as indicating success.

– Environment. Specify environment variables and settings that
the UNIX command requires in order to run.

8 When you have filled in the details in all the pages, click Generate
to generate the stage.

Plug-In Stages
When designing jobs in the DataStage Designer, you can use plug-in

stages in addition to the built-in stages supplied with DataStage. Plug-

ins are written to perform specific tasks that the built-in stages do not

support, for example:

Custom aggregations

Control of external devices (for example, tape drives)

Access to external programs

Two plug-ins are automatically installed with DataStage for use with

server jobs:

BCPLoad. The BCPLoad plug-in bulk loads data into a single table
in a Microsoft SQL Server (Release 6 or 6.5) or Sybase (System 10
or 11) database.

Oracle 7 Bulk Load. The Oracle 7 Bulk Load plug-in generates
control and data files for bulk loading into a single table on an
Oracle target database. The files are suitable for loading into the
target database using the Oracle command sqlldr.

Other plug-ins are supplied with DataStage, but must be explicitly

installed. You can install plug-ins when you install DataStage. Some

plug-ins have versions for parallel jobs as well as for server jobs.

Some plug-ins have a custom GUI, which can be installed at the same

time. You can choose which plug-ins to install during the DataStage

Server install. You install the corresponding custom GUIs during the

DataStage client install. See Install and Upgrade Guide for more

details.

You can subsequently install extra plug-ins either from the CD-ROM or

by downloading them from the Web. These are then installed using

the Package Installer as described in "Installing DataStage Packages"

in DataStage Administartor Guide.
Manager Guide 7-31

Custom Stages for Parallel Jobs Managing Stages
If the plug-in you require is not listed, contact Ascential to see if one is

likely to become available. Alternatively, you can write your own plug-

in.

A plug-in consists of a set of routines that access external databases

and/or perform complex programming. You must have a thorough

knowledge of C to design and develop a plug-in.

To write your own plug-in:

1 Assess the purpose of the plug-in. You need to determine what the
plug-in must do in terms of data extraction or data conversion.
Check that Ascential does not already have an available plug-in for
this purpose.

2 Develop the routines using the DataStage C plug-in Stage
Interface. These routines are used to extract, aggregate, or
transform data when the job is run. If you need help writing the
plug-in routines required to process your data, contact your local
Ascential Customer Support Center.

3 Register the plug-in with the DataStage Manager. It is
recommended that your plug-in dynamically registers itself.
Alternatively, you can register the plug-in manually.

DataStage has a generic Stage dialog box that can be used by plug-

ins, but it is also possible to define your own GUI for a plug-in and

install that in DataStage.

Certain general management tasks can be carried out on plug-ins

from the DataStage Manager.

Manually Registering a Plug-In Definition
If a plug-in that you design does not dynamically register itself (as

recommended) you can register it manually from the DataStage

Manager as follows:

1 Choose Tools ➤ Register Plug-In… . The Register plug-in
dialog box appears:

2 Enter the path and name of the plug-in DLL in the Path of plug-in
field.
7-32 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
3 Specify where the plug-in will be stored in the Repository by
entering the category name in the Category field.

4 If you require the plug-in to be used in parallel jobs, select the
Parallel stage type required check box.

5 Click OK to register the plug-in definition and close the dialog box.

Viewing Plug-In Definition Details
Once a plug-in has been registered with the Manager, you can view its

details in the Stage Type dialog box. To do this, click the Plug-in icon

in the Manager display area and do one of the following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Double-click the plug-in in the display area.

Click the Properties button on the toolbar.

The plug-in definition is read-only; you cannot change any of the

details. The only exception to this is a plug-in that you added under an

earlier version of DataStage.

This dialog box has up to five pages:

General. Contains the name and type of the plug-in and optional
short and long descriptions. This page also contains the name and
path of the plug-in DLL, and specifies whether the plug-in
supports meta data import, transaction grouping, and/or data
browsing.

Creator. Displays information about the creator and the version
of the plug-in.
Manager Guide 7-33

Custom Stages for Parallel Jobs Managing Stages
Properties. Specifies properties for the stage and the input and
output links.

Dependencies. Specifies the dependent DLLs.

NLS. Specifies how character set mapping is carried out by the
plug-in. For more information, see “Specifying Character Set
Mapping.”

Specifying Character Set Mapping
If you want your plug-in to use data in character sets other than ASCII,

you must specify how the plug-in handles character set mapping from

the NLS page.

Click Works with external character set to specify that the data

requires mapping:

If the plug-in performs its own mapping, you must also select
Handles its own mapping.

If the plug-in does not perform the character set mapping, you
must specify the map to be used from the plug-in stage dialog box
when you use the plug-in in a job design.

If the plug-in does not require any character set mapping, select

Works with internal character set.

Removing a Registered Plug-In
To remove a plug-in that you have previously registered:

1 Select the plug-in from the DataStage Manager display area.

2 Choose Tools ➤ Unregister Plug-In. The plug-in is removed.
7-34 Manager Guide

Managing Stages Custom Stages for Parallel Jobs
Packaging a Plug-In
If you have written a plug-in that you want to distribute to users on

other DataStage systems, you need to package it. For details on how

to package a plug-in for deployment, see "Using the Packager Wizard"

on page 15-17.

Using a Plug-In
You can use a plug-in by inserting a plug-in stage in your job design.

Plug-in stages are used the same way as built-in stages.

The plug-in you choose determines the function and properties of the

plug-in stage. When you have chosen a plug-in, you can edit the stage

to define the data flowing into, through, or from it.
Manager Guide 7-35

Custom Stages for Parallel Jobs Managing Stages
7-36 Manager Guide

8
Managing Programming Components

The DataStage Repository holds many built-in routines and

transforms which can be used as building blocks when designing

DataStage jobs.

If required, you can define your own custom building blocks from

within the DataStage Manager. The components, and the means of

defining them, vary depending on whether they are intended for use

in server jobs, parallel jobs, or mainframe jobs.

Components for Server Jobs
For many DataStage server jobs you may not need to perform any

programming tasks. You can just choose ready made transforms and

routines from the built-in ones supplied with DataStage and stored in

the Repository. In the case where you want to define custom

components, DataStage provides powerful procedural programming

facilities.

At the heart of server job programming in DataStage is the BASIC

language. For more information about BASIC syntax, see "BASIC

Programming" in Server Job Developer’s Guide.

There are several areas within the DataStage Manager where you may

define programming components:

Defining custom routines to use as building blocks in other
programming tasks. For example, you may define a routine which
will then be reused by several custom transforms. You can view,
edit, and create your own BASIC routines using the DataStage
Manager.
Manager Guide 8-1

Components for Server Jobs Managing Programming Components
Defining custom transforms. The function specified in a transform
definition converts the data in a chosen column. You can view,
edit, and create your own transforms using the DataStage
Manager.

Defining before-stage and after-stage subroutines. These
subroutines perform an action before or after a stage in a
DataStage job has processed data. These subroutines can be used
by Aggregator, Transformer, and some plug-in stages.

Defining before-job and after-job subroutines. These subroutines
perform an action before or after a job is run and are set as job
properties.

Defining job control routines. These subroutines can be used to
control other jobs from within the current job.

Working with Server Routines
Server routines are stored in the Routines branch of the DataStage

Repository, where you can create, view, or edit them using the

Routine dialog box. The following program components are

classified as routines:

Transform functions. These are functions that you can use
when defining custom transforms. DataStage has a number of
built-in transform functions which are located in the Routines ➤
Examples ➤ Functions branch of the Repository. You can also
define your own transform functions in the Routine dialog box.

Before/After subroutines. When designing a job, you can
specify a subroutine to run before or after the job, or before or
after an active stage. DataStage has a number of built-in before/
after subroutines, which are located in the Routines ➤ Built-in ➤
Before/After branch in the Repository. You can also define your
own before/after subroutines using the Routine dialog box.

Custom UniVerse functions. These are specialized BASIC
functions that have been defined outside DataStage. Using the
Routine dialog box, you can get DataStage to create a wrapper
that enables you to call these functions from within DataStage.
These functions are stored under the Routines branch in the
Repository. You specify the category when you create the routine.
If NLS is enabled, you should be aware of any mapping
requirements when using custom UniVerse functions. If a function
uses data in a particular character set, it is your responsibility to
map the data to and from Unicode.

ActiveX (OLE) functions. You can use ActiveX (OLE) functions
as programming components within DataStage. Such functions
are made accessible to DataStage by importing them. This creates
a wrapper that enables you to call the functions. After import, you
8-2 Manager Guide

Managing Programming Components Components for Server Jobs
can view and edit the BASIC wrapper using the Routine dialog
box. By default, such functions are located in the Routines ➤
Class name branch in the Repository, but you can specify your
own category when importing the functions.

Web Service routines. You can use operations imported from a
web service as programming components within DataStage. Such
routines are created by importing from a web service WSDL file.

When using the Expression Editor, all of these components appear

under the DS Routines… command on the Suggest Operand
menu.

A special case of routine is the job control routine. Such a routine is

used to set up a DataStage job that controls other DataStage jobs. Job

control routines are specified in the Job control page on the Job
Properties dialog box. Job control routines are not stored under the

Routines branch in the Repository.

When you create, view, or edit a routine under the Routines branch in

the DataStage Manager, the Server Routine dialog box appears. This

dialog box has five pages: General, Creator, Arguments, Code,

and Dependencies.

There are five buttons in the Server Routine dialog box. Their

availability depends on the action you are performing and the type of

routine you are editing.

Close. Closes the Routine dialog box. If you have any unsaved
changes, you are prompted to save them.

Save. Saves the routine.

Compile… . Compiles a saved routine. This button is available
only when there are no outstanding (unsaved) changes.

Test… . Tests a routine. This button is available only for routines
of type Transform Function and Custom UniVerse Function.
This is because you cannot test before-subroutines and after-
subroutines in isolation. This button is active only when the
routine has compiled or referenced successfully.

Help. Invokes the Help system.

Naming Server Routines

Routine names can be any length. They must begin with an alphabetic

character and can contain alphanumeric and period characters.

Routine category names can be any length and consist of any

characters, including spaces.
Manager Guide 8-3

Components for Server Jobs Managing Programming Components
The Server Routine Dialog Box

This section describes the various pages of the Server Routine dialog

box.

General Page

The General page is displayed by default. It contains general

information about the routine, including:

Routine name. The name of the function or subroutine.

Type. The type of routine. There are three types of routine:
Transform Function, Before/After Subroutine, or Custom
UniVerse Function.

Category. The branch the routine is stored under in the
Repository.

External Catalog Name. This is only available if you have
chosen Custom UniVerse Function from the Type box. Enter
the cataloged name of the external routine.

Short description. An optional brief description of the routine.
The text entered in this field is displayed when you choose View
➤ Details from the DataStage Manager window or print a report.

Long description. An optional detailed description of the
routine.
8-4 Manager Guide

Managing Programming Components Components for Server Jobs
Creator Page

The Creator page contains information about the creator and version

number of the routine, including:

Vendor. The company who created the routine.

Author. The creator of the routine.

Version. The version number of the routine, which is used when
the routine is imported. The Version field contains a three-part
version number, for example, 3.1.1. The first part of this number is
an internal number used to check compatibility between the
routine and the DataStage system. The second part of this number
represents the release number. This number should be
incremented when major changes are made to the routine
definition or the underlying code. The new release of the routine
supersedes any previous release. Any jobs using the routine use
the new release. The last part of this number marks intermediate
releases when a minor change or fix has taken place.

If you are creating a routine definition, the first part of the version

number is set according to the version of DataStage you are

using. You can edit the rest of the number to specify the release

level. Click the part of the number you want to change and enter a

number directly, or use the arrow button to increase the value.

Copyright. Copyright information.
Manager Guide 8-5

Components for Server Jobs Managing Programming Components
Arguments Page

The default argument names and whether you can add or delete

arguments depends on the type of routine you are editing:

Before/After subroutines. The argument names are InputArg
and Error Code. You can edit the argument names and
descriptions but you cannot delete or add arguments.

Transform Functions and Custom UniVerse Functions. By
default these have one argument called Arg1. You can edit
argument names and descriptions and add and delete arguments.
There must be at least one argument, but no more than 255.
8-6 Manager Guide

Managing Programming Components Components for Server Jobs
Code Page

The Code page is used to view or write the code for the routine. The

toolbar contains buttons for cutting, copying, pasting, and formatting

code, and for activating Find (and Replace). The main part of this

page consists of a multiline text box with scroll bars. For more

information on how to use this page, see "Entering Code" on

page 8-10.

Note This page is not available if you selected Custom
UniVerse Function on the General page.
Manager Guide 8-7

Components for Server Jobs Managing Programming Components
Dependencies Page

The Dependencies page allows you to enter any locally or globally

cataloged functions or routines that are used in the routine you are

defining. This is to ensure that, when you package any jobs using this

routine for deployment on another system, all the dependencies will

be included in the package. The information required is as follows:

Type. The type of item upon which the routine depends. Choose
from the following:

LocalLocally cataloged BASIC functions and

subroutines.

GlobalGlobally cataloged BASIC functions and

subroutines.

FileA standard file.

ActiveXAn ActiveX (OLE) object (not available on UNIX-

based systems).

Name. The name of the function or routine. The name required
varies according to the type of dependency:

Local The catalog name.

Global The catalog name.

File The file name.
8-8 Manager Guide

Managing Programming Components Components for Server Jobs
ActiveX The Name entry is actually irrelevant for ActiveX

objects. Enter something meaningful to you (ActiveX objects are

identified by the Location field).

Location. The location of the dependency. A browse dialog box is
available to help with this. This location can be an absolute path,
but it is recommended you specify a relative path using the
following environment variables:

%SERVERENGINE% – DataStage engine account directory

(normally C:\Ascential\DataStage\Engine on Windows and

<dsadminhome>\Ascential\DataStage\DSEngine on UNIX).

%PROJECT% – Current project directory.

%SYSTEM% – System directory on Windows or /usr/lib on UNIX.

The Browse Files dialog box is shown below. You cannot navigate to

the parent directory of an environment variable.

When browsing for the location of a file on a UNIX server, there is an

entry called Root in the Base Locations drop-down list.

Creating a Routine

To create a new routine, select the Routines branch in the DataStage

Manager window and do one of the following:

Choose File ➤ New Server Routine… .

Choose New Server Routine… from the shortcut menu.

Click the New button on the toolbar.

The Server Routine dialog box appears. On the General page:
Manager Guide 8-9

Components for Server Jobs Managing Programming Components
1 Enter the name of the function or subroutine in the Routine
name field. This should not be the same as any BASIC function
name.

2 Choose the type of routine you want to create from the Type drop-
down list box. There are three options:

– Transform Function. Choose this if you want to create a
routine for a Transform definition.

– Before/After Subroutine. Choose this if you want to create a
routine for a before-stage or after-stage subroutine or a before-
job or after-job subroutine.

– Custom UniVerse Function. Choose this if you want to refer
to an external routine, rather than define one in this dialog box.
If you choose this, the Code page will not be available.

3 Enter or browse for a category name in the Category field. This
name is used to create a branch under the main Routines branch.
If you do not enter a name in this field, the routine is created
under the main Routines branch.

4 Optionally enter a brief description of the routine in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window.

5 Optionally enter a more detailed description of the routine in the
Long description field.

Once this page is complete, you can enter creator information on the

Creator page, argument information on the Arguments page, and

details of any dependencies on the Dependencies page. You must

then enter your code on the Code page.

Entering Code

You can enter or edit code for a routine on the Code page in the Server

Routine dialog box.

The first field on this page displays the routine name and the

argument names. If you want to change these properties, you must

edit the fields on the General and Arguments pages.

The main part of this page contains a multiline text entry box, in which

you must enter your code. To enter code, click in the box and start

typing. You can use the following standard Windows edit functions in

this text box:

Delete using the Del key

Cut using Ctrl-X

Copy using Ctrl-C
8-10 Manager Guide

Managing Programming Components Components for Server Jobs
Paste using Ctrl-V

Go to the end of the line using the End key

Go to the beginning of the line using the Home key

Select text by clicking and dragging or double-clicking

Some of these edit functions are included in a shortcut menu which

you can display by clicking the right mouse button. You can also cut,

copy, and paste code using the buttons in the toolbar.

Your code must only contain BASIC functions and statements

supported by DataStage. If you are unsure of the supported functions

and statements, or the correct syntax to use, see DataStage

Developer’s Help or "BASIC Programming" in Server Job Developer’s

Guide for a complete list of supported DataStage BASIC functions.

If NLS is enabled, you can use non-English characters in the following

circumstances:

In comments

In string data (that is, strings contained in quotation marks)

The use of non-English characters elsewhere causes compilation

errors.

If you want to format your code, click the Format button on the

toolbar.

The return field on this page displays the return statement for the

function or subroutine. You cannot edit this field.

Saving Code

When you have finished entering or editing your code, the routine

must be saved. A routine cannot be compiled or tested if it has not

been saved. To save a routine, click Save in the Server Routine

dialog box. The routine properties (its name, description, number of

arguments, and creator information) and the associated code are

saved in the Repository.

Compiling Code

When you have saved your routine, you must compile it. To compile a

routine, click Compile… in the Server Routine dialog box. The

status of the compilation is displayed in the lower window of the

Server Routine dialog box. If the compilation is successful, the

routine is marked as “built” in the Repository and is available for use.

If the routine is a Transform Function, it is displayed in the list of

available functions when you edit a transform. If the routine is a

Before/After Subroutine, it is displayed in the drop-down list box of
Manager Guide 8-11

Components for Server Jobs Managing Programming Components
available subroutines when you edit an Aggregator, Transformer, or

plug-in stage, or define job properties.

To troubleshoot any errors, double-click the error in the compilation

output window. DataStage attempts to find the corresponding line of

code that caused the error and highlights it in the code window. You

must edit the code to remove any incorrect statements or to correct

any syntax errors.

If NLS is enabled, watch for multiple question marks in the

Compilation Output window. This generally indicates that a character

set mapping error has occurred.

When you have modified your code, click Save then Compile… . If

necessary, continue to troubleshoot any errors, until the routine

compiles successfully.

Once the routine is compiled, you can use it in other areas of

DataStage or test it. For more information, see "Testing a Routine" on

page 8-12.

Testing a Routine

Before using a compiled routine, you can test it using the Test…

button in the Server Routine dialog box. The Test… button is

activated when the routine has been successfully compiled.

Note The Test… button is not available for a Before/After
Subroutine. Routines of this type cannot be tested in

isolation and must be executed as part of a running job.

When you click Test…, the Test Routine dialog box appears:

This dialog box contains a grid and buttons. The grid has a column for

each argument and one for the test result.

You can add and edit rows in the grid to specify the values for

different test cases. For more information about using and editing a

grid, see Appendix A, “Editing Grids.”
8-12 Manager Guide

Managing Programming Components Components for Server Jobs
To run a test with a chosen set of values, click anywhere in the row

you want to use and click Run. If you want to run tests using all the

test values, click Run All. The Result… column is populated as each

test is completed.

To see more details for a particular test, double-click the Result… cell

for the test you are interested in. The Test Output window appears,

displaying the full test results:

Click Close to close this window.

If you want to delete a set of test values, click anywhere in the row you

want to remove and press the Delete key or choose Delete row from

the shortcut menu.

When you have finished testing the routine, click Close to close the

Test Routine dialog box. Any test values you entered are saved when

you close the dialog box.

Using Find and Replace

If you want to search the code for specific text, or replace text, you can

use Find and Replace. To start Find, click the Find button on the

Code page toolbar. The Find dialog box appears:

This dialog box has the following fields, options, and buttons:

Find what. Contains the text to search for. Enter appropriate text
in this field. If text was highlighted in the code before you chose
Find, this field displays the highlighted text.
Manager Guide 8-13

Components for Server Jobs Managing Programming Components
Match case. Specifies whether to do a case-sensitive search. By
default this check box is cleared. Select this check box to do a case-
sensitive search.

Up and Down. Specifies the direction of search. The default
setting is Down. Click Up to search in the opposite direction.

Find Next. Starts the search. This button is unavailable until you
specify text to search for. Continue to click Find Next until all
occurrences of the text have been found.

Cancel. Closes the Find dialog box.

Replace… . Displays the Replace dialog box. For more
information, see "Replacing Text" on page 8-14.

Help. Invokes the Help system.

Replacing Text

If you want to replace text in your code with an alternative text string,

click the Replace… button in the Find dialog box. When you click this

button, the Find dialog box changes to the Replace dialog box:

This dialog box has the following fields, options, and buttons:

Find what. Contains the text to search for and replace.

Replace with. Contains the text you want to use in place of the
search text.

Match case. Specifies whether to do a case-sensitive search. By
default this check box is cleared. Select this check box to do a case-
sensitive search.

Up and Down. Specifies the direction of search and replace. The
default setting is Down. Click Up to search in the opposite
direction.

Find Next. Starts the search and replace. This button is
unavailable until you specify text to search for. Continue to click
Find Next until all occurrences of the text have been found.

Cancel. Closes the Replace dialog box.
8-14 Manager Guide

Managing Programming Components Components for Server Jobs
Replace. Replaces the search text with the alternative text.

Replace All. Performs a global replace of all instances of the
search text.

Help. Invokes the Help system.

Viewing and Editing a Routine

You can view and edit any user-written functions and subroutines in

your project. To view or modify a function or subroutine, select the

function or subroutine in the display area and do one of the following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the function or subroutine in the display area.

The Routine dialog box appears. You can edit any of the fields and

options on any of the pages. If you make any changes to a server

routine, you must save, compile, and test the code before closing the

Server Routine dialog box. See "Saving Code" on page 8-11 for more

information.

Copying a Routine

You can copy an existing routine using the DataStage Manager. To

copy a routine, select it in the display area and do one of the

following:

Choose File ➤ Copy.

Choose Copy from the shortcut menu.

Click the Copy button on the toolbar.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears allowing you to rename the copy immediately. The new

routine must be compiled before it can be used.

Renaming a Routine

You can rename any user-written routines using the DataStage

Manager. To rename an item, select it in the display area and do one

of the following:
Manager Guide 8-15

Components for Server Jobs Managing Programming Components
Click the routine again. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose File ➤ Rename. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose Rename from the shortcut menu. An edit box appears
and you can enter a different name or edit the existing one. Save
the new name by pressing Enter or by clicking outside the edit
box.

Double-click the routine. The Server Routine dialog box appears
and you can edit the Routine name field. Click Save, then Close.

Importing External ActiveX (OLE) Functions
To import ActiveX (OLE) functions:

1 From the DataStage Manager, choose Import ➤ External
Function Definitions… . The Import Transform Functions
Definitions wizard appears and prompts you to supply the
pathname of the file containing the transforms to be imported.
This is normally a DLL file which must have already been installed
on the server machine.

2 Enter or browse for the pathname, then click Next. The wizard
queries the specified DLL file to establish what automation classes
it contains and presents these in a drop-down list.

3 Select an automation class and click Next. The wizard interrogates
the automation class to obtain details of the suitable functions it
supports. It then displays these.

4 Select the functions that you want to import and specify the
Repository category under which the functions will appear (the
default is Routines ➤ class name). Click Next. The wizard
displays the details of the proposed import.

5 If you are happy with the details, click Import. DataStage starts to
generate the required routines and displays a progress bar. On
completion a summary screen appears.

Click Finish to exit the wizard.

Custom Transforms
Transforms are stored in the Transforms branch of the DataStage

Repository, where you can create, view or edit them using the

Transform dialog box. Transforms specify the type of data

transformed, the type it is transformed into, and the expression that

performs the transformation.
8-16 Manager Guide

Managing Programming Components Components for Server Jobs
The DataStage Expression Editor helps you to enter correct

expressions when you define custom transforms in the DataStage

Manager. The Expression Editor can:

Facilitate the entry of expression elements

Complete the names of frequently used variables

Validate variable names and the complete expression

When you are entering expressions, the Expression Editor offers

choices of operands and operators from context-sensitive shortcut

menus.

DataStage is supplied with a number of built-in transforms (which you

cannot edit). You can also define your own custom transforms, which

are stored in the Repository and can be used by other DataStage jobs.

When using the Expression Editor, the transforms appear under the

DS Transform… command on the Suggest Operand menu.

Transforms are used in the Transformer stage to convert your data to

a format you want to use in the final data mart. Each transform

specifies the BASIC function used to convert the data from one type to

another. There are a number of built-in transforms supplied with

DataStage, but if these are not suitable or you want a specific

transform to act on a specific data element, you can create custom

transforms in the DataStage Manager. The advantage of creating a

custom transform over just entering the required expression in the

Transformer Editor is that, once defined, the transform is available for

use from anywhere within the project. It can also be easily exported to

other DataStage projects.

To provide even greater flexibility, you can also define your own

custom routines and functions from which to build custom

transforms. There are three ways of doing this:

Entering the code within DataStage (using BASIC functions). See
"Creating a Routine" on page 8-9.

Creating a reference to an externally cataloged routine. See
"Creating a Routine" on page 8-9.

Importing external ActiveX (OLE) functions. See "Importing
External ActiveX (OLE) Functions" on page 8-16.

To create a custom transform:

1 From the DataStage Manager, select the Transforms branch in
the project tree and do one of the following:

– Choose File ➤ New Transform… .

– Choose New Transform… from the shortcut menu.
Manager Guide 8-17

Components for Server Jobs Managing Programming Components
– Click the New button on the toolbar.

The Transform dialog box appears:

This dialog box has two pages:

– General. Displayed by default. Contains general information
about the transform.

– Details. Allows you to specify source and target data
elements, the function, and arguments to use.

2 Enter the name of the transform in the Transform name field.
This name is used to create a leaf under the category branch. The
name entered here must be unique; as no two transforms can
have the same name. Also note that the transform should not
have the same name as an existing BASIC function; if it does, the
function will be called instead of the transform when you run the
job.

3 Enter a category name in the Category field. This name is used to
create a branch under the main Transforms branch. If you do not
enter a name in this field, the transform is created under the main
Transforms branch.

You can create more than one branch level for the category by

including \ in the name. For example, if you enter Custom\User,

the following branches are created:

Transforms ➤ Custom ➤ User

In this example, the new transform is created as a leaf under the

User branch.

4 Optionally enter a brief description of the transform in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window.
8-18 Manager Guide

Managing Programming Components Components for Server Jobs
5 Optionally enter a detailed description of the transform in the
Long description field. Once this page is complete, you can
specify how the data is converted.

6 Click the Details tab. The Details page appears at the front of the
Transform dialog box:

7 Optionally choose the data element you want as the target data
element from the Target data element drop-down list box.
(Using a target and a source data element allows you to apply a
stricter data typing to your transform. See Chapter 4, "Managing
Data Elements,"for a description of data elements.)

8 Specify the source arguments for the transform in the Source
Arguments grid. Enter the name of the argument and optionally
choose the corresponding data element from the drop-down list.

9 Use the Expression Editor in the Definition field to enter an
expression which defines how the transform behaves. The
Expression Editor is described in "The DataStage Expression
Editor" in Server Job Developer’s Guide. The Suggest Operand
menu is slightly different when you use the Expression Editor to
define custom transforms and offers commands that are useful
when defining transforms.

Suggest Operand Menu

Defining Custom Transforms
Manager Guide 8-19

Components for Parallel Jobs Managing Programming Components
10 Click OK to save the transform and close the Transform dialog
box. The new transform appears in the project tree under the
specified branch.

You can then use the new transform from within the Transformer

Editor.

Note If NLS is enabled, avoid using the built-in Iconv and Oconv

functions to map data unless you fully understand the

consequences of your actions.

Components for Parallel Jobs
For many DataStage parallel jobs you may not need to perform any

programming tasks. You can just choose ready made functions from

the built-in ones supplied with DataStage. You can also, however,

define your own functions that can be accessed from the expression

editor, such functions must be supplied within a UNIX shared library

or in a standard object file (filename.o) and then referenced by

defining a parallel routine within the DataStage project which calls it.

Note Functions must be compiled with a C++ compiler (not a C

compiler).

Parallel jobs also have the ability of executing routines before or after

an active stage executes. These routines are defined and stored in the

DataStage Repository, and then called in the Triggers page of the

particular Transformer stage Properties dialog box (see "Transformer

Stage Properties" in Parallel Job Developer’s Guide for more details).

These routines must be supplied in a UNIX shared library or an object

file, and do not return a value (any values returned are ignored).

Example parallel routines are supplied on the DataStage Installation

CD in the directory Samples/TrxExternalFunctions.The readme file

explains how to use the examples on each platform.

Working with Parallel Routines
When you create, view, or edit a parallel routine under the Routines
branch in the DataStage Manager, the Parallel Routine dialog box

appears. This dialog box has three pages: General, Creator, and

Arguments.

There are three buttons in the Parallel Routine dialog box:

Close. Closes the Routine dialog box. If you have any unsaved
changes, you are prompted to save them.

Save. Saves the routine.
8-20 Manager Guide

Managing Programming Components Components for Parallel Jobs
Help. Starts the Help system.

Naming Parallel Routines

Routine names can be any length. They must begin with an alphabetic

character and can contain alphanumeric and period characters.

Routine category names can be any length and consist of any

characters, including spaces.

Creating a Routine

To create a new routine, select the Routines branch in the DataStage

Manager window and do one of the following:

Choose File ➤ New Parallel Routine… .

Select New Parallel Routine… from the shortcut menu.

The Parallel Routine dialog box appears:

The General page is displayed by default. Enter general information

about the routine, including:

Routine name. Type the name of the routine.

Type. Choose External Function if this routine is calling a
function to include in a transformer expression. Choose External
Before/After Routine if you are defining a routine to execute as
a transformer stage before/after routine.
Manager Guide 8-21

Components for Parallel Jobs Managing Programming Components
Category. Type or browse for a category name to store the
routine in the Repository. If you do not enter a name in this field,
the routine is created under the main Routines branch.

Object Type. Choose Library or Object. This specifies how the C
function is linked in the job. If you choose Library, the function is
not linked into the job and you must ensure that the shared library
is available at run time. For the Library invocation method the
routine must be provided in a shared library rather than an object
file. If you choose Object the function is linked into the job, and
so does not need to be available at run time. The routine can be
contained in a shared library or an object file. Note that, if you use
the Object option, and subsequently update the function, the job
will need to be recompiled to pick up the update. If you choose the
Library option, you must enter the pathname of the shared library
file in the Library path field. If you choose the Object option you
must enter the pathname of the object file in the Library path
field.

External subroutine name. The C function that this routine is
calling (must be the name of a valid routine in a shared library).

Return Type. Choose the type of the value that the function will
return. The drop-down list offers a choice of native C types. This is
unavailable for External Before/After Routines, which do not
return a value. Note that the actual type definitions in function
implementations may vary depending on platform type. This
particularly applies to ‘long’ and ‘unsigned long’ C native types.
These can be defined as ‘long’ and ‘unsigned long’ on Tru64
platforms, but for all other platforms should be defined as ‘long
long’ and ‘unsigned long long’ in the actual code. Similarly a
return type of ‘char’ should be defined as ‘signed char’ in the code
on all platforms.

Library path. If you have specified the Library option, type or
browse on the server for the pathname of the shared library that
contains the function. This is used at compile time to locate the
function. The pathname should be the exact name of the library or
object file, and must have the prefix lib and the appropriate suffix,
e.g., /disk1/userlibs/libMyFuncs.so, /disk1/userlibs/
MyStaticFuncs.o. Suffixes are as follows:

Solaris.so or .a

AIX.so or .a

HPUX.a or .sl

Tru64.so or .a

If you have specified the Object option, enter the pathname of the

object file. Typically the file will be suffixed with .o. This file must

exist and be a valid object file for the linker.
8-22 Manager Guide

Managing Programming Components Components for Parallel Jobs
Short description. Type an optional brief description of the
routine. The text entered in this field is displayed when you
choose View ➤ Details from the DataStage Manager window or
print a report.

Long description. Type an optional detailed description of the
routine.

Next, select the Creator page to enter creator information:

The Creator page allows you to specify information about the creator

and version number of the routine, including:

Vendor. Type the name of the company who created the routine.

Author. Type the name of the person who created the routine.

Version. Type the version number of the routine. This is used
when the routine is imported. The Version field contains a three-
part version number, for example, 3.1.1. The first part of this
number is an internal number used to check compatibility
between the routine and the DataStage system, and cannot be
changed. The second part of this number represents the release
number. This number should be incremented when major
changes are made to the routine definition or the underlying code.
The new release of the routine supersedes any previous release.
Any jobs using the routine use the new release. The last part of
this number marks intermediate releases when a minor change or
fix has taken place.

Copyright. Type the copyright information.
Manager Guide 8-23

Components for Parallel Jobs Managing Programming Components
The last step is to define routine arguments by selecting the

Arguments page:

The underlying functions for External Functions can have any number

of arguments, with each argument name being unique within the

function definition. The underlying functions for External Before/After

routines can have up to eight arguments, with each argument name

being unique within the function definition. In both cases these names

must conform to C variable name standards.

Expected arguments for a routine appear in the expression editor, or

on the Triggers page of the transformer stage Properties dialog box,

delimited by % characters (for example, %arg1%). When actually

using a routine, substitute the argument value for this string.

The fields are as follows:

Argument name. Type the name of the argument to be passed to
the routine.

I/O type. All arguments are input arguments, so the I/O type can
only be set to I.

Native type. Offers a choice of the C native types in a drop-down
list. Note that the actual type definitions in function
implementations may vary depending on platform type. This
particularly applies to ‘long’ and ‘unsigned long’ C native types.
These can be defined as ‘long’ and ‘unsigned long’ on Tru64
platforms, but for all other platforms should be defined as ‘long
8-24 Manager Guide

Managing Programming Components Components for Mainframe Jobs
long’ and ‘unsigned long long’ in the actual code. Similarly a
return type of ‘char’ should be defined as ‘signed char’ in the code
on all platforms.

Description. Type an optional description of the argument.

Components for Mainframe Jobs
There is only one programming building block held in the DataStage

Repository for mainframe jobs, the external routine. There are three

types of mainframe routine:

External Routine. Calls a COBOL library function.

External Source Routine. Calls a user-supplied program that
allows a DataStage job to access an external data source as the
job runs on the mainframe.

External Target Routine. Calls a user-supplied program that
allows a DataStage job to write to an external data source as the
job runs on the mainframe.

The External Routine stage in a DataStage mainframe job enables you

to call a COBOL subroutine that exists in a library external to

DataStage in your job. You must first define the routine, details of the

library, and its input and output arguments. The routine definition is

stored in the DataStage Repository and can be referenced from any

number of External Routine stages in any number of mainframe jobs.

The External Source stage in a DataStage mainframe job allows you

to read data from file types that are not supported in Enterprise MVS

Edition. After you write an external source program, you create an

external source routine in the DataStage Repository. The external

source routine specifies the attributes of the external source program.

Defining and calling external routines is described in more detail in

the DataStage Enterprise MVS Edition: Mainframe Job Developer’s

Guide.

The External Target stage in a DataStage mainframe job allows you to

write data to file types that are not supported in Enterprise MVS

Edition. After you write an external target program, you create an

external target routine in the DataStage Repository. The external

target routine specifies the attributes of the external target program.

Defining and calling external routines is described in more detail in

the DataStage Enterprise MVS Edition: Mainframe Job Developer’s

Guide.
Manager Guide 8-25

Components for Mainframe Jobs Managing Programming Components
Working with Mainframe Routines
In mainframe jobs, routines allow you to incorporate complex

processing or functionality specific to your environment in the COBOL

programs generated by DataStage. Some possible uses of an external

routine could include a call to a statistical analysis program, an

interface to a database type not supported by Enterprise MVS Edition,

or a call to an existing COBOL program that performs a specialized

function. Such a routine can be written in any language that can be

called by a COBOL program, such as COBOL, Assembler, or C.

When you create, view, or edit a mainframe routine under the

Routines branch in the DataStage Manager, the Mainframe
Routine dialog box appears. This dialog box has up to four pages:

General, Creator, and Arguments, plus a JCL page if you are

editing an External Source routine.

There are three buttons in the Mainframe Routine dialog box:

Close. Closes the Routine dialog box. If you have any unsaved
changes, you are prompted to save them.

Save. Saves the routine.

Help. Starts the Help system.

Naming Routines

Routine names can be one to eight characters in length. They must

begin with an alphabetic character and can contain alphanumeric, $, #,

and @ characters.

Routine category names can be any length and consist of any

characters, including spaces.

Creating a Routine

To create a new routine, select the Routines branch in the DataStage

Manager window and do one of the following:

Choose File ➤ New Mainframe Routine… .

Select New Mainframe Routine… from the shortcut menu.
8-26 Manager Guide

Managing Programming Components Components for Mainframe Jobs
The Mainframe Routine dialog box appears:

The General page is displayed by default. Enter general information

about the routine, including:

Routine name. Type the name (up to 8 characters) of the function
or subroutine. In mainframe terms, the routine name is the name
of an entry point in a member of a load or object library. The
library member may also contain other entry points with other
names. The routine name must match the external subroutine
name if dynamic invocation (the default) is selected, and
automatically appears in the External subroutine name field.

Type. Choose External Routine, External Source Routine or
External Target Routine from the drop-down list.

Category. Type or browse for a category name to store the
routine in the Repository. If you do not enter a name in this field,
the routine is created under the main Routines branch.

Platform. Select the operating system that the COBOL subroutine
will run on. (OS/390 is the only platform currently supported.)

External subroutine name. Type the name of the load or object
library member that contains the subroutine or function entry
point. If dynamic invocation is selected, then the external subrou-
tine name must match the routine name. If the invocation method
is static, then the two names need not match.

Library path. Type the pathname of the library that contains the
routine member.
Manager Guide 8-27

Components for Mainframe Jobs Managing Programming Components
Invocation method. Select the invocation method for the
routine. Dynamic invocation calls the routine at runtime. Static
invocation embeds the routine within a program. Dynamic is the
default.

Short description. Type an optional brief description of the
routine. The text entered in this field is displayed when you
choose View ➤ Details from the DataStage Manager window or
print a report. It also appears in the External Routine stage editor.

Long description. Type an optional detailed description of the
routine.

Next, select the Creator page to enter creator information:

The Creator page allows you to specify information about the creator

and version number of the routine, including:

Vendor. Type the name of the company who created the routine.

Author. Type the name of the person who created the routine.

Version. Type the version number of the routine. This is used
when the routine is imported. The Version field contains a three-
part version number, for example, 3.1.1. The first part of this
number is an internal number used to check compatibility
between the routine and the DataStage system, and cannot be
changed. The second part of this number represents the release
number. This number should be incremented when major
changes are made to the routine definition or the underlying code.
The new release of the routine supersedes any previous release.
Any jobs using the routine use the new release. The last part of
this number marks intermediate releases when a minor change or
fix has taken place.
8-28 Manager Guide

Managing Programming Components Components for Mainframe Jobs
Copyright. Type the copyright information.

The last step is to define routine arguments by selecting the

Arguments page:

Arguments are optional for mainframe routines. To load arguments

from an existing table definition, click Load. To create a new

argument, type directly in the Arguments page grid or, if you need to

specify COBOL attributes, do one of the following:

Right-click in the column area and select Edit row… from the
shortcut menu.

Press Ctrl-E.

The Edit Routine Argument Meta Data dialog box appears.

The top pane contains the same fields that appear on the Arguments
page grid. Enter the information for each argument you want to define

as follows:

Argument name. Type the name of the argument to be passed to
the routine.

Level number. Only appears for External Source or Target
routines.

I/O type. Only appears for External routines. Select the direction
to pass the data. There are three options:

– Input. A value is passed from the data source to the external
routine. The value is mapped to an input row element.

– Output. A value is returned from the external routine to the
stage. The value is mapped to an output column.
Manager Guide 8-29

Components for Mainframe Jobs Managing Programming Components
– Both. A value is passed from the data source to the external
routine and returned from the external routine to the stage.
The value is mapped to an input row element, and later
mapped to an output column.

Native type. Select the native data type of the argument value
from the drop-down list.

Length. Type a number representing the length or precision of
the argument.

Scale. If the argument is numeric, type a number to define the
number of decimal places.

Nullable. Only appears for External Source routines. Select Yes,
No, or Unknown from the drop-down list to specify whether the
argument can contain null values. The default is No on the Edit
Routine Argument Meta Data dialog box.

Date Format. Only appears for External Source routines. Choose
the date format from the drop-down list of available formats.

Description. Type an optional description of the argument.

The bottom pane of the Edit Routine Argument Meta Data dialog

box displays the COBOL page by default. Use this page to enter any

required COBOL information for the mainframe argument:

Level Number. Only appears for External Source or Target
routines. Type in a number giving the COBOL level number in the
range 02 – 49. The default value is 05.

Occurs. Only appears for External Source routines. Type in a
number giving the COBOL occurs clause. If the argument defines
a group, gives the number of elements in the group.

Usage. Select the COBOL usage clause from the drop-down list.

Sign indicator. Select Signed or blank from the drop-down list
to specify whether the argument can be signed or not. The default
is blank.

Sign option. If the argument is signed, select the location of the
sign in the data from the drop-down list.

Sync indicator. Select SYNC or blank from the drop-down list to
indicate whether this is a COBOL-synchronized clause or not. The
default is blank.

Redefined Field. Only appears for External Source or Target
routines. Optionally specify a COBOL REDEFINES clause. This
allows you to describe data in the same storage area using a
different data description.
8-30 Manager Guide

Managing Programming Components Components for Mainframe Jobs
Depending on. Only appears for External Source routines.
Optionally choose a COBOL OCCURS-DEPENDING ON clause
from the drop-down list.

Storage length. Gives the storage length in bytes of the
argument as defined. This field is derived and cannot be edited.

Picture. Gives the COBOL PICTURE clause, which is derived from
the argument definition and cannot be edited.

If you are editing an External Source or Target routine, click the JCL

tab to go to the JCL page. This allows you to supply any additional

JCL that your routine might require. Type in the JCL or click Load JCL

to load it from a file.

Click Save when you are finished to save the routine definition.

Viewing and Editing a Routine

You can view and edit any mainframe routines in your project. To view

or modify a routine, select it in the display area and do one of the

following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the routine in the display area.

The Routine dialog box appears. You can edit any of the fields and

options on any of the pages.
Manager Guide 8-31

Components for Mainframe Jobs Managing Programming Components
Copying a Routine

You can copy an existing routine using the DataStage Manager. To

copy a routine, select it in the display area and do one of the

following:

Choose File ➤ Copy.

Choose Copy from the shortcut menu.

Click the Copy button on the toolbar.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears allowing you to rename the copy immediately. The new

routine must be compiled before it can be used.

Renaming a Routine

You can rename any user-written routines using the DataStage

Manager. To rename an item, select it in the display area and do one

of the following:

Click the routine again. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose File ➤ Rename. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose Rename from the shortcut menu. An edit box appears
and you can enter a different name or edit the existing one. Save
the new name by pressing Enter or by clicking outside the edit
box.

Double-click the routine. The Mainframe Routine dialog box
appears and you can edit the Routine name field. Click Save,
then Close.
8-32 Manager Guide

9
Mainframe Machine Profiles

Mainframe Mainframe machine profiles are used when DataStage uploads

generated code to a mainframe. They are also used by the mainframe

FTP stage. They provide a reuseable way of defining the mainframe

DataStage is uploading code or FTPing to. You can create mainframe

machine profiles and store them in the DataStage repository. You can

create, copy, rename, move, and delete them in the same way as

other Repository objects.

To create a machine profile:

1 From the DataStage Manager, select the Machine Profiles
branch in the project tree and do one of the following:

– Choose File ➤ New Machine Profile… .

– Choose New Machine Profile… from the shortcut menu.

– Click the New button on the toolbar.

The Machine Profile dialog box appears:
Manager Guide 9-1

Mainframe Machine Profiles
This dialog box has three pages:

– General. Displayed by default. Contains general information
about the machine profile.

– Connection. Allows you to specify connection details for
connecting to the mainframe, includes IP Host name/address,
Port, User name, password, and whether the FTP service is
active or passive.

– Libraries. Allows you to specify the location of a number of
libraries on the mainframe.

2 Enter the name of the machine profile in the Machine profile
name field. This name is used to create an icon under the
category branch. The name entered here must be unique as no
two machine profiles can have the same name.

3 Enter, or choose, a category name in the Category field. This
name is used to create a branch under the main Machine
profiles branch. If you do not enter a name in this field, the profile
is created under the main Machine profiles branch.

4 Choose the type of platform for which you are defining a profile
from the Platform type drop-down list.

5 Optionally enter a brief description of the profile in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window or
print a machine profiles report.

6 Optionally enter a detailed description of the data in the Long
description field. This description is displayed only when you
view the properties of a machine profile.
9-2 Manager Guide

Mainframe Machine Profiles
7 Click the Connection tab to go to the Connection page.

8 Specify the IP Host name/address for the machine.

9 Specify the Port to connect to. The default port number is 21.

10 Choose an Ftp transfer type of ASCII or Binary.

11 Specify a user name and password for connecting to the machine.
The password is stored in encrypted form.

12 Click Active or Passive as appropriate for the FTP service.

13 If you are generating process meta data from mainframe jobs for
MetaStage, specify the target directory and dataset name for the
XML file which will record the operational meta data.
Manager Guide 9-3

Naming Machine Profiles Mainframe Machine Profiles
14 Click the Libraries tab to go to the Libraries page.

15 In Source library specify the destination for the generated code.

16 In Compile JCL library specify the destination for the compile
JCL file.

17 In Run JCL library specify the destination for the run JCL file.

18 In Object library specify the location of the object library. This is
where compiler output is transferred.

19 In DBRM library specify the location of the DBRM library. This is
where information about a DB2 program is transferred.

20 In Load library specify the location of the Load library. This is
where executable programs are transferred.

21 In Jobcard accounting information specify the location of
identification information for the jobcard.

22 Click OK to save the machine profile and to close the Machine
Profile dialog box.

Naming Machine Profiles
Machine profile names can be one to eight characters in length. They

must begin with an alphabetic character and can contain

alphanumeric, $, #, and @ characters.
9-4 Manager Guide

Mainframe Machine Profiles Naming Machine Profiles
Machine profile category names can be any length and consist of any

characters, including spaces.
Manager Guide 9-5

Naming Machine Profiles Mainframe Machine Profiles
9-6 Manager Guide

10
Managing IMS Databases and

IMS Viewsets

Mainframe DataStage can store information about the structure of IMS Databases

and IMS Viewsets which can then be used by Mainframe jobs to read

IMS databases, or use them as lookups. These facilities are available if

you have Enterprise MVS Edition installed along with the IMS Source

package.

The information is stored in the following repository objects:

IMS Databases (DBDs). Each IMS database object describes the
physical structure of an IMS database.

IMS Viewsets (PSBs/PCBs). Each IMS viewset object describes
an application’s view of an IMS database.

These types of object are only visible in the Repository tree if you

have actually imported database or viewset definitions.

Importing IMS Definitions
You can import IMS definitions into the DataStage Repository from

Data Base Description (DBD) files and Program Specification Block

(PSB) files. A DBD file defines the physical structure of an IMS

database. A PSB file defines an application’s view of an IMS database.

During DBD import, the DataStage table name is created from the

DBD name and the segment name. Column names are created from

the DBD field names; however, only those fields that are defined in the

DBD become columns. Fillers are created where necessary to

maintain proper field displacement and segment size. If you have a

definition of the complete IMS segment in the form of a CFD, you can
Manager Guide 10-1

Importing IMS Definitions Managing IMS Databases and IMS Viewsets
import it to create the completely defined table, including any

columns that were captured as fillers.

DataStage captures the following clauses from DBD files:

DBD

DATASET

AREA

SEGM

LCHILD

FIELD

XDFIELD

DBDGEN

FINISH

END

The clauses captured from PSB files include:

PCB

SENSEG

SENFLD

PSBGEN

END

You can import IMS definitions from IMS version 5 and above. IMS

field types are converted to COBOL native data types during capture,

as described in the table below.

IMS
Field
Type

COBOL Native
Type

COBOL Usage
Representation

SQL
Type

X CHARACTER PIC X(n)1

1 (n) is equal to the number of bytes.

Char

P DISPLAY_NUMERIC PIC S9(n)V9(0) COMP-
3

Decimal

C CHARACTER PIC X(n) Char

F BINARY PIC S9(9) COMP Integer

H BINARY PIC S9(4) COMP SmallInt
10-2 Manager Guide

Managing IMS Databases and IMS Viewsets Importing IMS Definitions
Choose Import ➤ IMS Definitions ➤ Data Base Description
(DBD)…to import a DBD or Import ➤ IMS Definitions ➤ Program
Specificaton Block (PSB)… to import a PSB. The Import Meta
Data dialog box appears:

This dialog box has the following fields:

Seen from. Your computer’s network identification name. The
name is automatically filled in and is read-only.

IMS file description pathname. The pathname where the IMS
file is located. You can type the pathname or browse for it by
clicking the … (browse) button. The IMS file must either reside on
the DataStage client workstation or on a network that is visible
from the client workstation. The default capture file extension is
*.dbd for DBD files or *.psb for PSB files.

Platform type. The operating system for the mainframe
platform. (OS/390 is the only platform currently supported.)

Database names or Viewset names. The databases or
viewsets defined in the selected DBD or PSB file. This list will
appear after you enter the IMS pathname. Click Refresh to refresh
the list if necessary. Select a single item by clicking the database
or viewset name, or select multiple items by holding down the
Ctrl key and clicking the names. To select all items, click Select
all.

To see a summary description of an item, select it and click

Details. The Details of dialog box appears, displaying the type,

description, modification history, and column names.

To category. The name of the category in the Repository where
the item will be saved. This field is automatically filled in when
you select a database or viewset name. The default category is
IMS Database\filename for DBD files or IMS Viewset\filename for
PSB files. You can change the category by typing a name in the To
category field.
Manager Guide 10-3

Viewing and Editing IMS Definitions Managing IMS Databases and IMS Viewsets
When importing from a PSB there is an additional field:

Create associated tables. Select this check box to have
DataStage create a table in the Repository that corresponds to
each sensitive segment in the PSB file, and columns in the table
that correspond to each sensitive field. Only those fields that are
defined in the PSB become columns; fillers are created where
necessary to maintain proper field displacement and segment
size. The associated tables are stored in the Table Definitions
branch of the project tree.

If you have a CFD with a definition of the complete IMS segment,

you can import it to create the completely defined table, including

any columns that were captured as fillers. You can then change

the associated table for each segment in the IMS Viewset Editor;

see "Viewing and Editing IMS Definitions"on page 10-4 for details.

Click OK after selecting the items to import. The data is extracted and

parsed. If any syntactical or semantic errors are found, the Import
Error dialog box appears, allowing you to view and fix the errors, skip

the import of the incorrect item, or stop the import process altogether.

After the import is complete, IMS definitions are stored in the IMS
Databases and IMS Viewsets branches of the Manager project tree.

Viewing and Editing IMS Definitions
After you import IMS databases and viewsets, you can view and edit

their definitions in the Manager.

Note Editing of IMS definitions is limited to entering descriptions

and creating mappings between viewset segments and

their associated tables. If you want to edit columns, you

must open the associated table definition. Tables associated

with IMS definitions are stored in the Viewsets folder of

the Table Definitions branch of the project tree. For

details on editing table definitions, see "Viewing or

Modifying a Table Definition" on page 3-39.

To open an IMS database or viewset for editing, select it in the display

area and do one of the following:

Choose File ➤ Properties.

Choose Properties from the shortcut menu.

Double-click the item in the display area.

Click the Properties button on the toolbar.
10-4 Manager Guide

Managing IMS Databases and IMS Viewsets Viewing and Editing IMS Definitions
Depending on the type of IMS item you selected, either the IMS
Database dialog box appears or the IMS Viewset dialog box

appears. Remember that, if you edit the definitions, this will not affect

the actual database it describes.

IMS Database Editor
The IMS Database editor allows you to view, edit, or create IMS

database objects.

This dialog box is divided into two panes. The left pane displays the

IMS

database, segments, and datasets in a tree, and the right pane

displays the

properties of selected items. Depending on the type of item selected,

the

right pane has up to two pages:

Database. There are two pages for database properties:

– General. Displays the general properties of the database
including the name, version number, access type, organization,
category, and short and long descriptions. All of these fields
are read-only except for the short and long descriptions.

– Hierarchy. Displays the segment hierarchy of the database.
You can right-click to view the hierarchy in detailed mode. This
diagram is read-only.

Segment. There are two pages for segment properties:
Manager Guide 10-5

Viewing and Editing IMS Definitions Managing IMS Databases and IMS Viewsets
– General. Displays the segment name, the parent segment, its
minimum and maximum size in bytes, and a description. All of
these fields are read-only except for the description.

– Fields. Displays the fields of the selected segment. The field
descriptions are read-only.

Dataset. Properties are displayed on one page and include the
DD names that are used in the JCL to read the file. These names
are read-only. You can optionally enter a description of the
dataset.

For a full description of IMS database objects see Mainframe Job

Developer’s Guide.

IMS Viewset Editor
The IMS Viewset editor allows you to view, edit, or create IMS viewset

objects.

This dialog box is divided into two panes. The left pane contains a tree

structure displaying the IMS viewset (PSB), its views (PCBs), and the

sensitive segments. The right pane displays the properties of selected

items. It has up to three pages depending on the type of item selected:

Viewset. Properties are displayed on one page and include the
PSB name and the category in the Repository where the viewset is
stored. These fields are read-only. You can optionally enter short
and long descriptions.

View. There are two pages for view properties:
10-6 Manager Guide

Managing IMS Databases and IMS Viewsets Viewing and Editing IMS Definitions
– General. Displays the PCB name, DBD name, type, and an
optional description. If you did not create associated tables
during import or you want to change which tables are
associated with PCB segments, click the Segment/Table
Mapping… button. The Segment/Associated Table
Mapping dialog box appears:

To create a table association for a segment, select a table in the

left pane and drag it to the segment in the right pane. The left

pane displays available tables in the Repository which are of type

QSAM_SEQ_COMPLEX. The right pane displays the segment

names and the tables currently associated with them; you can

right-click to clear one or all of the current table mappings.

Click OK when you are done with the mappings, or click Cancel
to discard any changes you have made and revert back to the

original table associations.

– Hierarchy. Displays the PCB segment hierarchy in a read-only
diagram. You can right-click to view the hierarchy in detailed
mode.

Sensitive Segment. There are three pages for sensitive segment
properties:

– General. Displays the segment name and its associated table.
If you want to change the associated table, click the browse
button next to the Associate table field to select another
table.

– Sen Fields. Displays the sensitive fields associated with the
sensitive segment. These fields are read-only.

– Columns. Displays the columns of the associated table. The
column descriptions are read-only.
Manager Guide 10-7

Viewing and Editing IMS Definitions Managing IMS Databases and IMS Viewsets
For a full description of IMS viewset objects see Mainframe Job

Developer’s Guide.
10-8 Manager Guide

11
The Parallel Engine Configuration File

One of the great strengths of the DataStage Enterprise Edition is that,

when designing parallel jobs, you don’t have to worry too much about

the underlying structure of your system, beyond appreciating its

parallel processing capabilities. If your system changes, is upgraded

or improved, or if you develop a job on one platform and implement it

on another, you don’t necessarily have to change your job design.

DataStage learns about the shape and size of the system from the

configuration file. It organizes the resources needed for a job

according to what is defined in the configuration file. When your

system changes, you change the file not the jobs.

This chapter describes how to define configuration files that specify

what processing, storage, and sorting facilities on your system should

be used to run a parallel job. You can maintain multiple configuration

files and read them into the system according to your varying

processing needs.

When you install DataStage Enterprise Edition the system is

automatically configured to use the supplied default configuration file.

This allows you to run parallel jobs right away, but is not optimized for

your system. Follow the instructions in this chapter to produce

configuration file specifically for your system.

Configurations Editor
The DataStage Manager provides a configuration file editor to help

you define configuration files for the parallel engine. To use the editor,
Manager Guide 11-1

Configurations Editor The Parallel Engine Configuration File
choose Tools ➤ Configurations, the Configurations dialog box

appears:

To define a new file, choose (New) from the Configurations drop-

down list and type into the upper text box. Guidance on the operation

and format of a configuration file is given in the following sections.

Click Save to save the file at any point. You are asked to specify a

configuration name, the config file is then saved under that name with

an .apt extension.
11-2 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
You can verify your file at any time by clicking Check. Verification

information is output in the Check Configuration Output pane at

the bottom of the dialog box.

To edit an existing configuration file, choose it from the

Configurations drop-down list. You can delete an existing

configuration by selecting it and clicking Delete. You are warned if you

are attempting to delete the last remaining configuration file.

You specify which configuration will be used by setting the

APT_CONFIG_FILE environment variable. This is set on installation to

point to the default configuration file, but you can set it on a project

wide level from the DataStage Administrator (see "Setting

Environment Variables" in DataStage Administrator Guide) or for

individual jobs from the Job Properties dialog (see "Environment

Variables" on page 5-10).

Configuration Considerations
The parallel engine’s view of your system is determined by the

contents of your current configuration file. Your file defines the

processing nodes and disk space connected to each node that you

allocate for use by parallel jobs. When invoking a parallel job, the

parallel engine first reads your configuration file to determine what

system resources are allocated to it and then distributes the job to

those resources.
Manager Guide 11-3

Configuration Considerations The Parallel Engine Configuration File
When you modify the system by adding or removing nodes or disks,

you must modify your configuration file correspondingly. Since the

parallel engine reads the configuration file every time it runs a parallel

job, it automatically scales the application to fit the system without

your having to alter the job code.

Your ability to modify the parallel engine configuration means that

you can control the parallelization of a parallel job during its

development cycle. For example, you can first run the job on one

node, then on two, then on four, and so on. You can measure system

performance and scalability without altering application code.

Logical Processing Nodes
A parallel engine configuration file defines one or more processing

nodes on which your parallel job will run. The processing nodes are

logical rather than physical. The number of processing nodes does

not necessarily correspond to the number of CPUs in your system.

Your configuration file can define one processing node for each

physical node in your system, or multiple processing nodes for each

physical node.

Optimizing Parallelism
The degree of parallelism of a parallel job is determined by the

number of nodes you define when you configure the parallel engine.

Parallelism should be optimized for your hardware rather than simply

maximized. Increasing parallelism distributes your work load but it

also adds to your overhead because the number of processes

increases. Increased parallelism can actually hurt performance once

you exceed the capacity of your hardware. Therefore you must weigh

the gains of added parallelism against the potential losses in

processing efficiency.

Obviously, the hardware that makes up your system influences the

degree of parallelism you can establish.

SMP systems allow you to scale up the number of CPUs and to run

your parallel application against more memory. In general, an SMP

system can support multiple logical nodes. Some SMP systems allow

scalability of disk I/O. "Configuration Options for an SMP" on

page 11-6 discusses these considerations.

In a cluster or MPP environment, you can use the multiple CPUs and

their associated memory and disk resources in concert to tackle a

single computing problem. In general, you have one logical node per

CPU on an MPP system. "Configuration Options for an MPP System"

on page 11-9 describes these issues.
11-4 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
The properties of your system’s hardware also determines

configuration. For example, applications with large memory

requirements, such as sort operations, are best assigned to machines

with a lot of memory. Applications that will access an RDBMS must

run on its server nodes; and stages using other proprietary software,

such as SAS, must run on nodes with licenses for that software.

Here are some additional factors that affect the optimal degree of

parallelism:

CPU-intensive applications, which typically perform multiple CPU-
demanding operations on each record, benefit from the greatest
possible parallelism, up to the capacity supported by your system.

Parallel jobs with large memory requirements can benefit from
parallelism if they act on data that has been partitioned and if the
required memory is also divided among partitions.

Applications that are disk- or I/O-intensive, such as those that
extract data from and load data into RDBMSs, benefit from
configurations in which the number of logical nodes equals the
number of disk spindles being accessed. For example, if a table is
fragmented 16 ways inside a database or if a data set is spread
across 16 disk drives, set up a node pool consisting of 16
processing nodes.

For some jobs, especially those that are disk-intensive, you must
sometimes configure your system to prevent the RDBMS from
having either to redistribute load data or to re-partition the data
from an extract operation.

The speed of communication among stages should be optimized
by your configuration. For example, jobs whose stages exchange
large amounts of data should be assigned to nodes where stages
communicate by either shared memory (in an SMP environment)
or a high-speed link (in an MPP environment). The relative
placement of jobs whose stages share small amounts of data is
less important.

For SMPs, you may want to leave some processors for the
operating system, especially if your application has many stages
in a job. See "Configuration Options for an SMP" on page 11-6.

In an MPP environment, parallelization can be expected to
improve the performance of CPU-limited, memory-limited, or disk
I/O-limited applications. See "Configuration Options for an MPP
System" on page 11-9.

The most nearly-equal partitioning of data contributes to the best

overall performance of a job run in parallel. For example, when hash

partitioning, try to ensure that the resulting partitions are evenly

populated.This is referred to as minimizing skew. Experience is the

best teacher. Start with smaller data sets and try different
Manager Guide 11-5

Configuration Considerations The Parallel Engine Configuration File
parallelizations while scaling up the data set sizes to collect

performance statistics.

Configuration Options for an SMP
An SMP contains multiple CPUs which share operating system, disk,

and I/O resources. Data is transported by means of shared memory. A

number of factors contribute to the I/O scalability of your SMP. These

include the number of disk spindles, the presence or absence of RAID,

the number of I/O controllers, and the speed of the bus connecting the

I/O system to memory.

SMP systems allow you to scale up the number of CPUs. Increasing

the number of processors you use may or may not improve job

performance, however, depending on whether your application is

CPU-, memory-, or I/O-limited. If, for example, a job is CPU-limited,

that is, the memory, memory bus, and disk I/O of your hardware

spend a disproportionate amount of time waiting for the CPU to finish

its work, it will benefit from being executed in parallel. Running your

job on more processing units will shorten the waiting time of other

resources and thereby speed up the overall application.

All SMP systems allow you to increase your parallel job’s memory

access bandwidth. However, none allow you to increase the memory

bus capacity beyond that of the hardware configuration. Therefore,

memory-intensive jobs will also benefit from increased parallelism,

provided they do not saturate the memory bus capacity of your

system. If your application is already approaching, or at the memory

bus limit, increased parallelism will not provide performance

improvement.

Some SMP systems allow scalability of disk I/O. In those systems,

increasing parallelism can increase the overall throughput rate of jobs

that are disk I/O-limited.
11-6 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
For example, the following figure shows a data flow containing three

parallel stages:

For each stage in this data flow, the parallel engine creates a single

UNIX process on each logical processing node (provided that stage

combining is not in effect). On an SMP defined as a single logical

node, each stage runs sequentially as a single process, and the

parallel engine executes three processes in total for this job. If the

SMP has three or more CPUs, the three processes in the job can be

executed simultaneously by different CPUs. If the SMP has fewer than

three CPUs, the processes must be scheduled by the operating system

for execution, and some or all of the processors must execute

multiple processes, preventing true simultaneous execution.

In order for an SMP to run parallel jobs, you configure the parallel

engine to recognize the SMP as a single or as multiple logical

processing node(s), that is:

1 <= M <= N logical processing nodes, where N is the
number of CPUs on the SMP and M is the number of
processing nodes on the configuration. (Although M can be
greater than N when there are more disk spindles than
there are CPUs.)

As a rule of thumb, it is recommended that you create one processing

node for every two CPUs in an SMP. You can modify this configuration

to determine the optimal configuration for your system and

application during application testing and evaluation. In fact, in most

cases the scheduling performed by the operating system allows for

significantly more than one process per processor to be managed

before performance degradation is seen. The exact number depends

on the nature of the processes, bus bandwidth, caching effects, and

other factors.

stage 1

 data flow

stage 2

stage 3
Manager Guide 11-7

Configuration Considerations The Parallel Engine Configuration File
Depending on the type of processing performed in your jobs (sorting,

statistical analysis, database I/O), different configurations may be

preferable.

For example, on an SMP viewed as a single logical processing node,

the parallel engine creates a single UNIX process on the processing

node for each stage in a data flow. The operating system on the SMP

schedules the processes to assign each process to an individual CPU.

If the number of processes is less than the number of CPUs, some

CPUs may be idle. For jobs containing many stages, the number of

processes may exceed the number of CPUs. If so, the processes will

be scheduled by the operating system.

Suppose you want to configure the parallel engine to recognize an

eight-CPU SMP, for example, as two or more processing nodes. When

you configure the SMP as two separate processing nodes, the parallel

engine creates two processes per stage on the SMP. For the three-

stage job shown above, configuring an SMP as more than two parallel

engine processing nodes creates at least nine UNIX processes,

although only eight CPUs are available. Process execution must be

scheduled by the operating system.

For that reason, configuring the SMP as three or more parallel engine

processing nodes can conceivably degrade performance as compared

with that of a one- or two-processing node configuration. This is so

because each CPU in the SMP shares memory, I/O, and network

resources with the others. However, this is not necessarily true if

some stages read from and write to disk or the network; in that case,

other processes can use the CPU while the I/O-bound processes are

blocked waiting for operations to finish.

Example Configuration File for an SMP
This section contains a sample configuration file for the four-CPU SMP

shown below:

CPU CPU

CPUCPU

SMP
11-8 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
The table below lists the processing node names and the file systems

used by each processing node for both permanent and temporary

storage in this example system:

The table above also contains a column for node pool definitions.

Node pools allow you to execute a parallel job or selected stages on

only the nodes in the pool. See "Node Pools and the Default Node

Pool" on page 11-22 for more details.

In this example, the parallel engine processing nodes share two file

systems for permanent storage. The nodes also share a local file

system (/scratch) for temporary storage.

Here is the configuration file corresponding to this system.

"Configuration Files" on page 11-15 discusses the keywords and

syntax of configuration files.

{
node "node0" {

fastname "node0_byn" /* node name on a fast network */
pools "" "node0" "node0_fddi" /* node pools */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node1" {

fastname "node0_byn"
pools "" "node1" "node1_fddi"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
}

Configuration Options for an MPP System
An MPP consists of multiple hosts, where each host runs its own

image of the operating system and contains its own processors, disk,

I/O resources, and memory. This is also called a shared-nothing

environment. Each host in the system is connected to all others by a

high-speed network. A host is also referred to as a physical node.

In an MPP environment, you can use the multiple CPUs and their

associated memory and disk resources in concert. In this

Node
name

Node name on
fast network

Node
pools

Directory for
permanent
storage

Directory for
temp storage

node0 node0_byn "", node0,
node0_fddi

/orch/s0
/orch/s1

/scratch

node1 node0_byn "", node1,
node1_fddi

/orch/s0
/orch/s1

/scratch
Manager Guide 11-9

Configuration Considerations The Parallel Engine Configuration File
environment, each CPU has its own dedicated memory, memory bus,

disk, and disk access.

When configuring an MPP, you specify the physical nodes in your

system on which the parallel engine will run your parallel jobs. You do

not have to specify all nodes.

An Example of a Four-Node MPP System Configuration
The following figure shows a sample MPP system containing four

physical nodes:

This figure shows a disk-everywhere configuration. Each node is

connected to both a high-speed switch and an Ethernet. Note that the

configuration information below for this MPP would be similar for a

cluster of four SMPs connected by a network.

The following table shows the storage local to each node:

Node name Node name on
fast network

Node pools Directory for
permanent
storage

Directory for
temp storage

node0 node0_css "",
node0,
node0_cs
s

/orch/s0
/orch/s1

/scratch

node1 node1_css "", node1,
node1_css

/orch/s0
/orch/s1

/scratch

node2 node2_css "", node2,
node2_css

/orch/s0
/orch/s1

/scratch

node3 node3_css "", node3,
node3_css

/orch/s0
/orch/s1

/scratch

high-speed network (switch)

CPU

node0_css

node0

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

Ethernet
11-10 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
Note that because this is an MPP system, each node in this

configuration has its own disks and hence its own /orch/s0, /orch/s1,

and /scratch. If this were an SMP, the logical nodes would be sharing

the same directories.

Here is the configuration file for this sample system. "Configuration

Files" on page 11-15 discusses the keywords and syntax of

configuration files.

{
node "node0" {

fastname "node0_css" /* node name on a fast network*/
pools "" "node0" "node0_css" /* node pools */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node1" {

fastname "node1_css"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node2" {

fastname "node2_css"
pools "" "node2" "node2_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node3" {

fastname "node3_css"
pools "" "node3" "node3_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

}

Configuration Options for an SMP Cluster
An SMP cluster consists of one or more SMPs and, optionally, single-

CPU nodes connected by a high-speed network. In this case, each

SMP in the cluster is referred to as a physical node. When you

configure your system, you can divide a physical node into logical

nodes. The following figure shows a cluster containing four physical

nodes, one of which (node1) is an SMP containing two CPUs.
Manager Guide 11-11

Configuration Considerations The Parallel Engine Configuration File
An Example of an SMP Cluster Configuration
The following configuration file divides physical node1 into logical

nodes node1 and node1a. Both are connected to the high-speed

switch by the same fastname; in the configuration file, the same

fastname is specified for both nodes. "Configuration Files" on

page 11-15 discusses the keywords and syntax of Orchestrate

configuration files.

{
node "node0" {

fastname "node0_css"/* node name on a fast network */
pools "" "node0" "node0_css" /* node pools */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}

node "node1" {
fastname "node1_css"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node1a"{

fastname "node1_css"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node2" {

fastname "node2_css"
pools "" "node2" "node2_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}

high-speed network (switch)

CPU

node0_css

node0

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

Ethernet

CPU
11-12 Manager Guide

The Parallel Engine Configuration File Configuration Considerations
node "node3" {
fastname "node3_css"
pools "" "node3" "node3_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
}

In this example, consider the disk definitions for /orch/s0. Since node1

and node1a are logical nodes of the same physical node, they share

access to that disk. Each of the remaining nodes, node0, node2, and

node3, has its own /orch/s0 that is not shared. That is, there are four

distinct disks called /orch/s0. Similarly, /orch/s1 and /scratch are

shared between node1 and node1a but not the others.

Options for a Cluster with the Conductor Unconnected
to the High-Speed Switch

The parallel engine starts your parallel job from the Conductor node.

A cluster may have a node that is not connected to the others by a

high-speed switch, as in the following figure:

In this example, node4 is the Conductor, which is the node from which

you need to start your application. By default, the parallel engine

communicates between nodes using the fastname, which in this

example refers to the high-speed switch. But because the Conductor

is not on that switch, it cannot use the fastname to reach the other

nodes.

high-speed network (switch)

CPU

node0_css

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

ethernet

CPU

CPU

node4

node0
Manager Guide 11-13

Configuration Considerations The Parallel Engine Configuration File
Therefore, to enable the Conductor node to communicate with the

other nodes, you need to identify each node on the high-speed switch

by its canonicalhostname and give its Ethernet name as its quoted

attribute, as in the following configuration file. "Configuration Files"

on page 11-15 discusses the keywords and syntax of Orchestrate

configuration files.

{
node "node0" {

fastname "node0_css"
resource canonicalhostname "node1-eth-1"
pools "" "node0" "node0_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node1" {
fastname "node1_css"
resource canonicalhostname "node1-eth-1"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node2" {
fastname "node2_css"
resource canonicalhostname "node1-eth-1"
pools "" "node2" "node2_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node3" {
fastname "node3_css"
resource canonicalhostname "node1-eth-1"
pools "" "node3" "node3_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node4" {
pools "" "conductor" "node4" “node4_css”

/* not in the default pool */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk “/scratch” {}

}
}

Note Since node4 is not on the high-speed switch and we are

therefore using it only as the Conductor node, we have left

it out of the default node pool (""). This causes the parallel

engine to avoid placing stages on node4. See "Node Pools

and the Default Node Pool" on page 11-22.
11-14 Manager Guide

The Parallel Engine Configuration File Configuration Files
Diagram of a Cluster Environment
The following figure shows a mixed MPP and SMP cluster

environment containing six physical nodes. Only the four nodes of the

left are intended to be allocated for use by the parallel engine.

Configuration Files
This section describes parallel engine configuration files, and their

uses and syntax. The parallel engine reads a configuration file to

ascertain what processing and storage resources belong to your

system. Processing resources include nodes; and storage resources

include both disks for the permanent storage of data and disks for the

temporary storage of data (scratch disks). The parallel engine uses

this information to determine, among other things, how to arrange

resources for parallel execution.

You must define each processing node on which the parallel engine

runs jobs and qualify its characteristics; you must do the same for

each disk that will store data. You can specify additional information

about nodes and disks on which facilities such as sorting or SAS

operations will be run, and about the nodes on which to run stages

that access the following relational data base management systems:

DB2, INFORMIX, and Oracle.

You can maintain multiple configuration files and read them into the

system according to your needs.

Orchestrate provides a sample configuration file, install_dir/etc/

config.apt, where install_dir is the top-level directory of your parallel

engine installation.

This section contains the following subsections:

CPUCPU CPUCPU
CPU

CPU CPU

CPU

CPU

high-speed network (switch)

parallel engine processing

CPU
Manager Guide 11-15

Configuration Files The Parallel Engine Configuration File
"The Default Path Name and the APT_CONFIG_FILE" on page 11-16

"Syntax" on page 11-16

"Node Names" on page 11-17

"Options" on page 11-18

"Node Pools and the Default Node Pool" on page 11-22

"Disk and Scratch Disk Pools and Their Defaults" on page 11-23

"Buffer Scratch Disk Pools" on page 11-24

The Default Path Name and the APT_CONFIG_FILE
The default name of the configuration file is config.apt. When you

run a parallel job, the parallel engine searches for the file config.apt

as follows:

In the current working directory

If it is not there, in install_dir/etc, where install_dir is the top-level
directory of your parallel engine installation ($APT_ORCHHOME)

You can give the configuration file a different name or location or both

from their defaults. If you do, assign the new path and file name to the

environment variable APT_CONFIG_FILE. If APT_CONFIG_FILE is

defined, the parallel engine uses that configuration file rather than

searching in the default locations. In a production environment, you

can define multiple configurations and set APT_CONFIG_FILE to

different path names depending on which configuration you want to

use.

You can set APT_CONFIG_FILE on a project wide level from the

DataStage Administrator (see "Setting Environment Variables" in

DataStage Administrator Guide) or for individual jobs from the Job

Properties dialog (see "Environment Variables" on page 5-10).

Note Although the parallel engine may have been copied to all

processing nodes, you need to copy the configuration file

only to the nodes from which you start parallel engine

applications (conductor nodes).

Syntax
Configuration files are text files containing string data that is passed

to Orchestrate. The general form of a configuration file is as follows:

/* commentary */
{
node "node name" {

<node information>
.

11-16 Manager Guide

The Parallel Engine Configuration File Configuration Files
.

.
 }
.
.
.

}

These are the syntactic characteristics of configuration files:

Braces { } begin and end the file.

The word node begins every node definition.

The word node is followed by the name of the node enclosed in
quotation marks. For a detailed discussion of node names, see
"Node Names" on page 11-17.

Braces { } follow the node name. They enclose the information
about the node (its options), including an enumeration of each
disk and scratch disk resource. The legal options are: fastname,
pools, and resource.

Spaces separate items.

Quotation (") marks surround the attributes you assign to options,
that is, the names of nodes, disks, scratch disks, and pools.

Comments are demarcated by /* . . . */, in the style of the C
programming language. They are optional, but are recommended
where indicated in the examples.

Node Names
Each node you define is followed by its name enclosed in quotation

marks, for example:

node "orch0"

For a single CPU node or workstation, the node’s name is typically the

network name of a processing node on a connection such as a high-

speed switch or Ethernet. Issue the following UNIX command to learn

a node’s network name:

$ uname -n

On an SMP, if you are defining multiple logical nodes corresponding

to the same physical node, you replace the network name with a

logical node name. In this case, you need a fast name for each logical

node.

If you run an application from a node that is undefined in the

corresponding configuration file, each user must set the environment
Manager Guide 11-17

Configuration Files The Parallel Engine Configuration File
variable APT_PM_CONDUCTOR_NODENAME to the fast name of the

node invoking the parallel job.

Options
Each node takes options that define the groups to which it belongs

and the storage resources it employs. Options are as follows:

fastname

This option takes as its quoted attribute the name of the node as it is

referred to on the fastest network in the system, such as an IBM

switch, FDDI, or BYNET. The fastname is the physical node name that

stages use to open connections for high volume data transfers. The

attribute of this option is often the network name. For an SMP, all

CPUs share a single connection to the network, and this setting is the

same for all parallel engine processing nodes defined for an SMP.

Typically, this is the principal node name, as returned by the UNIX

command uname -n.

pools

The pools option indicates the names of the pools to which this node

is assigned. The option’s attribute is the pool name or a space-

separated list of names, each enclosed in quotation marks. For a

detailed discussion of node pools, see "Node Pools and the Default

Node Pool" on page 11-22.

Note that the resource disk and resource scratchdisk options can

also take pools as an option, where it indicates disk or scratch disk

pools. For a detailed discussion of disk and scratch disk pools, see

"Disk and Scratch Disk Pools and Their Defaults" on page 11-23.

Node pool names can be dedicated. Reserved node pool names

include the following names:

Syntax: fastname "name"

Syntax: pools "node_pool_name0" "node_pool_name1"
...

DB2 See the DB2 resource below and "The

resource DB2 Option" on page 11-25.

INFORMIX See the INFORMIX resource below and "The

resource INFORMIX Option" on page 11-26.

ORACLE See the ORACLE resource below and "The

resource ORACLE option" on page 11-27.
11-18 Manager Guide

The Parallel Engine Configuration File Configuration Files
Reserved disk pool names include the following names:

resource

The resource_type can be one of the following:

canonicalhostname

The canonicalhostname resource takes as its quoted attribute the

ethernet name of a node in a cluster that is unconnected to the

Conductor node by the high-speed network. If the Conductor node

cannot reach the unconnected node by a fastname, you must define

the unconnected node’s canonicalhostname to enable

communication.

DB2

This option allows you to specify logical names as the names of DB2

nodes. For a detailed discussion of configuring DB2, see "The

resource DB2 Option" on page 11-25.

sas See "The SAS Resources" on page 11-28.

sort See "Sort Configuration" on page 11-29.

See "Buffer Scratch Disk Pools" on

page 11-24.

export For use by the export stage.

lookup For use by the lookup stage.

sasdatas
et

See "The SAS Resources" on page 11-28.

sort See "Sort Configuration" on page 11-29.

Syntax: resource resource_type "location"
[{pools "disk_pool_name"}]

|
resource resource_type "value"

Syntax: canonicalhostname "ethernet name"

Syntax: resource DB2 "node_number"
[{pools "instance_owner" ...}]
Manager Guide 11-19

Configuration Files The Parallel Engine Configuration File
disk

Assign to this option the quoted absolute path name of a directory

belonging to a file system connected to the node. The node reads

persistent data from and writes persistent data to this directory. One

node can have multiple disks. Relative path names are not supported.

Typically, the quoted name is the root directory of a file system, but it

does not have to be. For example, the quoted name you assign to disk

can be a subdirectory of the file system.

You can group disks in pools. Indicate the pools to which a disk

belongs by following its quoted name with a pools definition

enclosed in braces. For a detailed discussion of disk pools, see "Disk

and Scratch Disk Pools and Their Defaults" on page 11-23.

INFORMIX

This option allows you to specify logical names as the names of

INFORMIX nodes. For a detailed discussion of configuring INFORMIX,

see "The resource INFORMIX Option" on page 11-26.

ORACLE

This option allows you to define the nodes on which Oracle runs. For a

detailed discussion of configuring Oracle, see "The resource ORACLE

option" on page 11-27.

sasworkdisk

This option is used to specify the path to your SAS work directory. See

"The SAS Resources" on page 11-28.

Syntax: resource disk "directory_path"
[{pools "poolname"...}]

Syntax: resource INFORMIX "coserver_basename"
[{pools "db_server_name" ... }]

Syntax: resource ORACLE "nodename"
[{pools "db_server_name" ...}]

Syntax: resource sasworkdisk "directory_path"
[{pools "poolname"...}]
11-20 Manager Guide

The Parallel Engine Configuration File Configuration Files
scratchdisk

Assign to this option the quoted absolute path name of a directory on

a file system where intermediate data will be temporarily stored. All

Orchestrate users using this configuration must be able to read from

and write to this directory. Relative path names are unsupported.

The directory should be local to the processing node and reside on a

different spindle from that of any other disk space. One node can have

multiple scratch disks.

Assign at least 500 MB of scratch disk space to each defined node.

Nodes should have roughly equal scratch space. If you perform

sorting operations, your scratch disk space requirements can be

considerably greater, depending upon anticipated use.

We recommend that:

Every logical node in the configuration file that will run sorting
operations have its own sort disk, where a sort disk is defined as a
scratch disk available for sorting that resides in either the sort or
default disk pool.

Each logical node’s sorting disk be a distinct disk drive.
Alternatively, if it is shared among multiple sorting nodes, it
should be striped to ensure better performance.

For large sorting operations, each node that performs sorting have
multiple distinct sort disks on distinct drives, or striped.

You can group scratch disks in pools. Indicate the pools to which a

scratch disk belongs by following its quoted name with a pools

definition enclosed in braces. For more information on disk pools, see

"Disk and Scratch Disk Pools and Their Defaults" on page 11-23.

The following sample SMP configuration file defines four logical

nodes.

{
node "borodin0" {

fastname "borodin"
pools "compute_1" ""
resource disk "/sfiles/node0" {pools ""}
resource scratchdisk "/scratch0" {pools "" "sort"}

}
node "borodin1" {

fastname "borodin"
pools "compute_1" ""
resource disk "/sfiles/node1" {pools ""}
resource scratchdisk "/scratch1" {pools "" "sort"}

}

Syntax: resource scratchdisk "directory_path"
[{pools "poolname"...}]
Manager Guide 11-21

Configuration Files The Parallel Engine Configuration File
node "borodin2" {
fastname "borodin"
pools "compute_1" ""
resource disk "/sfiles/node2" {pools ""}
resource scratchdisk "/scratch2" {pools "" "sort"}

}
node "borodin3"
{

fastname "borodin"
pools "compute_1" ""
resource disk "/sfiles/node3" {pools ""}
resource scratchdisk "/scratch3" {pools "" "sort"}

}
}

In the example shown above:

All nodes are elements of pool compute_1 and the default node
pool, indicated by "".

The resource disk of node borodin0 is the directory /sfiles/node0.

The resource disks of nodes borodin1 to borodin3 are the
directories /sfiles/node1, /sfiles/node2, and /sfiles/node3.

All resource disks are elements of the default disk pool, indicated
by "".

For sorting, each logical node has its own scratch disk.

All scratch disks are elements of the sort scratch disk pool and the
default scratch disk pool which is indicated by "".

Node Pools and the Default Node Pool
Node pools allow association of processing nodes based on their

characteristics. For example, certain nodes can have large amounts of

physical memory, and you can designate them as compute nodes.

Others can connect directly to a mainframe or some form of high-

speed I/O. These nodes can be grouped into an I/O node pool.

The option pools is followed by the quoted names of the node pools

to which the node belongs. A node can be assigned to multiple pools,

as in the following example, where node1 is assigned to the default

pool ("") as well as the pools node1, node1_css, and pool4.

node "node1"
{
fastname "node1_css"
pools "" "node1" "node1_css" "pool4"
resource disk "/orch/s0" {}
resource scratchdisk "/scratch" {}
}

A node belongs to the default pool unless you explicitly specify a

pools list for it, and omit the default pool name ("") from the list.
11-22 Manager Guide

The Parallel Engine Configuration File Configuration Files
Once you have defined a node pool, you can constrain a parallel stage

or parallel job to run only on that pool, that is, only on the processing

nodes belonging to it. If you constrain both an stage and a job, the

stage runs only on the nodes that appear in both pools.

Nodes or resources that name a pool declare their membership in that

pool.

We suggest that when you initially configure your system you place

all nodes in pools that are named after the node’s name and fast

name. Additionally include the default node pool in this pool, as in the

following example:

node "n1"
{
fastname "nfast"
pools "" "n1" "nfast"
}

By default, the parallel engine executes a parallel stage on all nodes

defined in the default node pool. You can constrain the processing

nodes used by the parallel engine either by removing node

descriptions from the configuration file or by constraining a job or

stage to a particular node pool.

Disk and Scratch Disk Pools and Their Defaults
When you define a processing node, you can specify the options

resource disk and resource scratchdisk. They indicate the directories

of file systems available to the node. You can also group disks and

scratch disks in pools. Pools reserve storage for a particular use, such

as holding very large data sets. The syntax for setting up disk and

scratch disk pools is as follows:

resource disk "disk_name"
{pools "disk_pool0" ... "disk_poolN"}

resource scratchdisk "s_disk_name"
{pools "s_pool0" ... "s_poolN"}

where:

disk_name and s_disk_name are the names of directories.

disk_pool... and s_pool... are the names of disk and scratch
disk pools, respectively.

Pools defined by disk and scratchdisk are not combined; therefore,

two pools that have the same name and belong to both resource disk

and resource scratchdisk define two separate pools.

A disk that does not specify a pool is assigned to the default pool. The

default pool may also be identified by "" by and { } (the empty pool

list). For example, the following code configures the disks for node1:
Manager Guide 11-23

Configuration Files The Parallel Engine Configuration File
node "node1" {
resource disk "/orch/s0" {pools "" "pool1"}
resource disk "/orch/s1" {pools "" "pool1"}
resource disk "/orch/s2" { } /* empty pool list */
resource disk "/orch/s3" {pools "pool2"}
resource scratchdisk "/scratch"{pools "" "scratch_pool1"}

}

In this example:

The first two disks are assigned to the default pool.

The first two disks are assigned to pool1.

The third disk is also assigned to the default pool, indicated by { }.

The fourth disk is assigned to pool2 and is not assigned to the
default pool.

The scratch disk is assigned to the default scratch disk pool and to
scratch_pool1.

Application programmers make use of pools based on their

knowledge of both their system and their application.

Buffer Scratch Disk Pools
Under certain circumstances, the parallel engine uses both memory

and disk storage to buffer virtual data set records.The amount of

memory defaults to 3 MB per buffer per processing node. The amount

of disk space for each processing node defaults to the amount of

available disk space specified in the default scratchdisk setting for

the node.

The parallel engine uses the default scratch disk for temporary storage

other than buffering. If you define a buffer scratch disk pool for a

node in the configuration file, the parallel engine uses that scratch

disk pool rather than the default scratch disk for buffering, and all

other scratch disk pools defined are used for temporary storage other

than buffering.

Here is an example configuration file that defines a buffer scratch disk

pool:

{
node node1 {

fastname "node1_css"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource scratchdisk "/scratch0" {pools "buffer"}
resource scratchdisk "/scratch1" {}
}

node node2 {
fastname "node2_css"
pools "" "node2" "node2_css"
11-24 Manager Guide

The Parallel Engine Configuration File The resource DB2 Option
resource disk "/orch/s0" {}
resource scratchdisk "/scratch0" {pools "buffer"}
resource scratchdisk "/scratch1" {}
}

}

In this example, each processing node has a single scratch disk

resource in the buffer pool, so buffering will use /scratch0 but not /

scratch1. However, if /scratch0 were not in the buffer pool, both /

scratch0 and /scratch1 would be used because both would then be in

the default pool.

The resource DB2 Option
The DB2 file db2nodes.cfg contains information for translating DB2

node numbers to node names. You must define the node names

specified in db2nodes.cfg in your configuration file, if you want the

parallel engine to communicate with DB2. You can designate each

node specified in db2nodes.cfg in one of the following ways:

By assigning to node its quoted network name, as returned by the
UNIX operating system command uname -n; for example, node
"node4".

By assigning to node a logical name, for example "DB2Node3". If
you do so, you must specify the option resource DB2 followed by
the node number assigned to the node in db2nodes.cfg.

The resource DB2 option can also take the pools option. You assign to

it the user name of the owner of each DB2 instance configured to run

on each node. DB2 uses the instance to determine the location of

db2nodes.cfg.

Here is a sample DB2 configuration:

{
node "Db2Node0" {

/* other configuration parameters for node0 */
resource DB2 "0" {pools "Mary" "Tom"}

}
node "Db2Node1" {

/* other configuration parameters for node1 */
resource DB2 "1" {pools "Mary" "Tom"}

}
node "Db2Node2" {

/* other configuration parameters for node2 */
resource DB2 "2" {pools "Mary" "Tom" "Bill"}

}

node "Db2Node3" {
/* other configuration parameters for node3 */
resource DB2 "3" {pools "Mary" "Bill"}
Manager Guide 11-25

The resource INFORMIX Option The Parallel Engine Configuration File
}

/* other nodes used by the parallel engine*/

}

In the example above:

The resource DB2 option takes the DB2 node number
corresponding to the processing node.

All nodes are used with the DB2 instance Mary.

Nodes 0, 1, and 2 are used with the DB2 instance Tom.

Nodes 2 and 3 are used with the DB2 instance Bill.

If you now specify a DB2 instance of Mary in your Orchestrate

application, the location of db2nodes.cfg is ~Mary/sqllib/

db2nodes.cfg.

The resource INFORMIX Option
To communicate with INFORMIX, the parallel engine must be

configured to run on all processing nodes functioning as INFORMIX

coservers. This means that the Orchestrate configuration must include

a node definition for the coserver nodes. The list of INFORMIX

coservers is contained in the file pointed to by the environment

variable $INFORMIXSQLHOSTS or in the file $INFORMIXDIR/etc/

sqlhosts.

There are two methods for specifying the INFORMIX coserver names

in the Orchestrate configuration file.

1 Your Orchestrate configuration file can contain a description of
each node, supplying the node name (not a synonym) as the
quoted name of the node. Typically, the node name is the network
name of a processing node as returned by the UNIX command
uname -n.

Here is a sample configuration file for a system containing

INFORMIX coserver nodes node0, node1, node2, and node3:
{

node "node0" {
/* configuration parameters for node0 */
}
node "node1" {
/* configuration parameters for node1 */
}
node "node2" {
/* configuration parameters for node2 */
}

11-26 Manager Guide

The Parallel Engine Configuration File The resource ORACLE option
node "node3" {
/* configuration parameters for node3 */
}

/* other nodes used by the parallel engine*/
}

2 You can supply a logical rather than a real network name as the
quoted name of node. If you do so, you must specify the resource
INFORMIX option followed by the name of the corresponding
INFORMIX coserver.

Here is a sample INFORMIX configuration:
{

node "IFXNode0" {
/* other configuration parameters for node0 */
resource INFORMIX "node0" {pools "server"}
}
node "IFXNode1" {
/* other configuration parameters for node1 */
resource INFORMIX "node1" {pools "server"}
}
node "IFXNode2" {
/* other configuration parameters for node2 */
resource INFORMIX "node2" {pools "server"}
}
node "IFXNode3" {
/* other configuration parameters for node3 */
resource INFORMIX "node3" {pools "server"}
}

/* other nodes used by the parallel engine*/
}

When you specify resource INFORMIX, you must also specify the

pools parameter. It indicates the base name of the coserver groups for

each INFORMIX server. These names must correspond to the coserver

group base name using the shared-memory protocol. They also

typically correspond to the DBSERVERNAME setting in the

ONCONFIG file. For example, coservers in the group server are

typically named server.1, server.2, and so on.

The resource ORACLE option
By default, the parallel engine executes Oracle stages on all

processing nodes belonging to the default node pool, which typically

corresponds to all defined nodes.

You can optionally specify the resource ORACLE option to define the

nodes on which you want to run the Oracle stages. If you do,

Orchestrate runs the Oracle stages only on the processing nodes for
Manager Guide 11-27

The SAS Resources The Parallel Engine Configuration File
which resource ORACLE is defined. You can additionally specify the

pools parameter of resource ORACLE to define resource pools, which

are groupings of Oracle nodes.

Here is a sample Oracle configuration:

{
node "node0" {

/* other configuration parameters for node0 */
resource ORACLE "node0" {pools "group1" "group2"

"group3"}
}
node "node1" {

/* other configuration parameters for node1 */
resource ORACLE "node1" {pools "group1" "group2"}

}
node "node2" {

/* other configuration parameters for node2 */
resource ORACLE "node2" {pools "group1" "group3"}

}
node "node3" {

/* other configuration parameters for node3 */
resource ORACLE "node3" {pools "group1" "group2" "group3"}

}

/* any other nodes used by the parallel engine*/
}

In the example above, Oracle runs on node0 to node3.

node0–node3 are used with node pool group1.

node0, node1, and node3 are used with node pool group2.

node0, node2, and node3 are used with node pool group3.

The SAS Resources

Adding SAS Information to your Configuration File
To configure your system to use the SAS stage, you need to specify

the following information in your configuration file:

The location of the SAS executable, if it is not in your PATH;

An SAS work disk directory, one for each parallel engine node;

Optionally, a disk pool specifically for parallel SAS data sets,
called sasdataset.

The resource names sas and sasworkdisk and the disk pool name

sasdataset are all reserved words. Here is an example of each of these

declarations:
11-28 Manager Guide

The Parallel Engine Configuration File Sort Configuration
resource sas "/usr/sas612/" { }
resource sasworkdisk "/usr/sas/work/" { }
resource disk "/data/sas/" {pools "" "sasdataset"}

While the disks designated as sasworkdisk need not be a RAID

configuration, best performance will result if each parallel engine

logical node has its own reserved disk that is not shared with other

parallel engine nodes during sorting and merging. The total size of

this space for all nodes should optimally be equal to the total work

space you use when running SAS sequentially (or a bit more, to allow

for uneven distribution of data across partitions).

The number of disks in the sasdataset disk pool is the degree of

parallelism of parallel SAS data sets. Thus if you have 24 processing

nodes, each with its associated disk in the sasdataset disk pool,

parallel SAS data sets will be partitioned among all 24 disks, even if

the operation preceding the disk write is, for example, only four-way

parallel.

Example
Here a single node, grappelli0, is defined, along with its fast name.

Also defined are the path to a SAS executable, a SAS work disk

(corresponding to the SAS work directory), and two disk resources,

one for parallel SAS data sets and one for non-SAS file sets.

node "grappelli0"
{
fastname "grappelli"
pools "" "a"
resource sas "/usr/sas612" { }
resource scratchdisk "/scratch" { }
resource sasworkdisk "/scratch" { }
disk "/data/pds_files/node0" { pools "" "export" }
disk "/data/pds_files/sas" { pools "" "sasdataset" }
}

Sort Configuration
You may want to define a sort scratch disk pool to assign scratch disk

space explicitly for the storage of temporary files created by the Sort

stage. In addition, if only a subset of the nodes in your configuration

have sort scratch disks defined, we recommend that you define a sort

node pool, to specify the nodes on which the sort stage should run.

Nodes assigned to the sort node pool should be those that have

scratch disk space assigned to the sort scratch disk pool.

The parallel engine then runs sort only on the nodes in the sort node

pool, if it is defined, and otherwise uses the default node pool. The
Manager Guide 11-29

Allocation of Resources The Parallel Engine Configuration File
Sort stage stores temporary files only on the scratch disks included in

the sort scratch disk pool, if any are defined, and otherwise uses the

default scratch disk pool.

When the parallel engine runs, it determines the locations of

temporary files by:

1 Searching the parallel engine configuration for any scratch disk
resources in the sort resource pool on the nodes sort will run on. If
found, the scratch disks are used as a location for temporary
storage by sort.

2 If no scratch disk resources are found that belong to the disk pool
sort, the system determines whether any scratch disk resources
belong to the default scratch disk pool on the nodes sort will run
on. If so, the scratch disks belonging to the default pool are used
by tsort for temporary storage.

3 If no scratch disk resources are found that belong to either sort or
the default scratch disk pool, the parallel engine issues a warning
message and runs sort using the directory indicated by the
TMPDIR environment variable or /tmp for temporary storage.

Allocation of Resources
The allocation of resources for a given stage, particularly node and

disk allocation, is done in a multi-phase process. Constraints on which

nodes and disk resources are used are taken from the parallel engine

arguments, if any, and matched against any pools defined in the

configuration file. Additional constraints may be imposed by, for

example, an explicit requirement for the same degree of parallelism

as the previous stage. After all relevant constraints have been applied,

the stage allocates resources, including instantiation of Player

processes on the nodes that are still available and allocation of disks

to be used for temporary and permanent storage of data.

Selective Configuration with Startup Scripts
As part of running an application, the parallel engine creates a remote

shell on all parallel engine processing nodes on which the application

will be executed. After the parallel engine creates the remote shell, it

copies the environment from the system on which the application was

invoked to each remote shell. This means that all remote shells have

the same configuration by default.
11-30 Manager Guide

The Parallel Engine Configuration File Selective Configuration with Startup Scripts
However, you can override the default and set configuration

parameters for individual processing nodes. To do so, you create a

parallel engine startup script. If a startup script exists, the parallel

engine runs it on all remote shells before it runs your application.

When you invoke an application, the parallel engine looks for the

name and location of a startup script as follows:

1 It uses the value of the APT_STARTUP_SCRIPT environment
variable.

2 It searches the current working directory for a file named
startup.apt.

3 Searches for the file install_dir/etc/startup.apt on the
system that invoked the parallel engine application, where
install_dir is the top-level directory of the installation.

4 If the script is not found, it does not execute a startup script.

Here is a template you can use with Korn shell to write your own

startup script.

#!/bin/ksh # specify Korn shell
your shell commands go here

shift 2 # required for all shells
exec $* # required for all shells

You must include the last two lines of the shell script. This prevents

your application from running if your shell script detects an error.

The following startup script for the Bourne shell prints the node name,

time, and date for all processing nodes before your application is run:

#!/bin/sh # specify Bourne shell

echo ‘hostname‘ ‘date‘
shift 2
exec $*

A single script can perform node-specific initialization by means of a

case statement. In the following example, the system has two nodes

named node1 and node2. This script performs initialization based on

which node it is running on.

#!/bin/sh # use Bourne shell

Example APT startup script.
case `hostname` in

node1)
perform node1 init
node-specific directives
;;

node2)
perform node2 init
Manager Guide 11-31

Hints and Tips The Parallel Engine Configuration File
node-specific directives
;;

esac
shift 2
exec $*

The parallel engine provides the APT_NO_STARTUP_SCRIPT
environment variable to prevent the parallel engine from running the

startup script. By default, the parallel engine executes the startup

script. If the variable is set, the parallel engine ignores the startup

script. This can be useful for debugging a startup script.

Hints and Tips
The configuration file tells the engine how to exploit the underlying

computer system. For a given system there is not necessarily one

ideal configuration file because of the high variability between the

way different jobs work. So where do you start?

Let's assume you are running on a shared-memory multi-processor

system, i.e., an SMP box (these are the most common platforms

today). Let's assume these properties. You can adjust the illustration

below to match your precise situation:

computer's hostname "fastone"

6 CPUs

4 separate file systems on 4 drives named /fs0 /fs1 /fs2 /fs3

The configuration file to use as a starting point would look like the one

below. Note the way the disk/scratchdisk resources are handled.

That's the real trick here.

{ /* config file allows C-style comments. */
/*

config files look like they have flexible syntax.
They do NOT. Keep all the sub-items of the individual
node specifications in the order shown here.

*/
node "n0" {
pools "" /* on an SMP node pools aren't used often. */
fastname "fastone"
resource scratchdisk "/fs0/ds/scratch" {} /*start with fs0*/
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs0/ds/disk" {} /* start with fs0 */
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
}

11-32 Manager Guide

The Parallel Engine Configuration File Hints and Tips
node "n1" {pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {} /*start with fs1*/
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs1/ds/disk" {} /* start with fs1 */
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
}
node "n2" {
pools ""
fastname "fastone"
resource scratchdisk "/fs2/ds/scratch" {} /*start with fs2*/
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource scratchdisk "/fs1/ds/scratch" {}
resource disk "/fs2/ds/disk" {} /* start with fs2 */
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
resource disk "/fs1/ds/disk" {}
}
node "n3" {
pools ""
fastname "fastone"
resource scratchdisk "/fs3/ds/scratch" {} /*start with fs3*/
resource scratchdisk "/fs0/ds/scratch" {}
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource disk "/fs3/ds/disk" {} /* start with fs3 */
resource disk "/fs0/ds/disk" {}
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
}
node "n4" {
pools ""
fastname "fastone"
/*
* Ok, now what. We rotated through starting with a
* different disk, but we have a basic problem here which is
* that there are more CPUs than disks. So what do we do
* now? The answer: something that is not perfect. We're
* going to repeat the sequence. You could shuffle
* differently i.e., use /fs0 /fs2 /fs1 /fs3 as an order.
* I'm not sure it will matter all that much.
*/
resource scratchdisk "/fs0/ds/scratch" {} /*start with fs0

again*/
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs0/ds/disk" {} /* start with fs0 again */
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
}

Manager Guide 11-33

Hints and Tips The Parallel Engine Configuration File
node "n5" {
pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {} /*start with fs1*/
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs1/ds/disk" {} /* start with fs1 */
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
}

} /* end of whole config */

The above config file pattern could be called "give everyone all the

disk". This configuration style works well when the flow is complex

enough that you can't really figure out and precisely plan for good I/O

utilization. Giving every partition (node) access to all the I/O resources

can cause contention, but the parallel engine tends to use fairly large

blocks for I/O so the contention isn't as much of a problem as you

might think. This configuration style works for any number of CPUs

and any number of disks since it doesn't require any particular

correspondence between them. The heuristic principle at work here is

this "When it's too difficult to figure out precisely, at least go for

achieving balance."

The alternative to the above configuration style is more careful

planning of the I/O behavior so as to reduce contention. You can

imagine this could be hard given our hypothetical 6-way SMP with 4

disks because setting up the obvious one-to-one correspondence

doesn't work. Doubling up some nodes on the same disk is unlikely to

be good for overall performance since we create a hotspot. We could

give every CPU 2 disks and rotate around, but that would be little

different than our above strategy. So, let's imagine a less constrained

environment and give ourselves 2 more disks /fs4 and /fs5. Now a

config file might look like this:

{
node "n0" {
pools ""
fastname "fastone"
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs0/ds/disk" {}
}
node "n1" {
pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {}
resource disk "/fs1/ds/disk" {}
}

11-34 Manager Guide

The Parallel Engine Configuration File Hints and Tips
node "n2" {
pools ""
fastname "fastone"
resource scratchdisk "/fs2/ds/scratch" {}
resource disk "/fs2/ds/disk" {}
}
node "n3" {
pools ""
fastname "fastone"
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs3/ds/disk" {}
}
node "n4" {
pools ""
fastname "fastone"
resource scratchdisk "/fs4/ds/scratch" {}
resource disk "/fs4/ds/disk" {}
}
node "n5" {
pools ""
fastname "fastone"
resource scratchdisk "/fs5/ds/scratch" {}
resource disk "/fs5/ds/disk" {}
}
} /* end of whole config */

This is simplest, but realize that no single player (stage/operator

instance) on any one partition can go faster than the single disk it has

access to.

You could combine strategies by adding in a node pool where disks

have this one-to-one association with nodes. These nodes would then

not be in the default node pool, but a special one that you would

assign stages/operators to specifically.

Other configuration file hints:

Consider avoiding the disk/disks that your input files reside on.
Often those disks will be hotspots until the input phase is over. If
the job is large and complex this is less of an issue since the input
part is proportionally less of the total work.

Ensure that the different file systems mentioned as the disk and
scratchdisk resources hit disjoint sets of spindles even if they're
located on a RAID system.

Know what is real and what is NFS: Real disks are directly
attached, or are reachable over a SAN (storage-area network -
dedicated, just for storage, low-level protocols).

– Never use NFS file systems for scratchdisk resources.

– If you use NFS file system space for disk resources, then you
need to know what you are doing. For example, your final
result files may need to be written out onto the NFS disk area,
but that doesn't mean the intermediate data sets created and
Manager Guide 11-35

Hints and Tips The Parallel Engine Configuration File
used temporarily in a multi-job sequence should use this NFS
disk area. Better to setup a "final" disk pool, and constrain the
result sequential file or data set to reside there, but let
intermediate storage go to local or SAN resources, not NFS.

Know what data points are striped (RAID) and which are not.
Where possible, avoid striping across data points that are already
striped at the spindle level.
11-36 Manager Guide

12
Usage Analysis

The Usage Analysis tool allows you to check where items in the

DataStage Repository are used. Usage Analysis gives you a list of the

items that use a particular source item. You can in turn use the tool to

examine items on the list, and see where they are used.

For example, you might want to discover how changing a particular

item would affect your DataStage project as a whole. The Usage

Analysis tool allows you to select the item in the DataStage Manager

and view all the instances where it is used in the current project.

You can also get the Usage Analysis tool to warn you when you are

about to delete or change an item that is used elsewhere in the

project.

Using the Usage Analysis Tool
To use the Usage Analysis tool:

1 Select the item (or items) whose use you want to analyze in the
right pane of the DataStage Manager window.

2 Start the Usage Analysis tool by doing one of the following:

– Click the Usage Analysis button in the DataStage Manager
toolbar.

– Choose Tools ➤ Usage Analysis.

– Choose Usage Analysis from the shortcut menu.
Manager Guide 12-1

Using the Usage Analysis Tool Usage Analysis
The DataStage Usage Analysis window appears with details of

where the source item or items are used:

3 If you want usage analysis details for any of the target items that
use the source item, click on one of them so it is highlighted, then
do one of the following:

– Choose File ➤ Usage Analysis from the menu bar in the
DataStage Usage Analysis window.

– Click the Usage Analysis button in the DataStage Usage
Analysis window toolbar.

– Choose Usage Analysis from the shortcut menu.

The details appear in the window replacing the original list. You

can use the back and forward buttons on the DataStage Usage

Analysis window toolbar to move to and from the current list and

previous lists.

The DataStage Usage Analysis Window
The DataStage Usage Analysis window displays a report showing all

the items that use the source item. It is a snapshot of the relationships

at the time the usage analysis request was made. If a report is

refreshed after a source item has been deleted or renamed, then the

nonexistent source item name is prefixed with an * (asterisk).

The report gives the following information about each of the items in

the list:

Relationship. The name of the relationship from the source to
the target.

Type. The type of the target item.

Name. The name of the target item.
12-2 Manager Guide

Usage Analysis Using the Usage Analysis Tool
Category. The category where the item is held in the DataStage
Repository. If the item is not visible in the DataStage Manager, for
example, an output column, Category gives the category
containing the Job. If the job is not contained in a category, this is
blank.

Source. The name of the source item.

You can sort the information in the list on any of the columns by

clicking the column title.

The Sources drop-down list shows all the source items used in

generating the report. This is useful where you have requested a

usage analysis report on multiple items. If you select All Sources

from the list, the report shows all the target items for all the source

items. Alternatively, select a particular source item from the list and

the report shows only the target items for the chosen source item.

If the source item is a table definition, or if a particular table definition

from a group of source items has been selected from the Sources

drop-down list, the Select Columns button is enabled in the toolbar.

Click this button to display a dialog box which allows you to filter the

table columns that the report shows the usage of (the Select
Columns command is also available from the shortcut menu and the

View menu). For example, if the table definition contained 30

columns, but you were only interested in 10 of these, you can use the

Select Columns feature to select those 10 columns. The Usage

Analysis tool then only shows details for those 10 columns.

Use the arrow keys to move columns back and forth between the

Available columns list and the Selected columns list. The single

arrow buttons move highlighted columns, the double arrow buttons

move all items. By default all columns are selected for loading. Click

Find… to open a dialog box which lets you search for a particular

column. Click OK when you are happy with your selection. This closes
Manager Guide 12-3

Using the Usage Analysis Tool Usage Analysis
the Select Columns dialog box and loads the selected columns into

the stage.

For mainframe stages and certain parallel stages where the column

definitions derive from a CFD file, the Select Columns dialog box

may also contain a Create Filler check box. This happens when the

table definition the columns are being loaded from represents a fixed-

width table. Select this to cause sequences of unselected columns to

be collapsed into filler items. Filler columns are sized appropriately,

their datatype set to character, and name set to FILLER_XX_YY where

XX is the start offset and YY the end offset. Using fillers results in a

smaller set of columns, saving space and processing time and making

the column set easier to understand.

If you are importing column definitions that have been derived from a

CFD file into server or parallel job stages, you are warned if any of the

selected columns redefine other selected columns. You can choose to

carry on with the load or go back and select columns again.

The DataStage Usage Analysis window also contains a menu bar and

a toolbar.

Menu Bar

The DataStage Usage Analysis window has a menu bar which

contains the following menus:

File. Contains the following commands:

– Usage Analysis. Requests a further usage analysis report on
the item selected in the current report.

– Edit. Allows you to edit the item currently selected in the
report. Depending on the type of object selected, this either
starts the relevant DataStage Manager editor, or starts the
DataStage Designer.

– View HTML. Exports the report to an HTML file and opens a
browser to view it with. From the browser you can save the
HTML file or print it.

– Save. This command allows you to save details of the current
report in a file. A Save As dialog box allows you to select a
location for the file. The file has a .DSU suffix.

– Load. Allows you to load previously saved reports. An Open
dialog box allows you to specify the location to load from and
lists available files with a .DSU suffix.

– Exit. Closes the usage analysis report window.

View. Contains the following commands:

– Back. View the previous usage analysis report.
12-4 Manager Guide

Usage Analysis Using the Usage Analysis Tool
– Forward. View the more recent usage analysis report.

– Locate in Manager. This returns to the DataStage Manager,
with the item currently selected in the report list highlighted in
the Manager tree.

– Select Columns. If the source item selected is a table
definition, this command allows you to filter the table columns
of which the report shows the usage.

– Condense Jobs and Shared Containers. Choose this
command to view each job or shared container only once in
the report. Otherwise it may appear several times, reflecting
where, for example, a column from a source table definition
may be reported as being used in several links of several
stages of the same job.

– Refresh. Refreshes the report window so that it shows up to
date details of objects as held in the DataStage Repository.

Help. Displays the DataStage Manager help topics for the
DataStage Usage Analysis window.

Toolbar

Many of the DataStage Usage Analysis window menu commands are

also available in the toolbar.

Shortcut Menu

Display the shortcut menu by right-clicking in the report window. The

following commands are available from this menu:

Usage Analysis. Only available if you have selected an item in
the report list.

Edit. Only available if you have selected an item in the report list.

Back.

Forward.

Refresh.

Locate in Manager. Only available if you have selected an item
in the report list.

Load

Save

Usage Analysis

Back

Forward

Refresh

Edit

Locate in
Manager

Select Columns
Condense Jobs

Help

or Shared Containers
Manager Guide 12-5

Visible Relationships Usage Analysis
Visible Relationships
The following table lists the relationships that it is possible to view

using the Usage Analysis tool:

Configuring Warnings
Usage Analysis options allow you to specify levels of warning that

appear when you perform operations on referenced items. These are

set using the Manager Options dialog box.

Source Relationship Target

Job/Job
sequence

Depended on by Job Job

Shared
container

Used in Container Stage of
Job
Used in Container Stage of
shared container

Container stage
Container stage

Stage Type Type of Stage Stage

Table
Definition

Loaded into Column
Loaded into Column

Link column
Stage column

Transform Used in Constraint of Link
Used in Derivation of
Column
Used in Derivation of Stage
Variable

Link
Column

Stage

Data Element Output of Transform
Input of Transform
Type of Column
Type of Column Definition

Transform
Transform
Column
Column Definition

Routine Called Before Job
Called After Job
Called Before Stage
Called After Stage
Called By Transform
Used In Constraint of Link
Used in Derivation of
Column
Used By External Routine
Stage
Used in Derivation of Stage
Variable

Job
Job
Stage
Stage
Transform
Link
Column

Stage

Stage

Machine
Profile

Used in Stage
12-6 Manager Guide

Usage Analysis Configuring Warnings
To specify warnings levels:

1 From the DataStage Manager, choose Tools ➤ Options. The
Options dialog box appears:

2 Choose the Usage Analysis branch in the tree, then select the
required check boxes as follows:

– Warn if deleting/renaming referenced item. If you select
this, you will be warned whenever you try to delete, rename, or
move an object from the Repository that is used by another
DataStage component.

– Warn if importing referenced item. If you select this, you
will be warned whenever you attempt to import an item that
will overwrite an existing item that is used by another
DataStage component.

– Warn if compiling referenced routine. If you select this,
you will be warned when you attempt to recompile a routine
that is used by another DataStage component.

– Update internal references when modifying or deleting
items. If you select this, DataStage will update references
automatically where possible when an item is deleted or
modified. References that can be automatically updated are
TableDefinition.LoadedInto.JobLinkColumn and
Job.DependedOnBy.Job. If jobs cannot be updated (because
Manager Guide 12-7

Viewing the Report as HTML Usage Analysis
they are locked by another user, or are read-only) then a failure
report is generated and displayed in a window when the
update is attempted.

3 Click OK to save your selections and close this dialog box.

Viewing the Report as HTML
You can view the Usage Analysis report in HTML format by choosing

File ➤ View HTML. A temporary HTML file is created and displayed

in your registered browser. The file is deleted when you close the

Usage Analysis window, but you can save the file to a permanent

location or print it.

The format of the file is determined by a template file called

UsageRptXXX.htm, where XXX indicates the locale in which the

template is intended. The template is held in the DataStage directory.

You can edit the template to customize the layout of Usage Analysis
12-8 Manager Guide

Usage Analysis Viewing the Report as HTML
reports. The format of the template is described in Appendix C,

“Usage Analysis HTML Template.”
Manager Guide 12-9

Viewing the Report as HTML Usage Analysis
12-10 Manager Guide

13
Reporting

This chapter describes how to generate reports from the DataStage

Manager.

The DataStage Reporting Tool is flexible and allows you to generate

reports at various levels within a project, for example, entire job,

single stage, set of stages, etc.

Information generated for reporting purposes is stored in a relational

database on the DataStage client. This information can then be used

to print a report, write a report to a file, or be interrogated by a third-

party tool.

A Microsoft Access database is provided on the DataStage client for

this purpose. It offers a number of predefined report formats for you

to choose from. You can extend or customize this database, or use

some other SQL database for these purposes. It is possible to target

any SQL database which is supported by a Level 2-compliant ODBC

driver on the client machine. Create database scripts for most popular

databases are provided in the documentation tool directory on the

DataStage client (by default, C:\Program

Files\ascential\datastage\documentation tool).

If you want to use an alternative database, run the script to create the

database, assign it a DSN and then select that DSN on the Update
Options page (see page 13-2) before clicking Update Now button.

The database used for reporting purposes must use the same

language as the DataStage clients.

Note You can generate HTML format reports about jobs from the

DataStage Designer – see "Job Reports" in DataStage

Designer Guide.
Manager Guide 13-1

The Reporting Tool Reporting
The Reporting Tool
The DataStage Reporting Tool is invoked by choosing Tools ➤
Reporting Assistant… from the DataStage Manager. The

Reporting Assistant dialog box appears. This dialog box has two

pages: Schema Update and Update Options.

Note If you want to use the Reporting Tool you should ensure

that the names of your DataStage components (jobs,

stages, links, etc.) do not exceed 64 characters.

The Schema Update page allows you to specify what details in the

reporting database should be updated and when. This page contains

the following fields and buttons:

Whole Project. Click this button if you want all project details to
be updated in the reporting database. If you select Whole
Project, other fields in the dialog box are disabled. This is
selected by default.

Selection. Click this button to specify that you want to update
selected objects. The Select Project Objects area is then enabled.

Select Project Objects. Select the check boxes of all objects that
you want to be updated in the reporting database. The
corresponding tab is then enabled. For example, if you select the
Jobs check box, you can go on to specify which jobs to report on
in the Jobs tab.

The Update Options page allows you to make adjustments to any

requested updates to the reporting database.
13-2 Manager Guide

Reporting The Reporting Tool
This page contains the following fields and buttons:

Target Schema DSN. Select the required database from the
drop-down list box. All current DSNs available on the client
machine are listed. The MS Access database supplied with
DataStage is selected by default.

Line Fold Length. Select a value to determine where carriage
returns will be inserted in potentially long properties. For
example, the Description property may well run to hundreds of
characters, so selecting 80 would specify that carriage returns are
inserted every 80 characters. If there are already carriage returns
in the text, these will be used in preference.

Suppress Transactions. Select this to suppress transaction
handling when you update the underlying reports database. If you
have a large project, it is recommended that you select this unless
you have large rollback buffers. (This setting isn’t relevant if you
are using the Documentation Tool).

Include Built-ins. Specifies that built-in objects should be
included in the update.

List Project Objects. Determines how objects are displayed in
the lists on the Schema Update page:

– Individually. This is the default. Lists individual objects of that
type, allowing you to choose one or more objects. For
example, every data element would be listed by name:
Number, String, Time, DATA.TAG, MONTH.TAG, etc.
Manager Guide 13-3

The Documentation Tool Reporting
– By Category. Lists objects by category, allowing you to
choose a particular category of objects for which to update the
details. For example, in the case of data elements, you might
choose among All, Built-in, Built-in/Base, Built-in/Dates,
and Conversion.

The following buttons are on both pages of the Reporting Assistant

dialog box:

Update Now. Updates the selected details in the reporting
database. Note that this button is disabled if no details are
selected in the Schema Update page.

Doc. Tool… . Opens the Documentation Tool dialog box in
order to request a report.

The Documentation Tool
The Documentation Tool dialog box is opened by clicking the Doc.
Tool… button on the Reporting Assistant dialog box. It allows you

to print predefined reports from the Microsoft Access database. The

dialog box remains in view until you click Exit.

Each page has an Include in Report area which allows you to choose

options for various types of report. Click the Preview button in the

toolbar to see what a finished report will look like.

The toolbar has the following functions:
13-4 Manager Guide

Reporting The Documentation Tool
Print. Prints a report of the format specified in the Report
Configuration form.

Print Preview. Gets a preview of the form before you actually
print it. To print from the preview, click the Print button.

Custom Reports. Gets a list of available reports. Use this to
access reports added to the MS Access Documentation Tool
besides those supplied with DataStage.

Exit. Exits the Documentation Tool when you have printed all
required reports.

The Documentation Tool dialog box has a Report Configuration

form which in turn has a page for every type of object. Each page has

a list box that shows all objects of that type currently in the reporting

database. Objects can be listed individually or by category (note that

jobs can only be listed individually).

The Report Configuration form has the following fields and buttons:

Include in Report. This area lists the optional fields that can be
excluded or included in the report. Select the check box to include
an item in the report, clear it to exclude it. All items are selected by
default.

Select All. Selects all items in the list window.

Project. Lists all the available projects. Choose the project that
you want to report on.

List Objects. This area determines how objects are displayed in
the lists on the Schema Update page:

– Individually. This is the default. Lists individual objects of that
type, allowing you to choose one or more objects. For
example, every data element would be listed by name:
Number, String, Time, DATA.TAG, MONTH.TAG, etc.

– By Category. Lists objects by category, allowing you to
choose a particular category of objects for which to update the
details. For example, in the case of data elements, you might
choose among All, Built-in, Built-in/Base, Built-in/Dates,
and Conversion.
Manager Guide 13-5

The Documentation Tool Reporting
Examples of some of the reports are given below:
13-6 Manager Guide

Reporting The Documentation Tool
Manager Guide 13-7

The Documentation Tool Reporting
13-8 Manager Guide

14
Managing Message Handlers

Parallel jobs This chapter describes how to manage message handlers that have

been defined in DataStage.

What are message handlers? When you run a parallel job, any error

messages and warnings are written to an error log and can be viewed

from the Director. You can choose to handle specified errors in a

different way by creating one or more message handlers.

A message handler defines rules about how to handle messages

generated when a parallel job is running. You can, for example, use

one to specify that certain types of message should not be written to

the log.

You can edit message handlers in the DataStage Manager or in the

DataStage Director. The recommended way to create them is by using

the Add rule to message handler feature in the Director (see "Adding

Rules to Message Handlers" in DataStage Director Guide).

You can specify message handler use at different levels:

Project Level. You define a project level message handler in the
DataStage Administrator, and this applies to all parallel jobs
within the specified project.

Job Level. From the Designer and Manager you can specify that
any existing handler should apply to a specific job. When you
compile the job, the handler is included in the job executable as a
local handler (and so can be exported to other systems if
required).

You can also add rules to handlers when you run a job from the

Director (regardless of whether it currently has a local handler

included). This is useful, for example, where a job is generating a

message for every row it is processing. You can suppress that

particular message.
Manager Guide 14-1

The Message Handler Manager Managing Message Handlers
When the job runs it will look in the local handler (if one exists) for

each message to see if any rules exist for that message type. If a

particular message is not handled locally, it will look to the project-

wide handler for rules. If there are none there, it writes the message to

the job log.

Note message handlers do not deal with fatal error messages, these

will always be written to the job log.

The Message Handler Manager
You can view, edit, or delete message handlers from the Message

Handler Manager. You can also define new handlers if you are familiar

with the message IDs (although note that DataStage will not know

whether such messages are warnings or informational). The preferred

way of defining new handlers is by using the add rule to message

handler feature.

To open the Message Handler Manager, choose Tools ➤ Message
Handlers . The Edit Message Handlers dialog box appears.

To edit an existing handler:
14-2 Manager Guide

Managing Message Handlers The Message Handler Manager
1 Choose an option to specify whether you want to edit the project-
level message handler, or edit a specific message handler. If you
want to edit a specific message handler, select the handler from
the drop-down list. The settings for whichever handler you have
chosen to edit appear in the grid.

2 Edit the grid as required, you can:

– Choose a new Action for a particular message. Select a new
Action from the drop-down list. Possible Actions are:

Suppress from log. The message is not written to the job's

log as it runs.

Promote to Warning. Promote an informational message to a

warning message.

Demote to Informational. Demote a warning message to

become an informational one.

– Delete a message. Select the message in the grid, right-click
and choose Delete Row from the shortcut menu.

– Add a new message. Right-click in the grid and choose Insert
Row from the shortcut menu. You can then type in details of
the message you want to add to the handler.

When you are done with your edits, click Save and choose Save
Message Handler to save the handler with its current name or

Save Message Handler As to save it as a new handler.

To delete a handler:

1 Choose an option to specify whether you want to delete the local
runtime handler for the currently selected job, delete the project-
level message handler, or delete a specific message handler. If
you want to delete a specific message handler, select the handler
from the drop-down list. The settings for whichever handler you
have chosen to edit appear in the grid.

2 Click the Delete button.

To define a new handler:

1 Choose Edit chosen message handler and select (New) from
the drop-down list. The grid clears, allowing new message rules to
be added.

2 Type in the message ID for the first message you want to add to
the handler.

3 Choose an Action from the drop-down list. Possible Actions are:

– Suppress from log. The message is not written to the job's
log as it runs.
Manager Guide 14-3

Message Handler File Format Managing Message Handlers
– Promote to Warning. Promote an informational message to a
warning message.

– Demote to Informational. Demote a warning message to
become an informational one.

4 Repeat this process until you have added all the required
messages.

5 When you have defined all the required messages for the handler,
click Save and choose Save Message Handler As from the
menu. A dialog box opens and prompts you for the name of the
new handler.

6 Type in the name for your new message handler.

Message Handler File Format
A message handler is a plain text file and has the suffix .msh. It is

stored in the folder $DSHOME/../DataStage/MsgHandlers. The

following is an example message file.

TUTL 0000311 1 The open file limit is 100; raising to 1024…
TFSC 0000011 2 APT configuration file…
TFSC 0000432 3 Attempt to Cleanup after ABORT raised in stage…

Each line in the file represents message rule, and comprises four tab-

separated fields:

Message ID. Case-specific string uniquely identifying the
message

Type. 1 for Info, 2 for Warn

Action. 1 = Suppress, 2 = Promote, 3 = Demote

Message. Example text of the message
14-4 Manager Guide

15
Importing, Exporting,

and Packaging Jobs

This chapter describes how to use the DataStage Manager to import

and export components, and use the Packager Wizard.

DataStage allows you to import and export components in order to

move jobs between DataStage development systems. You can import

and export server jobs and, provided you have the options installed,

mainframe jobs or parallel jobs. DataStage ensures that all the

components required for a particular job are included in the import/

export.

You can also use the export facility to generate XML documents which

describe objects in the DataStage Repository. You can then use a

browser such as Microsoft Internet Explorer Version 5 to view the

document. XML is a markup language for documents containing

structured information. It can be used to publish such documents on

the Web. For more information about XML, visit the following Web

sites:

http://www.xml.com

http://webdeveloper.com/xml

http://www.microsoft.com/xml

http://www.xml-zone.com

There is an import facility for importing DataStage components from

XML documents.

You can also import meta data from MetaStage, and export projects to

MetaStage.

DataStage also allows you to package server jobs using the Packager

Wizard. It allows you to distribute executable versions of server jobs.
Manager Guide 15-1

Using Import Importing, Exporting, and Packaging Jobs
You can, for example, develop jobs on one system and distribute

them to other systems with DataStage Director installed. The jobs can

then be executed on that system.

Using Import
You can import complete projects, jobs, or job components that have

been exported from another DataStage development environment.

You can import components from a text file or from an XML file. You

must copy the file from which you are importing to a directory you can

access from your local machine. You can also import meta data from

MetaStage.

Note You can import components that support mainframe

functionality only into a DataStage system that has

Enterprise MVS Edition installed. You should also ensure

that the system to which you are importing supports the

required platform type.

To import components:

1 From the DataStage Manager, choose Import ➤ DataStage
Components… to import components from a text file or
Import ➤ DataStage Components (XML) … to import
components from an XML file. The DataStage Repository
Import dialog box appears (the dialog box is slightly different if
you are importing from an XML file, but has all the same controls):

2 Type in the path or browse for the file to import from.

3 To import objects from the file into the Repository, click the
Import all option button and click OK. During import, you will be
warned if objects of the same name already exist in the Repository
and asked if you want to overwrite them. If you select the
Overwrite without query check box before importing you will
not be warned, and any existing objects will automatically be
overwritten.
15-2 Manager Guide

Importing, Exporting, and Packaging Jobs Using Import
If you import job components, they are imported into the current

project in the DataStage Manager. If you import a whole project, a

new project branch is created in the Repository.

4 To import selected components from the file into the Repository,
click the Import selected option button and click OK. The
Import Selected dialog box appears. Select the required items
and click OK. The selected job components are imported into the
current project in the DataStage Manager.

5 To turn usage analysis off for this particular import, deselect the
Perform Usage Analysis checkbox. (By default, all imports are
checked to see if they are about to overwrite a currently used
component, disabling this feature may speed up large imports.
You can disable it for all imports by changing the usage analysis
options – see "Configuring Warnings" on page 12-6.)

Using Import from the Command Line
DataStage also enables you to import components into the Repository

from the command line. There are two ways of doing this. The

dsimport command is a windows application and requires user

interaction with message boxes (to import XML files in this way, use

XML2DSX). The dscmdimport command is a command line

application and can be run unattended (this imports both DSX and

XML files).

You can also import job executables from the DataStage engine shell

using the DS_IMPORTDSX command, or, on UNIX servers, from the

command line using dsjob with the -import option (for a description of

dsjob see "Importing Job Executables" in Parallel Job Advanced

Developer’s Guide and "Importing Job Executables" in Server Job

Developer’s Guide).
Manager Guide 15-3

Using Import Importing, Exporting, and Packaging Jobs
dsimport command

The dsimport command is as follows:

dsimport.exe /H=hostname /U=username /P=password /O=omitflag /NUA
project|/ALL|/ASK dsx_pathname1 dsx_pathname2 ...

The arguments are as follows:

hostname. The DataStage Server to which the file will be
imported.

username. The user name to use for connecting to the DataStage
Server (not needed if omitflag = 1).

password. The user’s password (not needed if omitflag = 1).

omitflag. Set this to 1 to omit the username and password (only
possible if you are connected to the DataStage Server via LAN
Manager).

NUA. Include this flag to disable usage analysis. This is
recommended if you are importing a large project.

project, /ALL, or /ASK. Specify a project to import the components
to, or specify /ALL to import to all projects or /ASK to be prompted
for the project to which to import.

dsx_pathname. The file to import from. You can specify multiple
files if required.

For example, the following command imports the components in the

file jobs.dsx into the project dstage1 on the R101 server:

dsimport.exe /H=R101 /O=1 dstage1 C:/scratch/jobs.dsx

dscmdimport command

The dscmdimport command is as follows:

dscmdimport /H=hostname /U=username /P=password /O=omitflag /NUA
project|/ALL|/ASK pathname1 pathname2 ... /V

The arguments are as follows:

hostname. The DataStage Server to which the file will be
imported.

username. The user name to use for connecting to the DataStage
Server (not needed if omitflag = 1).

password. The user’s password (not needed if omitflag = 1).

omitflag. Set this to 1 to omit the username and password (only
possible if you are connected to the DataStage Server via LAN
Manager).

NUA. Include this flag to disable usage analysis. This is
recommended if you are importing a large project.
15-4 Manager Guide

Importing, Exporting, and Packaging Jobs Using Import
project, /ALL, or /ASK. Specify a project to import the components
to, or specify /ALL to import to all projects or /ASK to be prompted
for the project to which to import.

pathname. The file to import from. You can specify multiple files if
required. The files can be DSX files or XML files, or a mixture of
both.

V. Use this flag to switch the verbose option on.

For example, the following command imports the components in the

file jobs.dsx into the project dstage1 on the R101 server:

dscmdimport /H=R101 /O=1 dstage1 C:/scratch/jobs.dsx

Messages from the import are sent to the console by default, but can

be redirected to a file using '>', for example:

dscmdimport /H=R101 /O=1 /NUA dstage99 c:/scratch/project99.dsx /V > c:/
scratch/importlog

You can simply type dscmdimport at the command prompt to get help

on the command options.

XML2DSX command

The XML2DSX command is as follows:

XML2DSX.exe /H=hostname /U=username /P=password /O= omitflag

/N[OPROMPT] /I[INTERACTIVE] /V[ERBOSE] projectname filname /

T=templatename

The arguments are as follows:

hostname. The DataStage Server to which the file will be
imported.

username. The user name to use when connecting (not needed if
omitflag = 1)

password. The user’s password (not needed if omitflag = 1).

omitflag. Set this to 1 to omit the username and password (only
possible if you are connected to the DataStage Server via LAN
Manager).

NOPROMPT. If you include this flag, the import will run silently,
overwriting any existing components in the DataStage Repository
with the same name.

INTERACTIVE. If you include this flag, the DataStage Manager
opens the standard Import DataStage Components dialog
box. This allows you to choose which components should be
imported.

VERBOSE. Displays details about the XML2DSX tool such as
version number when it starts up.
Manager Guide 15-5

Using Import Importing, Exporting, and Packaging Jobs
projectname. The name of the DataStage project to attach to on
hostname.

filename. The name of the XML file containing the components to
import.

templatename. Optionally specifies an XSLT template to be used
to transform the XML file. If this is omitted, a default template is
used. The default template is the one used when DataStage
exports components into XML.

For example, the following command imports the components in the

file jobs.xml into the project dstage1 on the R101 server:

XML2DSX.exe /H=R101 /O=1 /N dstage1 C:/scratch/jobs.xml

DS_IMPORTDSX Command

This command is run from within the DS engine using dssh. It can

import any job executables found within specified DSX files. Run it as

follows:

1 CD to the project directory on the server:

cd c:\ascential\datastage\projects\project

2 Run the dssh shell:

..\..\engine\bin\dssh

3 At the dssh prompt enter the DS_IMPORTDSX command (see
below for syntax).

The DSXimport command is as follows:

DS_IMPORTDSX filename [[-OVERWRITE] -JOB[S] * | jobname …] | [-LIST]

The arguments are as follows:

filename. The name of the DSX file containing the components to
import.

OVERWRITE. Specify this to overwrite any existing executables of
the same name.

JOB[S]. Specify one or more job executables to import.

LIST. Specify this to list the executables in a .DSX file rather than
import them.

If you don’t specify a JOB or a LIST argument, the default is to import

all job executables in the specified file.

Importing from MetaStage
To import meta data from MetaStage:
15-6 Manager Guide

Importing, Exporting, and Packaging Jobs Using Export
1 Choose Import ➤ From MetaStage. The MetaStage Attach
dialog box appears.

2 Enter the required connection information to connect to a specific
directory (as described in “Starting MetaStage and Connecting to
a Directory” in the MetaStage help). The MetaStage Select
Publication dialog box appears.

3 Select one or more publication categories to import, and click
Select.

The meta data in the publication categories is imported into

DataStage using the DataStage MetaBroker. Table definitions, for

example, appear in the Table Definitions category, in the DataStage 7

MetaBroker sub-category. A log file named MetaStageImport.log is

created in the DataStage client directory.

In DataStage Manager, click View ➤ Refresh to see the imported

meta.

Using Export
You can use the DataStage export facility to move DataStage jobs or

to generate XML documents describing DataStage components. You

can also export one or more job executables.

You can also export entire projects to MetaStage.

In all cases you use the Export command in the DataStage Manager.

Warning You should ensure that no one else is using DataStage

when performing an export. This is particularly

important when a whole project export is done for the

purposes of a backup.

Moving DataStage Projects and Jobs
Exported projects or components are stored in text files with the suffix

.dsx. You must choose what to export and the file to use.

To use Export:
Manager Guide 15-7

Using Export Importing, Exporting, and Packaging Jobs
1 From the DataStage Manager, choose Export ➤ DataStage
Components… . The Export dialog box appears:

2 Choose the file to export to by doing one of the following:

– Enter the directory path and file name in the Export to file
field.

– Click … (browse) to search the system for an appropriate
directory and file.

3 Select the Append to existing file check box if you want to add
the exported items to the specified file. The check box is cleared by
default, i.e., the exported items will overwrite any existing items in
the file.

4 Choose what to export by clicking the appropriate option button:

– Whole project. All the jobs, data elements, shared containers,
stage types, table definitions, transforms, job executables,
routines, and machine profiles are exported.

– Selection. An individual item or a selection of items in the
current project is exported.

5 If you clicked Selection, choose the items to export by selecting
the appropriate check boxes.

The following components are shown:
15-8 Manager Guide

Importing, Exporting, and Packaging Jobs Using Export
– Job designs. The chosen job or job sequence designs are
exported.

– Shared containers. The chosen shared containers are
exported.

– Data elements. The chosen data elements are exported.

– Stage types. The chosen plug-in definitions are exported.

Note Export does not handle the associated plug-in DLLs. To

deploy a plug-in, you must use the Packager Wizard

instead. For more information, see "Using the Packager

Wizard" on page 15-17.

– Table definitions. The chosen table definitions are exported.

– Transforms. The chosen transforms are exported.

– Job executables. The chosen job executables are exported. If
you choose this option, you can also select the Program
sources check box to export the associated source.

– Routines. The chosen routines are exported. Choosing this
option allows you to select Source Code to export the
associated source code.

– Machine profiles. The chosen machine profiles are exported.

– IMS databases. The chosen IMS database objects are
exported.

– IMS viewsets. The chosen IMS viewset objects are exported.

A selection is already made based on the highlighted branch in the

DataStage Manager when you chose Tools ➤ Export… .

You can select all objects of a particular type to be exported or

select a category of object to export from the drop-down list. For

example, in the case of data elements, you might choose among

All, Built-In, Built-In/Base, Built-In/Dates, and Conversion.

It is possible to choose an individual object, but you must first

click By individual component on the Options tab.

6 Click the Options tab, then select any required options as follows:

– Selection - By category. This is the default. The drop-down
list boxes on the Components tab allow you to choose
between all and the different categories of each object in the
Repository.

– Selection - By individual component. This allows you to
choose a single object per object type, so the drop-down list
boxes on the Components tab list all the individual objects of
that type.
Manager Guide 15-9

Using Export Importing, Exporting, and Packaging Jobs
– Include in export - Defaulted properties. Select this check
box to export the properties of the items being exported. By
default, properties and default values are not included in the
export file.

– Include in export - Read-only objects. Select this check box
to export any read-only items selected in the Components
tab. By default, read-only items are not exported.

– Use 7-bit format encoding. Select this check box if you are
likely to e-mail the exported file. The check box is cleared by
default.

7 To determine the behavior of the View button, click the View tab,
then select the required setting as follows:

– Select Use default viewer to view the export file using the
default program associated with the .dsx extension.

– Select Run this program to view the file using some other
tool, and specify the executable for the tool in the text box.

– When you click the View button in the Export dialog box, the
file to be exported is displayed in the chosen tool.

– Click OK. The chosen items are exported to the specified text
file. This file can be imported into another DataStage
development environment.

Generating an XML File
To generate an XML file:
15-10 Manager Guide

Importing, Exporting, and Packaging Jobs Using Export
1 From the DataStage Manager, choose Export ➤ DataStage
Components… . The Export dialog box appears:

2 Select the Export as XML document check box.

3 Choose an XML file to export to by doing one of the following:

– Enter the directory path and file name in the Export to file
field.

– Click … (browse) to search the system for an appropriate
directory and file.

4 Choose what to export by clicking the appropriate option button:

– Whole project. All the jobs, shared containers, data elements,
stage types, table definitions, transforms, routines, and
machine profiles are exported.

– Selection. An individual item or a selection of items in the
current project is exported.

5 If you clicked Selection, choose the items to export by selecting
the appropriate check boxes.

The following components are shown:

– Job designs. The chosen job or job sequence designs are
exported.
Manager Guide 15-11

Using Export Importing, Exporting, and Packaging Jobs
– Shared containers. The chosen shared containers are
exported.

– Data elements. The chosen data elements are exported.

– Stage types. The chosen plug-in definitions are exported.

– Table definitions. The chosen table definitions are exported.

– Transforms. The chosen transforms are exported.

– Routines. The chosen routines are exported. Choosing this
option allows you to select Source Code to export the
associated source code.

– Machine Profiles. The chosen machine profiles are exported.

– IMS databases. The chosen IMS database objects are
exported.

– IMS viewsets. The chosen IMS viewset objects are exported.

A selection is already made based on the highlighted branch in the

DataStage Manager when you chose Tools ➤ Export… .

You can select all objects of a particular type to be exported or

select a category of object to export from the drop-down list. For

example, in the case of data elements, you might choose among

All, Built-In, Built-In/Base, Built-In/Dates, and Conversion.

It is possible to choose an individual object, but you must first

click By individual component on the Options tab.

6 Click the Options tab, then select any required options as follows:

– Selection - By category. This is the default. The drop-down
list boxes on the Components tab allow you to choose
between all and the different categories of each object in the
Repository.

– Selection - By individual component. This allows you to
choose a single object per object type, so the drop-down list
boxes on the Components tab list all the individual objects of
that type.

– Include in export - Defaulted properties. Select this check
box to export the properties of the items being exported. By
default, properties and default values are not included in the
export file.

– Include in export - Read-only objects. Select this check box
to export any read-only items selected in the Components
tab. By default, read-only items are not exported.

7 Click the XML tab, then select required XML settings as follows:
15-12 Manager Guide

Importing, Exporting, and Packaging Jobs Using Export
– Include DTD in document. Select this check box to specify
that the generated XML document will contain a DTD in its
preamble. The DTD is generated by DataStage.

– Properties. You can choose to output object properties as
internal values or as externalized strings. Internal values are
numeric, and are not necessarily intelligible when viewed in a
Web browser. Externalized strings are the user-visible form and
are localized where appropriate.

For example, If you choose Output internal (stored) values,

the character ‘1’ would be output to represent the SQLtype

property Char. If you chose Output as externalized strings,

the string “char” would be output to represent the SQLtype

property Char.

– Style Sheet. You can specify a style sheet to use when
formatting the XML document for viewing in a Web browser.
Select the Include reference to style sheet in document
check box to take advantage of this feature. Specify the type of
style sheet in the Type box and supply the name of the style
sheet in the Reference box. An XSL style sheet, called
DSExport-HTML.xsl is supplied with DataStage, and is located
in the DataStage home directory.

8 To determine the behavior of the View button, click the View tab,
then select the required setting as follows:

– Select Use default viewer to view XML files using Microsoft
Internet Explorer Version 5.

– Select Run this program to view the file using some other
tool, and specify the executable for the tool in the text box.

When you click the View button in the Export dialog box, the

XML file is displayed in the chosen tool.

9 Click OK. The chosen items are exported to the specified text file.
This file can be imported into another DataStage development
environment.

Publishing to the Web

You can use the Export as XML feature to publish DataStage meta

data to the Web. To do this:

1 Choose to export as XML.

2 Choose the Output as externalized strings option in the
Properties area of the XML tab.

3 Include a reference to the DSExport-HTML.xsl style sheet in the
Style Sheet area of the XML tab.
Manager Guide 15-13

Using Export Importing, Exporting, and Packaging Jobs
4 Ensure that you have Microsoft Internet Explorer Version 5 or
some other XML-capable browser installed.

Exporting Job Executables
The Export ➤ Executable Job… command enables you to export

job executables for deployment on another machine. You can also

export job executables using the Export ➤ DataStage
Components… command, but the specialized executable job
dialog box allows you select jobs from a tree structure. This is
the recommended way of exporting multiple job executables.

To export job executables:

1 In the manager tree, select a compiled job, or a category
containing compiled jobs.

2 From the DataStage Manager, choose Export ➤ Executable
Job… . The Export dialog box appears. The dialog depends on
whether you have selected a single job, or a category or multiple
jobs.

– If you have selected a single job, the following form of the
dialog box appears:
15-14 Manager Guide

Importing, Exporting, and Packaging Jobs Using Export
– If you have selected multiple jobs or a job category, the
following form of the dialog box appears:

3 Type in, or browse for, the name of the file you are exporting to in
the Export to file field.

4 If you are exporting multiple job executables, you can use the
check boxes in the selection tree to determine which ones to
export. The Selected field tells you how many jobs are currently
selected.

Note The export executable job feature is primarily intended for

parallel jobs, which are complete in themselves. You can

export server job executables in this way, but be warned

that you have to export job dependencies, such as routines

and transforms, separately if they do not already exist on

the target system.

Using Export from the Command Line
DataStage also enables you to export components to a file from the

command line. There are two ways of doing this. The dsexport

command is a windows application and requires user interaction with

message boxes. The dscmdexport command is a command line

application and can be run unattended.

dsexport command

The dsexport command is as follows:

dsexport.exe /H hostname /U username /P password /O omitflag project
pathname1

The arguments are as follows:
Manager Guide 15-15

Using Export Importing, Exporting, and Packaging Jobs
hostname specifies the DataStage Server from which the file will
be exported.

username is the user name to use for connecting to the DataStage
Server.

password is the user’s password.

omitflag set this to 1 to omit the username and password (only
possible if you are connected to the DataStage Server via LAN
Manager).

project. Specify the project to export the components from.

pathname. The file to which to export.

For example, the following command exports the project dstage2

from the R101 to the file dstage2.dsx:

dsexport.exe /H R101 /O 1 dstage2 C:/scratch/dstage2.dsx

dscmdexport command

The dscmdexport is as follows:

dscmdexport /H hostname /U username /P password /O omitflag project
pathname /V

The arguments are as follows:

hostname. Specifies the DataStage Server from which the file will
be exported.

username. The user name to use for connecting to the DataStage
Server.

password. The user’s password.

omitflag. Set this to 1 to omit the username and password (only
possible if you are connected to the DataStage Server via LAN
Manager).

project. Specify the project to export the components from.

pathname. The file to which to export.

V. Use this flag to switch the verbose option on.

For example, the following command exports the project dstage2

from the R101 to the file dstage2.dsx:

dscmdexport /H R101 /O 1 dstage2 C:/scratch/dstage2.dsx

Messages from the export are sent to the console by default, but can

be redirected to a file using '>', for example:

dscmdexport /H R101 /O 1 dstage99 c:/scratch/project99.dsx /V > c:/
scratch/exportlog

You can simply type dscmdexport at the command prompt to get

help on the command options.
15-16 Manager Guide

Importing, Exporting, and Packaging Jobs Using the Packager Wizard
Export Error Log
If any errors occur during an export (whether initiated from the

Manager or the command line), an error log is generated. This is

placed in the same folder as the target export file, and is called

DSExporttimestamp.log, where timestamp gives the date and time it

was generated. You should ensure that these log files are regularly

deleted.

Exporting to MetaStage
To export a project to MetaStage:

1 Choose Export ➤ To MetaStage. The MetaStage Attach dialog
box appears.

2 Enter the required connection information to connect to a specific
directory (as described in “Starting MetaStage and Connecting to
a Directory” in the MetaStage help).

A new import category, containing the entire contents of the project as

viewable through the DataStage MetaBroker, is created in the

specified MetaStage directory. The import category is named

ComputerName_DataStageProjectName-Timestamp (for example,

HAL_OracleJobs-4/21/2003 2:24:14 PM). A log file named

MetaStageExport.log is created in the DataStage client directory.

Using the Packager Wizard
Server jobs If you have developed a server job or plug-in, you can distribute it to

other DataStage systems using the Packager Wizard. This utility is run

from the Manager.

You install the finished package on the target system using the

DataStage Package Installer, as described in "Installing DataStage

Packages" in DataStage Administrator Guide.

When you use the Packager Wizard, you must specify the type of

package to create:

Job Deployment. Contains executable job or job sequence
definitions (for each job in the package). The package contains
information about the job itself and other dependencies such as
transforms, data elements, and plug-ins.

Note You can only package released jobs. For more

information about releasing a job, see "Debugging,

Compiling, and Releasing a Job" in Server Job

Developer’s Guide.
Manager Guide 15-17

Using the Packager Wizard Importing, Exporting, and Packaging Jobs
Design Component. Contains plug-in definitions and associated
DLLs.

To package a job or plug-in:

1 From the DataStage Manager, choose Export ➤ Packager
Wizard… . The DataStage Packager Wizard appears:

2 Specify the type of package you want to create by clicking Job
Deployment or Design Component.

3 Click Next>. The wizard displays the next set of prompts.

4 Enter the name of the package, a description, and a target
directory on the server in the appropriate fields.

Note You can use Browse… to search the system for a

suitable directory.

5 Click Next>.

6 Select the jobs or plug-ins to be included in the package from the
list box. The content of this list box depends on the type of
package you are creating. For a Job Deployment package, this list
box displays all the released jobs. For a Design Component
package, this list box displays all the plug-ins under the Stage
Types branch in the Repository (except the built-in ones supplied
with DataStage).

7 If you are creating a Job Deployment package, and want to include
any other jobs that the main job is dependent on in the package,
select the Automatically Include Dependent Jobs check box.
The wizard checks the dependency tree to make sure all the
required jobs exist and informs you of any errors.
15-18 Manager Guide

Importing, Exporting, and Packaging Jobs Releasing a Job
8 Click Next>. The wizard confirms the package name, destination,
and chosen jobs or plug-ins. If you are packaging jobs and have
included dependent jobs, these are shown indented in the list.

9 Click Finish to create the package. The package is created in the
chosen directory using the specified name.

You can now distribute the package for use on other DataStage

systems.

Note When you install packaged jobs on the target machine, they

are installed into the same category. DataStage will create

the category first if necessary.

Releasing a Job
If you are developing a job for users on another DataStage system,

you must label the job as ready for deployment before you can

package it. For more information about packaging a job, see "Using

the Packager Wizard" on page 15-17.

To label a job for deployment, you must release it. A job can be

released when it has been compiled and validated successfully at

least once in its life.

Jobs are released using the DataStage Manager. To release a job:

1 From the DataStage Manager, browse to the required category in
the Jobs branch in the project tree.

2 Select the job you want to release in the display area.

3 Choose Tools ➤ Release Job. The Job Release dialog box
appears, which shows a tree-type hierarchy of the job and any
associated dependent jobs.

4 Select the job that you want to release.

5 Click Release Job to release the selected job, or Release All to
release all the jobs in the tree.

A physical copy of the chosen job is made (along with all the routines

and code required to run the job) and it is recompiled. The Releasing
Job dialog box appears and shows the progress of the releasing

process.

The released job is automatically assigned a name and version

number using the format jobname%reln.n.n. jobname is the name of

the job you chose to release and n.n.n is the version number. When

you refer to a job by its released name, this is known as a “fixed job

release,” which always equates to that particular version of the job.
Manager Guide 15-19

Releasing a Job Importing, Exporting, and Packaging Jobs
You can use the Designer to view the design of a released job.

However, if you edit the job design you cannot save the changes. The

meta data and settings displayed in the job design are stored as part

of the released job and these may not match the information currently

held in the Repository. This is especially true if you developed the

table definitions, transforms, routines, or job design after the job was

released.

If you want to develop and enhance a job design, you must edit the

original job. To use the changes you have made, you must release the

job again.

Note Released jobs cannot be copied or renamed using the

Manager.

The Job Release dialog box is shown below:

This dialog box contains a tree-type hierarchy showing the job

dependencies of the job you are releasing. It displays the status of the

selected job as follows:

Not Compiled. The job exists, but has not yet been compiled
(this means you will not be able to release it).

Not Released. The job has been compiled, but not yet released.

Job Not Found. The job cannot be found.

Released. The job has previously been released.

Release Exists. The selected job is a fixed version (i.e., has a
particular release number) and that version of the job exists.

The dialog box also displays the highest released version of the

selected job. When the selected job is a fixed version job (i.e., has a

particular release number), then it displays Fixed Job Release.

If a dependent job appears in more than one branch of the hierarchy,

then only the one at the highest level is displayed.
15-20 Manager Guide

Importing, Exporting, and Packaging Jobs Releasing a Job
Manager Guide 15-21

Releasing a Job Importing, Exporting, and Packaging Jobs
15-22 Manager Guide

16
Using MetaBrokers

MetaBrokers allow you to exchange enterprise meta data between

DataStage and other data warehousing tools. For example, you can

use MetaBrokers to import into DataStage table definitions that you

have set up using a data modelling tool. Similarly you can export

meta data from a DataStage job to a business intelligence tool to help

it analyze your data warehouse.

To use MetaBrokers, you need to install MetaBrokers for any tools

with which you want to exchange meta data. MetaBrokers are

provided on a separate CD. Instructions for installing MetaBrokers are

in "Installing MetaBrokers" in DataStage Administrator Guide.

This chapter tells you how to use MetaBrokers from the DataStage

Manager. The instructions given are generic. Instructions for using

particular MetaBrokers are in technical bulletins included on the

installation CD in the relevant MetaBroker directory.

The MetaBrokers allow you to either import meta data into DataStage,

or to export it from DataStage.

Importing Meta Data
Importing meta data into DataStage has two main phases. After you

have specified the tool from which you are importing and the source

for the import meta data, the MetaBroker for that tool extracts the

meta data from the source. This is phase one. The MetaBroker then

displays a list of extracted meta data from which you can select what

you actually want to import into DataStage. Once you have done this,

the DataStage MetaBroker imports the meta data into the DataStage

Repository. This is phase two.
Manager Guide 16-1

Importing Meta Data Using MetaBrokers
To use MetaBrokers to import data into DataStage:

1 Start the DataStage Manager.

2 Choose Import ➤ Via MetaBrokers… . The MetaBroker
Selection dialog box appears:

3 Select the MetaBroker for the tool from which you want to import
the meta data and click OK. The Parameters Selection dialog
box appears:

4 Specify the required parameters for the import (these vary
according to MetaBroker, but typically specify data source and log
file). Click OK. The Status dialog box appears.
16-2 Manager Guide

Using MetaBrokers Importing Meta Data
5 The process of extracting meta data from the import source to the
MetaBroker is started. The status of the extraction is displayed in a
text window:

6 When the extraction is completed, the Select All and Filter
buttons are enabled. If you want to import all the meta data, click
Select All and continue from step 9. If you want to import
selected meta data, click Filter. The Meta Data Selection dialog
box appears. It shows the meta data that the MetaBroker has
extracted from the source, and allows you to specify what you
actually want to import into DataStage. The dialog box shows all

the classes of object that can be imported in a tree structure. Click
one of the plus symbols to expand the tree. Click one of the minus
Manager Guide 16-3

Importing Meta Data Using MetaBrokers
symbols to shrink it again. Click in one of the square boxes to
select a class, the class then appears in the Selection Status
pane on the right.

The arrows indicate relationships and you can follow these to see

what classes are related and how (this might affect what you

choose to import).

7 Specify what is to be imported:

– Select boxes to specify which instances of which classes are to
be imported.

– Alternatively, you can click Select All to import all instances of
all classes.

– If you change your mind, click Clear All to remove everything
from the Selection Status pane.
16-4 Manager Guide

Using MetaBrokers Importing Meta Data
8 When you are satisfied that you have selected all the meta data
you want to import, click OK. The Parameters Selection dialog
box appears:

9 Specify the required parameters for the import into DataStage.
These allow you to specify whether you should be prompted to
confirm overwrites to the DataStage Repository, and whether
verbose output is enabled. Click OK. The Status dialog box
appears.

10 The DataStage MetaBroker copies the selected data into the
DataStage Repository. The status of the import is displayed in a
text window. Click Finish when it has completed the import.

When the import is complete, you can see the meta data that you have

imported under the relevant branch in the DataStage Manager. For

example, data elements imported from ERWin appear under the Data
Elements ➤ ERWin35 branch.

You may import more items than you have explicitly selected. This is

because the MetaBroker ensures that data integrity is maintained. For
Manager Guide 16-5

Exporting Meta Data Using MetaBrokers
example, if you import a single column, the table definition for the

table containing that column is also imported.

Exporting Meta Data
Exporting meta data from DataStage to another data warehousing

tool has two main phases. After you have specified the tool you want

to export to, the DataStage MetaBroker extracts the meta data from

the DataStage Repository. This is phase one. The MetaBroker then

displays a list of extracted meta data from which you can select what

you actually want to export. Once you have done this, the MetaBroker

for the selected tool exports the meta data to the tool. This is phase

two.

To use MetaBrokers to export data from DataStage:

1 Start the DataStage Manager.

2 Choose Export ➤ Via MetaBrokers… . The MetaBroker
Selection dialog box appears:
16-6 Manager Guide

Using MetaBrokers Exporting Meta Data
3 Select the MetaBroker for the tool to which you want to export the
meta data and click OK. The Parameters Selection dialog box
appears:

4 Specify the required parameters for the export from DataStage.
These allow you to specify the name of a log file and whether
verbose output is enabled. Click OK. The Status dialog box
appears.

5 The process of extracting meta data from the DataStage
Repository is started. The status of the extraction is displayed in a
text window:

6 When the extraction is completed, the Select All and Filter
buttons are enabled. If you want to export all the meta data, click
Select All and continue from step 9. If you want to export
selected meta data, click Filter. The Meta Data Selection dialog
Manager Guide 16-7

Exporting Meta Data Using MetaBrokers
box appears. It shows the meta data that the MetaBroker has
extracted from the DataStage Repository, and allows you to
specify what you actually want to export.

7 Specify what is to be exported in the same way as described for
importing from a MetaBroker on page 16-4.

8 When you are satisfied that you have selected all the meta data
you want to export, click OK. The Parameters Selection dialog
box appears:

9 Specify the required parameters for the export into the data
warehousing tool. These vary according to the tool you are
exporting to, but typically include the destination for the exported
data and a log file name.
16-8 Manager Guide

Using MetaBrokers Exporting Meta Data
10 Data is exported to the tool. The status of the export is displayed
in a text window. Depending on what tool you are exporting to,
another application may be started to receive the exported data.
When the export has completed, click Finish.
Manager Guide 16-9

Exporting Meta Data Using MetaBrokers
16-10 Manager Guide

17
Importing Web Service Routines

You can construct DataStage routines from operations defined in

WSDL files. You can then use these routines in derivation expressions

in server jobs. For example, you could use one in a Transformer stage

to determine how a column value within a row is computed from the

column values of the input rows.

Note Before you can use the Import Web Service routine facility,

you must first have imported the meta data from the

operation you want to derive the routine from. See

"Importing a Table Definition" on page 3-13.

To construct a DataStage routine from a web service WSDL file:
Manager Guide 17-1

Importing Web Service Routines
1 Import the meta data for the web service operation. This is done
using Import ➤ Table Definitions ➤ Web Services WSDL
Definitions (see page 3-16).

2 Choose Import ➤ Web Service Function Definitions… . The
Web Service Browser appears.

The upper right panel shows the web services whose meta data

you have loaded. Select a web service to view the operations

available in the web service in the upper left pane.

3 Select the operation you want to import as a routine. Information
about the selected web service is shown in the lower pane

4 Either click Select this item in the lower pane, or double-click the
operation in the upper right pane. The operation is imported and
appears as a routine in the Web Services category under a
category named after the web service.

Once the routine is imported into the Repository, you can open the
Server Routine dialog box to view it and edit it. See "The Server

Routine Dialog Box" on page 8-4.
17-2 Manager Guide

A
Editing Grids

DataStage uses grids in many dialog boxes for displaying data. This

system provides an easy way to view and edit tables. This appendix

describes how to navigate around grids and edit the values they

contain.

Grids
The following screen shows a typical grid used in a DataStage dialog

box:

On the left side of the grid is a row selector button. Click this to select

a row, which is then highlighted and ready for data input, or click any

of the cells in a row to select them. The current cell is highlighted by a

chequered border. The current cell is not visible if you have scrolled it

out of sight.

Some cells allow you to type text, some to select a checkbox and

some to select a value from a drop-down list.

You can move columns within the definition by clicking the column

header and dragging it to its new position. You can resize columns to

the available space by double-clicking the column header splitter.
Manager Guide A-1

Grid Properties Editing Grids
You can move rows within the definition by right-clicking on the row

header and dragging it to its new position. The numbers in the row

header are incremented/decremented to show its new position.

The grid has a shortcut menu containing the following commands:

Edit Cell. Open a cell for editing.

Find Row… . Opens the Find dialog box (see"Finding Rows in the
Grid" on page A-4).

Edit Row… . Opens the relevant Edit Row dialog box (see
"Editing in the Grid" on page A-4).

Insert Row. Inserts a blank row at the current cursor position.

Delete Row. Deletes the currently selected row.

Propagate values… . Allows you to set the properties of several
rows at once (see "Propagating Values" on page A-6).

Properties. Opens the Properties dialog box (see "Grid
Properties" on page A-2).

Grid Properties
The Grid Properties dialog box allows you to select certain features

on the grid.
A-2 Manager Guide

Editing Grids Navigating in the Grid
Select and order columns. Allows you to select what columns
are displayed and in what order. The Grid Properties dialog box
displays the set of columns appropriate to the type of grid. The
example shows columns for a server job columns definition. You
can move columns within the definition by right-clicking on them
and dragging them to a new position. The numbers in the position
column show the new position.

Allow freezing of left columns. Choose this to freeze the
selected columns so they never scroll out of view. Select the
columns in the grid by dragging the black vertical bar from next to
the row headers to the right side of the columns you want to
freeze.

Allow freezing of top rows. Choose this to freeze the selected
rows so they never scroll out of view. Select the rows in the grid
by dragging the black horizontal bar from under the column
headers to the bottom edge of the rows you want to freeze.

Enable row highlight. Select this to enable highlighting of
selected rows, disable it to highlight only the current cell.

Excel style headers. Select this to specify that selected row and
column header buttons should be shown as raised when selected.

Apply settings to current display only. Select this to apply the
selected properties to only this grid.

Save settings for future display. Select this to apply setting to
all future displays of grids of this type.

Navigating in the Grid
You can move around the grid by using the mouse and scroll bars, or

the keyboard. Table A-1 shows the keys that are used for navigation in

the grid.

Table A-1 Keys Used in Grid Navigation

Key Action

Right Arrow Move to the next cell on the right.

Left Arrow Move to the next cell on the left.

Up Arrow Move to the cell immediately above.

Down Arrow Move to the cell immediately below.

Tab Move to the next cell on the right. If the current cell is in the
rightmost column, move forward to the next control on the form.
Manager Guide A-3

Finding Rows in the Grid Editing Grids
Finding Rows in the Grid
The Find facility allows you to locate a particular row in a table

definition. To find a particular row, choose Find row… from the

shortcut menu. The Find dialog box appears, allowing you to specify

the column to search and what is to be searched for.

Editing in the Grid
You can edit grids by using mouse and keyboard to directly modify

the fields, or you can choose Edit Row… from the shortcut menu to

open a dialog box enabling you to edit individual rows. The dialog

box differs slightly depending on what type of grid you are editing.

Additional controls are available to make the task simpler if you are

editing a grid that defines one of the following:

Column definitions in a Table Definition dialog box

Column definitions in a server or mainframe stage editor

Arguments in a mainframe routine definition

Shift-Tab Move to the next cell on the left. If the current cell is in the
leftmost column, move back to the previous control on the form.

Page Up Scroll the page down.

Page Down Scroll the page up.

Home Move to the first cell in the current row.

End Move to the last cell in the current row.

Table A-1 Keys Used in Grid Navigation

Key Action
A-4 Manager Guide

Editing Grids Editing in the Grid
Editing the Grid Directly
These edit commands work on any type of grid. You can edit the

contents of the current cell in three ways:

Start typing in the cell.

Press the F2 key to put the cell into edit mode.

Choose the Edit cell… command from the shortcut menu.

When you start editing, the current contents of the cell are highlighted

ready for editing. If the cell is currently empty, an edit cursor appears.

Table A-2 shows the keys that are used for editing in the grid.

Adding Rows

You can add a new row by entering data in the empty row. When you

move the focus away from the row, the new data is validated. If it

passes validation, it is added to the table, and a new empty row

appears. Alternatively, press the Insert key or choose Insert row…

from the shortcut menu, and a row is inserted with the default column

name Newn, ready for you to edit (where n is an integer providing a

unique Newn column name).

Table A-2 Keys Used in Grid Editing

Key Action

Esc Cancel the current edit. The grid leaves edit mode, and the cell
reverts to its previous value. The focus does not move.

Enter Accept the current edit. The grid leaves edit mode, and the cell
shows the new value. When the focus moves away from a modified
row, the row is validated. If the data fails validation, a message box is
displayed, and the focus returns to the modified row.

Up Arrow Move the selection up a drop-down list or to the cell immediately
above.

Down
Arrow

Move the selection down a drop-down list or to the cell immediately
below.

Left Arrow Move the insertion point to the left in the current value. When the
extreme left of the value is reached, exit edit mode and move to the
next cell on the left.

Right Arrow Move the insertion point to the right in the current value. When the
extreme right of the value is reached, exit edit mode and move to the
next cell on the right.

Ctrl-Enter Enter a line break in a value.
Manager Guide A-5

Editing in the Grid Editing Grids
Deleting Rows

To delete a row, click anywhere in the row you want to delete to select

it. Press the Delete key or choose Delete row from the shortcut

menu. To delete multiple rows, hold down the Ctrl key and click in the

row selector column for the rows you want to delete and press the

Delete key or choose Delete row from the shortcut menu.

Propagating Values

You can propagate the values for the properties set in a grid to several

rows in the grid. Select the column whose values you want to

propagate, then hold down shift and select the columns you want to

propagate to. Choose Propagate values... from the shortcut menu

to open the dialog box.

In the Property column, click the check box for the property or

properties whose values you want to propagate. The Usage field tells

you if a particular property is applicable to certain types of job only

(e.g. server, mainframe, or parallel) or certain types of table definition

(e.g. COBOL). The Value field shows the value that will be propagated

for a particular property.

Editing Column Definitions in a Table Definitions Dialog
Box

To edit column definitions:

1 Do one of the following:

– Right-click in the column area and choose Edit row… from the
shortcut menu.
A-6 Manager Guide

Editing Grids Editing in the Grid
– Press Ctrl-E.

– Double-click on the row number cell at the left of the grid.

The Edit Column Meta Data dialog box appears. It has a

general section containing fields that are common to all data

source types, plus three tabs containing fields specific to meta

data used in server jobs or parallel jobs and information specific

to COBOL data sources.

Descriptions of each of the fields in this dialog box are in "Entering

Column Definitions" on page 9-14.

2 Enter the general information for each column you want to define.

3 If you are specifying meta data for a server job type data source or
target, then the Edit Column Meta Data dialog bog box appears
with the Server tab on top. Enter any required information that is
specific to server jobs.

4 If you are specifying meta data for a parallel job type data source
or target, then the Edit Column Meta Data dialog bog box
appears with the Parallel tab on top. Enter any required format
information that is required by a parallel job.

5 If you are specifying meta data for a mainframe job type data
source or target, then the Edit Column Meta Data dialog bog
box appears with the COBOL tab on top. Enter any required
information that is specific to mainframe jobs.

6 Use the buttons at the bottom of the Edit Column Meta Data
dialog box to continue adding or editing columns, or to save and
close. The buttons are:
Manager Guide A-7

Editing in the Grid Editing Grids
– <Previous and Next>. View the meta data in the previous or
next row. These buttons are enabled only where there is a
previous or next row enabled. If there are outstanding changes
to the current row, you are asked whether you want to save
them before moving on.

– Close. Close the Edit Column Meta Data dialog box. If there
are outstanding changes to the current row, you are asked
whether you want to save them before closing.

– Apply. Save changes to the current row.

– Reset. Remove all changes made to the row since the last time
you applied changes.

7 Click OK to save the column definitions and close the Edit
Column Meta Data dialog box.

You can also edit a columns definition grid using the general grid

editing controls, described in "Editing the Grid Directly" on page A-5.

Editing Column Definitions in a Mainframe Stage Editor
Editing the columns in a mainframe stage editor is similar to editing

any column definitions. The same controls are available; the

differences lie in the fields that are presented to be edited.

There are three versions of the Edit Column Meta Data dialog box,

depending on what type of mainframe stage you are editing.

The fields for all variants of the Edit Column Meta Data dialog box

for mainframe stage types are described in Mainframe Job

Developer’s Guide.
A-8 Manager Guide

Editing Grids Editing in the Grid
The dialog box for the Complex Flat File stage is:

The dialog box for the Fixed Width Flat File and Relational stages is:

(Note there is no Date Format field in relational stages.)
Manager Guide A-9

Editing in the Grid Editing Grids
The dialog box for other stages is:

Editing Column Definitions in a Server Job Stage
Editing the columns in a server job stage editor is similar to editing

any column definitions. The same controls are available; the

differences lie in the fields that are presented to be edited.

There are different versions of the Edit Column Meta Data dialog

box, depending on what type of server job stage you are editing and

whether it is an input or output link. The fields in the top portion of the

dialog box are the same, but fields in the Server tab differ.

The fields for all variants of the Edit Column Meta Data dialog box

for server stage types are described in Server Job Developer’s Guide.
A-10 Manager Guide

Editing Grids Editing in the Grid
The following is an example dialog box for a Sequential File stage:

Editing Arguments in a Mainframe Routine Dialog Box
Editing the arguments for a mainframe routine is similar to editing

column definitions. The same controls are available; the differences

lie in the fields that are presented to be edited.

There are three types of mainframe routine, external routine, external

target routine, and external source routine. The fields are described in

Mainframe Job Developer’s Guide.
Manager Guide A-11

Editing in the Grid Editing Grids
The Edit Routine Argument dialog box for external routines is as

follows:

The Edit Routine Argument dialog box for external source routines

is as follows:
A-12 Manager Guide

Editing Grids Editing in the Grid
The Edit Routine Argument dialog box for external target routines

is as follows:

Editing Column Definitions in a Parallel Job Stage
Editing the columns in a parallel job stage editor is similar to editing

server job column definitions. The same controls are available; the

differences lie in the fields that are presented to be edited in the Edit
Column Meta Data dialog box.
Manager Guide A-13

Editing in the Grid Editing Grids
A-14 Manager Guide

B
Troubleshooting

This appendix describes problems you may encounter with DataStage

and gives solutions.

Cannot Start DataStage Clients
Check that the DataStage Engine is actually running on the server.

On Windows servers, ensure that the DataStage Engine Resource

service, RPC service, and DataStage Telnet service are all started.

On UNIX servers, ensure that the RPC daemon (dsrpcd) is started.

Problems While Working with UniData
For more information about connecting to UniData sources, see the

technical bulletin Accessing UniVerse and UniData Databases from

DataStage (74-0121). This is supplied with the DataStage online

documentation.

Connecting to UniData Databases
When the DataStage server is installed, a copy of the UniData API

configuration file UNIAPI.INI is installed in the Windows directory. If,

when you first attempt to connect to your UniData server, you get an

error message similar to:

UniData Client error: call to UniOpenPos returned 45 - Client version
(11) and server version (12) are incompatible
Manager Guide B-1

Problems with the Documentation Tool Troubleshooting
then you must edit the UNIAPI.INI file and change the value of the

PROTOCOL variable. In this case, change it from 11 to 12:

PROTOCOL = 12

Importing UniData Meta Data
When importing UniData meta data, note that the server name

required in the DataStage Manager dialog box is the UniData server

node name, not the ObjectCall (UNIAPI.INI) file entry name.

If the UniData server is on the same node as the DataStage server,

then the name localhost can be used.

Using the UniData Stage
The UniData stage uses the UniData Basic ITYPE function to evaluate

virtual attributes and this requires that the virtual attributes are

compiled. If they are not, when the link is opened an error occurs

which indicates the first uncompiled I-type/virtual attribute it finds. In

this instance, the solution is to compile all of the I-types/virtual

attributes, not just the first one reported in the error message.

There are certain verbs that need to be available for use on the

UniData database when the job containing the UniData stage is first

run, or when the Data Browser is first used in the stage. These are:

BASIC

CATALOG

NEWPCODE

The BP directory file must also be available.

After the initial job run or first use of the Data Browser, these can be

removed or disabled if required for security reasons.

Problems with the Documentation Tool

Installing the Documentation Tool
You should avoid trying to install the Documentation Tool in a

directory with insufficient disk space. If the install runs out of space,

an error can occur which removes the Tahoma font from the system,

and that can subsequently cause problems with Microsoft Word. If

this situation arises, the Tahoma font can be found in the

Documentation Tool install directory, from where you can reinstall it.
B-2 Manager Guide

Troubleshooting Problems Running Jobs
You should avoid running the setup program from within the

Documentation Tool directory to remove or reinstall the tool. The

operation will fail. Always use the main setup program on the

DataStage CD.

Using Plug-In Reports
The report for a plug-in stage type does not include information as to

whether the stage supports reference links.

Problems Running Jobs

Server Job Compiles Successfully but Will Not Run
Check that your job design does not have cyclic dependencies within a

sequence of active stages. This may cause your job to fail as one

stage waits for another, which is in turn waiting for it.

Server Job from Previous DataStage Release Will Not
Run

If you run a job created using an earlier DataStage release, you may

get the message:

Job has not been compiled with compatible compiler

The solution is to recompile, rerelease, and, if necessary, repackage

jobs under the later release of DataStage.

Miscellaneous Problems

Landscape Printing
You cannot print in landscape mode from the DataStage Manager or

Director clients.

Browsing for Directories
When browsing directories within DataStage, you may find that only

local drive letters are shown. If you want to use a remote drive letter,

you should type it in rather than relying on the browse feature.
Manager Guide B-3

Miscellaneous Problems Troubleshooting
B-4 Manager Guide

C
Usage Analysis
HTML Template

This appendix describes how to edit the template to customize the

DataStage Usage Analysis HTML report format. The template is called

UsageRptXXX.htm, where XXX indicates the locale for which the

template is intended. The template is held in the DataStage directory.

The Usage Analysis tool allows you to check where items in the

DataStage Repository are used. Usage Analysis gives you a list of the

items that use a particular source item. You can in turn use the tool to

examine items on the list, and see where they are used. You can view

the Usage Analysis report in a browser in HTML format. The template

file determines the format of the report.

The Usage Analysis tool is described in Chapter 12, "Usage Analysis."

This appendix describes the structure of a template and tells you how

to modify it.

Template Structure
The default template file describes a report containing the following

information:

General. Information about the system on which the report was
generated.

Report. Information about the report such as when it was
generated and its scope.

Sources. Lists the sources in the report. These are listed in sets,
delimited by BEGIN-SET and END-SET tokens.
Manager Guide C-1

Tokens Usage Analysis HTML Template
Columns. Lists selected columns if the source is a table definition.
These are listed in sets, delimited by BEGIN-SET and END-SET
tokens.

Used. Information about the targets. These are listed in sets,
delimited by BEGIN-SET and END-SET tokens.

The template file uses tokens to represent the real Usage Analysis

information that will be inserted when an HTML report is generated.

You can use these tokens when defining a different layout for the

template.

Tokens
Template tokens have the following forms:

%TOKEN%. A token that is replaced by another string or set of
lines, depending on context.

%BEGIN-SET-TYPE% … %END-SET-TYPE%. These delimit a
repeating section, and do not appear in the generated document
itself. TYPE indicates the type of set and is one of SOURCES,
USED, or COLUMNS as appropriate.
C-2 Manager Guide

Usage Analysis HTML Template Tokens
General Tokens

Report Tokens

Source Set Tokens

Used Set Tokens

Token Usage

%NOW% The current date and time in local format

%COMPANY% Company name

%BRIEFCOMPANY% Brief company name

%CLIENTPRODUCT% Client product name

%SERVERPRODUCT% Server product name

%CLIENTPATH% Client product installed path

%SERVERPATH% Server product installed path

%CLIENTVERSION% Client product version

%SERVERVERSION% Server product version

%PROJECT% Current project name

%SERVERNAME% Current server name

%USER% Current user name, if any

%INDEX% Index of current item within list context,
reset to 1 whenever a new set begins

Token Usage

%CONDENSED% “True” or “False” according to
state of the Condense option

%SOURCETYPE% Type of Source items

%SELECTEDSOURCE% Name of Selected source, if more
than one used

%SOURCECOUNT% Number of sources used

%SELECTEDCOLUMNS-
COUNT%

Number of columns selected, if
any

%TARGETCOUNT% Number of target items found

%GENERATEDDATE% Date Usage report was generated

%GENERATEDTIME% Time Usage report was generated

Token Usage

%INDEX% Index of current item within set

%NAME% Name of current item

Token Usage

%INDEX% Index of current item within set
Manager Guide C-3

Default Templates Usage Analysis HTML Template
Columns Set Tokens

Default Templates
The following is a listing of the default templates supplied with

DataStage.

See "Viewing the Report as HTML" on page 12-8 for an example of an HTML report
generated with this template.

<!--
//*
//*''
//*'
//*' UsageRpt.htm - HTML template for Usage Analysis Report
//*'
//*' (c) Copyright 1999 Ardent Software Inc. - All Rights Reserved
//*' This is unpublished proprietary source code of Ardent Software Inc.
//*' The copyright notice above does not evidence any actual or intended
//*' publication of such source code.
//*'
//*''
//*'
//*' Description:
//*'
//*' This file contains the HTML template that is used to generate
//*' reports from Usage Analysis.
//*'
//*''
//*
-->
<HTML>
<HEAD>
<TITLE>
Usage Analysis - %SERVERNAME%\%PROJECT% - %SOURCETYPE% </TITLE>
</HEAD>

<H1 ALIGN="CENTER">Usage Analysis - %SERVERNAME%\%PROJECT% - %SOURCETYPE% </H1>

<P>
Usage Analysis Report for Project '%PROJECT%' on Server '%SERVERNAME%' (User '%USER%').

Generated at %GENERATEDTIME% on %GENERATEDDATE%.

Source items are of type '%SOURCETYPE%', %SOURCESCOUNT% used, '%SELECTEDSOURCE%' selected,
%TARGETCOUNT% targets found.

%NAME% Name of current target item

%RELN% Name of current relationship

%TYPE% Type of current target item

%CATEGORY% Category of current target item

%SOURCE% Name of source for current target item

Token Usage

%INDEX% Index of current item within set

%NAME% Name of current item
C-4 Manager Guide

Usage Analysis HTML Template Default Templates
<P>Report Condensed = %CONDENSED% </P>

<hr size=5 align=center noshade width=90%>

<P>Sources:

%BEGIN-SET-SOURCES%
%NAME%
%END-SET-SOURCES%

<hr size=5 align=center noshade width=90%>

<P>Target Count = %TARGETCOUNT% </P>
<TABLE BORDER CELLSPACING=0 WIDTH=100%>
<TR BGCOLOR=#C0C0C0>
<TD><P ALIGN="CENTER">Index</TD>
<TD><P ALIGN="CENTER">Relationship</TD>
<TD><P ALIGN="CENTER">Type</TD>
<TD><P ALIGN="CENTER">Category</TD>
<TD><P ALIGN="CENTER">Name</TD>
<TD><P ALIGN="CENTER">Source</TD>
</TR>

%BEGIN-SET-USED%
<TR>
<TD>%INDEX%</TD>
<TD>%RELN%</TD>
<TD>%TYPE%</TD>
<TD>%CATEGORY% </TD>
<TD>%NAME%</TD>
<TD>%SOURCE%</TD>
</TR>
%END-SET-USED%

</TABLE>

<hr size=5 align=center noshade width=90%>

<P>Selected Columns (if source is Table definition) - %SELECTEDCOLUMNSCOUNT% selected:

%BEGIN-SET-COLUMNS%
%NAME%
%END-SET-COLUMNS%

<hr size=5 align=center noshade width=90%>

<P>
Company:%COMPANY% (%BRIEFCOMPANY%)
<P>
Client Information:
Product:%CLIENTPRODUCT%
Version:%CLIENTVERSION%
Path:%CLIENTPATH%

<P>
Server Information:

Name:%SERVERNAME%
Product:%SERVERPRODUCT%
Version:%SERVERVERSION%
Path:%SERVERPATH%
Manager Guide C-5

Default Templates Usage Analysis HTML Template

HTML Generated at %NOW%

</BODY>
</HTML>
C-6 Manager Guide

Index
A
ActiveX (OLE) functions 9–1

importing 8–16

programming functions 8–2, 8–8

administrator, definition 1–6

after-job subroutines 5–3

definition 1–6

after-stage subroutines, definition 1–6

Aggregator stages

definition 1–6

Annotation 1–6

assigning data elements 4–4

Attach to Project dialog box 2–2

B
BASIC routines

before/after subroutines 8–10

copying 8–15, 8–32

creating 8–9

editing 8–15

entering code 8–10

name 8–4

renaming 8–15, 8–32

saving code 8–11

testing 8–12

transform functions 8–10

type 8–4

version number 8–5

viewing 8–15

BASIC routines, writing 8–1

BCPLoad stages, definition 1–6

before/after-subroutines

creating 8–10

before-job subroutines 5–3

definition 1–6

before-stage subroutines, definition 1–6

browsing server directories B–3
Manager Guide
built-in data elements 4–5

definition 1–6

built-in transforms, definition 1–6

C
Change Apply stage 1–6

Change Capture stage 1–6

character set maps

and plug-in stages 7–34

defining 7–34

cluster 1–7

column definitions

column name 3–4

data element 3–4

definition 1–7

deleting 3–39, 3–49

editing 3–39, 3–49

entering 3–18

key fields 3–4

length 3–4

loading 3–36

scale factor 3–4

Column Export stage 1–7

Column Import stage 1–7

Columns grid 3–4

Combine Records stage 1–7

Compare stage 1–7

compiling

code in BASIC routines 8–11

Complex Flat File stages, definition 1–7

Compress stage 1–7

configuration file editor 11–1

Container stages

definition 1–7

containers

definition 1–7

version number 6–2
Index-1

Index
Copy stage 1–7

copying BASIC routine definitions 8–15, 8–32

copying items in the Repository 2–12

creating

BASIC routines 8–9

data elements 4–2

items in the Repository 2–10

stored procedure definitions 3–46

table definitions 3–17

current cell in grids A–1

custom transforms, definition 1–7

customizing the Tools menu 2–14

D
data

sources 1–11

Data Browser 3–40

definition 1–7

data elements

assigning 4–4

built-in 4–5

creating 4–2

defining 4–2

definition 1–7

editing 4–5

viewing 4–5

Data Set stage 1–7

DataStage

client components 1–2

concepts 1–6

jobs 1–3

projects 1–3

server components 1–2

terms 1–6

DataStage Administrator 1–2

definition 1–7

DataStage Designer 1–2

definition 1–7

DataStage Director 1–2

definition 1–7

DataStage Manager 1–2

definition 1–7

exiting 2–16

using 2–9

DataStage Manager window

display area 2–8

menu bar 2–6

project tree 2–7

shortcut menus 2–9

title bar 2–5

toolbar 2–7
Index-2
DataStage Package Installer 1–2

definition 1–7

DataStage Repository 1–2

definition 1–11

managing 2–9

DataStage Server 1–2

DB2 Load Ready Flat File stages, definition 1–8

DB2 stage 1–8

Decode stage 1–8

defining

character set maps 7–34

data elements 4–2

deleting

column definitions 3–39, 3–49

items in the Repository 2–11

Delimited Flat File stages, definition 1–8

developer, definition 1–8

Difference stage 1–8

display area in DataStage Manager

window 2–8

documentation

conventions iv—v
online C–1

Documentation Tool 13–4

dialog box 13–5

toolbar 13–4

troubleshooting B–2

documenter templates C–1

E
edit mode in grids A–5

editing

BASIC routine definitions 8–15

column definitions 3–39, 3–49

data elements 4–5

grids A–1, A–5

Repository items 2–11

stored procedure definitions 3–48

table definitions 3–39

Encode stage 1–8

entering

code in BASIC routines 8–10

entering column definitions 3–18

error handling 15–17, 15–18

errors and UniData stage B–1

examples

of reports 13–6

exiting

DataStage Manager 2–16

Expand stage 1–8
Manager Guide

Index
export error log 15–17

Export option, using 15–7

exporting

from the Manager 15–7

job components 15–7

jobs 15–7

meta data using MetaBrokers 16–6

Expression Editor 5–8

definition 1–8

external ActiveX (OLE) functions 9–1

External Filter stage 1–8

External Routine stages, definition 1–8

External Source stage 1–8

External Target stage 1–8

F
File Set stage 1–8

Filter stage 1–8

Find dialog box 3–41, 8–13

Fixed-Width Flat File stages, definition 1–8

FTP stages, definition 1–9

Funnel stage 1–9

G
Generator stage 1–9

graphical performance monitor 1–9

grids A–1

adding rows in A–5

current cell A–1

deleting rows in A–6

editing A–1, A–5

keys used for navigating in A–3

keys used in editing A–5

navigating in A–3

row selector button A–1

H
Hashed File stages

definition 1–9

Head stage 1–9

HTML, viewing Usage Analysis report in 12–8

I
Import option, using 15–2

import selection 16–4, 16–8

importing

external ActiveX (OLE) functions 8–16

into the Manager 15–2

job components 15–2

jobs 15–2
Manager Guide
meta data using MetaBrokers 16–1

stored procedure definitions 3–43

table definitions 3–13

Informix XPS stage 1–9

input parameters, specifying 3–47

Intelligent Assistant 1–9

Inter-process stage 1–9

J
job 1–9

job control routines 5–11

definition 1–9

job parameters 5–7

job properties

saving 5–20

job sequence

definition 1–9

jobs

definition 1–9

dependencies, specifying 5–14

mainframe 1–10

overview 1–3

packaging 15–18

server 1–11

version number 5–2, 5–19

Join stages, definition 1–9

K
key field 3–4, 3–44

L
Layout page

of the Table Definition dialog box 3–11

link collector stage 1–9

link partitioner stage 1–9

loading column definitions 3–36

local container

definition 1–9

Lookup File stage 1–10

Lookup stages, definition 1–9

M
mainframe job stages

Multi-Format Flat File 1–10

mainframe jobs 1–3

definition 1–10

Make Subrecord stage 1–10

Make Vector stageparallel job stages

Make Vector 1–10

manually entering
Index-3

Index
stored procedure definitions 3–46

table definitions 3–17

massively parallel processing 1–10

menu bar

in DataStage Manager window 2–6

Merge stage 1–10

meta data

definition 1–10

importing from a UniData database B–2

MetaBrokers

definition 1–10

exporting meta data 16–6

importing meta data 16–1

Modify stage 1–10

MPP 1–10

Multi-Format Flat File stage 1–10

multivalued data 3–3

N
naming

column definitions 3–38

data elements 4–4

machine Profiles 9–4

mainframe routines 8–26

parallel job routines 8–21

parallel stage types 7–2

server job routines 8–3

table definition categories 3–38

table definitions 3–38

navigation in grids A–3

NLS (National Language Support)

definition 1–10

overview 1–5

NLS page

of the Stage Type dialog box 7–34

of the Table Definition dialog box 3–7

normalization

definition 1–10

null values 3–4, 3–45

definition 1–10

O
ODBC stages

definition 1–10

operator, definition 1–10

Oracle 7 Load stages, definition 1–10

Oracle stage 1–10

overview

of jobs 1–3

of NLS 1–5

of projects 1–3
Index-4
P
Packager Wizard, using 15–17

packaging

jobs 15–18

plug-ins 15–18

packaging plug-ins 7–35

parallel engine configuration file 11–1

parallel extender 1–11

parallel job

routines 8–20

parallel job stages

Data Set 1–7

File Set 1–8

Filter 1–8

Informix XPS 1–9

Lookup File 1–10

Make Subrecord 1–10

Modify 1–10

Oracle 1–10

Switch 1–12

Teradata 1–12

parallel job, definition 1–11

parallel jobs 1–3

Parallel page

of the Table Definition dialog box 3–10

Parallel SAS Data Set stage 1–11

parallel stages

DB2 1–8

parameter definitions

data element 3–45

key fields 3–44

length 3–45

scale factor 3–45

Parameters grid 3–44

Peek 1–11

plug-in stages

definition 1–11

plug-ins

BCPLoad 7–31

defining maps 7–34

definition 1–11

installing 7–31

Orabulk 7–31

packaging 7–35, 15–18

registering 7–32

using 7–35

printing

example of reports 13–6

from the Designer 13–2

landscape B–3

project tree 2–7
Manager Guide

Index
projects

overview 1–3

setting up 2–1

Promote Subrecord stage 1–11

R
registering plug-in definitions 7–32

Relational stages, definition 1–11

Relationships page

of the Table Definition dialog box 3–9

releasing a job 15–19

Remove duplicates stage 1–11

renaming

BASIC routines 8–15, 8–32

items in the Repository 2–10

replacing text in routine code 8–14

reporting

generating reports 13–2

Reporting Assistant dialog box 13–2

Reporting Tool 13–2

Usage Analysis 12–1

Reporting Assistant dialog box 13–2

Reporting Tool 13–2

Repository 1–2

definition 1–11

Repository items

copying 2–12

creating 2–10

deleting 2–11

editing 2–11

renaming 2–10

viewing 2–11

Routine dialog box 8–25

Code page 8–7

Creator page 8–5

Dependencies page 8–8

General page 8–4

using Find 8–13

using Replace 8–13

routine name 8–4

routines

parallel jobs 8–20

routines, writing 8–1

row selector button A–1

S
Sample stage 1–11

SAS stage 1–11

saving code in BASIC routines 8–11

saving job properties 5–20

selecting data to be imported 16–4, 16–8
Manager Guide
Sequential File stages

definition 1–11

Server 1–2

server jobs 1–3

definition 1–11

setting up a project 2–1

shared container

definition 1–11

shortcut menus

in DataStage Manager window 2–9

SMP 1–11

Sort stages, definition 1–11

source, definition 1–11

specifying

input parameters for stored

procedures 3–47

job dependencies 5–14

Split Subrecord stage 1–12

Split Vector stage 1–12

SQL

data precision 3–4, 3–45

data scale factor 3–4, 3–45

data type 3–4, 3–44

display characters 3–4, 3–45

stages

Aggregator 1–6

BCPLoad 1–6

Complex Flat File 1–7

Container 1–7

DB2 Load Ready Flat File 1–8

definition 1–12

Delimited Flat File 1–8

External Routine 1–8

Fixed-Width Flat File 1–8

FTP 1–9

Hashed File 1–9

Join 1–9

Lookup 1–9

ODBC 1–10

Oracle 7 load 1–10

plug-in 1–11

Relational 1–11

Sequential File 1–11

Sort 1–11

Transformer 1–6, 1–12

UniData 1–12

UniData 6 1–12

UniVerse 1–12

stored procedure definitions 3–42

creating 3–46

editing 3–48
Index-5

Index
importing 3–43

manually defining 3–46

result set 3–47

viewing 3–48

stored procedures 3–42

Switch stage 1–12

symmetric multiprocessing 1–11

T
Table Definition dialog box 3–2

for stored procedures 3–44

Format page 3–6

General page 3–2, 3–4, 3–6, 3–7

Layout page 3–11

NLS page 3–7

Parallel page 3–10

Parameters page 3–44

Relationships page 3–9

table definitions

creating 3–17

definition 1–12

editing 3–39

importing 3–13

manually entering 3–17

viewing 3–39

Tail stage 1–12

templates C–1

Teradata stage 1–12

terms and concepts 1–6

testing BASIC routines 8–12

The 12–2

title bar in DataStage Manager window 2–5

toolbars

Documentation Tool 13–4

Manager 2–7

transform functions

creating 8–10

transform functions, definition 1–12

Transformer Editor, definition 1–12

Transformer stages 1–6

definition 1–12

transforms, definition 1–12

custom 1–7

troubleshooting B–1

Documentation Tool B–2

U
Unicode 1–5

definition 1–12

UniData 6 stages

definition 1–12
Index-6
UniData stages

definition 1–12

troubleshooting B–1

UniVerse stages

definition 1–12

usage analysis 12–1

configuring warnings 12–6

DataStage Usage Analysis window 12–2

viewing report in HTML 12–8

visible relationships 12–6

using

DataStage Manager 2–9

Export option 15–7

Import option 15–2

job parameters 5–7

Packager Wizard 15–17

plug-ins 7–35

V
version number for a BASIC routine 8–5

version number for a container 6–2

version number for a job 5–2, 5–19

viewing

BASIC routine definitions 8–15

data elements 4–5

plug-in definitions 7–33

Repository items 2–11

stored procedure definitions 3–48

table definitions 3–39

W
Write Range Map stage 1–12

writing BASIC routines 8–1

X
XML documents 15–1
Manager Guide

	Manager Guide
	How to Use this Guide
	Organization of This Manual
	Documentation Conventions
	User Interface Conventions

	DataStage Documentation

	Contents
	Introduction
	About DataStage
	Client Components
	Server Components

	DataStage Projects
	DataStage Jobs
	DataStage NLS
	Character Set Maps and Locales

	DataStage Terms and Concepts

	DataStage Manager Overview
	Starting the Manager
	The DataStage Manager Window
	Title Bar
	Menu Bar
	Toolbar
	Project Tree
	Display Area
	Shortcut Menus

	Managing the DataStage Repository
	Creating Items in the Repository
	Renaming Items in the Repository
	Selecting Multiple Items
	Viewing or Editing Items in the Repository
	Deleting Items in the Repository
	Deleting a Category in the Repository
	Copying Items in the Repository
	Moving Items Between Categories
	Creating Empty Categories

	Customizing the Tools Menu
	DataStage Manager Options
	Exiting the DataStage Manager

	Managing Table Definitions
	Table Definition Properties
	The Table Definition Dialog Box
	Table Definition Dialog Box - General Page
	Table Definition Dialog Box - Columns Page
	Table Definition Dialog Box - Format Page
	Table Definition Dialog Box - NLS Page
	Table Definition Dialog Box - Relationships Page
	Table Definition Dialog Box - Parallel Page
	Table Definition Dialog Box - Layout Page
	Table Definition Dialog Box - Locator Page

	Importing a Table Definition
	Standard Data Sources
	CFD and DCLGen Files
	XML Documents
	MetaBrokers
	Assembler Source Files
	Web Service WSDL Definitions
	Stored Procedures

	Manually Entering a Table Definition
	Creating a Table Definition
	Entering Column Definitions
	Server Jobs
	Mainframe Jobs
	Parallel Jobs
	Field Level
	String Type
	Date Type
	Time Type
	Timestamp Type
	Integer Type
	Decimal Type
	Float Type
	Nullable
	Generator
	Vectors
	Subrecords
	Extended

	Loading Column Definitions

	Naming Columns and Table Definitions
	Viewing or Modifying a Table Definition
	Editing Column Definitions
	Deleting Column Definitions
	Finding Column Definitions
	Propagating Values

	Using the Data Browser

	Stored Procedure Definitions
	Importing a Stored Procedure Definition
	The Table Definition Dialog Box for Stored Procedures
	Manually Entering a Stored Procedure Definition
	Creating a Stored Procedure Definition
	Specifying Column Definitions for the Result Set
	Specifying Parameters
	Specifying NLS Mapping

	Viewing or Modifying a Stored Procedure Definition
	Editing Column or Parameter Definitions
	Deleting Column or Parameter Definitions

	Managing Data Elements
	Creating Data Elements
	Naming Data Elements

	Assigning Data Elements in Table Definitions
	Viewing or Editing Data Elements
	Built-In Data Elements

	Managing Jobs and Job Sequences
	Editing Job Properties
	Server Job and Parallel Job Properties
	Specifying Job Parameters
	Job Parameters
	Job Parameter Defaults
	Using Job Parameters in Server Jobs
	Using Job Parameters in Parallel Jobs
	Environment Variables

	Job Control Routines
	Specifying Job Dependencies
	Specifying Performance Enhancements
	Specifying Execution Page Options
	Generated OSH Page
	Specifying Parallel Job Defaults

	Mainframe Job Properties
	Specifying Mainframe Job Parameters
	Using Mainframe Job Parameters

	Specifying Mainframe Job Environment Properties
	Specifying Extension Variable Values
	Specifying Operational Meta Data

	Job Sequence Properties
	Using Extended Job View

	Managing Shared Containers
	Specifying Shared Container Parameters

	Managing Stages
	Custom Stages for Parallel Jobs
	Naming Parallel Stage Types
	Defining Custom Stages
	Defining Build Stages
	Defining Wrapped Stages
	Plug-In Stages
	Manually Registering a Plug-In Definition
	Viewing Plug-In Definition Details
	Specifying Character Set Mapping
	Removing a Registered Plug-In
	Packaging a Plug-In
	Using a Plug-In

	Managing Programming Components
	Components for Server Jobs
	Working with Server Routines
	Naming Server Routines
	The Server Routine Dialog Box
	Arguments Page
	Code Page
	Dependencies Page
	Creating a Routine
	Entering Code
	Saving Code
	Compiling Code
	Testing a Routine
	Using Find and Replace
	Replacing Text
	Viewing and Editing a Routine
	Copying a Routine
	Renaming a Routine

	Importing External ActiveX (OLE) Functions
	Custom Transforms

	Components for Parallel Jobs
	Working with Parallel Routines
	Naming Parallel Routines
	Creating a Routine

	Components for Mainframe Jobs
	Working with Mainframe Routines
	Naming Routines
	Creating a Routine
	Viewing and Editing a Routine
	Copying a Routine
	Renaming a Routine

	Mainframe Machine Profiles
	Naming Machine Profiles

	Managing IMS Databases and IMS Viewsets
	Importing IMS Definitions
	Viewing and Editing IMS Definitions
	IMS Database Editor
	IMS Viewset Editor

	The Parallel Engine Configuration File
	Configurations Editor
	Configuration Considerations
	Logical Processing Nodes
	Optimizing Parallelism
	Configuration Options for an SMP
	Example Configuration File for an SMP
	Configuration Options for an MPP System
	An Example of a Four-Node MPP System Configuration
	Configuration Options for an SMP Cluster
	An Example of an SMP Cluster Configuration
	Options for a Cluster with the Conductor Unconnected to the High-Speed Switch
	Diagram of a Cluster Environment

	Configuration Files
	The Default Path Name and the APT_CONFIG_FILE
	Syntax
	Node Names
	Options
	Node Pools and the Default Node Pool
	Disk and Scratch Disk Pools and Their Defaults
	Buffer Scratch Disk Pools

	The resource DB2 Option
	The resource INFORMIX Option
	The resource ORACLE option
	The SAS Resources
	Adding SAS Information to your Configuration File
	Example

	Sort Configuration
	Allocation of Resources
	Selective Configuration with Startup Scripts
	Hints and Tips

	Usage Analysis
	Using the Usage Analysis Tool
	The DataStage Usage Analysis Window
	Menu Bar
	Toolbar
	Shortcut Menu

	Visible Relationships
	Configuring Warnings
	Viewing the Report as HTML

	Reporting
	The Reporting Tool
	The Documentation Tool

	Managing Message Handlers
	The Message Handler Manager
	Message Handler File Format

	Importing, Exporting, and Packaging Jobs
	Using Import
	Using Import from the Command Line
	dsimport command
	dscmdimport command
	XML2DSX command
	DS_IMPORTDSX Command

	Importing from MetaStage

	Using Export
	Moving DataStage Projects and Jobs
	Generating an XML File
	Publishing to the Web

	Exporting Job Executables
	Using Export from the Command Line
	dsexport command
	dscmdexport command

	Export Error Log
	Exporting to MetaStage

	Using the Packager Wizard
	Releasing a Job

	Using MetaBrokers
	Importing Meta Data
	Exporting Meta Data

	Importing Web Service Routines
	Editing Grids
	Grids
	Grid Properties
	Navigating in the Grid
	Finding Rows in the Grid
	Editing in the Grid
	Editing the Grid Directly
	Adding Rows
	Deleting Rows
	Propagating Values

	Editing Column Definitions in a Table Definitions Dialog Box
	Editing Column Definitions in a Mainframe Stage Editor
	Editing Column Definitions in a Server Job Stage
	Editing Arguments in a Mainframe Routine Dialog Box
	Editing Column Definitions in a Parallel Job Stage

	Troubleshooting
	Cannot Start DataStage Clients
	Problems While Working with UniData
	Connecting to UniData Databases
	Importing UniData Meta Data
	Using the UniData Stage

	Problems with the Documentation Tool
	Installing the Documentation Tool
	Using Plug-In Reports

	Problems Running Jobs
	Server Job Compiles Successfully but Will Not Run
	Server Job from Previous DataStage Release Will Not Run

	Miscellaneous Problems
	Landscape Printing
	Browsing for Directories

	Usage Analysis HTML Template
	Template Structure
	Tokens
	General Tokens
	Report Tokens
	Source Set Tokens
	Used Set Tokens
	Columns Set Tokens

	Default Templates

	Index

