
Ascential DataStage

ODBC Enterprise Stage Reference Guide
Version 1.0

Part No. 00D-001ES10

December 2004

This document, and the software described or referenced in it, is confidential and proprietary to

Ascential Software Corporation ("Ascential"). They are provided under, and are subject to, the terms

and conditions of a license agreement between Ascential and the licensee, and may not be

transferred, disclosed, or otherwise provided to third parties, unless otherwise permitted by that

agreement. No portion of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of Ascential. The specifications and other

information contained in this document for some purposes may not be complete, current, or correct,

and are subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT

CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING

CAPACITY, PERFORMANCE, OR SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED

HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE

TO ANY LIABILITY OF ASCENTIAL WHATSOEVER. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you are acquiring this software on behalf

of the U.S. government, the Government shall have only "Restricted Rights" in the software and

related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19

(c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted

Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs.

© 2004 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®,

Enterprise Data Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®,

Application Integration, Simplified®, Ascential™, Ascential AuditStage™, Ascential DataStage™,

Ascential ProfileStage™, Ascential QualityStage™, Ascential Enterprise Integration Suite™, Ascential

Real-time Integration Services™, Ascential MetaStage™, and Ascential RTI™ are trademarks of

Ascential Software Corporation or its affiliates and may be registered in the United States or other

jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices

(LegalNotices.pdf) for more information.

Overview of the ODBC Enterprise Stage

Introduction

The ODBC Enterprise Stage Reference Guide gives a detailed description of the operators
underlying the DataStage Enterprise Edition ODBC stage. It is intended for users who are
familiar with the OSH language utilized by the DataStage parallel engine.

DataStage can share data with external data sources. This data can be accessed by the ODBC
stage operating in one of four modes:

• In read mode the stage reads records from an external data source table and places them
in an DataStage data set. The odbcread operator is used for this.

• In write mode the stage sets up a connection to an external data source and inserts records

into a table. The Stage takes a single input data set. The write mode determines how the
records of a data set are inserted into the table. The odbcwrite operator is used for this.

• In upsert mode the stage lets you insert data into an external data source table or update

an external data source table with data contained in a DataStage data set. You can match
records based on field names and then update or insert those records. The odbcupsert
operator is used for this.

• In lookup mode the stage lets you perform a join between an external data source table

and a DataStage data set, with the resulting data output as a DataStage data set. The
odbclookup operator is used for this.

Accessing External Data Source from DataStage

This section assumes that DataStage users have been configured to access external data source(s),
using the external data source configuration process.

! To access External data source from DataStage:

1. When Enterprise Edition is on a distributed DataStage Server and the parallel engines
shares the same ODBC settings:
The DataDirect branded ODBC drivers will be installed in the directory
$dshome/..//branded_odbc. The shared library path will be modified to include
$dshome/../branded_odbc/lib. The ODBCINI environment variable will be set to
$dshome/.odbc.ini

2. Start External data source.

3. Add $APT_ORCHHOME/branded_odbc to your PATH and

$APT_ORCHHOME/branded_odbc /lib to your LIBPATH, LD_LIBRARY_PATH, or

SHLIB_PATH. The ODBCINI environment variable must be set to the full path of the
odbc.ini file.

4. Should access the external data source using a valid user name and password.

National Language Support

DataStage’s National Language Support (NLS) makes it possible to process data in international
languages using Unicode character sets. NLS is built on IBM’s International Components for
Unicode (ICU).

The DataStage External data source stages support Unicode character data in schema, table, and
index names; in user names and passwords; column names; table and column aliases; SQL*Net
service names; SQL statements; and file-name and directory paths.

The ODBC Stage in Read Mode

Underlying the ODBC stage operating in read mode is the odbcread operator. The odbcread
operator sets up a connection to an external data source table, using an SQL query to request rows
(records) from the table, and outputs the result as a DataStage data set.

Data Flow Diagram

Properties

Table odbcread operator Properties

Property value
Number of input data sets 0
Number of output data sets 1
Input interface schema None
Output interface schema Determined by the SQL query
Transfer behavior None
Execution mode Sequential

Partitioning method Not applicable
Collection method Not applicable
Preserve-partitioning flag in output dataset Clear
Composite Stage no

ODBC Read

The odbcread operator performs basic reads from a data source. Since it relies on ODBC
interfaces to connect and to import data from a data source, it does not have the flexibility to
perform database reads in parallel. This Stage can only be run in a sequential mode. The options
are as follows:

Options Value

-data_source data_source_ name

Specify the data source to be used for all database connections. This option is
required.

-user user_ name

Specify the user name used to connect to the data source. This option may not
be required depending on the data source

-password password

Specify the password used to connect to the data source. This option may not
be required depending on the data source

-tablename table_name

Specify the table to be read from. May be fully qualified. The -table option is
mutually exclusive with the -query option. This option has 2 suboptions:

-filter where_predicate

Optionally specify the rows of the table to exclude from the read operation.
This predicate will be appended to the where clause of the SQL statement to be
executed.

-selectlist select_predicate

Optionally specify the list of column names that will appear in the select clause
of the SQL statement to be executed.

-open open_command

Optionally specify an SQL statement to be executed before the insert array is
processed. The statements are executed only once on the conductor node.

-close close_command

Optionally specify an SQL statement to be executed after the insert array is
processed. You cannot commit work using this option. The statements are
executed only once on the conductor node.

-query sql_query

Specify an SQL query to read from one or more tables. The -query option is
mutually exclusive with the -table option.

-fetcharraysize n

 Specify the number of rows to retrieve during each fetch operation Default is1.

-isolation_level read_uncommited | read_commited | repeatable_read | serializable

Optionally specify the isolation level for accessing data. The default isolation
level is decided by the database or possibly specified in the data source.

-db_cs code_page

Optionally specify the ICU code page which represents the database character
set in use. The default is ISO-8859-1. This option has the following sub
option:

-use_strings

 If this option is set, strings (instead of ustrings) will be generated in the

 DataStage schema.

Operator Action

Here are the chief characteristics of the odbcread operator:

• You can direct it to run in specific node pools.

• It translates the query’s result set (a two-dimensional array) row by row to a DataStage
data set.

• Its output is a DataStage data set that you can use as input to a subsequent DataStage

Stage.

• Its translation includes the conversion of external data source datatypes to DataStage
datatypes.

• The size of external data source rows can be greater than that of DataStage records.

• The Stage specifies either an external data source table to read or to perform an SQL

query.

• It optionally specifies commands to be run before the read operation is performed and

after it has completed the operation.

• You can perform a join operation between DataStage dataset and external data source
(there may be one or more tables) data.

Where the odbcread Operator Runs

odbcread operator runs sequentially.

Column Name Conversion

An External data source result set is defined by a collection of rows and columns. The odbcread
operator translates the query’s result set (a two-dimensional array) to a DataStage data set. The
External data source query result set is converted to a DataStage data set in the following way:

• The Schema of an external data source result set should match the schema of a DataStage
data set.

• The columns of an external data source row should correspond to the fields of a

DataStage record; the name and datatype of an external data source column should
correspond to the name and datatype of a DataStage field.

• Names are translated exactly except when the external data source column name contains

a character that DataStage does not support. In that case, two underscored characters
replace the unsupported character.

• Both external data source columns and DataStage fields support nulls, and a null

contained in an external data source column is stored as keyword NULL in the
corresponding DataStage field.

Datatype Conversion

The odbc read operator converts external data source datatypes to OSH datatypes, as in
the following table:

Mapping of ODBC datatypes to OSH datatypes

ODBC Datatype DataStage Datatype
SQL_CHAR string[n]
SQL_VARCHAR string[max=n]
SQL_WCHAR ustring(n)
SQL_WVARCHAR ustring(max=n)
SQL_DECIMAL decimal(p,s)
SQL_NUMERIC decimal(p,s)

SQL_SMALLINT in16
SQL_INTEGER int32
SQL_REAL decimal(p,s)
SQL_FLOAT decimal(p,s)
SQL_DOUBLE decimal(p,s)
SQL_BIT int8 (0 or 1)
SQL_TINYINT int8
SQL_BIGINT int64
SQL_BINARY raw(n)
SQL_VARBINARY raw(max=n)
SQL_TYPE_DATE[6] date
SQL_TYPE_TIME[6] time[p]
SQL_TYPE_TIMESTAMP[6] timestamp[p]
SQL_GUID string[36]

Datatypes that are not listed in the table above generate an error.

External data source Record Size

The size of a DataStage record is limited to 32 KB. However, external data source records can be
larger than 32 KB. If you attempt to read a record larger than 32 KB, DataStage returns an error
and terminates the application.

Targeting the Read Operation

When reading an external data source table, you can either specify the table name that allows
DataStage to generate a default query that reads the total records of the table, or you can
explicitly specify the query.

Specifying the External data source Table Name

If you choose the -table option, DataStage issues the following SQL SELECT
statement to read the table:

 select [selectlist]
 from table_name
 and (filter)];

You can specify optional parameters to narrow the read operation. They are as follows:

• The selectlist specifies the columns of the table to be read; by default, DataStage reads all
columns.

• The filter specifies the rows of the table to exclude from the read operation; DataStage

reads all rows by default.

You can optionally specify an -open and -close option command. These commands are executed
by odbc on the external data source before the table is opened and after it is closed.

Specifying an SQL SELECT Statement

If you choose the -query option, you pass an SQL query to the Stage. The query operates (select)
on the table as it is read into DataStage. The SQL statement can contain joins, views, database
links, synonyms, and so on. However, the following restrictions apply to -query:

• The -query may not contain bind variables.

• If you want to include a filter or select list, you must specify them as part of the query.

• The query runs sequentially. .

• You can specify optional open and close commands. External data source runs these
commands immediately before reading the data from the table and after reading the data
from the table.

Join Operations

You can perform a join operation between DataStage data sets and external data source. First use
the ODBC Stage and then either the lookup Stage or a join Stage. See the Parallel Job
Developer’s Guide for information about these stages.

Syntax and Options

The syntax for the odbcread operator follows. The optional values you supply are shown in
italics. When your value contains a space or a tab character, you must enclose it in single quotes.

odbcread
-query sql_query
-data source dsn1
-user user1
-password password1
-tablename table_name [-filter filter] [-selectlist list]
[-close close_command]
[-db_cs character_set]
 [-open open_command]
-use_strings xyz
-array_size 5
-isolation_level read_committed

You must specify either the -query or -table option. You must also specify the –data_source,
user and password.

Example 1: Reading an External data source Table and
Modifying a Field Name

The following figure shows an external data source table used as input to a DataStage Stage:

The External data source table contains three columns; whose datatypes the operator converts as
follows:

• itemNum of type NUMBER[3,0] is converted to int32

• price of type NUMBER[6,2] is converted to decimal[6,2]

• storeID of type NUMBER[2,0] is converted to int32

The schema of the DataStage data set created from the table is also shown in this figure. Note that
the DataStage field names are the same as the column names of the External data source table.

However, the Stage to which the data set is passed has an input interface schema containing the
32-bit integer field field1, while the data set created from the External data source table does not
contain a field of the same name. For this reason, the modify Stage must be placed between
odbcread and sampleStage to translate the name of the field, itemNum, to the name field1
Following is the osh syntax for this example:

$ osh "odbcread -tablename 'table_1'
-data_source data source1
-user user1
-password user1
| modify '$modifySpec' | ... "
$ modifySpec="field1 = itemNum;”
modify
('field1 = itemNum,;')

The ODBC Stage in Write Mode

The ODBC Stage in write mode uses the odbcwrite operator. The operator sets up a connection to
an external data source and inserts records into a table. The operator takes a single input data set.
The write mode of the operator determines how the records of a data set are inserted into the
table.

Writing to a Multibyte Database

Specifying chars and varchars

Specify chars and varchars in bytes, with two bytes for each character. The following example
specifies 10 characters:

create table orch_data(col_a varchar(20));

Specifying nchar and nvarchar2 Column Size

Specify nchar and nvarchar2 columns in characters. For example, this example specifies 10
characters:

create table orch_data(col_a nvarchar2(10));

Table odbcwrite operator Properties

Property Value

Number of input data sets 1
Number of output data sets 0
Input interface schema Derived from the input data set
Output interface schema None
Transfer behavior None
Execution mode Sequential default or parallel
Partitioning method Not applicable
Collection method Any
Preserve-partitioning flag Default clear

Composite Stage No

Stage Action

Here are the chief characteristics of the odbcwrite operator:

• Translation includes the conversion of DataStage datatypes to external data source
datatypes.

• The Stage appends records to an existing table, unless you set another mode of writing

• When you write to an existing table, the input data set schema must be compatible with

the table’s schema.

• Each instance of a parallel write operator running on a processing node writes its partition
of the data set to the external data source table. You can optionally specify external data
source commands to be parsed and executed on all processing nodes before the write
operation runs or after it is completed.

.
Where the odbcwrite Operator Runs

The default execution mode of the odbcwrite operator is parallel. The number of processing
nodes is based on the configuration file by default. However, if the environment variable;

APT _CONFIG_FILE is set, the number of players is set to the number of nodes.

 To direct the Stage to run sequentially:

 Specify the [seq] framework argument.

You can optionally set the resource pool or a single node on which the Stage runs.

Data Conventions on Write Operations to External data source

External data source columns are named identically as DataStage fields, with these restrictions:

• External data source column names are limited to 30 characters. If an DataStage field
name is longer, you can do one of the following:

– Choose the -truncate or truncate_length options to configure the operator to truncate
DataStage field names to the max., length as the data source column name. If you choose
truncate_length then you can specify the number of characters to be truncated, and they
should be less than the maximum length the data source supports

– Use the modify Stage to modify the DataStage field name.

• A DataStage data set written to an external data source may not contain fields of certain
types. If it does, an error occurs and the corresponding step terminates. However,
DataStage offers Enterprise Edition that modifies certain datatypes to those that the

external data source accepts, as shown in the table that follows.

Datatype Conversion

Mapping of OSH datatypes to ODBC datatypes

DataStage Datatype ODBC Datatype
string[n] SQL_CHAR
string[max=n] SQL_VARCHAR
ustring(n) SQL_WCHAR
ustring(max=n) SQL_WVARCHAR
decimal(p,s) SQL_DECIMAL
decimal(p,s) SQL_NUMERIC
in16 SQL_SMALLINT
int32 SQL_INTEGER
decimal(p,s) SQL_REAL
decimal(p,s) SQL_FLOAT
decimal(p,s) SQL_DOUBLE
int8 (0 or 1) SQL_BIT
int8 SQL_TINYINT
int64 SQL_BIGINT
raw(n) SQL_BINARY
raw(max=n) SQL_VARBINARY
date SQL_TYPE_DATE[6]

time[p] SQL_TYPE_TIME[6]

timestamp[p] SQL_TYPE_TIMESTAMP[6]

string[36] SQL_GUID

Write Modes

The write mode of the operator determines how the records of the data set are inserted into the
destination table. The write mode can have one of the following values:

• append: This is the default mode. The table must exist and the record schema of the data
set must be compatible with the table. The write operator appends new rows to the table.
The schema of the existing table determines the input interface of the Stage.

• create: The operator creates a new table. If a table exists with the same name as the one

being created, the step that contains the operator terminates with an error. The schema of
the DataStage data set determines the schema of the new table. The table is created with
simple default properties. To create a table that is partitioned, indexed, in a non-default
table space, or in some other non-standard way, you can use the -createstmt option with
your own create table statement.

• replace: The operator drops the existing table and creates a new one in its place. If a table

exists with the same name as the one you want to create, it is overwritten. The schema of
the DataStage data set determines the schema of the new table.

• truncate: The operator retains the table attributes but discards existing records and

appends new ones. The schema of the existing table determines the input interface of the
Stage. Each mode requires the specific user privileges shown in the table below:

Note: If a previous write operation failed, you can retry, specifying the replace write mode to
delete any information in the output table that may have been written by the previous attempt to
run your program.

Table Required External data source Privileges for External data source Interface
Write

Write Mode Required Privileges
Append

INSERT on existing table

Create TABLE CREATE

Replace INSERT and TABLE CREATE on existing table

Truncate INSERT on existing table

Matched and Unmatched Fields

The schema of the External data source table determines the operator’s interface schema. Once
the operator determines this; it applies the following rules to determine which data set fields are
written to the table:

1. Fields of the input data set are matched by name with fields in the input interface schema.
DataStage performs default datatype conversions to match the input data set fields with
the input interface schema.

2. You can also use the modify Stage to perform explicit datatype conversions.

3. If the input data set contains fields that do not have matching components in the table, the

Stage generates an error and terminates the step.

4. This rule means that DataStage does not add new columns to an existing table if the data
set contains fields that are not defined in the table. Note that you can user the odbcwrite -
drop option to drop extra fields from the data set. Columns in the external data source
table that do not have corresponding fields in the input data set are set to their default
value, if one is specified in the external data source table. If no default value is defined
for the external data source column and it supports nulls, it is set to null. Otherwise,
DataStage issues an error and terminates the step.

5. DataStage data sets support nullable fields. If you write a data set to an existing table and

a field contains a null, the External data source column must also support nulls. If not,
DataStage issues an error message and terminates the step. However, you can use the
modify Stage to convert a null in an input field to another value.

Syntax and Options

Syntax for the odbcwrite operator is given below. Optional values you supply are shown in
italics. When your value contains a space or a tab character, you must enclose it in single quotes.
Exactly one occurrence of the -dboptions option and the -table option are required.

odbcwrite
-tablename table_name
-dboptions
'{user = username, password = password}'
|
'{user = \@file_name\}'
[-close close_command]
 [-createstmt create_statement]
[-drop]
[-db_cs character_set]

 ODBCWRITE operator options

The odbcwrite operator performs basic inserts (export) to a data source. This
Stage will be parallel by default. The options are as follows:

Options Value

-data_source data_source_ name

Specify the data source to be used for all database connections. This option is
required.

-user user_ name

Specify the user name used to connect to the data source. This option may not
be required depending on the data source

-password password

Specify the password used to connect to the data source. This option may not
be required depending on the data source

-tablename table_name

Specify the table to write to. May be fully qualified.
-mode append | create | replace | truncate

 Specify the mode for the write Stage as one of the following:

append: new records are appended into an existing table.

create: the operator creates a new table. If a table exists with the same name as
the one you want to create, the step that contains the operator terminates with
an error. The schema of the new table is determined by the schema of the
DataStage data set. The table is created with simple default properties. To
create a table that is partitioned, indexed, in a non-default table space, or in
some other non-standard way, you can use the -createstmt option with your
own create table statement.

replace: The operator drops the existing table and creates a new one in its
place. The schema of the DataStage data set determines the schema of the new
table.

truncate: All records from an existing table are deleted before loading new
records.

-createstmt create_statement

Optionally specify the create statement to be used for creating the table when –
mode create is specified.

-drop

If this option is set unmatched fields of the DataStage the data set will be
dropped. An unmatched field is a field for which there is no identically named
field in the data source table.

-truncate

If this option is set column names are truncated to the maximum size allowed
by the ODBC driver.

-truncateLength n

 Specify the length to truncate column names to.

-open open_command

Optionally specify an SQL statement to be executed before the insert array is
processed. The statements are executed only once on the conductor node.

-close close_command

Optionally specify an SQL statement to be executed after the insert array is
processed. You cannot commit work using this option. The statements are
executed only once on the conductor node.

 -insertarraysize n

Optionally specify the size of the insert array. The default size is 2000 records.

-rowCommitInterval n

Optionally specify the number of records that should be committed before
starting a new transaction. This option can only be specified if arraysize = 1.

Otherwise rowCommitInterval = arraysize. This is because of the rollback
logic/retry logic that occurs when an array execute fails.

-isolation_level read_uncommited | read_commited | repeatable_read | serializable

Optionally specify the isolation level for accessing data. The default isolation
level is decided by the database or possibly specified in the data source.

-db_cs code page name

Optionally specify the ICU code page which represents the database character
set in use. The default is ISO-8859-1.

Example 1: Writing to an Existing External data source
Table

When an existing External data source table is written to:

• The column names and datatypes of the External data source table determine the input
interface schema of the write Stage.

• This input interface schema then determines the fields of the input data set that is written

to the table.

For example, the following figure shows the odbcwrite operator writing to an existing table:

The record schema of the DataStage data set and the row schema of the External data source table
correspond to one another, and field and column names are identical. Following are the input
DataStage record schema and output External data source row schema:

Input DataStage Record Output External data source Table

itemNum:int32; price NUMBER[10,0]

price:decimal[3,2];; itemNum NUMBER[6,2]
storeID:int16 storeID NUMBER[5,0]

Here is the osh syntax for this example:

$ osh " ... op1 | odbcwrite -tablename 'table_2'
-data_source data sourcename -user = user101 -password passwrd

Note that since the write mode defaults to append, the mode option does not appear in the
command.
Example 2: Creating an External data source Table

To create a table, specify either a create or replace write mode. The next figure is a conceptual
diagram of the create operation:

Following is the osh syntax for this example:

$ osh "... odbcwrite -table table_2
-mode create
-dboptions {'user = user101, password = userPword'} ..

The odbcwrite operator creates the table, givin
names as the fields of the input DataStage dat
external data source datatypes.

Example 3: Writing to an E
Using the modify operator

The modify operator allows you to drop unwant
the name and/or datatype of a field of the input da
Stage.

input data set schema:
age:int16;
zip:string[5];
income:dloat;
ODBCwrite
(mode = create)

age
(number[5,0]) zip
 (char[5]) income
 (number)

ODBC table
."

g the external data source columns the same
a set and converts the DataStage datatypes to

xternal data source Table

ed fields from the write operation and translate
ta set to match the input interface schema of the

The next example uses the modify operator:

In this example, the modify operator is used to:

itemNum price storeID
(number[10,0]) (number[5,0]) (number[6,2])

column name

ODBC table

ODBCwrite

itemNum:int32;
price:decimal[6,2];

storeID:int16;

modify

('itemNum=skewNum,
storeID=store;
drop rating')

data set schema (before modify):
skewNum:int32;
price:sfloat;
store:int8;
rating:string[4];

• Translate field names of the input data set to the names of corresponding fields of the

Stage’s input interface schema, that is, skewNum to itemNum and store to storeID.

• Drop the unmatched rating field, so that no error occurs.

Note that DataStage performs automatic type conversion of store, promoting its int8 datatype in
the input data set to int16 in the odbcwrite input interface.

Here is the osh syntax for this example:

$ modifySpec="itemNum = skewNum, storeID = store;drop rating"
$ osh "... op1 | modify '$modifySpec'
| odbcwrite -table table_2
-dboptions {'user = user101, password =
userPword'}"

Other Features

Quoted Identifiers

All operators that accept SQL statements, as arguments will support quoted identifiers in those
arguments. The quotes should be escaped with ‘\’ c character

Case Sensitive Column Identifiers
Because of limitations in the parallel engine, case sensitive column identifiers cannot be
supported in this release. This support will be added in a future release.

Large Objects (BLOB, CLOB, etc.)
Because of limitations in the parallel engine, large objects cannot be supported in this release.

Stored Procedures
The ODBC stage will not support stored procedures. The user should use the Stored Procedure
Stage for stored procedure support.

Graphical SQL Builder
The SQL builder will not be available for ODBC in this release. This support will be added in
the ‘Hawk’ release or sooner.

Transaction Rollback
Because it is not possible for native transactions to span multiple processes transaction, rollback
will not be possible in this release.

Unit of Work
The unit of work Stage will not be modified to support ODBC in this release.

The ODBC Stage in Upsert Mode

The ODBC stage in upsert mode uses the odbcupsert operator. The operator inserts and
updates external data source table records with data contained in a DataStage data set. You
provide the insert and update SQL statements using the -insert and -update options. By default,
odbcupsert uses external data source host-array processing to optimize the performance of
inserting records.

odbcupsert

This operator receives a single data set as input and writes its output to an external data source
table. You can request an optional output data set that contains the records that fail to be inserted
or updated.

Data Flow Diagram

input data set

output Oracle tableoptional reject dataset

Odbc upsert

Property Value

Number of input data sets 1

Number of output data sets by default None; 1 when you select the -reject option

Input interface schema Derived from your insert and update statements

Transfer behavior Rejected update records are transferred to an output

data set when you select the -reject option

Execution mode Parallel by default, or sequential

Partitioning method Same

You can override this partitioning method;
however, a partitioning method of entire cannot be
used.

Collection method Any

Combinable Stage

Yes

Operator Action

Here are the main characteristics of odbcupsert

• If an -insert statement is included, the insert is executed first. Any records that fail to be
inserted because of a unique-constraint violation are then used in the execution of the
update statement.

• DataStage uses host-array processing by default to enhance the performance of insert

array processing. Each insert array is executed with a single SQL statement. Update
records are processed individually.

• Use the -insertArraySize option to specify the size of the insert array. For example:

 -insertArraySize 250

• The default length of the insert array is 500. To direct DataStage to process your insert

statements individually, set the insert array size to 1:
 -insertArraySize 1

• The record fields can be of variable-length strings. You can either specify a maximum

length or use the default maximum length of 80 characters.

 This example specifies a maximum length of 50 characters:

 record(field1:string[max=50])

 The maximum length in this example is by default 80 characters:

 record(field1:string)

• When an insert statement is included and host array processing is specified, a DataStage
update field must also be a DataStage insert field.

• The odbcupsert operator converts all values to strings before passing them to the

external data source. The following OSH datatypes are supported:

– int8, uint8, int16, uint16, int32, uint32, int64, and uint64
– dfloat and sfloat
– decimal
– strings of fixed and variable length
– timestamp
– date

• By default, odbcupsert produces no output data set. By using the -reject option, you can

specify an optional output data set containing the records that fail to be inserted or
updated. It’s syntax is:

-reject filename

Syntax and Options

The syntax for odbcupsert is shown below. Optional values are shown in italics. When your
value contains a space or a tab character, you must enclose it in single quotes.

odbcupsert
data_source dsn -user username -password password

-update update_statement
 [-insert insert_statement]
[-insertArraySize n]
[-reject]

Exactly one occurrence of the -update is required. All others are optional.

Specify an ICU character set to map between External data source char and varchar data and
DataStage ustring data, and to map SQL statements for output to external data source. The
default character set is UTF-8, which is compatible with the osh jobs that contain 7-bit US-ASCII
data.

Odbcupsert Operator options

Options for the odbcupsert operator are as follows:

Options Value

-data_source data_source_ name

Specify the data source to be used for all database connections. This option is
required.

-user user_ name

Specify the user name used to connect to the data source. This option may not
be required depending on the data source

-password password

Specify the password used to connect to the data source. This option may not
be required depending on the data source

Statement options

The user must specify at least one of the following options and no more than
two. An error is generated if the user does not specify a statement option or
specifies more than two.

 -update update_statement

 Optionally specify the update or delete statement to be executed.

-insert insert_statement

Optionally specify the insert statement to be executed.

-delete delete_statement

Optionally specify the delete statement to be executed.

-mode insert_update | update_insert | delete_insert

Specify the upsert mode to be used when two statement options are specified.
If only one statement option is specified, the upsert mode will be ignored.

insert_update – The insert statement is executed first. If the insert fails due to a
duplicate key violation (i.e. record exists), the update statement is executed.
This is the default upsert mode.

update_insert – The update statement is executed first. If the update fails
because the record doesn’t exist, the insert statement is executed.

delete_insert – The delete statement is executed first. Then the insert statement
is executed.

-reject
If this option is set, records that fail to be updated or inserted are written to a
reject data set. You must designate an output data set for this purpose. If this
option is not specified, an error is generated if records fail to update or insert.

-open open_command

Optionally specify an SQL statement to be executed before the insert array is
processed. The statements are executed only once on the conductor node.

-close close_command

Optionally specify an SQL statement to be executed after the insert array is
processed. You cannot commit work using this option. The statements are
executed only once on the conductor node.

-insertarraysize n

Optionally specify the size of the insert/update array. The default size is 2000
records.

-rowCommitInterval n

Optionally specify the number of records that should be committed before
starting a new transaction. This option can only be specified if arraysize = 1.
Otherwise rowCommitInterval = arraysize. This is because of the rollback
logic/retry logic that occurs when an array execution fails.

Example

This example updates an Oracle table that has two columns: acct_id and acct_balance, where
acct_id is the primary key. Two of the records cannot be inserted because of unique key
constraints; instead, they are used to update existing records. One record is transferred to the
reject dataset because its acct_id generates an -error

Summarized below are the states of the Oracle table before the dataflow is run, the contents of the
input file, and the action DataStage performs for each record in the input file.

Table before dataflow
Acct_id acct_balance

Input file contents DataStage action

073587 45.64 873092 67.23 Update

873092 2001.89
865544 8569.23

Insert

675066 3523.62 566678 2008.56 Update

566678 89.72 678888 7888.23 Insert

 073587 82.56 Update

 995666 75.72 Insert

osh Syntax

$ osh "import -schema record(acct_id:string[6]; acct_balance:dfloat;)

-file input.txt |
hash -key acct_id |
tsort -key acct_id |

odbcupsert -data_source dsn -user apt -password test
-insert 'insert into accounts

values(DATASTAGE.acct_id,
DATASTAGE.acct_balance)'

-update 'update accounts
set acct_balance = DATASTAGE.acct_balance
where acct_id = DATASTAGE.acct_id'

-reject '/user/home/reject/reject.ds'"

Table after dataflow

acct_id acct_balance
073587 82.56
873092 67.23
675066 3523.62
566678 2008.56
865544 8569.23
678888 7888.23
995666 75.72

The ODBC Stage in lookup Mode

The ODBC Stage in lookup mode uses the odbclookup operator. Using the stage in this mode,
you can perform a join between one or more external data source tables and a DataStage data set.
The resulting output data is a DataStage data set containing both DataStage and external data
source data.

This join is performed by specifying either an SQL SELECT statement, or by specifying one or
more External data source tables and one or more key fields on which to do the lookup.

This operator is particularly useful for sparse lookups, that is, where the DataStage data set you
are matching is much smaller than the external data source table. If you expect to match 90% of
your data, using the odbcread and lookup operaors is probably more efficient.

Because odbclookup can do lookups against more than one external data source table, it is useful
for joining multiple external data source tables in one query.

The -statement option command corresponds to an SQL statement of this form:

select a,b,c from data.testtbl

where
DataStage.b = data.testtbl.c
and
DataStage.name = "Smith"

The operator replaces each DataStage.fieldname with a field value, submits the statement
containing the value to the external data source, and outputs a combination of external data source
and DataStage data.

Alternatively, you can use the -key/-table options interface to specify one or more key fields and
one or more External data source tables. The following osh options specify two keys and a single
table:

-key a -key b -table data.testtbl

You get the same result as you would by specifying:

select * from data.testtbl
where
DataStage.a = data.testtbl.a
and
DataStage.b = data.testtbl.b

The resulting DataStage output data set includes the DataStage records and the corresponding
rows from each referenced external data source table. When an external data source table has a
column name that is the same as a DataStage data set field name, the External data source column
is renamed using the following syntax:
APT_integer_fieldname

An example is APT_0_lname. The integer component is incremented when duplicate names are
encountered in additional tables.

Note If the External data source table is not indexed on the lookup keys, the performance of this

Stage is likely to be poor.

Data Flow Diagram

Properties

Table odbclookup operator Properties

Property value

Number of input data sets 1

Number of output data sets 1; 2 if you include the -ifNotFound reject option

Input interface schema determined by the query

Output interface schema Determined by the sql query

Transfer behavior transfers all fields from input to output

Execution mode sequential or parallel (default)

Partitioning method Not applicable

Collection method Not applicable

Preserve-partitioning flag in output dataset Clear

Composite Stage no

Syntax and Options

The syntax for the odbclookup operator is given below. Optional values are shown in italics.
When your value contains a space or a tab character, you must enclose it in single quotes.

odbclookup
-data_source data sourcename –user username –password passwrd
-tablename table_name -key field [-key field ...]
[-tablename table_name -key field [-key field ...]]
|

You must specify either the -query option or one or more -table options with one or more -key
fields.

odbclookup operator Options

The odbclookup operator is parallel by default. The options are as follows:

Options Value

-data_source data_source_ name

Specify the data source to be used for all database connections. This option is
required.

-user user_ name

Specify the user name used to connect to the data source. This option may not
be required depending on the data source

-password password

Specify the password used to connect to the data source. This option may not
be required depending on the data source

-tablename table_name

Specify a table and key fields to be used to generate a lookup query. This
option is mutually exclusive with the –query option. The -table option has 3
suboptions:

-filter where_predicate

Specify the rows of the table to exclude from the read operation. This
predicate will be appended to the where clause of the SQL statement to be
executed.

-selectlist select_predicate

Specify the list of column names that will appear in the select clause of the
SQL statement to be executed.

-key field

Specify a lookup key. A lookup key is a field in the table that will be used to
join against a field of the same name in the DataStage dataset. The –key option
can be specified more than once to specify more than one key field.

-ifNotFound fail| drop | reject | continue

Specify an action to be taken when a lookup fails. Can be one of the following:

fail: stop job execution

drop: drop failed record from the output dataset

reject: put records that are not found into a reject data set. You must designate
an output dataset for this option

continue: leave all records in the output dataset (outer join)

-query sql_query

Specify a lookup query to be executed. This option is mutually exclusive with
the –table option

-open open_command

Optionally specify an SQL statement to be executed before the insert array is
processed. The statements are executed only once on the conductor node.

-close close_command

Optionally specify an SQL statement to be executed after the insert
array is processed. You cannot commit work using this option. The statement is
executed only once on the conductor node.

-fetcharraysize n

Specify the number of rows to retrieve during each fetch operation. Default is
1.

-db_cs code page name

Optionally specify the ICU code page, which represents the database character
set in use. The default is ISO-8859-1. This option has the following sub
option:

 -use_strings

If this option is set, strings (instead of ustrings) will be generated in
the DataStage schema.

Example

Suppose you want to connect to the APT81 server as user user101, with the password test. You
want to perform a lookup between a DataStage data set and a table called target, on the key fields
lname, fname, and DOB. You can configure odbclookup in either of two ways to accomplish
this.

Here is the osh command using the -table and -key options:
$ osh " odbclookup - }

-key lname -key fname -key DOB
< data1.ds > data2.ds "

Here is the equivalent osh command using the -query option:

$ osh " odbclookup
-query 'select * from target
where lname = DataStage.lname
and fname = DataStage.fname
and DOB = DataStage.DOB'
< data1.ds > data2.ds "

DataStage prints the lname, fname, and DOB column names and values from the DataStage input
dataset and also the lname, fname, and DOB column names and values from the external data
source table.

If a column name in the external data source table has the same name as a DataStage output data
set schema fieldname, the printed output shows the column in the external data source table
renamed using this format:

APT_integer_fieldname

For example, lname may be renamed to APT_0_lname.

	Other Features
	Quoted Identifiers
	Case Sensitive Column Identifiers
	Large Objects (BLOB, CLOB, etc.)
	Stored Procedures
	Graphical SQL Builder
	Transaction Rollback
	Unit of Work

