
Ascential DataStage
for Ascential DataStage™ Enterprise Edition
Parallel Job Developer’s Guide
Version 7.5.1
Part No. 00D-023DS751

December 2004

his document, and the software described or referenced in it, are confidential and proprietary to Ascential Software

Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a license

agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise provided to

third parties, unless otherwise permitted by that agreement. No portion of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of Ascential. The specifications and other

information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

This product or the use thereof may be covered by or is licensed under one or more of the following issued

patents: US6604110, US5727158, US5909681, US5995980, US6272449, US6289474, US6311265, US6330008,

US6347310, US6415286; Australian Patent No. 704678; Canadian Patent No. 2205660; European Patent No. 799450;

Japanese Patent No. 11500247.

© 2005 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise Data

Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration, Simplified®,

Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential QualityStage™,

Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential MetaStage™, and

Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be registered in the

United States or other jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices (legalnotices.pdf) for

more information.

legalnotices.pdf

How to Use this Guide

This guide describes features of the DataStage® Manager and

DataStage Designer. It is intended for application developers and

system administrators who want to use DataStage to design and

develop data warehousing applications using parallel jobs.

If you are new to DataStage, you should read the DataStage Designer

Guide and the DataStage Manager Guide. These provide general

descriptions of the DataStage Manager and DataStage Designer, and

give you enough information to get you up and running.

This manual contains more specific information and is intended to be

used as a reference guide. It gives detailed information about parallel

job design and stage editors. For more advanced information, see

Parallel Job Advanced Developer’s Guide.

To find particular topics you can:

Use the Guide’s contents list (at the beginning of the Guide).

Use the Guide’s index (at the end of the Guide).

Use the Adobe Acrobat Reader bookmarks.

Use the Adobe Acrobat Reader search facility (select Edit ➤
Search).

The guide contains links both to other topics within the guide, and to

other guides in the DataStage manual set. The links are shown in blue.

Note that, if you follow a link to another manual, you will jump to that

manual and lose your place in this manual. Such links are shown in

italics.

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, keywords,
and options that must be input exactly as shown. In text, bold
indicates keys to press, function names, and menu selections.
Parallel Job Developer’s Guide iii

Documentation Conventions How to Use this Guide
The following conventions are also used:

– Syntax definitions and examples are indented for ease in
reading.

All punctuation marks included in the syntax—for example,
commas, parentheses, or quotation marks—are required unless
otherwise indicated.

Syntax lines that do not fit on one line in this manual are
continued on subsequent lines. The continuation lines are
indented. When entering syntax, type the entire syntax entry,
including the continuation lines, on the same input line.

UPPERCASE In syntax, uppercase indicates BASIC statements and functions
and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and pathnames.

Plain In text, plain indicates Windows commands and options, file
names, and path names.

Lucida
Typewriter

The Lucida Typewriter font indicates examples of source code
and system output.

Lucida
Typewriter

In examples, Lucida Typewriter bold indicates characters that
the user types or keys the user presses (for example,
<Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu commands indicates you should
choose each command in sequence. For example, “Choose File
➤ Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

This line
➥ continues

The continuation character is used in source code examples to
indicate a line that is too long to fit on the page, but must be
entered as a single line on screen.

Convention Usage
iv Parallel Job Developer’s Guide

How to Use this Guide DataStage Documentation
User Interface Conventions
The following picture of a typical DataStage dialog box illustrates the

terminology used in describing user interface elements:

The DataStage user interface makes extensive use of tabbed pages,

sometimes nesting them to enable you to reach the controls you need

from within a single dialog box. At the top level, these are called

“pages”, at the inner level these are called “tabs”. In the example

above, we are looking at the General tab of the Inputs page. When

using context sensitive online help you will find that each page has a

separate help topic, but each tab uses the help topic for the parent

page. You can jump to the help pages for the separate tabs from

within the online help.

DataStage Documentation
DataStage documentation includes the following:

DataStage Enterprise Edition: Parallel Job Developer’s
Guide: This guide describes the tools that are used in building a
parallel job, and it supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Advanced
Developer’s Guide: This guide gives more specialized
information about parallel job design.

Option
Button

Button

Check
Box

Browse
Button

Drop

List
Down

The Inputs Page

The

Tab
General

Field
Parallel Job Developer’s Guide v

DataStage Documentation How to Use this Guide
DataStage Install and Upgrade Guide: This guide describes
how to install DataStage on Windows and UNIX systems, and
how to upgrade existing installations.

DataStage Server: Server Job Developer’s Guide: This guide
describes the tools that are used in building a server job, and it
supplies programmer’s reference information.

DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide: This guide describes the tools that are used
in building a mainframe job, and it supplies programmer’s
reference information.

DataStage Designer Guide: This guide describes the DataStage
Manager and Designer, and gives a general description of how to
create, design, and develop a DataStage application.

DataStage Manager Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage server jobs.

DataStage Director Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage server jobs.

DataStage Administrator Guide: This guide describes
DataStage setup, routine housekeeping, and administration.

DataStage NLS Guide. This Guide contains information about
using the NLS features that are available in DataStage when NLS
is installed.

These guides are also available online in PDF format. You can read

them using the Adobe Acrobat Reader supplied with DataStage.

You can use the Acrobat search facilities to search the whole

DataStage document set. To use this feature, select Edit ➤ Search

then choose the All PDF documents in option and specify the

DataStage docs directory (by default this is C:\Program

Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is especially useful when

you have become familiar with using DataStage and need to look up

particular pieces of information.
vi Parallel Job Developer’s Guide

Contents
How to Use this Guide
Documentation Conventions . iii

User Interface Conventions . v

DataStage Documentation . v

Chapter 1
Introduction

DataStage Parallel Jobs. 1-2

Chapter 2
Designing Parallel Jobs

Parallel Processing. 2-1

Pipeline Parallelism . 2-2

Partition Parallelism . 2-3

Combining Pipeline and Partition Parallelism . 2-4

Repartitioning Data . 2-4

Parallel Processing Environments . 2-5

The Configuration File . 2-6

Partitioning, Repartitioning, and Collecting Data . 2-7

Partitioning . 2-7

Collecting . 2-19

Repartitioning . 2-22

The Mechanics of Partitioning and Collecting . 2-23

Sorting Data . 2-25

Data Sets. 2-26
Book Title vii

Contents
Meta Data . 2-26

Runtime Column Propagation . 2-27

Table Definitions . 2-27

Schema Files and Partial Schemas. 2-28

Data Types . 2-28

Strings and Ustrings . 2-31

Complex Data Types . 2-32

Incorporating Server Job Functionality . 2-33

Chapter 3
Stage Editors

Showing Stage Validation Errors . 3-7

The Stage Page . 3-8

General Tab . 3-8

Properties Tab . 3-8

Advanced Tab. 3-12

Link Ordering Tab . 3-14

NLS Map Tab . 3-16

NLS Locale Tab . 3-17

Inputs Page. 3-18

General Tab . 3-19

Properties Tab . 3-19

Partitioning Tab . 3-20

Format Tab . 3-25

Columns Tab . 3-26

Advanced Tab. 3-45

Outputs Page . 3-47

General Tab . 3-48

Properties Tab . 3-48

Format Tab . 3-49

Columns Tab . 3-51

Mapping Tab . 3-52

Advanced Tab. 3-55
viii Book Title

Contents
Chapter 4
Data Set Stage

Must Do’s . 4-2

Writing to a Data Set . 4-2

Reading from a Data Set . 4-2

Stage Page . 4-2

Advanced Tab . 4-3

Inputs Page . 4-3

Input Link Properties Tab. 4-4

Partitioning Tab . 4-5

Outputs Page . 4-7

Output Link Properties Tab . 4-7

Chapter 5
Sequential File Stage

Example of Writing a Sequential File . 5-3

Example of Reading a Sequential File . 5-4

Must Do’s . 5-6

Writing to a File . 5-6

Reading from a File . 5-6

Stage Page . 5-7

Advanced Tab . 5-7

NLS Map Tab . 5-7

Inputs Page . 5-8

Input Link Properties Tab. 5-9

Partitioning Tab . 5-10

Input Link Format Tab . 5-13

Outputs Page . 5-25

Output Link Properties Tab . 5-26

Reject Links . 5-30

Output Link Format Tab . 5-30

Using RCP With Sequential Stages . 5-42

Chapter 6
File Set Stage

Must Do’s . 6-2

Writing to a File . 6-3

Reading from a File . 6-3
Book Title ix

Contents
Stage Page . 6-3

Advanced Tab. 6-3

NLS Map Tab . 6-4

Inputs Page. 6-5

Input Link Properties Tab . 6-5

Partitioning Tab . 6-8

Input Link Format Tab . 6-10

Outputs Page . 6-22

Output Link Properties Tab . 6-23

Reject Link Properties . 6-25

Output Link Format Tab. 6-25

Using RCP With File Set Stages . 6-37

Chapter 7
Lookup File Set Stage

Must Do’s . 7-3

Creating a Lookup File Set: . 7-3

Looking Up a Lookup File Set: . 7-3

Stage Page . 7-3

Advanced Tab. 7-4

Inputs Page. 7-5

Input Link Properties Tab . 7-5

Partitioning Tab . 7-7

Outputs Page . 7-9

Output Link Properties Tab . 7-9

Chapter 8
External Source Stage

Must Do’s . 8-2

Stage Page . 8-3

Advanced Tab. 8-3

NLS Map Tab . 8-3

Outputs Page . 8-4

Output Link Properties Tab . 8-5

Reject Link Properties . 8-6

Format Tab . 8-7

Using RCP With External Source Stages . 8-18
x Book Title

Contents
Chapter 9
External Target Stage

Must Do’s . 9-2

Stage Page . 9-3

Advanced Tab . 9-3

NLS Map Tab . 9-3

Inputs Page . 9-4

Input Link Properties Tab. 9-4

Partitioning Tab . 9-6

Format Tab . 9-8

Outputs Page . 9-20

Using RCP With External Target Stages . 9-21

Chapter 10
Complex Flat File Stage

Must Do’s . 10-2

Stage Page . 10-3

File Options Tab . 10-3

Record Options Tab . 10-8

Columns Tab. 10-11

Layout Tab . 10-16

NLS Map Tab . 10-17

Advanced Tab . 10-17

Input Page. 10-18

Input Link Columns Tab . 10-18

Partitioning Tab . 10-18

Output Page . 10-21

Selection Tab . 10-21

Output Link Columns Tab . 10-26

Reject Links . 10-27

Chapter 11
SAS Parallel Data Set Stage

Must Do’s . 11-2

Writing an SAS Data Set . 11-2

Reading an SAS Data Set . 11-2

Stage Page . 11-2

Advanced Tab . 11-3
Book Title xi

Contents
Inputs Page. 11-3

Input Link Properties Tab . 11-4

Partitioning Tab . 11-5

Outputs Page . 11-7

Output Link Properties Tab . 11-7

Chapter 12
DB2/UDB Enterprise Stage

Accessing DB2 Databases. 12-3

Remote Connection . 12-4

Handling Special Characters (# and $) . 12-5

Using the Pad Character Property . 12-7

Type Conversions - Writing to DB2/UDB . 12-8

Type Conversions - Reading from DB2/UDB . 12-9

Examples . 12-10

Looking Up a DB2/UDB Table . 12-10

Updating a DB2/UDB Table . 12-12

Must Do’s . 12-14

Writing a DB2 Database. 12-14

Updating a DB2 Database . 12-15

Deleting Rows from a DB2 Database . 12-15

Loading a DB2 Database . 12-15

Reading a DB2 Database . 12-16

Performing a Direct Lookup on a DB2 Database Table. 12-16

Performing an In Memory Lookup on a DB2 Database Table 12-17

Stage Page . 12-17

Advanced Tab. 12-17

NLS Map Tab . 12-18

Inputs Page. 12-18

Input Link Properties Tab . 12-19

Partitioning Tab . 12-36

Outputs Page . 12-38

Output Link Properties Tab . 12-39
xii Book Title

Contents
Chapter 13
Oracle Enterprise Stage

Accessing Oracle Databases . 13-3

Handling Special Characters (# and $) . 13-4

Loading Tables . 13-5

Type Conversions - Writing to Oracle. 13-6

Type Conversions - Reading from Oracle . 13-8

Examples . 13-8

Looking Up an Oracle Table . 13-8

Updating an Oracle Table . 13-10

Must Do’s . 13-12

Updating an Oracle Database . 13-12

Deleting Rows from an Oracle Database . 13-13

Loading an Oracle Database . 13-13

Reading an Oracle Database . 13-14

Performing a Direct Lookup on an Oracle Database Table. 13-14

Performing an In Memory Lookup on an Oracle Database Table 13-15

Stage Page . 13-15

Advanced Tab . 13-15

NLS Map . 13-16

Inputs Page . 13-17

Input Link Properties Tab. 13-17

Partitioning Tab . 13-25

Outputs Page . 13-27

Output Link Properties Tab . 13-28

Chapter 14
Teradata Enterprise Stage

Accessing Teradata Databases . 14-2

Installing the Teradata Utilities Foundation . 14-2

Creating Teradata User . 14-2

Creating a Database Server . 14-2

Teradata Databases – Points to Note . 14-3

NLS Support and Teradata Database Character Sets 14-3

Column Name and Data Type Conversion. 14-4

Restrictions and Limitations when Writing to a Teradata Database 14-6

Restrictions on Reading a Teradata Database . 14-7
Book Title xiii

Contents
Must Do’s . 14-7

Writing a Teradata Database. 14-7

Reading a Teradata Database . 14-8

Stage Page . 14-8

Advanced Tab. 14-8

NLS Map . 14-9

Inputs Page. 14-10

Input Link Properties Tab . 14-10

Partitioning Tab . 14-14

Outputs Page . 14-16

Output Link Properties Tab . 14-17

Chapter 15
Informix Enterprise Stage

Accessing Informix Databases . 15-2

Considerations for Using the High Performance Loader (HPL) 15-2

Using Informix XPS Stages on AIX Systems. 15-5

Type Conversions - Writing to Informix. 15-6

Type Conversions - Reading from Informix. 15-6

Must Do’s . 15-7

Writing an Informix Database . 15-8

Reading an Informix Database . 15-8

Stage Page . 15-9

Advanced Tab. 15-9

Inputs Page. 15-10

Input Link Properties Tab . 15-10

Partitioning Tab . 15-13

Outputs Page . 15-16

Output Link Properties Tab . 15-16

Chapter 16
Transformer Stage

Must Do’s . 16-2

Transformer Editor Components . 16-3

Toolbar . 16-3

Link Area . 16-3

Meta Data Area. 16-4

Shortcut Menus . 16-4
xiv Book Title

Contents
Transformer Stage Basic Concepts . 16-5

Input Link. 16-5

Output Links . 16-5

Editing Transformer Stages . 16-7

Using Drag and Drop . 16-7

Find and Replace Facilities . 16-8

Select Facilities . 16-9

Creating and Deleting Columns . 16-9

Moving Columns Within a Link . 16-10

Editing Column Meta Data. 16-10

Defining Output Column Derivations . 16-10

Editing Multiple Derivations . 16-13

Handling Null Values in Input Columns . 16-16

Defining Constraints and Handling Otherwise Links. 16-16

Specifying Link Order. 16-18

Defining Local Stage Variables . 16-18

The DataStage Expression Editor . 16-21

Expression Format . 16-21

Entering Expressions . 16-22

Completing Variable Names . 16-23

Validating the Expression . 16-23

Exiting the Expression Editor . 16-24

Configuring the Expression Editor . 16-24

System Variables . 16-24

Guide to Using Transformer Expressions and Stage Variables 16-24

Transformer Stage Properties. 16-27

Stage Page . 16-27

Inputs Page . 16-32

Outputs Page . 16-34

Chapter 17
BASIC Transformer Stages

Must Do’s . 17-2

BASIC Transformer Editor Components . 17-3

Toolbar . 17-3

Link Area . 17-3

Meta Data Area . 17-4

Shortcut Menus . 17-4
Book Title xv

Contents
BASIC Transformer Stage Basic Concepts . 17-5

Input Link . 17-5

Output Links . 17-5

Before-Stage and After-Stage Routines . 17-6

Editing BASIC Transformer Stages . 17-7

Using Drag and Drop . 17-7

Find and Replace Facilities . 17-8

Select Facilities. 17-9

Creating and Deleting Columns . 17-10

Moving Columns Within a Link. 17-10

Editing Column Meta Data . 17-10

Defining Output Column Derivations . 17-10

Editing Multiple Derivations . 17-13

Specifying Before-Stage and After-Stage Subroutines 17-16

Defining Constraints and Handling Reject Links 17-17

Specifying Link Order . 17-19

Defining Local Stage Variables . 17-20

The DataStage Expression Editor. 17-22

Expression Format . 17-23

Entering Expressions . 17-24

Completing Variable Names . 17-25

Validating the Expression . 17-25

Exiting the Expression Editor . 17-25

Configuring the Expression Editor . 17-26

BASIC Transformer Stage Properties. 17-26

Stage Page . 17-26

Inputs Page . 17-27

Outputs Page . 17-30

Chapter 18
Aggregator Stage

Example . 18-2

Must Do’s . 18-5

Stage Page . 18-6

Properties Tab . 18-6

Advanced Tab. 18-13

NLS Locale Tab . 18-14
xvi Book Title

Contents
Inputs Page . 18-15

Partitioning Tab . 18-15

Outputs Page . 18-18

Mapping Tab. 18-18

Chapter 19
Join Stage

Join Versus Lookup . 19-2

Example Joins . 19-3

Inner Join . 19-4

Left Outer Join . 19-4

Right Outer Join . 19-5

Full Outer Join . 19-5

Must Do’s . 19-6

Stage Page . 19-6

Properties Tab. 19-7

Advanced Tab . 19-8

Link Ordering Tab. 19-9

NLS Locale Tab. 19-9

Inputs Page . 19-10

Partitioning on Input Links. 19-10

Outputs Page . 19-13

Mapping Tab. 19-13

Chapter 20
Merge Stage

Example Merge . 20-3

Must Do’s . 20-4

Stage Page . 20-5

Properties Tab. 20-5

Advanced Tab . 20-7

Link Ordering Tab. 20-7

NLS Locale Tab. 20-8

Inputs Page . 20-9

Partitioning Tab . 20-9

Outputs Page . 20-12

Reject Links . 20-12

Mapping Tab. 20-13
Book Title xvii

Contents
Chapter 21
Lookup Stage

Lookup Versus Join . 21-5

Example Look Up. 21-5

Must Do’s . 21-7

Using In-Memory Lookup tables . 21-8

Using Oracle or DB2 Databases Directly . 21-9

Using Lookup Fileset . 21-10

Lookup Editor Components . 21-11

Toolbar . 21-11

Link Area . 21-11

Meta Data Area. 21-12

Shortcut Menus . 21-12

Editing Lookup Stages. 21-13

Using Drag and Drop . 21-13

Find and Replace Facilities . 21-14

Select Facilities. 21-15

Creating and Deleting Columns . 21-16

Moving Columns Within a Link. 21-16

Editing Column Meta Data . 21-16

Defining Output Column Derivations . 21-16

Defining Input Column Key Expressions . 21-19

Lookup Stage Properties . 21-20

Stage Page . 21-20

Inputs Page . 21-24

Outputs Page . 21-26

Lookup Stage Conditions . 21-27

The DataStage Expression Editor. 21-29

Expression Format . 21-29

Entering Expressions . 21-30

Completing Variable Names . 21-31

Validating the Expression . 21-31

Exiting the Expression Editor . 21-31

Configuring the Expression Editor . 21-32
xviii Book Title

Contents
Chapter 22
Funnel Stage

Examples . 22-2

Continuous Funnel Example . 22-2

Sort Funnel Example . 22-4

Sequence Funnel Example . 22-6

Must Do’s . 22-7

Stage Page . 22-8

Properties Tab. 22-8

Advanced Tab . 22-9

Link Ordering Tab. 22-11

NLS Locale Tab. 22-11

Inputs Page . 22-12

Partitioning on Input Links. 22-12

Outputs Page . 22-15

Mapping Tab. 22-15

Chapter 23
Sort Stage

Examples . 23-3

Sequential Sort . 23-3

Parallel Sort. 23-6

Total Sort. 23-8

Must Do’s . 23-9

Stage Page . 23-10

Properties Tab. 23-10

Advanced Tab . 23-14

NLS Locale Tab. 23-14

Inputs Page . 23-15

Partitioning Tab . 23-15

Outputs Page . 23-18

Mapping Tab. 23-18

Chapter 24
Remove Duplicates Stage

Example . 24-2

Must Do’s . 24-4
Book Title xix

Contents
Stage Page . 24-5

Properties Tab . 24-5

Advanced Tab. 24-6

NLS Locale Tab . 24-7

Inputs Page. 24-7

Partitioning on Input Links . 24-8

Output Page . 24-10

Mapping Tab . 24-10

Chapter 25
Compress Stage

Must Do’s . 25-2

Stage Page . 25-2

Properties Tab . 25-2

Advanced Tab. 25-3

Input Page. 25-3

Partitioning on Input Links . 25-4

Output Page . 25-6

Chapter 26
Expand Stage

Must Do’s . 26-2

Stage Page . 26-2

Properties Tab . 26-2

Advanced Tab. 26-3

Input Page. 26-3

Partitioning on Input Links . 26-4

Output Page . 26-4

Chapter 27
Copy Stage

Example . 27-2

Must Do’s . 27-6

Stage Page . 27-6

Properties Tab . 27-6

Advanced Tab. 27-6

Input Page. 27-7

Partitioning on Input Links . 27-8
xx Book Title

Contents
Outputs Page . 27-10

Mapping Tab. 27-10

Chapter 28
Modify Stage

Examples . 28-2

Dropping and Keeping Columns. 28-2

Changing Data Type. 28-3

Null Handling . 28-4

Must Do’s . 28-4

Stage Page . 28-5

Properties Tab. 28-5

Advanced Tab . 28-13

Input Page. 28-14

Partitioning on Input Links. 28-14

Outputs Page . 28-16

. 28-16

Chapter 29
Filter Stage

Specifying the Filter . 29-2

Input Data Columns . 29-2

Supported Boolean Expressions and Operators . 29-3

String Comparison . 29-3

Examples. 29-4

Must Do’s . 29-5

Stage Page . 29-5

Properties Tab. 29-6

Advanced Tab . 29-7

Link Ordering Tab. 29-8

NLS Locale Tab. 29-8

Input Page. 29-9

Partitioning on Input Links. 29-9

Outputs Page . 29-12

Mapping Tab. 29-12
Book Title xxi

Contents
Chapter 30
External Filter Stage

Must Do’s . 30-2

Stage Page . 30-2

Properties Tab . 30-2

Advanced Tab. 30-3

Input Page. 30-3

Partitioning on Input Links . 30-4

Outputs Page . 30-6

Chapter 31
Change Capture Stage

Example Data . 31-2

Must Do’s . 31-3

Stage Page . 31-4

Properties Tab . 31-4

Advanced Tab. 31-8

Link Ordering Tab . 31-9

NLS Locale Tab . 31-9

Inputs Page. 31-10

Partitioning Tab . 31-10

Outputs Page . 31-13

Mapping Tab . 31-13

Chapter 32
Change Apply Stage

Example Data . 32-3

Must Do’s . 32-5

Stage Page . 32-5

Properties Tab . 32-5

Advanced Tab. 32-8

Link Ordering Tab . 32-9

NLS Locale Tab . 32-10

Inputs Page. 32-10

Partitioning Tab . 32-11

Outputs Page . 32-13

Mapping Tab . 32-13
xxii Book Title

Contents
Chapter 33
Difference Stage

Example Data . 33-2

Must Do’s . 33-3

Stage Page . 33-4

Properties Tab. 33-4

Advanced Tab . 33-7

Link Ordering Tab. 33-8

NLS Locale Tab. 33-9

Inputs Page . 33-9

Partitioning Tab . 33-10

Outputs Page . 33-12

Mapping Tab. 33-13

Chapter 34
Compare Stage

Example Data . 34-2

Must Do’s . 34-3

Stage Page . 34-4

Properties Tab. 34-4

Advanced Tab . 34-6

Link Ordering Tab. 34-7

NLS Locale Tab. 34-7

Inputs Page . 34-8

Partitioning Tab . 34-8

Outputs Page . 34-11

Chapter 35
Encode Stage

Must Do’s . 35-2

Stage Page . 35-2

Properties Tab. 35-2

Advanced Tab . 35-3

Inputs Page . 35-3

Partitioning Tab . 35-4

Outputs Page . 35-6
Book Title xxiii

Contents
Chapter 36
Decode Stage

Must Do’s . 36-1

Stage Page . 36-2

Properties Tab . 36-2

Advanced Tab. 36-2

Inputs Page. 36-3

Partitioning Tab . 36-4

Outputs Page . 36-4

Chapter 37
Switch Stage

Example . 37-2

Must Do’s . 37-3

Stage Page . 37-4

Properties Tab . 37-4

Advanced Tab. 37-7

Link Ordering Tab . 37-8

NLS Locale Tab . 37-8

Inputs Page. 37-9

Partitioning Tab . 37-9

Outputs Page . 37-12

Mapping Tab . 37-12

Reject Link. 37-13

Chapter 38
SAS Stage

Example Job. 38-2

Must Do’s . 38-5

Using the SAS Stage on NLS Systems . 38-5

Stage Page . 38-6

Properties Tab . 38-6

Advanced Tab. 38-10

Link Ordering Tab . 38-11

NLS Map . 38-11

Inputs Page. 38-12

Partitioning Tab . 38-12
xxiv Book Title

Contents
Outputs Page . 38-15

Mapping Tab. 38-15

Chapter 39
Generic Stage

Must Do’s . 39-2

Stage Page . 39-2

Properties Tab. 39-2

Advanced Tab . 39-3

Link Ordering Tab. 39-4

Inputs Page . 39-4

Partitioning Tab . 39-4

Outputs Page . 39-7

Chapter 40
Surrogate Key Stage

Key Space . 40-2

Examples . 40-4

Must Do’s . 40-6

Stage Page . 40-7

Properties Tab. 40-7

Advanced Tab . 40-8

Inputs Page . 40-8

Partitioning Tab . 40-9

Outputs Page . 40-11

Mapping Tab. 40-12

Chapter 41
Column Import Stage

Examples . 41-2

Must Do’s . 41-5

Stage Page . 41-6

Properties Tab. 41-6

Advanced Tab . 41-8

Inputs Page . 41-9

Partitioning Tab . 41-9
Book Title xxv

Contents
Outputs Page . 41-11

Format Tab . 41-12

Mapping Tab . 41-23

Reject Link. 41-24

Using RCP With Column Import Stages . 41-24

Chapter 42
Column Export Stage

Examples . 42-2

Must Do’s . 42-4

Stage Page . 42-5

Properties Tab . 42-5

Advanced Tab. 42-7

Inputs Page. 42-7

Partitioning Tab . 42-8

Format Tab . 42-10

Outputs Page . 42-22

Mapping Tab . 42-23

Reject Link. 42-23

Using RCP With Column Export Stages. 42-24

Chapter 43
Make Subrecord Stage

Examples . 43-3

Must Do’s . 43-5

Stage Page . 43-6

Properties Tab . 43-6

Advanced Tab. 43-7

Inputs Page. 43-8

Partitioning Tab . 43-8

Outputs Page . 43-10

Chapter 44
Split Subrecord Stage

Examples . 44-2

Must Do’s . 44-5
xxvi Book Title

Contents
Stage Page . 44-6

Properties Tab. 44-6

Advanced Tab . 44-6

Inputs Page . 44-7

Partitioning Tab . 44-7

Outputs Page . 44-10

Chapter 45
Combine Records Stage

Examples . 45-2

Example 1 . 45-3

Example 2 . 45-5

Must Do’s . 45-7

Stage Page . 45-8

Properties Tab. 45-8

Advanced Tab . 45-10

NLS Locale Tab. 45-10

Inputs Page . 45-11

Partitioning Tab . 45-11

Outputs Page . 45-14

Chapter 46
Promote Subrecord Stage

Examples . 46-2

Example 1 . 46-3

Example 2 . 46-5

Must Do’s . 46-7

Stage Page . 46-7

Properties Tab. 46-7

Advanced Tab . 46-8

Inputs Page . 46-8

Partitioning Tab . 46-9

Outputs Page . 46-11
Book Title xxvii

Contents
Chapter 47
Make Vector Stage

Examples . 47-2

Example 1 . 47-2

Example 2 . 47-5

Must Do’s . 47-7

Stage Page . 47-7

Properties Tab . 47-7

Advanced Tab. 47-8

Inputs Page. 47-8

Partitioning Tab . 47-9

Outputs Page . 47-11

Chapter 48
Split Vector Stage

Examples . 48-2

Example 1 . 48-2

Example 2 . 48-4

Must Do’s . 48-6

Stage Page . 48-6

Properties Tab . 48-6

Advanced Tab. 48-7

Inputs Page. 48-7

Partitioning Tab . 48-8

Outputs Page . 48-10

Chapter 49
Head Stage

Examples . 49-2

Head Stage Default Behavior . 49-2

Skipping Data . 49-4

Must Do’s . 49-4

Stage Page . 49-5

Properties Tab . 49-5

Advanced Tab. 49-7

Inputs Page. 49-7

Partitioning Tab . 49-8
xxviii Book Title

Contents
Outputs Page . 49-10

Mapping Tab. 49-11

Chapter 50
Tail Stage

Examples . 50-2

Must Do’s . 50-3

Stage Page . 50-4

Properties Tab. 50-4

Advanced Tab . 50-5

Inputs Page . 50-6

Partitioning Tab . 50-6

Outputs Page . 50-8

Mapping Tab. 50-9

Chapter 51
Sample Stage

Examples . 51-2

Sampling in Percent Mode . 51-2

Sampling in Period Mode . 51-6

Must Do’s . 51-7

Stage Page . 51-8

Properties Tab. 51-8

Advanced Tab . 51-10

Link Ordering Tab. 51-11

Input Page. 51-11

Partitioning on Input Links. 51-11

Outputs Page . 51-14

Mapping Tab. 51-14

Chapter 52
Peek Stage

Must Do’s . 52-2

Stage Page . 52-2

Properties Tab. 52-2

Advanced Tab . 52-5

Link Ordering Tab. 52-6
Book Title xxix

Contents
Inputs Page. 52-6

Partitioning Tab . 52-6

Outputs Page . 52-9

Mapping Tab . 52-9

Chapter 53
Row Generator Stage

Examples . 53-2

Using a Row Generator Stage in Default Mode . 53-2

Example of Specifying Data to be Generated . 53-3

Example of Generating Data in Parallel . 53-6

Must Do’s . 53-7

Stage Page . 53-8

Advanced Tab. 53-8

Outputs Page . 53-9

Properties Tab . 53-9

Chapter 54
Column Generator Stage

Example . 54-1

Must Do’s . 54-5

Stage Page . 54-6

Properties Tab . 54-6

Advanced Tab. 54-7

Input Page. 54-8

Partitioning on Input Links . 54-8

Outputs Page . 54-11

Mapping Tab . 54-11

Chapter 55
Write Range Map Stage

Example . 55-2

Must Do’s . 55-3

Stage Page . 55-4

Advanced Tab. 55-4

NLS Locale Tab . 55-5
xxx Book Title

Contents
Inputs Page . 55-5

Input Link Properties Tab. 55-6

Partitioning Tab . 55-6

Chapter 56
Parallel Jobs on USS

Set Up . 56-1

Deployment Options . 56-2

Deploy Under Control of DataStage . 56-2

Deploy Standalone . 56-5

Implementation Details . 56-6

Directory Structure . 56-6

Generated Files. 56-7

Configuration Files . 56-8

Running Jobs on the USS Machine . 56-8

Deploying and Running from DataStage . 56-8

Deploying from DataStage, Running Manually . 56-9

Deploying and Running Manually . 56-11

Chapter 57
Managing Data Sets

Structure of Data Sets . 57-1

Starting the Data Set Manager . 57-2

Data Set Viewer . 57-4

Viewing the Schema . 57-5

Viewing the Data . 57-5

Copying Data Sets . 57-6

Deleting Data Sets . 57-6

Chapter 58
The Parallel Engine Configuration File

Configurations Editor. 58-1
Book Title xxxi

Contents
Configuration Considerations. 58-3

Logical Processing Nodes . 58-4

Optimizing Parallelism. 58-4

Configuration Options for an SMP . 58-6

Example Configuration File for an SMP. 58-8

Configuration Options for an MPP System . 58-9

An Example of a Four-Node MPP System Configuration. 58-10

Configuration Options for an SMP Cluster . 58-11

An Example of an SMP Cluster Configuration. 58-12

Options for a Cluster with the Conductor Unconnected to the High-Speed

Switch . 58-13

Diagram of a Cluster Environment . 58-15

Configuration Files. 58-15

The Default Path Name and the APT_CONFIG_FILE 58-16

Syntax . 58-16

Node Names. 58-17

Options . 58-18

Node Pools and the Default Node Pool . 58-22

Disk and Scratch Disk Pools and Their Defaults 58-23

Buffer Scratch Disk Pools . 58-24

The resource DB2 Option . 58-25

The resource INFORMIX Option. 58-26

The resource ORACLE option . 58-27

The SAS Resources . 58-28

Adding SAS Information to your Configuration File. 58-28

Example . 58-29

Sort Configuration . 58-29

Allocation of Resources. 58-30

Selective Configuration with Startup Scripts . 58-30

Hints and Tips . 58-32

Chapter 59
SQL Builder

How to Use the SQL Builder . 59-1

How to Build Queries with the SQL Builder . 59-2
xxxii Book Title

Contents
Selection Tab . 59-5

Toolbar . 59-5

Repository Window . 59-6

Table Selection Canvas . 59-7

Column Selection Grid. 59-8

Filter Panel . 59-9

Filter Expression Panel. 59-10

Group Tab. 59-10

Grouping Grid. 59-10

Filter Panel . 59-12

Filter Expression Panel. 59-12

Sql Tab . 59-12

Resolve Columns Grid . 59-12

Expression Editor . 59-14

Main Expression Editor . 59-14

Calculation/Function Expression Editor . 59-20

Expression Editor Menus. 59-21

Joining Tables . 59-23

Specifying Joins . 59-25

Join Properties Dialog Box . 59-26

Alternate Relation Dialog Box . 59-27

Properties Dialogs . 59-28

Table Properties Dialog Box . 59-28

SQL Properties Dialog Box . 59-29

Example Queries . 59-29

Example Simple Select Query. 59-29

Example Inner Join . 59-32

Example Aggregate Query . 59-34

Chapter 60
Remote Deployment

Enabling a Project for Job Deployment . 60-2
Book Title xxxiii

Contents
Deployment Package. 60-4

Command Shell Script – pxrun.sh . 60-5

Environment Variable Setting Source Script – evdepfile 60-5

Main Parallel (OSH) Program Script – OshScript.osh 60-5

Script Parameter File – jpdepfile . 60-5

XML Report File – <jobname>.xml . 60-5

Compiled Transformer Binary Files – <jobnamestagename>.trx.so 60-5

Self-Contained Transformer Compilation . 60-6

Deploying a Job. 60-6

Server Side Plug-Ins . 60-7

Appendix A
Schemas

Schema Format . A-1

Date Columns . A-3

Decimal Columns . A-3

Floating-Point Columns . A-4

Integer Columns. A-4

Raw Columns . A-4

String Columns . A-4

Time Columns . A-5

Timestamp Columns . A-5

Vectors . A-5

Subrecords . A-6

Tagged Columns . A-7

Partial Schemas . A-7

Appendix B
Functions

Date and Time Functions . B-1

Logical Functions. B-4

Mathematical Functions . B-5

Null Handling Functions . B-7

Number Functions . B-7

Raw Functions . B-8

String Functions. B-8

Vector Function . B-11

Type Conversion Functions . B-11
xxxiv Book Title

Contents
Type ‘Casting’ Functions . B-14

Utility Functions . B-14

Appendix C
Fillers

Creating Fillers . C-1

Filler Creation Rules . C-2

Filler Creation Examples . C-3

Expanding Fillers . C-16
Book Title xxxv

Contents
xxxvi Book Title

1
Introduction

This chapter gives an overview of parallel jobs. Parallel jobs are

developed using the DataStage Designer and compiled and run on the

DataStage server. Such jobs commonly connect to a data source,

extract, and transform data and write it to a data warehouse.

DataStage allows you to concentrate on designing your job

sequentially, without worrying too much about how parallel

processing will be implemented. You specify the logic of the job,

DataStage specifies the best implementation on the available

hardware. If required, however, you can exert more exact control on

job implementation.

Once designed, parallel jobs can run on SMP, MPP, or cluster systems.

Jobs are scaleable. The more processors you have, the faster the job

will run.

Parallel jobs can also be run on a USS system, special instructions for

this are given in Chapter 56.

Note You must choose to either run parallel jobs on standard

UNIX systems or on USS systems in the DataStage

Administrator. You cannot run both types of job at the same

time. See DataStage Administrator Guide.

DataStage also supports server jobs and mainframe jobs. Server jobs

are compiled and run on the server. These are for use on non-parallel

systems and SMP systems with up to 64 processors. Server jobs are

described in Server Job Developer’s Guide. Mainframe jobs are

available if have Enterprise MVS Edition installed. These are loaded

onto a mainframe and compiled and run there. Mainframe jobs are

described in DataStage Enterprise MVS Edition: Mainframe Job

Developer’s Guide.
Parallel Job Developer’s Guide 1-1

DataStage Parallel Jobs Introduction
DataStage Parallel Jobs
DataStage jobs consist of individual stages. Each stage describes a

particular process, this may be accessing a database or transforming

data in some way. For example, one stage may extract data from a

data source, while another transforms it. Stages are added to a job

and linked together using the Designer.

The following diagram represents one of the simplest jobs you could

have: a data source, a Transformer (conversion) stage, and the final

database. The links between the stages represent the flow of data into

or out of a stage. In a parallel job each stage would correspond to a

process. You can have multiple instances of each process to run on

the available processors in your system.

You must specify the data you want at each stage, and how it is

handled. For example, do you want all the columns in the source data,

or only a select few? Are you going to rename any of the columns?

How are they going to be transformed?

You lay down these stages and links on the canvas of the DataStage

Designer. You specify the design as if it was sequential, DataStage

determines how the stages will become processes and how many

instances of these will actually be run.

DataStage also allows you to store reuseable components in the

DataStage Repository which can be incorporated into different job

designs. You can import these components, or entire jobs, from other

DataStage Projects using the DataStage Manager. You can also import

meta data directly from data sources and data targets.

Guidance on how to construct your job and define the required meta

data using the DataStage Designer and the DataStage Manager is in

the DataStage Designer Guide and DataStage Manager Guide.

Chapter 4 onwards of this manual describe the individual stage

editors that you may use when developing parallel jobs.

Data
Source

Transformer
Stage

Data
Warehouse
1-2 Parallel Job Developer’s Guide

2
Designing Parallel Jobs

The DataStage Parallel Extender brings the power of parallel

processing to your data extraction and transformation applications.

This chapter gives a basic introduction to parallel processing, and

describes some of the key concepts in designing parallel jobs for

DataStage. If you are new to DataStage, you should read the

introductory chapters of the DataStage Designer Guide first so that

you are familiar with the DataStage Designer interface and the way

jobs are built from stages and links.

Parallel Processing
There are two basic types of parallel processing; pipeline and

partitioning. DataStage allows you to use both of these methods. The

following sections illustrate these methods using a simple DataStage

job which extracts data from a data source, transforms it in some way,

then writes it to another data source. In all cases this job would
Parallel Job Developer’s Guide 2-1

Parallel Processing Designing Parallel Jobs
appear the same on your Designer canvas, but you can configure it to

behave in different ways (which are shown diagrammatically).

Pipeline Parallelism
If you ran the example job on a system with at least three processors,

the stage reading would start on one processor and start filling a

pipeline with the data it had read. The transformer stage would start

running on another processor as soon as there was data in the

pipeline, process it and start filling another pipeline. The stage writing

the transformed data to the target database would similarly start

writing as soon as there was data available. Thus all three stages are

operating simultaneously. If you were running sequentially, there

would only be one instance of each stage. If you were running in
2-2 Parallel Job Developer’s Guide

Designing Parallel Jobs Parallel Processing
parallel, there would be as many instances as you had partitions (see

next section).

Partition Parallelism
Imagine you have the same simple job as described above, but that it

is handling very large quantities of data. In this scenario you could use

the power of parallel processing to your best advantage by

partitioning the data into a number of separate sets, with each

partition being handled by a separate instance of the job stages.

Using partition parallelism the same job would effectively be run

simultaneously by several processors, each handling a separate

subset of the total data.

Conceptual representation of job running with no parallelism

Conceptual representation of same job using pipeline parallelism

Time taken

Time taken
Parallel Job Developer’s Guide 2-3

Parallel Processing Designing Parallel Jobs
At the end of the job the data partitions can be collected back together

again and written to a single data source.

Combining Pipeline and Partition Parallelism
In practice you will be combining pipeline and partition parallel

processing to achieve even greater performance gains. In this

scenario you would have stages processing partitioned data and

filling pipelines so the next one could start on that partition before the

previous one had finished.

Repartitioning Data
In some circumstances you may want to actually repartition your data

between stages. This might happen, for example, where you want to

group data differently. Say you have initially processed data based on

customer last name, but now want to process on data grouped by zip

code. You will need to repartition to ensure that all customers sharing

the same zip code are in the same group. DataStage allows you to

repartition between stages as and when needed (although note there

are performance implications if you do this and you may affect the

Conceptual representation of job using partition parallelism

Conceptual representation of job using pipeline and partition parallelism
2-4 Parallel Job Developer’s Guide

Designing Parallel Jobs Parallel Processing Environments
balance of your partitions – see "Identifying Superfluous Repartitions"

in Parallel Job Advanced Developer’s Guide).

Further details about how DataStage actually partitions data, and

collects it together again, is given in "Partitioning, Repartitioning, and

Collecting Data" on page 2-7.

Parallel Processing Environments
The environment in which you run your DataStage jobs is defined by

your system’s architecture and hardware resources. All parallel-

processing environments are categorized as one of:

SMP (symmetric multiprocessing), in which some hardware
resources may be shared among processors. The processors
communicate via shared memory and have a single operating
system.

Cluster or MPP (massively parallel processing), also known as
shared-nothing, in which each processor has exclusive access to
hardware resources. MPP systems are physically housed in the
same box, whereas cluster systems can be physically dispersed.
The processors each have their own operating system, and
communicate via a high-speed network.

SMP systems allow you to scale up the number of processors, which

may improve performance of your jobs. The improvement gained

depends on how your job is limited:

Conceptual representation of data repartitioning
Parallel Job Developer’s Guide 2-5

The Configuration File Designing Parallel Jobs
CPU-limited jobs. In these jobs the memory, memory bus, and
disk I/O spend a disproportionate amount of time waiting for the
processor to finish its work. Running a CPU-limited application on
more processors can shorten this waiting time so speed up overall
performance.

Memory-limited jobs. In these jobs CPU and disk I/O wait for the
memory or the memory bus. SMP systems share memory
resources, so it may be harder to improve performance on SMP
systems without hardware upgrade.

Disk I/O limited jobs. In these jobs CPU, memory and memory
bus wait for disk I/O operations to complete. Some SMP systems
allow scalability of disk I/O, so that throughput improves as the
number of processors increases. A number of factors contribute
to the I/O scalability of an SMP, including the number of disk
spindles, the presence or absence of RAID, and the number of I/O
controllers.

In a cluster or MPP environment, you can use the multiple processors

and their associated memory and disk resources in concert to tackle a

single job. In this environment, each processor has its own dedicated

memory, memory bus, disk, and disk access. In a shared-nothing

environment, parallelization of your job is likely to improve the

performance of CPU-limited, memory-limited, or disk I/O-limited

applications.

The Configuration File
One of the great strengths of the DataStage Enterprise Edition is that,

when designing jobs, you don’t have to worry too much about the

underlying structure of your system, beyond appreciating its parallel

processing capabilities. If your system changes, is upgraded or

improved, or if you develop a job on one platform and implement it

on another, you don’t necessarily have to change your job design.

DataStage learns about the shape and size of the system from the

configuration file. It organizes the resources needed for a job

according to what is defined in the configuration file. When your

system changes, you change the file not the jobs.

The configuration file describes available processing power in terms

of processing nodes. These may, or may not, correspond to the actual

number of processors in your system. You may, for example, want to

always leave a couple of processors free to deal with other activities

on your system. The number of nodes you define in the configuration

file determines how many instances of a process will be produced

when you compile a parallel job.
2-6 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
Every MPP, cluster, or SMP environment has characteristics that define

the system overall as well as the individual processors. These

characteristics include node names, disk storage locations, and other

distinguishing attributes. For example, certain processors might have

a direct connection to a mainframe for performing high-speed data

transfers, while others have access to a tape drive, and still others are

dedicated to running an RDBMS application. You can use the

configuration file to set up node pools and resource pools. A pool

defines a group of related nodes or resources, and when you design a

DataStage job you can specify that execution be confined to a

particular pool.

The configuration file describes every processing node that DataStage

will use to run your application. When you run a DataStage job,

DataStage first reads the configuration file to determine the available

system resources.

When you modify your system by adding or removing processing

nodes or by reconfiguring nodes, you do not need to alter or even

recompile your DataStage job. Just edit the configuration file.

The configuration file also gives you control over parallelization of

your job during the development cycle. For example, by editing the

configuration file, you can first run your job on a single processing

node, then on two nodes, then four, then eight, and so on. The

configuration file lets you measure system performance and

scalability without actually modifying your job.

You can define and edit the configuration file using the DataStage

Manager. This is described in the DataStage Manager Guide, which

also gives detailed information on how you might set up the file for

different systems. This information is also given in Chapter 58 of this

manual.

Partitioning, Repartitioning, and Collecting
Data

We have already described how you can use partitioning of data to

implement parallel processing in your job (see "Partition Parallelism"

on page 2-3). This section takes a closer look at how you can partition

data in your jobs, and collect it together again.

Partitioning
In the simplest scenario you probably won’t be bothered how your

data is partitioned. It is enough that it is partitioned and that the job
Parallel Job Developer’s Guide 2-7

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
runs faster. In these circumstances you can safely delegate

responsibility for partitioning to DataStage. Once you have identified

where you want to partition data, DataStage will work out the best

method for doing it and implement it.

The aim of most partitioning operations is to end up with a set of

partitions that are as near equal size as possible, ensuring an even

load across your processors.

When performing some operations however, you will need to take

control of partitioning to ensure that you get consistent results. A

good example of this would be where you are using an aggregator

stage to summarize your data. To get the answers you want (and

need) you must ensure that related data is grouped together in the

same partition before the summary operation is performed on that

partition. DataStage lets you do this.

There are a number of different partitioning methods available, note

that all these descriptions assume you are starting with sequential

data. If you are repartitioning already partitioned data then there are

some specific considerations (see "Repartitioning" on page 2-22):

Round robin

The first record goes to the first processing node, the second to the

second processing node, and so on. When DataStage reaches the last

processing node in the system, it starts over. This method is useful for

resizing partitions of an input data set that are not equal in size. The

round robin method always creates approximately equal-sized
2-8 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
partitions. This method is the one normally used when DataStage

initially partitions data.

Random

Records are randomly distributed across all processing nodes. Like

round robin, random partitioning can rebalance the partitions of an

input data set to guarantee that each processing node receives an

approximately equal-sized partition. The random partitioning has a

1
2

3

4
5
6
7
8
9
10
11
12
13
14
15
16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Node 1

Node 2

Node 3

Node 4

Input data

Round Robin
Partioner

Round Robin
Partitioning
Parallel Job Developer’s Guide 2-9

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
slightly higher overhead than round robin because of the extra

processing required to calculate a random value for each record.

Same

The operator using the data set as input performs no repartitioning

and takes as input the partitions output by the preceding stage. With

this partitioning method, records stay on the same processing node;

that is, they are not redistributed. Same is the fastest partitioning

1
2

3

4
5
6
7
8
9
10
11
12
13
14
15
16

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

Node 1

Node 2

Node 3

Node 4

Input data

Random
Partioner

Random
Partitioning
2-10 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
method. This is normally the method DataStage uses when passing

data between stages in your job.

Entire

Every instance of a stage on every processing node receives the

complete data set as input. It is useful when you want the benefits of

parallel execution, but every instance of the operator needs access to

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

Node 1

Node 2

Node 3

Node 4

Same
Partioner

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

Node 1

Node 2

Node 3

Node 4

Same
Partitioning
Parallel Job Developer’s Guide 2-11

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
the entire input data set. You are most likely to use this partitioning

method with stages that create lookup tables from their input.

Hash by field

Partitioning is based on a function of one or more columns (the hash

partitioning keys) in each record. The hash partitioner examines one

or more fields of each input record (the hash key fields). Records with

the same values for all hash key fields are assigned to the same

processing node.

This method is useful for ensuring that related records are in the same

partition, which may be a prerequisite for a processing operation. For

example, for a remove duplicates operation, you can hash partition

records so that records with the same partitioning key values are on

the same node. You can then sort the records on each node using the

hash key fields as sorting key fields, then remove duplicates, again

using the same keys. Although the data is distributed across

partitions, the hash partitioner ensures that records with identical keys

are in the same partition, allowing duplicates to be found.

1
2

4
5
6
7
8

3

Node 1

Input data

Entire
Partioner 1

2

4
5
6
7
8

3

1
2

4
5
6
7
8

3

Node 3

1
2

4
5
6
7
8

3

Node 4

1
2

4
5
6
7
8

3

Entire
Partitioning
2-12 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
Hash partitioning does not necessarily result in an even distribution of

data between partitions. For example, if you hash partition a data set

based on a zip code field, where a large percentage of your records

are from one or two zip codes, you can end up with a few partitions

containing most of your records. This behavior can lead to bottlenecks

because some nodes are required to process more records than other

nodes.

For example, the diagram shows the possible results of hash

partitioning a data set using the field age as the partitioning key. Each

record with a given age is assigned to the same partition, so for

example records with age 36, 40, or 22 are assigned to partition 0. The

height of each bar represents the number of records in the partition.

As you can see, the key values are randomly distributed among the

different partitions. The partition sizes resulting from a hash

partitioner are dependent on the distribution of records in the data set

so even though there are three keys per partition, the number of

records per partition varies widely, because the distribution of ages in

the population is non-uniform.

When hash partitioning, you should select hashing keys that create a

large number of partitions. For example, hashing by the first two

digits of a zip code produces a maximum of 100 partitions. This is not

a large number for a parallel processing system. Instead, you could

hash by five digits of the zip code to create up to 10,000 partitions. You

also could combine a zip code hash with an age hash (assuming a

maximum age of 190), to yield 1,500,000 possible partitions.

Fields that can only assume two values, such as yes/no, true/false,

male/female, are particularly poor choices as hash keys.

You must define a single primary collecting key for the sort merge

collector, and you may define as many secondary keys as are required

by your job. Note, however, that each record field can be used only

0 1 2 3 N

Age Values

36 40 22

12 18 27

35 5 60

15 44 39

10 54 17

…

Partition Size
(in records)

Partition Number
Parallel Job Developer’s Guide 2-13

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
once as a collecting key. Therefore, the total number of primary and

secondary collecting keys must be less than or equal to the total

number of fields in the record. You specify which columns are to act

as hash keys on the Partitioning tab of the stage editor, see

"Partitioning Tab" on page 3-20. An example is shown below. The data

type of a partitioning key may be any data type except raw, subrecord,

tagged aggregate, or vector (see page 2-28 for data types). By default,

the hash partitioner does case-sensitive comparison. This means that

uppercase strings appear before lowercase strings in a partitioned

data set. You can override this default if you want to perform case-

insensitive partitioning on string fields.

Modulus

Partitioning is based on a key column modulo the number of

partitions. This method is similar to hash by field, but involves simpler

computation.

In data mining, data is often arranged in buckets, that is, each record

has a tag containing its bucket number. You can use the modulus
partitioner to partition the records according to this number. The

modulus partitioner assigns each record of an input data set to a

partition of its output data set as determined by a specified key field in

the input data set. This field can be the tag field.

The partition number of each record is calculated as follows:

partition_number = fieldname mod number_of_partitions

where:

fieldname is a numeric field of the input data set.
2-14 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
number_of_partitions is the number of processing nodes on which
the partitioner executes. If a partitioner is executed on three
processing nodes it has three partitions.

In this example, the modulus partitioner partitions a data set

containing ten records. Four processing nodes run the partitioner, and

the modulus partitioner divides the data among four partitions. The

input data is as follows:

The bucket is specified as the key field, on which the modulus

operation is calculated.

Here is the input data set. Each line represents a row:

64123 1960-03-30
61821 1960-06-27
44919 1961-06-18
22677 1960-09-24
90746 1961-09-15
21870 1960-01-01
87702 1960-12-22
4705 1961-12-13
47330 1961-03-21
88193 1962-03-12

The following table shows the output data set divided among four

partitions by the modulus partitioner.

Here are three sample modulus operations corresponding to the

values of three of the key fields:

22677 mod 4 = 1; the data is written to Partition 1.

Partition 0 Partition 1 Partition 2 Partition 3

61821 1960-06-27 21870 1960-01-01 64123 1960-03-30

22677 1960-09-24 87702 1960-12-22 44919 1961-06-18

47051961-12-13 47330 1961-03-21

88193 1962-03-12 90746 1961-09-15
Parallel Job Developer’s Guide 2-15

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
47330 mod 4 = 2; the data is written to Partition 2.

64123 mod 4 = 3; the data is written to Partition 3.

None of the key fields can be divided evenly by 4, so no data is written

to Partition 0.

You define the key on the Partitioning tab (see "Partitioning Tab" on

page 3-20)

Range

Divides a data set into approximately equal-sized partitions, each of

which contains records with key columns within a specified range.

This method is also useful for ensuring that related records are in the

same partition.

A range partitioner divides a data set into approximately equal size

partitions based on one or more partitioning keys. Range partitioning

is often a preprocessing step to performing a total sort on a data set.

In order to use a range partitioner, you have to make a range map.

You can do this using the Write Range Map stage, which is described

in Chapter 55.

The range partitioner guarantees that all records with the same

partitioning key values are assigned to the same partition and that the

partitions are approximately equal in size so all nodes perform an

equal amount of work when processing the data set.

An example of the results of a range partition is shown below. The

partitioning is based on the age key, and the age range for each

partition is indicated by the numbers in each bar. The height of the bar

shows the size of the partition.

All partitions are of approximately the same size. In an ideal

distribution, every partition would be exactly the same size. However,

you typically observe small differences in partition size.

In order to size the partitions, the range partitioner uses a range map

to calculate partition boundaries. As shown above, the distribution of

partitioning keys is often not even; that is, some partitions contain

Age values

Partition size
(in records) 0-2 3-17 18-25

26-44 66-71

…

Partition
2-16 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
many partitioning keys, and others contain relatively few. However,

based on the calculated partition boundaries, the number of records

in each partition is approximately the same.

Range partitioning is not the only partitioning method that guarantees

equivalent-sized partitions. The random and round robin partitioning

methods also guarantee that the partitions of a data set are equivalent

in size. However, these partitioning methods are keyless; that is, they

do not allow you to control how records of a data set are grouped
together within a partition.
In order to perform range partitioning your job requires a write range

map stage to calculate the range partition boundaries in addition to

the stage that actually uses the range partitioner. The write range map

stage uses a probabilistic splitting technique to range partition a data

set. This technique is described in Parallel Sorting on a Shared-

Nothing Architecture Using Probabilistic Splitting by DeWitt,

Naughton, and Schneider in Query Processing in Parallel Relational

Database Systems by Lu, Ooi, and Tan, IEEE Computer Society Press,

1994. In order for the stage to determine the partition boundaries, you

pass it a sorted sample of the data set to be range partitioned. From

this sample, the stage can determine the appropriate partition

boundaries for the entire data set. See Chapter 55, "Write Range Map

Stage," for details.

When you come to actually partition your data, you specify the range

map to be used by clicking on the property icon, next to the Partition
type field, the Partitioning/Collection properties dialog box

appears and allows you to specify a range map (see "Partitioning Tab"

on page 3-20 for a description of the Partitioning tab).
Parallel Job Developer’s Guide 2-17

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
DB2

Partitions an input data set in the same way that DB2 would partition

it. For example, if you use this method to partition an input data set

containing update information for an existing DB2 table, records are

assigned to the processing node containing the corresponding DB2

record. Then, during the execution of the parallel operator, both the

input record and the DB2 table record are local to the processing

node. Any reads and writes of the DB2 table would entail no network

activity.

See the DB2 Parallel Edition for AIX, Administration Guide and

Reference for more information on DB2 partitioning.

To use DB2 partitioning on a stage, select a Partition type of DB2 on

the Partioning tab, then click the Properties button to the right. In

the Partitioning/Collection properties dialog box, specify the

details of the DB2 table whose partitioning you want to replicate (see

"Partitioning Tab" on page 3-20 for a description of the Partitioning

tab).

Auto

The most common method you will see on the DataStage stages is

Auto. This just means that you are leaving it to DataStage to
2-18 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
determine the best partitioning method to use depending on the type

of stage, and what the previous stage in the job has done. Typically

DataStage would use round robin when initially partitioning data, and

same for the intermediate stages of a job.

Collecting
Collecting is the process of joining the multiple partitions of a single

data set back together again into a single partition. There are various

situations where you may want to do this. There may be a stage in

your job that you want to run sequentially rather than in parallel, in

which case you will need to collect all your partitioned data at this

stage to make sure it is operating on the whole data set.

Similarly, at the end of a job, you may want to write all your data to a

single database, in which case you need to collect it before you write

it.

There may be other cases where you don’t want to collect the data at

all. For example, you may want to write each partition to a separate

flat file.

Just as for partitioning, in many situations you can leave DataStage to

work out the best collecting method to use. There are situations,

however, where you will want to explicitly specify the collection

method.

Note that collecting methods are mostly non-deterministic. That is, if

you run the same job twice with the same data, you are unlikely to get

data collected in the same order each time. If order matters, you need

to use the sorted merge collection method.

The following methods are available:

Round robin

Reads a record from the first input partition, then from the second

partition, and so on. After reaching the last partition, starts over. After
Parallel Job Developer’s Guide 2-19

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
reaching the final record in any partition, skips that partition in the

remaining rounds.

Ordered

Reads all records from the first partition, then all records from the

second partition, and so on. This collection method preserves the

order of totally sorted input data sets. In a totally sorted data set, both

the records in each partition and the partitions themselves are

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1
2

3

4

5
6
7
8

9
10
11
12

13
14
15
16

Node 1

Node 2

Node 3

Node 4

Output data

Round Robin
Collector
2-20 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
ordered. This may be useful as a preprocessing action before

exporting a sorted data set to a single data file.

Sorted merge

Read records in an order based on one or more columns of the record.

The columns used to define record order are called collecting keys.

Typically, you use the sorted merge collector with a partition-sorted

data set (as created by a sort stage). In this case, you specify as the

collecting key fields those fields you specified as sorting key fields to

the sort stage.

For example, the figure below shows the current record in each of

three partitions of an input data set to the collector:

In this example, the records consist of three fields. The first-name and

last-name fields are strings, and the age field is an integer. The

3

1
2

4

5
6
7
8

9
10
11
12

13
14
15
16

Node 1

Node 2

Node 3

Node 4

Output data

Ordered
Collector

3

1
2

4
5
6
7
8
9
10
11
12
13
14
15
16

Partition 0 Partition 1 Partition 2

Current record “Jane” “Smith” 42 “Paul” “Smith” 34 “Mary” “Davis” 42
Parallel Job Developer’s Guide 2-21

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
following figure shows the order of the three records read by the sort

merge collector, based on different combinations of collecting keys.

You must define a single primary collecting key for the sort merge

collector, and you may define as many secondary keys as are required

by your job. Note, however, that each record field can be used only

once as a collecting key. Therefore, the total number of primary and

secondary collecting keys must be less than or equal to the total

number of fields in the record. You define the keys on the

Partitioning tab (see "Partitioning Tab" on page 3-20), and the key

you define first is the primary key.

The data type of a collecting key can be any type except raw, subrec,

tagged, or vector (see page 2-28 for data types).

By default, the sort merge collector uses ascending sort order and

case-sensitive comparisons. Ascending order means that records with

smaller values for a collecting field are processed before records with

larger values. You also can specify descending sorting order, so

records with larger values are processed first.

With a case-sensitive algorithm, records with uppercase strings are

processed before records with lowercase strings. You can override

this default to perform case-insensitive comparisons of string fields.

Auto

The most common method you will see on the DataStage stages is

Auto. This normally means that DataStage will eagerly read any row

from any input partition as it becomes available, but if it detects that,

for example, the data needs sorting as it is collected, it will do that.

This is the fastest collecting method.

Repartitioning
If you decide you need to repartion data within your DataStage job

there are some particular considerations as repartitioning can affect

the balance of data partitions.

“Jane” “Smith” 42

“Mary” “Davis” 42

“Paul” “Smith” 34

“Paul” “Smith” 34

“Mary” “Davis” 42

“Jane” “Smith” 42

“Mary” “Davis” 42

“Paul” “Smith” 34

“Jane” “Smith” 42

Order read

1

2

3

Primary collecting key Primary collecting key Primary collecting key

Secondary collecting key Secondary collecting key
2-22 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data
For example, if you start with four perfectly balanced partitions and

then subsequently repartition into three partitions, you will lose the

perfect balance and be left with, at best, near perfect balance. This is

true even for the round robin method; this only produces perfectly

balanced partitions from a sequential data source. The reason for this

is illustrated below. Each node partitions as if it were a single

processor with a single data set, and will always start writing to the

first target partition. In the case of four partitions repartitioning to

three, more rows are written to the first target partition. With a very

small data set the effect is pronounced; with a large data set the

partitions tend to be more balanced.

The Mechanics of Partitioning and Collecting
This section gives a quick guide to how partitioning and collecting is

represented in a DataStage job.

Data repartitioned from four partitions to three partitions
Parallel Job Developer’s Guide 2-23

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs
Partitioning Icons

Each parallel stage in a job can partition or repartition incoming data

before it operates on it. Equally it can just accept the partitions that the

data comes in. There is an icon on the input link to a stage which

shows how the stage handles partitioning.

In most cases, if you just lay down a series of parallel stages in a

DataStage job and join them together, the auto method will determine

partitioning. This is shown on the canvas by the auto partitioning icon:

In some cases, stages have a specific partitioning method associated

with them that cannot be overridden. It always uses this method to

organize incoming data before it processes it. In this case an icon on

the input link tells you that the stage is repartitioning data:

If you have a data link from a stage running sequentially to one

running in parallel the following icon is shown to indicate that the

data is being partitioned:

You can specify that you want to accept the existing data partitions by

choosing a partitioning method of same. This is shown by the

following icon on the input link:

Partitioning methods are set on the Partitioning tab of the Inputs

pages on a stage editor (see page 3-20).

Preserve Partitioning Flag

A stage can also request that the next stage in the job preserves

whatever partitioning it has implemented. It does this by setting the

Preserve Partitioning flag for its output link. Note, however, that the

next stage may ignore this request.
2-24 Parallel Job Developer’s Guide

Designing Parallel Jobs Sorting Data
In most cases you are best leaving the preserve partitioning flag in its

default state. The exception to this is where preserving existing

partitioning is important. The flag will not prevent repartioning, but it

will warn you that it has happened when you run the job.

If the Preserve Partitioning flag is cleared, this means that the current

stage doesn’t care what the next stage in the job does about

partitioning.

On some stages, the Preserve Partitioning flag can be set to

Propagate. In this case the stage sets the flag on its output link

according to what the previous stage in the job has set. If the previous

job is also set to Propagate, the setting from the stage before is used

and so on until a Set or Clear flag is encountered earlier in the job. If

the stage has multiple inputs and has a flag set to Propagate, its

Preserve Partitioning flag is set if it is set on any of the inputs, or

cleared if all the inputs are clear.

Collecting Icons

A stage in the job which is set to run sequentially will need to collect

partitioned data before it operates on it. There is an icon on the input

link to a stage which shows that it is collecting data:

Sorting Data
You will probably have requirements in your DataStage jobs to sort

data. DataStage has a sort stage (see Chapter 23), which allows you to

perform complex sorting operations. There are situations, however,

where you require a fairly simple sort as a precursor to a processing

operation. For these purposes, DataStage allows you to insert a sort

operation in most stage types for incoming data. You do this by

selecting the Sorting option on the Input page Partitioning tab (see

"Partitioning Tab" on page 3-20). When you do this you can specify:

Sorting keys. The field(s) on which data is sorted. You must
specify a primary key, but you can also specify any number of
secondary keys. The first key you define is taken as the primary.

Stable sort (this is the default and specifies that previously sorted
data sets are preserved).
Parallel Job Developer’s Guide 2-25

Data Sets Designing Parallel Jobs
Unique sort (discards records if multiple records have identical
sorting key values).

Case sensitivity.

Sort direction.

Sorted as EBCDIC (ASCII is the default).

If you have NLS enabled, you can also specify the collate convention

used.

Some DataStage operations require that the data they process is

sorted (for example, the Merge operation). If DataStage detects that

the input data set is not sorted in such a case, it will automatically

insert a sort operation in order to enable the processing to take place

unless you have explicitly specified otherwise.

Data Sets
Inside a DataStage parallel job, data is moved around in data sets.

These carry meta data with them, both column definitions and

information about the configuration that was in effect when the data

set was created. If for example, you have a stage which limits

execution to a subset of available nodes, and the data set was created

by a stage using all nodes, DataStage can detect that the data will

need repartitioning.

If required, data sets can be landed as persistent data sets,

represented by a Data Set stage (see Chapter 4, "Data Set Stage.")

This is the most efficient way of moving data between linked jobs.

Persistent data sets are stored in a series of files linked by a control

file (note that you should not attempt to manipulate these files using

UNIX tools such as RM or MV. Always use the tools provided with

DataStage).

Note The example screenshots in the individual stage

descriptions often show the stage connected to a Data Set

stage. This does not mean that these kinds of stage can only

be connected to Data Set stages.

Meta Data
Meta data is information about data. It describes the data flowing

through your job in terms of column definitions, which describe each

of the fields making up a data record.
2-26 Parallel Job Developer’s Guide

Designing Parallel Jobs Meta Data
DataStage has two alternative ways of handling meta data, through

table definitions, or through Schema files. By default, parallel stages

derive their meta data from the columns defined on the Outputs or

Inputs page Column tab of your stage editor. Additional formatting

information is supplied, where needed, by a Formats tab on the

Outputs or Inputs page. In some cases you can specify that the stage

uses a schema file instead by explicitly setting a property on the stage

editor and specify the name and location of the schema file. Note that,

if you use a schema file, you should ensure that runtime column

propagation is turned on. Otherwise the column definitions specified

in the stage editor will always override any schema file.

Where is additional formatting information needed? Typically this is

where you are reading from, or writing to, a file of some sort and

DataStage needs to know more about how data in the file is

formatted.

You can specify formatting information on a row basis, where the

information is applied to every column in every row in the dataset.

This is done from the Formats tab (the Formats tab is described with

the stage editors that support it; for example, for Sequential files, see

page 5-13). You can also specify formatting for particular columns

(which overrides the row formatting) from the Edit Column
Metadata dialog box for each column (see page 3-28).

Runtime Column Propagation
DataStage is also flexible about meta data. It can cope with the

situation where meta data isn’t fully defined. You can define part of

your schema and specify that, if your job encounters extra columns

that are not defined in the meta data when it actually runs, it will

adopt these extra columns and propagate them through the rest of the

job. This is known as runtime column propagation (RCP). This can be

enabled for a project via the DataStage Administrator (see "Enable

Runtime Column Propagation for Parallel Jobs" in DataStage

Administrator Guide), and set for individual links via the Outputs

Page Columns tab (see "Columns Tab" on page 3-51) for most stages,

or in the Outputs page General tab for Transformer stages (see

"Outputs Page" on page 16-34). You should always ensure that

runtime column propagation is turned on if you want to use schema

files to define column meta data.

Table Definitions
A table definition is a set of related columns definitions that are stored

in the DataStage Repository. These can be loaded into stages as and

when required.
Parallel Job Developer’s Guide 2-27

Meta Data Designing Parallel Jobs
You can import a table definition from a data source via the DataStage

Manager or Designer. You can also edit and define new table

definitions in the Manager or Designer (see "Managing Table

Definitions" in DataStage Manager Guide). If you want, you can edit

individual column definitions once you have loaded them into your

stage.

You can also simply type in your own column definition from scratch

on the Outputs or Inputs page Column tab of your stage editor (see

page 3-26 and page 3-51). When you have entered a set of column

definitions you can save them as a new table definition in the

Repository for subsequent reuse in another job.

Schema Files and Partial Schemas
You can also specify the meta data for a stage in a plain text file

known as a schema file. This is not stored in the DataStage Repository

but you could, for example, keep it in a document management or

source code control system, or publish it on an intranet site.

The format of schema files is described in Appendix A of this manual.

Note If you are using a schema file on an NLS system, the

schema file needs to be in UTF-8 format. It is, however, easy

to convert text files between two different maps with a

DataStage job. Such a job would read data from a text file

using a Sequential File stage and specifying the appropriate

character set on the NLS Map page. It would write the data

to another file using a Sequential File stage, specifying the

UTF-8 map on the NLS Map page.

Some parallel job stages allow you to use a partial schema. This

means that you only need define column definitions for those

columns that you are actually going to operate on. Partial schemas are

also described in Appendix A.

Remember that you should turn runtime column propagation on if

you intend to use schema files to define column meta data.

Data Types
When you work with parallel job column definitions, you will see that

they have an SQL type associated with them. This maps onto an

underlying data type which you use when specifying a schema via a

file, and which you can view in the Parallel tab of the Edit Column
Meta Data dialog box (see page 3-26 for details). The underlying

data type is what a parallel job data set understands. The following
2-28 Parallel Job Developer’s Guide

Designing Parallel Jobs Meta Data
table summarizes the underlying data types that columns definitions

can have:

SQL Type Underlying Data
Type

Size Description

Date date 4 bytes Date with month, day, and year

Decimal
Numeric

decimal (Roundup(p)+1)/2 Packed decimal, compatible with IBM
packed decimal format

Float
Real

sfloat 4 bytes IEEE single-precision (32-bit) floating
point value

Double dfloat 8 bytes IEEE double-precision (64-bit)
floating point value

TinyInt int8
uint8

1 byte Signed or unsigned integer of 8 bits
(Extended (unsigned) option for
unsigned)

SmallInt int16
uint16

2 bytes Signed or unsigned integer of 16 bits
(Extended (unsigned) option for
unsigned)

Integer int32
uint32

4 bytes Signed or unsigned integer of 32 bits
(Extended (unsigned) option for
unsigned)

BigInt1 int64
uint64

8 bytes Signed or unsigned integer of 64 bits
(Extended (unsigned) option for
unsigned)

Binary
Bit
LongVarBinary
VarBinary

raw 1 byte per
character

Untypes collection, consisting of a
fixed or variable number of
contiguous bytes and an optional
alignment value

Unknown
Char
LongVarChar
VarChar

string 1 byte per
character

ASCII character string of fixed or
variable length (without the
extended(Unicode) option selected)

NChar
NVarChar
LongNVarChar

ustring multiple bytes per
character

ASCII character string of fixed or
variable length (without the
extended(Unicode) option selected)

Char
LongVarChar
VarChar

ustring multiple bytes per
character

ASCII character string of fixed or
variable length (with the
extended(Unicode) option selected)

Char subrec sum of lengths of
subrecord fields

Complex data type comprising
nested columns

Char tagged sum of lengths of
subrecord fields

Complex data type comprising
tagged columns, of which one can be
referenced when the column is used
Parallel Job Developer’s Guide 2-29

Meta Data Designing Parallel Jobs
When you work with mainframe data using the CFF stage, the data

types are as follows:

Time time 5 bytes Time of day, with resolution of
seconds.

Time time(microseconds) 5 bytes Time of day, with resolution of
microseconds (Extended
(Microseconds) option selected).

Timestamp timestamp 9 bytes Single field containing both data and
time value

Timestamp timestamp(microsec
onds)

9 bytes Single field containing both data and
time value, with resolution of
microseconds (Extended
(Microseconds) option selected).

1 BigInt values map to long long integers on all supported platforms except Tru64 where they

map to longer integers. For all platforms except Tru64, the c_format is:

'%[padding_character][integer]lld'

Because Tru64 supports real 64-bit integers, its c_format is:

'%[padding_character][integer]ld'

The integer component specifies a minimum field width. The output column is printed at least

this wide, and wider if necessary. If the column has fewer digits than the field width, it is pad-

ded on the left with padding_character to make up the field width. The default padding charac-

ter is a space.

For this example c_format specification: '%09lld' the padding character is zero (0), and the

integers 123456 and 12345678 are printed out as 000123456 and 123456789.

SQL Type Underlying Data
Type

Size Description

COBOL Data Type Underlying Data
Type

binary, native binary 2 bytes S9(1-4)
COMP/COMP-5

int16

binary, native binary 4 bytes S9(5-9)
COMP/COMP-5

int32

binary, native binary 8 bytes S9(10-18)
COMP/COMP-5

int64

binary, native binary 2 bytes 9(1-4)
COMP/COMP-5

uint16

binary, native binary 4 bytes 9(5-9)
COMP/COMP-5

uint32

binary, native binary 8 bytes 9(10-18)
COMP/COMP-5

uint64

character n bytes X(n) string[n]

character for filler n bytes X(n) raw(n)
2-30 Parallel Job Developer’s Guide

Designing Parallel Jobs Meta Data
Strings and Ustrings
If you have NLS enabled, parallel jobs support two types of underlying

character data types: strings and ustrings. String data represents

unmapped bytes, ustring data represents full Unicode (UTF-16) data.

The Char, VarChar, and LongVarChar SQL types relate to underlying

string types where each character is 8-bits and does not require

varchar n bytes X(n) string[ma
x=n]

decimal (x+y)/
2+1
bytes

9(x)V9(y)COMP-3 decimal[x
+y,y]

packed

decimal (x+y)/
2+1
bytes

S9(x)V9(y)COMP-3 decimal[x
+y,y]

packed

display_numeric x+y
bytes

9(x)V9(y) decimal[x
+y,y] or
string[x+y
]

zoned

display_numeric x+y
bytes

S9(x)V9(y) decimal[x
+y,y] or
string[x+y
]

zoned,
trailing

display_numeric x+y
bytes

S9(x)V9(y) SIGN IS
TRAILING

decimal[x
+y,y]

zoned,
trailing

display_numeric x+y
bytes

S9(x)V9(y) SIGN IS
LEADING

decimal[x
+y,y]

zoned,
leading

display_numeric x+y+1
bytes

S9(x)V9(y) SIGN IS
TRAILING SEPARATE

decimal[x
+y,y]

separate,
trailing

display_numeric x+y+1
bytes

S9(x)V9(y) SIGN IS
LEADING SEPARATE

decimal[x
+y,y]

separate,
leading

float 4 bytes
8 bytes

COMP-1
COMP-2

sfloat
dfloat

floating point

graphic_n, graphic_g n*2
bytes

N(n) or G(n)
DISPLAY-1

ustring[n]

vargraphic_g/n n*2
bytes

N(n) or G(n)
DISPLAY-1

ustring[m
ax=n]

group subrec

COBOL Data Type Underlying Data
Type
Parallel Job Developer’s Guide 2-31

Meta Data Designing Parallel Jobs
mapping because it represents an ASCII character. You can, however,

specify that these data types are extended, in which case they are

taken as ustrings and do require mapping. (They are specified as such

by selecting the Extended check box for the column in the Edit Meta
Data dialog box.) An Extended field appears in the columns grid,

and extended Char, VarChar, or LongVarChar columns have ‘Unicode’

in this field. The NChar, NVarChar, and LongNVarChar types relate to

underlying ustring types so do not need to be explicitly extended.

Complex Data Types
Parallel jobs support three complex data types:

Subrecords

Tagged subrecords

Vectors

When referring to complex data in DataStage column definitions, you

can specify fully qualified column names, for example:

Parent.Child5.Grandchild2

Subrecords

A subrecord is a nested data structure. The column with type

subrecord does not itself define any storage, but the columns it

contains do. These columns can have any data type, and you can nest

subrecords one within another. The LEVEL property is used to specify

the structure of subrecords. The following diagram gives an example

of a subrecord structure.

Tagged Subrecord

This is a special type of subrecord structure, it comprises a number of

columns of different types and the actual column is ONE of these, as

indicated by the value of a tag at run time. The columns can be of any

Parent (subrecord)
Child1 (string)
Child2 (string)
Child3 (integer)
Child4 (date)
Child5 (subrecord)

Grandchild1 (string)
Grandchild2 (time)
Grandchild3 (sfloat)

LEVEL 01

LEVEL02
2-32 Parallel Job Developer’s Guide

Designing Parallel Jobs Incorporating Server Job Functionality
type except subrecord or tagged. The following diagram illustrates a

tagged subrecord.

Vector

A vector is a one dimensional array of any type except tagged. All the

elements of a vector are of the same type, and are numbered from 0.

The vector can be of fixed or variable length. For fixed length vectors

the length is explicitly stated, for variable length ones a property

defines a link field which gives the length at run time. The following

diagram illustrates a vector of fixed length and one of variable length.

Incorporating Server Job Functionality
You can incorporate Server job functionality in your Parallel jobs by

the use of Server Shared Container stages. This allows you to, for

example, use Server job plug-in stages to access data source that are

not directly supported by Parallel jobs. (Some plug-ins have parallel

versions that you can use directly in a parallel job.)

You create a new shared container in the DataStage Designer, add

Server job stages as required, and then add the Server Shared

Container to your Parallel job and connect it to the Parallel stages.

Server Shared Container stages used in Parallel jobs have extra pages

in their Properties dialog box, which enable you to specify details

about parallel processing and partitioning and collecting data.

Parent (tagged)
Child1 (string)
Child2 (int8)
Child3 (raw)

Tag = Child1, so column has data type of string

int32 int32 int32 int32 int32 int32 int32 int32 int32

0 1 2 3 4 5 6 7 8

int32 int32 int32 int32 int32 int32 int32 int32

0 1 2 3 4 5 6 N
link field = N

Fixed Length

Variable Length
Parallel Job Developer’s Guide 2-33

Incorporating Server Job Functionality Designing Parallel Jobs
You can only use Server Shared Containers in this way on SMP

systems (not MPP or cluster systems).

The following limitations apply to the contents of such Server Shared

Containers:

There must be zero or one container inputs, zero or more
container outputs, and at least one of either.

There can be no disconnected flows – all stages must be linked to
the input or an output of the container directly or via an active
stage. When the container has an input and one or more outputs,
each stage must connect to the input and at least one of the
outputs.

There can be no synchronization by having a passive stage with
both input and output links.

For details on how to use Server Shared Containers, see "Containers"

in DataStage Designer Guide. This also tells you how to use Parallel

Shared Containers, which enable you to package parallel job

functionality in a reuseable form.
2-34 Parallel Job Developer’s Guide

3
Stage Editors

The Parallel job stage editors all use a generic user interface (with the

exception of the Transformer stage, Shared Container, and Complex

Flat File stages). This chapter describes the generic editor and gives a

guide to using it.

Parallel jobs have a large number of stages available. They are

organized into groups in the tool palette or you can drag all the stages

you use frequently to the Favorites category.

The stage editors are divided into the following basic types:

Database. These are stages that read or write data contained in a
database. Examples of database stages are the Oracle Enterprise
and DB2/UDB Enterprise stages.

Development/Debug. These are stages that help you when you
are developing and troubleshooting parallel jobs. Examples are
the Peek and Row Generator stages.

File. These are stages that read or write data contained in a file or
set of files. Examples of file stages are the Sequential File and
Data Set stages.

Processing. These are stages that perform some processing on
the data that is passing through them. Examples of processing
stages are the Aggregator and Transformer stages.

Real Time. These are the stages that allow Parallel jobs to be
made available as RTI services. They comprise the RTI Source and
RTI Target stages. These are part of the optional Web Services
package.

Restructure. These are stages that deal with and manipulate data
containing columns of complex data type. Examples are Make
Subrecord and Make Vector stages.
Parallel Job Developer’s Guide 3-1

Stage Editors
Parallel jobs also support local containers and shared containers.

Local containers allow you to tidy your designs by putting portions of

functionality in a container, the contents of which are viewed on a

separate canvas. Shared containers are similar, but are stored

separately in the repository and can be reused by other parallel jobs.

Parallel jobs can use both Parallel Shared Containers and Server

Shared Containers. Using shared containers is described in DataStage

Designer Guide.

The following table lists the available stage types and gives a quick

guide to their function:

Icon Stage Type Function

Data Set

(Chapter 4)

File Allows you to read data from or write

data to a persistent data set.

Sequential File

(Chapter 5)

File Allows you to read data from or write

data to one or more flat files.

File Set

(Chapter 6)

File Allows you to read data from or write

data to a file set. File sets enable you to

spread data across a set of files

referenced by a single control file.

Lookup File Set

(Chapter 7)

File Allows you to create a lookup file set or

reference one for a lookup.

External Source

(Chapter 8)

File Allows you to read data that is output

from one or more source programs.

External Target

(Chapter 9)

File Allows you to write data to one or more

source programs.

Complex Flat File

(Chapter 10)

File Allows you to read or write complex flat

files on a mainframe machine. This is

intended for use on USS systems (note

that it uses a different interface from

other file stages).

SAS Data Set

(Chapter 11)

File Allows you to read data from or write

data to a parallel SAS data set in

conjunction with an SAS stage.

DB2/UDB

Enterprise

(Chapter 12)

Database Allows you to read data from and write

data to a DB2 database.
3-2 Parallel Job Developer’s Guide

Stage Editors
Oracle Enterprise

(Chapter 13)

Database Allows you to read data from and write

data to a Oracle database.

Teradata Enterprise

(Chapter 14)

Database Allows you to read data from and write

data to a Teradata database.

Informix Enterprise

(Chapter 15)

Database Allows you to read data from and write

data to an Informix database.

Transformer

(Chapter 16)

Processing Handles extracted data, performs any

conversions required, and passes data

to another active stage or a stage that

writes data to a target database or file.

BASIC Transformer

(Chapter 17)

Processing Same as Transformer stage, but gives

access to DataStage BASIC functions.

Aggregator

(Chapter 18)

Processing Classifies incoming data into groups,
computes totals and other summary
functions for each group, and passes
them to another stage in the job.

Join (Chapter 19) Processing Performs join operations on two or

more data sets input to the stage and

then outputs the resulting data set.

Merge (Chapter 20) Processing Combines a sorted master data set with

one or more sorted update data sets.

Lookup

(Chapter 21)

Processing Used to perform lookup operations on a

data set read into memory from any

other Parallel job stage that can output

data or provided by one of the database

stages that support reference output

links. It can also perform a look up on a

lookup table contained in a Lookup File

Set stage.

Sort (Chapter 23) Processing Sorts input columns.

Funnel (Chapter 22) Processing Copies multiple input data sets to a

single output data set.

Icon Stage Type Function
Parallel Job Developer’s Guide 3-3

Stage Editors
Remove Duplicates

(Chapter 24)

Processing Takes a single sorted data set as input,

removes all duplicate records, and

writes the results to an output data set.

Compress

(Chapter 25)

Processing Uses the UNIX compress or GZIP utility

to compress a data set. It converts a

data set from a sequence of records

into a stream of raw binary data.

Expand

(Chapter 26)

Processing Uses the UNIX uncompress or GZIP
utility to expand a data set. It converts a

previously compressed data set back

into a sequence of records from a

stream of raw binary data.

Copy (Chapter 27) Processing Copies a single input data set to a

number of output data sets.

Modify

(Chapter 28)

Processing Alters the record schema of its input

data set.

Filter (Chapter 29) Processing Transfers, unmodified, the records of

the input data set which satisfy

requirements that you specify and

filters out all other records.

External Filter

(Chapter 30)

Processing Allows you to specify a UNIX command

that acts as a filter on the data you are

processing.

Change Capture

(Chapter 31)

Processing Takes two input data sets, denoted

before and after, and outputs a single

data set whose records represent the

changes made to the before data set to

obtain the after data set.

Change Apply

(Chapter 32)

Processing Takes the change data set, that contains

the changes in the before and after data

sets, from the Change Capture stage

and applies the encoded change

operations to a before data set to

compute an after data set.

Icon Stage Type Function
3-4 Parallel Job Developer’s Guide

Stage Editors
Difference

(Chapter 33)

Processing Performs a record-by-record

comparison of two input data sets,

which are different versions of the same

data set.

Compare

(Chapter 34)

Processing Performs a column-by-column

comparison of records in two presorted

input data sets.

Encode

(Chapter 35)

Processing Encodes a data set using a UNIX

encoding command that you supply.

Decode

(Chapter 36)

Processing Decodes a data set using a UNIX

decoding command that you supply.

Switch (Chapter 37) Processing Takes a single data set as input and

assigns each input record to an output

data set based on the value of a selector

field.

SAS (Chapter 38) Processing Allows you to execute part or all of an

SAS application in parallel.

Generic

(Chapter 39)

Processing Lets you incorporate an Orchestrate

Operator in your job.

Surrogate Key

(Chapter 40)

Processing Generates one or more surrogate key

columns and adds them to an existing

data set.

Column Import

(Chapter 41)

Restructure Imports data from a single column and

outputs it to one or more columns.

Column Export

(Chapter 42)

Restructure Exports data from a number of columns

of different data types into a single

column of data type string or binary.

Make Subrecord

(Chapter 43)

Restructure Combines specified vectors in an input

data set into a vector of subrecords

whose columns have the names and

data types of the original vectors.

Split Subrecord

(Chapter 44)

Restructure Creates one new vector column for

each element of the original subrecord.

Icon Stage Type Function
Parallel Job Developer’s Guide 3-5

Stage Editors
Combine Records

(Chapter 45)

Restructure Combines records, in which particular

key-column values are identical, into

vectors of subrecords.

Promote Subrecord

(Chapter 46)

Restructure Promotes the columns of an input

subrecord to top-level columns.

Make Vector

(Chapter 47)

Restructure Combines specified columns of an

input data record into a vector of

columns of the same type.

Split Vector

(Chapter 48)

Restructure Promotes the elements of a fixed-length

vector to a set of similarly named top-

level columns.

Head (Chapter 49) Development/

Debug

Selects the first N records from each

partition of an input data set and copies

the selected records to an output data

set.

Tail (Chapter 50) Development/

Debug

Selects the last N records from each

partition of an input data set and copies

the selected records to an output data

set.

Sample

(Chapter 51)

Development/

Debug

Samples an input data set.

Peek (Chapter 52) Development/

Debug

Lets you print record column values

either to the job log or to a separate

output link as the stage copies records

from its input data set to one or more

output data sets.

Row Generator

(Chapter 53)

Development/

Debug

Produces a set of mock data fitting the

specified meta data.

Column Generator

(Chapter 54)

Development/

Debug

Adds columns to incoming data and

generates mock data for these columns

for each data row processed.

Write Range Map

(Chapter 55)

Development/

Debug

Allows you to write data to a range

map. The stage can have a single input

link.

Icon Stage Type Function
3-6 Parallel Job Developer’s Guide

Stage Editors Showing Stage Validation Errors
All of the stage types use the same basic stage editor, but the pages

that actually appear when you edit the stage depend on the exact type

of stage you are editing. The following sections describe all the page

types and sub tabs that are available. The individual descriptions of

stage editors in the following chapters tell you exactly which features

of the generic editor each stage type uses.

Showing Stage Validation Errors
If you enable the Show stage validation errors option in the

Diagram menu (or toolbar), the DataStage Designer will give you

visual cues for parallel jobs or parallel shared containers. The visual

cues display compilation errors for every stage on the canvas, without

you having to actually compile the job. The option is enabled by

default.

Here is an example of a parallel job showing visual cues:

The top Oracle stage has a warning triangle, showing that there is a

compilation error. If you hover the mouse pointer over the stage a

tooltip appears, showing the particular errors for that stage.

Any local containers on your canvas will behave like a stage, i.e., all

the compile errors for stages within the container are displayed. You

have to open a parallel shared container in order to see any compile

problems on the individual stages.

Note Parallel transformer stages will only show certain errors; to

detect C++ errors in the stage, you have to actually compile

the job containing it.
Parallel Job Developer’s Guide 3-7

The Stage Page Stage Editors
The Stage Page
All stage editors have a Stage page. This contains a number of

subsidiary tabs depending on the stage type. The only field the Stage

page itself contains gives the name of the stage being edited.

General Tab
All stage editors have a General tab, this allows you to enter an

optional description of the stage. Specifying a description here

enhances job maintainability.

Properties Tab
A Properties tab appears on the Stage page where there are general

properties that need setting for the particular stage you are editing.

Properties tabs can also occur under Input and Output pages

where there are link-specific properties that need to be set.
3-8 Parallel Job Developer’s Guide

Stage Editors The Stage Page
The properties for most general stages are set under the Stage page.

The available properties are displayed in a tree structure. They are

divided into categories to help you find your way around them. All the

mandatory properties are included in the tree by default and cannot

be removed. Properties that you must set a value for (i.e. which have

not got a default value) are shown in the warning color (red by

default), but change to black when you have set a value. You can

change the warning color by opening the Options dialog box (select

Tools ➤ Options … from the DataStage Designer main menu) and

choosing the Transformer item from the tree. Reset the Invalid column

color by clicking on the color bar and choosing a new color from the

palette.

To set a property, select it in the list and specify the required property

value in the property value field. The title of this field and the method

for entering a value changes according to the property you have

selected. In the example above, the Key property is selected so the

Property Value field is called Key and you set its value by choosing

one of the available input columns from a drop down list. Key is

shown in red because you must select a key for the stage to work

properly. The Information field contains details about the property you

currently have selected in the tree. Where you can browse for a

property value, or insert a job parameter whose value is provided at

run time, a right arrow appears next to the field. Click on this and a

menu gives access to the Browse Files dialog box and/or a list of

available job parameters (job parameters are defined in the Job

Property Value field
Parallel Job Developer’s Guide 3-9

The Stage Page Stage Editors
Properties dialog box - see "Job Properties" in DataStage Designer

Guide).

Some properties have default values, and you can always return to

the default by selecting it in the tree and choosing Set to default
from the shortcut menu.

Some properties are optional. These appear in the Available
properties to add field. Click on an optional property to add it to the

tree or choose to add it from the shortcut menu. You can remove it

again by selecting it in the tree and selecting Remove from the

shortcut menu.

Some properties can be repeated. In the example above you can add

multiple key properties. The Key property appears in the Available
properties to add list when you select the tree top level Properties

node. Click on the Key item to add multiple key properties to the tree.

Where a repeatable property expects a column as an argument, a

dialog is available that lets you specify multiple columns at once. To

open this, click the column button next to the properties tree:

The Column Selection dialog box opens. The left pane lists all the

available columns, use the arrow right keys to select some or all of

them (use the left arrow keys to move them back if you change your

Column button
3-10 Parallel Job Developer’s Guide

Stage Editors The Stage Page
mind). A separate property will appear for each column you have

selected..

Some properties have dependents. These are properties which

somehow relate to or modify the parent property. They appear under

the parent in a tree structure.

For some properties you can supply a job parameter as their value. At

runtime the value of this parameter will be used for the property. Such

properties will have an arrow next to their Property Value box. Click

the arrow to get a drop-down menu, then choose Insert job
parameter get a list of currently defined job parameters to chose

from (see "Specifying Job Parameters" in DataStage Designer

Guidefor information about job parameters).

You can switch to a multiline editor for entering property values for

some properties. Do this by clicking on the arrow next to their
Parallel Job Developer’s Guide 3-11

The Stage Page Stage Editors
Property Value box and choosing Switch to multiline editor from

the menu.

The property capabilities are indicated by different icons in the tree as

follows:

non-repeating property with no dependents

non-repeating property with dependents

repeating property with no dependents

repeating property with dependents

The properties for individual stage types are described in the chapter

about the stage.

Advanced Tab
All stage editors have an Advanced tab. This allows you to:

Specify the execution mode of the stage. This allows you to
choose between Parallel and Sequential operation. If the
execution mode for a particular type of stage cannot be changed,
then this drop down list is disabled. Selecting Sequential
operation forces the stage to be executed on a single node. If you
have intermixed sequential and parallel stages this has
implications for partitioning and collecting data between the
stages. You can also let DataStage decide by choosing the default
setting for the stage (the drop down list tells you whether this is
parallel or sequential).

Set or clear the preserve partitioning flag (this field is not available
for all stage types). It indicates whether the stage wants to
preserve partitioning at the next stage of the job (see "Preserve
3-12 Parallel Job Developer’s Guide

Stage Editors The Stage Page
Partitioning Flag" on page 2-24). You choose between Set, Clear
and Propagate. For some stage types, Propagate is not available.
The operation of each option is as follows:

– Set. Sets the preserve partitioning flag, this indicates to the
next stage in the job that it should preserve existing
partitioning if possible.

– Clear. Clears the preserve partitioning flag. Indicates that this
stage does not care which partitioning method the next stage
uses.

– Propagate. Sets the flag to Set or Clear depending on what
the previous stage in the job has set (or if that is set to
Propagate the stage before that and so on until a preserve
partitioning flag setting is encountered).

You can also let DataStage decide by choosing the default setting

for the stage (the drop down list tells you whether this is set, clear,

or propagate).

Specify the combinability mode. Under the covers DataStage can
combine the operators that underlie parallel stages so that they
run in the same process. This saves a significant amount of data
copying and preparation in passing data between operators.

The combinability mode setting tells DataStage your preferences

for combining for a particular stage. It has three possible settings:

– Auto. Use the default combination setting.

– Combinable. Ignore the operator's default setting and
combine if at all possible (some operators are marked as
noncombinable by default).

– Don't Combine. Never combine operators.

In most cases the setting should be left to Auto.

Specify node map or node pool or resource pool constraints. The
configuration file allows you to set up pools of related nodes or
resources (see "The Configuration File" on page 2-6). The
Advanced tab allows you to limit execution of a stage to a
particular node or resource pool. You can also use a map to
specify a group of nodes that execution will be limited to just in
this stage. Supply details as follows:

– Node pool and resource constraints. Specify constraints in
the grid. Select Node pool or Resource pool from the
Constraint drop-down list. Select a Type for a resource pool
and, finally, select the name of the pool you are limiting
execution to. You can select multiple node or resource pools.
This is only enabled if you have defined multiple pools in the
configuration file.
Parallel Job Developer’s Guide 3-13

The Stage Page Stage Editors
– Node map constraints. Select the option box and type in the
nodes to which execution will be limited in the text box. You
can also browse through the available nodes to add to the text
box. Using this feature conceptually sets up an additional node
pool which doesn’t appear in the configuration file.

The lists of available nodes, available node pools, and available

resource pools are derived from the configuration file.

Link Ordering Tab
This tab allows you to order the links for stages that have more than

one link and where ordering of the links is required.
3-14 Parallel Job Developer’s Guide

Stage Editors The Stage Page
The tab allows you to order input links and/or output links as needed.

Where link ordering is not important or is not possible the tab does

not appear.

The link label gives further information about the links being ordered.

In the example we are looking at the Link Ordering tab for a Join

stage. The join operates in terms of having a left link and a right link,

and this tab tells you which actual link the stage regards as being left

and which right. If you use the arrow keys to change the link order, the

link name changes but not the link label. In our example, if you

pressed the down arrow button, DSLink27 would become the left link,

and DSLink26 the right.

A Join stage can only have one output link, so in the example the

Order the following output links section is disabled.

The following example shows the Link Ordering tab from a Merge

stage. In this case you can order both input links and output links. The

Merge stage handles reject links as well as a stream link and the tab

allows you to order these, although you cannot move them to the
Parallel Job Developer’s Guide 3-15

The Stage Page Stage Editors
stream link position. Again the link labels give the sense of how the

links are being used.

The individual stage descriptions tell you whether link ordering is

possible and what options are available.

NLS Map Tab
If you have NLS enabled on your system, some of your stages will

have an NLS Map tab. This allows you to override the project default

character set map for this stage, and in some cases, allows you to

enable per-column mapping. When per-column mapping is enabled,

you can override the character set map for particular columns (an NLS
map field appears on the columns tab allowing you to do this).
3-16 Parallel Job Developer’s Guide

Stage Editors The Stage Page
Select a map from the list, or click the arrow button next to the list to

specify a job parameter.

The following stage types currently support this feature:

Sequential File

File Set

Lookup File Set

External Source

External Target

DB2/UDB Enterprise (not per-column mapping)

Oracle Enterprise (not per-column mapping)

NLS Locale Tab
If you have NLS enabled on your system, some of your stages will

have an NLS Locale tab. It lets you view the current default collate

convention, and select a different one for the stage if required. You

can also use a job parameter to specify the locale, or browse for a file

that defines custom collate rules. The collate convention defines the

order in which characters are collated, for example, the character Ä

follows A in Germany, but follows Z in Sweden.
Parallel Job Developer’s Guide 3-17

Inputs Page Stage Editors
Select a locale from the list, or click the arrow button next to the list to

use a job parameter or browse for a collate file.

The following types of stage have an NLS Locale tab:

Stages that evaluate expressions, such as the Transformer.

Stages that need to evaluate the order of key columns.

The Sort Stage.

Inputs Page
The Inputs page gives information about links going into a stage. In

the case of a file or database stage an input link carries data being

written to the file or database. In the case of a processing or

restructure stage it carries data that the stage will process before

outputting to another stage. Where there are no input links, the stage

editor has no Inputs page.

Where it is present, the Inputs page contains various tabs depending

on stage type. The only field the Inputs page itself contains is Input
name, which gives the name of the link being edited. Where a stage

has more than one input link, you can select the link you are editing

from the Input name drop-down list.

The Inputs page also has a Columns… button. Click this to open a

window showing column names from the meta data defined for this

link. You can drag these columns to various fields in the Inputs page

tabs as required.
3-18 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Certain stage types will also have a View Data… button. Press this to

view the actual data associated with the specified data source or data

target. The button is available if you have defined meta data for the

link. Note the interface allowing you to view the file will be slightly

different depending on stage and link type.

General Tab
The Inputs page always has a General tab. this allows you to enter

an optional description of the link. Specifying a description for each

link enhances job maintainability.

Properties Tab
Some types of file and database stages can have properties that are

particular to specific input links. In this case the Inputs page has a
Parallel Job Developer’s Guide 3-19

Inputs Page Stage Editors
Properties tab. This has the same format as the Stage page

Properties tab (see "Properties Tab" on page 3-8).

Partitioning Tab
Most parallel stages have a default partitioning or collecting method

associated with them. This is used depending on the execution mode

of the stage (i.e., parallel or sequential) and the execution mode of the

immediately preceding stage in the job. For example, if the preceding

stage is processing data sequentially and the current stage is

processing in parallel, the data will be partitioned before it enters the

current stage. Conversely if the preceding stage is processing data in

parallel and the current stage is sequential, the data will be collected

as it enters the current stage.

You can, if required, override the default partitioning or collecting

method on the Partitioning tab. The selected method is applied to

the incoming data as it enters the stage on a particular link, and so the

Partitioning tab appears on the Inputs page. You can also use the

tab to repartition data between two parallel stages. If both stages are

executing sequentially, you cannot select a partition or collection

method and the fields are disabled. The fields are also disabled if the

particular stage does not permit selection of partitioning or collection

methods. The following table shows what can be set from the

Partitioning tab in what circumstances:

Preceding Stage Current Stage Partition Tab Mode

Parallel Parallel Partition
3-20 Parallel Job Developer’s Guide

Stage Editors Inputs Page
The Partitioning tab also allows you to specify that the data should

be sorted as it enters.

The Partitioning tab has the following fields:

Partition type. Choose the partitioning (or collecting) type from
the drop-down list. The following partitioning types are available:

– (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and
preceding stages and how many nodes are specified in the
Configuration file. This is the default method for many stages.

– Entire. Every processing node receives the entire data set. No
further information is required.

– Hash. The records are hashed into partitions based on the
value of a key column or columns selected from the Available
list.

– Modulus. The records are partitioned using a modulus
function on the key column selected from the Available list.
This is commonly used to partition on tag fields.

– Random. The records are partitioned randomly, based on the
output of a random number generator. No further information
is required.

Parallel Sequential Collect

Sequential Parallel Partition

Sequential Sequential None (disabled)

Preceding Stage Current Stage Partition Tab Mode
Parallel Job Developer’s Guide 3-21

Inputs Page Stage Editors
– Round Robin. The records are partitioned on a round robin
basis as they enter the stage. No further information is
required.

– Same. Preserves the partitioning already in place. No further
information is required.

– DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these

properties by clicking the properties button .

– Range. Divides a data set into approximately equal size
partitions based on one or more partitioning keys. Range
partitioning is often a preprocessing step to performing a total
sort on a data set. Requires extra properties to be set. Access

these properties by clicking the properties button .

The following collection types are available:

– (Auto). Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it
becomes available. This is the fastest collecting method and is
the default collection method for many stages. In some
circumstances DataStage will detect further requirements for
collected data, for example, it might need to be sorted. Using
Auto mode will ensure data is sorted if required.

– Ordered. Reads all records from the first partition, then all
records from the second partition, and so on. Requires no
further information.

– Round Robin. Reads a record from the first input partition,
then from the second partition, and so on. After reaching the
last partition, the operator starts over.

– Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting
key column from the Available list.

Available. This lists the input columns for the input link. Key
columns are identified by a key icon. For partitioning or collecting
methods that require you to select columns, you click on the
required column in the list and it appears in the Selected list to
the right. This list is also used to select columns to sort on.

Selected. This list shows which columns have been selected for
partitioning on, collecting on, or sorting on and displays
information about them. The available information is whether a
sort is being performed (indicated by an arrow), if so the order of
the sort (ascending or descending) and collating sequence (sort as
EBCDIC), and whether an alphanumeric key is case sensitive or
not. Nullable columns are marked to indicate if null columns take
first or last position. You can select sort order, case sensitivity,
3-22 Parallel Job Developer’s Guide

Stage Editors Inputs Page
collating sequence, and nulls position from the shortcut menu. If
applicable, the Usage field indicates whether a particular key
column is being used for sorting, partitioning, or both.

Sorting. The check boxes in the section allow you to specify sort
details. The availability of sorting depends on the partitioning
method chosen.

– Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

– Stable. Select this if you want to preserve previously sorted
data sets. The default is stable.

– Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If
stable sort is also set, the first record is retained.

You can also specify sort direction, case sensitivity, whether

sorted as EBCDIC, and whether null columns will appear first or

last for each column. Where you are using a keyed partitioning

method, you can also specify whether the column is used as a key

for sorting, for partitioning, or for both. Select the column in the

Selected list and right-click to invoke the shortcut menu. The

availability of the sort options depends on the type of data in the

column, whether it is nullable or not, and the partitioning method

chosen.

If you have NLS enabled, the sorting box has an additional button.

Click this to open the NLS Locales tab of the Sort Properties

dialog box. This lets you view the current default collate

convention, and select a different one for the stage if required. You

can also use a job parameter to specify the locale, or browse for a

file that defines custom collate rules. The collate convention

defines the order in which characters are collated, for example, the

character Ä follows A in Germany, but follows Z in Sweden. Select

a locale from the list, or click the arrow button next to the list to

use a job parameter or browse for a collate file.

If you require a more complex sort operation, you should use the

Sort stage (see Chapter 21).
Parallel Job Developer’s Guide 3-23

Inputs Page Stage Editors
DB2 Partition Properties

This dialog box appears when you select a Partition type of DB2 and

click the properties button . It allows you to specify the DB2 table

whose partitioning method is to be replicated.

Range Partition Properties

This dialog box appears when you select a Partition type of Range and

click the properties button . It allows you to specify the range map

that is to be used to determine the partitioning (you create a range

map file using the Write Range Map stage - see Chapter 55). Type in a

pathname or browse for a file.
3-24 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Format Tab
Stages that write to certain types of file (e.g., the Sequential File stage)

also have a Format tab which allows you to specify the format of the

file or files being written to.

The Format tab is similar in structure to the Properties tab. A flat file

has a number of properties that you can set different attributes for.

Select the property in the tree and select the attributes you want to set

from the Available properties to add window, it will then appear as

a dependent property in the property tree and you can set its value as

required. This tab sets the format information for the file at row level.

You can override the settings for individual columns using the Edit
Column Metadata dialog box (see page 3-28).

If you click the Load button you can load the format information from

a table definition in the Repository.

The shortcut menu from the property tree gives access to the

following functions:

Format as. This applies a predefined template of properties.
Choose from the following:

– Delimited/quoted

– Fixed-width records

– UNIX line terminator

– DOS line terminator

– No terminator (fixed width)

– Mainframe (COBOL)
Parallel Job Developer’s Guide 3-25

Inputs Page Stage Editors
Add sub-property. Gives access to a list of dependent properties
for the currently selected property (visible only if the property has
dependents).

Set to default. Appears if the currently selected property has
been set to a non-default value, allowing you to re-select the
default.

Remove. Removes the currently selected property. This is
disabled if the current property is mandatory.

Remove all. Removes all the non-mandatory properties.

Details of the properties you can set are given in the chapter

describing the individual stage editors:

Sequential File stage – page 5-13

File Set stage – page 6-10

External Target stage – page 9-8

Column Export stage – page 42-10

Columns Tab
The Inputs page always has a Columns tab. This displays the

column meta data for the selected input link in a grid.

There are various ways of populating the grid:

If the other end of the link has meta data specified for it, this will
be displayed in the Columns tab (meta data is associated with,
and travels with, a link).
3-26 Parallel Job Developer’s Guide

Stage Editors Inputs Page
You can type the required meta data into the grid. When you have
done this, you can click the Save… button to save the meta data
as a table definition in the Repository for subsequent reuse.

You can load an existing table definition from the Repository. Click
the Load… button to be offered a choice of table definitions to
load. Note that when you load in this way you bring in the
columns definitions, not any formatting information associated
with them (to load that, go to the Format tab).

You can drag a table definition from the Repository Window on
the Designer onto a link on the canvas. This transfers both the
column definitions and the associated format information.

If you select the options in the Grid Properties dialog box (see "Grid

Properties" in DataStage Designer Guide), the Columns tab will also

display two extra fields: Table Definition Reference and Column

Definition Reference. These show the table definition and individual

columns that the columns on the tab were derived from.

If you click in a row and select Edit Row… from the shortcut menu,

the Edit Column Meta Data dialog box appears, which allows you

edit the row details in a dialog box format. It also has a Parallel tab

which allows you to specify properties that are peculiar to parallel job

column definitions. The dialog box only shows those properties that

are relevant for the current link.

The Parallel tab enables you to specify properties that give more

detail about each column, and properties that are specific to the data

type. Where you are specifying complex data types, you can specify a
Parallel Job Developer’s Guide 3-27

Inputs Page Stage Editors
level number, which causes the Level Number field to appear in the

grid on the Columns page.

If you have NLS enabled, and the column has an underlying string

type, you can specify that the column contains Unicode data by

selecting the Extended (Unicode) check box. Where you can enter a

character for any property, this can usually be an ASCII character or a

multi-byte Unicode character (if you have NLS enabled).

Some table definitions need format information. This occurs where

data is being written to a file where DataStage needs additional

information in order to be able to locate columns and rows. Properties

for the table definition at row level are set on the Format tab of the

relevant stage editor, but you can override the settings for individual

columns using the Parallel tab. The settings are made in a properties

tree under the following categories:

Field Level

This has the following properties:

Bytes to Skip. Skip the specified number of bytes from the end
of the previous column to the beginning of this column.

Delimiter. Specifies the trailing delimiter of the column. Type an
ASCII character or select one of whitespace, end, none, null,
comma, or tab.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character used.

– tab. ASCII tab character used.

Delimiter string. Specify a string to be written at the end of the
column. Enter one or more characters. This is mutually exclusive
with Delimiter, which is the default. For example, specifying ‘, ‘
(comma space – you do not need to enter the inverted commas)
would have the column delimited by ‘, ‘.

Drop on input. Select this property when you must fully define
the meta data for a data set, but do not want the column actually
read into the data set.
3-28 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Prefix bytes. Specifies that this column is prefixed by 1, 2, or 4
bytes containing, as a binary value, either the column’s length or
the tag value for a tagged column. You can use this option with
variable-length fields. Variable-length fields can be either
delimited by a character or preceded by a 1-, 2-, or 4-byte prefix
containing the field length. DataStage inserts the prefix before
each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for each of the
columns it reads. The message has the format:

Importing N: D

where:

– N is the column name.

– D is the imported data of the column. Non-printable characters
conained in D are prefixed with an escape character and written
as C string literals; if the column contains binary data, it is
output in octal format.

Quote. Specifies that variable length columns are enclosed in
single quotes, double quotes, or another ASCII character or pair of
ASCII characters. Choose Single or Double, or enter a character.

Start position. Specifies the starting position of a column in the
record. The starting position can be either an absolute byte offset
from the first record position (0) or the starting position of another
column.

Tag case value. Explicitly specifies the tag value corresponding
to a subfield in a tagged subrecord. By default the fields are
numbered 0 to N-1, where N is the number of fields. (A tagged
subrecord is a column whose type can vary. The subfields of the
tagged subrecord are the possible types. The tag case value of the
tagged subrecord selects which of those types is used to interpret
the column’s value for the record.)

String Type

This has the following properties:

Character Set. Choose from ASCII or EBCDIC (not available for
ustring type (Unicode)).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).
Parallel Job Developer’s Guide 3-29

Inputs Page Stage Editors
Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters (not available for ustring
type (Unicode)).

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters (not available for ustring
type (Unicode)).

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Date Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.
3-30 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see DataStage NLS Guide).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For dates, binary is equivalent to specifying the julian property for

the date field, text specifies that the data to be written contains a

text-based date in the form %yyyy-%mm-%dd or in the default

date format if you have defined a new one on an NLS system (see

DataStage NLS Guide).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.
Parallel Job Developer’s Guide 3-31

Inputs Page Stage Editors
When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text
3-32 Parallel Job Developer’s Guide

Stage Editors Inputs Page
For time, binary is equivalent to midnight_seconds, text specifies

that the field represents time in the text-based form %hh:%nn:%ss

or or in the default date format if you have defined a new one on

an NLS system (see DataStage NLS Guide).

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For timestamp, binary specifies that the first integer contains a

Julian day count for the date portion of the timestamp and the

second integer specifies the time portion of the timestamp as the

number of seconds from midnight. A binary timestamp specifies

that two 32-but integers are written. Text specifies a text-based

timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in the
Parallel Job Developer’s Guide 3-33

Inputs Page Stage Editors
default date format if you have defined a new one on an NLS

system (see DataStage NLS Guide).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).

Integer Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.

Character Set. Choose from ASCII or EBCDIC.
3-34 Parallel Job Developer’s Guide

Stage Editors Inputs Page
C_format. Perform non-default conversion of data from a string
to integer data. This property specifies a C-language format string
used for reading/writing integer strings. This is passed to sscanf()
or sprintf().

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to integer. This is passed to sscanf(). By default, DataStage
invokes the C sscanf() function to convert a numeric field
formatted as a string to either integer or floating point data. If this
function does not output data in a satisfactory format, you can
specify the in_format property to pass formatting arguments to
sscanf().

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
integer to a string. This is passed to sprintf(). By default,
DataStage invokes the C sprintf() function to convert a numeric
field formatted as integer data to a string. If this function does not
output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf().
Parallel Job Developer’s Guide 3-35

Inputs Page Stage Editors
Pad char. Specifies the pad character used when the integer is
written to an external string representation. Enter a character
(single-bye for strings, can be multi-byte for ustrings) or choose
null or space. The pad character is used when the external string
representation is larger than required to hold the written field. In
this case, the external string is filled with the pad character to its
full length. Space is the default.

Decimal Type

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No.

Character Set. Choose from ASCII or EBCDIC.

Decimal separator. Specify the character that acts as the
decimal separator (period by default).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text

For decimals, binary means packed. Text represents a decimal in a

string format with a leading space or '-' followed by decimal digits

with an embedded decimal point if the scale is not zero. The

destination string format is: [+ | -]ddd.[ddd] and any precision and

scale arguments are ignored.

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.
3-36 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing

decimal columns. Select No to write a positive sign (0xf)

regardless of the columns’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
represented in text format. Enter a number. When a decimal is
written to a string representation, DataStage uses the precision
and scale defined for the source decimal field to determine the
length of the destination string. The precision and scale properties
override this default. When they are defined, DataStage truncates
or pads the source decimal to fit the size of the destination string.
If you have also specified the field width property, DataStage
truncates or pads the source decimal to fit the size specified by
field width.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.
Parallel Job Developer’s Guide 3-37

Inputs Page Stage Editors
– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.
Specifies how to round a source decimal when its precision and
scale are greater than those of the destination.

Float Type

C_format. Perform non-default conversion of data from a string
to floating-point data. This property specifies a C-language format
string used for reading floating point strings. This is passed to
sscanf().

Character Set. Choose from ASCII or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

– binary

– text
3-38 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to floating point. This is passed to sscanf(). By default, DataStage
invokes the C sscanf() function to convert a numeric field
formatted as a string to floating point data. If this function does
not output data in a satisfactory format, you can specify the
in_format property to pass formatting arguments to sscanf().

Is link field. Selected to indicate that a column holds the length
of a another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
floating point to a string. This is passed to sprintf(). By default,
DataStage invokes the C sprintf() function to convert a numeric
field formatted as floating point data to a string. If this function
does not output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf().

Pad char. Specifies the pad character used when the floating
point number is written to an external string representation. Enter
a character (single-bye for strings, can be multi-byte for ustrings)
or choose null or space. The pad character is used when the
external string representation is larger than required to hold the
written field. In this case, the external string is filled with the pad
character to its full length. Space is the default.

Nullable

This appears for nullable fields.

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.
Parallel Job Developer’s Guide 3-39

Inputs Page Stage Editors
Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. When a variable-length field is written, DataStage writes a
length value of null field length if the field contains a null. This
property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field. On reading, specifies the value given

to a field containing a null. On writing, specifies the value given to

a field if the source is set to null. Can be a number, string, or C-

type literal escape character.

Generator

If the column is being used in a Row Generator or Column Generator

stage, this allows you to specify extra details about the mock data

being generated. The exact fields that appear depend on the data type

of the column being generated. They allow you to specify features of

the data being generated, for example, for integers they allow you to

specify if values are random or whether they cycle. If they cycle you

can specify an initial value, an increment, and a limit. If they are

random, you can specify a seed value for the random number

generator, whether to include negative numbers, and a limit
3-40 Parallel Job Developer’s Guide

Stage Editors Inputs Page
The diagram below shows the Generate options available for the

various data types:.

All data types

All data types other than string have two Types of operation, cycle

and random:

Cycle. The cycle option generates a repeating pattern of values
for a column. It has the following optional dependent properties:

String
Cycle

Alphabet

Value

String

Date
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
Signed

Epoch
Percent invalid
Use current date

Time
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
Signed

Scale factor
Percent invalid

Timestamp
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
Signed

Epoch
Percent invalid
Use current date

Integer
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
Signed

Decimal
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
SignedPercent invalid

Percent zero

Float
Cycle

Random

Increment
Initial value
Limit

Limit
Seed
Signed

Algorithm
Parallel Job Developer’s Guide 3-41

Inputs Page Stage Editors
– Increment. The increment value added to produce the field
value in the next output record. The default value is 1 (integer)
or 1.0 (float).

– Initial value. is the initial field value (value of the first output
record). The default value is 0.

– Limit. The maximum field value. When the generated field
value is greater than Limit, it wraps back to Initial value. The
default value of Limit is the maximum allowable value for the
field’s data type.

You can set these to ‘part’ to use the partition number (e.g., 0, 1, 2,

3 on a four node system), or ‘partcount’ to use the total number of

executing partitions (e.g., 4 on a four node system).

Random. The random option generates random values for a field.
It has the following optional dependent properties:

– Limit. Maximum generated field value. The default value of
limit is the maximum allowable value for the field’s data type.

– Seed. The seed value for the random number generator used
by the stage for the field. You do not have to specify seed. By
default, the stage uses the same seed value for all fields
containing the random option.

– Signed. Specifies that signed values are generated for the field
(values between -limit and +limit). Otherwise, the operator
creates values between 0 and +limit.

You can limit and seed to ‘part’ to use the partition number (e.g., 0,

1, 2, 3 on a four node system), or ‘partcount’ to use the total

number of executing partitions (e.g., 4 on a four node system).

Strings

By default the generator stages initialize all bytes of a string field to

the same alphanumeric character. The stages use the following

characters, in the following order:

abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

For example, the following a string with a length of 5 would produce

successive string fields with the values:

aaaaa
bbbbb
ccccc
ddddd
...

After the last character, capital Z, values wrap back to lowercase a and

the cycle repeats.
3-42 Parallel Job Developer’s Guide

Stage Editors Inputs Page
You can also use the algorithm property to determine how string

values are generated, this has two possible values: cycle and

alphabet:

Cycle. Values are assigned to a generated string field as a set of
discrete string values to cycle through. This has the following
dependent property:

– Values. Repeat this property to specify the string values that
the generated data cycles through.

Alphabet. Values are assigned to a generated string field as a
character string each of whose characters is taken in turn. This is
like the default mode of operation except that you can specify the
string cycled through using the dependent property String.

Decimal

As well as the Type property, decimal columns have the following

properties:

Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

Percent zero. The percentage of generated decimal columns
where all bytes of the decimal are set to binary zero (0x00). Set to
10% by default.

Date

As well as the Type property, date columns have the following

properties:

Epoch. Use this to specify the earliest generated date value, in the
format yyyy-mm-dd (leading zeros must be supplied for all parts).
The default is 1960-01-01.

Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

Use current date. Set this to generate today’s date in this
column for every row generated. If you set this all other properties
are ignored.

Time

As well as the Type property, time columns have the following

properties:

Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.
Parallel Job Developer’s Guide 3-43

Inputs Page Stage Editors
Scale factor. Specifies a multiplier to the increment value for
time. For example, a scale factor of 60 and an increment of 1
means the field increments by 60 seconds.

Timestamp

As well as the Type property, time columns have the following

properties:

Epoch. Use this to specify the earliest generated date value, in the
format yyyy-mm-dd (leading zeros must be supplied for all parts).
The default is 1960-01-01.

Use current date. Set this to generate today’s date in this
column for every row generated. If you set this all other properties
are ignored.

Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

Scale factor. Specifies a multiplier to the increment value for
time. For example, a scale factor of 60 and an increment of 1
means the field increments by 60 seconds.

Vectors

If the row you are editing represents a column which is a variable

length vector, tick the Variable check box. The Vector properties

appear, these give the size of the vector in one of two ways:

Link Field Reference. The name of a column containing the
number of elements in the variable length vector. This should
have an integer or float type, and have its Is Link field property set.

Vector prefix. Specifies 1-, 2-, or 4-byte prefix containing the
number of elements in the vector.

If the row you are editing represents a column which is a vector of

known length, enter the number of elements in the Vector Occurs

box.

Subrecords

If the row you are editing represents a column which is part of a

subrecord the Level Number column indicates the level of the column

within the subrecord structure.

If you specify Level numbers for columns, the column immediately

preceding will be identified as a subrecord. Subrecords can be nested,

so can contain further subrecords with higher level numbers (i.e.,

level 06 is nested within level 05). Subrecord fields have a Tagged

check box to indicate that this is a tagged subrecord.
3-44 Parallel Job Developer’s Guide

Stage Editors Inputs Page
Extended

For certain data types the Extended check box appears to allow you

to modify the data type as follows:

Char, VarChar, LongVarChar. Select to specify that the
underlying data type is a ustring.

Time. Select to indicate that the time field includes microseconds.

Timestamp. Select to indicate that the timestamp field includes
microseconds.

TinyInt, SmallInt, Integer, BigInt types. Select to indicate that
the underlying data type is the equivalent uint field.

Advanced Tab
The Advanced tab allows you to specify how DataStage buffers data

being input this stage. By default DataStage buffers data in such a way

that no deadlocks can arise; a deadlock being the situation where a

number of stages are mutually dependent, and are waiting for input

from another stage and cannot output until they have received it.

The size and operation of the buffer are usually the same for all links

on all stages (the default values that the settings take can be set using

environment variables – see "Configuring for Enterprise Edition" of

the Install and Upgrade Guide).

The Advanced tab allows you to specify buffer settings on a per-link

basis. You should only change the settings if you fully understand the

consequences of your actions (otherwise you might cause deadlock

situations to arise).
Parallel Job Developer’s Guide 3-45

Inputs Page Stage Editors
Any changes you make on this tab will automatically be reflected in

the Outputs Page Advanced Tab of the stage at the other end of this

link.

The settings are as follows:

Buffering mode. Select one of the following from the drop-down
list.

– (Default). This will take whatever the default settings are as
specified by the environment variables (this will be Auto-buffer
unless you have explicitly changed the value of the
APT_BUFFERING _POLICY environment variable).

– Auto buffer. Buffer output data only if necessary to prevent a
dataflow deadlock situation.

– Buffer. This will unconditionally buffer all data output from
this stage.

– No buffer. Do not buffer output data under any circumstances.
This could potentially lead to deadlock situations if not used
carefully.

If you choose the Auto buffer or Buffer options, you can also set the

values of the various buffering parameters:

Maximum memory buffer size (bytes). Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB).

Buffer free run (percent). Specifies how much of the available
in-memory buffer to consume before the buffer resists. This is
expressed as a percentage of Maximum memory buffer size.
When the amount of data in the buffer is less than this value, new
3-46 Parallel Job Developer’s Guide

Stage Editors Outputs Page
data is accepted automatically. When the data exceeds it, the
buffer first tries to write some of the data it contains before
accepting more.

The default value is 50% of the Maximum memory buffer size. You

can set it to greater than 100%, in which case the buffer continues

to store data up to the indicated multiple of Maximum memory

buffer size before writing to disk.

Queue upper bound size (bytes). Specifies the maximum
amount of data buffered at any time using both memory and disk.
The default value is zero, meaning that the buffer size is limited
only by the available disk space as specified in the configuration
file (resource scratchdisk). If you set Queue upper bound size
(bytes) to a non-zero value, the amount of data stored in the buffer
will not exceed this value (in bytes) plus one block (where the data
stored in a block cannot exceed 32 KB).

If you set Queue upper bound size to a value equal to or slightly

less than Maximum memory buffer size, and set Buffer free run to

1.0, you will create a finite capacity buffer that will not write to

disk. However, the size of the buffer is limited by the virtual

memory of your system and you can create deadlock if the buffer

becomes full.

Disk write increment (bytes). Sets the size, in bytes, of blocks
of data being moved to/from disk by the buffering operator. The
default is 1048576 (1 MB). Adjusting this value trades amount of
disk access against throughput for small amounts of data.
Increasing the block size reduces disk access, but may decrease
performance when data is being read/written in smaller units.
Decreasing the block size increases throughput, but may increase
the amount of disk access.

Outputs Page
The Outputs page gives information about links going out of a stage.

In the case of a file or database stage an input link carries data being

read from the file or database. In the case of a processing or

restructure stage it carries data that the stage has processed. Where

there are no output links the stage editor has no Outputs page.

Where it is present, the Outputs page contains various tabs

depending on stage type. The only field the Outputs page itself

contains is Output name, which gives the name of the link being

edited. Where a stage has more than one output link, you can select

the link you are editing from the Output name drop-down list.
Parallel Job Developer’s Guide 3-47

Outputs Page Stage Editors
The Outputs page also has a Columns… button. Click Columns… to

open a window showing column names from the meta data defined

for this link. You can drag these columns to various fields in the

Outputs page tabs as required.

Certain stage types will also have a View Data… button. Press this to

view the actual data associated with the specified data source or data

target. The button is available if you have defined meta data for the

link.

The Sequential File stage has a Show File… button, rather than View
Data… . This shows the flat file as it has been created on disk.

General Tab
The Outputs page always has a General tab. this allows you to enter

an optional description of the link. Specifying a description for each

link enhances job maintainability.

Properties Tab
Some types of file and database stages can have properties that are

particular to specific output links. In this case the Outputs page has a
3-48 Parallel Job Developer’s Guide

Stage Editors Outputs Page
Properties tab. This has the same format as the Stage page

Properties tab (see "Properties Tab" on page 3-8).

Format Tab
Stages that read from certain types of file (e.g., the Sequential File

stage) also have a Format tab which allows you to specify the format

of the file or files being read from.

The Format page is similar in structure to the Properties page. A flat

file has a number of properties that you can set different attributes for.

Select the property in the tree and select the attributes you want to set

from the Available properties to add window, it will then appear as
Parallel Job Developer’s Guide 3-49

Outputs Page Stage Editors
a dependent property in the property tree and you can set its value as

required. This tab sets the format information for the file at row level.

You can override the settings for individual columns using the Edit
Column Metadata dialog box (see page 3-28).

Format details are also stored with table definitions, and you can use

the Load… button to load a format from a table definition stored in

the DataStage Repository.

The short-cut menu from the property tree gives access to the

following functions:

Format as. This applies a predefined template of properties.
Choose from the following:

– Delimited/quoted

– Fixed-width records

– UNIX line terminator

– DOS line terminator

– No terminator (fixed width)

– Mainframe (COBOL)

Add sub-property. Gives access to a list of dependent properties
for the currently selected property (visible only if the property has
dependents).

Set to default. Appears if the currently selected property has
been set to a non-default value, allowing you to re-select the
default.

Remove. Removes the currently selected property. This is
disabled if the current property is mandatory.

Remove all. Removes all the non-mandatory properties.

Details of the properties you can set are given in the chapter

describing the individual stage editors:

Sequential File stage – page 5-30

File Set stage – page 6-25

External Source stage – page 8-7

Column Import stage – page 41-12
3-50 Parallel Job Developer’s Guide

Stage Editors Outputs Page
Columns Tab
The Outputs page always has a Columns tab. This displays the

column meta data for the selected output link in a grid.

There are various ways of populating the grid:

If the other end of the link has meta data specified for it, this will
be displayed in the Columns tab (meta data is associated with,
and travels with a link).

You can type the required meta data into the grid. When you have
done this, you can click the Save… button to save the meta data
as a table definition in the Repository for subsequent reuse.

You can load an existing table definition from the Repository. Click
the Load… button to be offered a choice of table definitions to
load.

If the stage you are editing is a general or restructure stage with a
Mapping tab, you can drag data from the left pane to the right
pane. This automatically populates the right pane and the
Columns tab.

If runtime column propagation is enabled in the DataStage

Administrator, you can select the Runtime column propagation to

specify that columns encountered by the stage can be used even if

they are not explicitly defined in the meta data. There are some

special considerations when using runtime column propagation with

certain stage types:

Sequential File

File Set
Parallel Job Developer’s Guide 3-51

Outputs Page Stage Editors
External Source

External Target

See the individual stage descriptions for details of these.

If the selected output link is a reject link, the column meta data grid is

read only and cannot be modified.

If you select the options in the Grid Properties dialog box (see "Grid

Properties" in DataStage Designer Guide), the Columns tab will also

display two extra fields: Table Definition Reference and Column

Definition Reference. These show the table definition and individual

columns that the columns on the tab were derived from.

If you click in a row and select Edit Row… from the shortcut menu,

the Edit Column meta data dialog box appears, which allows you

edit the row details in a dialog box format. It also has a Parallel tab

which allows you to specify properties that are peculiar to parallel job

column definitions. The properties you can specify here are the same

as those specified for input links (see page 3-27).

Mapping Tab
For processing and restructure stages the Mapping tab allows you to

specify how the output columns are derived, i.e., what input columns

map onto them or how they are generated.

The left pane shows the input columns and/or the generated columns.

These are read only and cannot be modified on this tab. These
3-52 Parallel Job Developer’s Guide

Stage Editors Outputs Page
columns represent the data that the stage has produced after it has

processed the input data.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility. If you have not yet defined any output column

definitions, dragging columns over will define them for you. If you

have already defined output column definitions, DataStage performs

the mapping for you as far as possible: you can do this explicitly using

the auto-match facility, or implicitly by just visiting the Mapping tab

and clicking OK (which is the equivalent of auto-matching on name).

There is also a shortcut menu which gives access to a range of column

selection and editing functions, including the facilities for selecting

multiple columns and editing multiple derivations (this functionality is

described in the Transformer chapter, page 16-9 and page 16-13).

You may choose not to map all the left hand columns, for example if

your output data is a subset of your input data, but be aware that, if

you have Runtime Column Propagation turned on for that link, the

data you have not mapped will appear on the output link anyway.

You can also perform mapping without actually opening the stage

editor. Select the stage in the Designer canvas and choose Auto-map

from the shortcut menu.

In the above example the left pane represents the data after it has

been joined. The Expression field shows how the column has been

derived, the Column Name shows the column after it has been

joined. The right pane represents the data being output by the stage

after the join. In this example the data has been mapped straight

across.

More details about mapping operations for the different stages are

given in the individual stage descriptions:

Stage Chapter Stage Chapter

Aggregator Chapter 18 Change Capture Chapter 31

Join Chapter 19 Change Apply Chapter 32

Funnel Chapter 22 Difference Chapter 33

Lookup Chapter 21 Column Import Chapter 41

Sort Chapter 23 Column Export Chapter 42

Merge Chapter 20 Head Chapter 49

Remove Duplicates Chapter 24 Tail Chapter 50

Sample Chapter 51 Peek Chapter 52
Parallel Job Developer’s Guide 3-53

Outputs Page Stage Editors
A shortcut menu can be invoked from the right pane that allows you

to:

Find and replace column names.

Validate a derivation you have entered.

Clear an existing derivation.

Append a new column.

Select all columns.

Insert a new column at the current position.

Delete the selected column or columns.

Cut and copy columns.

Paste a whole column.

Paste just the derivation from a column.

The Find button opens a dialog box which allows you to search for

particular output columns.

Column Generator Chapter 54 SAS Chapter 38

Copy Chapter 27

Stage Chapter Stage Chapter
3-54 Parallel Job Developer’s Guide

Stage Editors Outputs Page
The Auto-Match button opens a dialog box which will automatically

map left pane columns onto right pane columns according to the

specified criteria.

Select Location match to map input columns onto the output ones

occupying the equivalent position. Select Name match to match by

names. You can specify that all columns are to be mapped by name,

or only the ones you have selected. You can also specify that prefixes

and suffixes are ignored for input and output columns, and that case

can be ignored.

Advanced Tab
The Advanced tab allows you to specify how DataStage buffers data

being output from this stage. By default DataStage buffers data in

such a way that no deadlocks can arise; a deadlock being the situation

where a number of stages are mutually dependent, and are waiting

for input from another stage and cannot output until they have

received it.

The size and operation of the buffer are usually the same for all links

on all stages (the default values that the settings take can be set using

environment variables – see "Configuring for Enterprise Edition" of

the Install and Upgrade Guide).

The Advanced tab allows you to specify buffer settings on a per-link

basis. You should only change the settings if you fully understand the

consequences of your actions (otherwise you might cause deadlock

situations to arise).
Parallel Job Developer’s Guide 3-55

Outputs Page Stage Editors
Any changes you make on this tab will automatically be reflected in

the Input Page Advanced Tab of the stage at the other end of this link

The settings are as follows:

Buffering mode. Select one of the following from the drop-down
list.

– (Default). This will take whatever the default settings are as
specified by the environment variables (this will be Auto-buffer
unless you have explicitly changed the value of the
APT_BUFFERING _POLICY environment variable).

– Auto buffer. Buffer output data only if necessary to prevent a
dataflow deadlock situation.

– Buffer. This will unconditionally buffer all data output from
this stage.

– No buffer. Do not buffer output data under any circumstances.
This could potentially lead to deadlock situations if not used
carefully.

If you choose the Auto buffer or Buffer options, you can also set the

values of the various buffering parameters:

Maximum memory buffer size (bytes). Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB).

Buffer free run (percent). Specifies how much of the available
in-memory buffer to consume before the buffer resists. This is
expressed as a percentage of Maximum memory buffer size.
When the amount of data in the buffer is less than this value, new
3-56 Parallel Job Developer’s Guide

Stage Editors Outputs Page
data is accepted automatically. When the data exceeds it, the
buffer first tries to write some of the data it contains before
accepting more.

The default value is 50% of the Maximum memory buffer size. You

can set it to greater than 100%, in which case the buffer continues

to store data up to the indicated multiple of Maximum memory

buffer size before writing to disk.

Queue upper bound size (bytes). Specifies the maximum
amount of data buffered at any time using both memory and disk.
The default value is zero, meaning that the buffer size is limited
only by the available disk space as specified in the configuration
file (resource scratchdisk). If you set Queue upper bound size
(bytes) to a non-zero value, the amount of data stored in the buffer
will not exceed this value (in bytes) plus one block (where the data
stored in a block cannot exceed 32 KB).

If you set Queue upper bound size to a value equal to or slightly

less than Maximum memory buffer size, and set Buffer free run to

1.0, you will create a finite capacity buffer that will not write to

disk. However, the size of the buffer is limited by the virtual

memory of your system and you can create deadlock if the buffer

becomes full.

Disk write increment (bytes). Sets the size, in bytes, of blocks
of data being moved to/from disk by the buffering operator. The
default is 1048576 (1 MB). Adjusting this value trades amount of
disk access against throughput for small amounts of data.
Increasing the block size reduces disk access, but may decrease
performance when data is being read/written in smaller units.
Decreasing the block size increases throughput, but may increase
the amount of disk access.
Parallel Job Developer’s Guide 3-57

Outputs Page Stage Editors
3-58 Parallel Job Developer’s Guide

4
Data Set Stage

The Data Set stage is a file stage. It allows you to read data from or

write data to a data set. The stage can have a single input link or a

single output link. It can be configured to execute in parallel or

sequential mode.

What is a data set? DataStage parallel extender jobs use data sets to

manage data within a job. You can think of each link in a job as

carrying a data set. The Data Set stage allows you to store data being

operated on in a persistent form, which can then be used by other

DataStage jobs. Data sets are operating system files, each referred to

by a control file, which by convention has the suffix .ds. Using data

sets wisely can be key to good performance in a set of linked jobs. You

can also manage data sets independently of a job using the Data Set

Management utility, available from the DataStage Designer, Manager,

or Director, see Chapter 57.

The stage editor has up to three pages, depending on whether you are

reading or writing a data set:
Parallel Job Developer’s Guide 4-1

Must Do’s Data Set Stage
Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a data set.
This is where you specify details about the data set being written
to.

Outputs Page. This is present when you are reading from a data
set. This is where you specify details about the data set being read
from.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Data Set stages in a job. This section specifies the minimum

steps to take to get a Data Set stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic methods, you will learn

where the shortcuts are when you get familiar with the product.

The steps required depend on whether you are using the Data Set

stage to read or write a data set.

Writing to a Data Set
In the Input Link Properties Tab specify the pathname of the
control file for the target data set. Set the Update Policy property,
or accept the default setting of Overwrite.

Ensure column meta data has been specified for the data set (this
may have already been done in a preceding stage).

Reading from a Data Set
In the Output Link Properties Tab specify the pathname of the
control file for the source data set.

Ensure column meta data has been specified for the data set.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes.
4-2 Parallel Job Developer’s Guide

Data Set Stage Inputs Page
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the contents of the data set are
processed by the available nodes as specified in the Configuration
file, and by any node constraints specified on the Advanced tab.
In Sequential mode the entire contents of the data set are
processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Propagate, Set or Clear.
If you select Set file read operations will request that the next
stage preserves the partitioning as is. Propagate takes the setting
of the flag from the previous stage.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about how the Data Set

stage writes data to a data set. The Data Set stage can have only one

input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Columns tab specifies the column definitions

of the data. The Advanced tab allows you to change the default

buffering settings for the input link.

Details about Data Set stage properties are given in the following

sections. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 4-3

Inputs Page Data Set Stage
Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and to what data set.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows:

Target Category

File

The name of the control file for the data set. You can browse for the

file or enter a job parameter. By convention, the file has the suffix .ds.

Update Policy

Specifies what action will be taken if the data set you are writing to

already exists. Choose from:

Append. Append any new data to the existing data.

Create (Error if exists). DataStage reports an error if the data set
already exists.

Overwrite. Overwrites any existing data with new data.

Use existing (Discard records). Keeps the existing data and
discards any new data.

Use existing (Discard records and schema). Keeps the
existing data and discards any new data and its associated
schema.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/File pathname N/A Y N N/A

Target/Update
Policy

Append/Create
(Error if exists)/
Overwrite/Use
existing
(Discard
records)/Use
existing
(Discard
records and
schema)

Overwrite Y N N/A
4-4 Parallel Job Developer’s Guide

Data Set Stage Inputs Page
The default is Overwrite.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the data

set. It also allows you to specify that the data should be sorted before

being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Data Set stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default Auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Data Set stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Data Set stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Data Set stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Data Set stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.
Parallel Job Developer’s Guide 4-5

Inputs Page Data Set Stage
Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Data Set
stage. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the data set.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with Auto methods).

Select the check boxes as follows:

Sort. Select this to specify that data coming in on the link should
be sorted. Select the column or columns to sort on from the
Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.
4-6 Parallel Job Developer’s Guide

Data Set Stage Outputs Page
If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the Data

Set stage reads data from a data set. The Data Set stage can have only

one output link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of incoming data. The Advanced tab allows you to change

the default buffering settings for the output link.

Details about Data Set stage properties and formatting are given in

the following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from the data set. A

Data Set stage only has one property, but this is mandatory.

Source Category

File

The name of the control file for the data set. You can browse for the

file or enter a job parameter. By convention the file has the suffix .ds.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/File pathname N/A Y N N/A
Parallel Job Developer’s Guide 4-7

Outputs Page Data Set Stage
4-8 Parallel Job Developer’s Guide

5
Sequential File Stage

The Sequential File stage is a file stage. It allows you to read data from

or write data one or more flat files. The stage can have a single input

link or a single output link, and a single rejects link.

When you edit a Sequential File stage, the Sequential File stage editor

appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."
Parallel Job Developer’s Guide 5-1

Sequential File Stage
The stage executes in parallel mode if reading multiple files but

executes sequentially if it is only reading one file. By default a

complete file will be read by a single node (although each node might

read more than one file). For fixed-width files, however, you can

configure the stage to behave differently:

You can specify that single files can be read by multiple nodes.
This can improve performance on cluster systems. See "Read
From Multiple Nodes" on page 5-29.

You can specifiy that a number of readers run on a single node.
This means, for example, that a single file can be partitioned as it
is read (even though the stage is constrained to running
sequentially on the conductor node). See "Number Of Readers Per
Node" on page 5-28.

(These two options are mutually exclusive.)

The stage executes in parallel if writing to multiple files, but executes

sequentially if writing to a single file. Each node writes to a single file,

but a node can write more than one file.

When reading or writing a flat file, DataStage needs to know

something about the format of the file. The information required is

how the file is divided into rows and how rows are divided into

columns. You specify this on the Format tab. Settings for individual

columns can be overridden on the Columns tab using the Edit
Column Metadata dialog box.

The stage editor has up to three pages, depending on whether you are

reading or writing a file:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a flat file.
This is where you specify details about the file or files being
written to.

Outputs Page. This is present when you are reading from a flat
file and/or have a reject link. This is where you specify details
about the file or files being read from.

There are one or two special points to note about using runtime

column propagation (RCP) with Sequential stages. See "Using RCP

With Sequential Stages" on page 5-42 for details.
5-2 Parallel Job Developer’s Guide

Sequential File Stage Example of Writing a Sequential File
Example of Writing a Sequential File
In the following example, the Sequential File stage is set up to write a

comma-delimited file. Here is a sample of the data as it will be written:

2,Scottish Longbreads,10.00,15,25/04/2001,Should Eat Warm,Q2
6,Maxilaku,16.00,30,02/01/2002,,Q2
10,Perth Pasties,26.20,10,12/08/2001,Warm Before Heating,Q2
14,Outback Lager,12.00,5,02/01/2002,Do Not Shake,Q2
18,Singaporean Hokkien Fried Mee,11.20,2,02/01/2002,,Q2
22,Gudbrandsdalsost,28.80,7,02/01/2002,,Q2
26,Escargots de Bourgogne,10.60,30,02/01/2002,,Q2
30,Outback Lager,12.00,30,02/01/2002,Do Not Shake,Q2
34,Flotemysost,17.20,30,02/01/2002,,Q2
38,Chartreuse verte,14.40,4,02/01/2002,,Q2
42,Spegesild,9.60,30,02/01/2002,,Q2
46,Konbu,4.80,12,02/01/2002,,Q2
50,Nord-Ost Matjeshering,20.70,35,02/01/2002,,Q2
54,Raclette Courdavault,44.00,9,22/12/2001,,Q2
58,Gnocchi di nonna Alice,30.40,12,02/01/2002,,Q2
62,Zaanse koeken,7.60,16,02/01/2002,,Q2
66,Filo Mix,5.60,8,02/01/2002,Please Hurry,Q2
70,Mascarpone Fabioli,25.60,6,02/01/2002,,Q2

The meta data for the file is defined in the Columns tab as follows:

The Format tab is set as follows to define that the stage will write a

file where each column is delimited by a comma, there is no final
Parallel Job Developer’s Guide 5-3

Example of Reading a Sequential File Sequential File Stage
delimiter, and any dates in the data are expected to have the format

dd/mm/yyyy, rather than yyyy-mm-dd, which is the default format.:

Example of Reading a Sequential File
In the following example, the sequential file stage is set up to read a

fixed width file. Here is a sample of the data in the file:

0136.801205/04/2001
0210.001525/04/2001
0316.803002/01/2002
0414.704002/01/2002
0517.200202/01/2002
0616.003002/01/2002
0744.001012/08/2001
0814.403002/01/2002
0950.002502/01/2002
1026.201012/08/2001
1120.701012/08/2001
1239.401012/08/2001
1310.000302/01/2002
1412.000502/01/2002
1528.800102/01/2002
1636.802021/06/2001
5-4 Parallel Job Developer’s Guide

Sequential File Stage Example of Reading a Sequential File
The meta data for the file is defined in the Columns tab as follows:

The Format tab is set as follows to define that the stage is reading a

fixed width file where each row is delimited by a UNIX newline, and

the columns have no delimiter:
Parallel Job Developer’s Guide 5-5

Must Do’s Sequential File Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Sequential File stages in a job. This section specifies the

minimum steps to take to get a Sequential File stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on whether you are using the Sequential

File stage to read or write a file.

Writing to a File
In the Input Link Properties Tab specify the pathname of the
file being written to (repeat this for writing to multiple files). The
other properties all have default values, which you can change or
not as required.

In the Input Link Format Tab specify format details for the file(s)
you are writing to, or accept the defaults (variable length columns
enclosed in double quotes and delimited by commas, rows
delimited with UNIX newlines).

Ensure column meta data has been specified for the file(s) (this
can be achieved via a schema file if required).

Reading from a File
In the Output Link Properties Tab:

– In Read Method, specify whether to read specific files (the
default) or all files whose name fits a pattern.

– If you are reading specific files, specify the pathname of the file
being read from (repeat this for reading multiple files).

– If you are reading files that fit a pattern, specify the name
pattern to match.

– Accept the default for the options or specify new settings
(available options depend on the Read Method).

In the Output Link Format Tab specify format details for the
file(s) you are reading from, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

Ensure column meta data has been specified for the file(s) (this
can be achieved via a schema file if required).
5-6 Parallel Job Developer’s Guide

Sequential File Stage Stage Page
Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. When a stage is reading or writing a single file
the Execution Mode is sequential and you cannot change it.
When a stage is reading or writing multiple files, the Execution
Mode is parallel and you cannot change it. In parallel mode, the
files are processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode the entire contents of the file
are processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set file read operations will request that the next stage preserves
the partitioning as is (it is ignored for file write operations). If you
set the Keep File Partitions output property this will automatically
set the preserve partitioning flag.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab
The NLS Map tab allows you to define a character set map for the

Sequential File stage. This overrides the default character set map set
Parallel Job Developer’s Guide 5-7

Inputs Page Sequential File Stage
for the project or the job. You can specify that the map be supplied as

a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for

individual columns within the data processed by the Sequential File

stage. An extra property, NLS Map, appears in the Columns grid in

the Columns tab, but note that only ustring data types allow you to

set an NLS map value (see "Data Types" on page 2-28).

Inputs Page
The Inputs page allows you to specify details about how the

Sequential File stage writes data to one or more flat files. The

Sequential File stage can have only one input link, but this can write to

multiple files.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the file or files.

The Formats tab gives information about the format of the files being

written. The Columns tab specifies the column definitions of data

being written. The Advanced tab allows you to change the default

buffering settings for the input link.

Details about Sequential File stage properties, partitioning, and

formatting are given in the following sections. See Chapter 3, "Stage

Editors," for a general description of the other tabs.
5-8 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and to what files. Some of

the properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Target Category

File

This property defines the flat file that the incoming data will be written

to. You can type in a pathname, or browse for a file. You can specify

multiple files by repeating the File property. Do this by selecting the

Properties item at the top of the tree, and clicking on File in the

Available properties to add window. Do this for each extra file you

want to specify.

You must specify at least one file to be written to, which must exist

unless you specify a File Update Mode of Create or Overwrite.

File Update Mode

This property defines how the specified file or files are updated. The

same method applies to all files being written to. Choose from

Append to append to existing files, Overwrite to overwrite existing

files, or Create to create a new file. If you specify the Create property

for a file that already exists you will get an error at runtime.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/File Pathname N/A Y Y N/A

Target/File Update
Mode

Append/
Create/
Overwrite

Overwrite Y N N/A

Options/Cleanup On
Failure

True/False True Y N N/A

Options/Reject Mode Continue/Fail/
Save

Continue Y N N/A

Options/Filter Command N/A N N N/A

Options/Schema File Pathname N/A N N N/A
Parallel Job Developer’s Guide 5-9

Inputs Page Sequential File Stage
By default this property is set to Overwrite.

Options Category

Cleanup On Failure

This is set to True by default and specifies that the stage will delete

any partially written files if the stage fails for any reason. Set this to

False to specify that partially written files should be left.

Reject Mode

This specifies what happens to any data records that are not written to

a file for some reason. Choose from Continue to continue operation

and discard any rejected rows, Fail to cease writing if any rows are

rejected, or Save to send rejected rows down a reject link.

Continue is set by default.

Filter

This is an optional property. You can use this to specify that the data is

passed through a filter program before being written to the file or

files. Specify the filter command, and any required arguments, in the

Property Value box.

Schema File

This is an optional property. By default the Sequential File stage will

use the column definitions defined on the Columns and Format tabs

as a schema for writing to the file. You can, however, specify a file

containing a schema instead (note, however, that if you have defined

columns on the Columns tab, you should ensure these match the

schema file). Type in a pathname or browse for a schema file.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the file

or files. It also allows you to specify that the data should be sorted

before being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.
5-10 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
If the Sequential File stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default Auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Sequential File stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Sequential File stage is set to execute in parallel (i.e., is writing

to multiple files), then you can set a partitioning method by selecting

from the Partition type drop-down list. This will override any current

partitioning.

If the Sequential File stage is set to execute in sequential mode (i.e., is

writing to a single file), but the preceding stage is executing in

parallel, then you can set a collection method from the Collector
type drop-down list. This will override the default auto collection

method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Sequential File
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 5-11

Inputs Page Sequential File Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Sequential
File stage. Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
5-12 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
Input Link Format Tab
The Format tab allows you to supply information about the format of

the flat file or files to which you are writing. The tab has a similar

format to the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the Sequential File stage

will produce a file of the following format:

File comprises variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

You can use the Defaults button to change your default settings. Use

the Format tab to specify your required settings, then click Defaults
➤ Save current as default. All your sequential files will use your

settings by default from now on. If your requirements change, you can

choose Defaults ➤ Reset defaults from factory settings to go

back to the original defaults as described above. Once you have done

this, you then have to click Defaults ➤ Set current from default

for the new defaults to take effect.

To change individual properties, select a property type from the main

tree then add the properties you want to set to the tree structure by

clicking on them in the Available properties to set window. You

can then set a value for that property in the Property Value box. Pop-

up help for each of the available properties appears if you hover the

mouse pointer over it.

Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:
Parallel Job Developer’s Guide 5-13

Inputs Page Sequential File Stage
Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter; used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.

– tab. The last column of each record is delimited by the ASCII
tab character.

When writing, a space is now inserted after every field except the

last in the record. Previously, a space was inserted after every field

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
5-14 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
including the last. (If you want to revert to the pre-release 7.5

behavior of inserting a space after the last field, set the

APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To implement a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.
Parallel Job Developer’s Guide 5-15

Inputs Page Sequential File Stage
This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns written to the file or files.

These are applied to all columns written, but can be overridden for

individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can

usually be an ASCII character or a multi-byte Unicode character (if you

have NLS enabled). The available properties are:

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ‘, ‘ (comma
space – you do not need to enter the inverted commas) would
have each field delimited by ‘, ‘ unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
5-16 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length

fields can be either delimited by a character or preceded by a 1-, 2-

, or 4-byte prefix containing the field length. DataStage inserts the

prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the

data, and a trailing quote character. Quote characters are not

counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage inserts the

element count as a prefix of each variable-length vector field. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.
Parallel Job Developer’s Guide 5-17

Inputs Page Sequential File Stage
General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

– For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.
5-18 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
Parallel Job Developer’s Guide 5-19

Inputs Page Sequential File Stage
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing decimal

columns. Select No to write a positive sign (0xf) regardless of the

columns’ actual sign value.
5-20 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.
Parallel Job Developer’s Guide 5-21

Inputs Page Sequential File Stage
Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf().
By default, DataStage invokes the C sprintf() function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf().

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.
5-22 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page
– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.
Parallel Job Developer’s Guide 5-23

Inputs Page Sequential File Stage
Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.
5-24 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent sign (%). Separate the string’s components with any

character except the percent sign (%).

Outputs Page
The Outputs page allows you to specify details about how the

Sequential File stage reads data from one or more flat files. The

Sequential File stage can have only one output link, but this can read

from multiple files.

It can also have a single reject link. This is typically used when you are

writing to a file and provides a location where records that have failed

to be written to a file for some reason can be sent. When you are

reading files, you can use a reject link as a destination for rows that do

not match the expected column definitions.

The Output name drop-down list allows you to choose whether you

are looking at details of the main output link (the stream link) or the

reject link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Formats tab gives information about

the format of the files being read. The Columns tab specifies the

column definitions of the data. The Advanced tab allows you to

change the default buffering settings for the output link.

Details about Sequential File stage properties and formatting are

given in the following sections. See Chapter 3, "Stage Editors," for a

general description of the other tabs.
Parallel Job Developer’s Guide 5-25

Outputs Page Sequential File Stage
Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from what files. Some of

the properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/File pathname N/A Y if Read
Method =
Specific
Files(s)

Y N/A

Source/File
Pattern

pathname N/A Y if Read
Method =
Field Pattern

N N/A

Source/Read
Method

Specific
File(s)/File
Pattern

Specific Files(s) Y N N/A

Options/Missing
File Mode

Error/OK/
Depends

Depends Y if File used N N/A

Options/Keep file
Partitions

True/False False Y N N/A

Options/Reject
Mode

Continue/
Fail/Save

Continue Y N N/A

Options/Report
Progress

Yes/No Yes Y N N/A

Options/Filter command N/A N N N/A

Options/File
Name Column

column
name

fileNameColumn N N N/A

Options/Number
Of Readers Per
Node

number 1 N N N/A

Options/Schema
File

pathname N/A N N N/A
5-26 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
Source Category

File

This property defines the flat file that data will be read from. You can

type in a pathname, or browse for a file. You can specify multiple files

by repeating the File property. Do this by selecting the Properties

item at the top of the tree, and clicking on File in the Available
properties to add window. Do this for each extra file you want to

specify.

File Pattern

Specifies a group of files to import. Specify file containing a list of files

or a job parameter representing the file. The file could also contain be

any valid shell expression, in Bourne shell syntax, that generates a list

of file names.

Read Method

This property specifies whether you are reading from a specific file or

files or using a file pattern to select files (e.g., *.txt).

Options Category

Missing File Mode

Specifies the action to take if one of your File properties has specified

a file that does not exist. Choose from Error to stop the job, OK to

skip the file, or Depends, which means the default is Error, unless the

file has a node name prefix of *: in which case it is OK. The default is

Depends.

Keep file Partitions

Set this to True to partition the imported data set according to the

organization of the input file(s). So, for example, if you are reading

three files you will have three partitions. Defaults to False.

Reject Mode

Allows you to specify behavior if a read record does not match the

expected schema. Choose from Continue to continue operation and

discard any rejected rows, Fail to cease reading if any rows are

rejected, or Save to send rejected rows down a reject link. Defaults to

Continue.
Parallel Job Developer’s Guide 5-27

Outputs Page Sequential File Stage
Report Progress

Choose Yes or No to enable or disable reporting. By default the stage
displays a progress report at each 10% interval when it can ascertain

file size. Reporting occurs only if the file is greater than 100 KB,

records are fixed length, and there is no filter on the file.

Filter

This is an optional property. You can use this to specify that the data is

passed through a filter program after being read from the files.

Specify the filter command, and any required arguments, in the

Property Value box.

File Name Column

This is an optional property. It adds an extra column of type VarChar

to the output of the stage, containing the pathname of the file the

record is read from. You should also add this column manually to the

Columns definitions to ensure that the column is not dropped if you

are not using runtime column propagation, or it is turned off at some

point.

Number Of Readers Per Node

This is an optional property and only applies to files containing fixed-

length records, it is mutually exclusive with the Read from multiple

nodes property. Specifies the number of instances of the file read
operator on a processing node. The default is one operator per node

per input data file. If numReaders is greater than one, each instance of

the file read operator reads a contiguous range of records from the

input file. The starting record location in the file for each operator, or

seek location, is determined by the data file size, the record length,

and the number of instances of the operator, as specified by

numReaders.

The resulting data set contains one partition per instance of the file

read operator, as determined by numReaders.

This provides a way of partitioning the data contained in a single file.

Each node reads a single file, but the file can be divided according to
5-28 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
the number of readers per node, and written to separate partitions.

This method can result in better I/O performance on an SMP system.

Read From Multiple Nodes

This is an optional property and only applies to files containing fixed-

length records, it is mutually exclusive with the Number of Readers

Per Node property. Set this to Yes to allow individual files to be read

by several nodes. This can improve performance on a cluster system.

DataStage knows the number of nodes available, and using the fixed

length record size, and the actual size of the file to be read, allocates

the reader on each node a spearate region within the file to process.

The regions will be of roughly equal size.

Schema File

This is an optional property. By default the Sequential File stage will

use the column definitions defined on the Columns and Format tabs

as a schema for reading the file. You can, however, specify a file

Reader

Reader

Reader

Reader

Number of readers per node = 4

Node

File Partitioned data set

Node

File

Partitioned data set

Reader

Reader

Reader

Reader

Node

Node

Node

Read from multiple nodes = Yes
Parallel Job Developer’s Guide 5-29

Outputs Page Sequential File Stage
containing a schema instead (note, however, that if you have defined

columns on the Columns tab, you should ensure these match the

schema file). Type in a pathname or browse for a schema file.

Reject Links
You cannot change the properties of a Reject link. The Properties tab

for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For

writing files, the link uses the column definitions for the input link. For

reading files, the link uses a single column called rejected containing

raw data for columns rejected after reading because they do not

match the schema.

Output Link Format Tab
The Format tab allows you to supply information about the format of

the flat file or files which you are reading. The tab has a similar format

to the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the Sequential File stage

will expect to read a file of the following format:

File comprises variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Defaults button to change your default settings. Use

the Format tab to specify your required settings, then click Defaults
➤ Save current as default. All your sequential files will use your

settings by default from now on. If your requirements change, you can

choose Defaults ➤ Reset defaults from factory settings to go

back to the original defaults as described above. Once you have done

this, you then have to click Defaults ➤ Set current from default

for the new defaults to take effect.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you

want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that

property in the Property Value box. Pop-up help for each of the

available properties appears if you hover the mouse pointer over it.
5-30 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Does not apply to output links.

Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter, used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.
Parallel Job Developer’s Guide 5-31

Outputs Page Sequential File Stage
– tab. The last column of each record is delimited by the ASCII
tab character.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

– Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To specify a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and record type.

Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
5-32 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns read from the file or files.

These are applied to all columns, but can be overridden for individual

columns from the Columns tab using the Edit Column Metadata

dialog box. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ‘, ‘ (comma space –
you do not need to enter the inverted commas) specifies each field
is delimited by ‘, ‘ unless overridden for individual fields.
DataStage skips the delimiter string when reading.
Parallel Job Developer’s Guide 5-33

Outputs Page Sequential File Stage
Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it
reads. The message has the format:
Importing N: D

where:

– N is the field name.

– D is the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and

reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.
5-34 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage reads the length

prefix but does not include it as a separate field in the data set. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.
Parallel Job Developer’s Guide 5-35

Outputs Page Sequential File Stage
By default data is formatted as text, as follows:

– For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes
5-36 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. This property is ignored for output links.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Not relevant for output links.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.

For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when reading

decimal fields. Select No to write a positive sign (0xf)

regardless of the fields’ actual sign value.
Parallel Job Developer’s Guide 5-37

Outputs Page Sequential File Stage
– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision of a packed decimal. Enter a
number.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at

column level.
5-38 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanf(). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf(). By
default, DataStage invokes the C sscanf() function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanf().

Out_format. This property is not relevant for output links.

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.
Parallel Job Developer’s Guide 5-39

Outputs Page Sequential File Stage
– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the twodigit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).
5-40 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page
– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366).

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).
Parallel Job Developer’s Guide 5-41

Using RCP With Sequential Stages Sequential File Stage
Using RCP With Sequential Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.

Sequential files, unlike most other data sources, do not have inherent

column definitions, and so DataStage cannot always tell where there

are extra columns that need propagating. You can only use RCP on

sequential files if you have used the Schema File property (see

"Schema File" on page 5-10 and on page 5-29) to specify a schema

which describes all the columns in the sequential file. You need to

specify the same schema file for any similar stages in the job where

you want to propagate columns. Stages that will require a schema file

are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
5-42 Parallel Job Developer’s Guide

6
File Set Stage

The File Set stage is a file stage. It allows you to read data from or

write data to a file set. The stage can have a single input link, a single

output link, and a single rejects link. It only executes in parallel mode.

What is a file set? DataStage can generate and name exported files,

write them to their destination, and list the files it has generated in a

file whose extension is, by convention, .fs. The data files and the file

that lists them are called a file set. This capability is useful because

some operating systems impose a 2 GB limit on the size of a file and

you need to distribute files among nodes to prevent overruns.

The amount of data that can be stored in each destination data file is

limited by the characteristics of the file system and the amount of free

disk space available. The number of files created by a file set depends

on:

The number of processing nodes in the default node pool

The number of disks in the export or default disk pool connected
to each processing node in the default node pool

The size of the partitions of the data set
Parallel Job Developer’s Guide 6-1

Must Do’s File Set Stage
The File Set stage enables you to create and write to file sets, and to

read data back from file sets.

Unlike data sets, file sets carry formatting information that describe

the format of the files to be read or written.

When you edit a File Set stage, the File Set stage editor appears. This

is based on the generic stage editor described in Chapter 3, "Stage

Editors."

The stage editor has up to three pages, depending on whether you are

reading or writing a file set:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a file set.
This is where you specify details about the file set being written to.

Outputs Page. This is present when you are reading from a file
set. This is where you specify details about the file set being read
from.

There are one or two special points to note about using runtime

column propagation (RCP) with File Set stages. See "Using RCP With

File Set Stages" on page 6-37 for details.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include File Set stages in a job. This section specifies the minimum

steps to take to get a File Set stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic methods, you will learn

where the shortcuts are when you get familiar with the product.
6-2 Parallel Job Developer’s Guide

File Set Stage Stage Page
The steps required depend on whether you are using the File Set

stage to read or write a file.

Writing to a File
In the Input Link Properties Tab specify the pathname of the
file set being written to. The other properties all have default
values, which you can change or not as required.

In the Input Link Format Tab specify format details for the file
set you are writing to, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

Ensure column meta data has been specified for the file set.

Reading from a File
In the Output Link Properties Tab specify the pathname of the
file set being read from. The other properties all have default
values, which you can change or not as required.

In the Output Link Format Tab specify format details for the file
set you are reading from, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

Ensure column meta data has been specified for the file set (this
can be achieved via a schema file if required).

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. This is set to parallel and cannot be changed.

Combineability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.
Parallel Job Developer’s Guide 6-3

Stage Page File Set Stage
Preserve partitioning. You can select Set or Clear. If you select
Set, file set read operations will request that the next stage
preserves the partitioning as is (it is ignored for file set write
operations).

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab
The NLS Map tab allows you to define a character set map for the File

Set stage. This overrides the default character set map set for the

project or the job. You can specify that the map be supplied as a job

parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for

individual columns within the data processed by the File Set stage An

extra property, NLS Map, appears in the Columns grid in the

Columns tab, but note that only ustring data types allow you to set

an NLS map value (see "Data Types" on page 2-28).
6-4 Parallel Job Developer’s Guide

File Set Stage Inputs Page
Inputs Page
The Inputs page allows you to specify details about how the File Set

stage writes data to a file set. The File Set stage can have only one

input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the file set. The

Formats tab gives information about the format of the files being

written. The Columns tab specifies the column definitions of the data.

The Advanced tab allows you to change the default buffering settings

for the input link.

Details about File Set stage properties, partitioning, and formatting

are given in the following sections. See Chapter 3, "Stage Editors," for

a general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and to what file set. Some

of the properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/File Set pathname N/A Y N N/A

Target/File Set Update
Policy

Create (Error
if exists) /
Overwrite/
Use Existing
(Discard
records)/ Use
Existing
(Discard
schema &
records)

Overwrite Y N N/A

Target/File Set
Schema policy

Write/Omit Write Y N N/A

Options/Cleanup on
Failure

True/False True Y N N/A
Parallel Job Developer’s Guide 6-5

Inputs Page File Set Stage
Target Category

File Set

This property defines the file set that the incoming data will be written

to. You can type in a pathname of, or browse for a file set descriptor

file (by convention ending in .fs).

File Set Update Policy

Specifies what action will be taken if the file set you are writing to

already exists. Choose from:

Create (Error if exists)

Overwrite

Use Existing (Discard records)

Use Existing (Discard schema & records)

The default is Overwrite.

File Set Schema policy

Specifies whether the schema should be written to the file set. Choose

from Write or Omit. The default is Write.

Options/Single File
Per Partition.

True/False False Y N N/A

Options/Reject Mode Continue/Fail/
Save

Continue Y N N/A

Options/Diskpool string N/A N N N/A

Options/File Prefix string export.use
rname

N N N/A

Options/File Suffix string none N N N/A

Options/Maximum
File Size

number MB N/A N N N/A

Options/Schema File pathname N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
6-6 Parallel Job Developer’s Guide

File Set Stage Inputs Page
Options Category

Cleanup on Failure

This is set to True by default and specifies that the stage will delete

any partially written files if the stage fails for any reason. Set this to

False to specify that partially written files should be left.

Single File Per Partition.

Set this to True to specify that one file is written for each partition. The

default is False.

Reject Mode

Allows you to specify behavior if a record fails to be written for some

reason. Choose from Continue to continue operation and discard any

rejected rows, Fail to cease reading if any rows are rejected, or Save

to send rejected rows down a reject link. Defaults to Continue.

Diskpool

This is an optional property. Specify the name of the disk pool into

which to write the file set. You can also specify a job parameter.

File Prefix

This is an optional property. Specify a prefix for the name of the file

set components. If you do not specify a prefix, the system writes the

following: export.username, where username is your login. You can

also specify a job parameter.

File Suffix

This is an optional property. Specify a suffix for the name of the file set

components. The suffix is omitted by default.

Maximum File Size

This is an optional property. Specify the maximum file size in MB. The

value must be equal to or greater than 1.

Schema File

This is an optional property. By default the File Set stage will use the

column definitions defined on the Columns tab and formatting

information from the Format tab as a schema for writing the file. You

can, however, specify a file containing a schema instead (note,

however, that if you have defined columns on the Columns tab, you
Parallel Job Developer’s Guide 6-7

Inputs Page File Set Stage
should ensure these match the schema file). Type in a pathname or

browse for a schema file.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the file

set. It also allows you to specify that the data should be sorted before

being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the File Set stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default Auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the File Set stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the File Set stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the File Set stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the File Set stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.
6-8 Parallel Job Developer’s Guide

File Set Stage Inputs Page
Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the File Set stage. Normally,
when you are using Auto mode, DataStage will eagerly read any
row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving

on the input link should be sorted before being written to the file

or files. The sort is always carried out within data partitions. If the

stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before

the collection. The availability of sorting depends on the

partitioning or collecting method chosen (it is not available with

the Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.
Parallel Job Developer’s Guide 6-9

Inputs Page File Set Stage
Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Input Link Format Tab
The Format tab allows you to supply information about the format of

the files in the file set to which you are writing. The tab has a similar

format to the Properties tab and is described on page 3-25.

If you do not alter any of the Format settings, the File Set stage will

produce files of the following format:

Files comprise variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

To change individual properties, select a property type from the main

tree then add the properties you want to set to the tree structure by

clicking on them in the Available properties to set window. You

can then set a value for that property in the Property Value box. Pop-

up help for each of the available properties appears if you hover the

mouse pointer over it.

Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.
6-10 Parallel Job Developer’s Guide

File Set Stage Inputs Page
Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter; used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.
Parallel Job Developer’s Guide 6-11

Inputs Page File Set Stage
– tab. The last column of each record is delimited by the ASCII
tab character.

When writing, a space is now inserted after every field except the

last in the record. Previously, a space was inserted after every field

including the last. (If you want to revert to the pre-release 7.5

behavior of inserting a space after the last field, set the

APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To implement a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
6-12 Parallel Job Developer’s Guide

File Set Stage Inputs Page
Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns written to the file or files.

These are applied to all columns written, but can be overridden for

individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can

usually be an ASCII character or a multi-byte Unicode character (if you

have NLS enabled). The available properties are:

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ‘, ‘ (comma
Parallel Job Developer’s Guide 6-13

Inputs Page File Set Stage
space – you do not need to enter the inverted commas) would
have each field delimited by ‘, ‘ unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length

fields can be either delimited by a character or preceded by a 1-, 2-

, or 4-byte prefix containing the field length. DataStage inserts the

prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the

data, and a trailing quote character. Quote characters are not

counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in
6-14 Parallel Job Developer’s Guide

File Set Stage Inputs Page
the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage inserts the

element count as a prefix of each variable-length vector field. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:
Parallel Job Developer’s Guide 6-15

Inputs Page File Set Stage
– For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes
6-16 Parallel Job Developer’s Guide

File Set Stage Inputs Page
– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:
Parallel Job Developer’s Guide 6-17

Inputs Page File Set Stage
– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing decimal

columns. Select No to write a positive sign (0xf) regardless of the

columns’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.
6-18 Parallel Job Developer’s Guide

File Set Stage Inputs Page
– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf().
By default, DataStage invokes the C sprintf() function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf().

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.
Parallel Job Developer’s Guide 6-19

Inputs Page File Set Stage
Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable
6-20 Parallel Job Developer’s Guide

File Set Stage Inputs Page
APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.
Parallel Job Developer’s Guide 6-21

Outputs Page File Set Stage
Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent sign (%). Separate the string’s components with any

character except the percent sign (%).

Outputs Page
The Outputs page allows you to specify details about how the File

Set stage reads data from a file set. The File Set stage can have only

one output link. It can also have a single reject link, where rows that

have failed to be written or read for some reason can be sent. The

Output name drop-down list allows you to choose whether you are

looking at details of the main output link (the stream link) or the reject

link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Formats tab gives information about

the format of the files being read. The Columns tab specifies the
6-22 Parallel Job Developer’s Guide

File Set Stage Outputs Page

f

column definitions of the data. The Advanced tab allows you to

change the default buffering settings for the output link.

Details about File Set stage properties and formatting are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from files in the file set.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Source Category

File Set

This property defines the file set that the data will be read from. You

can type in a pathname of, or browse for, a file set descriptor file (by

convention ending in .fs).

Category/
Property

Values Default Mandatory? Repeats? Dependent o

Source/File Set pathname N/A Y N N/A

Options/Keep file
Partitions

True/False False Y N N/A

Options/Reject Mode Continue/Fail/
Save

Continue Y N N/A

Options/Report
Progress

Yes/No Yes Y N N/A

Options/Filter command N/A N N N/A

Options/Schema File pathname N/A N N N/A

Options/Use Schema
Defined in File Set

True/False False Y N N/A

Options/File Name
Column

column name fileNameColumn N N N/A
Parallel Job Developer’s Guide 6-23

Outputs Page File Set Stage
Options Category

Keep file Partitions

Set this to True to partition the read data set according to the

organization of the input file(s). So, for example, if you are reading

three files you will have three partitions. Defaults to False.

Reject Mode

Allows you to specify behavior for read rows that do not match the

expected schema. Choose from Continue to continue operation and

discard any rejected rows, Fail to cease reading if any rows are

rejected, or Save to send rejected rows down a reject link. Defaults to

Continue.

Report Progress

Choose Yes or No to enable or disable reporting. By default the stage

displays a progress report at each 10% interval when it can ascertain

file size. Reporting occurs only if the file is greater than 100 KB,

records are fixed length, and there is no filter on the file.

Filter

This is an optional property. You can use this to specify that the data is

passed through a filter program after being read from the files.

Specify the filter command, and any required arguments, in the

Property Value box.

Schema File

This is an optional property. By default the File Set stage will use the

column definitions defined on the Columns and Format tabs as a

schema for reading the file. You can, however, specify a file containing

a schema instead (note, however, that if you have defined columns on

the Columns tab, you should ensure these match the schema file).

Type in a pathname or browse for a schema file. This property is

mutually exclusive with Use Schema Defined in File Set.

Use Schema Defined in File Set

When you create a file set you have an option to save the schema

along with it. When you read the file set you can use this schema in

preference to the column definitions by setting this property to True.

This property is mutually exclusive with Schema File.
6-24 Parallel Job Developer’s Guide

File Set Stage Outputs Page
File Name Column

This is an optional property. It adds an extra column of type VarChar

to the output of the stage, containing the pathname of the file the

record is read from. You should also add this column manually to the

Columns definitions to ensure that the column is not dropped if you

are not using runtime column propagation, or it is turned off at some

point.

Reject Link Properties
You cannot change the properties of a Reject link. The Properties tab

for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For

writing file sets, the link uses the column definitions for the input link.

For reading file sets, the link uses a single column called rejected

containing raw data for columns rejected after reading because they

do not match the schema.

Output Link Format Tab
The Format tab allows you to supply information about the format of

the files in the file set which you are reading. The tab has a similar

format to the Properties tab and is described on page 3-25.

If you do not alter any of the Format settings, the File Set stage will

expect to write files in the following format:

Files comprise variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you

want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that

property in the Property Value box. Pop-up help for each of the

available properties appears if you hover the mouse pointer over it.

Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).
Parallel Job Developer’s Guide 6-25

Outputs Page File Set Stage
This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Does not apply to output links.

Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter, used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.
6-26 Parallel Job Developer’s Guide

File Set Stage Outputs Page
– tab. The last column of each record is delimited by the ASCII
tab character.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

– Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To specify a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and record type.

Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
Parallel Job Developer’s Guide 6-27

Outputs Page File Set Stage
Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns read from the file or files.

These are applied to all columns, but can be overridden for individual

columns from the Columns tab using the Edit Column Metadata

dialog box. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ‘, ‘ (comma space –
you do not need to enter the inverted commas) specifies each field
is delimited by ‘, ‘ unless overridden for individual fields.
DataStage skips the delimiter string when reading.
6-28 Parallel Job Developer’s Guide

File Set Stage Outputs Page
Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it
reads. The message has the format:
Importing N: D

where:

– N is the field name.

– D is the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and

reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.
Parallel Job Developer’s Guide 6-29

Outputs Page File Set Stage
Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage reads the length

prefix but does not include it as a separate field in the data set. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.
6-30 Parallel Job Developer’s Guide

File Set Stage Outputs Page
By default data is formatted as text, as follows:

– For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes
Parallel Job Developer’s Guide 6-31

Outputs Page File Set Stage
– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. This property is ignored for output links.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Not relevant for output links.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.

For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when reading

decimal fields. Select No to write a positive sign (0xf)

regardless of the fields’ actual sign value.
6-32 Parallel Job Developer’s Guide

File Set Stage Outputs Page
– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision of a packed decimal. Enter a
number.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at

column level.
Parallel Job Developer’s Guide 6-33

Outputs Page File Set Stage
C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanf(). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf(). By
default, DataStage invokes the C sscanf() function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanf().

Out_format. This property is not relevant for output links.

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.
6-34 Parallel Job Developer’s Guide

File Set Stage Outputs Page
– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the twodigit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).
Parallel Job Developer’s Guide 6-35

Outputs Page File Set Stage
– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366).

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).
6-36 Parallel Job Developer’s Guide

File Set Stage Using RCP With File Set Stages
Using RCP With File Set Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.

The File Set stage handles a set of sequential files. Sequential files,

unlike most other data sources, do not have inherent column

definitions, and so DataStage cannot always tell where there are extra

columns that need propagating. You can only use RCP on File Set

stages if you have used the Schema File property (see "Schema File"

on page 6-7) to specify a schema which describes all the columns in

the sequential files referenced by the stage. You need to specify the

same schema file for any similar stages in the job where you want to

propagate columns. Stages that will require a schema file are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
Parallel Job Developer’s Guide 6-37

Using RCP With File Set Stages File Set Stage
6-38 Parallel Job Developer’s Guide

7
Lookup File Set Stage

The Lookup File Set stage is a file stage. It allows you to create a

lookup file set or reference one for a lookup. The stage can have a

single input link or a single output link. The output link must be a

reference link. The stage can be configured to execute in parallel or

sequential mode when used with an input link.

When creating Lookup file sets, one file will be created for each

partition. The individual files are referenced by a single descriptor file,

which by convention has the suffix .fs.

When performing lookups, Lookup File stages are used in conjunction

with Lookup stages. For more information about look up operations,

see Chapter 20,"Merge Stage."
Parallel Job Developer’s Guide 7-1

Lookup File Set Stage
When using an Lookup File Set stage as a source for lookup data,

there are special considerations about column naming. If you have

columns of the same name in both the source and lookup data sets,

note that the source data set column will go to the output data. If you

want this column to be replaced by the column from the lookup data

source, you need to drop the source data column before you perform

the lookup (you could, for example, use a Modify stage to do this). See

Chapter 20, "Merge Stage," for more details about performing

lookups.

When you edit a Lookup File Set stage, the Lookup File Set stage

editor appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are

creating or referencing a file set:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are creating a lookup
table. This is where you specify details about the file set being
created and written to.

Outputs Page. This is present when you are reading from a
lookup file set, i.e., where the stage is providing a reference link to
a Lookup stage. This is where you specify details about the file set
being read from.
7-2 Parallel Job Developer’s Guide

Lookup File Set Stage Must Do’s
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Lookup File Set stages in a job. This section specifies the

minimum steps to take to get a Lookup File Set stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on whether you are using the Lookup File

Set stage to create a lookup file set, or using it in conjunction with a

Lookup stage.

Creating a Lookup File Set:
In the Input Link Properties Tab:

– Specify the key that the lookup on this file set will ultimately be
performed on. You can repeat this property to specify multiple
key columns. You must specify the key when you create the file
set, you cannot specify it when performing the lookup.

– Specify the name of the Lookup File Set.

– Set Allow Duplicates, or accept the default setting of False.

Ensure column meta data has been specified for the lookup file
set.

Looking Up a Lookup File Set:
In the Output Link Properties Tab specify the name of the
lookup file set being used in the look up.

Ensure column meta data has been specified for the lookup file
set.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.
Parallel Job Developer’s Guide 7-3

Stage Page Lookup File Set Stage
Advanced Tab
This tab only appears when you are using the stage to create a

reference file set (i.e., where the stage has an input link). It allows you

to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the contents of the table are
processed by the available nodes as specified in the Configuration
file, and by any node constraints specified on the Advanced tab.
In Sequential mode the entire contents of the table are processed
by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pools or pools specified in the grid. The grid allows you
to make choices from drop down lists populated from the
Configuration file.

The NLS Map tab allows you to define a character set map for the

Lookup File Set stage. This overrides the default character set map set

for the project or the job. You can specify that the map be supplied as

a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for

individual columns within the data processed by the Lookup File Set

stage An extra property, NLS Map, appears in the Columns grid in the
7-4 Parallel Job Developer’s Guide

Lookup File Set Stage Inputs Page
Columns tab, but note that only ustring data types allow you to set

an NLS map value (see "Data Types" on page 2-28).

Inputs Page
The Inputs page allows you to specify details about how the Lookup

File Set stage writes data to a file set. The Lookup File Set stage can

have only one input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the file set. The

Columns tab specifies the column definitions of the data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about Lookup File Set stage properties and partitioning are

given in the following sections. See Chapter 3, "Stage Editors." for a

general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written to the file set. Some of the

properties are mandatory, although many have default settings.
Parallel Job Developer’s Guide 7-5

Inputs Page Lookup File Set Stage
Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Lookup Keys Category

Key

Specifies the name of a lookup key column. The Key property can be

repeated if there are multiple key columns. The property has a

dependent property:

Case Sensitive.

This is a dependent property of Key and specifies whether the

parent key is case sensitive or not. Set to true by default.

Target Category

Lookup File Set

This property defines the file set that the incoming data will be written

to. You can type in a pathname of, or browse for a file set descriptor

file (by convention ending in .fs).

Options Category

Allow Duplicates

Set this to cause multiple copies of duplicate records to be saved in

the lookup table without a warning being issued. Two lookup records

are duplicates when all lookup key columns have the same value in

the two records. If you do not specify this option, DataStage issues a

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Lookup Keys/Key Input column N/A Y Y N/A

Lookup Keys/Case
Sensitive.

True/False True N N Key

Target/Lookup File
Set

pathname N/A Y N N/A

Options/Allow
Duplicates

True/False False Y N N/A

Options/Diskpool string N/A N N N/A
7-6 Parallel Job Developer’s Guide

Lookup File Set Stage Inputs Page
warning message when it encounters duplicate records and discards

all but the first of the matching records.

Diskpool

This is an optional property. Specify the name of the disk pool into

which to write the file set. You can also specify a job parameter.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the

lookup file set. It also allows you to specify that the data should be

sorted before being written.

By default the stage will write to the file set in entire mode. The

complete data set is written to each partition.

If the Lookup File Set stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default (auto)

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Lookup File Set stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Lookup File Set stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Lookup File Set stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default auto collection method.

The following partitioning methods are available:

Entire. Each file written to receives the entire data set. This is the
default partitioning method for the Lookup File Set stage.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.
Parallel Job Developer’s Guide 7-7

Inputs Page Lookup File Set Stage
Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the Lookup Data Set stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over. This is the default method for
the Lookup File Set stage.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.
7-8 Parallel Job Developer’s Guide

Lookup File Set Stage Outputs Page
If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the

Lookup File Set stage references a file set. The Lookup File Set stage

can have only one output link which is a reference link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of the data. The Advanced tab allows you to change the

default buffering settings for the output link.

Details about Lookup File Set stage properties are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from the lookup table.

There is only one output link property.

Lookup Source Category

Lookup File Set

This property defines the file set that the data will be referenced from.

You can type in a pathname of, or browse for a file set descriptor file

(by convention ending in .fs).

Category/Property Values Default Mandatory? Repeats? Dependent of

Lookup Source/Lookup
File Set

pathname N/A Y N N/A
Parallel Job Developer’s Guide 7-9

Outputs Page Lookup File Set Stage
7-10 Parallel Job Developer’s Guide

8
External Source Stage

The External Source stage is a file stage. It allows you to read data

that is output from one or more source programs. The stage calls the

program and passes appropriate arguments. The stage can have a

single output link, and a single rejects link. It can be configured to

execute in parallel or sequential mode. There is also an External

Target stage which allows you to write to an external program (see

Chapter 9).

The External Source stage allows you to perform actions such as

interface with databases not currently supported by the DataStage

Enterprise Edition.

When reading output from a program, DataStage needs to know

something about its format. The information required is how the data

is divided into rows and how rows are divided into columns. You

specify this on the Format tab. Settings for individual columns can be

overridden on the Columns tab using the Edit Column Metadata
dialog box.

When you edit an External Source stage, the External Source stage

editor appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."
Parallel Job Developer’s Guide 8-1

Must Do’s External Source Stage
The stage editor has two pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Outputs Page. This is where you specify details about the
program or programs whose output data you are reading.

There are one or two special points to note about using runtime

column propagation (RCP) with External Source stages. See "Using

RCP With External Source Stages" on page 8-18 for details.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include External Source stages in a job. This section specifies the

minimum steps to take to get a External Source stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use the External Source stage:

In the Output Link Properties Tab:

– Specify whether the stage is providing details of the program
(the default) or whether details will be provided in a file (using
the latter method you can provide a list of files and arguments).

– If using the default source method, specify the name of the
source program executable. You can also specify required
arguments that DataStage will pass when it calls the program.
Repeat this to specify multiple program calls.

– If using the program file source method, specify the name of
the file containing the list of program names and arguments.

– Specify whether to maintain any partitions in the source data
(False by default).

– Specify how to treat rejected rows (by default the stage
continues and the rows are discarded).

In the Format Tab specify format details for the source data you
are reading from, or accept the defaults (variable length columns
enclosed in double quotes and delimited by commas, rows
delimited with UNIX newlines).

Ensure that column definitions have been specified (you can use a
schema file for this if required).
8-2 Parallel Job Developer’s Guide

External Source Stage Stage Page
Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data input from external
programs is processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode all the data from the source
program is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning as
is. Clear is the default.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab
The NLS Map tab allows you to define a character set map for the

External Source stage. This overrides the default character set map set

for the project or the job. You can specify that the map be supplied as

a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for

individual columns within the data processed by the External Source

stage. An extra property, NLS Map, appears in the Columns grid in
Parallel Job Developer’s Guide 8-3

Outputs Page External Source Stage
the Columns tab, but note that only ustring data types allow you to

set an NLS map value (see "Data Types" on page 2-28).

Outputs Page
The Outputs page allows you to specify details about how the

External Source stage reads data from an external program. The

External Source stage can have only one output link. It can also have a

single reject link, where rows that do not match the expected schema

can be sent. The Output name drop-down list allows you to choose

whether you are looking at details of the main output link (the stream

link) or the reject link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Format tab gives information about

the format of the files being read. The Columns tab specifies the

column definitions of the data. The Advanced tab allows you to

change the default buffering settings for the output link.

Details about External Source stage properties and formatting are

given in the following sections. See Chapter 3, "Stage Editors," for a

general description of the other tabs.
8-4 Parallel Job Developer’s Guide

External Source Stage Outputs Page
Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how data is read from the external program or

programs. Some of the properties are mandatory, although many

have default settings. Properties without default settings appear in the

warning color (red by default) and turn black when you supply a value

for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Source Category

Source Program

Specifies the name of a program providing the source data. DataStage

calls the specified program and passes to it any arguments specified.

You can repeat this property to specify multiple program instances

with different arguments. You can use a job parameter to supply

program name and arguments.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/Source
Program

string N/A Y if Source
Method =
Specific
Program(s)

Y N/A

Source/Source
Programs File

pathname N/A Y if Source
Method =
Program
File(s)

Y N/A

Source/Source
Method

Specific
Program(s)/
Program
File(s)

Specific Program(s) Y N N/A

Options/Keep
File Partitions

True/False False Y N N/A

Options/Reject
Mode

Continue/Fail/
Save

Continue Y N N/A

Options/Schema
File

pathname N/A N N N/A

Options/Source
Name Column

column name sourceNameColum N N N/A
Parallel Job Developer’s Guide 8-5

Outputs Page External Source Stage
Source Programs File

Specifies a file containing a list of program names and arguments.

You can browse for the file or specify a job parameter. You can repeat

this property to specify multiple files.

Source Method

This property specifies whether you directly specifying a program

(using the Source Program property) or using a file to specify a

program (using the Source Programs File property).

Options Category

Keep File Partitions

Set this to True to maintain the partitioning of the read data. Defaults

to False.

Reject Mode

Allows you to specify behavior if a record fails to be read for some

reason. Choose from Continue to continue operation and discard any

rejected rows, Fail to cease reading if any rows are rejected, or Save

to send rejected rows down a reject link. Defaults to Continue.

Schema File

This is an optional property. By default the External Source stage will

use the column definitions defined on the Columns tab and Schema

tab as a schema for reading the file. You can, however, specify a file

containing a schema instead (note, however, that if you have defined

columns on the Columns tab, you should ensure these match the

schema file). Type in a pathname or browse for a schema file.

Source Name Column

This is an optional property. It adds an extra column of type VarChar

to the output of the stage, containing the pathname of the source the

record is read from. You should also add this column manually to the

Columns definitions to ensure that the column is not dropped if you

are not using runtime column propagation, or it is turned off at some

point.

Reject Link Properties
You cannot change the properties of a Reject link. The Properties tab

for a reject link is blank.
8-6 Parallel Job Developer’s Guide

External Source Stage Outputs Page
Similarly, you cannot edit the column definitions for a reject link. The

link will use a single column of type raw carrying the row which did

not match the expected schema.

Format Tab
The Format tab allows you to supply information about the format of

the source data that you are reading. The tab has a similar format to

the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the External Source

stage will expect to read a file of the following format:

Data comprises variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you

want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that

property in the Property Value box. Pop-up help for each of the

available properties appears if you hover the mouse pointer over it.

Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Does not apply to output links.
Parallel Job Developer’s Guide 8-7

Outputs Page External Source Stage
Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter, used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.

– tab. The last column of each record is delimited by the ASCII
tab character.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
8-8 Parallel Job Developer’s Guide

External Source Stage Outputs Page
– Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To specify a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and record type.

Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns read from the file or files.

These are applied to all columns, but can be overridden for individual

columns from the Columns tab using the Edit Column Metadata

dialog box. Where you can enter a character, this can usually be an
Parallel Job Developer’s Guide 8-9

Outputs Page External Source Stage
ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ‘, ‘ (comma space –
you do not need to enter the inverted commas) specifies each field
is delimited by ‘, ‘ unless overridden for individual fields.
DataStage skips the delimiter string when reading.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.
8-10 Parallel Job Developer’s Guide

External Source Stage Outputs Page
Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it
reads. The message has the format:
Importing N: D

where:

– N is the field name.

– D is the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and

reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage reads the length

prefix but does not include it as a separate field in the data set. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):
Parallel Job Developer’s Guide 8-11

Outputs Page External Source Stage
Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

– For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.
8-12 Parallel Job Developer’s Guide

External Source Stage Outputs Page
– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. This property is ignored for output links.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.
Parallel Job Developer’s Guide 8-13

Outputs Page External Source Stage
String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Not relevant for output links.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.

For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when reading

decimal fields. Select No to write a positive sign (0xf)

regardless of the fields’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:
8-14 Parallel Job Developer’s Guide

External Source Stage Outputs Page
Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision of a packed decimal. Enter a
number.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanf(). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf(). By
default, DataStage invokes the C sscanf() function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanf().

Out_format. This property is not relevant for output links.
Parallel Job Developer’s Guide 8-15

Outputs Page External Source Stage
Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.
8-16 Parallel Job Developer’s Guide

External Source Stage Outputs Page
The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the twodigit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.
Parallel Job Developer’s Guide 8-17

Using RCP With External Source Stages External Source Stage
Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366).

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).

Using RCP With External Source Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.
8-18 Parallel Job Developer’s Guide

External Source Stage Using RCP With External Source Stages
External Source stages, unlike most other data sources, do not have

inherent column definitions, and so DataStage cannot always tell

where there are extra columns that need propagating. You can only

use RCP on External Source stages if you have used the Schema File

property (see "Schema File" on page 8-6) to specify a schema which

describes all the columns in the sequential files referenced by the

stage. You need to specify the same schema file for any similar stages

in the job where you want to propagate columns. Stages that will

require a schema file are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
Parallel Job Developer’s Guide 8-19

Using RCP With External Source Stages External Source Stage
8-20 Parallel Job Developer’s Guide

9
External Target Stage

The External Target stage is a file stage. It allows you to write data to

one or more source programs. The stage can have a single input link

and a single rejects link. It can be configured to execute in parallel or

sequential mode. There is also an External Source stage, which allows

you to read from an external program (see Chapter 8)

The External Target stage allows you to perform actions such as

interface with databases not currently supported by the DataStage

Parallel Extender.

When writing to a program, DataStage needs to know something

about how to format the data. The information required is how the

data is divided into rows and how rows are divided into columns. You

specify this on the Format tab. Settings for individual columns can be

overridden on the Columns tab using the Edit Column Metadata
dialog box.

When you edit an External Target stage, the External Target stage

editor appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."

The stage editor has up to three pages:
Parallel Job Developer’s Guide 9-1

Must Do’s External Target Stage
Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the program
or programs you are writing data to.

Outputs Page. This appears if the stage has a rejects link.

There are one or two special points to note about using runtime

column propagation (RCP) with External Target stages. See "Using

RCP With External Target Stages" on page 9-21 for details.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include External Target stages in a job. This section specifies the

minimum steps to take to get a External Target stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use the External Target stage:

In the Input Link Properties Tab:

– Specify whether the stage is providing details of the program
(the default) or whether details will be provided in a file (using
the latter method you can provide a list of files and arguments).

– If using the default target method, specify the name of the
target program executable. You can also specify required
arguments that DataStage will pass when it calls the program.
Repeat this to specify multiple program calls.

– If using the program file target method, specify the name of the
file containing the list of program names and arguments.

– Specify whether to delete partially written data if the write fails
for some reason (True by default).

– Specify how to treat rejected rows (by default the stage
continues and the rows are discarded).

In the Format Tab specify format details for the data you are
writing, or accept the defaults (variable length columns enclosed
in double quotes and delimited by commas, rows delimited with
UNIX newlines).

Ensure that column definitions have been specified (this can be
done in an earlier stage or in a schema file).
9-2 Parallel Job Developer’s Guide

External Target Stage Stage Page
Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data output to external
programs is processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode all the data from the source
program is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning as
is. Clear is the default.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab
The NLS Map tab allows you to define a character set map for the

External Target stage. This overrides the default character set map set

for the project or the job. You can specify that the map be supplied as

a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for

individual columns within the data processed by the External Target

stage. An extra property, NLS Map, appears in the Columns grid in
Parallel Job Developer’s Guide 9-3

Inputs Page External Target Stage
the Columns tab, but note that only ustring data types allow you to

set an NLS map value (see "Data Types" on page 2-28).

Inputs Page
The Inputs page allows you to specify details about how the External

Target stage writes data to an external program. The External Target

stage can have only one input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the external

program. The Format tab gives information about the format of the

data being written. The Columns tab specifies the column definitions

of the data. The Advanced tab allows you to change the default

buffering settings for the input link.

Details about External Target stage properties, partitioning, and

formatting are given in the following sections. See Chapter 3, "Stage

Editors," for a general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and to what program.

Some of the properties are mandatory, although many have default
9-4 Parallel Job Developer’s Guide

External Target Stage Inputs Page
settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Target Category

Destination Program

This is an optional property. Specifies the name of a program

receiving data. DataStage calls the specified program and passes to it

any arguments specified.You can repeat this property to specify

multiple program instances with different arguments. You can use a

job parameter to supply program name and arguments.

Destination Programs File

This is an optional property. Specifies a file containing a list of

program names and arguments. You can browse for the file or specify

a job parameter. You can repeat this property to specify multiple files.

Target Method

This property specifies whether you directly specifying a program

(using the Destination Program property) or using a file to specify a

program (using the Destination Programs File property).

Category/Property Values Default Mandatory? Repeats? Dependent of

Target /Destination
Program

string N/A Y if Source
Method =
Specific
Program(s)

Y N/A

Target /Destination
Programs File

pathname N/A Y if Source
Method =
Program
File(s)

Y N/A

Target /Target Method Specific
Program(s)/
Program
File(s)

Specific
Program(s)

Y N N/A

Options/Reject Mode Continue/Fail/
Save

Continue N N N/A

Options/Schema File pathname N/A N N N/A
Parallel Job Developer’s Guide 9-5

Inputs Page External Target Stage
Options Category

Reject Mode

This is an optional property. Allows you to specify behavior if a record

fails to be written for some reason. Choose from Continue to

continue operation and discard any rejected rows, Fail to cease

reading if any rows are rejected, or Save to send rejected rows down

a reject link. Defaults to Continue.

Schema File

This is an optional property. By default the External Target stage will

use the column definitions defined on the Columns tab as a schema

for writing the file. You can, however, specify a file containing a

schema instead (note, however, that if you have defined columns on

the Columns tab, you should ensure these match the schema file).

Type in a pathname or browse for a schema file.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the

target program. It also allows you to specify that the data should be

sorted before being written.

By default the stage will partition data in Auto mode.

If the External Target stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the External Target stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the External Target stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partitioning type

drop-down list. This will override any current partitioning.

If the External Target stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default Auto collection method.

The following partitioning methods are available:
9-6 Parallel Job Developer’s Guide

External Target Stage Inputs Page
(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the External Target
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the External Target stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the target

program. The sort is always carried out within data partitions. If the

stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the
Parallel Job Developer’s Guide 9-7

Inputs Page External Target Stage
collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Format Tab
The Format tab allows you to supply information about the format of

the data you are writing. The tab has a similar format to the

Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the External Target stage

will produce a file of the following format:

Data comprises variable length columns contained within double
quotes.

All columns are delimited by a comma, except for the final column
in a row.

Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the

Format Tab to quickly change to a fixed-width column format, using

DOS newlines as row delimiters, or producing a COBOL format file.

To change individual properties, select a property type from the main

tree then add the properties you want to set to the tree structure by

clicking on them in the Available properties to set window. You

can then set a value for that property in the Property Value box. Pop

up help for each of the available properties appears if you hover the

mouse pointer over it.
9-8 Parallel Job Developer’s Guide

External Target Stage Inputs Page
This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter; used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.
Parallel Job Developer’s Guide 9-9

Inputs Page External Target Stage
– tab. The last column of each record is delimited by the ASCII
tab character.

When writing, a space is now inserted after every field except the

last in the record. Previously, a space was inserted after every field

including the last. (If you want to revert to the pre-release 7.5

behavior of inserting a space after the last field, set the

APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To implement a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
9-10 Parallel Job Developer’s Guide

External Target Stage Inputs Page
Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns written to the file or files.

These are applied to all columns written, but can be overridden for

individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can

usually be an ASCII character or a multi-byte Unicode character (if you

have NLS enabled). The available properties are:

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ‘, ‘ (comma
Parallel Job Developer’s Guide 9-11

Inputs Page External Target Stage
space – you do not need to enter the inverted commas) would
have each field delimited by ‘, ‘ unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length

fields can be either delimited by a character or preceded by a 1-, 2-

, or 4-byte prefix containing the field length. DataStage inserts the

prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the

data, and a trailing quote character. Quote characters are not

counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in
9-12 Parallel Job Developer’s Guide

External Target Stage Inputs Page
the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage inserts the

element count as a prefix of each variable-length vector field. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:
Parallel Job Developer’s Guide 9-13

Inputs Page External Target Stage
– For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes
9-14 Parallel Job Developer’s Guide

External Target Stage Inputs Page
– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:
Parallel Job Developer’s Guide 9-15

Inputs Page External Target Stage
– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing decimal

columns. Select No to write a positive sign (0xf) regardless of the

columns’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.
9-16 Parallel Job Developer’s Guide

External Target Stage Inputs Page
– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf().
By default, DataStage invokes the C sprintf() function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf().

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.
Parallel Job Developer’s Guide 9-17

Inputs Page External Target Stage
Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable
9-18 Parallel Job Developer’s Guide

External Target Stage Inputs Page
APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.
Parallel Job Developer’s Guide 9-19

Outputs Page External Target Stage
Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent sign (%). Separate the string’s components with any

character except the percent sign (%).

Outputs Page
The Outputs page appears if the stage has a Reject link

The General tab allows you to specify an optional description of the

output link.

You cannot change the properties of a Reject link. The Properties tab

for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. The

link uses the column definitions for the link rejecting the data records.
9-20 Parallel Job Developer’s Guide

External Target Stage Using RCP With External Target Stages
Using RCP With External Target Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.

External Target stages, unlike most other data targets, do not have

inherent column definitions, and so DataStage cannot always tell

where there are extra columns that need propagating. You can only

use RCP on External Target stages if you have used the Schema File

property (see "Schema File" on page 9-6) to specify a schema which

describes all the columns in the sequential files referenced by the

stage. You need to specify the same schema file for any similar stages

in the job where you want to propagate columns. Stages that will

require a schema file are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
Parallel Job Developer’s Guide 9-21

Using RCP With External Target Stages External Target Stage
9-22 Parallel Job Developer’s Guide

10
Complex Flat File Stage

The Complex Flat File (CFF) stage is a file stage. You can use the stage

to read a file or write a file, but you cannot use the same stage to do

both. As a source, the stage can have multiple output links and a

single reject link. As a target, the stage can have a single input link.

Note The interface for the CFF stage is different to that for

standard parallel file stages - properties are defined in the

Stage page File Options tab, format information is

defined in the Stage page Record Options tab, and

column information for both input and output tabs is

described in the Stage page Columns tab.

When used as a source, the stage allows you to read data from one or

more complex flat files, including MVS datasets with QSAM and

VSAM files. A complex flat file may contain one or more GROUPs,

REDEFINES, OCCURS, or OCCURS DEPENDING ON clauses. Complex

Flat File source stages execute in parallel mode when they are used to

read multiple files, but you can configure the stage to execute

sequentially if it is only reading one file with a single reader.

When used as a target, the stage allows you to write data to one or

more complex flat files. It does not write to MVS datasets.
Parallel Job Developer’s Guide 10-1

Must Do’s Complex Flat File Stage
When you edit a CFF stage, the CFF stage editor appears.

The stage editor has up to three pages, depending on whether you are

reading or writing a file:

Stage Page. This is always present and is used to specify general
information about the stage, including details about the file or
files being read from or written to.

Input Page. This is present when you are writing to a complex
flat file. It allows you to specify details about how data should be
written to a target file, including partitioning and buffering
information.

Output Page. This is present when you are reading from a
complex flat file. It allows you to select columns for output and
change the default buffering settings on the output link if desired.

Must Do’s
Ascential DataStage has many defaults which means that it can be

very easy to include CFF stages in a job. This section specifies the

minimum steps to take to get a CFF stage functioning. Ascential

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end. This section describes the

basic method, you will learn where the shortcuts are when you get

familiar with the product.

To use the CFF stage:

In the File Options Tab, specify the stage properties.

If reading a file or files:

– Specify the type of file you are reading.

– Give the name of the file or files you are going to read.

– Specify the record type of the files you are reading.
10-2 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
– Define what action to take if files are missing from the source.

– Define what action to take with records that fail to match the
expected meta data.

If writing a file or files:

– Specify the type of file you are writing.

– Give the name of the files you are writing.

– Specify the record type of the files you are writing.

– Define what action to take if records fail to be written to the
target file(s).

In the Record Options Tab, describe the format of the data you
are reading or writing.

In the Stage page Columns Tab, define the column definitions
for the data you are reading or writing using this stage.

Stage Page
The General tab allows you to specify an optional description of the

stage. The File Options tab allows you to specify the stage

properties, while the Record Options tab allows you to describe the

format of the files that you are reading or writing. The Columns page

gives the column definitions for the input or output links, while the

Layout page displays the meta data either as a parallel schema or a

COBOL definition. The NLS Map tab appears if you have NLS enabled

on your system, it allows you to specify a character set map for the

stage. The Advanced tab allows you to specify further information

about how the stage is executed.

File Options Tab
The File Options tab allows you to specify properties about how data

is read from or written to files. The appearance of this tab differs

depending on whether the stage is being used as a source or a target.

Source CFF Stage

Source stage file options include settings for the file type and name,

record type, missing file action, reject mode, multiple node reading,

reporting, and file partitioning.
Parallel Job Developer’s Guide 10-3

Stage Page Complex Flat File Stage
The tab has the following fields:

File Type. Specifies the type of source to import. This determines
how your entry in the File name(s) field is interpreted. Select one
of the following:

– File(s). A single file or multiple files. This is the default.

– File pattern. A group of files.

– Source. One or more programs and arguments that provide
source data to the import operator.

– Source list. A file containing the names of multiple programs
that provide source data to the import operator.

MVS dataset. Select this box to specify that the source is an MVS
dataset. This appears only if the project within which you are
working is USS-enabled (i.e., parallel jobs are intended to run on a
USS system - see Chapter 56, "Parallel Jobs on USS.")

For MVS datasets, the file type must be File(s). Neither a filter nor

multiple node reading is allowed. If you enclose the filename with

single quotes in the File name(s) field, Ascential DataStage will

add an escape character (\) before each quote.

File name(s). Type the names of the files to import, or click the
arrow button to search for file names on the server. Your entry
should correspond to your selection in the File type field using
these guidelines:

– For File(s), type either a single file name or multiple file names
separated by commas, semicolons, or newlines.
10-4 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
– For File pattern, type the name of the file that contains the list
of files to be imported. You can also use a valid shell
expression (in Bourne shell syntax) to generate a list of file
names.

– For Source, type one or more program names and their
associated arguments, separated either by semicolons or
newlines.

– For Source list, type the name of a file containing multiple
program names. The file must contain program command
lines.

Job parameters can be used for one or more file names, or for a

file pattern. To specify a job parameter, type the parameter name

enclosed in #, such as #JobParameter#. You can specify multiple

job parameters by separating the parameter names with commas,

semicolons, or newlines. Click the arrow button to browse for an

existing job parameter or to define a new one using the Job
Properties dialog box.

Record type. Select the record type of the source data. The
options are:

– Fixed. All records are the same length. This is the default.

– Fixed block. All records are the same length and are grouped
in fixed-length blocks.

– Variable. Records have variable lengths.

– Variable block. Records have variable lengths and are
grouped in variable-length blocks.

– Variable spanned. Records have variable lengths and may
span one or more control interval boundaries within a single
control area.

– Variable block spanned. Records have variable lengths and
are grouped in variable-length blocks, where the blocks may
span one or more control interval boundaries within a single
control area.

– VR.

If your source file contains OCCURS DEPENDING ON clauses,

select Fixed as the record type for non-MVS data sources.

Missing file mode. Specifies the action to take if a file does not
exist. Select one of the following:

– Depends. Stops the job unless the file has a node name prefix
of *: in which case the file is skipped. This is the default.

– Error. Stops the job.
Parallel Job Developer’s Guide 10-5

Stage Page Complex Flat File Stage
– OK. Skips the file.

Filter. Type a UNIX command to process input files as the data is
read from each file, or click the arrow button to insert a job
parameter. Filters do not apply to file patterns, source, or source
list file types.

Multiple node reading. This area determines how files with
multiple nodes are read. Select one option:

– Read from multiple nodes. Select this box if you want the
source file to be read in sections from multiple nodes. This is
only allowed for a single file with a record type of fixed or fixed
block.

– Number of readers per node. Specify the number of
instances of the import operator on each processing node. The
default is one operator per node per input file. If you specify
more than one reader, each instance of the file read operator
reads a contiguous range of records from the input file. The
starting record location in the file for each operator, or seek
location, is determined by the data file size, the record length,
and the number of instances of the operator as specified.

The resulting data set contains one partition per instance of the

file read operator, as determined by the number of readers

specified. The data file(s) being read must contain fixed-length

records.

These options are mutually exclusive with Read first n rows. If

the MVS dataset box is selected, these fields are unavailable.

Report progress. Select this box to have the stage display a
progress report at each 10% interval when it can ascertain file size.
Reporting occurs only if the file is greater than 100 KB, records are
fixed length, and there is no filter on the file. The file type must be
File(s) or File pattern.

Keep file partitions. Select this box to partition the imported
data according to the organization of the input file(s). For example,
if you are reading three files, you will have three partitions. This
means that each file's contents stay in its own partition.

Read first n rows. Specifies the number of rows to read from
each source file. The default value is 0, which means all rows are
read. This option is mutually exclusive with Multiple node reading
and does not apply to File pattern, Source or Source list file
types.

Target CFF Stages

Target stage file options include settings for the file type and name,

record type, write option, reject mode, filter, and cleanup on failure.
10-6 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
The tab has the following fields:

File type. Specifies the type of target file. This determines how
your entry in the File name(s) field is interpreted. Select one of
the following:

– File(s). A single file or multiple files. This is the default.

– Destination. One or more programs and arguments that read
the exported data.

– Destination list. A file containing the names of multiple
programs that provide destinations for the exported data.

File name(s). Type the name of the file that data will be written to,
or click the arrow button to search for file names on the server.
This field is required, and the specified file must exist unless the
write option is Create or Overwrite. Your entry should
correspond to your selection in the File type field using these
guidelines:

– For File(s), type either a single file name or multiple file names
separated by commas, semicolons, or newlines.

– For Destination, type one or more program names and their
associated arguments, separated either by semicolons or
newlines.

– For Destination list, type the name of a file containing
multiple program names. The file must contain program
command lines.

Writing to MVS datasets is not supported.
Parallel Job Developer’s Guide 10-7

Stage Page Complex Flat File Stage
To specify a job parameter, type the parameter name enclosed in

#, such as #JobParameter#. You can specify multiple job

parameters by separating the parameter names with commas,

semicolons, or newlines. Click the arrow button to browse for an

existing job parameter or to define a new one using the Job
Properties dialog box.

Record type. Select the record type of the output data. The
options are:

– Fixed. All records are the same length. This is the default.

– Fixed block. All records are the same length and are grouped
in fixed-length blocks.

Write option. Specifies how to write data to the target file(s). The
same method applies to all files being written to. There are three
options:

– Append. Adds data to the existing file.

– Create (Error if exists). Creates a new file without checking
to see if one already exists. This is the default. If Create is
specified for a file that already exists, a runtime error will
occur.

– Overwrite. Deletes the existing file and replaces it with a new
file. This is the default.

Reject mode. Specifies the action to take if any records are not
written to the target file(s). Select one of the following:

– Continue. Continues the operation and discards any rejected
rows. This is the default.

– Fail. Stops writing to the target if any rows are rejected.

– Save. Sends rejected rows down a reject link. Select this
option if a reject link exists.

Cleanup on failure. Select this box to delete any partially written
files if the stage fails. If this box is not selected, any partially
written files are left. The file type must be File(s).

Filter. Type a UNIX command to pass data through a filter
program before it is written to the target file(s), or click the arrow
button to insert a job parameter. Filters do not apply to
Destination or Destination list file types.

Record Options Tab
The Record Options tab allows you to specify properties about the

records in the source or target file. The appearance of this tab differs

depending on whether the stage is being used as a source or a target.
10-8 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
Source stage record options include settings for the byte order,

character set, data format, record delimiter, and decimals. There is

also an option to print the fields to the log file during the import:

Target stage record options include the same settings, plus one for the

pad character:

This tab has the following fields:

Float representation. Specifies that float fields are represented
in IEEE format. This field is read-only.
Parallel Job Developer’s Guide 10-9

Stage Page Complex Flat File Stage
Print fields. Appears only when the stage is used as a source.
Select this check box to have the names and values of all fields in
the schema printed to the log file during the import.

Byte order. Specifies how multiple-byte data types (integer, date,
time, and timestamp) are ordered. Select from:

– Little-endian. The high byte is on the right.

– Big-endian. The high byte is on the left.

– Native-endian. As defined by the native format of the
machine. This is the default.

Does not apply to string or character data types.

Character set. Specifies the character data representation. Select
ASCII or EBCDIC (the default).

Data format. Specifies the data representation format of a
column. Select one of the following:

– Binary. Field values are represented in binary format and
decimals are represented in packed decimal format. This is the
default.

– Text. Fields are represented as text-based data and decimals
are represented in string format.

Pad char. Appears only if the stage is being used as a target.
Specifies the pad character used when character or numeric
values are exported to an external string representation. Space is
the default.

Record delimiter. Specifies a delimiter to indicate the end of a
record. By default this is empty.

Rounding. Specifies how to round a decimal column when
writing it. Select one of the following:

– Up. Truncate source column towards positive infinity.

– Down. Truncate source column towards negative infinity.

– Nearest value. Round the source column towards the nearest
representable value. This is the default.

– Truncate towards zero. Discard fractional digits to the right
of the right-most fractional digit supported by the destination,
regardless of sign.

Separator. Specifies the character that acts as the decimal
separator. Select Project default to use the value specified at the
project level, ,(comma), or .(period).

Allow all zeros. Select this to specify that a packed decimal
column containing all zeros (which is normally illegal) be treated
as a valid representation of zero.
10-10 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
Columns Tab
Unlike other parallel job file stages, the CFF stage has a Columns tab

on the Stage page. This is where you define the actual columns your

stage uses. These columns are then projected to the Input page

Columns tab, or the Output page Selection tab, depending on

whether the stage is being used as a source or a target.

Note You can also define columns by dragging a table definition

from the Repository window to the CFF stage icon on the

Designer canvas. (This differs from other parallel stages

where you drag a table to a link.) You can then propagate

source stage columns to one or more output links using the

stage’s shortcut menu.

The Columns tab allows you to define the COBOL file description for

the data being read or written by the stage. This file description is then

translated to column definitions.

This tab contains a columns tree that displays the names of the stage

columns, a columns grid with the detailed column definitions, and a

properties tree that allows you to set properties for each column. Use

the right mouse menu to display or hide these panels to suit your

needs.

You can load, add, modify, or delete columns here. Click the Load

button to load column definitions from a table in the DataStage

Repository. You can also enter column definitions directly into the

grid. If your column definitions describe array data, you are asked to

specify how to handle array data within the stage (see "Complex File

Load Options" on page 10-14).

Columns displayed here should reflect the actual layout of the file

format. If you do not want to display all of the columns, you can

specify that unwanted ones be replaced by filler columns. This is done

in the Select Columns From Table dialog box when you load table

definitions. Fillers can be expanded later if you need to reselect any

columns. For more information about fillers, see "Filler Creation and

Expansion" on page 10-14).

To edit column properties, select a property in the properties tree and

use the Value field to make changes. Use the Available properties
to add window to add optional attributes to the properties tree.
Parallel Job Developer’s Guide 10-11

Stage Page Complex Flat File Stage
This tab contains the following components:

Columns tree. Displays the stage column names and record
structure in a tree that can be collapsed or expanded using the
right mouse menu. Selecting a column in the tree allows you to
view or edit its properties in the columns grid or the properties
tree.

The tree contains four icon types: yellow folders represent group

columns, blue folders represent group columns with arrays, single

purple rectangles represent simple columns, and double purple

rectangles represent columns with arrays.

Columns grid. Displays the column definitions for the stage. You
can add, modify, or delete column definitions using the right
mouse menu. When you select a column definition in the grid, it is
highlighted in the columns tree, allowing you to view its location
in the record structure. Its properties are also displayed in the
properties tree, allowing you to set general and extended column
attributes.

Properties tree. Displays the currently defined properties for
each column. Properties are divided into three categories:
General, Extended Attributes, and Derived Attributes. All of the
mandatory properties are included in the tree by default and
cannot be removed. Optional properties are displayed in the
Available properties to add pane for each selected category. To
add an optional property to the tree, click on it. You can remove it
again by selecting it in the tree and clicking the arrow button.

To edit properties, select a property in the tree and use the Value

field to make changes. Properties that you must set a value for (i.e.
10-12 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
which do not have a default value) are shown in the warning color

(red by default), but change to black when you have set a value.

You can change the warning color from the Options dialog box.

Value. Displays the value for the column property selected in the
properties tree. You can change the value for general and
extended attributes, but not for derived attributes. The method for
entering a value changes according to the property you have
selected. A description of the property appears in the box below
this field.

Available properties to add. Displays optional properties for
the selected category in the properties tree. Only properties which
are not already defined for the column are shown. To add a
property to the tree, click on it. You can remove it again by
selecting it in the tree and clicking the arrow button.

Save As... . When you click the Save As... button, the Save
table definition dialog box appears. This dialog box allows you
to save a table definition into the DataStage Repository, where
you can subsequently reuse it to provide column definitions for
other stages. You can also save the table definition as a COBOL
file definition (CFD) or DB2 DCLGen file (DFD) file from the same
dialog box.

Clear All. Click this to clear all column definitions from the stage.

Load. Click this to selectively load columns from a table definition
in the DataStage Repository:

– First, the Table Definitions dialog box appears, allowing you
to select an existing table or import a new one.

– Next, the Select Columns From Table dialog box appears,
allowing you to select the columns that you want to load. The
Available columns tree displays COBOL structures such as
groups and arrays. If you select a subset of columns, fillers can
be generated to maintain the byte order of the columns. See
"Filler Creation and Expansion" on page 10-14 for details.

– If there are arrays in the column structure for which flattening
is an option, the Complex file load option dialog box
appears. See "Complex File Load Options" on page 10-14 for
details.

If you load more than one table definition, the list of columns from

the subsequent tables is added to the end of the current list. In

cases where the first column of the subsequent list has a level

number higher than the last column of the current list, Ascential

DataStage inserts an “02 FILLER” group item before the

subsequent list is loaded. (This is not done, however, if the first

column being loaded already has a level number of 02.)
Parallel Job Developer’s Guide 10-13

Stage Page Complex Flat File Stage
Filler Creation and Expansion

Mainframe table definitions frequently contain hundreds of columns,

therefore to save storage space and processing time, there is a

Create fillers option in the Select Columns From Table dialog

box. This option, which is selected by default, is available only when

you load columns from a simple or complex flat file.

The sequences of unselected columns are collapsed into FILLER items

with the appropriate size. The native data type is set to CHARACTER

and the name set to FILLER_XX_YY, where XX is the start offset and

YY is the end offset. Fillers for elements of a group array or an

OCCURS DEPENDING ON (ODO) column have the name of

FILLER_NN, where NN is the element number. The NN begins at 1 for

the first unselected group element and continues sequentially. Any

fillers that follow an ODO column will also be numbered sequentially.

See Appendix C for examples of how fillers are created for different

COBOL structures.

You can expand fillers in the Columns tree if you want to reselect any

columns. Right-click on the filler in the left pane and select Expand
Filler... from the shortcut menu. The Expand Filler dialog box

appears, allowing you to select some or all of the columns from the

given filler. There is no need to reload the table definition and reselect

the columns.

Complex File Load Options

When you enter or load column definitions containing arrays in a CFF

stage, the stage prompts you for information on how it should handle

the array data in the stage. The Complex file load option dialog box

appears.

If you choose to pass an array as is, the columns with arrays are

loaded as is.

If you choose to flatten an array, all the elements of the array will

appear as separate columns in the table definition. The data is

presented as one row at execution time. Each array element is given a

numeric suffix to make its name unique.

For example, given the following complex flat file structure (in CFD

format):

05 ID PIC X(10)
05 NAME PIC X(30)
05 CHILD PIC X(30) OCCURS 5 TIMES
10-14 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
You will get the following column definitions:

05 ID PIC X(10)
05 NAME PIC X(30)
05 CHILD PIC X(30)
05 CHILD_2 PIC X(30)
05 CHILD_3 PIC X(30)
05 CHILD_4 PIC X(30)
05 CHILD_5 PIC X(30)

A parallel array is flattened out in the same way.

Array columns that have redefined fields or OCCURS DEPENDING ON

clauses may not be flattened. Even if you choose to flatten all arrays in

the Complex file load option dialog box, these columns are passed

as is.

The Complex file load option dialog box is as follows:

Options. Select an option to specify how array data will be treated
in the stage:

– Flatten selective arrays. Allows you to select arrays for
flattening on an individual basis. This is the default option.
Click on an array in the columns list and use the right mouse
button to select Flatten. Columns that cannot be flattened are
unavailable for selection.

– Flatten all arrays. All arrays are flattened. Creates new
columns for each element of the arrays.

– As is. Passes arrays as is.

Description. Gives information about the load option you have
chosen.
Parallel Job Developer’s Guide 10-15

Stage Page Complex Flat File Stage
Columns. Displays the names of the column definitions and their
structure. Array sizes are shown in parentheses. When using the
Flatten selective arrays option, right-click on individual column
definitions and choose Flatten as required. The array icon
changes for the arrays that will be flattened.

Layout Tab
The Layout tab displays the schema format of the column definitions

used in the stage. Select a button to view the data representation in

one of two formats:

Parallel. Displays the OSH record schema.

COBOL. Displays the COBOL representation, including the
column name, COBOL picture clause, starting and ending offsets,
and column storage length.

You can use the shortcut menu to save the parallel view as a text file

in *.osh format, or the COBOL view as an HTML file.

In the parallel view, the mapping of COBOL native data types to

parallel data types is displayed. If there are date masks on columns

with CHARACTER native type, the column type is changed to DATE

with the date mask translated to the appropriate parallel type. For date

masks on columns with DECIMAL or INTEGER native type, the

columns are translated to the parallel type using the CFF stage’s

underlying modify operator. For more information about the data type
10-16 Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page
conversions that this operator performs, see "Changing Data Type" on

page 28-3.

In the COBOL view, the storage lengths for a group are the sum of the

storage lengths of the individual elements. If an element within the

group redefines another element, the element storage length is not

included in the group storage length. However, the storage length of

the element itself is computed based on its picture clause.

NLS Map Tab
The NLS Map tab allows you to define a character set map for the CFF

stage. This is applicable when the native data type for the stage

columns is GRAPHIC_N, GRAPHIC_G, VARGRAPHIC_N, or

VARGRAPHIC_G. The setting on this tab overrides the default

character set map set for the project or the job. You can specify that

the map be supplied as a job parameter if required.

Advanced Tab
This tab allows you to specify the following:

Execution mode. The execution mode is set automatically and
cannot be changed. If the stage is only operating on one file (and
there is one reader) the execution mode will be sequential.
Otherwise it will be parallel.

Combinability mode. This is Auto by default, which allows
Ascential DataStage to combine the operators that underlie
parallel stages so that they run in the same process if it is sensible
for this type of stage.
Parallel Job Developer’s Guide 10-17

Input Page Complex Flat File Stage
Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning
as is. Clear is the default. This only appears if the stage has an
output link.

Node pool and resource constraints. This option is not
applicable to CFF stages.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Input page allows you to specify details about how the CFF stage

writes data to a file. The CFF stage can have only one input link.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being written. The Columns tab gives the

column definitions of the data. The Advanced tab allows you to

change the default buffering settings for the input link.

Details about CFF stage Columns tab and Partitioning tab are given

in the following sections. See Chapter 3, "Stage Editors," for a general

description of the Advanced tab.

Input Link Columns Tab
The Columns tab displays the column definitions for the data coming

into the stage, which will then be written out to a complex flat file. You

cannot edit the column definitions on this tab, only view them. The

columns are defined on the Stage page Columns tab (see "Columns

Tab" on page 10-11).

The tab contains a columns tree that displays the names of the stage

columns, a columns grid with the detailed column definitions, and a

properties tree that displays properties for each column. Use the right

mouse menu to display or hide these panels to suit your needs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the
10-18 Parallel Job Developer’s Guide

Complex Flat File Stage Input Page
target file. It also allows you to specify that the data should be sorted

before being written.

By default the stage will partition data in Auto mode.

If the CFF stage is operating in sequential mode, it will first collect the

data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the CFF stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the CFF stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partitioning type drop-

down list. This will override any current partitioning.

If the CFF stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default Auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the CFF stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 10-19

Input Page Complex Flat File Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the CFF stage. Normally,
when you are using Auto mode, DataStage will eagerly read any
row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the target file.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

Perform sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled, an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
10-20 Parallel Job Developer’s Guide

Complex Flat File Stage Output Page
Output Page
The Output page allows you to specify details about how the CFF

stage reads data. The CFF stage can have multiple output links, and

each link can read from multiple files.

It can also have a single reject link. This is typically used when you are

writing to a file and provides a location where records that have failed

to be written to a file for some reason can be sent. When you are

reading files, you can use a reject link as a destination for rows that do

not match the expected column definitions.

The Output name drop-down list allows you to choose whether you

are looking at details of an output link (stream link) or the reject link.

The General tab allows you to specify an optional description of the

output link. The Selection tab allows you to select columns to output

from the stage. The Columns tab specifies the column definitions of

the data. The Advanced tab allows you to change the default

buffering settings for the output link.

Details about CFF stage properties and formatting are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Selection Tab
The Selection tab on the output link allows you to select columns to

be output from the stage. The column definitions for the stage are

given on the Stage page Columns tab (see "Columns Tab" on

page 10-11). You can output all of these on an output link or choose a

subset of them.
Parallel Job Developer’s Guide 10-21

Output Page Complex Flat File Stage
To select a column for output, copy it from the Available columns
tree to the Selected columns list. Groups, elements, and arrays can

be selected. Arrays can be kept as is or denormalized. For REDEFINES,

you can select the original column, the redefined field, or both.

Column icons have a checkmark in the Available columns tree after

a column is selected.

Click >> to add all columns to the Selected columns list. By default

group columns are not included, unless you first select the Enable all
group column selection check box.

If you select columns out of order, they will be reordered in the

Selected columns list to match the structure of the input columns.

When you highlight a selected column, the corresponding column is

highlighted in the Available columns list. To view the COBOL

structure of the selected columns, click View Columns. To go back to

the columns list, where you can modify your selections, click Edit
Columns.

If no columns are selected on this tab, then all stage columns except

group columns are automatically propagated to each empty output

link when you click OK to exit the stage.

The Selection tab is not available for the reject link.

Selecting Array Columns for Output

When you load columns into the CFF stage, you are given three

options for handling source data containing arrays. You can pass the
10-22 Parallel Job Developer’s Guide

Complex Flat File Stage Output Page
data as is, flatten all arrays on input to the stage, or flatten selected

arrays on input. You choose one of these options from the Complex
file load option dialog box, which appears when you load column

definitions into the Stage Columns tab.

If you choose to flatten arrays, the flattening is done at the time the

column meta data is loaded into the stage. All of the array elements

appear as separate columns in the table. Each array column has a

numeric suffix to make its name unique. You can select any or all of

these columns for output.

If you choose to pass arrays as is, the array structure is preserved. The

data is presented as a single row at execution time for each incoming

row. If the array is normalized, the incoming single row is resolved

into multiple output rows.

Following are several cases for normalizing different types of array

columns for output.

Selecting a Simple Normalized Array Column

A simple array is a single, one-dimensional array. This example shows

the result when you select all columns as output columns. For each

record that is read from the input file, five rows are written to the

output link. The sixth row out the link causes the second record to be

read from the file, starting the process over again.

Selecting a Nested Normalized Array Column

This example shows the result when you select a nested array column

as output. If you select FIELD-A, FIELD-C and FIELD-D as output

Input Record:

05 ID PIC X(10)

05 NAME PIC X(30)

05 CHILD PIC X(30) OCCURS 5 TIMES.

Output Rows:

Row 1: ID NAME CHILD(1)

Row 2: ID NAME CHILD(2)

Row 3: ID NAME CHILD(3)

Row 4: ID NAME CHILD(4)

Row 5: ID NAME CHILD(5)
Parallel Job Developer’s Guide 10-23

Output Page Complex Flat File Stage
columns, Ascential DataStage multiplies the OCCURS values at each

level. In this case, 6 rows are written to the output link.

Selecting Parallel Normalized Array Columns

Parallel arrays are array columns at the same level. The first example

shows the result when you select all parallel array columns as output

columns. Ascential DataStage determines the number of output rows

using the largest subscript. As a result, the smallest array gets padded

with default values and the element columns get repeated. In this

case, if you select all of the input fields as output columns, four rows

are written to the output link.

Input Record:

05 FIELD-A PIC X(4)

05 FIELD-B OCCURS 2 TIMES.

10 FIELD-C PIC X(4)

10 FIELD-D PIC X(4) OCCURS 3 TIMES.

Output Rows:

Row 1: FIELD-A FIELD-C(1) FIELD-D (1,1)

Row 2: FIELD-A FIELD-C(1) FIELD-D (1,2)

Row 3: FIELD-A FIELD-C(1) FIELD-D (1,3)

Row 4: FIELD-A FIELD-C(2) FIELD-D (2,1)

Row 5: FIELD-A FIELD-C(2) FIELD-D (2,2)

Row 5: FIELD-A FIELD-C(2) FIELD-D (2,3)

Input Record:

05 FIELD-A PIC X(4)

05 FIELD-B PIC X(4) OCCURS 2 TIMES.

05 FIELD-C PIC X(4)

05 FIELD-D PIC X(4) OCCURS 3 TIMES.

05 FIELD-E PIC X(4) OCCURS 4 TIMES.

Output Rows:

Row 1: FIELD-A FIELD-B(1) FIELD-C FIELD-D(1) FIELD-E(1)

Row 2: FIELD-A FIELD-B(2) FIELD-C FIELD-D(2) FIELD-E(2)

Row 3: FIELD-A FIELD-C FIELD-D(3) FIELD-E(3)

Row 4: FIELD-A FIELD-C FIELD-E(4)
10-24 Parallel Job Developer’s Guide

Complex Flat File Stage Output Page
In the next example, only a subset of the parallel array columns are

selected (FIELD-B and FIELD-E). FIELD-D is passed as is. The number

of output rows is determined by the maximum size of the

denormalized columns. In this case, four rows are written to the

output link.

Selecting Nested Parallel Denormalized Array Columns

This complex scenario shows the result when you select both parallel

array fields and nested array fields as output. If you select FIELD-A,

FIELD-C, and FIELD-E as output columns in this example, Ascential

DataStage determines the number of output rows by using the largest

OCCURS value at each level and multiplying them. In this case, three

is the largest OCCURS value at the outer (05) level, and five is the

largest OCCURS value at the inner (10) level. Therefore, 15 rows are

written to the output link. Notice that some of the subscripts repeat. In

particular, those that are smaller than the largest OCCURS value at

each level start over, including the second subscript of FIELD-C and

the first subscript of FIELD-E.

Output Rows:

Row 1: FIELD-A FIELD-B(1) FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(1)

Row 2: FIELD-A FIELD-B(2) FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(2)

Row 3: FIELD-A FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(3)

Row 4: FIELD-A FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(4)

Input Record:

05 FIELD-A PIC X(10)

05 FIELD-B OCCURS 3 TIMES.

10 FIELD-C PIC X(2) OCCURS 4 TIMES.

05 FIELD-D OCCURS 2 TIMES.

10 FIELD-E PIC 9(3) OCCURS 5 TIMES.
Parallel Job Developer’s Guide 10-25

Output Page Complex Flat File Stage
Selecting Group Columns for Output

Group columns contain elements or subgroups. When you select

groups or their elements for output, they are handled in the following

manner:

If a group column is selected with any of its elements, the group
column and the selected element columns are passed as group
and element columns.

If only elements of the group are selected and not the group
column itself, the selected element columns are treated as
individual columns. Even if the selected element columns are
within multiple or nested groups, all element columns are treated
as top-level columns in the selection list on the Selection tab.

A group column may not be selected without any of its elements.

Output Link Columns Tab
The Columns tab displays the column definitions for the data to be

output on the link. You cannot edit the column definitions on this tab,

only view them.

The tab contains a columns tree that displays the names of the stage

columns, a columns grid with the detailed column definitions, and a

Output Rows:

Row 1: FIELD-A FIELD-C (1,1) FIELD-E (1,1)

Row 2: FIELD-A FIELD-C (1,2) FIELD-E (1,2)

Row 3: FIELD-A FIELD-C (1,3) FIELD-E (1,3)

Row 4: FIELD-A FIELD-C (1,4) FIELD-E (1,4)

Row 5: FIELD-A FIELD-E (1,5)

Row 6: FIELD-A FIELD-C (2,1) FIELD-E (2,1)

Row 7: FIELD-A FIELD-C (2,2) FIELD-E (2,2)

Row 8: FIELD-A FIELD-C (2,3) FIELD-E (2,3)

Row 9: FIELD-A FIELD-C (2,4) FIELD-E (2,4)

Row 10: FIELD-A FIELD-E (2,5)

Row 11: FIELD-A FIELD-C (3,1)

Row 12: FIELD-A FIELD-C (3,2)

Row 13: FIELD-A FIELD-C (3,3)

Row 14: FIELD-A FIELD-C (3,4)

Row 15: FIELD-A
10-26 Parallel Job Developer’s Guide

Complex Flat File Stage Output Page
properties tree that displays properties for each column. Use the right

mouse menu to display or hide these panels to suit your needs. The

columns are defined on the Stage page Columns tab (see "Columns

Tab" on page 10-11).

Reject Links
You cannot change the selection properties of a reject link. The

Selection tab for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For

writing files, the link uses the column definitions for the input link. For

reading files, the link uses a single column called rejected containing

raw data for columns rejected after reading because they do not

match the schema.
Parallel Job Developer’s Guide 10-27

Output Page Complex Flat File Stage
10-28 Parallel Job Developer’s Guide

11
SAS Parallel Data Set Stage

The SAS Parallel Data Set stage is a file stage. It allows you to read

data from or write data to a parallel SAS data set in conjunction with

an SAS stage (described in Chapter 38). The stage can have a single

input link or a single output link. It can be configured to execute in

parallel or sequential mode. (More information about using Enterprise

Edition with SAS is given in SAS Stage Supplementary Guide.)

DataStage uses an SAS parallel data set to store data being operated

on by an SAS stage in a persistent form. An SAS parallel data set is a

set of one or more sequential SAS data sets, with a header file

specifying the names and locations of all the component files. By

convention, the header file has the suffix .psds.

The stage editor has up to three pages, depending on whether you are

reading or writing a data set:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a data set.
This is where you specify details about the data set being written
to.
Parallel Job Developer’s Guide 11-1

Must Do’s SAS Parallel Data Set Stage
Outputs Page. This is present when you are reading from a data
set. This is where you specify details about the data set being read
from.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include SAS Data Set stages in a job. This section specifies the

minimum steps to take to get a SAS Data Set stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on whether you are reading or writing SAS

data sets.

Writing an SAS Data Set
In the Input Link Properties Tab:

– Specify the name of the SAS data set you are writing to.

– Specify what happens if a data set with that name already
exists (by default this causes an error).

Ensure that column definitions have been specified for the data
set (this can be done in an earlier stage).

Reading an SAS Data Set
In the Output Link Properties Tab:

– Specify the name of the SAS data set you are reading.

Ensure that column definitions have been specified for the data
set (this can be done in an earlier stage).

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes.
11-2 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Inputs Page
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about how the SAS

Data Set stage writes data to a data set. The SAS Data Set stage can

have only one input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the data set. The

Columns tab specifies the column definitions of the data. The

Advanced tab allows you to change the default buffering settings for

the input link.
Parallel Job Developer’s Guide 11-3

Inputs Page SAS Parallel Data Set Stage
Details about SAS Data Set stage properties are given in the following

sections. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and to what data set.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows:

Options Category

File

The name of the control file for the data set. You can browse for the

file or enter a job parameter. By convention the file has the suffix

.psds.

Update Policy

Specifies what action will be taken if the data set you are writing to

already exists. Choose from:

Append. Append to the existing data set

Create (Error if exists). DataStage reports an error if the data set
already exists

Overwrite. Overwrite any existing file set

The default is Create (Error if exists).

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/File pathname N/A Y N N/A

Target/Update
Policy

Append/Create
(Error if exists)/
Overwrite/

Create
(Error if
exists)

Y N N/A
11-4 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Inputs Page
Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the data

set. It also allows you to specify that the data should be sorted before

being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the SAS Data Set stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default Auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the SAS Data Set stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the SAS Data Set stage is set to execute in parallel, then you can set

a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the SAS Data Set stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Parallel SAS
Data Set stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.
Parallel Job Developer’s Guide 11-5

Inputs Page SAS Parallel Data Set Stage
Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Parallel SAS Data
Set stages. Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the data set.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.
11-6 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Outputs Page
If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the

Parallel SAS Data Set stage reads data from a data set. The Parallel

SAS Data Set stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of incoming data. The Advanced tab allows you to change

the default buffering settings for the output link.

Details about Data Set stage properties and formatting are given in

the following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from the data set. The

SAS Data Set stage only has a single property.

Source Category

File

The name of the control file for the parallel SAS data set. You can

browse for the file or enter a job parameter. The file has the suffix

.psds.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/File pathname N/A Y N N/A
Parallel Job Developer’s Guide 11-7

Outputs Page SAS Parallel Data Set Stage
11-8 Parallel Job Developer’s Guide

12
DB2/UDB Enterprise Stage

The DB2/UDB Enterprise stage is a database stage. It allows you to

read data from and write data to a DB2 database. It can also be used in

conjunction with a Lookup stage to access a lookup table hosted by a

DB2 database (see Chapter 20, "Merge Stage.")

DB2 databases distribute data in multiple partitions. DataStage can

match the partitioning as it reads or writes data from/to a DB2

database.

The DB2/UDB Enterprise stage can have a single input link and a

single output reject link, or a single output link or output reference

link.

The stage performs one of the following operations:

Writes to a DB2 table (using INSERT).

Updates a DB2 table (using INSERT and/or UPDATE as
appropriate). Uses the DB2 CLI to enhance performance.

Loads a DB2 table (using DB2 fast loader).

Reads a DB2 table.

Deletes rows from a DB2 table.

Performs a lookup directly on a DB2 table.

Loads a DB2 table into memory and then performs a lookup on it.

When using an DB2/UDB Enterprise stage as a source for lookup data,

there are special considerations about column naming. If you have

columns of the same name in both the source and lookup data sets,

the source data set column will go to the output data. If you want this

column to be replaced by the column from the lookup data source,

you need to drop the source data column before you perform the

lookup (you could, for example, use a Modify stage to do this). See

DB2/UDB Enterprise Stage
Chapter 20, "Merge Stage," for more details about performing

lookups.

When you edit a DB2/UDB Enterprise stage, the stage editor appears.

This is based on the generic stage editor described in Chapter 3,

"Stage Editors."

The stage editor has up to three pages, depending on whether you are

reading or writing a database:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a DB2
database. This is where you specify details about the data being
written.

Outputs Page. This is present when you are reading from a DB2
database, or performing a lookup on a DB2 database. This is
where you specify details about the data being read.
12-2 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases
Accessing DB2 Databases
Before using DB2/UDB Enterprise stages for the first time, you should

carry out the configuration procedure described in "Configuring for

Enterprise Edition" in the DataStage Install and Upgrade Guide.

To use DB2/UDB Enterprise stages you must have valid accounts and

appropriate privileges on the databases to which they connect. If

using DB2 8.1 ESE (Enterprise Server edition), DPF (database

partitioning feature) must be installed along with DB2 8.1 ESE, in

order to take advantage of DataStage's parallel capabilities. DB2 8.1

ESE with DPF is equivalent to 7.2 EEE.

The required DB2 privileges are as follows:

SELECT on any tables to be read.

INSERT on any existing tables to be updated.

TABLE CREATE to create any new tables.

INSERT and TABLE CREATE on any existing tables to be replaced.

DBADM on any database written by LOAD method.

You can grant this privilege in several ways in DB2. One is to start

DB2, connect to a database, and grant DBADM privilege to a user, as

shown below:

db2> CONNECT TO db_name
db2> GRANT DBADM ON DATABASE TO USER user_name

where db_name is the name of the DB2 database and user_name is

the login name of the DataStage user. If you specify the message file
property, the database instance must have read/write privilege on that

file.

The user’s PATH should include $DB2_HOME/bin (e.g., /opt/IBMdb2/

V7.1/bin). The LIBPATH should include $DB2_HOME/lib before any

other lib statements (e.g., /opt/IBMdb2/V7.1/lib)

The following DB2 environment variables set the run-time

characteristics of your system:

DB2INSTANCE specifies the user name of the owner of the DB2
instance. DB2 uses DB2INSTANCE to determine the location of
db2nodes.cfg. For example, if you set DB2INSTANCE to "Mary",
the location of db2nodes. cfg is ~Mary/sqllib/db2nodes.cfg.

DB2DBDFT specifies the name of the DB2 database that you want
to access from your DB2/UDB Enterprise Stage.

There are two other methods of specifying the DB2 database:
Parallel Job Developer’s Guide 12-3

Accessing DB2 Databases DB2/UDB Enterprise Stage
1 The override database property of the DB2/UDB Enterprise
Stage Inputs or Outputs link.

2 The APT_DBNAME environment variable (this takes precedence
over DB2DBDFT).

You should normally use the input property Row Commit Interval to

specify the number of records to insert into a table between commits

(see page 12-25). Previously the environment variable

APT_RDBMS_COMMIT_ROWS was used for this, and this is still

available for backwards compatibility. You can set this environment

variable to any value between 1 and (231 - 1) to specify the number of

records. The default value is 2000. If you set

APT_RDBMS_COMMIT_ROWS to 0, a negative number, or an invalid

value, a warning is issued and each partition commits only once after

the last insertion.

If you set APT_RDBMS_COMMIT_ROWS to a small value, you force

DB2 to perform frequent commits. Therefore, if your program

terminates unexpectedly, your data set can still contain partial results

that you can use. However, you may pay a performance penalty

because of the high frequency of the commits. If you set a large value

for APT_RDBMS_COMMIT_ROWS, DB2 must log a correspondingly

large amount of rollback information. This, too, may slow your

application.

If you set neither the Row Commit Interval property, or the

APT_RDBMS_COMMIT_ROWS environment variable, the commit

interval defaults to 2000.

Note If you are using DB2 7.2, you must ensure that the directory

holding the configuration file (as specified by

APT_CONFIG_FILE) has the permissions 777.

Remote Connection
You can also connect from a DB2/UDB Enterprise stage to a remote

DB2 Server. The connection is made via a DB2 client.

In order to remotely connect from a DB2 client to a DB2 server, the

DB2 client should be located on the same machine as the DataStage

server. Both DB2 client and DB2 server need to be configured for

remote connection communication (see your DB2 Database

Administrator).

The DataStage configuration file needs to contain the node on which

DataStage and the DB2 client are installed and the nodes of the

remote computer where the DB2 server is installed (see "The Parallel

Engine Configuration File").
12-4 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases
On the DB2/UDB Enterprise stage in your parallel job, you need to set

the following properties:

Client Instance Name. Set this to the DB2 client instance name.
If you set this property, DataStage assumes you require remote
connection.

Server. Optionally set this to the instance name of the DB2 server.
Otherwise use the DB2 environment variable, DB2INSTANCE, to
identify the instance name of the DB2 server.

Client Alias DB Name. Set this to the DB2 client’s alias database
name for the remote DB2 server database. This is required only if
the client’s alias is different from the actual name of the remote
server database.

Database. Optionally set this to the remote server database
name. Otherwise use the environment variables APT_DBNAME or
APT_DB2DBDFT to identify the database.

User. Enter the user name for connecting to DB2, this is required
for a remote connection.

Password. Enter the password for connecting to DB2, this is
required for a remote connection

You can use DataStage’s remote connection facilities to connect to

different DB2 server within the same job. You could, for example, read

from a DB2 database on one server, use this data to access a lookup

table on another DB2 server, then write any rejected rows to a third

DB2 server. Each database would be accessed by a different stage in

the job with the Client Instance Name and Server properties set

appropriately.

Handling Special Characters (# and $)
The characters # and $ are reserved in DataStage and special steps are

needed to handle DB2 databases which use the characters # and $ in

column names. DataStage converts these characters into an internal

format, then converts them back as necessary.

To take advantage of this facility, you need to do the following:
Parallel Job Developer’s Guide 12-5

Accessing DB2 Databases DB2/UDB Enterprise Stage
In DataStage Administrator, open the Environment Variables
dialog for the project in question, and set the environment
variable DS_ENABLE_RESERVED_CHAR_CONVERT to true (this
can be found in the General\Customize branch).

Avoid using the strings __035__ and __036__ in your DB2 column
names (these are used as the internal representations of # and $
respectively).

When using this feature in your job, you should import meta data

using the Plug-in Meta Data Import tool, and avoid hand-editing (this

minimizes the risk of mistakes or confusion).

Once the table definition is loaded, the internal column names are

displayed rather than the original DB2 names both in table definitions

and in the Data Browser. They are also used in derivations and

expressions. The original names are used in generated SQL

statements, however, and you should use them if entering SQL in the

job yourself.

Generally, in the DB2 stage, you enter external names everywhere

except when referring to stage column names, where you use names

in the form ORCHESTRATE.internal_name.

When using the DB2 stage as a target, you should enter external

names as follows:

For Write and Load options, use external names for select list
properties.

For Upsert option, for update and insert, use external names when
referring to DB2 table column names, and internal names when
referring to the stage column names. For example:

INSERT INTO tablename ($A#, ##B$) VALUES
(ORCHESTRATE.__036__A__035__, ORCHESTRATE.__035__035__B__036__)

UPDATE tablename SET ##B$ = ORCHESTRATE.__035__035__B__036__ WHERE
($A# = ORCHESTRATE.__036__A__035__)
12-6 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases
When using the DB2 stage as a source, you should enter external

names as follows:

For Read using the user-defined SQL method, use external names
for DB2 columns for SELECT: For example:

SELECT #M$, #D$ FROM tablename WHERE (#M$ > 5)

For Read using Table method, use external names in select list and
where properties.

When using the DB2 stage in parallel jobs as a look-up, you should

enter external or internal names as follows:

For Lookups using the user-defined SQL method, use external
names for DB2 columns for SELECT, and for DB2 columns in any
WHERE clause you might add. Use internal names when referring
to the stage column names in the WHERE clause. For example:

SELECT #M$, #D$ FROM tablename
WHERE (#B$ = ORCHESTRATE.__035__ B __036__)

For Lookups using the Table method, use external names in select
list and where properties.

Use internal names for the key option on the Inputs page
Properties tab of the Lookup stage to which the DB2 stage is
attached.

Using the Pad Character Property
Use the Pad Character property when using upsert or performing a

lookup to pad string and ustring fields that are less than the length of

the DB2 CHAR column. Use this property for string and ustring fields

that are inserted in DB2 or are used in the WHERE clause of an

UPDATE, DELETE, or SELECT statement when all three of these

conditions are met:

1 The UPDATE or SELECT statement contains string or ustring fields
that map to CHAR columns in the WHERE clause.

2 The length of the string or ustring field is less than the length of
the CHAR column.

3 The padding character for the CHAR columns is not the null
terminator.

For example, if you add rows to a table using an INSERT statement in

SQL, DB2 automatically pads CHAR fields with spaces. When you

subsequently use the DB2/UDB Enterprise stage to update or query

the table, you must use the Pad Character property with the value of a

space in order to produce the correct results.
Parallel Job Developer’s Guide 12-7

Accessing DB2 Databases DB2/UDB Enterprise Stage
When you both insert rows and subsequently update or query them

using the DB2/UDB Enterprise stage, you do not need to specify the

Pad Character property.The stage automatically pads with null

terminators, and the default pad character for the stage is the null

terminator.

Type Conversions - Writing to DB2/UDB
When writing or loading, the DB2/UDB Enterprise stage automatically

converts DataStage data types to DB2/UDB data types as shown in the

following table:

DataStage SQL Data
Type

Underlying Data Type DB2/UDB Data Type

Date date DATE

Time time TIME

Timestamp timestamp TIMESTAMP

Decimal
Numeric

decimal (p, s) DECIMAL (p, s)

TinyInt int8 SMALLINT

SmallInt int16 SMALLINT

Integer int32 INTEGER

Float
Real

sfloat FLOAT

Double dfloat FLOAT

Unknown
Char

fixed-length string in the
form string[n] and
ustring[n]; length <= 254
bytes

CHAR(n)

where n is the string
length

LongVarChar
VarChar

fixed-length string in the
form string[n] and
ustring[n]; 255 < = length
<= 4000 bytes

VARCHAR(n)

where n is the string
length

LongVarChar
VarChar

variable-length string, in
the form string[max=n]
and ustring[max=n];
maximum length <= 4000
bytes

VARCHAR(n)

where n is the maximum
string length

LongVarChar
VarChar

variable-length string in
the form string and ustring

VARCHAR(32)*

LongVarChar
VarChar

string and ustring, 4000
bytes < length

Not supported
12-8 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases
The default length of VARCHAR is 32 bytes. That is, 32 bytes are

allocated for each variable-length string field in the input data set. If an

input variable-length string field is longer than 32 bytes, the stage

issues a warning.

Type Conversions - Reading from DB2/UDB
When reading, the DB2/UDB Enterprise stage automatically converts

DB2/UDB data types to DataStage data types as shown in the

following table:

DataStage SQL Data
Type

Underlying Data Type DB2/UDB Data Type

Time or Timestamp time or timestamp with
corresponding fractional
precision for time

If the DATETIME starts
with a year component,
the result is a timestamp
field. If the DATETIME
starts with an hour, the
result is a time field.

DATETIME

Decimal
Numeric

decimal (p, s) where p is
the precision and s is the
scale

The maximum precision is
32, and a decimal with
floating scale is converted
to a dfloat

DECIMAL (p, s)

TinyInt int8 SMALLINT

SmallInt int16 SMALLINT

Integer int32 INTEGER

Double dfloat FLOAT

Float
Real

sfloat SMALLFLOAT

Float
Real

sfloat REAL

Double dfloat DOUBLE-PRECISION

Decimal decimal MONEY
Parallel Job Developer’s Guide 12-9

Examples DB2/UDB Enterprise Stage
Examples

Looking Up a DB2/UDB Table
This example shows what happens when data is looked up in a DB2/

UDB table. The stage in this case will look up the interest rate for each

customer based on the account type. Here is the data that arrives on

the primary link:

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[n] or ustring[n] NCHAR(n, r)

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[max = n] or
ustring[max = n]

NVARCHAR(n, r)

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[max = n] or
ustring[max = n]

VARCHAR(n)

DataStage SQL Data
Type

Underlying Data Type DB2/UDB Data Type

Customer accountNo accountType balance

Latimer 7125678 plat 7890.76

Ridley 7238892 flexi 234.88

Cranmer 7611236 gold 1288.00

Hooper 7176672 flexi 3456.99

Moore 7146789 gold 424.76
12-10 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Examples
Here is the data in the DB2/UDB lookup table:

Here is what the lookup stage will output:

The job looks like the one illustrated on page 12-2. The Data_set stage

provides the primary input, DB2_lookup_table provides the lookup

data, Lookup_1 performs the lookup and outputs the resulting data to

Data_Set_3. In the DB2/UDB stage we specify that we are going to look

up the data directly in the DB2/UDB database, and the name of the

table we are going to look up. In the Look up stage we specify the

column that we are using as the key for the look up.

accountType InterestRate

bronze 1.25

silver 1.50

gold 1.75

plat 2.00

flexi 1.88

fixterm 3.00

Customer accountNo accountType balance InterestRate

Latimer 7125678 plat 7890.76 2.00

Ridley 7238892 flexi 234.88 1.88

Cranmer 7611236 gold 1288.00 1.75

Hooper 7176672 flexi 3456.99 1.88

Moore 7146789 gold 424.76 1.75
Parallel Job Developer’s Guide 12-11

Examples DB2/UDB Enterprise Stage
The properties for the DB2/UDB stage are as follows:

The properties for the look up stage are as follows:

Updating a DB2/UDB Table
This example shows a DB2/UDB table being updated with three new

columns. The database records the horse health records of a large

stud. Details of the worming records are being added to the main

table and populated with the most recent data, using the existing
12-12 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Examples
column “name” as a key. The meta data for the new columns is as

follows:

We are going to specify upsert as the write method and choose User-

defined Update & Insert as the upsert mode, this is so that we do not

include the existing name column in the INSERT statement. The

properties (showing the INSERT statement) are shown below. The

INSERT statement is as generated by the DataStage, except the name

column is removed.
Parallel Job Developer’s Guide 12-13

Must Do’s DB2/UDB Enterprise Stage
The UPDATE statement is as automatically generated by DataStage:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include DB2/UDB Enterprise stages in a job. This section specifies the

minimum steps to take to get a DB2/UDB Enterprise stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on what you are using a DB2/UDB

Enterprise Stage for.

Writing a DB2 Database
In the Input Link Properties Tab:

– Choose a Write Method of Write.

– Specify the Table you are writing.

– If you are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

By default the stage uses the same partitioning method as the DB2
table defined by the environment variables (see "Accessing DB2
Databases" on page 12-3). The method can be changed, or you
can specify a different database, on the Input Link Partitioning
Tab.

Ensure column meta data has been specified for the write.
12-14 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Must Do’s
Updating a DB2 Database
This is the same as writing a DB2 database, except you need to

specify details of the SQL statements used to update the database:

In the Input Link Properties Tab:

– Choose a Write Method of Upsert.

– Choose the Upsert Mode, this allows you to specify whether to
insert and update, or update only, and whether to use a
statement automatically generated by DataStage or specify
your own.

– If you have chosen an Upsert Mode of User-defined Update
and Insert, specify the Insert SQL statement to use. DataStage
provides the auto-generated statement as a basis, which you
can edit as required.

– If you have chosen an Upsert Mode of User-defined Update
and Insert or User-defined Update only, specify the Update SQL
statement to use. DataStage provides the auto-generated
statement as a basis, which you can edit as required.

– If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Deleting Rows from a DB2 Database
This is the same as writing a DB2 database, except you need to

specify details of the SQL statements used to delete rows from the

database:

In the Input Link Properties Tab:

– Choose a Write Method of Delete Rows.

– Choose the Delete Rows Mode, this allows you to specify
whether to use a statement automatically generated by
DataStage or specify your own.

– If you have chosen a Delete Rows Mode of User-defined delete,
specify the Delete SQL statement to use. DataStage provides
the auto-generated statement as a basis, which you can edit as
required.

– If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Loading a DB2 Database
This is the default method. Loading has the same requirements as

writing, except:
Parallel Job Developer’s Guide 12-15

Must Do’s DB2/UDB Enterprise Stage
In the Input Link Properties Tab:

– Choose a Write Method of Load.

Reading a DB2 Database
In the Output Link Properties Tab:

– Choose a Read Method. This is Table by default (which reads
directly from a table and operates in parallel), but you can also
choose to read using auto-generated SQL or user-generated
SQL (which operates sequentially on a single node by default).

– Specify the table to be read.

– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

– If using a Read Method apart from Table, you can specify a
Partition Table property. This specifies execution of the query
in parallel on the processing nodes containing a partition
derived from the named table. If you do not specify this, the
stage executes the query sequentially on a single node.

– If you are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

Ensure column meta data has been specified for the read.

Performing a Direct Lookup on a DB2 Database Table
Connect the DB2/UDB Enterprise Stage to a Lookup stage using a
reference link.

In the Output Link Properties Tab:

– Set the Lookup Type to Sparse.

– Choose a Read Method. This is Table by default (which reads
directly from a table), but you can also choose to read using
auto-generated SQL or user-generated SQL.

– Specify the table to be read for the lookup.

– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.
You would use this if, for example, you wanted to perform a
non-equality based lookup.
12-16 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Stage Page
– If you are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

Ensure column meta data has been specified for the lookup.

Performing an In Memory Lookup on a DB2 Database
Table

This is the default method. It has the same requirements as a direct

lookup, except:

In the Output Link Properties Tab:

– Set the Lookup Type to Normal.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the entire write is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set file read operations will request that the next stage preserves
the partitioning as is (it does not appear if your stage only has an
input link).
Parallel Job Developer’s Guide 12-17

Inputs Page DB2/UDB Enterprise Stage
Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Note This page is blank if you are using the stage to perform a

lookup directly on DB2 table (i.e. operating in sparse mode).

NLS Map Tab
The NLS Map tab allows you to define a character set map for the

DB2/UDB Enterprise stage. This overrides the default character set

map set for the project or the job. You can specify that the map be

supplied as a job parameter if required.

Inputs Page
The Inputs page allows you to specify details about how the DB2/

UDB Enterprise Stage writes data to a DB2 database. The DB2/UDB

Enterprise Stage can have only one input link writing to one table.
12-18 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the database. The

Columns tab specifies the column definitions of incoming data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about DB2/UDB Enterprise Stage properties, partitioning, and

formatting are given in the following sections. See Chapter 3, "Stage

Editors," for a general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and where. Some of the

properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes (the properties for stages in jobs being deployed on

USS systems are slightly different – see page 12-28 for details). A

more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/Table String N/A Y N N/A

Target/Delete Rows
Mode

Auto-
generated
delete/user-
defined
delete

Auto-
generated
delete

Y if Write
method =
Delete Rows

N N/A

Target/Delete SQL String N/A Y if Write
method =
Delete Rows

N N/A
Parallel Job Developer’s Guide 12-19

Inputs Page DB2/UDB Enterprise Stage
Target/Upsert Mode Auto-
generated
Update &
Insert/
Auto-
generated
Update
Only/User-
defined
Update &
Insert/User-
defined
Update Only

Auto-
generated
Update &
Insert

Y if Write
method =
Upsert

N N/A

Target/Insert SQL String N/A Y if Write
method =
Upsert

N N/A

Target/Update SQL String N/A Y if Write
method =
Upsert

N N/A

Target/Write
Method

Delete
Rows/Write/
Load/
Upsert

Load Y N N/A

Target/Write Mode Append/
Create/
Replace/
Truncate

Append Y N N/A

Connection/Use
Default Database

True/False True Y N N/A

Connection/Use
Default Server

True/False True Y N N/A

Connection/
ServerDatabase

string N/A Y (if Use
Database
environment
variable =
False)

N N/A

Connection/Server string N/A Y (if Use
Server
environment
variable =
False)

N N/A

Connection/Client
Instance Name

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
12-20 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Options/Array Size number 2000 Y (if Write
Method =
Delete)

N N/A

Options/Output
Rejects

True/False False Y (if Write
Method =
Upsert)

N N/A

Options/Row
Commit Interval

number value of Array
Size

N N N/A

Options/Time
Commit Interval

number 2 N N N/A

Options/Silently
Drop Columns Not
in Table

True/False False Y N N/A

Options/Truncate
Column Names

True/False False Y N N/A

Options/Truncation
Length

number 18 N N Truncate Column
Names

Options/Close
Command

string N/A N N N/A

Options/Default
String Length

number 32 N N N/A

Options/Open
Command

string N/A N N N/A

Options/Use ASCII
Delimited Format

True/False False Y (if Write
Method =
Load)

N N/A

Options/Cleanup on
Failure

True/False False Y (if Write
Method =
Load)

N N/A

Options/Message
File

pathname N/A N N N/A

Options/DB Options string N/A N N N/A

Options/Non-
recoverable
Transactions

True/False False N N N/A

Options/Pad
Character

string null N N N/A

Options/Exception
Table

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 12-21

Inputs Page DB2/UDB Enterprise Stage
Target Category

Table

Specify the name of the table to write to. You can specify a job

parameter if required.

Delete Rows Mode

This only appears for the Delete Rows write method. Allows you to

specify how the delete statement is to be derived. Choose from:

Auto-generated Delete. DataStage generates a delete
statement for you, based on the values you have supplied for
table name and column details. The statement can be viewed by
selecting the Delete SQL property.

User-defined Delete. Select this to enter your own delete
statement. Then select the Delete SQL property and edit the
statement proforma.

Delete SQL

Only appears for the Delete Rows write method. This property allows

you to view an auto-generated Delete statement, or to specify your

own (depending on the setting of the Delete Rows Mode property).

Options/Statistics stats_none/
stats_exttabl
e_only/
stats_extind
ex_only/
stats_index/
stats_table/
stats_extind
ex_table/
stats_all/
stats_both

stats_none N N N/A

Options/Number of
Processes per Node

number 1 N N

Options/Arbitrary
Loading Order

True/False True N N Number of
Processes per
Node

Category/
Property

Values Default Mandatory? Repeats? Dependent of
12-22 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Upsert Mode

This only appears for the Upsert write method. Allows you to specify

how the insert and update statements are to be derived. Choose from:

Auto-generated Update & Insert. DataStage generates update
and insert statements for you, based on the values you have
supplied for table name and on column details. The statements
can be viewed by selecting the Insert SQL or Update SQL
properties.

Auto-generated Update Only. DataStage generates an update
statement for you, based on the values you have supplied for
table name and on column details. The statement can be viewed
by selecting the Update SQL properties.

User-defined Update & Insert. Select this to enter your own
update and insert statements. Then select the Insert SQL and
Update SQL properties and edit the statement proformas.

User-defined Update Only. Select this to enter your own update
statement. Then select the Update SQL property and edit the
statement proforma.

Insert SQL

Only appears for the Upsert write method. This property allows you to

view an auto-generated Insert statement, or to specify your own

(depending on the setting of the Update Mode property).

Update SQL

Only appears for the Upsert write method. This property allows you to

view an auto-generated Update statement, or to specify your own

(depending on the setting of the Update Mode property).

Write Method

Choose from Delete Rows, Write, Upsert, or Load (the default). Load

takes advantage of fast DB2 loader technology for writing data to the

database. Upsert uses Insert and Update SQL statements to write to

the database. (Upsert is not available when you are using the DB2

load stage on a USS system.)

Write Mode

Select from the following:

Append. This is the default. New records are appended to an
existing table.
Parallel Job Developer’s Guide 12-23

Inputs Page DB2/UDB Enterprise Stage
Create. Create a new table. If the DB2 table already exists an error
occurs and the job terminates. You must specify this mode if the
DB2 table does not exist.

Replace. The existing table is first dropped and an entirely new
table is created in its place. DB2 uses the default partitioning
method for the new table.

Note that you cannot create or replace a table that has primary

keys, you should not specify primary keys in your meta data.

Truncate. The existing table attributes (including schema) and the
DB2 partitioning keys are retained, but any existing records are
discarded. New records are then appended to the table.

Connection Category

Use Default Server

This is set to True by default, which causes the stage to use the setting

of the DB2INSTANCE environment variable to derive the server. If you

set this to False, you must specify a value for the Override Server

property.

Use Default Database

This is set to True by default, which causes the stage to use the setting

of the environment variable APT_DBNAME, if defined, and DB2DBDFT

otherwise to derive the database. If you set the property to False, you

must specify a value for the Override Database property.

Server

Optionally specifies the DB2 instance name for the table. This

property appears if you set Use Server Environment Variable property

to False.

Database

Optionally specifies the name of the DB2 database to access. This

property appears if you set Use Database Environment Variable

property to False.

Client Instance Name

This property is only required if you are connecting to a remote DB2

server. It specifies the DB2 client through which you are making the

connection (see "Remote Connection" on page 12-4).

Note Connection details are normally specified by environment

variables as described in "Accessing DB2 Databases" on
12-24 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
page 12-3. If you are specifying a remote connection, when

you fill in the client instance name, user and password

fields appear and allow you to specify these for connection

to the remote server.

Options Category

Array Size

This is only available for Write Methods of Delete and Upsert, and is

optional for upsert. This specifies the size the insert/delete host array.

It defaults to 2000, but you can enter 1 if you want each insert/delete

statement to be executed individually.

Output Rejects

This appears for the Upsert Write Method. It specifies how to handle

rows that fail to be inserted. Choose True to send them down a reject

link, or False to drop them.

Row Commit Interval

This is available for Write Methods of Upsert, Delete Rows, and Write.

It specifies the number of records that should be committed before

starting a new transaction. The specified number must be a multiple

of the array size. For Upsert and Delete Rows, the default is the array

size (which in turn defaults to 2000). For Write the default is 2000.

If you set a small value for Row Commit Interval, you force DB2 to

perform frequent commits. Therefore, if your program terminates

unexpectedly, your data set can still contain partial results that you

can use. However, you may pay a performance penalty because of the

high frequency of the commits. If you set a large value for Row

Commit Interval, DB2 must log a correspondingly large amount of

rollback information. This, too, may slow your application.

Time Commit Interval

This is available for Write Methods of Upsert and Delete. It specifies

the number of seconds DataStage should allow between committing

the input array and starting a new transaction. The default time period

is 2 seconds

Silently Drop Columns Not in Table

This is False by default. Set to True to silently drop all input columns

that do not correspond to columns in an existing DB2 table. Otherwise

the stage reports an error and terminates the job.
Parallel Job Developer’s Guide 12-25

Inputs Page DB2/UDB Enterprise Stage
Truncate Column Names

Select this option to truncate column names to 18 characters. To

specify a length other than 18, use the Truncation Length dependent

property:

Truncation Length

This is set to 18 by default. Change it to specify a different

truncation length.

Close Command

This is an optional property. Use it to specify any command to be

parsed and executed by the DB2 database on all processing nodes

after the stage finishes processing the DB2 table. You can specify a job

parameter if required.

Default String Length

This is an optional property and is set to 32 by default. Sets the default

string length of variable-length strings written to a DB2 table. Variable-

length strings longer than the set length cause an error.

The maximum length you can set is 4000 bytes. Note that the stage

always allocates the specified number of bytes for a variable-length

string. In this case, setting a value of 4000 allocates 4000 bytes for

every string. Therefore, you should set the expected maximum length

of your largest string and no larger.

Open Command

This is an optional property. Use it to specify any command to be

parsed and executed by the DB2 database on all processing nodes

before the DB2 table is opened. You can specify a job parameter if

required.

Use ASCII Delimited Format

This property only appears if Write Method is set to Load. Specify this

option to configure DB2 to use the ASCII-delimited format for loading

binary numeric data instead of the default ASCII-fixed format.

This option can be useful when you have variable-length columns,

because the database will not have to allocate the maximum amount

of storage for each variable-length column. However, all numeric

columns are converted to an ASCII format by DB2, which is a CPU-

intensive operation. See the DB2 reference manuals for more

information.
12-26 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Cleanup on Failure

This property only appears if Write Method is set to Load. Specify this

option to deal with failures during stage execution that leave the

tablespace being loaded in an inaccessible state.

The cleanup procedure neither inserts data into the table nor deletes

data from it. You must delete rows that were inserted by the failed

execution either through the DB2 command-level interpreter or by

using the stage subsequently using the replace or truncate write
modes.

Message File

This property only appears if Write Method is set to Load. Specifies

the file where the DB2 loader writes diagnostic messages. The

database instance must have read/write privilege to the file.

DB Options

This only appears if Write Method is set to load and Write Mode is set

to Create or Replace. It specifies an optional table space or

partitioning key to be used by DB2 to create the table.

By default, DataStage creates the table on all processing nodes in the

default table space and uses the first column in the table,

corresponding to the first field in the input data set, as the partitioning

key.

You specify arguments as a string enclosed in braces in the form:

{tablespace=t_space,[key=col0,...]}

Non-recoverable Transactions

This only appears if Write Method is set to Load. It is False by default.

If set to True, it indicates that your load transaction is marked as

nonrecoverable. It will not be possible to recover your transaction

with a subsequent roll forward action. The roll forward utility will skip

the transaction, and will mark the table into which data was being

loaded as "invalid". The utility will also ignore any subsequent

transactions against the table. After a roll forward is completed, the

table can only be dropped. Table spaces are not put in a backup

pending state following the load operation, and a copy of the loaded

data is not made during the load operation.

Pad Character

This appears for a Write Method of Upsert or Delete Rows. It specifies

the padding character to be used in the construction of a WHERE

clause when it contains string columns that have a length less than
Parallel Job Developer’s Guide 12-27

Inputs Page DB2/UDB Enterprise Stage
the DB2 char column in the database. It defaults to null. (See "Using

the Pad Character Property" on page 12-7.)

Exception Table

This property only appears if Write Method is set to Load. It allows

you to specify the name of a table where rows that violate load table

constraints are inserted. The table needs to have been created in the

DB2 database. The exception table cannot be used when the Write

Mode is set to create or replace.

Statistics

This property only appears if Write Method is set to Load. It allows

you to specify which statistics should be generated upon load

completion, as part of the loading process DB2 will collect the

requisite statistics for table optimization. This option is only valid for a

Write Mode of truncate, it is ignored otherwise.

Number of Processes per Node

This property only appears if Write Method is set to Load. It allows

you to specify the number of processes to initiate on every node. If set

to 0, the stage uses its own algorithm to determine the optimal

number, based on the number of CPUs available at runtime (this does

not, however, take into account the workload from the rest of the job).

By default it is set to 1. It has the following dependent property:

Arbitrary Loading Order

This only appears if Number of Processes per Node is set to a

value greater than 1. If set true, it specifies that the loading of

every node can be arbitrary, leading to a potential performance

gain.

USS Options

If you are designing jobs within a USS deployment project (see

Chapter 56, "Parallel Jobs on USS,"), the properties available under

the Connection and Options categories are different, and there is an

extra category: MVS Datasets. The following table describes the

properties available for these categores; see page 12-22 for the

properties available under the target category.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Connection/Use
Default Database

True/False True Y N N/A
12-28 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Connection/
ServerDatabase

string N/A Y (if Use
Database
environment
variable = False)

N N/A

Options/Enforce
Constraints

True/False False Y (if Write
Method = Load)

N N/A

Options/Keep
Dictionary

True/False False Y (if Write
Method = Load)

N N/A

Options/Preformat True/False False Y (if Write
Method = Load)

N N/A

Options/Silently
Drop Columns Not
in Table

True/False False Y (if Write
Method = Load
or Write)

N N/A

Options/Truncate
Column Names

True/False False Y (if Write
Method = Load
or Write)

N N/A

Options/Truncation
Length

number 18 N N Truncate Column
Names

Options/Verbose True/False False Y (if Write
Method = Load)

N N/A

Options/Close
Command

string N/A N N N/A

Options/Default
String Length

number 32 N N N/A

Options/Exception
Table

string N/A N N N/A

Options/Number of
Processes per Node

number 1 N N

Options/Arbitrary
Loading Order

True/False True N N Number of
Processes per
Node

Options/Open
Command

string N/A N N N/A

Options/Row
Estimate

integer N/A N N N/A

Options/Sort Device
Type

string N/A N N N/A

Options/Sort Keys integer N/A N N N/A

Options/When
Clause

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 12-29

Inputs Page DB2/UDB Enterprise Stage
Connection Category

Use Default Database

This is set to True by default, which causes the stage to use the default

DB2 subsystem. If you set the property to False, you must specify a

value for the Override Database property.

Options/Create
Statement

True/False False Y (if Write
Method = Load
and Write Mode
= Create)

N N/A

Options/DB Options string N/A N N N/A

Options/Reuse
Datasets

True/False False Y (if Write
Method = Load
and Write Mode
= Replace)

N N/A

Options/Statistics stats_all/
stats_both/
stats_extin
dex_only/
stats_extin
dex_table/
stats_extta
ble_only/
stats_index
/
stats_none/
stats_table

stats_none N N N/A

Options/Array Size number 2000 Y (if Write
Method =
Delete)

N N/A

Options/Pad
Character

string null N N N/A

Options/Row
Commit Interval

number value of Array
Size

N N N/A

Options/Time
Commit Interval

number 2 N N N/A

Options/Output
Rejects

True/False False Y (if Write
Method =
Upsert)

N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
12-30 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Database

Optionally specifies the name of the DB2 database to access. This

property appears if you set Use Database Environment Variable

property to False.

MVS DataSets Category

Discard DSN

Specifies the name of the MVS dataset that stores the rejected

records. It has the following sub-properties:

Discard Device Type

The device type that is used for the specified discard dataset.

Discard Space

The primary allocation space for the discard dataset, specified in

cylinders.

Max Discards Per Node

An integer which specifies the maximum number of discarded

rows to keep in a dataset per node.

Error DSN

The name of the MVS dataset that stores rows that could not be

loaded into DB2 because of an error. It has the following sub-

properties:

Error Device Type

The device type that is used for the specified Error dataset.

Error Space

The primary allocation space for the error dataset, specified in

cylinders.

Map DSN

specifies the name of the MVS dataset for mapping identifiers back to

the input records that caused an error. It has the following sub-

properties:

Map Device Type

The device type that is used for the specified Map dataset.
Parallel Job Developer’s Guide 12-31

Inputs Page DB2/UDB Enterprise Stage
Map Space

The primary allocation space for the map dataset, specified in

cylinders.

Work 1 DSN

Specifies the name of the MVS dataset for sorting input. It has the

following sub-properties:

Work 1 Device Type

The device type that is used for the specified Work 1 dataset.

Work 1 Space

The primary allocation space for the Work 1 dataset, specified in

cylinders.

Work 2 DSN

Specifies the name of the MVS dataset for sorting output. It has the

following sub-properties:

Work 2 Device Type

The device type that is used for the specified Work 2 dataset.

Work 2 Space

The primary allocation space for the Work 2 dataset, specified in

cylinders.

Options Category

Enforce Constraints

Only available when Write Method = Load. If this is set to True, load

will delete errant rows when encountering them, and issue a message

identifying such row. This requires that:

referential constraints exist

the input must be sorted

a Map DSN dataset must be specified under the MVS datasets
category.

Keep Dictionary

Only available when Write Method = Load. If this is set to true, load is

prevented from building a new compresiion dictionary. This property

is ignored unless the associated tablespace has the COMPRESS YES

attribute.
12-32 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Preformat

Only available when Write Method = Load. If set to True, the

remaining pages are preformatted in the tablespace and its index

space.

Silently Drop Columns Not in Table

This is False by default. Set to True to silently drop all input columns

that do not correspond to columns in an existing DB2 table. Otherwise

the stage reports an error and terminates the job.

Truncate Column Names

Select this option to truncate column names to 18 characters. To

specify a length other than 18, use the Truncation Length dependent

property:

Truncation Length

This is set to 18 by default. Change it to specify a different

truncation length.

Verbose

Only available when Write Method = Load. If this is set to True,

DataStage logs all messages generated by DB2 when a record is

rejected because of prime key or other violations.

Close Command

This is an optional property. Use it to specify any command to be

parsed and executed by the DB2 database on all processing nodes

after the stage finishes processing the DB2 table. You can specify a job

parameter if required.

Default String Length

This is an optional property and is set to 32 by default. Sets the default

string length of variable-length strings written to a DB2 table. Variable-

length strings longer than the set length cause an error.

The maximum length you can set is 4000 bytes. Note that the stage

always allocates the specified number of bytes for a variable-length

string. In this case, setting a value of 4000 allocates 4000 bytes for

every string. Therefore, you should set the expected maximum length

of your largest string and no larger.
Parallel Job Developer’s Guide 12-33

Inputs Page DB2/UDB Enterprise Stage
Exception Table

This property only appears if Write Method is set to Load. It allows

you to specify the name of a table where rows that violate load table

constraints are inserted. The table needs to have been created in the

DB2 database. The exception table cannot be used when the Write

Mode is set to create or replace.

Number of Processes per Node

This property only appears if Write Method is set to Load. It allows

you to specify the number of processes to initiate on every node. If set

to 0, the stage uses its own algorithm to determine the optimal

number, based on the number of CPUs available at runtime (this does

not, however, take into account the workload from the rest of the job).

By default it is set to 1. It has the following dependent property:

Arbitrary Loading Order

This only appears if Number of Processes per Node is set to a

value greater than 1. If set true, it specifies that the loading of

every node can be arbitrary, leading to a potential performance

gain.

Open Command

This is an optional property. Use it to specify any command to be

parsed and executed by the DB2 database on all processing nodes

before the DB2 table is opened. You can specify a job parameter if

required.

Row Estimate

Only available when Write Method = Load. Specify the estimated

number of rows (across all nodes) to be loaded into the database. An

estimate of the required primary allocation space for storing all rows

is made before load is engaged.

Sort Device Type

Only available when Write Method = Load. Specify the device type for

dynamically allocated datasets used by DFSORT.

Sort Keys

Only available when Write Method = Load. Set this to have rows

presorted according to keys, the value is an estimate of the number of

index keys to be sorted. Do not use this property if tablespace does

not have an indes, has only one index, or data is already sorted

according to index keys.
12-34 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
When Clause

Only available when Write Method = Load. Specify a WHEN clause for

the load script.

Create Statement

Only available when Write Method = Load and Write Mode = Create or

Replace. Specify the SQL statement to create the table.

DB Options

This only appears if Write Method is set to load and Write Mode is set

to Create or Replace. It specifies an optional table space or

partitioning key to be used by DB2 to create the table.

By default, DataStage creates the table on all processing nodes in the

default table space and uses the first column in the table,

corresponding to the first field in the input data set, as the partitioning

key.

You specify arguments as a string enclosed in braces in the form:

{tablespace=t_space,[key=col0,...]}

Reuse Datasets

This only appears if Write Method is set to Load and Write Mode is set

to Replace. If True, DB2 reuses DB2 managed datasets without

relocating them.

Statistics

This only appears if Write Method is set to load and Write Mode is set

to Truncate. Specifies which statistics should be generated upon

completion of load. As a part of the loading process, DB2 collects the

statistics required for table access optimization (alternatively use the

RUNSTAT utility).

Array Size

This is only available for Write Methods of Delete and Upsert, and is

optional for upsert. This specifies the size the insert/delete host array.

It defaults to 2000, but you can enter 1 if you want each insert/delete

statement to be executed individually.

Pad Character

This appears for a Write Method of Upsert or Delete Rows. It specifies

the padding character to be used in the construction of a WHERE

clause when it contains string columns that have a length less than
Parallel Job Developer’s Guide 12-35

Inputs Page DB2/UDB Enterprise Stage
the DB2 char column in the database. It defaults to null. (See "Using

the Pad Character Property" on page 12-7.)

Row Commit Interval

This is available for Write Methods of Upsert, Delete Rows, and Write.

It specifies the number of records that should be committed before

starting a new transaction. The specified number must be a multiple

of the array size. For Upsert and Delete Rows, the default is the array

size (which in turn defaults to 2000). For Write the default is 2000.

If you set a small value for Row Commit Interval, you force DB2 to

perform frequent commits. Therefore, if your program terminates

unexpectedly, your data set can still contain partial results that you

can use. However, you may pay a performance penalty because of the

high frequency of the commits. If you set a large value for Row

Commit Interval, DB2 must log a correspondingly large amount of

rollback information. This, too, may slow your application.

Time Commit Interval

This is available for Write Methods of Upsert and Delete. It specifies

the number of seconds DataStage should allow between committing

the input array and starting a new transaction. The default time period

is 2 seconds

Output Rejects

This appears for the Upsert Write Method. It specifies how to handle

rows that fail to be inserted. Choose True to send them down a reject

link, or False to drop them.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the DB2

database. It also allows you to specify that the data should be sorted

before being written.

By default the stage partitions in DB2 mode. This takes the

partitioning method from a selected DB2 database (or the one

specified by the environment variables described in "Accessing DB2

Databases" on page 12-3).

If the DB2/UDB Enterprise Stage is operating in sequential mode, it

will first collect the data before writing it to the file using the default

Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:
12-36 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page
Whether the DB2/UDB Enterprise Stage is set to execute in parallel
or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the DB2/UDB Enterprise Stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partition type
drop-down list. This will override any current partitioning.

If the DB2/UDB Enterprise Stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default Auto collection method.

The following partitioning methods are available:

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of the specified DB2
table. This is the default method for the DB2/UDB Enterprise
Stage.

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button

The following Collection methods are available:

(Auto). This is the default collection method for DB2/UDB
Enterprise Stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.
Parallel Job Developer’s Guide 12-37

Outputs Page DB2/UDB Enterprise Stage
Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the DB2/

UDB Enterprise Stage reads data from a DB2 database. The DB2/UDB

Enterprise Stage can have only one output link. Alternatively it can

have a reference output link, which is used by the Lookup stage when

referring to a DB2 lookup table. It can also have a reject link where

rejected records are routed (used in conjunction with an input link).

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of
12-38 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page
exactly what the link does. The Columns tab specifies the column

definitions of the data. The Advanced tab allows you to change the

default buffering settings for the output link.

Details about DB2/UDB Enterprise Stage properties are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from what table. Some

of the properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The Build SQL button allows you to instantly open the SQL Builder to

help you construct an SQL query to read data. See Chapter 59, "SQL

Builder" for guidance on using it.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/Lookup Type Normal/
Sparse

Normal Y (if output is
reference link
connected to
Lookup stage)

N N/A

Source/Read Method Table/
Auto-
generated
SQL/User-
defined
SQL

Table Y N N/A

Source/Table string N/A Y (if Read
Method = Table)

N N/A

Source/Where clause string N/A N N Table

Source/Select List string N/A N N Table

Source/Query string N/A Y (if Read
Method = Query)

N N/A

Source/Partition
Table

string N/A N N Query

Connection/Use
Default Database

True/False True Y N N/A
Parallel Job Developer’s Guide 12-39

Outputs Page DB2/UDB Enterprise Stage
Source Category

Lookup Type

Where the DB2/UDB Enterprise Stage is connected to a Lookup stage

via a reference link, this property specifies whether the DB2/UDB

Enterprise Stage will provide data for an in-memory look up (Lookup

Type = Normal) or whether the lookup will access the database

directly (Lookup Type = Sparse). If the Lookup Type is Normal, the

Lookup stage can have multiple reference links. If the Lookup Type is

Sparse, the Lookup stage can only have one reference link.

Read Method

This property specifies whether you are specifying a table or a query

when reading the DB2/UDB database, and how you are generating the

query:

Select the Table method in order to use the Table property to
specify the read. This will read in parallel.

Select Auto-generated SQL to have DataStage automatically
generate an SQL query based on the columns you have defined
and the table you specify in the Table property.

Select User-defined SQL to define your own query.

Select SQL Builder Generated SQL to open the SQL Builder and
define the query using its helpful interface (see Chapter 59, "SQL
Builder.")

Connection/Use
Default Server

True/False True Y N N/A

Connection/Server string N/A Y (if Use
Database
environment
variable = False)

N N/A

Connection/Database string N/A Y (if Use Server
environment
variable = False)

N N/A

Connection/Client
Instance Name

string N/A N N N/A

Options/Close
Command

string N/A N N N/A

Options/Open
Command

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
12-40 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page
By default, Read methods of SQL Builder Generated SQL, Auto-

generated SQL, and User-defined SQL operate sequentially on a

single node. You can have the User-defined SQL read operate in

parallel if you specify the Partition Table property.

Query

This property is used to contain the SQL query when you choose a

Read Method of User-defined query or Auto-generated SQL. If you are

using Auto-generated SQL you must select a table and specify some

column definitions. An SQL statement can contain joins, views,

database links, synonyms, and so on. It has the following dependent

option:

Partition Table

Specifies execution of the query in parallel on the processing

nodes containing a partition derived from the named table. If you

do not specify this, the stage executes the query sequentially on a

single node.

Table

Specifies the name of the DB2 table. The table must exist and you

must have SELECT privileges on the table. If your DB2 user name

does not correspond to the owner of the specified table, you can

prefix it with a table owner in the form:

table_owner.table_name

If you use a Read method of Table, then the Table property has two

dependent properties:

Where clause

Allows you to specify a WHERE clause of the SELECT statement to

specify the rows of the table to include or exclude from the read

operation. If you do not supply a WHERE clause, all rows are read.

Select List

Allows you to specify an SQL select list of column names.

Connection Category

Use Default Server

This is set to True by default, which causes the stage to use the setting

of the DB2INSTANCE environment variable to derive the server. If you

set this to False, you must specify a value for the Override Server

property. (This does not appear if you are developing a job for

deployment on a USS system).
Parallel Job Developer’s Guide 12-41

Outputs Page DB2/UDB Enterprise Stage
Use Default Database

This is set to True by default, which causes the stage to use the setting

of the environment variable APT_DBNAME, if defined, and DB2DBDFT

otherwise to derive the database. For USS systems, True causes the

default DB2 sub-system to be used. If you set the property to False,

you must specify a value for the Override Database property.

Server

Optionally specifies the DB2 instance name for the table. This

property appears if you set Use Server Environment Variable property

to False. (This does not appear if you are developing a job for

deployment on a USS system).

Database

Optionally specifies the name of the DB2 database to access. This

property appears if you set Use Database Environment Variable

property to False.

Client Instance Name

This property is only required if you are connecting to a remote DB2

server. It specifies the DB2 client through which you are making the

connection (see "Remote Connection" on page 12-4). (This does not

appear if you are developing a job for deployment on a USS system).

Note Connection details are normally specified by environment

variables as described in "Accessing DB2 Databases" on

page 12-3. If you are specifying a remote connection, when

you fill in the client instance name, user and password

fields appear and allows you to specify these for connection

to the remote server.

Options Category

Close Command

This is an optional property. Use it to specify a command to be parsed

and executed by the DB2 database on all processing nodes after the

stage finishes processing the DB2 table. You can specify a job

parameter if required.

Open Command

This is an optional property. Use it to specify a command to be parsed

and executed by the DB2 database on all processing nodes before the

DB2 table is opened. You can specify a job parameter if required.
12-42 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page
Pad Character

This appears when you are using a DB2 table as a lookup (i.e. have a

Lookup Type of Sparse). It specifies the padding character to be used

in the construction of a WHERE clause when it contains string

columns that have a length less than the DB2 char column in the

database. It defaults to null. (See "Using the Pad Character Property"

on page 12-7.)
Parallel Job Developer’s Guide 12-43

Outputs Page DB2/UDB Enterprise Stage
12-44 Parallel Job Developer’s Guide

13
Oracle Enterprise Stage

The Oracle Enterprise Stage is a database stage. It allows you to read

data from and write data to an Oracle database. It can also be used in

conjunction with a Lookup stage to access a lookup table hosted by an

Oracle database (see Chapter 20, "Merge Stage.")

The Oracle Enterprise Stage can have a single input link and a single

reject link, or a single output link or output reference link.

The stage performs one of the following operations:

Updates an Oracle table using INSERT and/or UPDATE as
appropriate. Data is assembled into arrays and written using
Oracle host-array processing.

Loads an Oracle table (using Oracle fast loader).

Reads an Oracle table.

Deletes rows from an Oracle table.

Performs a lookup directly on an Oracle table.

Loads an Oracle table into memory and then performs a lookup on
it.

When using an Oracle stage as a source for lookup data, there are

special considerations about column naming. If you have columns of

the same name in both the source and lookup data sets, note that the

source data set column will go to the output data. If you want this

column to be replaced by the column from the lookup data source,

you need to drop the source data column before you perform the

lookup (you could, for example, use a Modify stage to do this). See

Chapter 20, "Merge Stage," for more details about performing

lookups.
Parallel Job Developer’s Guide 13-1

Oracle Enterprise Stage
When you edit a Oracle Enterprise Stage, the Oracle Enterprise Stage

editor appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are

reading or writing a database:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a Oracle
database. This is where you specify details about the data being
written.

Outputs Page. This is present when you are reading from a
Oracle database, or performing a lookup on an Oracle database.
This is where you specify details about the data being read.
13-2 Parallel Job Developer’s Guide

Oracle Enterprise Stage Accessing Oracle Databases
Accessing Oracle Databases
You need to be running Oracle 8 or better, Enterprise Edition in order

to use the Oracle Enterprise Stage.

You must also do the following:

1 Create the user defined environment variable ORACLE_HOME and
set this to the $ORACLE_HOME path (e.g., /disk3/oracle9i).

2 Create the user defined environment variable ORACLE_SID and
set this to the correct service name (e.g., ODBCSOL).

3 Add ORACLE_HOME/bin to your PATH and ORACLE_HOME/lib to
your LIBPATH, LD_LIBRARY_PATH, or SHLIB_PATH.

4 Have login privileges to Oracle using a valid Oracle user name and
corresponding password. These must be recognized by Oracle
before you attempt to access it.

5 Have SELECT privilege on:

– DBA_EXTENTS

– DBA_DATA_FILES

– DBA_TAB_PARTITONS

– DBA_TAB_SUBPARTITONS

– DBA_OBJECTS

– ALL_PART_INDEXES

– ALL_PART_TABLES

– ALL_INDEXES

– SYS.GV_$INSTANCE (Only if Oracle Parallel Server is used)

Note APT_ORCHHOME/bin must appear before ORACLE_HOME/

bin in your PATH.

We suggest that you create a role that has the appropriate SELECT

privileges, as follows:

CREATE ROLE DSXE;

GRANT SELECT on sys.dba_extents to DSXE;

GRANT SELECT on sys.dba_data_files to DSXE;

GRANT SELECT on sys.dba_tab_partitions to DSXE;

GRANT SELECT on sys.dba_tab_subpartitions to DSXE;

GRANT SELECT on sys.dba_objects to DSXE;

GRANT SELECT on sys.all_part_indexes to DSXE;

GRANT SELECT on sys.all_part_tables to DSXE;

GRANT SELECT on sys.all_indexes to DSXE;
Parallel Job Developer’s Guide 13-3

Accessing Oracle Databases Oracle Enterprise Stage
Once the role is created, grant it to users who will run DataStage jobs,

as follows:

GRANT DSXE to <oracle userid>;

Handling Special Characters (# and $)
The characters # and $ are reserved in DataStage and special steps are

needed to handle Oracle databases which use the characters # and $

in column names. DataStage converts these characters into an

internal format, then converts them back as necessary.

To take advantage of this facility, you need to do the following:

In DataStage Administrator, open the Environment Variables
dialog for the project in question, and set the environment
variable DS_ENABLE_RESERVED_CHAR_CONVERT to true (this
can be found in the General\Customize branch).

Avoid using the strings __035__ and __036__ in your Oracle
column names (these are used as the internal representations of #
and $ respectively).

When using this feature in your job, you should import meta data

using the Plug-in Meta Data Import tool, and avoid hand-editing (this

minimizes the risk of mistakes or confusion).

Once the table definition is loaded, the internal column names are

displayed rather than the original Oracle names both in table

definitions and in the Data Browser. They are also used in derivations

and expressions. The original names are used in generated SQL

statements, however, and you should use them if entering SQL in the

job yourself.

Generally, in the Oracle stage, you enter external names everywhere

except when referring to stage column names, where you use names

in the form ORCHESTRATE.internal_name.
13-4 Parallel Job Developer’s Guide

Oracle Enterprise Stage Accessing Oracle Databases
When using the Oracle stage as a target, you should enter external

names as follows:

For Load options, use external names for select list properties.

For Upsert option, for update and insert, use external names when
referring to Oracle table column names, and internal names when
referring to the stage column names. For example:

INSERT INTO tablename (A#, B$#) VALUES
(ORCHESTRATE.A__036__A__035__, ORCHESTRATE.B__035__035__B__036__)

UPDATE tablename SET B$# = ORCHESTRATE.B__035__035__B__036__ WHERE (A#
= ORCHESTRATE.A__036__A__035__)

When using the Oracle stage as a source, you should enter external

names as follows:

For Read using the user-defined SQL method, use external names
for Oracle columns for SELECT: For example:

SELECT M#$, D#$ FROM tablename WHERE (M#$ > 5)

For Read using Table method, use external names in select list and
where properties.

When using the Oracle stage in parallel jobs as a look-up, you should

enter external or internal names as follows:

For Lookups using the user-defined SQL method, use external
names for Oracle columns for SELECT, and for Oracle columns in
any WHERE clause you might add. Use internal names when
referring to the stage column names in the WHERE clause. For
example:

SELECT M$##, D#$ FROM tablename
WHERE (B$# = ORCHESTRATE.B__035__ B __036__).

For Lookups using the Table method, use external names in select
list and where properties.

Use internal names for the key option on the Inputs page
Properties tab of the Lookup stage to which the Oracle stage is
attached.

Loading Tables
There are some special points to note when using the Load method in

this stage (which uses the Oracle fast loader) to load tables with

indexes.

By default, the stage sets the following options in the Oracle load

control file:

DIRECT=TRUE

PARALLEL = TRUE
Parallel Job Developer’s Guide 13-5

Accessing Oracle Databases Oracle Enterprise Stage
This causes the load to run using parallel direct load mode. In order to

use the parallel direct mode load, the table must not have indexes, or

you must include one of the Index Mode properties, 'rebuild' or

'maintenance' (see page 13-24). If the only index on the table is from a

primary key or unique key constraint, you can instead use the Disable

Constraints property (see page 13-23) which will disable the primary

key or unique key constraint, and enable it again after the load.

If you set the Index Mode property to rebuild, the following options

are set in the file:

SKIP_INDEX_MAINTENANCE=YES

PARALLEL=TRUE

If you set the Index Mode property to maintenance, the following

option is set in the file:

PARALLEL=FALSE

You can use the environment variable APT_ORACLE_LOAD_OPTIONS

to control the options that are included in the Oracle load control

file.You can load a table with indexes without using the Index Mode or

Disable Constraints properties by setting the

APT_ORACLE_LOAD_OPTIONS environment variable appropriately.

You need to set the Direct option and/or the PARALLEL option to

FALSE, for example:

APT_ORACLE_LOAD_OPTIONS='OPTIONS(DIRECT=FALSE,PARALLEL=TRUE)'

In this example the stage would still run in parallel, however, since

DIRECT is set to FALSE, the conventional path mode rather than the

direct path mode would be used.

If APT_ORACLE_LOAD_OPTIONS is used to set PARALLEL to FALSE,

then you must set the execution mode of the stage to run sequentially

on the Advanced tab of the Stage page (see page 13-15).

If loading index organized tables (IOTs), you should not set both

DIRECT and PARALLEL to true as direct parallel path load is not

allowed for IOTs.

Type Conversions - Writing to Oracle
When writing or loading, the Oracle Enterprise stage automatically

converts DataStage data types to Oracle data types as shown in the

following table::

DataStage SQL Data
Type

Underlying Data Type Oracle Data Type

Date date DATE
13-6 Parallel Job Developer’s Guide

Oracle Enterprise Stage Accessing Oracle Databases
The default length of VARCHAR is 32 bytes. That is, 32 bytes are

allocated for each variable-length string field in the input data set. If an

input variable-length string field is longer than 32 bytes, the stage

issues a warning.

Time time DATE (does not support
microsecond resolution)

Timestamp timestamp DATE (does not support
microsecond resolution)

Decimal
Numeric

decimal (p, s) NUMBER (p, s)

TinyInt int8/uint8 NUMBER (3, 0)

SmallInt int16/uint16 NUMBER (3, 0)

Integer int32/uint32 NUMBER (10, 0)

BigInt int64 NUMBER (19, 0)

BigInt uint64 NUMBER (20, 0)

Float
Real

sfloat NUMBER

Double dfloat NUMBER

Binary
Bit
LongVarBinary
VarBinary

raw not supported

Unknown
Char

fixed-length string in the
form string[n] and
ustring[n]; length <= 255
bytes

CHAR(n)

where n is the string
length

LongVarChar
VarChar

variable-length string, in
the form string[max=n]
and ustring[max=n];
maximum length <= 2096
bytes

VARCHAR(n)

where n is the maximum
string length

LongVarChar
VarChar

variable-length string in
the form string and ustring

VARCHAR(32)*

DataStage SQL Data
Type

Underlying Data Type Oracle Data Type
Parallel Job Developer’s Guide 13-7

Examples Oracle Enterprise Stage
Type Conversions - Reading from Oracle
When reading, the Oracle Enterprise stage automatically converts

Oracle data types to DataStage data types as shown in the following

table:

Examples

Looking Up an Oracle Table
This example shows what happens when data is looked up in an

Oracle table. The stage in this case will look up the interest rate for

each customer based on the account type. Here is the data that arrives

on the primary link:

DataStage SQL Data
Type

Underlying Data Type Oracle Data Type

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[n] or ustring[n]

Fixed length string with
length = n

CHAR(n)

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[max = n] or
ustring[max = n]

variable length string with
length = n

VARCHAR(n)

Timestamp Timestamp DATE

Decimal
Numeric

decimal (38,10) NUMBER

Integer
Decimal
Numeric

int32 if precision (p) <11
and scale (s) = 0

decimal[p, s] if precision
(p) =>11 and scale (s) > 0

NUMBER(p, s)

not supported not supported RAW(n)

Customer accountNo accountType balance

Latimer 7125678 plat 7890.76
13-8 Parallel Job Developer’s Guide

Oracle Enterprise Stage Examples
Here is the data in the Oracle lookup table:

Here is what the lookup stage will output:

The job looks like the one illustrated on page 13-2. The Data_set stage

provides the primary input, Oracle_8 provides the lookup data,

Lookup_1 performs the lookup and outputs the resulting data to

Data_Set_3. In the Oracle stage we specify that we are going to look

up the data directly in the Oracle database, and the name of the table

we are going to look up. In the Look up stage we specify the column

that we are using as the key for the look up.

Ridley 7238892 flexi 234.88

Cranmer 7611236 gold 1288.00

Hooper 7176672 flexi 3456.99

Moore 7146789 gold 424.76

accountType InterestRate

bronze 1.25

silver 1.50

gold 1.75

plat 2.00

flexi 1.88

fixterm 3.00

Customer accountNo accountType balance InterestRate

Latimer 7125678 plat 7890.76 2.00

Ridley 7238892 flexi 234.88 1.88

Cranmer 7611236 gold 1288.00 1.75

Hooper 7176672 flexi 3456.99 1.88

Moore 7146789 gold 424.76 1.75
Parallel Job Developer’s Guide 13-9

Examples Oracle Enterprise Stage
The properties for the Oracle stage are as follows:

The properties for the look up stage are as follows:

Updating an Oracle Table
This example shows an Oracle table being updated with three new

columns. The database records the horse health records of a large

stud. Details of the worming records are being added to the main

table and populated with the most recent data, using the existing
13-10 Parallel Job Developer’s Guide

Oracle Enterprise Stage Examples
column “name” as a key. The meta data for the new columns is as

follows:

We are going to specify upsert as the write method and choose User-

defined Update & Insert as the upsert mode, this is so that we do not

include the existing name column in the INSERT statement. The

properties (showing the INSERT statement) are shown below. The

INSERT statement is as generated by the DataStage, except the name

column is removed.
Parallel Job Developer’s Guide 13-11

Must Do’s Oracle Enterprise Stage
The UPDATE statement is as automatically generated by DataStage:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Oracle Enterprise Stages in a job. This section specifies the

minimum steps to take to get a Oracle Enterprise Stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on what you are using an Oracle

Enterprise Stage for.

Updating an Oracle Database
In the Input Link Properties Tab, under the Target category
specify the update method as follows:

– Specify a Write Method of Upsert.

– Specify the Table you are writing.

– Choose the Upsert Mode, this allows you to specify whether to
insert and update, or update only, and whether to use a
statement automatically generated by DataStage or specify
your own.

– If you have chosen an Upsert Mode of User-defined Update
and Insert, specify the Insert SQL statement to use. DataStage
provides the auto-generated statement as a basis, which you
can edit as required.

– If you have chosen an Upsert Mode of User-defined Update
and Insert or User-defined Update only, specify the Update SQL
statement to use. DataStage provides the auto-generated
statement as a basis, which you can edit as required.
13-12 Parallel Job Developer’s Guide

Oracle Enterprise Stage Must Do’s
Under the Connection category, you can either manually specify a

connection string, or have DataStage generate one for you using a

user name and password you supply. Either way you need to

supply a valid username and password. DataStage encrypts the

password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,

but you can specify a remote server if required.

Under the Options category:

– If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Ensure column meta data has been specified for the write.

Deleting Rows from an Oracle Database
This is the same as writing an Oracle database, except you need to

specify details of the SQL statements used to delete rows from the

database:

In the Input Link Properties Tab:

– Choose a Write Method of Delete Rows.

– Choose the Delete Rows Mode, this allows you to specify
whether to use a statement automatically generated by
DataStage or specify your own.

– If you have chosen a Delete Rows Mode of User-defined delete,
specify the Delete SQL statement to use. DataStage provides
the auto-generated statement as a basis, which you can edit as
required.

Loading an Oracle Database
This is the default write method.

In the Input Link Properties Tab, under the Target category:

– Specify a Write Method of Load.

– Specify the Table you are writing.

– Specify the Write Mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).

Under the Connection category, you can either manually specify a

connection string, or have DataStage generate one for you using a

user name and password you supply. Either way you need to
Parallel Job Developer’s Guide 13-13

Must Do’s Oracle Enterprise Stage
supply a valid username and password. DataStage encrypts the

password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,

but you can specify a remote server if required.

Ensure column meta data has been specified for the write.

Reading an Oracle Database
In the Output Link Properties Tab:

– Choose a Read Method. This is Table by default, but you can
also choose to read using auto-generated SQL or user-
generated SQL. The read operates sequentially on a single
node unless you specify a Partition Table property (which
causes parallel execution on the processing nodes containing a
partition derived from the named table).

– Specify the table to be read.

– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category, you can either manually specify a

connection string, or have DataStage generate one for you using a

user name and password you supply. Either way you need to

supply a valid username and password. DataStage encrypts the

password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,

but you can specify a remote server if required.

Ensure column meta data has been specified for the read.

Performing a Direct Lookup on an Oracle Database Table
Connect the Oracle Enterprise Stage to a Lookup stage using a
reference link.

In the Output Link Properties Tab:

– Set the Lookup Type to Sparse.

– Choose a Read Method. This is Table by default (which reads
directly from a table), but you can also choose to read using
auto-generated SQL or user-generated SQL.

– Specify the table to be read for the lookup.
13-14 Parallel Job Developer’s Guide

Oracle Enterprise Stage Stage Page
– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.
You would use this if, for example, you wanted to perform a
non-equality based lookup.

Under the Connection category, you can either manually specify a

connection string, or have DataStage generate one for you using a

user name and password you supply. Either way you need to

supply a valid username and password. DataStage encrypts the

password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,

but you can specify a remote server if required.

Ensure column meta data has been specified for the lookup.

Performing an In Memory Lookup on an Oracle Database
Table

This is the default method. It has the same requirements as a direct

lookup, except:

In the Output Link Properties Tab:

– Set the Lookup Type to Normal.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the data is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.
Parallel Job Developer’s Guide 13-15

Stage Page Oracle Enterprise Stage
Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (it is ignored for write operations). Note that this
field is only visible if the stage has output links.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map
The NLS Map tab allows you to define a character set map for the

Oracle Enterprise stage. You can set character set maps separately for

NCHAR and NVARCHAR2 types and all other data types. This

overrides the default character set map set for the project or the job.

You can specify that the map be supplied as a job parameter if

required.

Load performance may be improved by specifying an Oracle map

instead of a DataStage map. To do this, add an entry to the file
13-16 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page
oracle_cs, located at $APT_ORCHHOME/etc, to associate the

DataStage map with an Oracle map.

The oracle_cs file has the following format:

UTF-8 UTF8
ISO-8859-1 WE8ISO8859P1
EUC-JP JA16EUC

The first column contains DataStage map names and the second

column the Oracle map names they are associated with.

So, using the example file shown above, specifying the DataStage

map EUC-JP in the Oracle stage will cause the data to be loaded using

the Oracle map JA16EUC.

Inputs Page
The Inputs page allows you to specify details about how the Oracle

Enterprise Stage writes data to a Oracle database. The Oracle

Enterprise Stage can have only one input link writing to one table.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the database. The

Columns tab specifies the column definitions of incoming data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about Oracle Enterprise Stage properties, partitioning, and

formatting are given in the following sections. See Chapter 3, "Stage

Editors," for a general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and where. Some of the

properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.
Parallel Job Developer’s Guide 13-17

Inputs Page Oracle Enterprise Stage
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/Table string N/A Y (if Write
Method = Load)

N N/A

Target/Delete
Rows Mode

Auto-
generated
delete/user-
defined
delete

Auto-
generate
d delete

Y if Write
method = Delete
Rows

N N/A

Target/Delete SQL String N/A Y if Write
method = Delete
Rows

N N/A

Target/Upsert
mode

Auto-
generated
Update &
insert/Auto-
generated
Update Only/
User-defined
Update &
Insert/User-
defined
Update Only

Auto-
generate
d Update
& insert

Y (if Write
Method =
Upsert)

N N/A

Target/Insert SQL string N/A N N N/A

Target/Insert
Array Size

number 500 N N Insert SQL

Target/Update
SQL

string N/A Y (if Write
Method =
Upsert)

N N/A

Target/Write
Method

Delete Rows/
Upsert/Load

Load Y N N/A

Target/Write
Mode

Append/
Create/
Replace/
Truncate

Append Y (if Write
Method = Load)

N N/A

Connection/DB
Options

string N/A Y N N/A

Connection/DB
Options Mode

Auto-
generate/
User-defined

Auto-
generate

Y N N/A
13-18 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page
Connection/User string N/A Y (if DB Options
Mode = Auto-
generate)

N DB Options Mode

Connection/
Password

string N/A Y (if DB Options
Mode = Auto-
generate)

N DB Options Mode

Connection/
Remote Server

string N/A N N N/A

Options/Output
Reject Records

True/False False Y (if Write
Method =
Upsert)

N N/A

Options/Silently
Drop Columns
Not in Table

True/False False Y (if Write
Method = Load)

N N/A

Options/Table
Organization

Heap/Index Heap Y (if Write
Method = Load
and Write Mode
= Create or
Replace)

N N/A

Options/Truncate
Column Names

True/False False Y (if Write
Method = Load)

N N/A

Options/Close
Command

string N/A N N N/A

Options/Default
String Length

number 32 N N N/A

Options/Index
Mode

Maintenance/
Rebuild

N/A N N N/A

Options/Add
NOLOGGING
clause to Index
rebuild

True/False False N N Index Mode

Options/Add
COMPUTE
STATISTICS
clause to Index
rebuild

True/False False N N Index Mode

Options/Open
Command

string N/A N N N/A

Options/Oracle 8
Partition

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 13-19

Inputs Page Oracle Enterprise Stage
Target Category

Table

Specify the name of the table to write to. You can specify a job

parameter if required.

Delete Rows Mode

This only appears for the Delete Rows write method. Allows you to

specify how the delete statement is to be derived. Choose from:

Auto-generated Delete. DataStage generates a delete
statement for you, based on the values you have supplied for
table name and column details. The statement can be viewed by
selecting the Delete SQL property.

User-defined Delete. Select this to enter your own delete
statement. Then select the Delete SQL property and edit the
statement proforma.

Delete SQL

Only appears for the Delete Rows write method. This property allows

you to view an auto-generated Delete statement, or to specify your

own (depending on the setting of the Delete Rows Mode property).

Upsert mode

This only appears for the Upsert write method. Allows you to specify

how the insert and update statements are to be derived. Choose from:

Options/Create
Primary Keys

True/False False Y (if Write Mode
= Create or
Replace)

N N/A

Options/Disable
Constraints

True/False False Y (if Write
Method = Load)

N N/A

Options/
Exceptions Table

string N/A N N Disable Constraints

Options/Table has
NCHAR/
NVARCHAR

True/False False N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
13-20 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page
Auto-generated Update & Insert. DataStage generates update
and insert statements for you, based on the values you have
supplied for table name and on column details. The statements
can be viewed by selecting the Insert SQL or Update SQL
properties.

Auto-generated Update Only. DataStage generates an update
statement for you, based on the values you have supplied for
table name and on column details. The statement can be viewed
by selecting the Update SQL properties.

User-defined Update & Insert. Select this to enter your own
update and insert statements. Then select the Insert SQL and
Update SQL properties and edit the statement proformas.

User-defined Update Only. Select this to enter your own update
statement. Then select the Update SQL property and edit the
statement proforma.

Insert SQL

Only appears for the Upsert write method. This property allows you to

view an auto-generated Insert statement, or to specify your own

(depending on the setting of the Update Mode property). It has a

dependent property:

Insert Array Size

Specify the size of the insert host array. The default size is 500

records. If you want each insert statement to be executed

individually, specify 1 for this property.

Update SQL

Only appears for the Upsert write method. This property allows you to

view an auto-generated Update statement, or to specify your own

(depending on the setting of the Upsert Mode property).

Write Method

Choose from Delete Rows, Upsert or Load (the default). Upsert allows

you to provide the insert and update SQL statements and uses Oracle

host-array processing to optimize the performance of inserting

records. Load sets up a connection to Oracle and inserts records into a

table, taking a single input data set. The Write Mode property

determines how the records of a data set are inserted into the table.

Write Mode

This only appears for the Load Write Method. Select from the

following:
Parallel Job Developer’s Guide 13-21

Inputs Page Oracle Enterprise Stage
Append. This is the default. New records are appended to an
existing table.

Create. Create a new table. If the Oracle table already exists an
error occurs and the job terminates. You must specify this mode if
the Oracle table does not exist.

Replace. The existing table is first dropped and an entirely new
table is created in its place. Oracle uses the default partitioning
method for the new table.

Truncate. The existing table attributes (including schema) and the
Oracle partitioning keys are retained, but any existing records are
discarded. New records are then appended to the table.

Connection Category

DB Options

Specify a user name and password for connecting to Oracle in the

form:

<user=<user>,password=<password>[,arraysize=
<num_records>]

DataStage does not encrypt the password when you use this option.

Arraysize is only relevant to the Upsert Write Method.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a

DB Options string for you. If you select User-defined, you have to edit

the DB Options property yourself. When Auto-generate is selected,

there are two dependent properties:

User

The user name to use in the auto-generated DB options string.

Password

The password to use in the auto-generated DB options string.

DataStage encrypts the password.

Remote Server

This is an optional property. Allows you to specify a remote server

name.
13-22 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page
Options Category

Create Primary Keys

This option is available with a Write Mode of Create or Replace. It is

False by default, if you set it True, the columns marked as keys in the

Columns tab will be marked as primary keys. You must set this true if

you want to write index organized tables, and indicate which are the

primary keys on the Columns tab. Note that, if you set it to True, the

Index Mode option is not available.

Disable Constraints

This is False by default. Set True to disable all enabled constraints on a

table when loading, then attempt to reenable them at the end of the

load. This option is not available when you select a Table Organization

type of Index to use index organized tables. When set True, it has a

dependent property:

Exceptions Table

This property enables you to specify an exceptions table, which is

used to record ROWID information on rows that violate

constraints when the constraints are reenabled. The table must

already exist.

Output Reject Records

This only appears for the Upsert write method. It is False by default,

set to True to send rejected records to the reject link.

Silently Drop Columns Not in Table

This only appears for the Load Write Method. It is False by default. Set

to True to silently drop all input columns that do not correspond to

columns in an existing Oracle table. Otherwise the stage reports an

error and terminates the job.

Table Organization

This appears only for the Load Write Method using the Create or

Replace Write Mode. Allows you to specify Index (for index organized

tables) or heap organized tables (the default). When you select Index,

you must also set Create Primary Keys to true. In index organized

tables (IOTs) the rows of the table are held in the index created from

the primary keys.
Parallel Job Developer’s Guide 13-23

Inputs Page Oracle Enterprise Stage
Truncate Column Names

This only appears for the Load Write Method. Set this property to True

to truncate column names to 30 characters.

Close Command

This is an optional property and only appears for the Load Write

Method. Use it to specify any command, in single quotes, to be parsed

and executed by the Oracle database on all processing nodes after the

stage finishes processing the Oracle table. You can specify a job

parameter if required.

Default String Length

This is an optional property and only appears for the Load Write

Method. It is set to 32 by default. Sets the default string length of

variable-length strings written to a Oracle table. Variable-length

strings longer than the set length cause an error.

The maximum length you can set is 2000 bytes. Note that the stage

always allocates the specified number of bytes for a variable-length

string. In this case, setting a value of 2000 allocates 2000 bytes for

every string. Therefore, you should set the expected maximum length

of your largest string and no larger.

Index Mode

This is an optional property and only appears for the Load Write

Method. Lets you perform a direct parallel load on an indexed table

without first dropping the index. You can choose either Maintenance

or Rebuild mode. The Index property only applies to append and

truncate Write Modes.

Rebuild skips index updates during table load and instead rebuilds the

indexes after the load is complete using the Oracle alter index rebuild

command. The table must contain an index, and the indexes on the

table must not be partitioned. The Rebuild option has two dependent

properties:

Add NOLOGGING clause to Index rebuild

This is False by default. Set True to add a NOLOGGING clause.

Add COMPUTE STATISTICS clause to Index rebuild

This is False by default. Set True to add a COMPUTE STATISTICS

clause.

Maintenance results in each table partition’s being loaded

sequentially. Because of the sequential load, the table index that

exists before the table is loaded is maintained after the table is loaded.
13-24 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page
The table must contain an index and be partitioned, and the index on

the table must be a local range-partitioned index that is partitioned

according to the same range values that were used to partition the

table. Note that in this case sequential means sequential per partition,

that is, the degree of parallelism is equal to the number of partitions.

Open Command

This is an optional property and only appears for the Load Write

Method. Use it to specify a command, in single quotes, to be parsed

and executed by the Oracle database on all processing nodes before

the Oracle table is opened. You can specify a job parameter if

required.

Oracle 8 Partition

This is an optional property and only appears for the Load Write

Method. Name of the Oracle 8 table partition that records will be

written to. The stage assumes that the data provided is for the

partition specified.

Table has NCHAR/NVARCHAR

This option applies to Create or Replace Write Modes. Set it True if the

table being written contains NCHAR and NVARCHARS, so that the

correct columns are created in the target table.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the

Oracle database. It also allows you to specify that the data should be

sorted before being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Oracle Enterprise Stage is operating in sequential mode, it will

first collect the data before writing it to the file using the default Auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Oracle Enterprise Stage is set to execute in parallel or
sequential mode.
Parallel Job Developer’s Guide 13-25

Inputs Page Oracle Enterprise Stage
Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Oracle Enterprise Stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Oracle Enterprise Stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Oracle
Enterprise Stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default for Oracle Enterprise Stages.

DB2. Replicates the partitioning method of the specified DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Oracle Enterprise
Stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.
13-26 Parallel Job Developer’s Guide

Oracle Enterprise Stage Outputs Page
Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the Oracle

Enterprise Stage reads data from a Oracle database. The Oracle

Enterprise Stage can have only one output link. Alternatively it can

have a reference output link, which is used by the Lookup stage when

referring to a Oracle lookup table. It can also have a reject link where

rejected records are routed (used in conjunction with an input link).

The Output Name drop-down list allows you to choose whether you

are looking at details of the main output link or the reject link.
Parallel Job Developer’s Guide 13-27

Outputs Page Oracle Enterprise Stage
The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of the data. The Advanced tab allows you to change the

default buffering settings for the output link.

Details about Oracle Enterprise Stage properties are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read from what table. Some

of the properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The Build SQL button allows you to instantly open the SQL Builder to

help you construct an SQL query to read data. See Chapter 59, "SQL

Builder" for guidance on using it.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Source/Lookup Type Normal/
Sparse

Normal Y (if output is
reference link
connected to
Lookup stage)

N N/A

Source/Read Method Auto-
generated
SQL
/Table/SQL
builder
generated
SQL
/User-defined
SQL

SQL builder
generated
SQL

Y N N/A

Source/Table string N/A N N N/A

Source/Where string N/A N N Table

Source/Select List string N/A N N Table

Source/Query string N/A N N N/A

Source/Partition
Table

string N/A N N N/A
13-28 Parallel Job Developer’s Guide

Oracle Enterprise Stage Outputs Page
Source Category

Lookup Type

Where the Oracle Enterprise Stage is connected to a Lookup stage via

a reference link, this property specifies whether the Oracle Enterprise

Stage will provide data for an in-memory look up (Lookup Type =

Normal) or whether the lookup will access the database directly

(Lookup Type = Sparse). If the Lookup Type is Normal, the Lookup

stage can have multiple reference links. If the Lookup Type is Sparse,

the Lookup stage can only have one reference link.

Read Method

This property specifies whether you are specifying a table or a query

when reading the Oracle database, and how you are generating the

query.

Connection/DB
Options

string N/A Y N N/A

Connection/DB
Options Mode

Auto-
generate/
User-defined

Auto-
generate

Y N N/A

Connection/User string N/A Y (if DB Options
Mode = Auto-
generate)

N DB Options Mode

Connection/
Password

string N/A Y (if DB Options
Mode = Auto-
generate)

N DB Options Mode

Connection/Remote
Server

string N/A N N N/A

Options/Close
Command

string N/A N N N/A

Options/Open
Command

string N/A N N N/A

Options/Make
Combinable

True/False False Y (if link is
reference and
Lookup type =
sparse)

N N/A

Options/Table has
NCHAR/NVARCHAR

True/False False N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 13-29

Outputs Page Oracle Enterprise Stage
Select the Table method in order to use the Table property to
specify the read. This will read in parallel.

Select Auto-generated SQL to have DataStage automatically
generate an SQL query based on the columns you have defined
and the table you specify in the Table property.

Select User-defined SQL to define your own query. By default a
user-defined or auto-generated SQL will read sequentially on one
node. Read methods of Auto-generated SQL and User-defined
SQL operate sequentially on a single node. You can have the User-
defined SQL read operate in parallel if you specify the Partition
Table property.

Select SQL Builder Generated SQL to open the SQL Builder and
define the query using its helpful interface (see Chapter 59, "SQL
Builder.")

By default, Read methods of SQL Builder Generated SQL, Auto-

generated SQL, and User-defined SQL operate sequentially on a

single node. You can have the User-defined SQL read operate in

parallel if you specify the Partition Table property.

Query

Optionally allows you to specify an SQL query to read a table. The

query specifies the table and the processing that you want to perform

on the table as it is read by the stage. This statement can contain

joins, views, database links, synonyms, and so on.

Table

Specifies the name of the Oracle table. The table must exist and you

must have SELECT privileges on the table. If your Oracle user name

does not correspond to the owner of the specified table, you can

prefix it with a table owner in the form:

table_owner.table_name

Table has dependent properties:

Where

Stream links only. Specifies a WHERE clause of the SELECT

statement to specify the rows of the table to include or exclude

from the read operation. If you do not supply a WHERE clause, all

rows are read.

Select List

Optionally specifies an SQL select list, enclosed in single quotes,

that can be used to determine which columns are read. You must

specify the columns in list in the same order as the columns are

defined in the record schema of the input table.
13-30 Parallel Job Developer’s Guide

Oracle Enterprise Stage Outputs Page
Partition Table

Specifies execution of the SELECT in parallel on the processing nodes

containing a partition derived from the named table. If you do not

specify this, the stage executes the query sequentially on a single

node.

Connection Category

DB Options

Specify a user name and password for connecting to Oracle in the

form:

<user=<user>,password=<password>[,arraysize=<num_records>]

DataStage does not encrypt the password when you use this option.

Arraysize only applies to stream links. The default arraysize is 1000.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a

DB Options string for you. If you select User-defined, you have to edit

the DB Options property yourself. When Auto-generate is selected,

there are two dependent properties:

User

The user name to use in the auto-generated DB options string.

Password

The password to use in the auto-generated DB options string.

DataStage encrypts the password

Remote Server

This is an optional property. Allows you to specify a remote server

name.

Options Category

Close Command

This is an optional property and only appears for stream links. Use it

to specify any command to be parsed and executed by the Oracle

database on all processing nodes after the stage finishes processing

the Oracle table. You can specify a job parameter if required.
Parallel Job Developer’s Guide 13-31

Outputs Page Oracle Enterprise Stage
Open Command

This is an optional property only appears for stream links. Use it to

specify any command to be parsed and executed by the Oracle

database on all processing nodes before the Oracle table is opened.

You can specify a job parameter if required

Make Combinable

Only applies to reference links where the Lookup Type property has

been set to Sparse. Set to True to specify that the lookup can be

combined with its preceding and/or following process.

Table has NCHAR/NVARCHAR

Set this True if the table being read from contains NCHAR and

NVARCHARS.
13-32 Parallel Job Developer’s Guide

14
Teradata Enterprise Stage

The Teradata Enterprise stage is a database stage. It allows you to

read data from and write data to a Teradata database.

The Teradata Enterprise stage can have a single input link or a single

output link.

When you edit a Teradata Enterprise stage, the Teradata Enterprise

stage editor appears. This is based on the generic stage editor

described in Chapter 3, "Stage Editors,"

The stage editor has up to three pages, depending on whether you are

reading or writing a file:

Stage Page. This is always present and is used to specify general
information about the stage.
Parallel Job Developer’s Guide 14-1

Accessing Teradata Databases Teradata Enterprise Stage
Inputs Page. This is present when you are writing to a Teradata
database. This is where you specify details about the data being
written.

Outputs Page. This is present when you are reading from a
Teradata database. This is where you specify details about the
data being read.

Accessing Teradata Databases

Installing the Teradata Utilities Foundation
You must install Teradata Utilities Foundation on all nodes that will

run DataStage parallel jobs. Refer to the installation instructions

supplied by Teradata. (You need system administrator status for the

install.)

Creating Teradata User
You must set up a Teradata database user (this is the user that will be

referred to by the DB options property in the Teradata stage). The user

must be able to create tables and insert and delete data. The database

for which you create this account requires at least 100 MB of PERM

space and 10 MB of SPOOL. Larger allocations may be required if you

run large and complex jobs. (You need database administrator status

in order to create user and database.)

The example below shows you how to create the orchserver account.

The user information is stored in the terasync table. The name of the

database in this example is userspace. The following four commands

for BTEQ set up the account:

CREATE USER orchserver FROM userspace AS
PASSWORD = orchserver
PERM = 100000000
SPOOL = 10000000

Once the account is set up, issue the following command:

GRANT select ON dbc TO orchserver;

Creating a Database Server
If you want to use a pre-existing Teradata user, you only need install a

database server and configure it to use a new database. Install the

new database server with the same PERM and SPOOL values as

shown above. Here is an example of creating a database server called

devserver using table userspace:
14-2 Parallel Job Developer’s Guide

Teradata Enterprise Stage Teradata Databases – Points to Note
CREATE DATABASE devserver FROM userspace AS
PERM = 100000000
SPOOL = 10000000
GRANT create table, insert, delete, select ON devserver TO orchclient;
GRANT create table, insert, delete, select ON devserver TO orchserver;

Teradata Databases – Points to Note

NLS Support and Teradata Database Character Sets
The Teradata database supports a fixed number of character set types

for each char or varchar column in a table. Use this query to get the

character set for a Teradata column:

select ‘column_name', chartype from dbc.columns
where tablename = 'table_name'

The database character set types are:

Latin: chartype=1. The character set for U.S. and European
applications which limit character data to the ASCII or ISO 8859
Latin1 character sets. This is the default.

Unicode: chartype=2. 16-bit Unicode characters from the ISO
10646 Level 1 character set. This setting supports all of the ICU
multi-byte character sets.

KANJISJIS: chartype=3. For Japanese third-party tools that rely on
the string length or physical space allocation of KANJISJIS.

Graphic: chartype=4. Provided for DB2 compatibility.

Note The KANJI1: chartype=5 character set is available for

Japanese applications that must remain compatible with

previous releases; however, this character set will be

removed in a subsequent release because it does not

support the new string functions and will not support future

characters sets. We recommend that you use the set of SQL

translation functions provided to convert KANJI1 data to

Unicode.

DataStage maps characters between Teradata columns and the

internal UTF-16 Unicode format using the project default character set

map unless this has been overridden at the job level (on the Job
Properties dialog box) or the stage level (using the NLS Map tab –

see page 14-9).

The file tera_cs.txt in the directory $APT_ORCHHOME/etc maps

DataStage NLS character sets to Teradata character sets. For example,

we select the EUC_JP as the NLS map for the current project. EUC_JP

is the NLS character set for Japanese, 118 is the Teradata character set
Parallel Job Developer’s Guide 14-3

Teradata Databases – Points to Note Teradata Enterprise Stage
code for the KANJIEUC_0U character set. EUC_JPN is mapped to 118

in tera_cs.txt as follows:

EUC_JP 118
ASC_JPN_EUC 118
SJIS 119

On reading, DataStage converts a Teradata varchar(n) field to ustring

[n/min] where min is the minimum size in bytes of the largest

codepoint for your specified character set. On writing, ustring data is

converted to the specified character set and written to a char or

varchar column in the Teradata database; the type is ustring[n*max]

where max is the maximum size in of the largest codepoint for your

specified character set.

DataStage also supports the use of Unicode character data in

usernames, passwords, column names, table names, and database

names.

Column Name and Data Type Conversion
DataStage column names are case sensitive, Teradata column names

are not. You must ensure that the DataStage column names are

unique regardless of case.

Both DataStage and Teradata columns support nulls, and a DataStage

column that contains a null is stored as a null in the corresponding

Teradata column.

The Teradata stage automatically converts DataStage data types to

Teradata data types and vice versa as shown in the following table:

DataStage SQL Data
Type

Underlying Data Type Teradata Data Type

Date date date

Decimal
Numeric

decimal (p, s) numeric (p, s)

Double dfloat double precision

Double dfloat float

Double dfloat real

TinyInt int8 byteint

SmallInt int16 smallint

Integer int32 integer

BigInt int64 unsupported
14-4 Parallel Job Developer’s Guide

Teradata Enterprise Stage Teradata Databases – Points to Note
DataStage columns are matched by name and data type to columns of

the Teradata table, but they do not have to appear in the same order.

The following rules determine which DataStage columns are written

to a Teradata table:

If there are DataStage columns for which there are no matching
columns in the Teradata table, the job terminates. However, you
can deal with this by setting the Silently drop columns not in
table property (see page 14-14) or by dropping the column before
you write the data.

LongVarBinary
VarBinary

raw varbyte (default)

Binary
Bit

raw [fixed_size] byte (fixed_size)

LongVarBinary
VarBinary

raw [max=size] varbyte (size)

LongVarBinary
VarBinary

raw [max=size] graphic (c)

LongVarBinary
VarBinary

raw [max=size] vargraphic (size)

LongVarBinary
VarBinary

raw [max=size] long vargraphic

Float
Real

sfloat unsupported

LongVarChar
VarChar

string varchar (default length)

Unknown
Char

string [fixed_size] char (fixed_size)

LongVarChar
VarChar

string[max = size] varchar(size)

LongVarChar string[max = size] long varchar (size)

Time time unsupported

Timestamp timestamp unsupported

TinyInt uint8 unsupported

SmallInt uint16 unsupported

Integer uint32 unsupported

DataStage SQL Data
Type

Underlying Data Type Teradata Data Type
Parallel Job Developer’s Guide 14-5

Teradata Databases – Points to Note Teradata Enterprise Stage
If the Teradata table contains a column that does not have a
corresponding DataStage column, Teradata writes the column’s
default value into the field. If no default value is defined for the
Teradata column, Teradata writes a null. If the field is not nullable,
an error is generated and the job fails.

Restrictions and Limitations when Writing to a Teradata
Database

There are the following limitations when using a Teradata Enterprise

stage to write to a Teradata database:

A Teradata row may contain a maximum of 256 columns.

While the names of DataStage columns can be of any length, the
names of Teradata columns cannot exceed 30 characters. Rename
your columns if necessary or specify the Truncate column
names property to deal automatically with overlength column
names (see page 14-14.

DataStage assumes that the stage writes to buffers whose
maximum size is 32 KB. However, you can override this and
enable the use of 64 KB buffers by setting the environment
variable APT_TERA_64K_BUFFERS (see
"APT_TERA_64K_BUFFERS" in Parallel Job Advanced Developer’s
Guide).

When writing to Teradata, the DataStage column definitions
should not contain fields of the following types:

– BigInt (int64)

– Unsigned integer of any size

– String, fixed- or variable-length, longer than 32 KB

– Raw, fixed- or variable-length, longer than 32 KB

– Subrecord

– Tagged aggregate

– Vectors

If DataStage tries to write data whose columns contain a data type

listed above, the write is not begun and the job containing the

stage fails. You can convert unsupported data types by using the

Modify stage (see Chapter 28, "Modify Stage").

The Teradata Enterprise stage uses a distributed FastLoad to write
the data and is subject to all the restrictions on FastLoad. Briefly,
these are:

– There is a limit to the number of concurrent FastLoad and
FastExport jobs in Teradata.
14-6 Parallel Job Developer’s Guide

Teradata Enterprise Stage Must Do’s
– Each instance of the Teradata stage using FastLoad or
FastExport in a job counts towards this limit.

Restrictions on Reading a Teradata Database
The Teradata Enterprise stage uses a distributed FastExport to access

the data and is subject to all the restrictions on FastExport. Briefly,

these are:

There is a limit to the number of concurrent FastLoad and
FastExport jobs.

Each instance of the Teradata stage using FastLoad or FastExport
in a job counts towards this limit.

Aggregates and most arithmetic operators in the SELECT
statement are not allowed.

The use of the USING modifier is not allowed.

Non-data access (that is, pseudo-tables like DATE or USER) is not
allowed.

Single-AMP requests are not allowed. These are SELECTs
satisfied by an equality term on the primary index or on a unique
secondary index.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Teradata Enterprise Stages in a job. This section specifies the

minimum steps to take to get a Teradata Enterprise Stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

The steps required depend on what you are using a Teradata

Enterprise Stage for.

Writing a Teradata Database
In the Input Link Properties Tab, under the Target category:

– Specify the Table you are writing.

– Specify the write mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).
Parallel Job Developer’s Guide 14-7

Stage Page Teradata Enterprise Stage
Under the Connection category:

– You can either manually specify a connection string, or have
DataStage generate one for you using a user name and
password you supply. Either way you need to supply a valid
username and password. DataStage encrypts the password
when you use the auto-generate option.

– Specify the name of the server hosting Teradata.

Ensure column meta data has been specified for the write.

Reading a Teradata Database
In the Output Link Properties Tab, under the Source category:

– Choose a Read Method. This is Table by default directly from a
table, but you can also choose to read using auto-generated
SQL or user-generated SQL.

– Specify the table to be read.

– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category:

– You can either manually specify a connection string, or have
DataStage generate one for you using a user name and
password you supply. Either way you need to supply a valid
username and password. DataStage encrypts the password
when you use the auto-generate option.

– Specify the name of the server hosting Teradata.

Ensure column meta data has been specified for the read.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Map tab appears if you have NLS enabled on your

system, it allows you to specify a character set map for the stage.

Advanced Tab
This tab allows you to specify the following:
14-8 Parallel Job Developer’s Guide

Teradata Enterprise Stage Stage Page
Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the data is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (the Preserve partitioning field is not visible
unless the stage has an output links).

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map
The NLS Map tab allows you to define a character set map for the

Teradata Enterprise stage. This overrides the default character set map
Parallel Job Developer’s Guide 14-9

Inputs Page Teradata Enterprise Stage
set for the project or the job. You can specify that the map be supplied

as a job parameter if required.

Inputs Page
The Inputs page allows you to specify details about how the Teradata

Enterprise Stage writes data to a Teradata database. The Teradata

Enterprise Stage can have only one input link writing to one table.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the database. The

Columns tab specifies the column definitions of incoming data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about Teradata Enterprise Stage properties, partitioning, and

formatting are given in the following sections. See Chapter 3, "Stage

Editors," for a general description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and where. Some of the

properties are mandatory, although many have default settings.
14-10 Parallel Job Developer’s Guide

Teradata Enterprise Stage Inputs Page
Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Target Category

Table

Specify the name of the table to write to. The table name must be a

valid Teradata table name. Table has two dependent properties:

Select List

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/Table Table_Name N/A Y N N/A

Target/Primary
Index

Columns List N/A N N Table

Target/Select List List N/A N N Table

Target/Write Mode Append/
Create/
Replace/
Truncate

Append Y N N/A

Connection/DB
Options

String N/A Y N N/A

Connection/
Database

Database
Name

N/A N N N/A

Connection/Server Server Name N/A Y N N/A

Options/Close
Command

Close
Command

500 N N Insert SQL

Options/Open
Command

Open
Command

False N N N/A

Options/Silently
Drop Columns Not
in Table

True/False False Y N N/A

Options/Default
String Length

String Length 32 N N N/A

Options/Truncate
Column Names

True/False False Y N N/A

Options/Progress
Interval

Number 100000 N N N/A
Parallel Job Developer’s Guide 14-11

Inputs Page Teradata Enterprise Stage
Specifies a list that determines which columns are written. If you

do not supply the list, the Teradata Enterprise Stage writes to all

columns. Do not include formatting characters in the list.

Primary Index

Specify a comma-separated list of column names that will become

the primary index for tables. Format the list according to Teradata

standards and enclose it in single quotes.

For performance reasons, the data set should not be sorted on the

primary index. The primary index should not be a smallint, or a

column with a small number of values, or a high proportion of null

values. If no primary index is specified, the first column is used.

All the considerations noted above apply to this case as well.

Write Mode

Select from the following:

Append. Appends new records to the table. The database user
must have TABLE CREATE privileges and INSERT privileges on the
table being written to. This is the default.

Create. Creates a new table. The database user must have TABLE
CREATE privileges. If a table exists of the same name as the one
you want to create, the data flow that contains Teradata
terminates in error.

Replace. Drops the existing table and creates a new one in its
place; the database user must have TABLE CREATE and TABLE
DELETE privileges. If a table exists of the same name as the one
you want to create, it is overwritten.

Note that you cannot create or replace a table that has primary

keys, you should not specify primary keys in your meta data.

Truncate. Retains the table attributes, including the table
definition, but discards existing records and appends new ones.
The database user must have DELETE and INSERT privileges on
the table.

Connection Category

DB Options

Specify a user name and password for connecting to Teradata in the

form:

<user = <user>, password= <password> [SessionsPerPlayer =
<num_sessions>][RequestedSessions = <num_requested>]
14-12 Parallel Job Developer’s Guide

Teradata Enterprise Stage Inputs Page
The value of sessionsperplayer determines the number of connections

each player has to Teradata. Indirectly, it also determines the number

of players. The number selected should be such that

(sessionsperplayer * number of nodes * number of players per node)

equals the total requested sessions. The default is 2.

Setting the value of sessionsperplayer too low on a large system can

result in so many players that the step fails due to insufficient

resources. In that case, sessionsperplayer should be increased.

The value of the optional requestedsessions is a number between 1

and the number of vprocs in the database. The default is the

maximum number of available sessions.

DataStage does not encrypt the password when you use this option.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a

DB Options string for you. If you select User-defined, you have to edit

the DB Options property yourself. When Auto-generate is selected,

there are two dependent properties:

User

The user name to use in the auto-generated DB options string.

Password

The password to use in the auto-generated DB options string.

DataStage encrypts the password.

Database

By default, the write operation is carried out in the default database of

the Teradata user whose profile is used. If no default database is

specified in that user’s Teradata profile, the user name is the default

database. If you supply the database name, the database to which it

refers must exist and you must have necessary privileges.

Server

Specify the name of a Teradata server.

Options Category

Close Command

Specify a Teradata command to be parsed and executed by Teradata

on all processing nodes after the table has been populated.
Parallel Job Developer’s Guide 14-13

Inputs Page Teradata Enterprise Stage
Open Command

Specify a Teradata command to be parsed and executed by Teradata

on all processing nodes before the table is populated.

Silently Drop Columns Not in Table

Specifying True causes the stage to silently drop all unmatched input

columns; otherwise the job fails.

Default String Length

Specify the maximum length of variable-length raw or string columns.

The default length is 32 bytes. The upper bound is slightly less than 32

KB.

Truncate Column Names

Specify whether the column names should be truncated to 30

characters or not.

Progress Interval

By default, the stage displays a progress message for every 100,000

records per partition it processes. Specify this option either to change

the interval or to disable the message. To change the interval, specify

a new number of records per partition. To disable the messages,

specify 0.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the

Teradata database. It also allows you to specify that the data should

be sorted before being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Teradata Enterprise Stage is operating in sequential mode, it will

first collect the data before writing it to the file using the default Auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Teradata Enterprise Stage is set to execute in parallel
or sequential mode.
14-14 Parallel Job Developer’s Guide

Teradata Enterprise Stage Inputs Page
Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Teradata Enterprise Stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partition type

drop-down list. This will override any current partitioning.

If the Teradata Enterprise Stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Teradata
Enterprise Stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default for Teradata Enterprise Stages.

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Teradata
Enterprise Stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.
Parallel Job Developer’s Guide 14-15

Outputs Page Teradata Enterprise Stage
Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the database.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about how the

Teradata Enterprise Stage reads data from a Teradata database. The

Teradata Enterprise Stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of the data. The Advanced tab allows you to change the

default buffering settings for the output link.
14-16 Parallel Job Developer’s Guide

Teradata Enterprise Stage Outputs Page
Details about Teradata Enterprise Stage properties are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read and from what table.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category\Property Values Default Mandatory? Repeats? Dependent of

Source/Read Method Table/Auto-
generated
SQL/User-
defined SQL

Table Y N N/A

Source/Table Table Name Y Y (if Read
Method = Table
or Auto-
generated SQL)

N N/A

Source/Select List List N/A N N Table

Source/Where Clause Filter N/A N N Table

Source/Query SQL query N/A Y (if Read
Method = User-
defined SQL or
Auto-generated
SQL

N N/A

Connection/DB
Options

String N/A Y N N/A

Connection/Database Database
Name

N/A N N N/A

Connection/Server Server Name N/A Y N N/A

Options/Close
Command

String N/A N N N/A

Options/Open
Command

String N/A N N N/A

Options/Progress
Interval

Number 100000 N N N/A
Parallel Job Developer’s Guide 14-17

Outputs Page Teradata Enterprise Stage
Source Category

Read Method

Select Table to use the Table property to specify the read (this is the

default). Select Auto-generated SQL this to have DataStage

automatically generate an SQL query based on the columns you have

defined and the table you specify in the Table property. You must

select the Query property and select Generate from the right-arrow

menu to actually generate the statement. Select User-defined SQL to

define your own query.

Table

Specifies the name of the Teradata table to read from. The table must

exist, and the user must have the necessary privileges to read it.

The Teradata Enterprise Stage reads the entire table, unless you limit

its scope by means of the Select List and/or Where suboptions:

Select List

Specifies a list of columns to read. The items of the list must

appear in the same order as the columns of the table.

Where Clause

Specifies selection criteria to be used as part of an SQL

statement’s WHERE clause. Do not include formatting characters

in the query.

These dependent properties are only available when you have

specified a Read Method of Table rather than Auto-generated SQL.

Query

This property is used to contain the SQL query when you choose a

Read Method of User-defined query or Auto-generated SQL. If you are

using Auto-generated SQL you must select a table and specify some

column definitions, then select Generate from the right-arrow menu

to have DataStage generate the query.

Connection Category

DB Options

Specify a user name and password for connecting to Teradata in the

form:

<user = <user>, password= <password> [SessionsPerPlayer =
<num_sessions>][RequestedSessions = <num_requested>]
14-18 Parallel Job Developer’s Guide

Teradata Enterprise Stage Outputs Page
The value of sessionsperplayer determines the number of connections

each player has to Teradata. Indirectly, it also determines the number

of players. The number selected should be such that

(sessionsperplayer * number of nodes * number of players per node)

equals the total requested sessions. The default is 2.

Setting the value of sessionsperplayer too low on a large system can

result in so many players that the step fails due to insufficient

resources. In that case, sessionsperplayer should be increased.

The value of the optional requestedsessions is a number between 1

and the number of vprocs in the database. The default is the

maximum number of available sessions.

DataStage does not encrypt the password when you use this option.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a

DB Options string for you. If you select User-defined, you have to edit

the DB Options property yourself. When Auto-generate is selected,

there are two dependent properties:

User

The user name to use in the auto-generated DB options string.

Password

The password to use in the auto-generated DB options string.

DataStage encrypts the password.

Database

By default, the read operation is carried out in the default database of

the Teradata user whose profile is used. If no default database is

specified in that user’s Teradata profile, the user name is the default

database. This option overrides the default.

If you supply the database name, the database to which it refers must

exist and you must have the necessary privileges.

Server

Specify the name of a Teradata server.

Options Category

Close Command

Optionally specifies a Teradata command to be run once by Teradata

on the conductor node after the query has completed.
Parallel Job Developer’s Guide 14-19

Outputs Page Teradata Enterprise Stage
Open Command

Optionally specifies a Teradata command run once by Teradata on the

conductor node before the query is initiated.

Progress Interval

By default, the stage displays a progress message for every 100,000

records per partition it processes. Specify this option either to change

the interval or to disable the message. To change the interval, specify

a new number of regards per partition. To disable the messages,

specify 0.
14-20 Parallel Job Developer’s Guide

15
Informix Enterprise Stage

The Informix Enterprise Stage is a database stage. It allows you to

read data from and write data to an Informix 7.x, 8.x or 9.x database.

The Informix Enterprise Stage can have a single input link or a single

output link.

When you edit a Informix Enterprise Stage, the Informix Enterprise

Stage editor appears. This is based on the generic stage editor

described in Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are

reading or writing a database:

Stage Page. This is always present and is used to specify general
information about the stage.
Parallel Job Developer’s Guide 15-1

Accessing Informix Databases Informix Enterprise Stage
Inputs Page. This is present when you are writing to an Informix
database. This is where you specify details about the data being
written.

Outputs Page. This is present when you are reading from an
Informix database. This is where you specify details about the
data being read.

Accessing Informix Databases
You must have the correct privileges and settings in order to use the

Informix Enterprise Stage. You must have a valid account and

appropriate privileges on the databases to which you connect.

You require read and write privileges on any table to which you

connect, and Resource privileges for using the Partition Table property

on an output link or using create and replace modes on an input link.

To configure access to Informix:

1 Make sure that Informix is running.

2 Make sure the INFORMIXSERVER is set in your environment. This
corresponds to a server name in sqlhosts and is set to the
coserver name of coserver 1. The coserver must be accessible
from the node on which you invoke your DataStage job.

3 Make sure that INFORMIXDIR points to the installation directory of
your INFORMIX server.

4 Make sure that INFORMIXSQLHOSTS points to the sql hosts path
(e.g., /disk6/informix/informix_runtime/etc/sqlhosts).

Considerations for Using the High Performance Loader
(HPL)

You can read and write data to an Informix 7.x or 9.x database using

the Informix High Performance Loader by specifying a connection

method of HPL in the input or output properties (see page 15-12 and

page 15-18).

Note the following when reading or writing using the High

Performance Loader:

The INFORMIX onpload database must exist and be set up. You
do this by running the INFORMIX ipload utility once and exiting it.
An appropriate warning appears if the database is not set up
properly.
15-2 Parallel Job Developer’s Guide

Informix Enterprise Stage Accessing Informix Databases
The High Performance Loader uses more shared memory, and
therefore more semaphores, than INFORMIX does in general. If
the HPL is unable to allocate enough shared memory or
semaphores, the DataStage read or write may not work. For more
information about shared memory limits, contact your system
administrator.

Reading Data on a Remote Machine using HPL

You can use read data on a remote machine using the High

Performance Loader without having INFORMIX installed on your local

machine. This uses the HPL connect method in the Output properties

(see "Connection Method" on page 15-18). The machines must be

cross-mounted in order to make a remote connection.

These instructions assume that DataStage has already been installed

on your local machine and that the Parallel engine is available on the

remote machine. (See the section "Copying the Parallel Engine to Your

System Nodes" in the DataStage Install and Upgrade Guide.)

To establish a remote connection to an Informix Enterprise Stage:

1 Verify that the INFORMIX sqlhosts file on the remote machine has
a TCP interface. A TCP interface is necessary to use the remote
connection functionality.

2 Copy the INFORMIX etc/sqlhosts file from the remote machine to
a directory on your local machine. Set the INFORMIX
INFORMIXDIR environment variable to this directory.

For example, if the directory on the local machine is /apt/informix,

the sqlhosts file should be in the directory /apt/informix/etc, and

the INFORMIXDIR variable should be set to /apt/informix.

3 Set the INFORMIXSERVER environment variable to the name of
the remote INFORMIX server.

4 Add the remote INFORMIX server nodes to your PX node
configuration file located in $APT_ORCHHOME/../../config; and use
a nodepool resource constraint to limit the execution of the
Informix Enterprise Stage to these nodes.

In the example configuration file below, the local machine is

fastname local_machine, and the INFORMIX remote server

machine is fastname remote_machine. The nodepool for the

remote nodes is arbitrarily named “InformixServer". The

configuration file must contain at least two nodes, one for the

local machine and one for the remote machine.

Here is the DataStage example configuration file before any

changes have been made:
Parallel Job Developer’s Guide 15-3

Accessing Informix Databases Informix Enterprise Stage
{
node "node0"

{
fastname "local_machine"
pools "" "node0" "local_machine"resource disk
"/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node1"
{
fastname "local_machine"
pools "" "node1" "local_machine"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

}

Here is the DataStage example configuration file with changes made

for the Informix Enterprise Stage:

{
node "node0"

{
fastname "local_machine"
pools "" "local_machine"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node1"
{
fastname "local_machine"
pools "" "local_machine"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node2"
{
fastname "remote_machine"
pools "InformixServer" "remote_machine"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node3"
{
fastname "remote_machine"
pools "InformixServer" "remote_machine"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

}

15-4 Parallel Job Developer’s Guide

Informix Enterprise Stage Accessing Informix Databases
5 Go to the Stage page Advanced tab of the Informix Enterprise
Stage (see page 15-9). Select Node pool and resource
constraints and Nodepool along with the name of the node
pool constraint (i.e., "InformixServer" in the example
configuration file above).

6 Set up environment variables. Remote access to an INFORMIX
database requires the use of two INFORMIXDIR environment
variable settings, one for the local DataStage machine which is set
as in step 2 above, and one for the machine with the remote
INFORMIX database. The remote variable needs to be set in a
startup script which you must create on the local machine. This
startup script is executed automatically by the Parallel Engine.

Here is a sample startup.apt file with INFORMIXDIR being set to /

usr/informix/9.4, the INFORMIX directory on the remote machine:

#! /bin/sh
INFORMIXDIR=/usr/informix/9.4
export INFORMIXDIR
INFORMIXSQLHOSTS=$INFORMIXDIR/etc/sqlhosts
export INFORMIXSQLHOSTS
shift 2
exec $*

7 Set the environment variable APT_STARTUP_SCRIPT to the full
pathname of the startup.apt file.

You are now ready to run a DataStage job which uses the Informix

Enterprise Stage HPL read method to connect to a remote INFORMIX

server. If you are unable to connect to the remote server, try making

either one or both of the following changes to your sqlhosts file on the

local machine:

In the fourth column in the row corresponding to the remote
INFORMIX server name, replace the INFORMIX server name with
the INFORMIX server port number found in the /etc/services file
on the remote machine.

The third column contains the hostname of the remote machine.
Change this to the IP address of the remote machine.

Using Informix XPS Stages on AIX Systems
In order to run jobs containing Informix XPS stages on AIX systems,

you need to have the Informix client sdk 2.81 version installed along

with the Informix XPS server. The LIBPATH order should be set as

follows:

LIBPATH=$APT_ORCHHOME/lib:$INFORMIXDIR/lib:`dirname $DSHOME`/
branded_odbc/lib:$DSHOME/lib:$DSHOME/uvdlls:$DSHOME/java/jre/bin/
classic:$DSHOME/java/jre/bin:$INFORMIXDIR/lib:$INFORMIXDIR/lib/
cli:$INFORMIXDIR/lib/esql
Parallel Job Developer’s Guide 15-5

Accessing Informix Databases Informix Enterprise Stage
Type Conversions - Writing to Informix
When writing or loading, the Informix Enterprise stage automatically

converts DataStage data types to Informix data types as shown in the

following table:

The default length of VARCHAR is 32 bytes. That is, 32 bytes are

allocated for each variable-length string field in the input data set. If an

input variable-length string field is longer than 32 bytes, the stage

issues a warning.

Type Conversions - Reading from Informix
When reading, the Informix Enterprise stage automatically converts

Informix data types to DataStage data types as shown in the following

table:

DataStage SQL
Data Type

Underlying Data Type Informix Data Type

Unknown
Char

string[n] CHAR(n)

LongVarChar
VarChar

string[max = n]

variable length string with
maximum length = n

VARCHAR(n)

Date date DATE

Date, Time, or
Timestamp

date, time or timestamp DATETIME

Decimal
Numeric

decimal[p, s] DECIMAL(p, s)

Double dfloat DOUBLE_PRECISION

Double dfloat FLOAT

Float
Real

sfloat FLOAT

Integer int32 INTEGER

SmallInt int16 SMALLINT

TinyInt int8 SMALLINT

DataStage SQL
Data Type

Underlying Data Type Informix Data Type

Unknown
Char

string[n] CHAR(n)
15-6 Parallel Job Developer’s Guide

Informix Enterprise Stage Must Do’s
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Informix Enterprise Stages in a job. This section specifies the

minimum steps to take to get an Informix Enterprise Stage

functioning. DataStage provides a versatile user interface, and there

are many shortcuts to achieving a particular end, this section

describes the basic method, you will learn where the shortcuts are

when you get familiar with the product.

The steps required depend on what you are using an Informix

Enterprise Stage for.

LongVarChar
VarChar

string[max = n]

variable length string with
maximum length = n

CHARACTER VARYING(n, r)

Unknown
Char

string[n] NCHAR(n, r)

LongVarChar
VarChar

string[max = n]

variable length string with
maximum length = n

NVARCHAR(n, r)

Date date DATE

Date, Time, or
Timestamp

date, time or timestamp DATETIME

Decimal
Numeric

decimal[p, s] DECIMAL(p, s)

Double dfloat DOUBLE_PRECISION

Double dfloat FLOAT

Float
Real

sfloat SMALLFLOAT

Decimal
Numeric

decimal MONEY

Float
Real

sfloat REAL

Integer int32 INTEGER

Integer int32 SERIAL

SmallInt int16 SMALLINT

DataStage SQL
Data Type

Underlying Data Type Informix Data Type
Parallel Job Developer’s Guide 15-7

Must Do’s Informix Enterprise Stage
Writing an Informix Database
In the Input Link Properties Tab, under the Target category:

– Specify the Table you are writing.

– Specify the write mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).

Under the Connection category:

– Specify the connection method, this can be one of XPS Fast
(for connecting to the XPS framework directly), HPL (for
connecting to HPL servers), or Native (for connecting to any
version release 7.x and above).

– Optionally specify the name of the database you are
connecting to.

– If you have specified the XPS Fast or HPL Connection Method,
specify the name of the server hosting Informix XPS (by
default DataStage will take this from the INFORMIXSERVER
environment variable – see "Accessing Informix Databases" on
page 15-2).

Ensure column meta data has been specified for the write.

Reading an Informix Database
In the Output Link Properties Tab, under the Source category:

– Choose a Read Method. This is Table by default, which reads
directly from a table, but you can also choose to read using
auto-generated SQL or user-generated SQL.

– Specify the table to be read.

– If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category:

– Specify the connection method, this can be one of XPS Fast
(for connecting to the XPS framework directly), HPL (for
connecting to HPL servers), or Native (for connecting to any
version release 7.x and above).

– Optionally specify the name of the database you are
connecting to.
15-8 Parallel Job Developer’s Guide

Informix Enterprise Stage Stage Page
– If you have specified the XPS Fast or HPL Connection Method,
specify the name of the server hosting Informix XPS (by
default DataStage will take this from the INFORMIXSERVER
environment variable – see "Accessing Informix Databases" on
page 15-2).

Ensure column meta data has been specified for the read.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The execution mode depends on the type of
operation the stage is performing.

– Writing to an XPS database using the XPS Fast connection
method is always parallel, and cannot be changed.

– Writing to a database using the HPL connection method is
always sequential and cannot be changed.

– Writing to a database using the Native connection method is
always sequential and cannot be changed.

– Reading an database using the HPL connection method is
always sequential and cannot be changed.

– The execution mode for reading an XPS database depends on
the setting of the Connection Method and Partition Table
properties.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (it is ignored for write operations).

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.
Parallel Job Developer’s Guide 15-9

Inputs Page Informix Enterprise Stage
Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about how the Informix

Enterprise Stage writes data to an Informix database. The stage can

have only one input link writing to one table.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to specify how

incoming data is partitioned before being written to the database. The

Columns tab specifies the column definitions of incoming data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about stage properties, partitioning, and formatting are given

in the following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written and where. Some of the

properties are mandatory, although many have default settings.

Properties without default settings appear in the warning color (red by

default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Target/Write
Mode

Append/
Create/
Replace/
Truncate

Append Y N N/A

Target/Table Table Name N/A Y N N/A
15-10 Parallel Job Developer’s Guide

Informix Enterprise Stage Inputs Page
Target Category

Write Mode

Select from the following:

Append. Appends new records to the table. The database user
who writes in this mode must have Resource privileges. This is
the default mode.

Connection/
Connection
Method

XPS Fast/
HPL/Native

XPS Fast Y N N/A

Connection/
Remote Server

True/False False Y (if
Connection
Method =
Native)

N N/A

Connection/User User id N/A Y (if
Connection
Method =
Native and
Remote Server
= True)

N N/A

Connection/
Password

Password N/A Y (if
Connection
Method =
Native and
Remote Server
= True)

N N/A

Connection/
Database

Database
Name

N/A Y N N/A

Connection/
Server

Server Name N/A N N N/A

Options/Close
Command

Close
Command

N/A N N N/A

Options/Open
Command

Open
Command

N/A N N N/A

Options/Silently
Drop Columns
Not in Table

True/False False Y N N/A

Options/Default
String Length

String Length 32 Y N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 15-11

Inputs Page Informix Enterprise Stage
Create. Creates a new table. The database user who writes in this
mode must have Resource privileges. The stage returns an error if
the table already exists.

Replace. Deletes the existing table and creates a new one in its
place. The database user who writes in this mode must have
Resource privileges.

Note that you cannot create or replace a table that has primary

keys, you should not specify primary keys in your meta data.

Truncate. Retains the table attributes but discards existing
records and appends new ones. The stage will run more slowly in
this mode if the user does not have Resource privileges.

Table

Specify the name of the Informix table to write to. It has a dependent

property:

Select List

Specifies a list that determines which columns are written. If you

do not supply the list, the stage writes to all columns.

Connection Category

Connection Method

Specify the method to use to connect to the Informix database.

Choose from:

XPS fast. Use this to connect to an Informix XPS (8.x) database.
DataStage connects directly to the XPS framework.

HPL. Use this to connect to Informix servers (7.x, 9.x) using the
High Performance Loader (HPL).

Native. Use this to connect to any version of Informix (7.x, 8.x, or
9.x) using native interfaces.

Remote Server

This option appears if you select the Native connection method. It is

False by default. If you select True, the Password and User options

appear, allowing you to specify authentication details for the remote

server.

User

This is only available for a Connection Method of Native with Remote

Server set to true. Specify the user id for connecting to the remote

database.
15-12 Parallel Job Developer’s Guide

Informix Enterprise Stage Inputs Page
Password

This is only available for a Connection Method of Native with Remote

Server set to true. Specify the password for connecting to the remote

database with the user id specified by User. The password is

encrypted.

Database

Optionally specify the name of the Informix database containing the

table specified by the Table property.

Server

This is only available with a Connection Method of XPS Fast or HPL.

Specify the name of an Informix XPS server.

Option Category

Close Command

Specify an INFORMIX SQL statement to be parsed and executed by

Informix on all processing nodes after the table has been populated.

Open Command

Specify an INFORMIX SQL statement to be parsed and executed by

Informix on all processing nodes before opening the table.

Silently Drop Columns Not in Table

Use this property to cause the stage to drop, with a warning, all input

columns that do not correspond to the columns of an existing table. If

do you not specify drop, an unmatched column generates an error

and the associated step terminates.

Default String Length

Set the default length of string columns. If you do not specify a length,

the default is 32 bytes. You can specify a length up to 255 bytes.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is written to the

Informix database. It also allows you to specify that the data should be

sorted before being written.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
Parallel Job Developer’s Guide 15-13

Inputs Page Informix Enterprise Stage
current and preceding stages and how many nodes are specified in

the Configuration file.

If the stage is operating in sequential mode, it will first collect the data

before writing it to the file using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the stage is set to execute in parallel or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the stage is set to execute in parallel, then you can set a partitioning

method by selecting from the Partition type drop-down list. This will

override any current partitioning.

If the stage is set to execute in sequential mode, but the preceding

stage is executing in parallel, then you can set a collection method

from the Collector type drop-down list. This will override the default

collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Informix
Enterprise Stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:
15-14 Parallel Job Developer’s Guide

Informix Enterprise Stage Inputs Page
(Auto). This is the default collection method for Informix
Enterprise Stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the database.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 15-15

Outputs Page Informix Enterprise Stage
Outputs Page
The Outputs page allows you to specify details about how the

Informix Enterprise Stage reads data from an Informix database. The

stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Properties tab allows you to specify details of

exactly what the link does. The Columns tab specifies the column

definitions of the data. The Advanced tab allows you to change the

default buffering settings for the output link.

Details about Informix Enterprise Stage properties are given in the

following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab
The Properties tab allows you to specify properties for the output

link. These dictate how incoming data is read and from what table.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/Property Values Default Mandatory? Repeats? Dependent of

Source/Read Method Table/Auto-
generated
SQL/User-
defined SQL

Table Y N N/A

Source/Table Table Name Y Y (if Read
Method = Table
or Auto-
generated
SQL)

N N/A

Source/Select List List N/A N N Table

Source/Where Clause Filter N/A N N Table

Source/Partition Table Table N/A N N Table

Source/Query SQL query N/A Y (if Read
Method = User-
defined SQL or
Auto-
generated
SQL)

N N/A
15-16 Parallel Job Developer’s Guide

Informix Enterprise Stage Outputs Page
Source Category

Read Method

Select Table to use the Table property to specify the read (this is the

default). Select Auto-generated SQL this to have DataStage

automatically generate an SQL query based on the columns you have

defined and the table you specify in the Table property. Select User-

defined SQL to define your own query.

Table

Specify the name of the Informix table to read from. The table must

exist. You can prefix the table name with a table owner in the form:

table_owner.table_name.

Connection/
Connection Method

XPS Fast/
HPL/Native

XPS Fast Y N N/A

Connection/Remote
Server

True/False False Y (if
Connection
Method =
Native)

N N/A

Connection/User User id N/A Y (if
Connection
Method =
Native and
Remote Server
= True)

N N/A

Connection/Password Password N/A Y (if
Connection
Method =
Native and
Remote Server
= True)

N N/A

Connection/Database Database
Name

N/A N N N/A

Connection/Server Server Name N/A N N N/A

Options/Close
Command

String N/A N N N/A

Options/Open
Command

String N/A N N N/A

Category/Property Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 15-17

Outputs Page Informix Enterprise Stage
Where Clause

Specify selection criteria to be used as part of an SQL statement’s

WHERE clause, to specify the rows of the table to include in or

exclude from the data set.

Select List

Specifies a list that determines which columns are read. If you do

not supply the list, the stage reads all columns. Do not include

formatting characters in the list.

Partition Table

Specify this property if the table is fragmented to improve

performance by creating one instance of the stage per table

fragment. If the table is fragmented across nodes, this property

creates one instance of the stage per fragment per node. If the

table is fragmented and you do not specify this option, the stage

nonetheless functions successfully, if more slowly. You must have

Resource privilege to invoke this property. This property is only

available for Connection Methods of XPS Fast and Native.

These dependent properties are only available when you have

specified a Read Method of Table rather than Auto-generated SQL.

Query

This property is used to contain the SQL query when you choose a

Read Method of User-defined query or Auto-generated SQL. If you are

using Auto-generated SQL you must select a table and specify some

column definitions to have DataStage generate the query.

Connection Category

Connection Method

Specify the method to use to connect to the Informix database.

Choose from:

XPS fast. Use this to connect to an Informix XPS (8.x) database.
DataStage connects directly to the XPS framework.

HPL. Use this to connect to Informix servers (7.x, 9.x) using the
High Performance Loader (HPL).

Native. Use this to connect to any version of Informix (7.x, 8.x, or
9.x) using native interfaces.
15-18 Parallel Job Developer’s Guide

Informix Enterprise Stage Outputs Page
Remote Server

This option appears if you select the Native connection method. It is

False by default. If you select True, the Password and User options

appear, allowing you to specify authentication details for the remote

server.

User

This is only available for a Connection Method of Native with Remote

Server set to true. Specify the user id for connecting to the remote

database.

Password

This is only available for a Connection Method of Native with Remote

Server set to true. Specify the password for connecting to the remote

database with the user id specified by User. The password is

encrypted.

Database

The name of the Informix database.

Server

This is only available with a Connection Method of XPS Fast or HPL.

The name of the Informix XPS server.

Options Category

Close Command

Optionally specify an INFORMIX SQL statement to be parsed and

executed on all processing nodes after the table selection or query is

completed.

Open Command

Optionally specify an INFORMIX SQL statement to be parsed and

executed by the database on all processing nodes before the read

query is prepared and executed.
Parallel Job Developer’s Guide 15-19

Outputs Page Informix Enterprise Stage
15-20 Parallel Job Developer’s Guide

16
Transformer Stage

The Transformer stage is a processing stage. It appears under the

processing category in the tool palette. Transformer stages allow you

to create transformations to apply to your data. These

transformations can be simple or complex and can be applied to

individual columns in your data. Transformations are specified using a

set of functions. Details of available functions are given in

Appendix B.

Transformer stages can have a single input and any number of

outputs. It can also have a reject link that takes any rows which have

not been written to any of the outputs links by reason of a write failure

or expression evaluation failure.

Unlike most of the other stages in a Parallel job, the Transformer stage

has its own user interface. It does not use the generic interface as

described in Chapter 3.

When you edit a Transformer stage, the Transformer Editor appears.

An example Transformer stage is shown below. The left pane
Parallel Job Developer’s Guide 16-1

Must Do’s Transformer Stage
represents input data and the right pane, output data. In this example,

the Transformer stage has a single input and output link and meta

data has been defined for both.

Must Do’s
This section specifies the minimum steps to take to get a Transformer

stage functioning. DataStage provides a versatile user interface, and

there are many shortcuts to achieving a particular end, this section

describes the basic method, you will learn where the shortcuts are

when you get familiar with the product.

In the left pane:

– Ensure that you have column meta data defined.

In the right pane:

– Ensure that you have column meta data defined for each of the
output links. The easiest way to do this is to drag columns
across from the input link.

– Define the derivation for each of your output columns. You can
leave this as a straight mapping from an input column, or
explicitly define an expression to transform the data before it is
output.
16-2 Parallel Job Developer’s Guide

Transformer Stage Transformer Editor Components
– Optionally specify a constraint for each output link. This is an
expression which input rows must satisfy before they are
output on a link. Rows that are not output on any of the links
can be output on the otherwise link.

– Optionally specify one or more stage variables. This provides a
method of defining expressions which can be reused in your
output columns derivations (stage variables are only visible
within the stage).

Transformer Editor Components
The Transformer Editor has the following components.

Toolbar
The Transformer toolbar contains the following buttons:

Link Area
The top area displays links to and from the Transformer stage,

showing their columns and the relationships between them.

The link area is where all column definitions and stage variables are

defined.

The link area is divided into two panes; you can drag the splitter bar

between them to resize the panes relative to one another. There is

also a horizontal scroll bar, allowing you to scroll the view left or right.

The left pane shows the input link, the right pane shows output links.

Output columns that have no derivation defined are shown in red.

Within the Transformer Editor, a single link may be selected at any one

time. When selected, the link’s title bar is highlighted, and arrowheads

indicate any selected columns within that link.

stage
properties

show all or selected relations

constraints cut copy paste load column definition
save column definition

find/replace
column auto-match

show/hide
stage variables input link

execution order

execution order
output link
Parallel Job Developer’s Guide 16-3

Transformer Editor Components Transformer Stage
Meta Data Area
The bottom area shows the column meta data for input and output

links. Again this area is divided into two panes: the left showing input

link meta data and the right showing output link meta data.

The meta data for each link is shown in a grid contained within a

tabbed page. Click the tab to bring the required link to the front. That

link is also selected in the link area.

If you select a link in the link area, its meta data tab is brought to the

front automatically.

You can edit the grids to change the column meta data on any of the

links. You can also add and delete meta data.

As with column meta data grids on other stage editors, edit row in the

context menu allows editing of the full meta data definitions (see

"Columns Tab" on page 3-26).

Shortcut Menus
The Transformer Editor shortcut menus are displayed by right-clicking

the links in the links area.

There are slightly different menus, depending on whether you right-

click an input link, an output link, or a stage variable. The input link

menu offers you operations on input columns, the output link menu

offers you operations on output columns and their derivations, and

the stage variable menu offers you operations on stage variables.

The shortcut menu enables you to:

Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Constraints dialog box to specify a constraint (only
available for output links).

Open the Column Auto Match dialog box.

Display the Find/Replace dialog box.

Display the Select dialog box.

Edit, validate, or clear a derivation, or stage variable.

Edit several derivations in one operation.

Append a new column or stage variable to the selected link.

Select all columns on a link.

Insert or delete columns or stage variables.
16-4 Parallel Job Developer’s Guide

Transformer Stage Transformer Stage Basic Concepts
Cut, copy, and paste a column or a key expression or a derivation
or stage variable.

If you display the menu from the links area background, you can:

Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Constraints dialog box in order to specify a constraint
for the selected output link.

Open the Link Execution Order dialog box in order to specify
the order in which links should be processed.

Toggle between viewing link relations for all links, or for the
selected link only.

Toggle between displaying stage variables and hiding them.

Right-clicking in the meta data area of the Transformer Editor opens

the standard grid editing shortcut menus.

Transformer Stage Basic Concepts
When you first edit a Transformer stage, it is likely that you will have

already defined what data is input to the stage on the input link. You

will use the Transformer Editor to define the data that will be output

by the stage and how it will be transformed. (You can define input

data using the Transformer Editor if required.)

This section explains some of the basic concepts of using a

Transformer stage.

Input Link
The input data source is joined to the Transformer stage via the input

link.

Output Links
You can have any number of output links from your Transformer

stage.

You may want to pass some data straight through the Transformer

stage unaltered, but it’s likely that you’ll want to transform data from

some input columns before outputting it from the Transformer stage.

You can specify such an operation by entering a transform expression.

The source of an output link column is defined in that column’s

Derivation cell within the Transformer Editor. You can use the
Parallel Job Developer’s Guide 16-5

Transformer Stage Basic Concepts Transformer Stage
Expression Editor to enter expressions in this cell. You can also simply

drag an input column to an output column’s Derivation cell, to pass

the data straight through the Transformer stage.

In addition to specifying derivation details for individual output

columns, you can also specify constraints that operate on entire

output links. A constraint is an expression that specifies criteria that

data must meet before it can be passed to the output link. You can

also specify a constraint otherwise link, which is an output link that

carries all the data not output on other links, that is, columns that have

not met the criteria.

Each output link is processed in turn. If the constraint expression

evaluates to TRUE for an input row, the data row is output on that link.

Conversely, if a constraint expression evaluates to FALSE for an input

row, the data row is not output on that link.

Constraint expressions on different links are independent. If you have

more than one output link, an input row may result in a data row

being output from some, none, or all of the output links.

For example, if you consider the data that comes from a paint shop, it

could include information about any number of different colors. If you

want to separate the colors into different files, you would set up

different constraints. You could output the information about green

and blue paint on LinkA, red and yellow paint on LinkB, and black

paint on LinkC.

When an input row contains information about yellow paint, the LinkA

constraint expression evaluates to FALSE and the row is not output on

LinkA. However, the input data does satisfy the constraint criterion for

LinkB and the rows are output on LinkB.

If the input data contains information about white paint, this does not

satisfy any constraint and the data row is not output on Links A, B or

C, but will be output on the otherwise link. The otherwise link is used

to route data to a table or file that is a “catch-all” for rows that are not

output on any other link. The table or file containing these rows is

represented by another stage in the job design.

You can also specify another output link which takes rows that have

not be written to any other links because of write failure or expression

evaluation failure. This is specified outside the stage by adding a link

and converting it to a reject link using the shortcut menu. This link is

not shown in the Transformer meta data grid, and derives its meta

data from the input link. Its column values are those in the input row

that failed to be written.

If you have enabled Runtime Column Propagation for an output link

(see "Outputs Page" on page 16-34) you do not have to specify meta

data for that link.
16-6 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
Editing Transformer Stages
The Transformer Editor enables you to perform the following

operations on a Transformer stage:

Create new columns on a link

Delete columns from within a link

Move columns within a link

Edit column meta data

Define output column derivations

Define link constraints and handle otherwise links

Specify the order in which links are processed

Define local stage variables

Using Drag and Drop
Many of the Transformer stage edits can be made simpler by using

the Transformer Editor’s drag and drop functionality. You can drag

columns from any link to any other link. Common uses are:

Copying input columns to output links

Moving columns within a link

Copying derivations in output links

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link. An insert point appears on the target link to indicate
where the new cell will go.

3 Release the mouse button to drop the selected cell.

You can drag and drop multiple columns, key expressions, or

derivations. Use the standard Explorer keys when selecting the source

column cells, then proceed as for a single cell.

You can drag and drop the full column set by dragging the link title.

You can add a column to the end of an existing derivation by holding

down the Ctrl key as you drag the column.

The drag and drop insert point is shown below:
Parallel Job Developer’s Guide 16-7

Editing Transformer Stages Transformer Stage
Find and Replace Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the find/replace column facility to help locate a particular

column or expression and change it.

The find/replace facility enables you to:

Find and replace a column name

Find and replace expression text

Find the next empty expression

Find the next expression that contains an error

To use the find/replace facilities, do one of the following:

Click the find/replace button on the toolbar

Choose find/replace from the link shortcut menu

Type Ctrl-F

The Find and Replace dialog box appears. It has three tabs:

Expression Text. Allows you to locate the occurrence of a
particular string within an expression, and replace it if required.
You can search up or down, and choose to match case, match
whole words, or neither. You can also choose to replace all
occurrences of the string within an expression.

Columns Names. Allows you to find a particular column and
rename it if required. You can search up or down, and choose to
match case, match the whole word, or neither.

Expression Types. Allows you to find the next empty expression
or the next expression that contains an error. You can also press
Ctrl-M to find the next empty expression or Ctrl-N to find the
next erroneous expression.

Note The find and replace results are shown in the color specified

in Tools ‰ Options.
16-8 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
Press F3 to repeat the last search you made without opening the Find
and Replace dialog box.

Select Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the select column facility to select multiple columns. This

facility is also available in the Mapping tabs of certain Parallel job

stages.

The select facility enables you to:

Select all columns/stage variables whose expressions contains
text that matches the text specified.

Select all column/stage variables whose name contains the text
specified (and, optionally, matches a specified type).

Select all columns/stage variable with a certain data type.

Select all columns with missing or invalid expressions.

To use the select facilities, choose Select from the link shortcut menu.

The Select dialog box appears. It has three tabs:

Expression Text. This Expression Text tab allows you to select
all columns/stage variables whose expressions contain text that
matches the text specified. The text specified is a simple text
match, taking into account the Match case setting.

Column Names. The Column Names tab allows you to select all
column/stage variables whose Name contains the text specified.
There is an additional Data Type drop down list, that will limit the
columns selected to those with that data type. You can use the
Data Type drop down list on its own to select all columns of a
certain data type. For example, all string columns can be selected
by leaving the text field blank, and selecting String as the data
type. The data types in the list are generic data types, where each
of the column SQL data types belong to one of these generic
types.

Expression Types. The Expression Types tab allows you to
select all columns with either empty expressions or invalid
expressions.

Creating and Deleting Columns
You can create columns on links to the Transformer stage using any of

the following methods:

Select the link, then click the load column definition button in
the toolbar to open the standard load columns dialog box.
Parallel Job Developer’s Guide 16-9

Editing Transformer Stages Transformer Stage
Use drag and drop or copy and paste functionality to create a new
column by copying from an existing column on another link.

Use the shortcut menus to create a new column definition.

Edit the grids in the link’s meta data tab to insert a new column.

When copying columns, a new column is created with the same meta

data as the column it was copied from.

To delete a column from within the Transformer Editor, select the

column you want to delete and click the cut button or choose Delete

Column from the shortcut menu.

Moving Columns Within a Link
You can move columns within a link using either drag and drop or cut

and paste. Select the required column, then drag it to its new location,

or cut it and paste it in its new location.

Editing Column Meta Data
You can edit column meta data from within the grid in the bottom of

the Transformer Editor. Select the tab for the link meta data that you

want to edit, then use the standard DataStage edit grid controls.

The meta data shown does not include column derivations since

these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the

Transformer Editor in five ways:

If you require a new output column to be directly derived from an
input column, with no transformations performed, then you can
use drag and drop or copy and paste to copy an input column to
an output link. The output columns will have the same names as
the input columns from which they were derived.

If the output column already exists, you can drag or copy an input
column to the output column’s Derivation field. This specifies
that the column is directly derived from an input column, with no
transformations performed.

You can use the column auto-match facility to automatically set
that output columns are derived from their matching input
columns.
16-10 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
You may need one output link column derivation to be the same
as another output link column derivation. In this case you can use
drag and drop or copy and paste to copy the derivation cell from
one column to another.

In many cases you will need to transform data before deriving an
output column from it. For these purposes you can use the
Expression Editor. To display the Expression Editor, double-click
on the required output link column Derivation cell. (You can also
invoke the Expression Editor using the shortcut menu or the
shortcut keys.)

Note To access a vector element in a column derivation, you

need to use an expression containing the vector function -

see "Vector Function" on page B-11.

If a derivation is displayed in red (or the color defined in Tools ‰
Options), it means that the Transformer Editor considers it incorrect.

Once an output link column has a derivation defined that contains any

input link columns, then a relationship line is drawn between the input

column and the output column, as shown in the following example.

This is a simple example; there can be multiple relationship lines

either in or out of columns. You can choose whether to view the

relationships for all links, or just the relationships for the selected

links, using the button in the toolbar.

Column Auto-Match Facility

This time-saving feature allows you to automatically set columns on

an output link to be derived from matching columns on an input link.

Using this feature you can fill in all the output link derivations to route

data from corresponding input columns, then go back and edit

individual output link columns where you want a different derivation.

To use this facility:

1 Do one of the following:

– Click the Auto-match button in the Transformer Editor toolbar.

– Choose Auto-match from the input link header or output link
header shortcut menu.
Parallel Job Developer’s Guide 16-11

Editing Transformer Stages Transformer Stage
The Column Auto-Match dialog box appears:

2 Choose the output link that you want to match columns with the
input link from the drop down list.

3 Click Location match or Name match from the Match type
area.

If you choose Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you choose Name match, you need to specify further

information for the input and output columns as follows:

– Input columns:

Match all columns or Match selected columns. Choose

one of these to specify whether all input link columns should

be matched, or only those currently selected on the input link.

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.

Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Output columns:

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.
16-12 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored, and
turn Ignore case on, then both IP and ip will be ignored.

4 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Editing Multiple Derivations
You can make edits across several output column or stage variable

derivations by choosing Derivation Substitution… from the

shortcut menu. This opens the Expression Substitution dialog box.

The Expression Substitution dialog box allows you to make the

same change to the expressions of all the currently selected columns

within a link. For example, if you wanted to add a call to the trim()

function around all the string output column expressions in a link, you

could do this in two steps. First, use the Select dialog to select all the

string output columns. Then use the Expression Substitution

dialog to apply a trim() call around each of the existing expression

values in those selected columns.

You are offered a choice between Whole expression substitution and

Part of expression substitution.

Whole Expression

With this option the whole existing expression for each column is

replaced by the replacement value specified. This replacement value

can be a completely new value, but will usually be a value based on

the original expression value. When specifying the replacement value,

the existing value of the column’s expression can be included in this

new value by including “$1”. This can be included any number of

times.

For example, when adding a trim() call around each expression of the

currently selected column set, having selected the required columns,

you would:
Parallel Job Developer’s Guide 16-13

Editing Transformer Stages Transformer Stage
1 Select the Whole expression option.

2 Enter a replacement value of:

trim($1)

3 Click OK

Where a column’s original expression was:

DSLink3.col1

This will be replaced by:

trim(DSLink3.col1)

This is applied to the expressions in each of the selected columns.

If you need to include the actual text $1 in your expression, enter it as

“$$1”.

Part of Expression

With this option, only part of each selected expression is replaced

rather than the whole expression. The part of the expression to be

replaced is specified by a Regular Expression match.

It is possible that more that one part of an expression string could

match the Regular Expression specified. If Replace all occurrences

is checked, then each occurrence of a match will be updated with the

replacement value specified. If it is not checked, then just the first

occurrence is replaced.

When replacing part of an expression, the replacement value specified

can include that part of the original expression being replaced. In

order to do this, the Regular Expression specified must have round

brackets around its value. "$1” in the replacement value will then

represent that matched text. If the Regular Expression is not

surrounded by round brackets, then “$1” will simply be the text “$1”.

For complex Regular Expression usage, subsets of the Regular

Expression text can be included in round brackets rather than the

whole text. In this case, the entire matched part of the original

expression is still replaced, but “$1”, “$2” etc can be used to refer to

each matched bracketed part of the Regular Expression specified.

The following is an example of the Part of expression replacement.

Suppose a selected set of columns have derivations that use input

columns from ‘DSLink3’. For example, two of these derivations could

be:

DSLink3.OrderCount + 1
If (DSLink3.Total > 0) Then DSLink3.Total Else -1

You may want to protect the usage of these input columns from null

values, and use a zero value instead of the null. To do this:
16-14 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
1 Select the columns you want to substitute expressions for.

2 Select the Part of expression option.

3 Specify a Regular Expression value of:

(DSLink3\.[a-z,A-Z,0-9]*)

This will match strings that contain “DSLink3.”, followed by any

number of alphabetic characters or digits. (This assumes that

column names in this case are made up of alphabetic characters

and digits). The round brackets around the whole Expression

means that $1 will represent the whole matched text in the

replacement value.

4 Specify a replacement value of

NullToZero($1)

This replaces just the matched substrings in the original

expression with those same substrings, but surrounded by the

NullToZero call.

5 Click OK, to apply this to all the selected column derivations.

From the examples above:

DSLink3.OrderCount + 1

would become

NullToZero(DSLink3.OrderCount) + 1

and

If (DSLink3.Total > 0) Then DSLink3.Total Else –1

would become:

If (NullToZero(DSLink3.Total) > 0) Then DSLink3.Total Else –1

If the Replace all occurrences option is selected, the second

expression will become:

If (NullToZero(DSLink3.Total) > 0)
Then NullToZero(DSLink3.Total)
Else –1

The replacement value can be any form of expression string. For

example in the case above, the replacement value could have been:

(If (StageVar1 > 50000) Then $1 Else ($1 + 100))

In the first case above, the expression

DSLink3.OrderCount + 1

would become:

(If (StageVar1 > 50000) Then DSLink3.OrderCount
Else (DSLink3.OrderCount + 100)) + 1
Parallel Job Developer’s Guide 16-15

Editing Transformer Stages Transformer Stage
Handling Null Values in Input Columns
If you use input columns in an output column expression, be aware

that a null value in that input column will cause the row to be dropped

or, if a reject link has been defined, rejected.

This applies where:

An input column is used in an output column derivation
expression (for example, an expression like “DSLink4.col1 + 1”).

An input column is used in an output column constraint.

An input column is used in a stage variable derivation.

It does not apply where an output column is mapped directly from an

input column, with a straight assignment expression.

If you need to be able to handle nulls in these situations, you should

use the null handling functions described in Appendix B. For example,

you could enter an output column derivation expression including the

expression:

1 + NullToZero(InLink.Col1)

This would check the input column to see if it contains a null, and if it

did, replace it with 0 (which is added to 1). Otherwise the value the

column contains is added to 1.

Defining Constraints and Handling Otherwise Links
You can define limits for output data by specifying a constraint.

Constraints are expressions and you can specify a constraint for each

output link from a Transformer stage. You can also specify that a

particular link is to act as an otherwise link and catch those rows that

have failed to satisfy the constraints on all other output links.

To define a constraint or specify an otherwise link, do one of the

following:

Select an output link and click the constraints button.

Double-click the output link’s constraint entry field.

Choose Constraints from the background or header shortcut
menus.

A dialog box appears which allows you either to define constraints for

any of the Transformer output links or to define a link as an otherwise

link.

Define a constraint by entering an expression in the Constraint field

for that link. Once you have done this, any constraints will appear

below the link’s title bar in the Transformer Editor. This constraint

expression will then be checked against the row data at runtime. If the
16-16 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
data does not satisfy the constraint, the row will not be written to that

link. It is also possible to define a link which can be used to catch these

rows which have been not satisfied the constraints on any previous

links.

A constraint otherwise link can be defined by:

Clicking on the Otherwise/Log field so a tick appears and leaving
the Constraint fields blank. This will catch any rows that have
failed to meet constraints on all the previous output links.

Set the constraint to OTHERWISE. This will be set whenever a row
is rejected on a link because the row fails to match a constraint.
OTHERWISE is cleared by any output link that accepts the row.

The otherwise link must occur after the output links in link order
so it will catch rows that have failed to meet the constraints of all
the output links. If it is not last rows may be sent down the
otherwise link which satisfy a constraint on a later link and is sent
down that link as well.

Clicking on the Otherwise/Log field so a tick appears and
defining a Constraint. This will result in the number of rows
written to that link (i.e. rows which satisfy the constraint) to be
recorded in the job log as a warning message.

Note You can also specify a reject link which will catch rows that

have not been written on any output links due to a write

error or null expression error. Define this outside

Transformer stage by adding a link and using the shortcut

menu to convert it to a reject link.
Parallel Job Developer’s Guide 16-17

Editing Transformer Stages Transformer Stage
Specifying Link Order
You can specify the order in which output links process a row.

The initial order of the links is the order in which they are added to the

stage.

To reorder the links:

1 Do one of the following:

– Click the output link execution order button on the
Transformer Editor toolbar.

– Choose output link reorder from the background shortcut
menu.

The Transformer Stage Properties dialog box appears with the

Link Ordering tab of the Stage page uppermost:

2 Use the arrow buttons to rearrange the list of links in the execution
order required.

3 When you are happy with the order, click OK.

Defining Local Stage Variables
You can declare and use your own variables within a Transformer

stage. Such variables are accessible only from the Transformer stage

in which they are declared. They can be used as follows:

They can be assigned values by expressions.
16-18 Parallel Job Developer’s Guide

Transformer Stage Editing Transformer Stages
They can be used in expressions which define an output column
derivation.

Expressions evaluating a variable can include other variables or
the variable being evaluated itself.

Any stage variables you declare are shown in a table in the right pane

of the links area. The table looks similar to an output link. You can

display or hide the table by clicking the Stage Variable button in the

Transformer toolbar or choosing Stage Variable from the

background shortcut menu.

Note Stage variables are not shown in the output link meta data

area at the bottom of the right pane.

The table lists the stage variables together with the expressions used

to derive their values. Link lines join the stage variables with input

columns used in the expressions. Links from the right side of the table

link the variables to the output columns that use them.

To declare a stage variable:

1 Do one of the following:

– Select Insert New Stage Variable from the stage variable
shortcut menu. A new variable is added to the stage variables
table in the links pane. The variable is given the default name
Parallel Job Developer’s Guide 16-19

Editing Transformer Stages Transformer Stage
StageVar and default data type VarChar (255). You can edit
these properties using the Transformer Stage Properties
dialog box, as described in the next step.

– Click the Stage Properties button on the Transformer toolbar.

– Select Stage Properties from the background shortcut menu.

– Select Stage Variable Properties from the stage variable
shortcut menu.

The Transformer Stage Properties dialog box appears:

2 Using the grid on the Variables page, enter the variable name,
initial value, SQL type, extended information (if variable contains
Unicode data), precision, scale, and an optional description.
Variable names must begin with an alphabetic character (a–z, A–Z)
and can only contain alphanumeric characters (a–z, A–Z, 0–9).

3 Click OK. The new variable appears in the stage variable table in
the links pane.

You perform most of the same operations on a stage variable as you

can on an output column (see page 16-10). A shortcut menu offers the

same commands. You cannot, however, paste a stage variable as a

new column, or a column as a new stage variable.
16-20 Parallel Job Developer’s Guide

Transformer Stage The DataStage Expression Editor
The DataStage Expression Editor
The DataStage Expression Editor helps you to enter correct

expressions when you edit Transformer stages. The Expression Editor

can:

Facilitate the entry of expression elements

Complete the names of frequently used variables

Validate the expression

The Expression Editor can be opened from:

Output link Derivation cells

Stage variable Derivation cells

Constraint dialog box

Expression Format
The format of an expression is as follows:

KEY:

something_like_this is a token
something_in_italics is a terminal, i.e., doesn't break down any

further
| is a choice between tokens
[is an optional part of the construction
"XXX" is a literal token (i.e., use XXX not

including the quotes)
===
expression ::= function_call |

variable_name |
other_name |
constant |
unary_expression |
binary_expression |
if_then_else_expression |
substring_expression |
"(" expression ")"

function_call ::= function_name "(" [argument_list] ")"
argument_list ::= expression | expression "," argument_list

function_name ::= name of a built-in function |
name of a user-defined_function

variable_name ::= job_parameter name |
stage_variable_name |
link_variable name

other_name ::= name of a built-in macro, system variable, etc.
constant ::= numeric_constant | string_constant
numeric_constant ::= ["+" | "-"] digits ["." [digits]] ["E" | "e" ["+" |
"-"] digits]
Parallel Job Developer’s Guide 16-21

The DataStage Expression Editor Transformer Stage
string_constant ::= "'" [characters] "'" |
""" [characters] """ |
"\" [characters] "\"

unary_expression ::= unary_operator expression
unary_operator ::= "+" | "-"
binary_expression ::= expression binary_operator expression
binary_operator ::= arithmetic_operator |

concatenation_operator |
matches_operator |
relational_operator |
logical_operator

arithmetic_operator ::= "+" | "-" | "*" | "/" | "^"
concatenation_operator ::= ":"
relational_operator ::= "=" |"EQ" |

"<>" | "#" | "NE" |
">" | "GT" |
">=" | "=>" | "GE" |
"<" | "LT" |
"<=" | "=<" | "LE"

logical_operator ::= "AND" | "OR"
if_then_else_expression ::= "IF" expression "THEN" expression "ELSE"
expression
substring_expression ::= expression "[" [expression ["," expression] "]"
field_expression ::= expression "[" expression ","

expression ","
expression "]"

/* That is, always 3 args

Note keywords like "AND" or "IF" or "EQ" may be in any case

Entering Expressions
Whenever the insertion point is in an expression box, you can use the

Expression Editor to suggest the next element in your expression. Do

this by right-clicking the box, or by clicking the Suggest button to the

right of the box. This opens the Suggest Operand or Suggest
Operator menu. Which menu appears depends on context, i.e.,

whether you should be entering an operand or an operator as the next

expression element. The Functions available from this menu are

described in Appendix B. The DS macros are described in "Job Status

Macros" in Parallel Job Advanced Developer’s Guide. You can also

specify custom routines for use in the expression editor (see "Working

with Mainframe Routines" in DataStage Manager Guide).
16-22 Parallel Job Developer’s Guide

Transformer Stage The DataStage Expression Editor
Suggest Operand Menu:

Suggest Operator Menu:

Completing Variable Names
The Expression Editor stores variable names. When you enter a

variable name you have used before, you can type the first few

characters, then press F5. The Expression Editor completes the

variable name for you.

If you enter the name of the input link followed by a period, for

example, DailySales., the Expression Editor displays a list of the

column names of the link. If you continue typing, the list selection

changes to match what you type. You can also select a column name

using the mouse. Enter a selected column name into the expression

by pressing Tab or Enter. Press Esc to dismiss the list without

selecting a column name.

Validating the Expression
When you have entered an expression in the Transformer Editor,

press Enter to validate it. The Expression Editor checks that the

syntax is correct and that any variable names used are acceptable to

the compiler.

If there is an error, a message appears and the element causing the

error is highlighted in the expression box. You can either correct the

expression or close the Transformer Editor or Transform dialog box.

For any expression, selecting Validate from its shortcut menu will also

validate it and show any errors in a message box.
Parallel Job Developer’s Guide 16-23

The DataStage Expression Editor Transformer Stage
Exiting the Expression Editor
You can exit the Expression Editor in the following ways:

Press Esc (which discards changes).

Press Return (which accepts changes).

Click outside the Expression Editor box (which accepts changes).

Configuring the Expression Editor
You can resize the Expression Editor window by dragging. The next

time you open the expression editor in the same context (for example,

editing output columns) on the same client, it will have the same size.

The Expression Editor is configured by editing the Designer options.

This allows you to specify how ‘helpful’ the expression editor is. For

more information, see "Specifying Designer Options" in DataStage

Designer Guide.

System Variables
DataStage provides a set of variables containing useful system

information that you can access from an output derivation or

constraint.

Guide to Using Transformer Expressions and Stage
Variables

In order to write efficient Transformer stage derivations, it is useful to

understand what items get evaluated and when. The evaluation

sequence is as follows:

Evaluate each stage variable initial value

Name Description

@FALSE The value is replaced with 0.

@TRUE The value is replaced with 1.

@INROWNUM Input row counter.

@OUTROWNUM Output row counter (per link).

@NUMPARTITIONS The total number of partitions for the stage.

@PARTITIONNUM The partition number for the particular instance.
16-24 Parallel Job Developer’s Guide

Transformer Stage The DataStage Expression Editor
For each input row to process:
Evaluate each stage variable derivation value, unless
the derivation is empty
For each output link:

Evaluate each column derivation value
Write the output record

Next output link
Next input row

The stage variables and the columns within a link are evaluated in the

order in which they are displayed on the parallel job canvas. Similarly,

the output links are also evaluated in the order in which they are

displayed.

From this sequence, it can be seen that there are certain constructs

that would be inefficient to include in output column derivations, as

they would be evaluated once for every output column that uses

them. Such constructs are:

Where the same part of an expression is used in multiple column
derivations.

For example, suppose multiple columns in output links want to

use the same substring of an input column, then the following test

may appear in a number of output columns derivations:

IF (DSLINK1.col1[1,3] = “001”) THEN ...

In this case, the evaluation of the substring of DSLINK1.col[1,3] is

repeated for each column that uses it.

This can be made more efficient by moving the substring

calculation into a stage variable. By doing this, the substring is

evaluated just once for every input row. In this case, the stage

variable definition for StageVar1 would be:

DSLINK1.col1[1,3]

and each column derivation would start with:

IF (StageVar1 = “001”) THEN ...

In fact, this example could be improved further by also moving the

string comparison into the stage variable. The stage variable

would be:

IF (DSLink1.col1[1,3] = “001”) THEN 1 ELSE 0

and each column derivation would start with:

IF (StageVar1) THEN

This reduces both the number of substring functions evaluated

and string comparisons made in the Transformer.

Where an expression includes calculated constant values.
Parallel Job Developer’s Guide 16-25

The DataStage Expression Editor Transformer Stage
For example, a column definition may include a function call that

returns a constant value, such as:

Str(“ “,20)

This returns a string of 20 spaces. In this case, the function would

be evaluated every time the column derivation is evaluated. It

would be more efficient to calculate the constant value just once

for the whole Transformer.

This can be achieved using stage variables. This function could be

moved into a stage variable derivation; but in this case, the

function would still be evaluated once for every input row. The

solution here is to move the function evaluation into the initial

value of a stage variable.

A stage variable can be assigned an initial value from the Stage
Properties dialog box Variables tab. In this case, the variable

would have its initial value set to:

Str(“ “, 20)

You would then leave the derivation of the stage variable on the

main Transformer page empty. Any expression that previously

used this function would be changed to use the stage variable

instead.

The initial value of the stage variable is evaluated just once, before

any input rows are processed. Then, because the derivation

expression of the stage variable is empty, it is not re-evaluated for

each input row. Therefore, its value for the whole Transformer

processing is unchanged from the initial value.

In addition to a function value returning a constant value, another

example would be part of an expression such as:

"abc" : "def"

As with the function-call example, this concatenation is repeated

every time the column derivation is evaluated. Since the subpart

of the expression is actually constant, this constant part of the

expression could again be moved into a stage variable, using the

initial value setting to perform the concatenation just once.

Where an expression requiring a type conversion is used as a
constant, or it is used in multiple places.

For example, an expression may include something like this:

DSLink1.col1+"1"

In this case, the "1" is a string constant, and so, in order to be able

to add it to DSLink1.col1, it must be converted from a string to an
16-26 Parallel Job Developer’s Guide

Transformer Stage Transformer Stage Properties
integer each time the expression is evaluated. The solution in this

case is just to change the constant from a string to an integer:

DSLink1.col1+1

In this example, if DSLINK1.col1 were a string field, then, again, a

conversion would be required every time the expression is

evaluated. If this just appeared once in one output column

expression, this would be fine. However, if an input column is

used in more than one expression, where it requires the same

type conversion in each expression, then it would be more

efficient to use a stage variable to perform the conversion once. In

this case, you would create, for example, an integer stage

variable, specify its derivation to be DSLINK1.col1, and then use

the stage variable in place of DSLink1.col1, where that conversion

would have been required.

Note that, when using stage variables to evaluate parts of

expressions, the data type of the stage variable should be set

correctly for that context. Otherwise, needless conversions are

required wherever that variable is used.

Transformer Stage Properties
The Transformer stage has a Properties dialog box which allows you

to specify details about how the stage operates.

The Transform Stage Properties dialog box has three pages:

Stage Page. This is used to specify general information about the
stage.

Inputs Page. This is where you specify details about the data
input to the Transformer stage.

Outputs Page. This is where you specify details about the output
links from the Transformer stage.

Stage Page
The Stage page has up to seven tabs:

General. Allows you to enter an optional description of the stage.

Variables. Allows you to set up stage variables for use in the
stage.

Advanced. Allows you to specify how the stage executes.

Link Ordering. Allows you to specify the order in which the
output links will be processed.
Parallel Job Developer’s Guide 16-27

Transformer Stage Properties Transformer Stage
Triggers. Allows you to run certain routines at certain points in
the stage’s execution.

NLS Locale. Allows you to select a locale other than the project
default to determine collating rules.

Build. Allows you to override the default compiler and linker flags
for this stag.

The Variables tab is described in "Defining Local Stage Variables" on

page 16-18. The Link Ordering tab is described in "Specifying Link

Order" on page 16-18.

General Tab

In addition to the Description field, the General page also has an

option which lets you control how many rejected row warnings will

appear in the job log when you run the job. Whenever a row is

rejected because it contains a null value, a warning is written to the

job log. Potentially there could be a lot of messages, so this option

allows you to set limits. By default, up to 50 messages per partition

are allowed, but you can increase or decrease this, or set it to -1 to

allow unlimited messages.

Advanced Tab

The Advanced tab is the same as the Advanced tab of the generic

stage editor as described in "Advanced Tab" on page 3-12. This tab

allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In sequential
mode the data is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is set to Propagate by default, this
sets or clears the partitioning in accordance with what the
previous stage has set. You can also select Set or Clear. If you
select Set, the stage will request that the next stage preserves the
partitioning as is.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.
16-28 Parallel Job Developer’s Guide

Transformer Stage Transformer Stage Properties
Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Triggers Tab

The Triggers tab allows you to choose routines to be executed at

specific execution points as the transformer stage runs in a job. The

execution point is per-instance, i.e., if a job has two transformer stage

instances running in parallel, the routine will be called twice, once for

each instance.

The available execution points are Before-stage and After-stage. At

this release, the only available built-in routine is

SetCustomSummaryInfo. You can also define custom routines to be

executed; to do this you define a C function, make it available in UNIX

shared library, and then define a Parallel routine which calls it (see

"Working with Parallel Routines" in DataStage Manager Guide for

details on defining a Parallel Routine). Note that the function should

not return a value.

SetCustomSummaryInfo is used to collect reporting information. This

information is included in any XML reports generated, and can be

retrieved using a number of methods:

DSMakeJobReport API function (see "DSMakeJobReport" in
Parallel Job Advanced Developer’s Guide).

The DSJob -Report command line command (see"Generating a
Report" in Parallel Job Advanced Developer’s Guide).

DSJobReport used as an after-job subroutine (see "Job Properties"
in DataStage Designer Guide).

Each item of information collected by SetCustomSummaryInfo is

stored as a variable name, a description, and a value. These appear as

arguments in the Triggers tab grid (variable name in Argument 1,

description in Argument 2, value in Argument 3). You can supply

values for them via the expression editor. You can use job parameters
Parallel Job Developer’s Guide 16-29

Transformer Stage Properties Transformer Stage
and stage variables but you cannot access data that is available only

while the stage is running, such as columns.

NLS Locale Tab

This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The transformer stage uses this when it is evaluating expressions. For

example, it would affect the evaluation of an expression such as “if

ustring1 > ustring2”. Select a locale from the list, or click the arrow
16-30 Parallel Job Developer’s Guide

Transformer Stage Transformer Stage Properties
button next to the list to use a job parameter or browse for a collate

file.

Build Tab

This tab allows you to override the compiler and linker flags that have

been set for the job or project. The flags you specify here will take

effect for this stage and this stage alone. The flags available are

platform and compiler-dependent.
Parallel Job Developer’s Guide 16-31

Transformer Stage Properties Transformer Stage
Inputs Page
The Inputs page allows you to specify details about data coming into

the Transformer stage. The Transformer stage can have only one input

link.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned. This is the same as the Partitioning tab in the

generic stage editor described in "Partitioning Tab" on page 3-20. The

Advanced tab allows you to change the default buffering settings for

the input link.

Partitioning Tab

The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected when input to the

Transformer stage. It also allows you to specify that the data should

be sorted on input.

By default the Transformer stage will attempt to preserve partitioning

of incoming data, or use its own partitioning method according to

what the previous stage in the job dictates.

If the Transformer stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the stage is set to execute in parallel or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Transformer stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partitioning type drop-

down list. This will override any current partitioning.

If the Transformer stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Transformer stage.

Entire. Each file written to receives the entire data set.
16-32 Parallel Job Developer’s Guide

Transformer Stage Transformer Stage Properties
Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the Transformer stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted. The sort is always carried out within

data partitions. If the stage is partitioning incoming data the sort

occurs after the partitioning. If the stage is collecting data, the sort

occurs before the collection. The availability of sorting depends on the

partitioning method chosen.

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.
Parallel Job Developer’s Guide 16-33

Transformer Stage Properties Transformer Stage
Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs Page has a General tab which allows you to enter an

optional description for each of the output links on the Transformer

stage. It also allows you to switch Runtime column propagation on for

this link, in which case data will automatically be propagated from the

input link without you having to specify meta data for this output link

(see "Runtime Column Propagation" on page 2-27). The Advanced

tab allows you to change the default buffering settings for the output

links.
16-34 Parallel Job Developer’s Guide

17
BASIC Transformer Stages

The BASIC Transformer stage is a processing stage. It appears under

the processing category in the tool palette in the Transformer shortcut

container.

The BASIC Transformer stage is similar in appearance and function to

the Transformer stage described in Chapter 16. It gives access to

BASIC transforms and functions (BASIC is the language supported by

the DataStage server engine and available in server jobs). For a

description of the BASIC functions available see DataStage Server Job

Developer’s Guide.

You can only use BASIC transformer stages on SMP systems (not on

MPP or cluster systems).

Note If you encounter a problem when running a job containing a

BASIC transformer, you could try increasing the value of the

DSIPC_OPEN_TIMEOUT environment variable in the

Parallel ➤ Operator specific category of the environment

variable dialog box in the DataStage Administrator

(see"Setting Environment Variables" in DataStage

Administrator Guide).

BASIC Transformer stages can have a single input and any number of

outputs.
Parallel Job Developer’s Guide 17-1

Must Do’s BASIC Transformer Stages
When you edit a Transformer stage, the Transformer Editor appears.

An example Transformer stage is shown below. In this example, meta

data has been defined for the input and the output links.

Must Do’s
This section specifies the minimum steps to take to get a BASIC

Transformer stage functioning. DataStage provides a versatile user

interface, and there are many shortcuts to achieving a particular end,

this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

In the left pane:

– Ensure that you have column meta data defined.

In the right pane:

– Ensure that you have column meta data defined for each of the
output links. The easiest way to do this is to drag columns
across from the input link.

– Define the derivation for each of your output columns. You can
leave this as a straight mapping from an input column, or
explicitly define an expression to transform the data before it is
output.
17-2 Parallel Job Developer’s Guide

BASIC Transformer Stages BASIC Transformer Editor Components
– Optionally specify a constraint for each output link. This is an
expression which input rows must satisfy before they are
output on a link. Rows that are not output on any of the links
can be output on the otherwise link.

– Optionally specify one or more stage variables. This provides a
method of defining expressions which can be reused in your
output columns derivations (stage variables are only visible
within the stage).

BASIC Transformer Editor Components
The BASIC Transformer Editor has the following components.

Toolbar
The Transformer toolbar contains the following buttons:

Link Area
The top area displays links to and from the BASIC Transformer stage,

showing their columns and the relationships between them.

The link area is where all column definitions and stage variables are

defined.

The link area is divided into two panes; you can drag the splitter bar

between them to resize the panes relative to one another. There is

also a horizontal scroll bar, allowing you to scroll the view left or right.

The left pane shows the input link, the right pane shows output links.

Output columns that have no derivation defined are shown in red.

Within the Transformer Editor, a single link may be selected at any one

time. When selected, the link’s title bar is highlighted, and arrowheads

indicate any selected columns.

stage
properties

show all or selected relations

constraints cut copy paste load column definition
save column definition

find/replace
column auto-match

show/hide
stage variables input link

execution order

execution order
output link
Parallel Job Developer’s Guide 17-3

BASIC Transformer Editor Components BASIC Transformer Stages
Meta Data Area
The bottom area shows the column meta data for input and output

links. Again this area is divided into two panes: the left showing input

link meta data and the right showing output link meta data.

The meta data for each link is shown in a grid contained within a

tabbed page. Click the tab to bring the required link to the front. That

link is also selected in the link area.

If you select a link in the link area, its meta data tab is brought to the

front automatically.

You can edit the grids to change the column meta data on any of the

links. You can also add and delete meta data.

Shortcut Menus
The BASIC Transformer Editor shortcut menus are displayed by right-

clicking the links in the links area.

There are slightly different menus, depending on whether you right-

click an input link, an output link, or a stage variable. The input link

menu offers you operations on input columns, the output link menu

offers you operations on output columns and their derivations, and

the stage variable menu offers you operations on stage variables.

The shortcut menu enables you to:

Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Constraints dialog box to specify a constraint (only
available for output links).

Open the Column Auto Match dialog box.

Display the Find/Replace dialog box.

Display the Select dialog box.

Edit, validate, or clear a derivation or stage variable.

Edit several derivations in one operation.

Append a new column or stage variable to the selected link.

Select all columns on a link.

Insert or delete columns or stage variables.

Cut, copy, and paste a column or a key expression or a derivation
or stage variable.

If you display the menu from the links area background, you can:
17-4 Parallel Job Developer’s Guide

BASIC Transformer Stages BASIC Transformer Stage Basic Concepts
Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Constraints dialog box in order to specify a constraint
for the selected output link.

Open the Link Execution Order dialog box in order to specify
the order in which links should be processed.

Toggle between viewing link relations for all links, or for the
selected link only.

Toggle between displaying stage variables and hiding them.

Right-clicking in the meta data area of the Transformer Editor opens

the standard grid editing shortcut menus.

BASIC Transformer Stage Basic Concepts
When you first edit a Transformer stage, it is likely that you will have

already defined what data is input to the stage on the input links. You

will use the Transformer Editor to define the data that will be output

by the stage and how it will be transformed. (You can define input

data using the Transformer Editor if required.)

This section explains some of the basic concepts of using a

Transformer stage.

Input Link
The input data source is joined to the BASIC Transformer stage via the

input link.

Output Links
You can have any number of output links from your Transformer

stage.

You may want to pass some data straight through the BASIC

Transformer stage unaltered, but it’s likely that you’ll want to

transform data from some input columns before outputting it from the

BASIC Transformer stage.

You can specify such an operation by entering an expression or by

selecting a transform to apply to the data. DataStage has many built-

in transforms, or you can define your own custom transforms that are

stored in the Repository and can be reused as required.
Parallel Job Developer’s Guide 17-5

BASIC Transformer Stage Basic Concepts BASIC Transformer Stages
The source of an output link column is defined in that column’s

Derivation cell within the Transformer Editor. You can use the

Expression Editor to enter expressions or transforms in this cell. You

can also simply drag an input column to an output column’s

Derivation cell, to pass the data straight through the BASIC

Transformer stage.

In addition to specifying derivation details for individual output

columns, you can also specify constraints that operate on entire

output links. A constraint is a BASIC expression that specifies criteria

that data must meet before it can be passed to the output link. You can

also specify a reject link, which is an output link that carries all the

data not output on other links, that is, columns that have not met the

criteria.

Each output link is processed in turn. If the constraint expression

evaluates to TRUE for an input row, the data row is output on that link.

Conversely, if a constraint expression evaluates to FALSE for an input

row, the data row is not output on that link.

Constraint expressions on different links are independent. If you have

more than one output link, an input row may result in a data row

being output from some, none, or all of the output links.

For example, if you consider the data that comes from a paint shop, it

could include information about any number of different colors. If you

want to separate the colors into different files, you would set up

different constraints. You could output the information about green

and blue paint on LinkA, red and yellow paint on LinkB, and black

paint on LinkC.

When an input row contains information about yellow paint, the LinkA

constraint expression evaluates to FALSE and the row is not output on

LinkA. However, the input data does satisfy the constraint criterion for

LinkB and the rows are output on LinkB.

If the input data contains information about white paint, this does not

satisfy any constraint and the data row is not output on Links A, B or

C, but will be output on the reject link. The reject link is used to route

data to a table or file that is a “catch-all” for rows that are not output

on any other link. The table or file containing these rejects is

represented by another stage in the job design.

Before-Stage and After-Stage Routines
You can specify routines to be executed before or after the stage has

processed the data. For example, you might use a before-stage

routine to prepare the data before processing starts. You might use an
17-6 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
after-stage routine to send an electronic message when the stage has

finished.

Editing BASIC Transformer Stages
The Transformer Editor enables you to perform the following

operations on a BASIC Transformer stage:

Create new columns on a link

Delete columns from within a link

Move columns within a link

Edit column meta data

Define output column derivations

Specify before- and after-stage subroutines

Define link constraints and handle rejects

Specify the order in which links are processed

Define local stage variables

Using Drag and Drop
Many of the BASIC Transformer stage edits can be made simpler by

using the Transformer Editor’s drag and drop functionality. You can

drag columns from any link to any other link. Common uses are:

Copying input columns to output links

Moving columns within a link

Copying derivations in output links

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link. An insert point appears on the target link to indicate
where the new cell will go.

3 Release the mouse button to drop the selected cell.

You can drag and drop multiple columns or derivations. Use the

standard Explorer keys when selecting the source column cells, then

proceed as for a single cell.

You can drag and drop the full column set by dragging the link title.
Parallel Job Developer’s Guide 17-7

Editing BASIC Transformer Stages BASIC Transformer Stages
You can add a column to the end of an existing derivation by holding

down the Ctrl key as you drag the column.

The drag and drop insert point for creating new columns is shown

below:

Find and Replace Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the BASIC Transformer

stage, you can use the find/replace column facility to help locate a

particular column or expression and change it.

The find/replace facility enables you to:

Find and replace a column name

Find and replace expression text

Find the next empty expression

Find the next expression that contains an error

To use the find/replace facilities, do one of the following:

Click the find/replace button on the toolbar

Choose find/replace from the link shortcut menu

Type Ctrl-F

The Find and Replace dialog box appears. It has three tabs:

Expression Text. Allows you to locate the occurrence of a
particular string within an expression, and replace it if required.
You can search up or down, and choose to match case, match
whole words, or neither. You can also choose to replace all
occurrences of the string within an expression.

Columns Names. Allows you to find a particular column and
rename it if required. You can search up or down, and choose to
match case, match the whole word, or neither.
17-8 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
Expression Types. Allows you to find the next empty expression
or the next expression that contains an error. You can also press
Ctrl-M to find the next empty expression or Ctrl-N to find the
next erroneous expression.

Note The find and replace results are shown in the color specified

in Tools ‰ Options.

Press F3 to repeat the last search you made without opening the Find
and Replace dialog box.

Select Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the select column facility to select multiple columns. This

facility is also available in the Mapping tabs of certain Parallel job

stages.

The select facility enables you to:

Select all columns/stage variables whose expressions contains
text that matches the text specified.

Select all column/stage variables whose name contains the text
specified (and, optionally, matches a specified type).

Select all columns/stage variable with a certain data type.

Select all columns with missing or invalid expressions.

To use the select facilities, choose Select from the link shortcut menu.

The Select dialog box appears. It has three tabs:

Expression Text. This Expression Text tab allows you to select
all columns/stage variables whose expressions contain text that
matches the text specified. The text specified is a simple text
match, taking into account the Match case setting.

Column Names. The Column Names tab allows you to select all
column/stage variables whose Name contains the text specified.
There is an additional Data Type drop down list, that will limit the
columns selected to those with that data type. You can use the
Data Type drop down list on its own to select all columns of a
certain data type. For example, all string columns can be selected
by leaving the text field blank, and selecting String as the data
type. The data types in the list are generic data types, where each
of the column SQL data types belong to one of these generic
types.

Expression Types. The Expression Types tab allows you to
select all columns with either empty expressions or invalid
expressions.
Parallel Job Developer’s Guide 17-9

Editing BASIC Transformer Stages BASIC Transformer Stages
Creating and Deleting Columns
You can create columns on links to the BASIC Transformer stage using

any of the following methods:

Select the link, then click the load column definition button in
the toolbar to open the standard load columns dialog box.

Use drag and drop or copy and paste functionality to create a new
column by copying from an existing column on another link.

Use the shortcut menus to create a new column definition.

Edit the grids in the link’s meta data tab to insert a new column.

When copying columns, a new column is created with the same meta

data as the column it was copied from.

To delete a column from within the Transformer Editor, select the

column you want to delete and click the cut button or choose Delete

Column from the shortcut menu.

Moving Columns Within a Link
You can move columns within a link using either drag and drop or cut

and paste. Select the required column, then drag it to its new location,

or cut it and paste it in its new location.

Editing Column Meta Data
You can edit column meta data from within the grid in the bottom of

the Transformer Editor. Select the tab for the link meta data that you

want to edit, then use the standard DataStage edit grid controls.

The meta data shown does not include column derivations since

these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the

Transformer Editor in five ways:

If you require a new output column to be directly derived from an
input column, with no transformations performed, then you can
use drag and drop or copy and paste to copy an input column to
an output link. The output columns will have the same names as
the input columns from which they were derived.
17-10 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
If the output column already exists, you can drag or copy an input
column to the output column’s Derivation field. This specifies
that the column is directly derived from an input column, with no
transformations performed.

You can use the column auto-match facility to automatically set
that output columns are derived from their matching input
columns.

You may need one output link column derivation to be the same
as another output link column derivation. In this case you can use
drag and drop or copy and paste to copy the derivation cell from
one column to another.

In many cases you will need to transform data before deriving an
output column from it. For these purposes you can use the
Expression Editor. To display the Expression Editor, double-click
on the required output link column Derivation cell. (You can also
invoke the Expression Editor using the shortcut menu or the
shortcut keys.)

If a derivation is displayed in red (or the color defined in Tools ‰
Options), it means that the Transformer Editor considers it incorrect.

(In some cases this may simply mean that the derivation does not

meet the strict usage pattern rules of the DataStage engine, but will

actually function correctly.)

Once an output link column has a derivation defined that contains any

input link columns, then a relationship line is drawn between the input

column and the output column, as shown in the following example.

This is a simple example; there can be multiple relationship lines

either in or out of columns. You can choose whether to view the

relationships for all links, or just the relationships for the selected

links, using the button in the toolbar.

Column Auto-Match Facility

This time-saving feature allows you to automatically set columns on

an output link to be derived from matching columns on an input link.

Using this feature you can fill in all the output link derivations to route

data from corresponding input columns, then go back and edit

individual output link columns where you want a different derivation.
Parallel Job Developer’s Guide 17-11

Editing BASIC Transformer Stages BASIC Transformer Stages
To use this facility:

1 Do one of the following:

– Click the Auto-match button in the Transformer Editor toolbar.

– Choose Auto-match from the input link header or output link
header shortcut menu.

The Column Auto-Match dialog box appears:

2 Choose the input link and output link that you want to match
columns for from the drop down lists.

3 Click Location match or Name match from the Match type
area.

If you choose Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you choose Name match, you need to specify further

information for the input and output columns as follows:

– Input columns:

Match all columns or Match selected columns. Choose

one of these to specify whether all input link columns should

be matched, or only those currently selected on the input link.

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.
17-12 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Output columns:

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.

Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored, and
turn Ignore case on, then both IP and ip will be ignored.

4 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Editing Multiple Derivations
You can make edits across several output column or stage variable

derivations by choosing Derivation Substitution… from the

shortcut menu. This opens the Expression Substitution dialog box.

The Expression Substitution dialog box allows you to make the

same change to the expressions of all the currently selected columns

within a link. For example, if you wanted to add a call to the trim()

function around all the string output column expressions in a link, you

could do this in two steps. First, use the Select dialog to select all the

string output columns. Then use the Expression Substitution

dialog to apply a trim() call around each of the existing expression

values in those selected columns.

You are offered a choice between Whole expression substitution and

Part of expression substitution.

Whole Expression

With this option the whole existing expression for each column is

replaced by the replacement value specified. This replacement value

can be a completely new value, but will usually be a value based on

the original expression value. When specifying the replacement value,
Parallel Job Developer’s Guide 17-13

Editing BASIC Transformer Stages BASIC Transformer Stages
the existing value of the column’s expression can be included in this

new value by including “$1”. This can be included any number of

times.

For example, when adding a trim() call around each expression of the

currently selected column set, having selected the required columns,

you would:

1 Select the Whole expression option.

2 Enter a replacement value of:

trim($1)

3 Click OK

Where a column’s original expression was:

DSLink3.col1

This will be replaced by:

trim(DSLink3.col1)

This is applied to the expressions in each of the selected columns.

If you need to include the actual text $1 in your expression, enter it as

“$$1”.

Part of Expression

With this option, only part of each selected expression is replaced

rather than the whole expression. The part of the expression to be

replaced is specified by a Regular Expression match.

It is possible that more that one part of an expression string could

match the Regular Expression specified. If Replace all occurrences

is checked, then each occurrence of a match will be updated with the

replacement value specified. If it is not checked, then just the first

occurrence is replaced.

When replacing part of an expression, the replacement value specified

can include that part of the original expression being replaced. In

order to do this, the Regular Expression specified must have round

brackets around its value. "$1” in the replacement value will then

represent that matched text. If the Regular Expression is not

surrounded by round brackets, then “$1” will simply be the text “$1”.

For complex Regular Expression usage, subsets of the Regular

Expression text can be included in round brackets rather than the

whole text. In this case, the entire matched part of the original

expression is still replaced, but “$1”, “$2” etc can be used to refer to

each matched bracketed part of the Regular Expression specified.

The following is an example of the Part of expression replacement.
17-14 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
Suppose a selected set of columns have derivations that use input

columns from ‘DSLink3’. For example, two of these derivations could

be:

DSLink3.OrderCount + 1
If (DSLink3.Total > 0) Then DSLink3.Total Else -1

You may want to protect the usage of these input columns from null

values, and use a zero value instead of the null. To do this:

1 Select the columns you want to substitute expressions for.

2 Select the Part of expression option.

3 Specify a Regular Expression value of:

(DSLink3\.[a-z,A-Z,0-9]*)

This will match strings that contain “DSLink3.”, followed by any

number of alphabetic characters or digits. (This assumes that

column names in this case are made up of alphabetic characters

and digits). The round brackets around the whole Expression

means that $1 will represent the whole matched text in the

replacement value.

4 Specify a replacement value of

NullToZero($1)

This replaces just the matched substrings in the original

expression with those same substrings, but surrounded by the

NullToZero call.

5 Click OK, to apply this to all the selected column derivations.

From the examples above:

DSLink3.OrderCount + 1

would become

NullToZero(DSLink3.OrderCount) + 1

and

If (DSLink3.Total > 0) Then DSLink3.Total Else –1

would become:

If (NullToZero(DSLink3.Total) > 0) Then DSLink3.Total Else –1

If the Replace all occurrences option is selected, the second

expression will become:

If (NullToZero(DSLink3.Total) > 0)
Then NullToZero(DSLink3.Total)
Else –1

The replacement value can be any form of expression string. For

example in the case above, the replacement value could have been:

(If (StageVar1 > 50000) Then $1 Else ($1 + 100))
Parallel Job Developer’s Guide 17-15

Editing BASIC Transformer Stages BASIC Transformer Stages
In the first case above, the expression

DSLink3.OrderCount + 1

would become:

(If (StageVar1 > 50000) Then DSLink3.OrderCount
Else (DSLink3.OrderCount + 100)) + 1

Specifying Before-Stage and After-Stage Subroutines
You can specify BASIC routines to be executed before or after the

stage has processed the data.

To specify a routine, click the stage properties button in the toolbar to

open the Stage Properties dialog box:

The General tab contains the following fields:

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data.

Choose a routine from the drop-down list box. This list box contains

all the built routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.
17-16 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Transformer stage dialog box.

If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the dialog box. You must install or import the “missing”

routine or choose an alternative one to use.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.

Defining Constraints and Handling Reject Links
You can define limits for output data by specifying a constraint.

Constraints are expressions and you can specify a constraint for each

output link from a Transformer stage. You can also specify that a

particular link is to act as a reject link. Reject links output rows that

have not been written on any other output links from the Transformer

stage because they have failed or constraints or because a write

failure has occurred.

To define a constraint or specify an otherwise link, do one of the

following:

Select an output link and click the constraints button.

Double-click the output link’s constraint entry field.

Choose Constraints from the background or header shortcut
menus.

A dialog box appears which allows you either to define constraints for

any of the Transformer output links or to define a link as an reject link.

Define a constraint by entering a expression in the Constraint field

for that link. Once you have done this, any constraints will appear

below the link’s title bar in the Transformer Editor. This constraint

expression will then be checked against the row data at runtime. If the

data does not satisfy the constraint, the row will not be written to that

link. It is also possible to define a link which can be used to catch these

rows which have been rejected from a previous link.

A reject link can be defined by choosing Yes in the Reject Row field

and setting the Constraint field as follows:

To catch rows which are rejected from a specific output link, set
the Constraint field to linkname.REJECTED. This will be set
whenever a row is rejected on the linkname link, whether because
the row fails to match a constraint on that output link, or because a
Parallel Job Developer’s Guide 17-17

Editing BASIC Transformer Stages BASIC Transformer Stages
write operation on the target fails for that row. Note that such an
otherwise link should occur after the output link from which it is
defined to catch rejects.

To catch rows which caused a write failures on an output link, set
the Constraint field to linkname.REJECTEDCODE. The value of
linkname.REJECTEDCODE will be non-zero if the row was rejected
due to a write failure or 0 (DSE.NOERROR) if the row was rejected
due to the link constraint not being met. When editing the
Constraint field, you can set return values for
linkname.REJECTEDCODE by selecting from the Expression Editor
Link Variables > Constants... menu options. These give a
range of errors, but note that most write errors return
DSE.WRITERROR.

In order to set a reject constraint which differentiates between a

write failure and a constraint not being met, a combination of the

linkname.REJECTEDCODE and linkname.REJECTED flags can be

used. For example:

– To catch rows which have failed to be written to an output link,
set the Constraint field to linkname.REJECTEDCODE

– To catch rows which do not meet a constraint on an output link,
set the Constraint field to linkname.REJECTEDCODE =
DSE.NOERROR AND linkname.REJECTED

– To catch rows which have been rejected due a a constraint or
write error, set the Constraint field to linkname.REJECTED

As a "catch all", the Constraint field can be left blank. This
indicates that this otherwise link will catch all rows which have not
been successfully written to any of the output links processed up
to this point. Therefore, the otherwise link should be the last link
in the defined processing order.

Any other Constraint can be defined. This will result in the
number of rows written to that link (i.e. rows which satisfy the
constraint) to be recorded in the job log as "rejected rows".

Note Due to the nature of the "catch all" case above, you should

only use one reject link whose Constraint field is blank. To

use multiple reject links, you should define them to use the

linkname.REJECTED flag detailed in the first case above.
17-18 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
Specifying Link Order
You can specify the order in which output links process a row. The

initial order of the links is the order in which they are added to the

stage. To reorder the links:

1 Do one of the following:

– Click the output link execution order button on the
Transformer Editor toolbar.

– Choose output link reorder from the background shortcut
menu.

– Click the stage properties button in the Transformer toolbar
or choose stage properties from the background shortcut
menu and click on the stage page Link Ordering tab.
Parallel Job Developer’s Guide 17-19

Editing BASIC Transformer Stages BASIC Transformer Stages
The Link Ordering tab appears:

2 Use the arrow buttons to rearrange the list of links in the execution
order required.

3 When you are happy with the order, click OK.

Note Although the link ordering facilities mean that you can use a

previous output column to derive a subsequent output

column, we do not encourage this practice, and you will

receive a warning if you do so.

Defining Local Stage Variables
You can declare and use your own variables within a BASIC

Transformer stage. Such variables are accessible only from the BASIC

Transformer stage in which they are declared. They can be used as

follows:

They can be assigned values by expressions.

They can be used in expressions which define an output column
derivation.

Expressions evaluating a variable can include other variables or
the variable being evaluated itself.

Any stage variables you declare are shown in a table in the right pane

of the links area. The table looks similar to an output link. You can

display or hide the table by clicking the Stage Variable button in the

Transformer toolbar or choosing Stage Variable from the

background shortcut menu.
17-20 Parallel Job Developer’s Guide

BASIC Transformer Stages Editing BASIC Transformer Stages
Note Stage variables are not shown in the output link meta data

area at the bottom of the right pane.

The table lists the stage variables together with the expressions used

to derive their values. Link lines join the stage variables with input

columns used in the expressions. Links from the right side of the table

link the variables to the output columns that use them.

To declare a stage variable:

1 Do one of the following:

– Click the stage properties button in the Transformer toolbar.

– Choose stage properties from the background shortcut
menu.

The Transformer Stage Properties dialog box appears.

2 Click the Variables tab on the General page. The Variables tab
contains a grid showing currently declared variables, their initial
values, and an optional description. Use the standard grid controls
to add new variables. Variable names must begin with an
Parallel Job Developer’s Guide 17-21

The DataStage Expression Editor BASIC Transformer Stages
alphabetic character (a–z, A–Z) and can only contain alphanumeric
characters (a–z, A–Z, 0–9). Ensure that the variable does not use
the name of any BASIC keywords.

Variables entered in the Stage Properties dialog box appear in the

Stage Variable table in the links pane.

You perform most of the same operations on a stage variable as you

can on an output column (see page 17-10). A shortcut menu offers the

same commands. You cannot, however, paste a stage variable as a

new column, or a column as a new stage variable.

The DataStage Expression Editor
The DataStage Expression Editor helps you to enter correct

expressions when you edit BASIC Transformer stages. The Expression

Editor can:

Facilitate the entry of expression elements

Complete the names of frequently used variables

Validate variable names and the complete expression

The Expression Editor can be opened from:

Output link Derivation cells

Stage variable Derivation cells

Constraint dialog box

Transform dialog box in the DataStage Manager
17-22 Parallel Job Developer’s Guide

BASIC Transformer Stages The DataStage Expression Editor
Expression Format
The format of an expression is as follows:

KEY:

something_like_this is a token
something_in_italics is a terminal, i.e., doesn't break down any

further
| is a choice between tokens
[is an optional part of the construction
"XXX" is a literal token (i.e., use XXX not

including the quotes)
===
expression ::= function_call |

variable_name |
other_name |
constant |
unary_expression |
binary_expression |
if_then_else_expression |
substring_expression |
"(" expression ")"

function_call ::= function_name "(" [argument_list] ")"
argument_list ::= expression | expression "," argument_list
function_name ::= name of a built-in function |

name of a user-defined_function
variable_name ::= job_parameter name |

stage_variable_name |
link_variable name

other_name ::= name of a built-in macro, system variable, etc.
constant ::= numeric_constant | string_constant
numeric_constant ::= ["+" | "-"] digits ["." [digits]] ["E" | "e" ["+" |
"-"] digits]
string_constant ::= "'" [characters] "'" |

""" [characters] """ |
"\" [characters] "\"

unary_expression ::= unary_operator expression
unary_operator ::= "+" | "-"
binary_expression ::= expression binary_operator expression
binary_operator ::= arithmetic_operator |

concatenation_operator |
matches_operator |
relational_operator |
logical_operator

arithmetic_operator ::= "+" | "-" | "*" | "/" | "^"
concatenation_operator ::= ":"
matches_operator ::= "MATCHES"
relational_operator ::= "=" |"EQ" |

"<>" | "#" | "NE" |
">" | "GT" |
">=" | "=>" | "GE" |
"<" | "LT" |
"<=" | "=<" | "LE"

logical_operator ::= "AND" | "OR"
if_then_else_expression ::= "IF" expression "THEN" expression "ELSE"
expression
substring_expression ::= expression "[" [expression ["," expression] "]"
Parallel Job Developer’s Guide 17-23

The DataStage Expression Editor BASIC Transformer Stages
field_expression ::= expression "[" expression ","
expression ","
expression "]"

/* That is, always 3 args

Note keywords like "AND" or "IF" or "EQ" may be in any case

Entering Expressions
Whenever the insertion point is in an expression box, you can use the

Expression Editor to suggest the next element in your expression. Do

this by right-clicking the box, or by clicking the Suggest button to the

right of the box. This opens the Suggest Operand or Suggest
Operator menu. Which menu appears depends on context, i.e.,

whether you should be entering an operand or an operator as the next

expression element.

You will be offered a different selection on the Suggest Operand

menu depending on whether you are defining key expressions,

derivations and constraints, or a custom transform. The Suggest
Operator menu is always the same.

Suggest Operand Menu - Transformer Stage:

Suggest Operand Menu - Defining Custom Transforms:
17-24 Parallel Job Developer’s Guide

BASIC Transformer Stages The DataStage Expression Editor
Suggest Operator Menu:

Completing Variable Names
The Expression Editor stores variable names. When you enter a

variable name you have used before, you can type the first few

characters, then press F5. The Expression Editor completes the

variable name for you.

If you enter the name of an input link followed by a period, for

example, DailySales., the Expression Editor displays a list of the

column names of that link. If you continue typing, the list selection

changes to match what you type. You can also select a column name

using the mouse. Enter a selected column name into the expression

by pressing Tab or Enter. Press Esc to dismiss the list without

selecting a column name.

Validating the Expression
When you have entered an expression in the Transformer Editor,

press Enter to validate it. The Expression Editor checks that the

syntax is correct and that any variable names used are acceptable to

the compiler. When using the Expression Editor to define a custom

transform, click OK to validate the expression.

If there is an error, a message appears and the element causing the

error is highlighted in the expression box. You can either correct the

expression or close the Transformer Editor or Transform dialog box.

Within the Transformer Editor, the invalid expressions are shown in

red. (In some cases this may simply mean that the expression does

not meet the strict usage pattern rules of the DataStage engine, but

will actually function correctly.)

Exiting the Expression Editor
You can exit the Expression Editor in the following ways:

Press Esc (which discards changes).

Press Return (which accepts changes).
Parallel Job Developer’s Guide 17-25

BASIC Transformer Stage Properties BASIC Transformer Stages
Click outside the Expression Editor box (which accepts changes).

Configuring the Expression Editor
You can resize the Expression Editor window by dragging. The next

time you open the expression editor in the same context (for example,

editing output columns) on the same client, it will have the same size.

The Expression Editor is configured by editing the Designer options.

This allows you to specify how ‘helpful’ the expression editor is. For

more information, see "Specifying Designer Options" in DataStage

Designer Guide.

BASIC Transformer Stage Properties
The Transformer stage has a Properties dialog box which allows you

to specify details about how the stage operates.

The Transform Stage dialog box has three pages:

Stage page. This is used to specify general information about the
stage.

Inputs page. This is where you specify details about the data
input to the Transformer stage.

Outputs page. This is where you specify details about the output
links from the Transformer stage.

Stage Page
The Stage page has four tabs:

General. Allows you to enter an optional description of the stage
and specify a before-stage and/or after-stage subroutine.

Variables. Allows you to set up stage variables for use in the
stage.

Link Ordering. Allows you to specify the order in which the
output links will be processed.

Advanced. Allows you to specify how the stage executes.

The General tab is described in "Before-Stage and After-Stage

Routines" on page 17-6. The Variables tab is described in "Defining

Local Stage Variables" on page 17-20. The Link Ordering tab is

described in "Specifying Link Order" on page 17-19.
17-26 Parallel Job Developer’s Guide

BASIC Transformer Stages BASIC Transformer Stage Properties
Advanced Tab

The Advanced tab is the same as the Advanced tab of the generic

stage editor as described in "Advanced Tab" on page 3-12. This tab

allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In sequential
mode the data is processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is set to Propagate by default, this
sets or clears the partitioning in accordance with what the
previous stage has set. You can also select Set or Clear. If you
select Set, the stage will request that the next stage preserves the
partitioning as is.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about data coming into

the Transformer stage. The Transformer stage can have only one input

link.

The General tab allows you to specify an optional description of the

input link.

The Partitioning tab allows you to specify how incoming data is

partitioned. This is the same as the Partitioning tab in the generic

stage editor described in "Partitioning Tab" on page 3-20.
Parallel Job Developer’s Guide 17-27

BASIC Transformer Stage Properties BASIC Transformer Stages
Partitioning Tab

The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected when input to the BASIC

Transformer stage. It also allows you to specify that the data should

be sorted on input.

By default the BASIC Transformer stage will attempt to preserve

partitioning of incoming data, or use its own partitioning method

according to what the previous stage in the job dictates.

If the BASIC Transformer stage is operating in sequential mode, it will

first collect the data before writing it to the file using the default

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the stage is set to execute in parallel or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the BASIC Transformer stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partitioning
type drop-down list. This will override any current partitioning.

If the BASIC Transformer stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Transformer stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.
17-28 Parallel Job Developer’s Guide

BASIC Transformer Stages BASIC Transformer Stage Properties
DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default method for the Transformer stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted. The sort is always carried out within

data partitions. If the stage is partitioning incoming data the sort

occurs after the partitioning. If the stage is collecting data, the sort

occurs before the collection. The availability of sorting depends on the

partitioning method chosen.

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for
Parallel Job Developer’s Guide 17-29

BASIC Transformer Stage Properties BASIC Transformer Stages
partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs Page has a General tab which allows you to enter an

optional description for each of the output links on the BASIC

Transformer stage. The Advanced tab allows you to change the

default buffering settings for the output links.
17-30 Parallel Job Developer’s Guide

18
Aggregator Stage

The Aggregator stage is a processing stage. It classifies data rows

from a single input link into groups and computes totals or other

aggregate functions for each group. The summed totals for each

group are output from the stage via an output link.

When you edit an Aggregator stage, the Aggregator stage editor

appears. This is based on the generic stage editor described in

Chapter 3, "Stage Editors."

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data
being grouped and/or aggregated.

Outputs Page. This is where you specify details about the
groups being output from the stage.

The aggregator stage gives you access to grouping and summary

operations. One of the easiest ways to expose patterns in a collection

of records is to group records with similar characteristics, then

compute statistics on all records in the group. You can then use these

statistics to compare properties of the different groups. For example,

records containing cash register transactions might be grouped by the
Parallel Job Developer’s Guide 18-1

Example Aggregator Stage
day of the week to see which day had the largest number of

transactions, the largest amount of revenue, etc.

Records can be grouped by one or more characteristics, where record

characteristics correspond to column values. In other words, a group

is a set of records with the same value for one or more columns. For

example, transaction records might be grouped by both day of the

week and by month. These groupings might show that the busiest day

of the week varies by season.

In addition to revealing patterns in your data, grouping can also

reduce the volume of data by summarizing the records in each group,

making it easier to manage. If you group a large volume of data on the

basis of one or more characteristics of the data, the resulting data set

is generally much smaller than the original and is therefore easier to

analyze using standard workstation or PC-based tools.

At a practical level, you should be aware that, in a parallel

environment, the way that you partition data before grouping and

summarizing it can affect the results. For example, if you partitioned

using the round robin method, records with identical values in the

column you are grouping on would end up in different partitions. If

you then performed a sum operation within these partitions you

would not be operating on all the relevant columns. In such

circumstances you may want to key partition the data on one or more

of the grouping keys to ensure that your groups are entire.

It is important that you bear these facts in mind and take any steps

you need to prepare your data set before presenting it to the

Aggregator stage. In practice this could mean you use Sort stages or

additional Aggregate stages in the job.

Example
The example data is from a freight carrier who charges customers

based on distance, equipment, packing, and license requirements.

They need a report of distance traveled and charges grouped by date

and license type.

The following table shows a sample of the data:

Ship Date District Distance Equipment Packing License Charge

...

2000-06-02 1 1540 D M BUN 1300

2000-07-12 1 1320 D C SUM 4800
18-2 Parallel Job Developer’s Guide

Aggregator Stage Example
The stage will output the following columns:

The stage first hash partitions the incoming data on the license

column, then sorts it on license and date:

2000-08-02 1 1760 D C CUM 1300

2000-06-22 2 1540 D C CUN 13500

2000-07-30 2 1320 D M SUM 6000

...

Ship Date District Distance Equipment Packing License Charge
Parallel Job Developer’s Guide 18-3

Example Aggregator Stage
The properties are then used to specify the grouping and the

aggregating of the data:

The following is a sample of the output data:

If you wanted to go on and work out the sum of the distance and

charge sums by license, you could insert another Aggregator stage

with the following properties:

Ship Date License Distance
Sum

Distance
Mean

Charge
Sum

Charge
Mean

...

2000-06-02 BUN 1126053.00 1563.93 20427400.00 28371.39

2000-06-12 BUN 2031526.00 2074.08 22426324.00 29843.55

2000-06-22 BUN 1997321.00 1958.45 19556450.00 19813.26

2000-06-30 BUN 1815733.00 1735.77 17023668.00 18453.02

...
18-4 Parallel Job Developer’s Guide

Aggregator Stage Must Do’s
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Aggregator stages in a job. This section specifies the

minimum steps to take to get an Aggregator stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use an aggregator stage:

In the Stage Page Properties Tab, under the Grouping Keys
category:

– Specify the key column that the data will be grouped on. You
can repeat the key property to specify composite keys.

Under the Aggregations category:

– Choose an aggregation type. Calculation is the default, and
allows you to summarize a column or columns. Count rows
allows you to count the number of rows within each group. Re-
calculation allows you to apply aggregate functions to a
column that has already been summarized.

Other properties depend on the aggregate type chosen:

– If you have chosen the Calculation aggregation type, specify
the column to be summarized in Column for Calculation. You
can repeat this property to specify multiple columns. Choose
one or more dependent properties to specify the type of
aggregation to perform, and the name of the output column
that will hold the result.

– If you have chosen the Count Rows aggregation type, specify
the output column that will hold the count.

– If you have chosen the Re-calculation aggregation type, specify
the column to be re-calculated. You can repeat this property to
specify multiple columns. Choose one or more dependent
properties to specify the type of aggregation to perform, and
the name of the output column that will hold the result.

In the Output Page Mapping Tab, check that the mapping is as
you expect (DataStage maps data onto the output columns
according to what you specify in the Properties Tab).
Parallel Job Developer’s Guide 18-5

Stage Page Aggregator Stage
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Grouping Keys/
Group

Input column N/A Y Y N/A

Grouping Keys/
Case Sensitive

True/
False

True N N Group

Aggregations/
Aggregation Type

Calculation/
Recalculation/
Count rows

Calculation Y N N/A

Aggregations/
Column for
Calculation

Input column N/A Y (if
Aggregation
Type =
Calculation)

Y N/A

Aggregations/Count
Output Column

Output
column

N/A Y (if
Aggregation
Type = Count
Rows)

Y N/A

Aggregations/
Summary Column
for Recalculation

Input column N/A Y (if
Aggregation
Type =
Recalculation)

Y N/A

Aggregations/
Default To Decimal
Output

precision,
scale

8,2 N N N/A
18-6 Parallel Job Developer’s Guide

Aggregator Stage Stage Page
Aggregations/
Corrected Sum of
Squares

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Maximum Value

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Mean Value

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Minimum Value

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Missing Value

Output
column

N/A N Y Column for
Calculation

Aggregations/
Missing Values
Count

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Non-missing Values
Count

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Percent Coefficient
of Variation

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Range

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 18-7

Stage Page Aggregator Stage
Aggregations/
Standard Deviation

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Standard Error

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Sum of Weights

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Sum

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Summary

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Uncorrected Sum of
Squares

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Variance

Output
column

N/A N N Column for
Calculation &
Summary
Column for
Recalculation

Aggregations/
Variance divisor

Default/
Nrecs

Default N N Variance

Aggregations/
Calculation and
Recalculation
Dependent
Properties

Input column N/A N N Column for
Calculation or
Count Output
Column

Aggregations/
Decimal Output

precision,
scale

8,2 N N Calculation or
Recalculation
method

Category/
Property

Values Default Mandatory? Repeats? Dependent of
18-8 Parallel Job Developer’s Guide

Aggregator Stage Stage Page
Grouping Keys Category

Group

Specifies the input columns you are using as group keys. Repeat the

property to select multiple columns as group keys. You can use the
Column Selection dialog box to select several group keys at once if

required (see page 3-10). This property has a dependent property:

Case Sensitive

Use this to specify whether each group key is case sensitive or

not, this is set to True by default, i.e., the values “CASE” and

“case” in would end up in different groups.

Aggregations Category

Aggregation Type

This property allows you to specify the type of aggregation operation

your stage is performing. Choose from Calculate (the default),

Recalculate, and Count Rows.

Column for Calculation

The Calculate aggregate type allows you to summarize the contents of

a particular column or columns in your input data set by applying one

or more aggregate functions to it. Select the column to be aggregated,

then select dependent properties to specify the operation to perform

on it, and the output column to carry the result. You can use the

Column Selection dialog box to select several columns for

calculation at once if required (see page 3-10).

Count Output Column

The Count Rows aggregate type performs a count of the number of

records within each group. Specify the column on which the count is

output.

Options/Group hash/sort hash Y Y N/A

Options/Allow Null
Outputs

True/
False

False Y N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 18-9

Stage Page Aggregator Stage
Summary Column for Recalculation

This aggregate type allows you to apply aggregate functions to a

column that has already been summarized. This is like calculate but

performs the specified aggregate operation on a set of data that has

already been summarized. In practice this means you should have

performed a calculate (or recalculate) operation in a previous

Aggregator stage with the Summary property set to produce a

subrecord containing the summary data that is then included with the

data set. Select the column to be aggregated, then select dependent

properties to specify the operation to perform on it, and the output

column to carry the result. You can use the Column Selection dialog

box to select several columns for recalculation at once if required (see

page 3-10).

Weighting column

Configures the stage to increment the count for the group by the

contents of the weight column for each record in the group, instead of

by 1. Not available for Summary Column for Recalculation. Setting

this option affects only the following options:

Percent Coefficient of Variation

Mean Value

Sum

Sum of Weights

Uncorrected Sum of Squares

Default To Decimal Output

The output type of a calculation or recalculation column is double.

Setting this property causes it to default to decimal. You can also set a

default precision and scale. (You can also specify that individual

columns have decimal output while others retain the defaylt type of

double.)

Options Category

Method

The aggregate stage has two modes of operation: hash and sort.

Your choice of mode depends primarily on the number of groupings

in the input data set, taking into account the amount of memory

available. You typically use hash mode for a relatively small number

of groups; generally, fewer than about 1000 groups per megabyte of

memory to be used.
18-10 Parallel Job Developer’s Guide

Aggregator Stage Stage Page
When using hash mode, you should hash partition the input data set

by one or more of the grouping key columns so that all the records in

the same group are in the same partition (this happens automatically

if auto is set in the Partitioning tab). However, hash partitioning is

not mandatory, you can use any partitioning method you choose if

keeping groups together in a single partition is not important. For

example, if you’re summing records in each partition and later you’ll

add the sums across all partitions, you don’t need all records in a

group to be in the same partition to do this. Note, though, that there

will be multiple output records for each group.

If the number of groups is large, which can happen if you specify

many grouping keys, or if some grouping keys can take on many

values, you would normally use sort mode. However, sort mode

requires the input data set to have been partition sorted with all of the

grouping keys specified as hashing and sorting keys (this happens

automatically if auto is set in the Partitioning tab). Sorting requires a

pregrouping operation: after sorting, all records in a given group in

the same partition are consecutive.

The method property is set to hash by default.

You may want to try both modes with your particular data and

application to determine which gives the better performance. You may

find that when calculating statistics on large numbers of groups, sort

mode performs better than hash mode, assuming the input data set

can be efficiently sorted before it is passed to group.

Allow Null Outputs

Set this to True to indicate that null is a valid output value when

calculating minimum value, maximum value, mean value, standard

deviation, standard error, sum, sum of weights, and variance. If False,

the null value will have 0 substituted when all input values for the

calculation column are null. It is False by default.

Calculation and Recalculation Dependent Properties

The following properties are dependents of both Column for

Calculation and Summary Column for Recalculation. These specify

the various aggregate functions and the output columns to carry the

results.

Corrected Sum of Squares

Produces a corrected sum of squares for data in the aggregate

column and outputs it to the specified output column.
Parallel Job Developer’s Guide 18-11

Stage Page Aggregator Stage
Maximum Value

Gives the maximum value in the aggregate column and outputs it

to the specified output column.

Mean Value

Gives the mean value in the aggregate column and outputs it to

the specified output column.

Minimum Value

Gives the minimum value in the aggregate column and outputs it

to the specified output column.

Missing Value

This specifies what constitutes a “missing“ value, for example -1

or NULL. Enter the value as a floating point number. Not available

for Summary Column to Recalculate.

Missing Values Count

Counts the number of aggregate columns with missing values in

them and outputs the count to the specified output column. Not

available for recalculate.

Non-missing Values Count

Counts the number of aggregate columns with values in them and

outputs the count to the specified output column.

Percent Coefficient of Variation

Calculates the percent coefficient of variation for the aggregate

column and outputs it to the specified output column.

Range

Calculates the range of values in the aggregate column and

outputs it to the specified output column.

Standard Deviation

Calculates the standard deviation of values in the aggregate

column and outputs it to the specified output column.

Standard Error

Calculates the standard error of values in the aggregate column

and outputs it to the specified output column.
18-12 Parallel Job Developer’s Guide

Aggregator Stage Stage Page
Sum of Weights

Calculates the sum of values in the weight column specified by the

Weight column property and outputs it to the specified output

column.

Sum

Sums the values in the aggregate column and outputs the sum to

the specified output column.

Summary

Specifies a subrecord to write the results of the calculate or

recalculate operation to.

Uncorrected Sum of Squares

Produces an uncorrected sum of squares for data in the aggregate

column and outputs it to the specified output column.

Variance

Calculates the variance for the aggregate column and outputs the

sum to the specified output column. This has a dependent

property:

– Variance divisor

Specifies the variance divisor. By default, uses a value of the

number of records in the group minus the number of records

with missing values minus 1 to calculate the variance. This

corresponds to a vardiv setting of Default. If you specify NRecs,

DataStage uses the number of records in the group minus the

number of records with missing values instead.

Each of these properties has a dependent property as follows:

– Decimal Output. By default all calculation or recalculation
columns have an output type of double. This property allows
you to specify that the column has an output type of decimal.
You can also specify a precision and scale for they type (by
default 8,2).

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data set is processed
by the available nodes as specified in the Configuration file, and
by any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.
Parallel Job Developer’s Guide 18-13

Stage Page Aggregator Stage
Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Set by default. You can select Set
or Clear. If you select Set the stage will request that the next
stage in the job attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Aggregator stage uses this when it is grouping by key to

determine the order of the key fields. Select a locale from the list, or
18-14 Parallel Job Developer’s Guide

Aggregator Stage Inputs Page
click the arrow button next to the list to use a job parameter or browse

for a collate file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being grouped and/or summarized. The

Columns tab specifies the column definitions of incoming data. The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about Aggregator stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is grouped and/or

summarized. It also allows you to specify that the data should be

sorted before being operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
Parallel Job Developer’s Guide 18-15

Inputs Page Aggregator Stage
current and preceding stages and how many nodes are specified in

the Configuration file.

If the Aggregator stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default Auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Aggregator stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Aggregator stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Aggregator stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Aggregator
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
18-16 Parallel Job Developer’s Guide

Aggregator Stage Inputs Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Aggregator
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available for the default auto modes).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 18-17

Outputs Page Aggregator Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Aggregator stage. The Aggregator stage can have only one

output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of

incoming data. The Mapping tab allows you to specify the

relationship between the processed data being produced by the

Aggregator stage and the Output columns. The Advanced tab allows

you to change the default buffering settings for the output link.

Details about Aggregator stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Mapping Tab
For the Aggregator stage the Mapping tab allows you to specify how

the output columns are derived, i.e., what input columns map onto

them or how they are generated.

The left pane shows the input columns and/or the generated columns.

These are read only and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is

derived.You can fill it in by dragging columns over from the left pane,

or by using the Auto-match facility.

In the above example the left pane represents the data after it has

been grouped and summarized. The Expression field shows how the

column has been derived. The right pane represents the data being
18-18 Parallel Job Developer’s Guide

Aggregator Stage Outputs Page
output by the stage after the grouping and summarizing. In this

example ocol1 carries the value of the key field on which the data was

grouped (for example, if you were grouping by date it would contain

each date grouped on). Column ocol2 carries the mean of all the col2

values in the group, ocol4 the minimum value, and ocol3 the sum.
Parallel Job Developer’s Guide 18-19

Outputs Page Aggregator Stage
18-20 Parallel Job Developer’s Guide

19
Join Stage

The Join stage is a processing stage. It performs join operations on

two or more data sets input to the stage and then outputs the

resulting data set. The Join stage is one of three stages that join tables

based on the values of key columns. The other two are:

Lookup stage – Chapter 21

Merge stage – Chapter 20

The three stages differ mainly in the memory they use, the treatment

of rows with unmatched keys, and their requirements for data being

input (for example, whether it is sorted). See "Join Versus Lookup" on

page 19-2 for help in deciding which stage to use.

In the Join stage, the input data sets are notionally identified as the

“right” set and the “left” set, and “intermediate” sets. You can specify

which is which. It has any number of input links and a single output

link.

The stage can perform one of four join operations:
Parallel Job Developer’s Guide 19-1

Join Stage
Inner transfers records from input data sets whose key columns
contain equal values to the output data set. Records whose key
columns do not contain equal values are dropped.

Left outer transfers all values from the left data set but transfers
values from the right data set and intermediate data sets only
where key columns match. The stage drops the key column from
the right and intermediate data sets.

Right outer transfers all values from the right data set and
transfers values from the left data set and intermediate data sets
only where key columns match. The stage drops the key column
from the left and intermediate data sets.

Full outer transfers records in which the contents of the key
columns are equal from the left and right input data sets to the
output data set. It also transfers records whose key columns
contain unequal values from both input data sets to the output
data set. (Full outer joins do not support more than two input
links.)

The data sets input to the Join stage must be key partitioned and

sorted. This ensures that rows with the same key column values are

located in the same partition and will be processed by the same node.

It also minimizes memory requirements because fewer rows need to

be in memory at any one time. Choosing the auto partitioning method

will ensure that partitioning and sorting is done. If sorting and

partitioning are carried out on separate stages before the Join stage,

DataStage in auto mode will detect this and not repartition

(alternatively you could explicitly specify the Same partitioning

method).

The Join stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data sets
being joined.

Outputs Page. This is where you specify details about the joined
data being output from the stage.

Join Versus Lookup
DataStage doesn't know how large your data is, so cannot make an

informed choice whether to combine data using a join stage or a

lookup stage. Here's how to decide which to use:

There are two data sets being combined. One is the primary or driving

dataset, sometimes called the left of the join. The other data set(s) are

the reference datasets, or the right of the join.
19-2 Parallel Job Developer’s Guide

Join Stage Example Joins
In all cases we are concerned with the size of the reference datasets. If

these take up a large amount of memory relative to the physical RAM

memory size of the computer you are running on, then a lookup stage

may thrash because the reference datasets may not fit in RAM along

with everything else that has to be in RAM. This results in very slow

performance since each lookup operation can, and typically does,

cause a page fault and an I/O operation.

So, if the reference datasets are big enough to cause trouble, use a

join. A join does a high-speed sort on the driving and reference

datasets. This can involve I/O if the data is big enough, but the I/O is all

highly optimized and sequential. Once the sort is over the join

processing is very fast and never involves paging or other I/O.

Example Joins
The following examples show what happens to two data sets when

each type of join operation is applied to them. Here are the two data

sets:

Price is the key column which is going to be joined on, and bold type

indicates where the data sets share the same value for Price. The data

sets are already sorted on that key.

Left Input Data Set Right Input Data Set

Status Price Price ID

sold 125 113 NI6325

sold 213 125 BR9658

offered 378 285 CZ2538

Pending 575 628 RU5713

Pending 649 668 SA5680

Offered 777 777 JA1081

Offered 908 908 DE1911

Pending 908 908 FR2081
Parallel Job Developer’s Guide 19-3

Example Joins Join Stage
Inner Join
Here is the data set that is output if you perform an inner join on the

Price key column:

Left Outer Join
Here is the data set that is output if you perform a left outer join on the

Price key column:

Output Data Set

Status Price ID

sold 125 NI6325

Offered 777 JA1081

Offered 908 DE1911

Offered 908 FR2081

Pending 908 DE1911

Pending 908 FR2081

Output Data Set

Status Price ID

sold 125 NI6325

sold 213

offered 378

Pending 575

Pending 649

Offered 777 JA1081

Offered 908 DE1911

Offered 908 FR2081

Pending 908 DE1911

Pending 908 FR2081
19-4 Parallel Job Developer’s Guide

Join Stage Example Joins
Right Outer Join
Here is the data set that is output if you perform a right outer join on

the Price key column:

Full Outer Join
Here is the data set that is output if you perform a full outer join on the

Price key column:

Output Data Set

Status Price ID

113 NI6325

sold 125 BR9658

285 CZ2538

628 RU5713

668 SA5680

Offered 777 JA1081

Offered 908 DE1911

Offered 908 FR2081

Pending 908 DE1911

Pending 908 FR2081

Output Data Set

Status Price Price ID

113 NI6325

sold 125 125 BR9658

sold 213

285 CZ2538

offered 378

Pending 575

628 RU5713

Pending 649

668 SA5680

Status Price Price ID
Parallel Job Developer’s Guide 19-5

Must Do’s Join Stage
Must Do’s
DataStage has many defaults which means that Joins can be simple to

set up. This section specifies the minimum steps to take to get a Join

stage functioning. DataStage provides a versatile user interface, and

there are many shortcuts to achieving a particular end, this section

describes the basic method, you will learn where the shortcuts are

when you get familiar with the product.

In the Stage Page Properties Tab specify the key column or
columns that the join will be performed on.

In the Stage Page Properties Tab specify the join type or accept
the default of Inner.

In the Stage Page Link Ordering Tab, check that your links are
correctly identified as “left“, “right“, and “intermediate“ and
reorder if required.

Ensure required column meta data has been specified (this may
be done in another stage).

In the Outputs Page Mapping Tab, specify how the columns
from the input links map onto output columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify which of the input links is the

right link and which is the left link and which are intermediate. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Offered 777 777 JA1081

Offered 908 908 DE1911

Offered 908 908 FR2081

Pending 908 908 DE1911

Pending 908 908 FR2081

Output Data Set
19-6 Parallel Job Developer’s Guide

Join Stage Stage Page
Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Join Keys Category

Key

Choose the input column you want to join on. You are offered a choice

of input columns common to all links. For a join to work you must join

on a column that appears in all input data sets, i.e. have the same

name and compatible data types. If, for example, you select a column

called “name” from the left link, the stage will expect there to be an

equivalent column called “name” on the right link.

You can join on multiple key columns. To do so, repeat the Key

property. You can use the Column Selection dialog box to select

several key columns at once if required (see page 3-10).

Key has a dependent property:

Case Sensitive

Use this to specify whether each group key is case sensitive or

not, this is set to True by default, i.e., the values “CASE” and

“case” in would not be judged equivalent.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Join Keys/Key Input Column N/A Y Y N/A

Join Keys/Case
Sensitive

True/False True N N Key

Options/Join Type Full Outer/
Inner/Left Outer/
Right Outer

Inner Y N N/A
Parallel Job Developer’s Guide 19-7

Stage Page Join Stage
Options Category

Join Type

Specify the type of join operation you want to perform. Choose one

of:

Full Outer

Inner

Left Outer

Right Outer

The default is Inner.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting which results from ORing the settings of the input
stages, i.e., if either of the input stages uses Set then this stage
will use Set. You can explicitly select Set or Clear. Select Set to
request that the next stage in the job attempts to maintain the
partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
19-8 Parallel Job Developer’s Guide

Join Stage Stage Page
Link Ordering Tab
This tab allows you to specify which input link is regarded as the left

link and which link is regarded as the right link, and which links are

regarded as intermediate. By default the first link you add is regarded

as the left link, and the last one as the right link, with all other links

labelled as Intermediate N. You can use this tab to override the default

order.

In the example DSLink4 is the left link, click on it to select it then click

on the down arrow to convert it into the right link.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Join stage uses this when it is determining the order of the key
Parallel Job Developer’s Guide 19-9

Inputs Page Join Stage
fields. Select a locale from the list, or click the arrow button next to the

list to use a job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. Choose an input link from the Input name drop down list

to specify which link you want to work on.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being joined. The Columns tab specifies the

column definitions of incoming data. The Advanced tab allows you

to change the default buffering settings for the input link.

Details about Join stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the data

on each of the incoming links is partitioned or collected before it is

joined. It also allows you to specify that the data should be sorted

before being operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
19-10 Parallel Job Developer’s Guide

Join Stage Inputs Page
current and preceding stages and how many nodes are specified in

the Configuration file. Auto mode ensures that data being input to the

Join stage is key partitioned and sorted.

If the Join stage is operating in sequential mode, it will first collect the

data before writing it to the file using the default Auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Join stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Join stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Join stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default collection method for the Join stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 19-11

Inputs Page Join Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Join stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available. In
the case of a Join stage, Auto will also ensure that the collected
data is sorted.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to explicitly specify that data

arriving on the input link should be sorted before being joined (you

might use this if you have selected a partitioning method other than

auto or same). The sort is always carried out within data partitions. If

the stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available with the default auto

methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you
19-12 Parallel Job Developer’s Guide

Join Stage Outputs Page
can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Join stage. The Join stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Join stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output link.

Details about Join stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Join stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them.

The left pane shows the input columns from the links whose tables

have been joined. These are read only and cannot be modified on this

tab.
Parallel Job Developer’s Guide 19-13

Outputs Page Join Stage
The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility.

In the above example the left pane represents the data after it has

been joined. The Expression field shows how the column has been

derived, the Column Name shows the column after it has been

joined. The right pane represents the data being output by the stage

after the join. In this example the data has been mapped straight

across.
19-14 Parallel Job Developer’s Guide

20
Merge Stage

The Merge stage is a processing stage. It can have any number of

input links, a single output link, and the same number of reject links as

there are update input links.

The Merge stage is one of three stages that join tables based on the

values of key columns. The other two are:

Join stage – Chapter 19

Lookup stage – Chapter 21

The three stages differ mainly in the memory they use, the treatment

of rows with unmatched keys, and their requirements for data being

input (for example, whether it is sorted).

The Merge stage combines a master data set with one or more update

data sets. The columns from the records in the master and update

data sets are merged so that the output record contains all the

columns from the master record plus any additional columns from

each update record that are required. A master record and an update

record are merged only if both of them have the same values for the

merge key column(s) that you specify. Merge key columns are one or

more columns that exist in both the master and update records.
Parallel Job Developer’s Guide 20-1

Merge Stage
The data sets input to the Merge stage must be key partitioned and

sorted. This ensures that rows with the same key column values are

located in the same partition and will be processed by the same node.

It also minimizes memory requirements because fewer rows need to

be in memory at any one time. Choosing the auto partitioning method

will ensure that partitioning and sorting is done. If sorting and

partitioning are carried out on separate stages before the Merge

stage, DataStage in auto partition mode will detect this and not

repartition (alternatively you could explicitly specify the Same

partitioning method).

As part of preprocessing your data for the Merge stage, you should

also remove duplicate records from the master data set. If you have

more than one update data set, you must remove duplicate records

from the update data sets as well. See Chapter 24 for information

about the Remove Duplicates stage.

Unlike Join stages and Lookup stages, the Merge stage allows you to

specify several reject links. You can route update link rows that fail to

match a master row down a reject link that is specific for that link. You

must have the same number of reject links as you have update links.

The Link Ordering tab on the Stage page lets you specify which

update links send rejected rows to which reject links. You can also

specify whether to drop unmatched master rows, or output them on

the output data link.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data sets
being merged.
20-2 Parallel Job Developer’s Guide

Merge Stage Example Merge
Outputs Page. This is where you specify details about the
merged data being output from the stage and about the reject
links.

Example Merge
This example shows what happens to a master data set and two

update data sets when they are merged. The key field is Horse, and all

the data sets are sorted in descending order. Here is the master data

set:

Here is the Update 1 data set:

Horse Freezemark Mchip Reg_Soc Level

William DAM7 N/A FPS Adv

Robin DG36 N/A FPS Nov

Kayser N/A N/A AHS N/A

Heathcliff A1B1 N/A N/A Adv

Fairfax N/A N/A FPS N/A

Chaz N/A a296100da AHS Inter

Horse vacc. last_worm

William 07.07.02 12.10.02

Robin 07.07.02 12.10.02

Kayser 11.12.02 12.10.02

Heathcliff 07.07.02 12.10.02

Fairfax 11.12.02 12.10.02

Chaz 10.02.02 12.10.02
Parallel Job Developer’s Guide 20-3

Must Do’s Merge Stage
Here is the Update 2 data set:

Here is the merged data set output by the stage:

Must Do’s
DataStage has many defaults which means that Merges can be simple

to set up. This section specifies the minimum steps to take to get a

Merge stage functioning. DataStage provides a versatile user

interface, and there are many shortcuts to achieving a particular end,

this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

In the Stage Page Properties Tab specify the key column or
columns that the Merge will be performed on.

In the Stage Page Properties Tab set the Unmatched Masters
Mode, Warn on Reject Updates, and Warn on Unmatched Masters
options or accept the defaults.

In the Stage Page Link Ordering Tab, check that your input links
are correctly identified as “master“ and “update(s)“, and your
output links are correctly identified as “master“ and “update
reject“. Reorder if required.

Horse last_trim shoes

William 11.05.02 N/A

Robin 12.03.02 refit

Kayser 11.05.02 N/A

Heathcliff 12.03.02 new

Fairfax 12.03.02 N/A

Chaz 12.03.02 new

Horse Freezemark Mchip Reg_
Soc

Level vacc. last_
worm

last_
trim

shoes

William DAM7 N/A FPS Adv 07.07.02 12.10.02 11.05.02 N/A

Robin DG36 N/A FPS Nov 07.07.02 12.10.02 12.03.02 refit

Kayser N/A N/A AHS N/A 11.12.02 12.10.02 11.05.02 N/A

Heathcliff A1B1 N/A N/A Adv 07.07.02 12.10.02 12.03.02 new

Fairfax N/A N/A FPS N/A 11.12.02 12.10.02 12.03.02 N/A

Chaz N/A a2961da AHS Inter 10.02.02 12.10.02 12.03.02 new
20-4 Parallel Job Developer’s Guide

Merge Stage Stage Page
Ensure required column meta data has been specified (this may
be done in another stage, or may be omitted altogether if you are
relying on Runtime Column Propagation).

In the Outputs Page Mapping Tab, specify how the columns
from the input links map onto output columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties that determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Merge Keys/Key Input Column N/A Y Y N/A

Merge Keys/Sort
Order

Ascending/
Descending

Ascendin
g

Y N Key

Merge Keys/Nulls
position

First/Last First N N Key

Merge Keys/Sort as
EBCDIC

True/False False N N Key

Merge Keys/Case
Sensitive

True/False True N N Key

Options/Unmatched
Masters Mode

Keep/Drop Keep Y N N/A

Options/Warn On
Reject Masters

True/False True Y N N/A
Parallel Job Developer’s Guide 20-5

Stage Page Merge Stage
Merge Keys Category

Key

This specifies the key column you are merging on. Repeat the

property to specify multiple keys. You can use the Column Selection

dialog box to select several keys at once if required (see page 3-10).

Key has the following dependent properties:

Sort Order

Choose Ascending or Descending. The default is Ascending.

Nulls position

By default columns containing null values appear first in the

merged data set. To override this default so that columns

containing null values appear last in the merged data set, select

Last.

Sort as EBCDIC

To sort as in the EBCDIC character set, choose True.

Case Sensitive

Use this to specify whether each merge key is case sensitive or

not, this is set to True by default, i.e., the values “CASE” and

“case” would not be judged equivalent.

Options Category

Unmatched Masters Mode

Set to Keep by default. It specifies that unmatched rows from the

master link are output to the merged data set. Set to Drop to specify

that rejected records are dropped instead.

Warn On Reject Masters

Set to True by default. This will warn you when bad records from the

master link are rejected. Set it to False to receive no warnings.

Options/Warn On
Reject Updates

True/False True Y N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
20-6 Parallel Job Developer’s Guide

Merge Stage Stage Page
Warn On Reject Updates

Set to True by default. This will warn you when bad records from any

update links are rejected. Set it to False to receive no warnings.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting which results from ORing the settings of the input
stages, i.e., if any of the input stages uses Set then this stage will
use Set. You can explicitly select Set or Clear. Select Set to
request the next stage in the job attempts to maintain the
partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Link Ordering Tab
This tab allows you to specify which of the input links is the master

link and the order in which links input to the Merge stage are

processed. You can also specify which of the output links is the master
Parallel Job Developer’s Guide 20-7

Stage Page Merge Stage
link, and which of the reject links corresponds to which of the

incoming update links.

By default the links will be processed in the order they were added. To

rearrange them, choose an input link and click the up arrow button or

the down arrow button.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Merge stage uses this when it is determining the order of the key
20-8 Parallel Job Developer’s Guide

Merge Stage Inputs Page
fields. Select a locale from the list, or click the arrow button next to the

list to use a job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the data coming

in to be merged. Choose an input link from the Input name drop

down list to specify which link you want to work on.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Merge stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the merge is

performed.

By default the stage uses the auto partitioning method. If the Preserve

Partitioning option has been set on the previous stage in the job, this

stage will warn you if it cannot preserve the partitioning of the
Parallel Job Developer’s Guide 20-9

Inputs Page Merge Stage
incoming data. Auto mode ensures that data being input to the Merge

stage is key partitioned and sorted.

If the Merge stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Merge stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Merge stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Merge stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default collection method for the Merge stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
20-10 Parallel Job Developer’s Guide

Merge Stage Inputs Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Merge stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available. In
the case of a Merge stage, Auto will also ensure that the collected
data is sorted.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the merge is performed (you

might use this if you have selected a partitioning method other than

auto or same). The sort is always carried out within data partitions. If

the stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available with the default auto

methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you
Parallel Job Developer’s Guide 20-11

Outputs Page Merge Stage
can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Merge stage. The Merge stage can have only one master

output link carrying the merged data and a number of reject links,

each carrying rejected records from one of the update links. Choose

an output link from the Output name drop down list to specify which

link you want to work on.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of

incoming data. The Mapping tab allows you to specify the

relationship between the columns being input to the Merge stage and

the Output columns. The Advanced tab allows you to change the

default buffering settings for the output links.

Details about Merge stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Reject Links
You cannot change the properties of a Reject link. They have the meta

data of the corresponding incoming update link and this cannot be

altered.
20-12 Parallel Job Developer’s Guide

Merge Stage Outputs Page
Mapping Tab
For Merge stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them.

The left pane shows the columns of the merged data. These are read

only and cannot be modified on this tab. This shows the meta data

from the master input link and any additional columns carried on the

update links.

The right pane shows the output columns for the master output link.

This has a Derivations field where you can specify how the column is

derived. You can fill it in by dragging input columns over, or by using

the Auto-match facility.

In the above example the left pane represents the incoming data after

the merge has been performed. The right pane represents the data

being output by the stage after the merge operation. In this example

the data has been mapped straight across.
Parallel Job Developer’s Guide 20-13

Outputs Page Merge Stage
20-14 Parallel Job Developer’s Guide

21
Lookup Stage

The Lookup stage is a processing stage. It is used to perform lookup

operations on a data set read into memory from any other Parallel job

stage that can output data. It can also perform lookups directly in a

DB2 or Oracle database (see Chapter 12 and Chapter 13) or in a lookup

table contained in a Lookup File Set stage (see Chapter 7)

The most common use for a lookup is to map short codes in the input

data set onto expanded information from a lookup table which is then

joined to the incoming data and output. For example, you could have

an input data set carrying names and addresses of your U.S.

customers. The data as presented identifies state as a two letter U. S.

state postal code, but you want the data to carry the full name of the

state. You could define a lookup table that carries a list of codes

matched to states, defining the code as the key column. As the Lookup

stage reads each line, it uses the key to look up the state in the lookup

table. It adds the state to a new column defined for the output link,

and so the full state name is added to each address. If any state codes

have been incorrectly entered in the data set, the code will not be

found in the lookup table, and so that record will be rejected.

Lookups can also be used for validation of a row. If there is no

corresponding entry in a lookup table to the key’s values, the row is

rejected.

The Lookup stage is one of three stages that join tables based on the

values of key columns. The other two are:

Join stage – Chapter 19

Merge stage – Chapter 20

The three stages differ mainly in the memory they use, the treatment

of rows with unmatched keys, and their requirements for data being
Parallel Job Developer’s Guide 21-1

Lookup Stage
input (for example, whether it is sorted). See "Lookup Versus Join" on

page 21-5 for help in deciding which stage to use.

The Lookup stage can have a reference link, a single input link, a

single output link, and a single rejects link. Depending upon the type

and setting of the stage(s) providing the look up information, it can

have multiple reference links (where it is directly looking up a DB2

table or Oracle table, it can only have a single reference link). A lot of

the setting up of a lookup operation takes place on the stage providing

the lookup table.

The input link carries the data from the source data set and is known

as the primary link. The following pictures show some example jobs

performing lookups.
21-2 Parallel Job Developer’s Guide

Lookup Stage
For each record of the source data set from the primary link, the

Lookup stage performs a table lookup on each of the lookup tables

attached by reference links. The table lookup is based on the values of

a set of lookup key columns, one set for each table. The keys are

defined on the Lookup stage. For lookups of data accessed through

the Lookup File Set stage, the keys are specified when you create the

look up file set.

You can specify a condition on each of the reference links, such that

the stage will only perform a lookup on that reference link if the

condition is satisfied.

Lookup stages do not require data on the input link or reference links

to be sorted. Be aware, though, that large in-memory look up tables

will degrade performance because of their paging requirements.

Each record of the output data set contains columns from a source

record plus columns from all the corresponding lookup records where

corresponding source and lookup records have the same value for the

lookup key columns. The lookup key columns do not have to have the

same names in the primary and the reference links.

The optional reject link carries source records that do not have a

corresponding entry in the input lookup tables.

There are some special partitioning considerations for lookup stages.

You need to ensure that the data being looked up in the lookup table is

in the same partition as the input data referencing it. One way of

doing this is to partition the lookup tables using the Entire method.

Another way is to partition it in the same way as the input data

(although this implies sorting of the data).
Parallel Job Developer’s Guide 21-3

Lookup Stage
Unlike most of the other stages in a Parallel job, the Lookup stage has

its own user interface. It does not use the generic interface as

described in Chapter 3.

When you edit a Lookup stage, the Lookup Editor appears. An

example Lookup stage is shown below. The left pane represents input

data and lookup data, and the right pane represents output data. In

this example, the Lookup stage has a primary link and single

reference link, and a single output link. Meta data has been defined for

all links.
21-4 Parallel Job Developer’s Guide

Lookup Stage Lookup Versus Join
Lookup Versus Join
DataStage doesn't know how large your data is, so cannot make an

informed choice whether to combine data using a join stage or a

lookup stage. Here's how to decide which to use:

There are two data sets being combined. One is the primary or driving

dataset, sometimes called the left of the join. The other data set(s) are

the reference datasets, or the right of the join.

In all cases we are concerned with the size of the reference datasets. If

these take up a large amount of memory relative to the physical RAM

memory size of the computer you are running on, then a lookup stage

may thrash because the reference datasets may not fit in RAM along

with everything else that has to be in RAM. This results in very slow

performance since each lookup operation can, and typically does,

cause a page fault and an I/O operation.

So, if the reference datasets are big enough to cause trouble, use a

join. A join does a high-speed sort on the driving and reference

datasets. This can involve I/O if the data is big enough, but the I/O is all

highly optimized and sequential. Once the sort is over the join

processing is very fast and never involves paging or other I/O.

Example Look Up
This example shows what happens when data is looked up in a

lookup table. The stage in this case will look up the interest rate for

each customer based on the account type. Here is the data that arrives

on the primary link:

Customer accountNo accountType balance

Latimer 7125678 plat 7890.76

Ridley 7238892 flexi 234.88

Cranmer 7611236 gold 1288.00

Hooper 7176672 flexi 3456.99

Moore 7146789 gold 424.76
Parallel Job Developer’s Guide 21-5

Example Look Up Lookup Stage
Here is the data in the lookup table:

Here is what the lookup stage will output:

Here is a job that performs this simple lookup:

accountType InterestRate

bronze 1.25

silver 1.50

gold 1.75

plat 2.00

flexi 1.88

fixterm 3.00

Customer accountNo accountType balance InterestRate

Latimer 7125678 plat 7890.76 2.00

Ridley 7238892 flexi 234.88 1.88

Cranmer 7611236 gold 1288.00 1.75

Hooper 7176672 flexi 3456.99 1.88

Moore 7146789 gold 424.76 1.75
21-6 Parallel Job Developer’s Guide

Lookup Stage Must Do’s
The accounts data set holds the details of customers and their account

types, the interest rates are held in an Oracle table. The lookup stage

is set as follows:

All the columns in the accounts data set are mapped over to the

output link. The AccountType column in the accounts data set has

been joined to the AccountType column of the interest_rates table. For

each row, the AccountType is looked up in the interest_rates table and

the corresponding interest rate is returned.

The reference link has a condition on it. This detects if the balance is

null in any of the rows of the accounts data set. If the balance is null

the row is sent to the rejects link (the rejects link does not appear in

the lookup editor because there is nothing you can change).

Must Do’s
DataStage has many defaults which means that lookups can be simple

to set up. This section specifies the minimum steps to take to get a

Lookup stage functioning. DataStage provides a versatile user

interface, and there are many shortcuts to achieving a particular end,

this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

The exact steps you need to take when setting up a Lookup stage

depend on what type of lookup table you are looking up.
Parallel Job Developer’s Guide 21-7

Must Do’s Lookup Stage
Using In-Memory Lookup tables
If you are accessing a lookup table read into memory from some other

stage, you need to do the following:

In the Data Input source stage:

Specify details about the data source (for example, if using a File
Set stage, give the name of the File Set).

Ensure required column meta data has been specified.

Fulfil any “must do’s“ for that particular stage editor.

In the stage providing the lookup table:

Ensure required column meta data has been specified.

Fulfil any “must do’s“ for that particular stage editor.

In the Lookup stage:

Map the required columns from your data input link to the output
link (you can drag them or copy and paste them).

Map the required columns from your lookup table or tables to the
output link (again you can drag them or copy and paste them).

Specify the key column or columns which are used for the lookup.
Do this by dragging – or copying and pasting – key columns from
the data link to the Key Expression field in the lookup table link.
Note that key expressions can only be specified on key fields (i.e.
columns that have the key field selected in the column
definitions). If you drag a column that is not currently defined as a
key, you are asked if you want to make it one. If you want the
comparison performed on this column to ignore case, then select
the Caseless checkbox.

If you want to impose conditions on your lookup, or want to use a

reject link, you need to double click on the Condition header of a

reference link, choose Conditions from the link shortcut menu, or

click the Condition toolbar button. The Lookup Stage Conditions
dialog box appears. This allows you to:

Specify that one of the reference links is allowed to return multiple
rows when performing a lookup without causing an error (choose
the relevant reference link from the Multiple rows returned
from link drop-down list).

Specify a condition for the required references. Double click the
Condition box (or press CTRL-E) to open the expression editor.
This expression can access all the columns of the primary link,
plus columns in reference links that are processed before this link.

Specify what happens if the condition is not met on each link.
21-8 Parallel Job Developer’s Guide

Lookup Stage Must Do’s
Specify what happens if a lookup fails on each link.

Next you need to open the Stage Properties dialog box for the

Lookup stage. Do this by choosing the Stage Properties icon from the

stage editor toolbar, or by choosing Stage Properties or Link
Properties from the stage editor shortcut menu (choosing Link
Properties will open the dialog with the link you are looking at

selected, otherwise you may need to choose the correct link from the

Input name or Output name drop-down list).

In the Stage Page Link Ordering Tab, check that your links are
correctly identified as “primary“ and “lookup(s)“, and reorder if
required (the links will be shown in the new order on the Lookup
canvas).

Unless you have particular partitioning requirements, leave the
default auto setting on the Inputs Page Partitioning Tab.

Using Oracle or DB2 Databases Directly
If you are doing a direct look up in an Oracle or DB2 database table

(known as ‘sparse’ mode), you need to do the following:

In the Data Input source stage:

Specify details about the data source (for example, if using a File
Set stage, give the name of the File Set).

Ensure required column meta data has been specified (this may
be done in another stage).

Fulfil any “must do’s“ for that particular stage editor.

In the Oracle or DB2/UDB Enterprise Stage:

Set the Lookup Type to sparse. If you don’t do this the lookup will
operate as an in-memory lookup.

Specify required details for connecting to the database table.

Ensure required column meta data has been specified (this may
be omitted altogether if you are relying on Runtime Column
Propagation).

See Chapter 12 for details about the DB2/UDB Enterprise Stage and

Chapter 13 for details about the Oracle Enterprise Stage.

In the Lookup stage:

Map the required columns from your data input link to the output
link (you can drag them or copy and paste them).

Map the required columns from your lookup table or tables to the
output link (again you can drag them or copy and paste them).
Parallel Job Developer’s Guide 21-9

Must Do’s Lookup Stage
If you want to impose conditions on your lookup, or want to use a

reject link, you need to double click on the Condition header, choose

Conditions from the link shortcut menu, or click the Condition

toolbar icon.. The Lookup Stage Conditions dialog box appears.

This allows you to:

Specify what happens if a lookup fails on this link.

Next you need to open the Stage Properties dialog box for the

Lookup stage. Do this by choosing the Stage Properties icon from the

stage editor toolbar, or by choosing Stage Properties or Link
Properties from the stage editor shortcut menu (choosing Link
Properties will open the dialog with the link you are looking at

selected, otherwise you may need to choose the correct link from the

Input name or Output name drop-down list).

In the Stage Page Link Ordering Tab, check that your links are
correctly identified as “primary“ and “lookup(s)“, and reorder if
required.

Unless you have particular partitioning requirements, leave the
default auto setting on the Inputs Page Partitioning Tab.

Using Lookup Fileset
If you are accessing a lookup table held in a lookup fileset that you

have previously created using DataStage, you need to do the

following:

In the Data Input source stage:

Specify details about the data source (for example, if using a File
Set stage, give the name of the File Set).

Ensure required column meta data has been specified.

Fulfil any “must do’s“ for that particular stage editor.

In the Lookup File stage:

Specify the name of the file set holding the lookup table.

Make sure that the key column or columns were specified when
the file set holding the lookup table was created.

Ensure required column meta data has been specified.

See Chapter 7 for details about the Lookup File stage.

In the Lookup stage:

Map the required columns from your data input link to the output
link (you can drag them or copy and paste them).
21-10 Parallel Job Developer’s Guide

Lookup Stage Lookup Editor Components
Map the required columns from your lookup table or tables to the
output link (again you can drag them or copy and paste them).

As you are using a lookup file set this is all the mapping you need to

do, the key column or columns for the lookup is defined when you

create the lookup file set.

Next you need to open the Stage Properties dialog box for the

Lookup stage. Do this by choosing the Stage Properties icon from the

stage editor toolbar, or by choosing Stage Properties or Link
Properties from the stage editor shortcut menu (choosing Link
Properties will open the dialog with the link you are looking at

selected, otherwise you may need to choose the correct link from the

Input name or Output name drop-down list).

In the Stage Page Link Ordering Tab, check that your links are
correctly identified as “primary“ and “lookup(s)“, and reorder if
required.

Unless you have particular partitioning requirements, leave the
default auto setting on the Inputs Page Partitioning Tab.

Lookup Editor Components
The Lookup Editor has the following components.

Toolbar
The Lookup toolbar contains the following buttons:

Link Area
The top area displays links to and from the Lookup stage, showing

their columns and the relationships between them.

The link area is divided into two panes; you can drag the splitter bar

between them to resize the panes relative to one another. There is

also a horizontal scroll bar, allowing you to scroll the view left or right.

stage
properties

show all or selected relations

conditions cut
copy paste load column definition

save column definition

find/replace

column auto-match
input link
execution order

execution order
output link
Parallel Job Developer’s Guide 21-11

Lookup Editor Components Lookup Stage
The left pane shows the input link, the right pane shows output links.

Output columns that have an invalid derivation defined are shown in

red. Reference link input key columns with invalid key expressions are

also shown in red.

Within the Lookup Editor, a single link may be selected at any one

time. When selected, the link’s title bar is highlighted, and arrowheads

indicate any selected columns within that link.

Meta Data Area
The bottom area shows the column meta data for input and output

links. Again this area is divided into two panes: the left showing input

link meta data and the right showing output link meta data.

The meta data for each link is shown in a grid contained within a

tabbed page. Click the tab to bring the required link to the front. That

link is also selected in the link area.

If you select a link in the link area, its meta data tab is brought to the

front automatically.

You can edit the grids to change the column meta data on any of the

links. You can also add and delete meta data.

As with column meta data grids on other stage editors, edit row in the

context menu allows editing of the full meta data definitions (see

"Columns Tab" on page 3-26).

Shortcut Menus
The Lookup Editor shortcut menus are displayed by right-clicking the

links in the links area.

There are slightly different menus, depending on whether you right-

click an input link, or an output link. The input link menu offers you

operations on input columns, the output link menu offers you

operations on output columns and their derivations.

The shortcut menu enables you to:

Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Lookup Stage Conditions dialog box to specify a
conditional lookup.

Open the Column Auto Match dialog box.

Display the Find/Replace dialog box.

Display the Select dialog box.
21-12 Parallel Job Developer’s Guide

Lookup Stage Editing Lookup Stages
Validate, or clear a derivation.

Append a new column to the selected link.

Select all columns on a link.

Insert or delete columns.

Cut, copy, and paste a column or a key expression or a derivation.

If you display the menu from the links area background, you can:

Open the Stage Properties dialog box in order to specify stage
or link properties.

Open the Lookup Stage Conditions dialog box to specify a
conditional lookup.

Open the Link Execution Order dialog box in order to specify
the order in which links should be processed.

Toggle between viewing link relations for all links, or for the
selected link only.

Right-clicking in the meta data area of the Lookup Editor opens the

standard grid editing shortcut menus.

Editing Lookup Stages
The Lookup Editor enables you to perform the following operations

on a Lookup stage:

Create new columns on a link

Delete columns from within a link

Move columns within a link

Edit column meta data

Specify key expressions

Map input columns to output columns

Using Drag and Drop
Many of the Lookup stage edits can be made simpler by using the

Lookup Editor’s drag and drop functionality. You can drag columns

from any link to any other link. Common uses are:

Copying input columns to output links

Moving columns within a link

Setting derivation or key expressions
Parallel Job Developer’s Guide 21-13

Editing Lookup Stages Lookup Stage
To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link. An insert point appears on the target link to indicate
where the new cell will go. This can be to create a new column, or
set a derivation. The exact action depends on where you drop.

3 Release the mouse button to drop the selected cell.

You can drag and drop multiple columns, key expressions, or

derivations. Use the standard Explorer keys when selecting the source

column cells, then proceed as for a single cell.

You can drag and drop the full column set by dragging the link title.

The drag and drop insert point is shown below:

Find and Replace Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Lookup stage, you

can use the find/replace column facility to help locate a particular

column or expression and change it.

The find/replace facility enables you to:

Find and replace a column name

Find and replace expression text

Find the next empty expression

Find the next expression that contains an error

To use the find/replace facilities, do one of the following:

Click the find/replace button on the toolbar

Choose find/replace from the link shortcut menu

Type Ctrl-F

The Find and Replace dialog box appears. It has three tabs:
21-14 Parallel Job Developer’s Guide

Lookup Stage Editing Lookup Stages
Expression Text. Allows you to locate the occurrence of a
particular string within an expression, and replace it if required.
You can search up or down, and choose to match case, match
whole words, or neither. You can also choose to replace all
occurrences of the string within an expression.

Columns Names. Allows you to find a particular column and
rename it if required. You can search up or down, and choose to
match case, match the whole word, or neither.

Expression Types. Allows you to find the next empty expression
or the next expression that contains an error. You can also press
Ctrl-M to find the next empty expression or Ctrl-N to find the
next erroneous expression.

Note The find and replace results are shown in the color specified

in Tools ‰ Options.

Press F3 to repeat the last search you made without opening the Find
and Replace dialog box.

Select Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Lookup stage, you

can use the select column facility to select multiple columns.

The select facility enables you to:

Select all columns whose expressions contains text that matches
the text specified.

Select all columns whose name contains the text specified (and,
optionally, matches a specified type).

Select all columns with a certain data type.

Select all columns with missing or invalid expressions.

To use the select facilities, choose Select from the link shortcut menu.

The Select dialog box appears. It has three tabs:

Expression Text. The Expression Text tab allows you to select
all columns/stage variables whose expressions contain text that
matches the text specified. The text specified is a simple text
match, taking into account the Match case setting.

Column Names. The Column Names tab allows you to select all
column/stage variables whose Name contains the text specified.
There is an additional Data Type drop down list, that will limit the
columns selected to those with that data type. You can use the
Data Type drop down list on its own to select all columns of a
certain data type. For example, all string columns can be selected
by leaving the text field blank, and selecting String as the data
Parallel Job Developer’s Guide 21-15

Editing Lookup Stages Lookup Stage
type. The data types in the list are generic data types, where each
of the column SQL data types belong to one of these generic
types.

Expression Types. The Expression Types tab allows you to
select all columns with either empty expressions or invalid
expressions.

Creating and Deleting Columns
You can create columns on links to the Lookup stage using any of the

following methods:

Select the link, then click the load column definition button in
the toolbar to open the standard load columns dialog box.

Use drag and drop or copy and paste functionality to create a new
column by copying from an existing column on another link.

Use the shortcut menus to create a new column definition.

Edit the grids in the link’s meta data tab to insert a new column.

When copying columns, a new column is created with the same meta

data as the column it was copied from.

To delete a column from within the Lookup Editor, select the column

you want to delete and click the cut button or choose Delete Column

from the shortcut menu.

Moving Columns Within a Link
You can move columns within a link using either drag and drop or cut

and paste. Select the required column, then drag it to its new location,

or cut it and paste it in its new location.

Editing Column Meta Data
You can edit column meta data from within the grid in the bottom of

the Lookup Editor. Select the tab for the link meta data that you want

to edit, then use the standard DataStage edit grid controls.

The meta data shown does not include column derivations since

these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the

Lookup Editor in a number of ways:
21-16 Parallel Job Developer’s Guide

Lookup Stage Editing Lookup Stages
To map an input column (from data input or reference input) onto
an output column you can use drag and drop or copy and paste to
copy an input column to an output link. The output columns will
have the same names as the input columns from which they were
derived.

If the output column already exists, you can drag or copy an input
column to the output column’s Derivation field. This specifies
that the column is directly derived from an input column, with no
transformations performed.

You can use the column auto-match facility to automatically set
that output columns are derived from their matching input
columns.

If a derivation is displayed in red (or the color defined in Tools ‰
Options), it means that the Lookup Editor considers it incorrect. To

see why it is invalid, choose Validate Derivation from the shortcut

menu.

Once an output link column has a derivation defined that contains any

input link columns, then a relationship line is drawn between the input

column and the output column, as shown in the following example.

This is a simple example; there can be multiple relationship lines

either in or out of columns. You can choose whether to view the

relationships for all links, or just the relationships for the selected

links, using the button in the toolbar.

Column Auto-Match Facility

This time-saving feature allows you to automatically set columns on

an output link to be derived from matching columns on an input link.

Using this feature you can fill in all the output link derivations to route

data from corresponding input columns, then go back and edit

individual output link columns where you want a different derivation.

To use this facility:

1 Do one of the following:

– Click the Auto-match button in the Lookup Editor toolbar.

– Choose Auto-match from the input link header or output link
header shortcut menu.
Parallel Job Developer’s Guide 21-17

Editing Lookup Stages Lookup Stage
The Column Auto-Match dialog box appears:

2 Choose the output link that you want to match columns with the
input link from the drop down list.

3 Click Location match or Name match from the Match type
area.

If you choose Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you choose Name match, you need to specify further

information for the input and output columns as follows:

– Input columns:

Match all columns or Match selected columns. Choose

one of these to specify whether all input link columns should

be matched, or only those currently selected on the input link.

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.

Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Output columns:

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.
21-18 Parallel Job Developer’s Guide

Lookup Stage Editing Lookup Stages
Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored, and
turn Ignore case on, then both IP and ip will be ignored.

4 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Defining Input Column Key Expressions
You can define key expressions for key fields of reference inputs. This

is similar to defining derivations for output columns.

The key expression is an equijoin from a primary input link column.

You can specify it in two ways:

Use drag and drop to drag a primary input link column to the
appropriate key expression cell.

Use copy and paste to copy a primary input link column and paste
it on the appropriate key expression cell.

A relationship link is drawn between the primary input link column

and the key expression.

You can also use drag and drop or copy and paste to copy an existing

key expression to another input column, and you can drag or copy

multiple selections.

If a key expression is displayed in red (or the color defined in Tools ‰
Options), it means that the Transformer Editor considers it incorrect.
Parallel Job Developer’s Guide 21-19

Lookup Stage Properties Lookup Stage
To see why it is invalid, choose Validate Derivation from the

shortcut menu.

Lookup Stage Properties
The Lookup stage has a Properties dialog box which allows you to

specify details about how the stage operates.

The Lookup Stage Properties dialog box has three pages:

Stage Page. This is used to specify general information about the
stage.

Inputs Page. This is where you specify details about the data
input to the Transformer stage.

Outputs Page. This is where you specify details about the output
links from the Transformer stage.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The Link Ordering tab allows you to specify which order

the input links are processed in. The NLS Locale tab appears if your

have NLS enabled on your system. It allows you to select a locale

other than the project default to determine collating rules. The Build

tab allows you to override the default compiler and linker flags for this

particular stage.

Advanced Tab

This tab allows you to specify the following:
21-20 Parallel Job Developer’s Guide

Lookup Stage Lookup Stage Properties
Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting of the previous stage on the stream link. You can
explicitly select Set or Clear. Select Set to request the next stage
in the job should attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 21-21

Lookup Stage Properties Lookup Stage
Link Ordering Tab

This tab allows you to specify which input link is the primary link and

the order in which the reference links are processed.

By default the input links will be processed in the order they were

added. To rearrange them, choose an input link and click the up arrow

button or the down arrow button.

You can also access this tab by clicking the input link order button in

the toolbar, or by choosing Reorder input links from the shortcut

menu.

NLS Locale Tab

This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Lookup stage uses this when it is determining the order of the key
21-22 Parallel Job Developer’s Guide

Lookup Stage Lookup Stage Properties
fields. Select a locale from the list, or click the arrow button next to the

list to use a job parameter or browse for a collate file.

Build Tab

In some cases the Lookup stage may use C++ code to implement your

lookup. In this case, you can use the Build tab to override the

compiler and linker flags that have been set for the job or project. The

flags you specify here will take effect for this stage and this stage

alone.The flags available are platform and compiler-dependent.
Parallel Job Developer’s Guide 21-23

Lookup Stage Properties Lookup Stage
Inputs Page
The Inputs page allows you to specify details about the incoming

data set and the reference links. Choose a link from the Input name

drop down list to specify which link you want to work on.

The General tab allows you to specify an optional description of the

link. When you are performing an in-memory lookup, the General tab

has two additional fields:

Save to lookup fileset. Allows you to specify a lookup file set to
save the look up data.

Diskpool. Specify the name of the disk pool into which to write
the file set. You can also specify a job parameter.

The Partitioning tab allows you to specify how incoming data on the

source data set link is partitioned. The Advanced tab allows you to

change the default buffering settings for the input link.

Details about Lookup stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab

The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the lookup is

performed. It also allows you to specify that the data should be sorted

before the lookup. Note that you cannot specify partitioning or sorting

on the reference links, this is specified in their source stage.

By default the stage uses the auto partitioning method. If the Preserve

Partitioning option has been set on the previous stage in the job the

stage will warn you when the job runs if it cannot preserve the

partitioning of the incoming data.

If the Lookup stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Lookup stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Lookup stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.
21-24 Parallel Job Developer’s Guide

Lookup Stage Lookup Stage Properties
You may need to ensure that your lookup tables have been partitioned

using the Entire method, so that the lookup tables will always contain

the full set of data that might need to be looked up. For lookup files

and lookup tables being looked up in databases, the partitioning is

performed on those stages.

If the Lookup stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Lookup stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Lookup stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.
Parallel Job Developer’s Guide 21-25

Lookup Stage Properties Lookup Stage
Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the lookup is performed. The

sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Lookup stage. The Lookup stage can have only one output

link. It can also have a single reject link, where records can be sent if

the lookup fails. The Output Link drop-down list allows you to

choose whether you are looking at details of the main output link (the

stream link) or the reject link.

The General tab allows you to specify an optional description of the

output link. The Advanced tab allows you to change the default

buffering settings for the output links.
21-26 Parallel Job Developer’s Guide

Lookup Stage Lookup Stage Conditions
Reject Links

You cannot set the mapping or edit the column definitions for a reject

link. The link uses the column definitions for the primary input link.

Lookup Stage Conditions
The Lookup stage has a Lookup Stage Conditions dialog box that

allows you to specify:

Which reference link (if any) can return multiple rows from a
lookup.

A condition that should be fulfilled before a lookup is performed
on a reference link.

What action should be taken if a condition on a reference link is
not met.

What action should be taken if a lookup on a link fails.

You can open the Lookup Stage Conditions dialog box by:

Double-clicking on the Condition: bar on a reference link.

Selecting Conditions from the background shortcut menu.

Clicking the Conditions toolbar button.

Selecting Conditions from the link shortcut menu.

To specify that a link can legitimately return multiple rows:

Select the link name from the Multiple rows returned from
link drop-down list (note that only one reference link in a Lookup
stage is allowed to return multiple rows, and that this feature is
only available for in-memory lookups).

To specify a condition for a reference link:
Parallel Job Developer’s Guide 21-27

Lookup Stage Conditions Lookup Stage
Double click on the Condition field for the link you want to
specify a condition for. The field expands to let you type in a
condition, or click the browse button to open the expression editor
to get help in specifying an expression. The condition should
return a TRUE/FALSE result (for example DSLINK1.COL1 > 0).

To specify the action taken if the specified condition is not met:

Choose an action from the Condition Not Met drop-down list.
Possible actions are:

– Continue. The fields from that link are set to NULL if the field
is nullable, or to a default value if not. Continues processing
any further lookups before sending the row to the output link.

– Drop. Drops the row and continues with the next lookup.

– Fail. Causes the job to issue a fatal error and stop.

– Reject. Sends the row to the reject link.

To specify the action taken if a lookup on a link fails:

Choose an action from the Lookup Failure drop-down list.
Possible actions are:

– Continue. The fields from that link are set to NULL if the field
is nullable, or to a default value if not. Continues processing
any further lookups before sending the row to the output link.

– Drop. Drops the row and continues with the next lookup.

– Fail. Causes the job to issue a fatal error and stop.

– Reject. Sends the row to the reject link.
21-28 Parallel Job Developer’s Guide

Lookup Stage The DataStage Expression Editor
The DataStage Expression Editor
The DataStage Expression Editor helps you to enter correct

expressions when you edit Lookup stages. The Expression Editor can:

Facilitate the entry of expression elements

Complete the names of frequently used variables

Validate the expression

The Expression Editor can be opened from:

Lookup Stage Conditions dialog box

Expression Format
The format of an expression is as follows:

KEY:

something_like_this is a token
something_in_italics is a terminal, i.e., doesn't break down any

further
| is a choice between tokens
[is an optional part of the construction
"XXX" is a literal token (i.e., use XXX not

including the quotes)

===

expression ::= function_call |
variable_name |

other_name |
constant |
unary_expression |
binary_expression |
if_then_else_expression |
substring_expression |
"(" expression ")"

function_call ::= function_name "(" [argument_list] ")"
argument_list ::= expression | expression "," argument_list

function_name ::= name of a built-in function |
name of a user-defined_function

variable_name ::= job_parameter name
other_name ::= name of a built-in macro, system variable, etc.
constant ::= numeric_constant | string_constant
numeric_constant ::= ["+" | "-"] digits ["." [digits]] ["E" | "e" ["+" |
"-"] digits]
string_constant ::= "'" [characters] "'" |

""" [characters] """ |
"\" [characters] "\"

unary_expression ::= unary_operator expression
unary_operator ::= "+" | "-"
binary_expression ::= expression binary_operator expression
Parallel Job Developer’s Guide 21-29

The DataStage Expression Editor Lookup Stage
binary_operator ::= arithmetic_operator |
concatenation_operator |
matches_operator |
relational_operator |
logical_operator

arithmetic_operator ::= "+" | "-" | "*" | "/" | "^"
concatenation_operator ::= ":"
relational_operator ::= "=" |"EQ" |

"<>" | "#" | "NE" |
">" | "GT" |
">=" | "=>" | "GE" |
"<" | "LT" |
"<=" | "=<" | "LE"

logical_operator ::= "AND" | "OR"
if_then_else_expression ::= "IF" expression "THEN" expression "ELSE"
expression
substring_expression ::= expression "[" [expression ["," expression] "]"
field_expression ::= expression "[" expression ","

expression ","
expression "]"

/* That is, always 3 args
Note: keywords like "AND" or "IF" or "EQ" may be in any case

Entering Expressions
Whenever the insertion point is in an expression box, you can use the

Expression Editor to suggest the next element in your expression. Do

this by right-clicking the box, or by clicking the Suggest button to the

right of the box. This opens the Suggest Operand or Suggest
Operator menu. Which menu appears depends on context, i.e.,

whether you should be entering an operand or an operator as the next

expression element. The Functions available from this menu are

described in Appendix B. The DS macros are described "Job Status

Macros" in Parallel Job Advanced Developer’s Guide. You can also

specify custom routines for use in the expression editor (see "Working

with Parallel Routines" in DataStage Manager Guide).

Suggest Operand Menu:
21-30 Parallel Job Developer’s Guide

Lookup Stage The DataStage Expression Editor
Suggest Operator Menu:

Completing Variable Names
The Expression Editor stores variable names. When you enter a

variable name you have used before, you can type the first few

characters, then press F5. The Expression Editor completes the

variable name for you.

If you enter the name of the input link followed by a period, for

example, DailySales., the Expression Editor displays a list of the

column names of the link. If you continue typing, the list selection

changes to match what you type. You can also select a column name

using the mouse. Enter a selected column name into the expression

by pressing Tab or Enter. Press Esc to dismiss the list without

selecting a column name.

Validating the Expression
When you have entered an expression in the Lookup Editor, press

Enter to validate it. The Expression Editor checks that the syntax is

correct and that any variable names used are acceptable to the

compiler.

If there is an error, a message appears and the element causing the

error is highlighted in the expression box. You can either correct the

expression or close the Lookup Editor or Lookup dialog box.

For any expression, selecting Validate from its shortcut menu will also

validate it and show any errors in a message box.

Exiting the Expression Editor
You can exit the Expression Editor in the following ways:

Press Esc (which discards changes).

Press Return (which accepts changes).

Click outside the Expression Editor box (which accepts changes).
Parallel Job Developer’s Guide 21-31

The DataStage Expression Editor Lookup Stage
Configuring the Expression Editor
You can resize the Expression Editor window by dragging. The next

time you open the expression editor in the same context (for example,

editing output columns) on the same client, it will have the same size.

The Expression Editor is configured by editing the Designer options.

This allows you to specify how ‘helpful’ the expression editor is. For

more information, see "Specifying Designer Options" in DataStage

Designer Guide.
21-32 Parallel Job Developer’s Guide

22
Funnel Stage

The Funnel stage is a processing stage. It copies multiple input data

sets to a single output data set. This operation is useful for combining

separate data sets into a single large data set. The stage can have any

number of input links and a single output link.

The Funnel stage can operate in one of three modes:

Continuous Funnel combines the records of the input data in no
guaranteed order. It takes one record from each input link in turn.
If data is not available on an input link, the stage skips to the next
link rather than waiting.

Sort Funnel combines the input records in the order defined by
the value(s) of one or more key columns and the order of the
output records is determined by these sorting keys.

Sequence copies all records from the first input data set to the
output data set, then all the records from the second input data
set, and so on.
Parallel Job Developer’s Guide 22-1

Examples Funnel Stage
For all methods the meta data of all input data sets must be identical.

The sort funnel method has some particular requirements about its

input data. All input data sets must be sorted by the same key

columns as to be used by the Funnel operation.

Typically all input data sets for a sort funnel operation are hash-

partitioned before they’re sorted (choosing the auto partitioning

method will ensure that this is done). Hash partitioning guarantees

that all records with the same key column values are located in the

same partition and so are processed on the same node. If sorting and

partitioning are carried out on separate stages before the Funnel

stage, this partitioning must be preserved.

The sortfunnel operation allows you to set one primary key and

multiple secondary keys. The Funnel stage first examines the primary

key in each input record. For multiple records with the same primary

key value, it then examines secondary keys to determine the order of

records it will output.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data sets
being joined.

Outputs Page. This is where you specify details about the joined
data being output from the stage.

Examples

Continuous Funnel Example
Our example data comprises seven separate data sets. Each data set

contains a list of the residents of Woodstock for different years: 1616,
22-2 Parallel Job Developer’s Guide

Funnel Stage Examples
1617, 1619, 1622, 1627, 1662, and 1687. The following is a sample of the

1627 data set:

The Funnel stage, when set to continuous funnel, will combine these

into a single data set. The job to perform the funnel is as follows:
Parallel Job Developer’s Guide 22-3

Examples Funnel Stage
The continuous funnel method is selected on the Stage page

Properties tab of the Funnel stage:

The continuous funnel method does not attempt to impose any order

on the data it is processing. It simply writes rows as they become

available on the input links. In our example the stage has written a

row from each input link in turn. A sample of the final, funneled, data

is as follows:

Sort Funnel Example
In this example we are going to use the funnel stage to sort the

Woodstock by inhabitants’ names as it combines the data into a single
22-4 Parallel Job Developer’s Guide

Funnel Stage Examples
data set. The data and the basic job are the same as for the

Continuous Funnel example, but now we set the Funnel stage

properties as follows:

The following is a sample of the output data set:

Note If you are running your sort funnel stage in parallel, you

should be aware of the various considerations about sorting

data and partitions. These are described in Chapter 23, "Sort

Stage."
Parallel Job Developer’s Guide 22-5

Examples Funnel Stage
Sequence Funnel Example
In this example we funnel the Woodstock data on input one data set at

a time. We end up with a data set that contains all the 1616

inhabitants, then all the 1617 ones, then all the 1619 ones and so on.

Again the basic job and the source data are the same as for the

continuous funnel example. The Funnel stage properties are set as

follows:

When using the sequence method, you need to specify the order in

which the Funnel stage processes its input links, as this affects the

order of the sequencing. This is done on the Stage page Link
Ordering tab:
22-6 Parallel Job Developer’s Guide

Funnel Stage Must Do’s
The following is a sample of the output data set:

If you run the sequence funnel stage in parallel, you need to be

mindful of the effects of data partitioning. If, for example, you ran our

example job on a four-node system, you would get four partions each

containing a section of 1616 data, a section of 1617 data, a section of

1619 and so on.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Funnel stages in a job. This section specifies the minimum

steps to take to get a Funnel stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Funnel stage:

In the Stage Page Properties Tab, specify the Funnel Type.
Continuous Funnel is the default, but you can also choose
Sequence or Sort Funnel.

If you choose to use the Sort Funnel method, you also need to

specify the key on which data will be sorted. You can repeat the

key property to specify a composite key.

If you are using the Sequence method, in the Stage Page Link
Ordering Tab specify the order in which your data sets will be
combined.
Parallel Job Developer’s Guide 22-7

Stage Page Funnel Stage
In the Output Page Mapping Tab, specify how the output
columns are derived.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify which order the input links

are processed in. The NLS Locale tab appears if your have NLS

enabled on your system. It allows you to select a locale other than the

project default to determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/Property Values Default Mandatory? Repeats? Dependent of

Options/Funnel Type Continuous
Funnel/
Sequence/
Sort funnel

Continuous
Funnel

Y N N/A

Sorting Keys/Key Input
Column

N/A Y (if Funnel
Type = Sort
Funnel)

Y N/A

Sorting Keys/Sort
Order

Ascending/
Descending

Ascending Y (if Funnel
Type = Sort
Funnel)

N Key

Sorting Keys/Nulls
position

First/Last First Y (if Funnel
Type = Sort
Funnel)

N Key

Sorting Keys/Case
Sensitive

True/False True N N Key

Sorting Keys/Sort as
EBCDIC

True/False False N N Key
22-8 Parallel Job Developer’s Guide

Funnel Stage Stage Page
Options Category

Funnel Type

Specifies the type of Funnel operation. Choose from:

Continuous Funnel

Sequence

Sort Funnel

The default is Continuous Funnel.

Sorting Keys Category

Key

This property is only required for Sort Funnel operations. Specify the

key column that the sort will be carried out on. The first column you

specify is the primary key, you can add multiple secondary keys by

repeating the key property. You can use the Column Selection

dialog box to select several keys at once if required (see page 3-10).

Key has the following dependent properties:

Sort Order

Choose Ascending or Descending. The default is Ascending.

Nulls position

By default columns containing null values appear first in the

funneled data set. To override this default so that columns

containing null values appear last in the funneled data set, select

Last.

Sort as EBCDIC

To sort as in the EBCDIC character set, choose True.

Case Sensitive

Use this to specify whether each key is case sensitive or not, this is

set to True by default, i.e., the values “CASE” and “case” would

not be judged equivalent.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
Parallel Job Developer’s Guide 22-9

Stage Page Funnel Stage
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting which results from ORing the settings of the input
stages, i.e., if any of the input stages uses Set then this stage will
use Set. You can explicitly select Set or Clear. Select Set to
request that the next stage in the job attempts to maintain the
partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
22-10 Parallel Job Developer’s Guide

Funnel Stage Stage Page
Link Ordering Tab
This tab allows you to specify the order in which links input to the

Funnel stage are processed. This is only relevant if you have

chosen the Sequence Funnel Type.

By default the input links will be processed in the order they were

added. To rearrange them, choose an input link and click the up

arrow button or the down arrow button.

NLS Locale Tab
This appears if you have NLS enabled on your system. If you are

using the Sort Funnel funnel type, it lets you view the current default

collate convention, and select a different one for this stage if required

(for other funnel types, it is blank). You can also use a job parameter

to specify the locale, or browse for a file that defines custom collate

rules. The collate convention defines the order in which characters are

collated. The Funnel stage uses this when it is determining the sort

order for sort funnel. Select a locale from the list, or click the arrow
Parallel Job Developer’s Guide 22-11

Inputs Page Funnel Stage
button next to the list to use a job parameter or browse for a collate

file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. Choose an input link from the Input name drop down list

to specify which link you want to work on.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being funneled. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Funnel stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the data

on each of the incoming links is partitioned or collected before it is

funneled. It also allows you to specify that the data should be sorted

before being operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
22-12 Parallel Job Developer’s Guide

Funnel Stage Inputs Page
current and preceding stages and how many nodes are specified in

the Configuration file.

If the Funnel stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default Auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Funnel stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Funnel stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If you are using the Sort Funnel method, and haven’t partitioned the

data in a previous stage, you should key partition it by choosing the

Hash or modulus partition method on this tab.

If the Funnel stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Funnel stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 22-13

Inputs Page Funnel Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Funnel stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being funneled. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection.

If you are using the Sort Funnel method, and haven’t sorted the data

in a previous stage, you should sort it here using the same keys that

the data is hash partitioned on and funneled on. The availability of

sorting depends on the partitioning or collecting method chosen (it is

not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you
22-14 Parallel Job Developer’s Guide

Funnel Stage Outputs Page
can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Funnel stage. The Funnel stage can have only one output

link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Funnel stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output link.

Details about Funnel stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Funnel stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them

or how they are generated.

The left pane shows the input columns. These are read only and

cannot be modified on this tab. It is a requirement of the Funnel stage

that all input links have identical meta data, so only one set of column

definitions is shown.
Parallel Job Developer’s Guide 22-15

Outputs Page Funnel Stage
The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.

In the above example the left pane represents the incoming data after

it has been funneled. The right pane represents the data being output

by the stage after the funnel operation. In this example the data has

been mapped straight across.
22-16 Parallel Job Developer’s Guide

23
Sort Stage

The Sort stage is a processing stage. It is used to perform more

complex sort operations than can be provided for on the Input page

Partitioning tab of parallel job stage editors. You can also use it to

insert a more explicit simple sort operation where you want to make

your job easier to understand. The Sort stage has a single input link

which carries the data to be sorted, and a single output link carrying

the sorted data.

You specify sorting keys as the criteria on which to perform the sort. A

key is a column on which to sort the data, for example, if you had a

name column you might specify that as the sort key to produce an

alphabetical list of names. The first column you specify as a key to the

stage is the primary key, but you can specify additional secondary

keys. If multiple rows have the same value for the primary key

column, then DataStage uses the secondary columns to sort these

rows.
Parallel Job Developer’s Guide 23-1

Sort Stage
You can sort in sequential mode to sort an entire data set or in parallel

mode to sort data within partitions, as shown below:

The stage uses temporary disk space when performing a sort. It looks

in the following locations, in the following order, for this temporary

space.

1 Scratch disks in the disk pool sort (you can create these pools in
the configuration file).

2 Scratch disks in the default disk pool (scratch disks are included
here by default).

3 The directory specified by the TMPDIR environment variable.

4 The directory /tmp.

You may perform a sort for several reasons. For example, you may

want to sort a data set by a zip code column, then by last name within

the zip code. Once you have sorted the data set, you can filter the data

set by comparing adjacent records and removing any duplicates.

However, you must be careful when processing a sorted data set:

many types of processing, such as repartitioning, can destroy the sort

order of the data. For example, assume you sort a data set on a

system with four processing nodes and store the results to a data set

stage. The data set will therefore have four partitions. You then use

that data set as input to a stage executing on a different number of

Tom
Dick
Harry
Jack
Ted
Mary
Bob
Jane
Monica
Bill
Dave
Mike

Bill
Bob
Dave
Dick
Harry
Jack
Jane
Mary
Mike
Monica
Ted
Tom

Tom
Dick
Harry
Jack

Ted
Mary
Bob
jane

Monica
Bill
Dave
Mike

Dick
Harry
Jack
Tom

Bob
Jane
Mary
Tod

Bill
Dave
Mike
Monica

Sort
Stage

Sort
Stage

Running
sequentially

Running
in parallel
23-2 Parallel Job Developer’s Guide

Sort Stage Examples
nodes, possibly due to node constraints. DataStage automatically

repartitions a data set to spread out the data set to all nodes in the

system, unless you tell it not to, possibly destroying the sort order of

the data. You could avoid this by specifying the Same partitioning

method. The stage does not perform any repartitioning as it reads the

input data set; the original partitions are preserved.

You must also be careful when using a stage operating sequentially to

process a sorted data set. A sequential stage executes on a single

processing node to perform its action. Sequential stages will collect

the data where the data set has more than one partition, which may

also destroy the sorting order of its input data set. You can overcome

this if you specify the collection method as follows:

If the data was range partitioned before being sorted, you should
use the ordered collection method to preserve the sort order of
the data set. Using this collection method causes all the records
from the first partition of a data set to be read first, then all records
from the second partition, and so on.

If the data was hash partitioned before being sorted, you should
use the sort merge collection method specifying the same
collection keys as the data was partitioned on.

Note If you write a sorted data set to an RDBMS there is no

guarantee that it will be read back in the same order unless

you specifically structure the SQL query to ensure this.

By default the stage will sort with the native DataStage sorter, but you

can also specify that it uses the UNIX sort command.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data sets
being sorted.

Outputs Page. This is where you specify details about the sorted
data being output from the stage.

Examples

Sequential Sort
This job sorts the contents of a sequential file, and writes it to a data

set. The data is a list of the known inhabitants of Woodstock, England
Parallel Job Developer’s Guide 23-3

Examples Sort Stage
in the seventeenth century, roughly sorted by source document date.

We are going to sort it by surname instead.

Here is a sample of the input data (as seen from the source Sequential

File stage, csv_input:

The meta data for the file is as follows:
23-4 Parallel Job Developer’s Guide

Sort Stage Examples
The Sequential File stage runs sequentially because it only has one

source file to read. The Sort stage is set to run sequentially on the

Stage page Advanced tab. The sort stage properties are used to

specify the column Sname as the primary sort key and Fname as the

secondary sort key:

When the job is run the data is sorted into a single partition. The Data

Set stage, woodstock_sorted, is set to run sequentially to write the

data to a single partition. Here is a sample of the sorted data (viewed

from the Data Set stage):
Parallel Job Developer’s Guide 23-5

Examples Sort Stage
Parallel Sort
This example uses the same job and the same data as the last

previous example, but this time we are going to run the Sort stage in

parallel and create a number of partititions.

In the Sort stage we specify parallel execution in the Stage page

Advanced tab. In the Inputs page Partitioning tab we specify a

partioning type of Hash, and specify the column Sname as the hash

key. Because the partioning takes place on the input link, the data is

partitioned before the sort stage actually tries to sort it. We hash

partition to ensure that instances of the same surnames end up in the

same partition. The data is then sorted within those partitions.

We run the job on a four-node system, so end up with a data set

comprising four partitions.

The following is a sample of the data in partition 2 after partitioning,

but before sorting:
23-6 Parallel Job Developer’s Guide

Sort Stage Examples
And here is a sample of the data in partition 2 after it has been

processed by the sort stage:

Our parallel sort example has left us with four partitions, each

containing roughly a quarter of the Woodstock data, and each ordered

by name. The following shows the first 24 names in each partition.

If we want to bring the data back together into a single partition, for

example to write to another sequential file, we need to be mindful of

how it is collected, or we will lose the benefit of the sort. If we use the

sort/merge collection method, specifying the Sname column as the

collection key, we will end up with a totally sorted data set.

Partition 0 Partition 1 Partition 2 Partition 3
Parallel Job Developer’s Guide 23-7

Examples Sort Stage
Total Sort
You can also perform a total sort on a parallel data set, such that the

data is ordered within each partition and the partitions themselves are

ordered. A total sort requires that all similar and duplicate records are

located in the same partition of the data set. Similarity is based on the

key fields in a record. The partitions also need to be approximately the

same size so that no one node becomes a processing bottleneck.

In order to meet these two requirements, the input data is partitioned

using the range partitioner. This guarantees that all records with the

same key fields are in the same partition, and calculates the partition

boundaries based on the key field to ensure fairly even distribution. In

order to use the range partitioner you must first take a sample of your

input data, sort it, then use it to build a range partition map as

described in Chapter 55, "Write Range Map Stage." You then specify

this map when setting up the range partitioner in the Inputs page

Partitioning tab of your Sort stage.

23-8 Parallel Job Developer’s Guide

Sort Stage Must Do’s
When you run the job it will produce a totally sorted data set across

the four partitions. The following shows the first 24 names in each of

these partitions:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Sort stages in a job. This section specifies the minimum steps

to take to get a Sort stage functioning. DataStage provides a versatile

user interface, and there are many shortcuts to achieving a particular

end, this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

To use a Sort stage:

In the Stage Page Properties Tab, under the Sorting Keys
category:

– specify the key that you are sorting on. Repeat the property to
specify a composite key.

In the Output Page Mapping Tab, specify how the output
columns are derived.

Partition 0 Partition 1 Partition 2 Partition 3
Parallel Job Developer’s Guide 23-9

Stage Page Sort Stage
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Sorting Keys/Key Input Column N/A Y Y N/A

Sorting Keys/Sort
Order

Ascending/
Descending

Ascending Y N Key

Sorting Keys/Nulls
position (only
available for Sort
Utility =
DataStage)

First/Last First N N Key

Sorting Keys/Sort
as EBCDIC

True/False False N N Key

Sorting Keys/Case
Sensitive

True/False True N N Key

Sorting Keys/Sort
Key Mode (only
available for Sort
Utility =
DataStage)

Sort/Don’t Sort
(Previously
Grouped)/Don’t
Sort (Previously
Sorted)

Sort Y N Key

Options/Sort
Utility

DataStage/
UNIX

DataStage Y N N/A
23-10 Parallel Job Developer’s Guide

Sort Stage Stage Page
Sorting Keys Category

Key

Specifies the key column for sorting. This property can be repeated to

specify multiple key columns. You can use the Column Selection

dialog box to select several keys at once if required (see page 3-10).

Key has dependent properties depending on the Sort Utility chosen:

Sort Order

All sort types. Choose Ascending or Descending. The default is

Ascending.

Nulls position

This property appears for sort type DataStage and is optional. By

default columns containing null values appear first in the sorted

data set. To override this default so that columns containing null

values appear last in the sorted data set, select Last.

Options/Stable
Sort

True/False True for Sort
Utility =
DataStage,
False
otherwise

Y N N/A

Options/Allow
Duplicates (not
available for Sort
Utility = UNIX)

True/False True Y N N/A

Options/Output
Statistics

True/False False Y N N/A

Options/Create
Cluster Key
Change Column
(only available for
Sort Utility =
DataStage)

True/False False N N N/A

Options/Create
Key Change
Column

True/False False N N N/A

Options/Restrict
Memory Usage

number MB 20 N N N/A

Options/
Workspace

string N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 23-11

Stage Page Sort Stage
Sort as EBCDIC

To sort as in the EBCDIC character set, choose True.

Case Sensitive

All sort types. This property is optional. Use this to specify

whether each group key is case sensitive or not, this is set to True

by default, i.e., the values “CASE” and “case” would not be

judged equivalent.

Sort Key Mode

This property appears for sort type DataStage. It is set to Sort by

default and this sorts on all the specified key columns.

Set to Don’t Sort (Previously Sorted) to specify that input records

are already sorted by this column. The Sort stage will then sort on

secondary key columns, if any. This option can increase the speed

of the sort and reduce the amount of temporary disk space when

your records are already sorted by the primary key column(s)

because you only need to sort your data on the secondary key

column(s).

Set to Don’t Sort (Previously Grouped) to specify that input

records are already grouped by this column, but not sorted. The

operator will then sort on any secondary key columns. This option

is useful when your records are already grouped by the primary

key column(s), but not necessarily sorted, and you want to sort

your data only on the secondary key column(s) within each group

Options Category

Sort Utility

The type of sort the stage will carry out. Choose from:

DataStage. The default. This uses the built-in DataStage sorter,
you do not require any additional software to use this option.

UNIX. This specifies that the UNIX sort command is used to
perform the sort.

Stable Sort

Applies to a Sort Utility type of DataStage, the default is True. It is set

to True to guarantee that this sort operation will not rearrange records

that are already in a properly sorted data set. If set to False no prior

ordering of records is guaranteed to be preserved by the sorting

operation.
23-12 Parallel Job Developer’s Guide

Sort Stage Stage Page
Allow Duplicates

Set to True by default. If False, specifies that, if multiple records have

identical sorting key values, only one record is retained. If Stable Sort

is True, then the first record is retained. This property is not available

for the UNIX sort type.

Output Statistics

Set False by default. If True it causes the sort operation to output

statistics. This property is not available for the UNIX sort type.

Create Cluster Key Change Column

This property appears for sort type DataStage and is optional. It is set

False by default. If set True it tells the Sort stage to create the column

clusterKeyChange in each output record. The clusterKeyChange
column is set to 1 for the first record in each group where groups are

defined by using a Sort Key Mode of Don’t Sort (Previously Sorted) or

Don’t Sort (Previously Grouped). Subsequent records in the group

have the clusterKeyChange column set to 0.

Create Key Change Column

This property appears for sort type DataStage and is optional. It is set

False by default. If set True it tells the Sort stage to create the column

KeyChange in each output record. The KeyChange column is set to

1 for the first record in each group where the value of the sort key

changes. Subsequent records in the group have the KeyChange
column set to 0.

Restrict Memory Usage

This is set to 20 by default. It causes the Sort stage to restrict itself to

the specified number of megabytes of virtual memory on a processing

node.

We recommend that the number of megabytes specified is smaller

than the amount of physical memory on a processing node.

Workspace

This property appears for sort type UNIX only. Optionally specifies the

workspace used by the stage.
Parallel Job Developer’s Guide 23-13

Stage Page Sort Stage
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Preserve partitioning. This is Set by default. You can explicitly
select Set or Clear. Select Set to request the next stage in the job
should attempt to maintain the partitioning.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Locale Tab
This appears if you have NLS enabled on your system. If you are

using the DataStage sort type, it lets you view the current default

collate convention, and select a different one for this stage if required

(for UNIX sorts, it is blank). You can also use a job parameter to

specify the locale, or browse for a file that defines custom collate

rules. The collate convention defines the order in which characters are

collated. The Sort stage uses this when it is determining the order of
23-14 Parallel Job Developer’s Guide

Sort Stage Inputs Page
the sorted fields. Select a locale from the list, or click the arrow button

next to the list to use a job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the data coming

in to be sorted. The Sort stage can have only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Sort stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the sort is performed.

By default the stage uses the auto partitioning method. If the Preserve

Partitioning option has been set on the previous stage in the job the

stage will warn you when the job runs if it cannot preserve the

partitioning of the incoming data.
Parallel Job Developer’s Guide 23-15

Inputs Page Sort Stage
If the Sort Set stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Sort stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Sort stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Sort stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Sort stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .
23-16 Parallel Job Developer’s Guide

Sort Stage Inputs Page
The following Collection methods are available:

(Auto). This is the default collection method for the Sort stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the Sort is performed. This is a

standard feature of the stage editors, if you make use of it you will be

running a simple sort before the main Sort operation that the stage

provides. The sort is always carried out within data partitions. If the

stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available with the default auto

methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 23-17

Outputs Page Sort Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Sort stage. The Sort stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Sort stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output link.

Details about Sort stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Sort stages the Mapping tab allows you to specify how the output

columns are derived, i.e., what input columns map onto them.

The left pane shows the columns of the sorted data. These are read

only and cannot be modified on this tab. This shows the meta data

from the input link.

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.

In the above example the left pane represents the incoming data after

the sort has been performed. The right pane represents the data being

output by the stage after the sort operation. In this example the data

has been mapped straight across.
23-18 Parallel Job Developer’s Guide

24
Remove Duplicates Stage

The Remove Duplicates stage is a processing stage. It can have a

single input link and a single output link.

The Remove Duplicates stage takes a single sorted data set as input,

removes all duplicate rows, and writes the results to an output data

set.

Removing duplicate records is a common way of cleansing a data set

before you perform further processing. Two rows are considered

duplicates if they are adjacent in the input data set and have identical

values for the key column(s). A key column is any column you

designate to be used in determining whether two rows are identical.

The data set input to the Remove Duplicates stage must be sorted so

that all records with identical key values are adjacent. You can either

achieve this using the in-stage sort facilities available on the Inputs

page Partitioning tab, or have an explicit Sort stage feeding the

Remove Duplicates stage.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data set
that is having its duplicates removed.
Parallel Job Developer’s Guide 24-1

Example Remove Duplicates Stage
Output Page. This is where you specify details about the
processed data that is being output from the stage.

Example
In our example our data is a list of people who were allocated land in

the village of Stewkley, Buckinghamshire by the 1812 enclosure

award. The data contains some duplicate entries, and we want to

remove these.

Here is a sample of the input data:

Here is the job that will remove the duplicates:

The first step is to sort the data so that the duplicates are actually next

to each other. As with all sorting operations, there are implications

around data partitions if you run the job in parallel (see Chapter 23,

"Sort Stage," for a discussion of these). You should hash partition the

data using the sort keys as hash keys in order to guarantee that

duplicate rows are in the same partition. In our example we sort on
24-2 Parallel Job Developer’s Guide

Remove Duplicates Stage Example
the Firstname and Lastname columns, and our sample of the sorted

data shows up some duplicates:

Next, we set up the Remove Duplicates stage to remove rows that

share the same values in the Firstname and Lastname columns. The

stage will retain the first of the duplicate records:
Parallel Job Developer’s Guide 24-3

Must Do’s Remove Duplicates Stage
Here is a sample of the data after the job has been run and the

duplicates removed:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Remove Duplicates stages in a job. This section specifies the

minimum steps to take to get a Remove Duplicates stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Remove Duplicates stage:

In the Stage Page Properties Tab select the key column.
Identical values in this column will be taken to denote duplicate
rows, which the stage will remove. Repeat the property to specify
a composite key.

In the Outputs Page Mapping Tab, specify how output columns
are derived.
24-4 Parallel Job Developer’s Guide

Remove Duplicates Stage Stage Page
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Keys that Define Duplicates Category

Key

Specifies the key column for the operation. This property can be

repeated to specify multiple key columns. You can use the Column
Selection dialog box to select several keys at once if required (see

page 3-10). Key has dependent properties as follows:

Sort as EBCDIC

To sort as in the EBCDIC character set, choose True.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Keys that Define
Duplicates/Key

Input Column N/A Y Y N/A

Keys that Define
Duplicates/Sort as
EBCDIC

True/False False N N Key

Keys that Define
Duplicates/Case
Sensitive

True/False True N N Key

Options/Duplicate
to retain

First/Last First Y N N/A
Parallel Job Developer’s Guide 24-5

Stage Page Remove Duplicates Stage
Case Sensitive

Use this to specify whether each key is case sensitive or not, this is

set to True by default, i.e., the values “CASE” and “case” would

not be judged equivalent.

Options Category

Duplicate to retain

Specifies which of the duplicate columns encountered to retain.

Choose between First and Last. It is set to First by default.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
24-6 Parallel Job Developer’s Guide

Remove Duplicates Stage Inputs Page
NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Remove Duplicates stage uses this when it is determining the sort

order for the key column(s). Select a locale from the list, or click the

arrow button next to the list to use a job parameter or browse for a

collate file.

Inputs Page
The Inputs page allows you to specify details about the data coming

in to be sorted. Choose an input link from the Input name drop down

list to specify which link you want to work on.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Remove Duplicates stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.
Parallel Job Developer’s Guide 24-7

Inputs Page Remove Duplicates Stage
Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the operation is

performed.

By default the stage uses the auto partitioning method.

If the Remove Duplicates stage is operating in sequential mode, it will

first collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Remove Duplicates stage is set to execute in parallel
or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Remove Duplicates stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partition type

drop-down list. This will override any current partitioning.

If the Remove Duplicates stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Remove Duplicates stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.
24-8 Parallel Job Developer’s Guide

Remove Duplicates Stage Inputs Page
DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Remove
Duplicates stage. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the remove duplicates

operation is performed. The sort is always carried out within data

partitions. If the stage is partitioning incoming data the sort occurs

after the partitioning. If the stage is collecting data, the sort occurs

before the collection. The availability of sorting depends on the

partitioning or collecting method chosen (it is not available with the

default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for
Parallel Job Developer’s Guide 24-9

Output Page Remove Duplicates Stage
each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Output Page
The Outputs page allows you to specify details about data output

from the Remove Duplicates stage. The stage only has one output

link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Remove Duplicates stage and the

output columns. The Advanced tab allows you to change the default

buffering settings for the output link.

Details about Remove Duplicates stage mapping is given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Mapping Tab
For Remove Duplicates stages the Mapping tab allows you to specify

how the output columns are derived, i.e., what input columns map

onto them.

The left pane shows the columns of the input data. These are read

only and cannot be modified on this tab. This shows the meta data

from the incoming link.
24-10 Parallel Job Developer’s Guide

Remove Duplicates Stage Output Page
The right pane shows the output columns for the master output link.

This has a Derivations field where you can specify how the column is

derived. You can fill it in by dragging input columns over, or by using

the Auto-match facility.

In the above example the left pane represents the incoming data after

the remove duplicates operation has been performed. The right pane

represents the data being output by the stage after the remove

duplicates operation. In this example the data has been mapped

straight across.
Parallel Job Developer’s Guide 24-11

Output Page Remove Duplicates Stage
24-12 Parallel Job Developer’s Guide

25
Compress Stage

The Compress stage is a processing stage. It can have a single input

link and a single output link.

The Compress stage uses the UNIX compress or GZIP utility to

compress a data set. It converts a data set from a sequence of records

into a stream of raw binary data. The complement to the Compress

stage is the Expand stage, which is described in Chapter 26.

A compressed data set is similar to an ordinary data set and can be

stored in a persistent form by a Data Set stage. However, a

compressed data set cannot be processed by many stages until it is

expanded, that is, until its rows are returned to their normal format.

Stages that do not perform column-based processing or reorder the

rows can operate on compressed data sets. For example, you can use

the copy stage to create a copy of the compressed data set.

Because compressing a data set removes its normal record

boundaries, the compressed data set must not be repartitioned before

it is expanded.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.
Parallel Job Developer’s Guide 25-1

Must Do’s Compress Stage
Input Page. This is where you specify details about the data set
being compressed.

Output Page. This is where you specify details about the
compressed data being output from the stage.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Compress stages in a job. This section specifies the minimum

steps to take to get a Compress stage functioning. DataStage provides

a versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Compress stage:

In the Stage Page Properties Tab choose the compress
command to use. Compress is the default but you can also choose
gzip.

Ensure column meta data is defined for both the input and output
link.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. The stage only has a single property

which determines whether the stage uses compress or GZIP.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Command compress/gzip compress Y N N/A
25-2 Parallel Job Developer’s Guide

Compress Stage Input Page
Options Category

Command

Specifies whether the stage will use compress (the default) or GZIP.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Set by default. You can explicitly
select Set or Clear. Select Set to request the next stage should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the data set being

compressed. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies
Parallel Job Developer’s Guide 25-3

Input Page Compress Stage
the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Compress stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the compress is

performed.

By default the stage uses the auto partitioning method.

If the Compress stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Compress stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Compress stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Compress stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Compress stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.
25-4 Parallel Job Developer’s Guide

Compress Stage Input Page
Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Compress
stage. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the compression is performed.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.
Parallel Job Developer’s Guide 25-5

Output Page Compress Stage
Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Output Page
The Outputs page allows you to specify details about data output

from the Compress stage. The stage only has one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
25-6 Parallel Job Developer’s Guide

26
Expand Stage

The Expand stage is a processing stage. It can have a single input link

and a single output link.

The Expand stage uses the UNIX uncompress or GZIP utility to

expand a data set. It converts a previously compressed data set back

into a sequence of records from a stream of raw binary data. The

complement to the Expand stage is the Compress stage which is

described in Chapter 25.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the data set
being expanded.

Output Page. This is where you specify details about the
expanded data being output from the stage.
Parallel Job Developer’s Guide 26-1

Must Do’s Expand Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Expand stages in a job. This section specifies the minimum

steps to take to get an Expand stage functioning. DataStage provides

a versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use an Expand stage:

In the Stage Page Properties Tab choose the uncompress
command to use. This is uncompress by default but you can also
choose gzip.

Ensure column meta data is defined for both the input and output
link.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. The stage only has a single property

which determines whether the stage uses uncompress or GZIP.

Options Category

Command

Specifies whether the stage will use uncompress (the default) or GZIP.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Command uncompress/
gzip

compress Y N N/A
26-2 Parallel Job Developer’s Guide

Expand Stage Input Page
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. The stage
has a mandatory partitioning method of Same, this overrides the
preserve partitioning flag and so the partitioning of the incoming
data is always preserved.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the data set being

expanded. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Expand stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 26-3

Output Page Expand Stage
Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the expansion is

performed.

By default the stage uses the Same partitioning method and this

cannot be altered. This preserves the partitioning already in place.

If the Expand stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following Collection methods are available:

(Auto). This is the default collection method for the Expand stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab normally also allows you to specify that data

arriving on the input link should be sorted before the expansion is

performed. This facility is not available on the expand stage.

Output Page
The Outputs page allows you to specify details about data output

from the Expand stage. The stage only has one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
26-4 Parallel Job Developer’s Guide

27
Copy Stage

The Copy stage is a processing stage. It can have a single input link

and any number of output links.

The Copy stage copies a single input data set to a number of output

data sets. Each record of the input data set is copied to every output

data set. Records can be copied without modification or you can drop

or change the order of columns (to copy with more modification – for

example changing column data types – use the Modify stage as

described in Chapter 28). Copy lets you make a backup copy of a data

set on disk while performing an operation on another copy, for

example.

Where you are using a Copy stage with a single input and a single

output, you should ensure that you set the Force property in the stage

editor TRUE. This prevents DataStage from deciding that the Copy

operation is superfluous and optimizing it out of the job.

The stage editor has three pages:
Parallel Job Developer’s Guide 27-1

Example Copy Stage
Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the input link
carrying the data to be copied.

Outputs Page. This is where you specify details about the copied
data being output from the stage.

Example
In this example we are going to copy data about the people who were

allocated land in the village of Stewkley, Buckinghamshire by the 1812

enclosure award. We are going to copy it to three separate data sets,

and in each case we are only copying a subset of the columns. The

Copy stage will drop the unwanted columns as it copies the data set.

The column definitions for the input data set are as follows:
27-2 Parallel Job Developer’s Guide

Copy Stage Example
Here is the job that will perform the copying:

The Copy stage properties are fairly simple. The only property is

Force, and we do not need to set it in this instance as we are copying

to multiple data sets (and DataStage will not attempt to optimize it out

of the job). We need to concentrate on telling DataStage which

columns to drop on each output link. The easiest way to do this is

using the Outputs page Mapping tab. When you open this for a link

the left pane shows the input columns, simply drag the columns you
Parallel Job Developer’s Guide 27-3

Example Copy Stage
want to preserve across to the right pane. We repeat this for each link

as follows:
27-4 Parallel Job Developer’s Guide

Copy Stage Example
When the job is run, three copies of the original data set are produced,

each containing a subset of the original columns, but all of the rows.

Here is some sample data from each of the data set on DSLink6, which

gives us the name of each landholder and the amount of land they

were allocated, both in the old measure of acres, roods and perches

and as a decimal acreage:
Parallel Job Developer’s Guide 27-5

Must Do’s Copy Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Copy stages in a job. This section specifies the minimum

steps to take to get a Copy stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Copy stage:

Ensure that meta data has been defined for input link and output
links.

In the Outputs Page Mapping Tab, specify how the input
columns of the data set being copied map onto the columns of the
various output links.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. The Copy stage only has one property.

Options Category

Force

Set True to specify that DataStage should not try to optimize the job

by removing a Copy operation where there is one input and one

output. Set False by default.

Advanced Tab
This tab allows you to specify the following:

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Force True/False False N N N/A
27-6 Parallel Job Developer’s Guide

Copy Stage Input Page
Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting of the previous stage.You can explicitly select Set or
Clear. Select Set to request the stage should attempt to maintain
the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the data set being

copied. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Copy stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 27-7

Input Page Copy Stage
Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the copy is

performed.

By default the stage uses the auto partitioning method.

If the Copy stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Copy stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Copy stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Copy stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Copy stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.
27-8 Parallel Job Developer’s Guide

Copy Stage Input Page
DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Copy stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the remove duplicates

operation is performed. The sort is always carried out within data

partitions. If the stage is partitioning incoming data the sort occurs

after the partitioning. If the stage is collecting data, the sort occurs

before the collection. The availability of sorting depends on the

partitioning or collecting method chosen (it is not available for the

default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you
Parallel Job Developer’s Guide 27-9

Outputs Page Copy Stage
can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Copy stage. The stage can have any number of output links,

choose the one you want to work on from the Output name drop

down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Copy stage and the output columns.

The Advanced tab allows you to change the default buffering settings

for the output links.

Details about Copy stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Copy stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what copied columns map onto

them.
27-10 Parallel Job Developer’s Guide

Copy Stage Outputs Page
The left pane shows the copied columns. These are read only and

cannot be modified on this tab.

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is

derived.You can fill it in by dragging copied columns over, or by using

the Auto-match facility.

In the above example the left pane represents the incoming data after

the copy has been performed. The right pane represents the data

being output by the stage after the copy operation. In this example the

data has been mapped straight across.
Parallel Job Developer’s Guide 27-11

Outputs Page Copy Stage
27-12 Parallel Job Developer’s Guide

28
Modify Stage

The Modify stage is a processing stage. It can have a single input link

and a single output link.

The modify stage alters the record schema of its input data set. The

modified data set is then output. You can drop or keep columns from

the schema, or change the type of a column.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the input link.

Outputs Page. This is where you specify details about the
modified data being output from the stage.
Parallel Job Developer’s Guide 28-1

Examples Modify Stage
Examples

Dropping and Keeping Columns
The following example takes a data set comprising the following

columns:

The modify stage is used to drop the REPID, CREDITLIMIT, and

COMMENTS columns. To do this, the stage properties are set as

follows:

The easiest way to specify the outgoing meta data in this example

would be to use runtime column propagation. You could, however,
28-2 Parallel Job Developer’s Guide

Modify Stage Examples
choose to specify the meta data manually, in which case it would look

like:

You could achieve the same effect by specifying which columns to

keep, rather than which ones to drop. In the case of this example the

required specification to use in the stage properties would be:

KEEP CUSTID, NAME, ADDRESS, CITY, STATE, ZIP, AREA, PHONE

Changing Data Type
You could also change the data types of one or more of the columns

from the above example. Say you wanted to convert the CUSTID from

decimal to string, you would specify a new column to take the

converted data, and specify the conversion in the stage properties:
Parallel Job Developer’s Guide 28-3

Must Do’s Modify Stage
Some data type conversions require you to use a transform

command, a list of these, and the available transforms, is given in

"Specification" on page 28-5. The decimal to string conversion is one

that can be performed using an explicit transform. In this case, the

specification on the Properties page is as follows:

conv_CUSTID:string = string_from_decimal(CUSTID)

Null Handling
You can also use the Modify stage to handle columns that might

contain null values. Any of the columns in the example, other than

CUSTID, could legally contain a null value. You could use the modify

stage to detect when the PHONE column contains a null value, and

substitute the string “NULL”. In this case, the specification on the

Properties page would be:

PHONE:string = NullToValue (PHONE,”NULL”)

Other null handling transforms are described in "Specification" on

page 28-5.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Modify stages in a job. This section specifies the minimum

steps to take to get a Modify stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a
28-4 Parallel Job Developer’s Guide

Modify Stage Stage Page
particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Modify stage:

In the Stage Page Properties Tab, supply the Modify
specification.

Ensure you have specified the meta data for the input and output
columns

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. The modify stage only has one property,

although you can repeat this as required.

Options Category

Specification

This is a statement with one of the following the forms:

DROP columnname [, columnname]

KEEP columnname [, columnname]

new_columnname [:new_type] = [explicit_conversion_function]
old_columnname

If you choose to drop a column or columns, all columns are retained

except those you explicitly drop. If you chose to keep a column or

columns, all columns are excluded except those you explicitly keep.

If you specify multiple specifications each will be carried out

sequentially.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/
Specification

string N/A Y Y N/A
Parallel Job Developer’s Guide 28-5

Stage Page Modify Stage
Some type conversions DataStage can carry out automatically, others

need you to specify an explicit conversion function. Some

conversions are not available. The following table summarizes the

availability, “d” indicates automatic (default) conversion, “m”

indicates that manual conversion is required, a blank square indicates

that conversion is not possible:

Destination Field

Source
Field

in
t8

u
in

t8

in
t1

6

u
in

t1
6

in
t3

2

u
in

t3
2

in
t6

4

u
in

t6
4

s
fl

o
a

t

d
fl

o
a
t

d
e
c
im

a
l

s
tr

in
g

ra
w

d
a

te

ti
m

e

ti
m

e
s
ta

m
p

int8 d,
m

d d d d d d d d d,
m

d d,

m

m m m

uint8 d d d d d d d d d d d

int16 d,
m

d d d d d d d d d d,
m

uint16 d d d d d d d d d d d

int32 d,
m

d d d d d d d d d d,
m

m m

uint32 d d d d d d d d d d m m

int64 d,
m

d d d d d d d d d d

uint64 d d d d d d d d d d d

sfloat d,
m

d d d d d d d d d d

dfloat d,
m

d d d d d d d d d,
m

d,
m

d,
m

m m

decimal d,
m

d d d d,
m

d d,
m

d,
m

d d,
m

d,
m

d,
m

string d,
m

d d,
m

d d d,
m

d d d d,
m

d,
m

d,
m

m m m

raw m m d

date m m m m m m m

time m m m m d d,
m

timestamp m m m m m m d
28-6 Parallel Job Developer’s Guide

Modify Stage Stage Page
For a default type conversion, your specification would take the

following form:

new_columnname = old_columnname

For example:

int8col = uint64col

Where a manual conversion is required, your specification takes the

form:

new_columnname:new_type = conversion_function (old_columnname)

For example:

day_column:int8 = month_day_from_date (date_column)

The new_type can be any of the destination types that are supported

for conversions from the source (i.e., any of the columns marked “m”

in the above table). For example, you can use the conversion

hours_from_time to convert a time to an int8, or to an int16, int32,

dfloat, and so on. DataStage warns you when it is performing an

implicit data type conversion, for example hours_from_time expects

to convert a time to an int8, and will warn you if converting to a int16,

int32, or dfloat.

The following table lists the available conversion functions in the form

conversion_name [optional_arguments] (source_type). The

destination type can be any of the supported types as described

above.

Conversion Description Notes

date_from_days_since (int32, date) Converts an integer field into a
date by adding the integer to
the specified base date.

The date must be in the
format yyyy-mm-dd and
must be either double

quoted or a variable.

date_from_julian_day (uint32) Date from Julian day.

date_from_string (string) [date_format] Converts the string to a date
representation using the
specified date_format.

By default the string
format is yyyy-mm-dd.

date_from_timestamp [date_format]
(timestamp)

Converts the timestamp to a
date representation.

See page B-13 for and
explanation of
date_format.

date_from_ustring (ustring) [date_format] Converts the string to a date
representation using the
specified date_format.

By default the string
format is yyyy-mm-dd.
Parallel Job Developer’s Guide 28-7

Stage Page Modify Stage
days_since_from_date [source_date]
(date)

Returns a value corresponding
to the number of days from
source_date to the date in the
source column.

source_date must be in
the form yyyy-mm-dd
and can be quoted or
unquoted.

decimal_from_decimal [r_type](decimal) Decimal from decimal. See page B-12 for an
explanation of r_type.

decimal_from_dfloat [r_type](dfloat) Decimal from dfloat. See page B-12 for an
explanation of r_type.

decimal_from_string [r_type](string) Decimal from string. See page B-12 for an
explanation of r_type.

decimal_from_ustring [r_type](string) See page B-12 for an
explanation of r_type.

dfloat_from_decimal [fix_zero](decimal) Dfloat from decimal. See page B-13 for an
explanation of fix_zero.

hours_from_time (time) Hours from time.

int32_from_decimal
[r_type, fix_zero](decimal)

Int32 from decimal. See page B-12 for an
explanation of r_type
and page B-13 for an
explanation of fix_zero.

int64_from_decimal
[r_type, fix_zero](decimal)

Int64 from decimal. See page B-12 for an
explanation of r_type
and page B-13 for an
explanation of fix_zero.

julian_day_from_date (date) Julian day from date.

lookup_string_from_int16[tableDefinition]
(int16)

Converts numeric values to
strings by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_ustring_from_int16
[tableDefinition] (int16)

Converts numeric values to
ustrings by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_ustring_from_int32
[tableDefinition] (int32)

Converts numeric values to
ustrings by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_string_from_uint32
[tableDefinition] (uint32)

Converts numeric values to
strings by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_int16_from_string
[tableDefinition](string)

Converts strings to numeric
values by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

Conversion Description Notes
28-8 Parallel Job Developer’s Guide

Modify Stage Stage Page
lookup_int16_from_ustring
[tableDefinition](ustring)

Converts strings to numeric
values by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_uint32_from_string
[tableDefinition](string)

Converts strings to numeric
values by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lookup_uint32_from_ustring
[tableDefinition](ustring)

Converts ustrings to numeric
values by means of a lookup
table.

See page 28-13 for an
explanation of
tableDefinition.

lowercase_string (string) Convert strings to all lower
case. Non-alphabetic
characters are ignored in the
conversion.

lowercase_ustring (string) Convert ustrings to all lower
case. Non-alphabetic
characters are ignored in the
conversion.

mantissa_from_decimal (dfloat) Returns the mantissa from the
given decimal

mantissa_from_dfloat (decimal) Returns the mantissa from the
given dfloat

microseconds_from_time (time) Microseconds from time.

midnight_seconds_from_time (time) Seconds-from-midnight from
time.

minutes_from_time (time) Minutes from time.

month_day_from_date (date) Day of month from date.

month_from_date (date) Month from date.

next_weekday_from_date [day](date) The destination contains the
date of the specified day of the
week soonest after the source
date (including the source
date). day is a string specifying
a day of the week.

You can specify day by
either the first three
characters of the day
name or the full day
name. The day can be
quoted in either single
or double quotes or
quotes can be omitted.

notnull (any) Returns true when an
expression does not evaluate
to the null value.

null (any) Returns true when an
expression does evaluate to
the null value

Conversion Description Notes
Parallel Job Developer’s Guide 28-9

Stage Page Modify Stage
previous_weekday_from_date[day] (date) The destination contains the
closest date for the specified
day of the week earlier than
the source date (including the
source date). The day is a
string specifying a day of the
week.

You can specify day by
either the first three
characters of the day
name or the full day
name. The day can be
quoted in either single
or double quotes or
quotes can be omitted.

raw_from_string (string) Returns a string in raw
representation

raw_length (raw) Returns the length of a raw

seconds_from_time (time) Seconds from time.

seconds_since_from_timestamp
timestamp

Seconds since the time given
by timestamp.

string_from_date [date_format](date) Converts the date to a string
representation using the
specified date_format.

By default, the string
format is yyyy-mm-dd.
See page B-13 for and
explanation of
date_format.

string_from_decimal [fix_zero](decimal) String from decimal. See page B-13 for an
explanation of fix_zero.

string_from_time [time_format](time) Converts the time to a string
representation using the
specified time_format.

By default, the string
format is %yyyy-%mm-
%dd

hh:nn:ss. See page B-13
for and explanation of
time_format.

string_from_timestamp
[timestamp_format] (timestamp)

Converts the timestamp to a
string representation using the
specified timestamp_format.

By default, the string
format is %yyyy-%mm-
%dd

hh:nn:ss. See page B-13
for and explanation of
time_format.

string_from_ustring (ustring) Returns a string from a ustring.

string_length (string) Returns an int32 containing
the length of a string.

Conversion Description Notes
28-10 Parallel Job Developer’s Guide

Modify Stage Stage Page
substring [startPosition,len] (string) Converts long strings to
shorter strings by string
extraction. The startPosition
specifies the starting location
of the substring; len specifies
the substring length.

If startPosition is
positive, it specifies the
byte offset into the
string from the
beginning of the string.
If startPosition is
negative, it specifies the
byte offset from the end
of the string.

time_from_midnight_seconds(dfloat) Time from seconds-from-
midnight.

time_from_string [time_format](string) Converts the string to a time
representation using the
specified time_format.

By default, the string
format is %yyyy-%mm-
%dd

hh:nn:ss. See page B-13
for and explanation of
time_format.

time_from_timestamp (timestamp) Time from timestamp.

time_from_ustring (ustring) Returns a time from a ustring.

timestamp_from_date [time](date) Timestamp from date. The
time argument optionally
specifies the time to be used in
building the timestamp result
and must be in the form
hh:nn:ss.

If omitted, the time
defaults to midnight.

timestamp_from_seconds_since
[timestamp](dfloat)

Timestamp from a seconds
since value.

timestamp_from_string

[timestamp_format]
(string)

Converts the string to a
timestamp representation

using the specified
timestamp_format.

By default, the string
format is %yyyy-%mm-
%dd

hh:nn:ss. See page B-13
for and explanation of
time_format.

timestamp_from_time

[date](time)

Timestamp from time. The
date argument is required. It
specifies the date

portion of the timestamp and
must be in the form yyyy-mm-
dd.

timestamp_from_
timet

(int32)

Timestamp from time_t. The
source field must contain a
timestamp as defined by the
UNIX time_t representation.

Conversion Description Notes
Parallel Job Developer’s Guide 28-11

Stage Page Modify Stage
timestamp_from_ustring (ustring) Returns a timestamp from a
ustring.

timet_from_timestamp (timestamp) Time_t from timestamp. The
destination column contains a
timestamp as defined by the
UNIX time_t representation.

uint64_from_decimal
[r_type, fix_zero](decimal)

Uint64 from decimal. See page B-12 for an
explanation of r_type
and page B-13 for an
explanation of fix_zero.

uppercase_string (string) Convert strings to all upper
case. Non-alphabetic
characters are ignored in the
conversion.

uppercase_ustring (ustring) Convert ustrings to all upper
case. Non-alphabetic
characters are ignored in the
conversion.

u_raw_from_string (ustring) Returns a raw from a ustring

ustring_from_date (date) Returns a ustring from a date.

ustring_from_decimal (decimal) Returns a ustring from a
decimal.

ustring_from_string (string) Returns a ustring from a string.

ustring from time (time) Returns a ustring from a time.

ustring_from_timestamp (timestamp) Returns a ustring from a
timestamp.

ustring_length Returns the length of a ustring.

u_substring (ustring)

weekday_from_date [originDay](date) Day of week from date.
originDay is a string specifying
the day considered to be day
zero of the week.

You can specify the day

using either the first
three characters of the
day name or the full day
name. If omitted,
Sunday is defined as
day zero. The originDay
can be either single- or
double-quoted or the
quotes can be omitted.

year_day_from_date (date) Day of year from date
(returned value 1–366).

year_from_date (date) Year from date.

Conversion Description Notes
28-12 Parallel Job Developer’s Guide

Modify Stage Stage Page
tableDefinition defines the rows of a string lookup table and has the

following form:

{propertyList} ('string' = value; 'string' = value; ...)

where:

propertyList is one or more of the following options; the entire list
is enclosed in braces and properties are separated by commas if
there are more than one:

– case_sensitive. Perform a case-sensitive search for matching
strings; the default is case-insensitive.

– default_value = defVal. The default numeric value returned
for a string that does not match any of the strings in the table.

– default_string = defString. The default string returned for
numeric values that do not match any numeric value in the
table.

string specifies a comma-separated list of strings associated with
value; enclose each string in quotes.

value specifies a comma-separated list of 16-bit integer values
associated with string.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. If you have
an input data set, it adopts Set or Clear from the previous stage.
You can explicitly select Set or Clear. Select Set to request the
next stage should attempt to maintain the partitioning.

year_week_from_date (date) Week of year from date.

Conversion Description Notes
Parallel Job Developer’s Guide 28-13

Input Page Modify Stage
Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the incoming

data set you are modifying. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Modify stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the modify is

performed.

By default the stage uses the auto partitioning method.

If the Modify stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Modify stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.
28-14 Parallel Job Developer’s Guide

Modify Stage Input Page
If the Modify stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Modify stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Modify stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Modify stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operation starts over.
Parallel Job Developer’s Guide 28-15

Outputs Page Modify Stage
Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the modify operation is

performed. The sort is always carried out within data partitions. If the

stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available for the default auto

methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
See Chapter 3, "Stage Editors," for a general description of the output

tabs.
28-16 Parallel Job Developer’s Guide

29
Filter Stage

The Filter stage is a processing stage. It can have a single input link

and a any number of output links and, optionally, a single reject link.

The Filter stage transfers, unmodified, the records of the input data

set which satisfy the specified requirements and filters out all other

records. You can specify different requirements to route rows down

different output links. The filtered out records can be routed to a reject

link, if required.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the input link
carrying the data to be filtered.

Outputs Page. This is where you specify details about the
filtered data being output from the stage down the various output
links.
Parallel Job Developer’s Guide 29-1

Specifying the Filter Filter Stage
Specifying the Filter
The operation of the filter stage is governed by the expressions you

set in the Where property on the Properties Tab. You can use the

following elements to specify the expressions:

Input columns.

Requirements involving the contents of the input columns.

Optional constants to be used in comparisons.

The Boolean operators AND and OR to combine requirements.

When a record meets the requirements, it is written unchanged to the

specified output link. The Where property supports standard SQL

expressions, except when comparing strings.

When quoting in the filter, you should use single, not double, inverted

commas.

Input Data Columns
If you specify a single column for evaluation, that column can be of

any data type. Note that DataStage’s treatment of strings differs

slightly from that of standard SQL. If you compare columns they must

be of the same or compatible data types. Otherwise, the operation

terminates with an error. Compatible data types are those that

DataStage converts by default. Regardless of any conversions the

whole row is transferred unchanged to the output. If the columns are

not compatible upstream of the filter stage, you can convert the types

by using a Modify stage prior to the Filter stage.

Column data type conversion is based on the following rules:

Any integer, signed or unsigned, when compared to a floating-
point type, is converted to floating-point.

Comparisons within a general type convert the smaller to the
larger size (sfloat to dfloat, uint8 to uint16, etc.)

When signed and unsigned integers are compared, unsigned are
converted to signed.

Decimal, raw, string, time, date, and timestamp do not figure in
type conversions. When any of these is compared to another type,
filter returns an error and terminates.

The input field can contain nulls. If it does, null values are less than all

non-null values, unless you specify the operators’s nulls last option.
29-2 Parallel Job Developer’s Guide

Filter Stage Specifying the Filter
Note The conversion of numeric data types may result in a loss of

range and cause incorrect results. DataStage displays a

warning message to that effect when range is lost.

Supported Boolean Expressions and Operators
The following list summarizes the Boolean expressions that are

supported. In the list, BOOLEAN denotes any Boolean expression.

true

false

six comparison operators: =, <>, <, >, <=, >=

is null

is not null

like 'abc' (the second operand must be a regular expression)

between (for example, A between B and C is equivalent to

B <= A and A => C)

not BOOLEAN

BOOLEAN is true

BOOLEAN is false

BOOLEAN is not true

BOOLEAN is not false

Any of these can be combined using AND or OR.

Order of Association

As in SQL, expressions are associated left to right. AND and OR have

the same precedence. You may group fields and expressions in

parentheses to affect the order of evaluation.

String Comparison
DataStage sorts string values according to these general rules:

Characters are sorted in lexicographic order.

Strings are evaluated by their ASCII value.

Sorting is case sensitive, that is, uppercase letters appear before
lowercase letter in sorted data.

Null characters appear before non-null characters in a sorted data
set, unless you specify the nulls last option.
Parallel Job Developer’s Guide 29-3

Specifying the Filter Filter Stage
Byte-for-byte comparison is performed.

Examples
The following give some example Where properties.

Comparing Two Fields

You want to compare columns number1 and number2. If the data in

column number1 is greater than the data in column number2, the

corresponding records are to be written to output link 2.

You enter the following in the Where property:

name1 > name2

You then select output link 2 in the dependent Output Link property.

(You use the Link Ordering tab to specify the number order of the

output links).

Testing for a Null

You want to test column serialno to see if it contains a null. If it does,

you want to write the corresponding records to the output link.

You enter the following in the Where property:

serialno is null

In this example the stage only has one output link. You do not need to

specify the Output Link property because the stage will write to the

output link by default.

Evaluating Input Columns

You want to evaluate each input row to see if these conditions prevail:

EITHER all the following are true

– Column number1 does not have the value 0

– Column number2 does not have the value 3

– Column number3 has the value 0

OR column name equals the string ZAG

You enter the following in the Where property:

number1 <> 0 and number2 <> 3 and number3 = 0 or name = 'ZAG'

If these conditions are met, the stage writes the row to the output link.
29-4 Parallel Job Developer’s Guide

Filter Stage Must Do’s
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Filter stages in a job. This section specifies the minimum steps

to take to get a Filter stage functioning. DataStage provides a versatile

user interface, and there are many shortcuts to achieving a particular

end, this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

To use a Filter stage:

In the Stage Page Properties Tab:

– Supply the specifications that determine which records are
accepted and which are filtered out. This is given in the form of
a Where clause. You can multiple statements each applying to
different links.

– Specify which Where clause correspond to which output links.

– Specify whether rows that fail to satisfy any of the Where
clauses will be routed to a reject link.

– Specify whether rows are output only for the first Where clause
they satisfy, or for any clauses they satisfy.

In the Stage Page Link Ordering Tab, specify which order the
output links are processed in. This is important where you specify
that rows are only output for the first Where clause that they
satisfy.

Ensure that meta data has been defined for input link and output
links, and reject link, if applicable.

In the Outputs Page Mapping Tab, specify how the input
columns of the data set being filtered map onto the columns of
the various output links.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify what order the output links

are processed in. The NLS Locale tab appears if your have NLS

enabled on your system. It allows you to select a locale other than the

project default to determine collating rules.
Parallel Job Developer’s Guide 29-5

Stage Page Filter Stage
Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Predicates Category

Where clause

Specify a Where statement that a row must satisfy in order to be

routed down this link. This is like an SQL Where clause, see

"Specifying the Filter" on page 29-2 for details.

Output link

Specify the output link corresponding to the Where clause.

Options Category

Output rejects

Set this to true to output rows that satisfy no Where clauses down the

reject link (remember to specify which link is the reject link on the

parallel job canvas).

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Predicates/Where
clause

string N/A Y Y N/A

Predicates/Output
link

Output link N/A Y N Where clause

Options/Output
rejects

True/False False Y N N/A

Options/Output
rows only once

True/False False Y N N/A

Options/Nulls
value

Less Than/
Greater Than

Less Than N N N/A
29-6 Parallel Job Developer’s Guide

Filter Stage Stage Page
Output rows only once

Set this to true to specify that rows are only output down the link of

the first Where clause they satisfy. Set to false to have rows output

down the links of all Where clauses that they satisfy.

Nulls value

Specify whether null values are treated as greater than or less than

other values.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting of the previous stage.You can explicitly select Set or
Clear. Select Set to request the stage should attempt to maintain
the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 29-7

Stage Page Filter Stage
Link Ordering Tab
This tab allows you to specify the order in which output links are

processed. This is important where you have set the Output rows only

once property to True.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Filter stage uses this when evaluating Where clauses. Select a
29-8 Parallel Job Developer’s Guide

Filter Stage Input Page
locale from the list, or click the arrow button next to the list to use a

job parameter or browse for a collate file.

Input Page
The Inputs page allows you to specify details about the data set being

filtered. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Filter stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the filter is performed.

By default the stage uses the auto partitioning method.

If the Filter stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.
Parallel Job Developer’s Guide 29-9

Input Page Filter Stage
The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Filter stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Filter stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Filter stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Filter stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:
29-10 Parallel Job Developer’s Guide

Filter Stage Input Page
(Auto). This is the default collection method for the Filter stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the remove duplicates

operation is performed. The sort is always carried out within data

partitions. If the stage is partitioning incoming data the sort occurs

after the partitioning. If the stage is collecting data, the sort occurs

before the collection. The availability of sorting depends on the

partitioning or collecting method chosen (it is not available for the

default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 29-11

Outputs Page Filter Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Filter stage. The stage can have any number of output links,

plus one reject link, choose the one you want to work on from the

Output name drop down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Filter stage and the output columns.

The Advanced tab allows you to change the default buffering settings

for the output links.

Details about Filter stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Filter stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what filtered columns map onto

them.

The left pane shows the filtered columns. These are read only and

cannot be modified on this tab.

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is

derived.You can fill it in by dragging copied columns over, or by using

the Auto-match facility.
29-12 Parallel Job Developer’s Guide

Filter Stage Outputs Page
In the above example the left pane represents the incoming data after

the filter has been performed. The right pane represents the data

being output by the stage after the copy operation. In this example the

data has been mapped straight across.
Parallel Job Developer’s Guide 29-13

Outputs Page Filter Stage
29-14 Parallel Job Developer’s Guide

30
External Filter Stage

The External Filter stage is a processing stage. It can have a single

input link and a single output link.

The External Filter stage allows you to specify a UNIX command that

acts as a filter on the data you are processing. An example would be

to use the stage to grep a data set for a certain string, or pattern, and

discard records which did not contain a match. This can be a quick and

efficient way of filtering data.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the input link
carrying the data to be filtered.

Outputs Page. This is where you specify details about the
filtered data being output from the stage.
Parallel Job Developer’s Guide 30-1

Must Do’s External Filter Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include External Filter stages in a job. This section specifies the

minimum steps to take to get an External Filter stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use an External Filter stage:

In the Stage Page Properties Tab specify the filter command the
stage will use. Optionally add arguments that the command
requires.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Options Category

Filter Command

Specifies the filter command line to be executed and any command

line options it requires. For example:

grep

Category/Property Values Default Mandatory? Repeats? Dependent of

Options/Filter
Command

string N/A Y N N/A

Options/Arguments string N/A N N N/A
30-2 Parallel Job Developer’s Guide

External Filter Stage Input Page
Arguments

Allows you to specify any arguments that the command line requires.

For example:

\(cancel\).*\1

Together with the grep command would extract all records that

contained the string “cancel” twice and discard other records.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
the setting of the previous stage.You can explicitly select Set or
Clear. Select Set to request the next stage should attempt to
maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the data set being

filtered. There is only one input link.
Parallel Job Developer’s Guide 30-3

Input Page External Filter Stage
The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about External Filter stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the filter is executed.

By default the stage uses the auto partitioning method.

If the External Filter stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the External Filter stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the External Filter stage is set to execute in parallel, then you can set

a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the External Filter stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the External Filter stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.
30-4 Parallel Job Developer’s Guide

External Filter Stage Input Page
Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the External Filter
stage. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the remove duplicates

operation is performed. The sort is always carried out within data

partitions. If the stage is partitioning incoming data the sort occurs

after the partitioning. If the stage is collecting data, the sort occurs

before the collection. The availability of sorting depends on the

partitioning or collecting method chosen (it is not available for the

default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.
Parallel Job Developer’s Guide 30-5

Outputs Page External Filter Stage
Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the External Filter stage. The stage can only have one output

link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of these tabs.
30-6 Parallel Job Developer’s Guide

31
Change Capture Stage

The Change Capture Stage is a processing stage. The stage compares

two data sets and makes a record of the differences.

The Change Capture stage takes two input data sets, denoted before

and after, and outputs a single data set whose records represent the

changes made to the before data set to obtain the after data set. The

stage produces a change data set, whose table definition is

transferred from the after data set’s table definition with the addition

of one column: a change code with values encoding the four actions:

insert, delete, copy, and edit. The preserve-partitioning flag is set on

the change data set.

The compare is based on a set a set of key columns, rows from the

two data sets are assumed to be copies of one another if they have the

same values in these key columns. You can also optionally specify

change values. If two rows have identical key columns, you can

compare the value columns in the rows to see if one is an edited copy

of the other.

The stage assumes that the incoming data is key-partitioned and

sorted in ascending order. The columns the data is hashed on should

be the key columns used for the data compare. You can achieve the

sorting and partitioning using the Sort stage or by using the built-in

sorting and partitioning abilities of the Change Capture stage.

You can use the companion Change Apply stage to combine the

changes from the Change Capture stage with the original before data

set to reproduce the after data set (see Chapter 32).
Parallel Job Developer’s Guide 31-1

Example Data Change Capture Stage
The Change Capture stage is very similar to the Difference stage

described in Chapter 33.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data set
having its duplicates removed.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Data
This example shows a before and after data set, and the data set that

is output by the Change Capture stage when it has compared them.

This is the before data set:
31-2 Parallel Job Developer’s Guide

Change Capture Stage Must Do’s
This is the after data set:

This is the data set output by the Change Capture stage (bcol4 is the

key column, bcol1 the value column):

The change_code indicates that, in these three rows, the bcol1 column

in the after data set has been edited. The bcol1 column carries the

edited value.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Change Capture stages in a job. This section specifies the

minimum steps to take to get a Change Capture stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Change Capture stage:

In the Stage Page Properties Tab:
Parallel Job Developer’s Guide 31-3

Stage Page Change Capture Stage
– Specify the key column. You can repeat this property to specify
a composite key. Before and after rows are considered to be
the same if they have the same value in the key column or
columns.

– Optionally specify one or more Value columns. This enables
you to determine if an after row is an edited version of a before
row.

(You can also set the Change Mode property to have DataStage

treat all columns not defined as keys treated as values, or all

columns not defined as values treated as keys.)

– Specify whether the stage will output the changed row or drop
it. You can specify this individually for each type of change
(copy, delete, edit, or insert).

In the Stage Page Link Ordering Tab, specify which of the two
links carries the before data set and which carries the after data
set.

If the two incoming data sets aren’t already key partitioned on the
key columns and sorted, set DataStage to do this on the Inputs
Page Partitioning Tab.

In the Outputs Page Mapping Tab, specify how the change data
columns are mapped onto the output link columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify which input link carries the

before data set and which the after data set. The NLS Locale tab

appears if your have NLS enabled on your system. It allows you to

select a locale other than the project default to determine collating

rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.
31-4 Parallel Job Developer’s Guide

Change Capture Stage Stage Page
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Change Keys/Key Input Column N/A Y Y N/A

Change Keys/Case
Sensitive

True/False True N N Key

Change Keys/Sort
Order

Ascending/
Descending

Ascendin
g

N N Key

Change Keys/Nulls
Position

First/Last First N N Key

Change Values/
Value

Input Column N/A N Y N/A

Change Values/
Case Sensitive

True/False True N N Value

Options/Change
Mode

Explicit Keys &
Values/All keys,
Explicit values/
Explicit Keys,
All Values

Explicit
Keys &
Values

Y N N/A

Options/Log
Statistics

True/False False N N N/A

Options/Drop
Output for Insert

True/False False N N N/A

Options/Drop
Output for Delete

True/False False N N N/A

Options/Drop
Output for Edit

True/False False N N N/A

Options/Drop
Output for Copy

True/False True N N N/A

Options/Code
Column Name

string change_
code

N N N/A

Options/Copy
Code

number 0 N N N/A

Options/Deleted
Code

number 2 N N N/A

Options/Edit Code number 3 N N N/A

Options/Insert
Code

number 1 N N N/A
Parallel Job Developer’s Guide 31-5

Stage Page Change Capture Stage
Change Keys Category

Key

Specifies the name of a difference key input column (see page 31-1 for

an explanation of how Key columns are used). This property can be

repeated to specify multiple difference key input columns. You can

use the Column Selection dialog box to select several keys at once if

required (see page 3-10). Key has the following dependent properties:

Case Sensitive

Use this property to specify whether each key is case sensitive or

not. It is set to True by default; for example, the values “CASE”

and “case” would not be judged equivalent.

Sort Order

Specify ascending or descending sort order.

Nulls Position

Specify whether null values should be placed first or last.

Change Value category

Value

Specifies the name of a value input column (see page 31-1 for an

explanation of how Value columns are used). You can use the

Column Selection dialog box to select values at once if required

(see page 3-10). Value has the following dependent properties:

Case Sensitive

Use this to property to specify whether each value is case

sensitive or not. It is set to True by default; for example, the values

“CASE” and “case” would not be judged equivalent.

Options Category

Change Mode

This mode determines how keys and values are specified. Choose

Explicit Keys & Values to specify the keys and values yourself. Choose

All keys, Explicit values to specify that value columns must be

defined, but all other columns are key columns unless excluded.

Choose Explicit Keys, All Values to specify that key columns must be

defined but all other columns are value columns unless they are

excluded.
31-6 Parallel Job Developer’s Guide

Change Capture Stage Stage Page
Log Statistics

This property configures the stage to display result information

containing the number of input rows and the number of copy, delete,

edit, and insert rows.

Drop Output for Insert

Specifies to drop (not generate) an output row for an insert result. By

default, an output row is always created by the stage.

Drop Output for Delete

Specifies to drop (not generate) the output row for a delete result. By

default, an output row is always created by the stage.

Drop Output for Edit

Specifies to drop (not generate) the output row for an edit result. By

default, an output row is always created by the stage.

Drop Output for Copy

Specifies to drop (not generate) the output row for a copy result. By

default, an output row is not created by the stage.

Code Column Name

Allows you to specify a different name for the output column carrying

the change code generated for each record by the stage. By default

the column is called change_code.

Copy Code

Allows you to specify an alternative value for the code that indicates

the after record is a copy of the before record. By default this code is 0.

Deleted Code

Allows you to specify an alternative value for the code that indicates

that a record in the before set has been deleted from the after set. By

default this code is 2.

Edit Code

Allows you to specify an alternative value for the code that indicates

the after record is an edited version of the before record. By default

this code is 3.
Parallel Job Developer’s Guide 31-7

Stage Page Change Capture Stage
Insert Code

Allows you to specify an alternative value for the code that indicates a

new record has been inserted in the after set that did not exist in the

before set. By default this code is 1.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pools or pools specified in the grid. The grid allows you
to make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
31-8 Parallel Job Developer’s Guide

Change Capture Stage Stage Page
Link Ordering Tab
This tab allows you to specify which input link carries the before data

set and which carries the after data set.

By default the first link added will represent the before set. To

rearrange the links, choose an input link and click the up arrow button

or the down arrow button.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Change Capture stage uses this when it is determining the sort

order for key columns. Select a locale from the list, or click the arrow
Parallel Job Developer’s Guide 31-9

Inputs Page Change Capture Stage
button next to the list to use a job parameter or browse for a collate

file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Change Capture expects two incoming data sets: a

before data set and an after data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being compared. The Columns tab

specifies the column definitions of incoming data. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Change Capture stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is compared. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
31-10 Parallel Job Developer’s Guide

Change Capture Stage Inputs Page
current and preceding stages and how many nodes are specified in

the Configuration file. In the case of the Change Capture stage,

DataStage will determine if the incoming data is key partitioned. If it

is, the Same method is used, if not, DataStage will hash partition the

data and sort it. You could also explicitly choose hash and take

advantage of the on-stage sorting.

If the Change Capture stage is operating in sequential mode, it will

first collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Change Capture stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Change Capture stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Change Capture stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Change Capture
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.
Parallel Job Developer’s Guide 31-11

Inputs Page Change Capture Stage
DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Change Capture
stages. For the Change Capture stage, DataStage will ensure that
the data is sorted as it is collected.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being compared. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for
31-12 Parallel Job Developer’s Guide

Change Capture Stage Outputs Page
partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Change Capture stage. The Change Capture stage can have

only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Change Capture stage and the Output

columns. The Advanced tab allows you to change the default

buffering settings for the output link.

Details about Change Capture stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Mapping Tab
For the Change Capture stage the Mapping tab allows you to specify

how the output columns are derived, i.e., what input columns map

onto them and which column carries the change code data.
Parallel Job Developer’s Guide 31-13

Outputs Page Change Capture Stage
The left pane shows the columns from the before/after data sets plus

the change code column. These are read only and cannot be modified

on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility. By default the data set columns are mapped

automatically. You need to ensure that there is an output column to

carry the change code and that this is mapped to the Change_code

column.
31-14 Parallel Job Developer’s Guide

32
Change Apply Stage

The Change Apply stage is a processing stage. It takes the change

data set, that contains the changes in the before and after data sets,

from the Change Capture stage and applies the encoded change

operations to a before data set to compute an after data set. (See

Chapter 31 for a description of the Change Capture stage.)

The before input to Change Apply must have the same columns as the

before input that was input to Change Capture, and an automatic

conversion must exist between the types of corresponding columns.

In addition, results are only guaranteed if the contents of the before

input to Change Apply are identical (in value and record order in each

partition) to the before input that was fed to Change Capture, and if

the keys are unique.

Note The change input to Change Apply must have been output

from Change Capture without modification. Because

preserve-partitioning is set on the change output of Change

Capture, you will be warned at run time if the Change Apply

stage does not have the same number of partitions as the

Change Capture stage. Additionally, both inputs of Change

Apply are designated as partitioned using the Same

partitioning method.
Parallel Job Developer’s Guide 32-1

Change Apply Stage
The Change Apply stage reads a record from the change data set and

from the before data set, compares their key column values, and acts

accordingly:

If the before keys come before the change keys in the specified
sort order, the before record is copied to the output. The change
record is retained for the next comparison.

If the before keys are equal to the change keys, the behavior
depends on the code in the change_code column of the change
record:

– Insert: The change record is copied to the output; the stage
retains the same before record for the next comparison. If key
columns are not unique, and there is more than one
consecutive insert with the same key, then Change Apply
applies all the consecutive inserts before existing records. This
record order may be different from the after data set given to
Change Capture.

– Delete: The value columns of the before and change records
are compared. If the value columns are the same or if the
Check Value Columns on Delete is specified as False, the
change and before records are both discarded; no record is
transferred to the output. If the value columns are not the
same, the before record is copied to the output and the stage
retains the same change record for the next comparison.

If key columns are not unique, the value columns ensure that
the correct record is deleted. If more than one record with the
same keys have matching value columns, the first-encountered
record is deleted. This may cause different record ordering
than in the after data set given to the Change Capture stage. A
warning is issued and both change record and before record
are discarded, i.e. no output record results.

– Edit: The change record is copied to the output; the before
record is discarded. If key columns are not unique, then the
first before record encountered with matching keys will be
edited. This may be a different record from the one that was
edited in the after data set given to the Change Capture stage.
A warning is issued and the change record is copied to the
output; but the stage retains the same before record for the
next comparison.

– Copy: The change record is discarded. The before record is
copied to the output.

If the before keys come after the change keys, behavior also
depends on the change_code column:
32-2 Parallel Job Developer’s Guide

Change Apply Stage Example Data
– Insert. The change record is copied to the output, the stage
retains the same before record for the next comparison. (The
same as when the keys are equal.)

– Delete. A warning is issued and the change record discarded
while the before record is retained for the next comparison.

– Edit or Copy. A warning is issued and the change record is
copied to the output while the before record is retained for the
next comparison.

Note If the before input of Change Apply is identical to the before

input of Change Capture and either the keys are unique or

copy records are used, then the output of Change Apply is

identical to the after input of Change Capture. However, if

the before input of Change Apply is not the same (different

record contents or ordering), or the keys are not unique and

copy records are not used, this is not detected and the rules

described above are applied anyway, producing a result

that might or might not be useful.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Data
This example shows a before and change data set, and the data set

that is output by the Change Apply stage when it has compared them.
Parallel Job Developer’s Guide 32-3

Example Data Change Apply Stage
This is the before data set:

This is the change data set, as output by a Change Capture stage:

This is the after data set, output by the Change Apply stage (bcol4 is

the key column, bcol1 the value column):
32-4 Parallel Job Developer’s Guide

Change Apply Stage Must Do’s
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Change Apply stages in a job. This section specifies the

minimum steps to take to get a Change Apply stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Change Apply stage:

In the Stage Page Properties Tab:

– Specify the key column. You can repeat this property to specify
a composite key. Before and change rows are considered to be
the same if they have the same value in the key column or
columns.

– Optionally specify one or more Value columns.

(You can also set the Change Mode property to have DataStage

treat all columns not defined as keys treated as values, or all

columns not defined as values treated as keys.)

In the Stage Page Link Ordering Tab, specify which of the two
links carries the before data set and which carries the change data
set.

In the Outputs Page Mapping Tab, specify how the change data
columns are mapped onto the output link columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.
Parallel Job Developer’s Guide 32-5

Stage Page Change Apply Stage
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Change Keys Category

Key

Specifies the name of a difference key input column. This property can

be repeated to specify multiple difference key input columns. You can

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Change Keys/Key Input Column N/A Y Y N/A

Change Keys/Case
Sensitive

True/False True N N Key

Change Keys/Sort
Order

Ascending/
Descending

Ascending N N Key

Change Keys/Nulls
Position

First/Last First N N Key

Change Values/
Value

Input Column N/A N Y N/A

Change Values/
Case Sensitive

True/False True N N Value

Options/Change
Mode

Explicit Keys &
Values/All keys,
Explicit values/
Explicit Keys,
All Values

Explicit Keys
& Values

Y N N/A

Options/Log
Statistics

True/False False N N N/A

Options/Check
Value Columns on
Delete

True/False True Y N N/A

Options/Code
Column Name

string change_
code

N N N/A

Options/Copy
Code

number 0 N N N/A

Options/Deleted
Code

number 2 N N N/A

Options/Edit Code number 3 N N N/A

Options/Insert
Code

number 1 N N N/A
32-6 Parallel Job Developer’s Guide

Change Apply Stage Stage Page
use the Column Selection dialog box to select several keys at once if

required (see page 3-10). Key has the following dependent properties:

Case Sensitive

Use this to property to specify whether each key is case sensitive

or not. It is set to True by default; for example, the values “CASE”

and “case” would not be judged equivalent.

Sort Order

Specify ascending or descending sort order.

Nulls Position

Specify whether null values should be placed first or last.

Change Value category

Value

Specifies the name of a value input column (see page 32-2 for an

explanation of how Value columns are used). You can use the

Column Selection dialog box to select several values at once if

required (see page 3-10). Value has the following dependent

properties:

Case Sensitive

Use this to property to specify whether each value is case

sensitive or not. It is set to True by default; for example, the values

“CASE” and “case” would not be judged equivalent.

Options Category

Change Mode

This mode determines how keys and values are specified. Choose

Explicit Keys & Values to specify the keys and values yourself. Choose

All keys, Explicit values to specify that value columns must be

defined, but all other columns are key columns unless excluded.

Choose Explicit Keys, All Values to specify that key columns must be

defined but all other columns are value columns unless they are

excluded.

Log Statistics

This property configures the stage to display result information

containing the number of input records and the number of copy,

delete, edit, and insert records.
Parallel Job Developer’s Guide 32-7

Stage Page Change Apply Stage
Check Value Columns on Delete

Specifies that DataStage should not check value columns on deletes.

Normally, Change Apply compares the value columns of delete

change records to those in the before record to ensure that it is

deleting the correct record.

Code Column Name

Allows you to specify that a different name has been used for the

change data set column carrying the change code generated for each

record by the stage. By default the column is called change_code.

Copy Code

Allows you to specify an alternative value for the code that indicates a

record copy. By default this code is 0.

Deleted Code

Allows you to specify an alternative value for the code that indicates a

record delete. By default this code is 2.

Edit Code

Allows you to specify an alternative value for the code that indicates a

record edit. By default this code is 3.

Insert Code

Allows you to specify an alternative value for the code that indicates a

record insert. By default this code is 1.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.
32-8 Parallel Job Developer’s Guide

Change Apply Stage Stage Page
Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Link Ordering Tab
This tab allows you to specify which input link carries the before data

set and which carries the change data set.

By default the first link added will represent the before set. To

rearrange the links, choose an input link and click the up arrow button

or the down arrow button.
Parallel Job Developer’s Guide 32-9

Inputs Page Change Apply Stage
NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Change Apply stage uses this when it is determining the sort

order for key columns. Select a locale from the list, or click the arrow

button next to the list to use a job parameter or browse for a collate

file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being compared. The Columns tab

specifies the column definitions of incoming data. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Change Apply stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.
32-10 Parallel Job Developer’s Guide

Change Apply Stage Inputs Page
Partitioning Tab
The change input to Change Apply should have been output from the

Change Capture stage without modification and should have the

same number of partitions. Additionally, both inputs of Change Apply

are automatically designated as partitioned using the Same

partitioning method.

The standard partitioning and collecting controls are available on the

Change Apply stage, however, so you can override this behavior.

If the Change Apply stage is operating in sequential mode, it will first

collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override the default behavior. The

exact operation of this tab depends on:

Whether the Change Apply stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Change Apply stage is set to execute in parallel, then you can set

a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Change Apply stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Change Apply stage, and
will apply the Same method.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.
Parallel Job Developer’s Guide 32-11

Inputs Page Change Apply Stage
Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Change Apply
stage. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the operation is performed. The

sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.
32-12 Parallel Job Developer’s Guide

Change Apply Stage Outputs Page
You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Change Apply stage. The Change Apply stage can have only

one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data.The Mapping tab allows you to specify the relationship between

the columns being input to the Change Apply stage and the Output

columns. The Advanced tab allows you to change the default

buffering settings for the output link.

Details about Change Apply stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Mapping Tab
For the Change Capture stage the Mapping tab allows you to specify

how the output columns are derived, i.e., what input columns map

onto them or how they are generated.
Parallel Job Developer’s Guide 32-13

Outputs Page Change Apply Stage
The left pane shows the common columns of the before and change

data sets. These are read only and cannot be modified on this tab.

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility. By default the columns are mapped straight across as

shown in the example.
32-14 Parallel Job Developer’s Guide

33
Difference Stage

The Difference stage is a processing stage. It performs a record-by-

record comparison of two input data sets, which are different versions

of the same data set designated the before and after data sets. The

Difference stage outputs a single data set whose records represent the

difference between them. The stage assumes that the input data sets

have been key-partitioned and sorted in ascending order on the key

columns you specify for the Difference stage comparison. You can

achieve this by using the Sort stage or by using the built in sorting and

partitioning abilities of the Difference stage.

The comparison is performed based on a set of difference key

columns. Two records are copies of one another if they have the same

value for all difference keys. You can also optionally specify change

values. If two records have identical key columns, you can compare

the value columns to see if one is an edited copy of the other.

The Difference stage is similar, but not identical, to the Change

Capture stage described in Chapter 31. The Change Capture stage is

intended to be used in conjunction with the Change Apply stage

(Chapter 32); it produces a change data set which contains changes

that need to be applied to the before data set to turn it into the after

data set. The Difference stage outputs the before and after rows to the

output data set, plus a code indicating if there are differences. Usually,

the before and after data will have the same column names, in which

case the after data set effectively overwrites the before data set and so

you only see one set of columns in the output. You are warned that

DataStage is doing this. If your before and after data sets have

different column names, columns from both data sets are output; note

that any key and value columns must have the same name.
Parallel Job Developer’s Guide 33-1

Example Data Difference Stage
The stage generates an extra column, Diff, which indicates the result

of each record comparison.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify details about the data set
having its duplicates removed.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Data
This example shows a before and after data set, and the data set that

is output by the Difference stage when it has compared them.

This is the before data set:
33-2 Parallel Job Developer’s Guide

Difference Stage Must Do’s
This is the after data set:

This is the data set output by the Difference stage (Key is the key

column, All non-key columns are values is set True, all other settings

take the default):

The diff column indicates that rows b, e, and f have been edited in the

after data set (the rows output carry the data after editing).

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Difference stages in a job. This section specifies the minimum

steps to take to get a Difference stage functioning. DataStage provides

a versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Difference stage:

In the Stage Page Properties Tab:
Parallel Job Developer’s Guide 33-3

Stage Page Difference Stage
– Specify the key column. You can repeat this property to specify
a composite key. Before and after rows are considered to be
the same if they have the same value in the key column or
columns.

– Optionally specify one or more Difference Value columns. This
enables you to determine if an after row is an edited version of
a before row.

(You can also set the All non-Key columns are Values property to

have DataStage treat all columns not defined as keys treated as

values.)

– Specify whether the stage will output the changed row or drop
it. You can specify this individually for each type of change
(copy, delete, edit, or insert).

In the Stage Page Link Ordering Tab, specify which of the two
links carries the before data set and which carries the after data
set.

If the two incoming data sets aren’t already hash partitioned on
the key columns and sorted, set DataStage to do this on the
Inputs Page Partitioning Tab.

In the Outputs Page Mapping Tab, specify how the difference
columns are mapped onto the output link columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify which input link carries the

before data set and which the after data set. The NLS Locale tab

appears if your have NLS enabled on your system. It allows you to

select a locale other than the project default to determine collating

rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.
33-4 Parallel Job Developer’s Guide

Difference Stage Stage Page
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Difference Keys Category

Key

Specifies the name of a difference key input column. This property can

be repeated to specify multiple difference key input columns. You can

use the Column Selection dialog box to select several keys at once if

required (see page 3-10). Key has this dependent property:

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Difference Keys/Key Input Column N/A Y Y N/A

Difference Keys/Case
Sensitive

True/False True N N Key

Difference Values/All
non-Key Columns are
Values

True/False False Y N N/A

Difference Values/
Case Sensitive

True/False True N N All non-Key
Columns are
Values (when
true)

Options/Tolerate
Unsorted Inputs

True/False False N N N/A

Options/Log Statistics True/False False N N N/A

Options/Drop Output
for Insert

True/False False N N N/A

Options/Drop Output
for Delete

True/False False N N N/A

Options/Drop Output
for Edit

True/False False N N N/A

Options/Drop Output
for Copy

True/False False N N N/A

Options/Copy Code number 0 N N N/A

Options/Deleted Code number 2 N N N/A

Options/Edit Code number 3 N N N/A

Options/Insert Code number 1 N N N/A
Parallel Job Developer’s Guide 33-5

Stage Page Difference Stage
Case Sensitive

Use this to property to specify whether each key is case sensitive

or not. It is set to True by default; for example, the values “CASE”

and “case” would not be judged equivalent.

Difference Values Category

All non-Key Columns are Values

Set this to True to indicate that any columns not designated as

difference key columns are value columns (see page 33-1 for a

description of value columns). It is False by default. The property has

this dependent property:

Case Sensitive

Use this to property to specify whether each value is case

sensitive or not. It is set to True by default; for example, the values

“CASE” and “case” would not be judged equivalent. This property

is only available if the All non-Key columns are values property is

set to True.

Options Category

Tolerate Unsorted Inputs

Specifies that the input data sets are not sorted. This property allows

you to process groups of records that may be arranged by the

difference key columns but not sorted. The stage processed the input

records in the order in which they appear on its input. It is False by

default.

Log Statistics

This property configures the stage to display result information

containing the number of input records and the number of copy,

delete, edit, and insert records. It is False by default.

Drop Output for Insert

Specifies to drop (not generate) an output record for an insert result.

By default, an output record is always created by the stage.

Drop Output for Delete

Specifies to drop (not generate) the output record for a delete result.

By default, an output record is always created by the stage.
33-6 Parallel Job Developer’s Guide

Difference Stage Stage Page
Drop Output for Edit

Specifies to drop (not generate) the output record for an edit result. By

default, an output record is always created by the stage.

Drop Output for Copy

Specifies to drop (not generate) the output record for a copy result. By

default, an output record is always created by the stage.

Copy Code

Allows you to specify an alternative value for the code that indicates

the after record is a copy of the before record. By default this code is 2.

Deleted Code

Allows you to specify an alternative value for the code that indicates

that a record in the before set has been deleted from the after set. By

default this code is 1.

Edit Code

Allows you to specify an alternative value for the code that indicates

the after record is an edited version of the before record. By default

this code is 3.

Insert Code

Allows you to specify an alternative value for the code that indicates a

new record has been inserted in the after set that did not exist in the

before set. By default this code is 0.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.
Parallel Job Developer’s Guide 33-7

Stage Page Difference Stage
Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Link Ordering Tab
This tab allows you to specify which input link carries the before data

set and which carries the after data set.

By default the first link added will represent the before set. To

rearrange the links, choose an input link and click the up arrow button

or the down arrow button.
33-8 Parallel Job Developer’s Guide

Difference Stage Inputs Page
NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Difference stage uses this when it is determining the sort order for

key columns. Select a locale from the list, or click the arrow button

next to the list to use a job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Difference stage expects two incoming data sets: a

before data set and an after data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being compared. The Columns tab

specifies the column definitions of incoming data. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Difference stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 33-9

Inputs Page Difference Stage
Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the operation is

performed. It also allows you to specify that the data should be sorted

before being operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file. For a Difference stage, DataStage checks to see

if the incoming data is key-partitioned and sorted. If it is, the Same

method is used, if not, DataStage will key partition the data and sort it.

You could also explicitly choose hash or modulus partitioning

methods and take advantage of the on-stage sorting.

If the Difference stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Difference stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Difference stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Difference stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Difference
stage. If the incoming data is already key-partitioned and sorted,
DataStage will use the Same method. Otherwise it will key
partition and sort for you.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.
33-10 Parallel Job Developer’s Guide

Difference Stage Inputs Page
Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button

The following Collection methods are available:

(Auto). This is the default collection method for Difference stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available. For
the Difference stage, DataStage will ensure that the data is sorted
as it is collected.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the operation is performed. The

sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.
Parallel Job Developer’s Guide 33-11

Outputs Page Difference Stage
Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Difference stage. The Difference stage can have only one

output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Difference stage and the Output

columns. The Advanced tab allows you to change the default

buffering settings for the output link.

Details about Difference stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
33-12 Parallel Job Developer’s Guide

Difference Stage Outputs Page
Mapping Tab
For the Difference stage the Mapping tab allows you to specify how

the output columns are derived, i.e., what input columns map onto

them or how they are generated.

The left pane shows the columns from the before/after data sets plus

the DiffCode column. These are read only and cannot be modified on

this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility. By default the data set columns are mapped

automatically. You need to ensure that there is an output column to

carry the change code and that this is mapped to the DiffCode column.
Parallel Job Developer’s Guide 33-13

Outputs Page Difference Stage
33-14 Parallel Job Developer’s Guide

34
Compare Stage

The Compare stage is a processing stage. It can have two input links

and a single output link.

The Compare stage performs a column-by-column comparison of

records in two presorted input data sets. You can restrict the

comparison to specified key columns.

The Compare stage does not change the table definition, partitioning,

or content of the records in either input data set. It transfers both data

sets intact to a single output data set generated by the stage. The

comparison results are also recorded in the output data set.

We recommend that you use runtime column propagation in this

stage and allow DataStage to define the output column schema for

you. The stage outputs a data set with three columns:

result. Carries the code giving the result of the comparison.

first. A subrecord containing the columns of the first input link.

second. A subrecord containing the columns of the second input
link.

If you specify the output link meta data yourself, you should use fully

qualified names for the column definitions (e.g. first.col1, second.col1

etc.), because DataStage will not let you specify two lots of identical

column names.
Parallel Job Developer’s Guide 34-1

Example Data Compare Stage
The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Data
This example shows two data sets being compared, and the data set

that is output by the Compare stage when it has compared them.

This is the first data set:
34-2 Parallel Job Developer’s Guide

Compare Stage Must Do’s
This is the second data set:

The stage compares on the Key columns bcol1 and bcol4. This is the

output data set:

Result First Second

bcol0 bcol1 bcol2 bcol3 bcol4 bcol0 bcol1 bcol2 bcol3 col4

0 0 0 0 0 a 0 0 0 0 a

2 1 7 1 1 b 1 1 1 1 b

0 2 2 2 2 c 2 2 2 2 c

0 3 3 3 3 d 3 3 3 3 d

2 4 5 4 4 e 4 4 4 4 e

-1 5 2 5 5 f 5 5 5 5 f

0 6 6 6 6 g 6 6 6 6 g

0 7 7 7 7 h 7 7 7 7 h

0 8 8 8 8 i 8 8 8 8 i

0 9 9 9 9 j 9 9 9 9 j

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Compare stages in a job. This section specifies the minimum

steps to take to get a Compare stage functioning. DataStage provides

a versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Compare stage:

In the Stage Page Properties Tab, check that the default settings
are suitable for your requirements.

In the Stage Page Link Ordering Tab, specify which of your
input links is the first link and which is the second.
Parallel Job Developer’s Guide 34-3

Stage Page Compare Stage
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Abort On
Difference

True/False False Y N N/A

Options/Warn on
Record Count
Mismatch

True/False False Y N N/A

Options/‘Equals’
Value

number 0 N N N/A

Options/‘First is
Empty’ Value

number 1 N N N/A

Options/‘Greater
Than’ Value

number 2 N N N/A

Options/‘Less Than’
Value

number -1 N N N/A

Options/‘Second is
Empty’ Value

number -2 N N N/A

Options/Key Input
Column

N/A N Y N/A

Options/Case
Sensitive

True/False True N N Key
34-4 Parallel Job Developer’s Guide

Compare Stage Stage Page
Options Category

Abort On Difference

This property forces the stage to abort its operation each time a

difference is encountered between two corresponding columns in any

record of the two input data sets. This is False by default, if you set it

to True you cannot set Warn on Record Count Mismatch.

Warn on Record Count Mismatch

This property directs the stage to output a warning message when a

comparison is aborted due to a mismatch in the number of records in

the two input data sets. This is False by default, if you set it to True

you cannot set Abort on difference.

‘Equals’ Value

Allows you to set an alternative value for the code which the stage

outputs to indicate two compared records are equal. This is 0 by

default.

‘First is Empty’ Value

Allows you to set an alternative value for the code which the stage

outputs to indicate the first record is empty. This is 1 by default.

‘Greater Than’ Value

Allows you to set an alternative value for the code which the stage

outputs to indicate the first record is greater than the other. This is 2

by default.

‘Less Than’ Value

Allows you to set an alternative value for the code which the stage

outputs to indicate the second record is greater than the other. This is

-1 by default.

‘Second is Empty’ Value

Allows you to set an alternative value for the code which the stage

outputs to indicate the second record is empty. This is -2 by default.

Key

Allows you to specify one or more key columns. Only these columns

will be compared. Repeat the property to specify multiple columns.

You can use the Column Selection dialog box to select several keys
Parallel Job Developer’s Guide 34-5

Stage Page Compare Stage
at once if required (see page 3-10). The Key property has a dependent

property:

Case Sensitive

Use this to specify whether each key is case sensitive or not, this is

set to True by default, i.e., the values “CASE” and “case” in would

end up in different groups.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
34-6 Parallel Job Developer’s Guide

Compare Stage Stage Page
Link Ordering Tab
This tab allows you to specify which input link carries the First data set

and which carries the Second data set. Which is categorized as first

and which second affects the setting of the comparison code.

By default the first link added will represent the First set. To rearrange

the links, choose an input link and click the up arrow button or the

down arrow button.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Compare stage uses this when it is determining the sort order for
Parallel Job Developer’s Guide 34-7

Inputs Page Compare Stage
key columns. Select a locale from the list, or click the arrow button

next to the list to use a job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Compare stage expects two incoming data sets.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being compared. The Columns tab

specifies the column definitions of incoming data. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Compare stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
If you are running the Compare stage in parallel you must ensure that

the incoming data is suitably partitioned and sorted to make a

comparison sensible.

The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is compared. It also

allows you to specify that the data should be sorted before being

operated on.
34-8 Parallel Job Developer’s Guide

Compare Stage Inputs Page
By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Compare stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Compare stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Compare stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Compare stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Compare stage,
and will ensure that incoming data is key partitioned and sorted.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 34-9

Inputs Page Compare Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Compare stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available. For
the Compare stage, DataStage will ensure that the data is sorted
as it is collected.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

If you are collecting data, the Partitioning tab also allows you to

specify that data arriving on the input link should be sorted before

being collected and compared. The sort is always carried out within

data partitions. The sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
34-10 Parallel Job Developer’s Guide

Compare Stage Outputs Page
Outputs Page
The Outputs page allows you to specify details about data output

from the Compare stage. The Compare stage can have only one

output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
Parallel Job Developer’s Guide 34-11

Outputs Page Compare Stage
34-12 Parallel Job Developer’s Guide

35
Encode Stage

The Encode stage is a processing stage. It encodes a data set using a

UNIX encoding command, such as gzip, that you supply. The stage

converts a data set from a sequence of records into a stream of raw

binary data. The companion Decode stage reconverts the data stream

to a data set (see Chapter 36).

An encoded data set is similar to an ordinary one, and can be written

to a data set stage. You cannot use an encoded data set as an input to

stages that performs column-based processing or re-orders rows, but

you can input it to stages such as Copy. You can view information

about the data set in the data set viewer, but not the data itself. You

cannot repartition an encoded data set, and you will be warned at

runtime if your job attempts to do that.

As the output is always a single stream, you do not have to define

meta data for the output link.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.
Parallel Job Developer’s Guide 35-1

Must Do’s Encode Stage
Outputs Page. This is where you specify details about the
processed data being output from the stage.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Encode stages in a job. This section specifies the minimum

steps to take to get an Encode stage functioning. DataStage provides

a versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use an Encode stage:

In the Stage Page Properties Tab, specify the UNIX command
that will be used to encode the data, together with any required
arguments. The command should expect its input from STDIN and
send its output to STDOUT.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. This stage only has one property and

you must supply a value for this. The property appears in the warning

color (red by default) until you supply a value.

Options Category

Command Line

Specifies the command line used for encoding the data set. The

command line must configure the UNIX command to accept input

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Command
Line

Command Line N/A Y N N/A
35-2 Parallel Job Developer’s Guide

Encode Stage Inputs Page
from standard input and write its results to standard output. The

command must be located in your search path and be accessible by

every processing node on which the Encode stage executes.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Set by default to request that next
stage in the job should attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Encode stage can only have one input link.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being encoded. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.
Parallel Job Developer’s Guide 35-3

Inputs Page Encode Stage
Details about Encode stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is encoded. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Encode stage is operating in sequential mode, it will first collect

the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Encode stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Encode stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Encode stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Encode stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.
35-4 Parallel Job Developer’s Guide

Encode Stage Inputs Page
Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Encode stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being encoded. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.
Parallel Job Developer’s Guide 35-5

Outputs Page Encode Stage
If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Encode stage. The Encode stage can have only one output

link.

The General tab allows you to specify an optional description of the

output link. The Columns tab allows you to specify column

definitions for the data (although this is optional for an encode stage).

The Advanced tab allows you to change the default buffering settings

for the output link.

See Chapter 3, "Stage Editors," for a general description of these tabs.
35-6 Parallel Job Developer’s Guide

36
Decode Stage

The Decode stage is a processing stage. It decodes a data set using a

UNIX decoding command, such as gzip, that you supply. It converts a

data stream of raw binary data into a data set. Its companion stage,

Encode, converts a data set from a sequence of records to a stream of

raw binary data (see Chapter 35).

As the input is always a single stream, you do not have to define meta

data for the input link.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Decode stages in a job. This section specifies the minimum
Parallel Job Developer’s Guide 36-1

Stage Page Decode Stage
steps to take to get a Decode stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Decode stage:

In the Stage Page Properties Tab, specify the UNIX command
that will be used to decode the data, together with any required
arguments. The command should expect its input from STDIN and
send its output to STDOUT.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. This stage only has one property and

you must supply a value for this. The property appears in the warning

color (red by default) until you supply a value.

Options Category

Command Line

Specifies the command line used for decoding the data set. The

command line must configure the UNIX command to accept input

from standard input and write its results to standard output. The

command must be located in the search path of your application and

be accessible by every processing node on which the Decode stage

executes.

Advanced Tab
This tab allows you to specify the following:

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Command
Line

Command Line N/A Y N N/A
36-2 Parallel Job Developer’s Guide

Decode Stage Inputs Page
Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Decode stage expects a single incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being decoded. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Compare stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 36-3

Outputs Page Decode Stage
Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is decoded. It also

allows you to specify that the data should be sorted before being

operated on.

The Decode stage partitions in Same mode and this cannot be

overridden.

If the Decode stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following Collection methods are available:

(Auto). This is the default collection method for Decode stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

Outputs Page
The Outputs page allows you to specify details about data output

from the Decode stage. The Decode stage can have only one output

link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions for the

decoded data.

See Chapter 3, "Stage Editors," for a general description of the tabs.
36-4 Parallel Job Developer’s Guide

37
Switch Stage

The Switch stage is a processing stage. It can have a single input link,

up to 128 output links and a single rejects link.

The Switch stage takes a single data set as input and assigns each

input row to an output data set based on the value of a selector field.

The Switch stage performs an operation analogous to a C switch
statement, which causes the flow of control in a C program to branch

to one of several cases based on the value of a selector variable. Rows

that satisfy none of the cases are output on the rejects link.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting rows.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Switch Stage
Example
The example Switch stage (as shown on the previous page)

implements the following switch statement:

switch (selector)
{

case 0: // if selector = 0,
// write record to output data set 0
break;

case 10: // if selector = 10,
// write record to output data set 1
break;

case 12: // if selector = discard value (12)
// skip record
break;

case default: // if selector is invalid,
// send row down reject link

};

The meta data input to the switch stage is as follows:
37-2 Parallel Job Developer’s Guide

Switch Stage Must Do’s
The column called Select is the selector; the value of this determines

which output links the rest of the row will be output to. The properties

of the stage are:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Switch stages in a job. This section specifies the minimum

steps to take to get a Switch stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Switch stage:

In the Stage Page Properties Tab, under the Input category
choose the Selector mode:

– User-defined Mapping. This is the default, and means that
you must provide explicit mappings from case values to
outputs. If you use this mode you specify the switch expression
under the User-defined Mapping category.

– Auto. This can be used where there are as many distinct
selector values as there are output links.

– Hash. The incoming rows are hashed on the selector column
modulo the number of output links and assigned to an output
link accordingly.
Parallel Job Developer’s Guide 37-3

Stage Page Switch Stage
In all cases you need to use the Selector property to specify the

input column that the switch is performed on. You can also specify

whether the column is case sensitive or not. The other properties

depend on which mode you have chosen:

– If you have chosen the User-defined mapping mode, under the
User-defined Mapping category specify the case expression in
the case property.

Under the Option category, select the If not found property to
specify what action the stage takes if the column value does
not correspond to any of the cases. Choose from Fail to have
the job fail, Drop to drop the row, or Output to output it on the
reject link.

– If you have chosen the Auto mode, Under the Option category,
select the If not found property to specify what action the stage
takes if the column value does not correspond to any of the
cases. Choose from Fail to have the job fail, Drop to drop the
row, or Output to output it on the reject link.

– If you have chose the Hash mode there are no other properties
to fill in.

In the Stage Page Link Ordering Tab, specify the order in which
the output links are processed.

In the Output Page Mapping Tab check that the input columns
are mapping onto the output columns as you expect. The
mapping is carried out according to what you specified in the
Properties Tab.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

Link Ordering tab allows you to specify what order the output links

are processed in. The NLS Locale tab appears if your have NLS

enabled on your system. It allows you to select a locale other than the

project default to determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default
37-4 Parallel Job Developer’s Guide

Switch Stage Stage Page
settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Input Category

Selector

Specifies the input column that the switch applies to.

Case Sensitive

Specifies whether the column is case sensitive or not.

Selector Mode

Specifies how you are going to define the case statements for the

switch. Choose between:

User-defined Mapping. This is the default, and means that you
must provide explicit mappings from case values to outputs. If
you use this mode you specify the switch expression under the
User-defined Mapping category.

Auto. This can be used where there are as many distinct selector
values as there are output links.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Input/Selector Input Column N/A Y N N/A

Input/Case Sensitive True/False True N N Selector

Input/Selector Mode User-defined
mapping/Auto/
Hash

User-
defined
mapping

Y N N/A

User-defined
Mapping/Case

String N/A Y (if Selector
Mode = User-
defined
mapping)

Y N/A

Options/If not found Pathname N/A Y (if Column
Method =
Schema file)

N N/A

Options/Discard
Value

True/False False N N N/A
Parallel Job Developer’s Guide 37-5

Stage Page Switch Stage
Hash. The incoming rows are hashed on the selector column
modulo the number of output links and assigned to an output link
accordingly.

User-defined Mapping Category

Case

This property appears if you have chosen a Selector Mode of User-

defined Mapping. Specify the case expression in the case property. It

has the following format:

Selector_Value[= Output_Link_Label_Number]

You must specify a selector value for each value of the input column

that you want to direct to an output column. Repeat the Case property

to specify multiple values. You can omit the output link label if the

value is intended for the same output link as the case previously

specified. For example, the case statements:

1990=0
1991
1992
1993=1
1994=1

would cause the rows containing the dates 1990, 1991, or 1992 in the

selector column to be routed to output link 0, and the rows containing

the dates 1993 to 1994 to be routed to output link 1.

Options Category

If not found

Specifies the action to take if a row fails to match any of the case

statements. This does not appear if you choose a Selector Mode of

Hash. Otherwise, choose between:

Fail. Causes the job to fail.

Drop. Drops the row.

Output. Routes the row to the Reject link.

Discard Value

You can use this property in conjunction with the case property to

specify that rows containing certain values in the selector column will

always be discarded. For example, if you defined the following case

statement:

1995=5
37-6 Parallel Job Developer’s Guide

Switch Stage Stage Page
and set the Discard Value property to 5, all rows containing 1995 in the

selector column would be routed to link 5 which has been specified as

the discard link and so will be dropped.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 37-7

Stage Page Switch Stage
Link Ordering Tab
This tab allows you to specify which output links are associated with

which link labels.

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Switch stage uses this when evaluating case statements. Select a
37-8 Parallel Job Developer’s Guide

Switch Stage Inputs Page
locale from the list, or click the arrow button next to the list to use a

job parameter or browse for a collate file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Switch stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being switched. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Switch stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is switched. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
Parallel Job Developer’s Guide 37-9

Inputs Page Switch Stage
current and preceding stages and how many nodes are specified in

the Configuration file.

If the Column Import stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Switch stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Switch stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Switch stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Switch stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
37-10 Parallel Job Developer’s Guide

Switch Stage Inputs Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Switch stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being imported. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 37-11

Outputs Page Switch Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Switch stage. The Switch stage can have up to 128 output

links, and can also have a reject link carrying rows that have been

rejected. Choose the link you are working on from the Output name

drop-down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Switch stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output links.

Details about Switch stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For the Switch stage the Mapping tab allows you to specify how the

output columns are derived.

The left pane shows the columns that have been switched. These are

read only and cannot be modified on this tab.

The right pane shows the output columns for each link.

In the example the stage has mapped the specified switched columns

onto the output columns.
37-12 Parallel Job Developer’s Guide

Switch Stage Outputs Page
Reject Link
You cannot change the details of a Reject link. The link uses the

column definitions for the link rejecting the data rows.
Parallel Job Developer’s Guide 37-13

Outputs Page Switch Stage
37-14 Parallel Job Developer’s Guide

38
SAS Stage

The SAS stage is a processing stage. It can have multiple input links

and multiple output links.

The SAS stage allows you to execute part or all of an SAS application

in parallel. It reduces or eliminates the performance bottlenecks that

might otherwise occur when SAS is run on a parallel computer. (More

information about using Enterprise Edition with SAS is given in SAS

Stage Supplementary Guide.)

Before using the SAS stage, you need to set up your configuration file

to allow the system to interact with SAS, see "The SAS Resources" on

page 58-28.

DataStage enables SAS users to:

Access, for reading or writing, large volumes of data in parallel
from parallel relational databases, with much higher throughput
than is possible using PROC SQL.

Process parallel streams of data with parallel instances of SAS
DATA and PROC steps, enabling scoring or other data
transformations to be done in parallel with minimal changes to
existing SAS code.

Store large data sets in parallel, eliminating restrictions on data-
set size imposed by your file system or physical disk-size
limitations. Parallel data sets are accessed from SAS programs in
the same way as conventional SAS data sets, but at much higher
data I/O rates.

Realize the benefits of pipeline parallelism, in which some number
of SAS stages run at the same time, each receiving data from the
previous process as it becomes available.

See also the SAS Data Set stage, described in Chapter 11.
Parallel Job Developer’s Guide 38-1

Example Job SAS Stage
The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Example Job
This example job shows SAS stages reading in data, operating on it,

then writing it out.

The example data is from a freight carrier who charges customers

based on distance, equipment, packing, and license requirements.

They need a report of distance traveled and charges for the month of

July grouped by License type.

The following table shows a sample of the data:

Ship Date District Distance Equipment Packing License Charge

...

Jun 2 2000 1 1540 D M BUN 1300

Jul 12 2000 1 1320 D C SUM 4800

Aug 2 2000 1 1760 D C CUM 1300
38-2 Parallel Job Developer’s Guide

SAS Stage Example Job
The job to handle the data looks like this:

The stage called SAS_0 reads the rows from the freight database

where the first three characters of the Ship_date column = “Jul”. You

reference the data being input to the this stage from inside the SAS

code using the liborch library. Liborch is the SAS engine provided by

DataStage that you use to reference the data input to and output from

your SAS code. The following screenshot shows the SAS code for this

stage:

Jun 22 2000 2 1540 D C CUN 13500

Jul 30 2000 2 1320 D M SUM 6000

...

Ship Date District Distance Equipment Packing License Charge
Parallel Job Developer’s Guide 38-3

Example Job SAS Stage
The stage called SAS_1 sorts the data that has been extracted by

Stage_0. The code for this is as follows:

Finally, the stage called SAS_2 outputs the mean and sum of the

distances traveled and charges for the month of July sorted by license

type.
38-4 Parallel Job Developer’s Guide

SAS Stage Must Do’s
The following shows the SAS output for license type SUM:

17:39, May 26, 2003
...
LICENSE=SUM
Variable Label N Mean Sum

DISTANCE DISTANCE 720 1563.93 1126030.00
CHARGE CHARGE 720 28371.39 20427400.00

...
Step execution finished with status = OK.

Must Do’s
DataStage has many defaults which means that it can be very easy to

include SAS stages in a job. This section specifies the minimum steps

to take to get a SAS stage functioning. DataStage provides a versatile

user interface, and there are many shortcuts to achieving a particular

end, this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

To use an SAS stage:

In the Stage Page Properties Tab, under the SAS Source
category:

– Specify the SAS code the stage will execute. You can also
choose a Source Method of Source File and specify the name
of a file containing the code. You need to use the liborch library
in order to connect the SAS code to the data input to and/or
output from the stage (see "Example Job" on page 38-2 for
guidance how to do this).

Under the Inputs and Outputs categories:

– Specify the numbers of the input and output links the stage
connects to, and the name of the SAS data set associated with
those links.

In the Stage Page Link Ordering Tab, specify which input and
output link numbers correspond to which actual input or output
link.

In the Output Page Mapping Tab, specify how the data being
operated on maps onto the output links.

Using the SAS Stage on NLS Systems
If your system is NLS enabled, and you are using English or European

languages, then you should set the environment variable
Parallel Job Developer’s Guide 38-5

Stage Page SAS Stage
APT_SASINT_COMMAND to point to the basic SAS executable (rather

than the international one). For example:

APT_SASINT_COMMAND /usr/local/sas/sas8.2/sas

Alternatively, you can include a resource sas entry in your

configuration file. For example:

resource sasint "[/usr/sas82/]" { }

(See Chapter 58 for details about configuration files and the SAS

resources.)

When using NLS with any map, you need to edit the file sascs.txt to

identify the maps that you are likely to use with the SAS stage. The file

is platform-specific, and is located in $APT_ORCHHOME/apt/etc/

platform, where platform is one of sun, aix, osf1 (Tru64), hpux, and

linux.

The file comprises two columns: the left-hand column gives an

identifier, typically the name of the language. The right-hand column

gives the name of the map. For example, if you were in Canada, your

sascs.txt file might be as follows:

CANADIAN_FRENCH fr_CA-iso-8859
ENGLISH ISO-8859-5

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Map tab appears if you have NLS enabled on your system, it

allows you to specify a character set map for the stage.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.
38-6 Parallel Job Developer’s Guide

SAS Stage Stage Page
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

SAS Source/
Source Method

Explicit/Source
File

Explicit Y N N/A

SAS Source/
Source

code N/A Y (if Source
Method =
Explicit)

N N/A

SAS Source/
Source File

pathname N/A Y (if Source
Method =
Source File)

N N/A

Inputs/Input Link
Number

number N/A N Y N/A

Inputs/Input SAS
Data Set Name.

string N/A Y (if input link
number
specified)

N Input Link
Number

Outputs/Output
Link Number

number N/A N Y N/A

Outputs/Output
SAS Data Set
Name.

string N/A Y (if output link
number
specified)

N Output Link
Number

Outputs/Set
Schema from
Columns.

True/False False Y (if output link
number
specified)

N Output Link
Number

Options/Disable
Working Directory
Warning

True/False False Y N N/A

Options/Convert
Local

True/False False Y N N/A

Options/Debug
Program

No/Verbose/
Yes

No Y N N/A

Options/SAS List
File Location Type

File/Job Log/
None/Output

Job Log Y N N/A

Options/SAS Log
File Location Type

File/Job Log/
None/Output

Job Log Y N N/A

Options/SAS
Options

string N/A N N N/A

Options/Working
Directory

pathname N/A N N N/A
Parallel Job Developer’s Guide 38-7

Stage Page SAS Stage
SAS Source Category

Source Method

Choose from Explicit (the default) or Source File. You then have to set

either the Source property or the Source File property to specify the

actual source.

Source

Specify the SAS code to be executed. This can contain both PROC and

DATA steps.

Source File

Specify a file containing the SAS code to be executed by the stage.

Inputs Category

Input Link Number

Specifies inputs to the SAS code in terms of input link numbers.

Repeat the property to specify multiple links. This has a dependent

property:

Input SAS Data Set Name.

The name of the SAS data set receiving its input from the

specified input link.

Outputs Category

Output Link Number

Specifies an output link to connect to the output of the SAS code.

Repeat the property to specify multiple links. This has a dependent

property:

Output SAS Data Set Name.

The name of the SAS data set sending its output to the specified

output link.

Set Schema from Columns.

Specify whether or not the columns specified on the Outputs tab

are used for generating the output schema. An output schema is

not required if the eventual destination stage is another SAS stage

(there can be intermediate stages such as Data Set or Copy

stages).
38-8 Parallel Job Developer’s Guide

SAS Stage Stage Page
Options Category

Disable Working Directory Warning

Disables the warning message generated by the stage when you omit

the Working Directory property. By default, if you omit the Working

Directory property, the SAS working directory is indeterminate and

the stage generates a warning message.

Convert Local

Specify that the conversion phase of the SAS stage (from the input

data set format to the stage SAS data set format) should run on the

same nodes as the SAS stage. If this option is not set, the conversion

runs by default with the previous stage’s degree of parallelism and, if

possible, on the same nodes as the previous stage.

Debug Program

A setting of Yes causes the stage to ignore errors in the SAS program

and continue execution of the application. This allows your

application to generate output even if an SAS step has an error. By

default, the setting is No, which causes the stage to abort when it

detects an error in the SAS program.

Setting the property as Verbose is the same as Yes, but in addition it

causes the operator to echo the SAS source code executed by the

stage.

SAS List File Location Type

Specifying File for this property causes the stage to write the SAS list

file generated by the executed SAS code to a plain text file located in

the project directory. The list is sorted before being written out. The

name of the list file, which cannot be modified, is dsident.lst, where

ident is the name of the stage, including an index in parentheses if

there are more than one with the same name. For example,

dssas(1).lst is the list file from the second SAS stage in a data flow.

Specifying Job Log causes the list to be written to the DataStage job

log.
Specifying Output causes the list file to be written to an output data

set of the stage. The data set from a parallel SAS stage containing the

list information will not be sorted.

If you specify None no list will be generated.
Parallel Job Developer’s Guide 38-9

Stage Page SAS Stage
SAS Log File Location Type

Specifying File for this property causes the stage to write the SAS list

file generated by the executed SAS code to a plain text file located in

the project directory. The list is sorted before being written out. The

name of the list file, which cannot be modified, is dsident.lst, where

ident is the name of the stage, including an index in parentheses if

there are more than one with the same name. For example,

dssas(1).lst is the list file from the second SAS stage in a data flow.

Specifying Job Log causes the list to be written to the DataStage job

log.
Specifying Output causes the list file to be written to an output data

set of the stage. The data set from a parallel SAS stage containing the

list information will not be sorted.

If you specify None no list will be generated.

SAS Options

Specify any options for the SAS code in a quoted string. These are the

options that you would specify to an SAS OPTIONS directive.

Working Directory

Name of the working directory on all the processing nodes executing

the SAS application. All relative pathnames in the SAS code are

relative to this pathname.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.
38-10 Parallel Job Developer’s Guide

SAS Stage Stage Page
Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Link Ordering Tab
This tab allows you to specify how input links and output links are

numbered. This is important when you are specifying Input Link

Number and Output Link Number properties.

By default the first link added will be link 1, the second link 2 and so

on. Select a link and use the arrow buttons to change its position.

NLS Map
The NLS Map tab allows you to define a character set map for the

SAS stage. This overrides the default character set map set for the
Parallel Job Developer’s Guide 38-11

Inputs Page SAS Stage
project or the job. You can specify that the map be supplied as a job

parameter if required.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. There can be multiple inputs to the SAS stage.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being passed to the SAS code. The

Columns tab specifies the column definitions of incoming data.The

Advanced tab allows you to change the default buffering settings for

the input link.

Details about SAS stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before passed to the SAS

code. It also allows you to specify that the data should be sorted

before being operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
38-12 Parallel Job Developer’s Guide

SAS Stage Inputs Page
current and preceding stages and how many nodes are specified in

the Configuration file.

If the SAS stage is operating in sequential mode, it will first collect the

data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the SAS stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the SAS stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the SAS stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the SAS stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 38-13

Inputs Page SAS Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for SAS stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being passed to the SAS code.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available with the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
38-14 Parallel Job Developer’s Guide

SAS Stage Outputs Page
Outputs Page
The Outputs page allows you to specify details about data output

from the SAS stage. The SAS stage can have multiple output links.

Choose the link whose details you are viewing from the Output
Name drop-down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the SAS stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output link.

Details about SAS stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For the SAS stage the Mapping tab allows you to specify how the

output columns are derived and how SAS data maps onto them.

The left pane shows the data output from the SAS code. These are

read only and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is derived.
Parallel Job Developer’s Guide 38-15

Outputs Page SAS Stage
You can fill it in by dragging input columns over, or by using the Auto-

match facility.
38-16 Parallel Job Developer’s Guide

39
Generic Stage

The Generic stage is a processing stage. It has any number of input

links and any number of output links.

The Generic stage allows you to call an Orchestrate operator from

within a DataStage stage and pass it options as required.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the input
set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Must Do’s Generic Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Generic stages in a job. This section specifies the minimum

steps to take to get a Generic stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Generic stage:

In the Stage Page Properties Tab:

– Specify the name of the Orchestrate operator the stage will
call.

– Specify the name of any options the operator requires, and set
its value. This can be repeated to specify multiple options.

In the Stage Page Link Ordering Tab, order your input and
output links so they correspond to the required link number.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Operator Orchestrate
operator

N/A Y N N/A

Options/Option
name

String N/A N Y N/A

Options/Option
Value

String N/A N N Option name
39-2 Parallel Job Developer’s Guide

Generic Stage Stage Page
Options Category

Operator

Specify the name of the Orchestrate operator the stage will call.

Option name

Specify the name of an option the operator requires. This has a

dependent property:

Option Value

The value the option is to be set to.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 39-3

Inputs Page Generic Stage
Link Ordering Tab
This tab allows you to specify how input and output links correspond

to link labels.

To rearrange the links, choose an output link and click the up arrow

button or the down arrow button.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Generic stage can accept multiple incoming data sets.

Select the link whose details you are looking at from the Input name

drop-down list.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being operated on. The Columns tab

specifies the column definitions of incoming data. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Generic stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is operated on. It
39-4 Parallel Job Developer’s Guide

Generic Stage Inputs Page
also allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Generic stage is operating in sequential mode, it will first collect

the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Generic stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Generic stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Generic stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method of the Generic stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 39-5

Inputs Page Generic Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Generic stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being operated on. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
39-6 Parallel Job Developer’s Guide

Generic Stage Outputs Page
Outputs Page
The Outputs page allows you to specify details about data output

from the Generic stage. The Generic stage can have any number of

output links. Select the link whose details you are looking at from the

Output name drop-down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output links.

See Chapter 3, "Stage Editors," for a general description of these tabs.
Parallel Job Developer’s Guide 39-7

Outputs Page Generic Stage
39-8 Parallel Job Developer’s Guide

40
Surrogate Key Stage

The Surrogate Key stage is a processing stage. It can have a single

input and a single output.

The Surrogate Key stage generates key columns for an existing data

set. You can specify certain characteristics of the key sequence. The

stage generates sequentially incrementing unique integers from a

given starting point. The existing columns of the data set are passed

straight through the stage.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the input
data.

Outputs Page. This is where you specify details about the data
being output from the stage.
Parallel Job Developer’s Guide 40-1

Key Space Surrogate Key Stage
Key Space
If the stage is operating in parallel, each node will increment the key

by the number of partitions being written to. The basic operation is

illustrated below.

Node A

Node B

Node C

Node D

1

2

3

4

5

6

7

8

0

9

10

11

12

13

14

15

Key
Partition

Partition

Partition

Partition

Four partitions, so key is incremented
by four
40-2 Parallel Job Developer’s Guide

Surrogate Key Stage Key Space
If however, your partions are not balanced, you may end up with

holes in your key space:

To guarantee that there are no holes in the key space (i.e., all available

keys are used) the incoming data set partitions should be perfectly

balanced. This can be achieved using the round robin partitioning

method where your starting point is sequential (i.e., non-partitioned)

data. Note that, if the Surrogate Key stage (or other preceding stage)

repartitions already partitioned data for some reason, then a hole-free

keyspace cannot be guaranteed, whatever method the repartitioning

uses. The following illustrates what happens when four balanced

partitions are repartitioned into three using the round robin method.

Each of the original partitions is repartioned independently, and each

one starts with the first of the new partitions. This results in partitions

Node A

Node B

Node C

Node D

1

2

3

4

5

6

7

8

0

9

11

13

15

Key
Partition

Partition

Partition

Partition

Keys 12, 10, 14
not used
Parallel Job Developer’s Guide 40-3

Examples Surrogate Key Stage
that are near balanced rather than perfectly balanced, and holes in the

keyspace.

Examples
This section gives examples of input and output data from a

Surrogate Key stage to give you a better idea of how the stage works.

1

2

3

4

5

6

7

8

9

10

11

12

0

15

18
21

Keys 13,14,16,17,19,20 missing

Data repartitioned from four partitions to three partitions
40-4 Parallel Job Developer’s Guide

Surrogate Key Stage Examples
In this example the input data set is as follows:

The stage adds two surrogate key columns called surr_key1 and

surr_key2. A unique value for surr_key1 and surr_key2 is generated for

each row of input data. You have to give DataStage information about

how to generate the surrogates. This is done on the Stage page

Properties Tab. For this example, you specify:
Parallel Job Developer’s Guide 40-5

Must Do’s Surrogate Key Stage
The output data set will be:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Surrogate Key stages in a job. This section specifies the

minimum steps to take to get a Surrogate Key stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Surrogate Key stage:

In the Stage Page Properties Tab, under the Keys category:

– Specify the column that will contain the surrogate key (choose
an output column if you have defined output column meta
data, or type in a name).

– Specify the type of the surrogate key. This is one of 16-bit, 32-
bit, or 64-bit integer.

– Specify a start number for the key. This is 0 by default. You can
also specify a job parameter so that the starting number can be
supplied at run time.

In the Output Page Mapping Tab check that the input columns
are mapping onto the output columns as you expect. The
mapping is carried out according to what you specified in the
Properties Tab.
40-6 Parallel Job Developer’s Guide

Surrogate Key Stage Stage Page
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties that determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Keys Category

Surrogate Key Name

Specify the name of the surrogate key to be generated. You can select

an existing output column, or type in a name. You can repeat this

property to specify multiple keys. It has the following dependent

properties:

Output Type

Specify the column type of the new property. Choose from:

– 16-bit integer

– 32-bit integer

– 64-bit Integer

The default is 32-bit integer.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Keys/Surrogate Key
Name

string N/A Y Y N/A

Keys/Output Type 16-bit integer,
32-bit integer,

64-bit integer

32-bit
integer

Y N Surrogate Key
Name

Keys/Start Value number 0 Y N Surrogate Key
Name
Parallel Job Developer’s Guide 40-7

Inputs Page Surrogate Key Stage
Start Value

Specify the initial value for the key generation. It defaults to 0. You

can also specify a job parameter, so the start value can be

supplied at run time.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Surrogate Key stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being imported. The Columns tab specifies
40-8 Parallel Job Developer’s Guide

Surrogate Key Stage Inputs Page
the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Surrogate Key stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is imported. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Surrogate Key stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Surrogate Key stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Surrogate Key stage is set to execute in parallel, then you can set

a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Surrogate Key stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Surrogate Key
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.
Parallel Job Developer’s Guide 40-9

Inputs Page Surrogate Key Stage
Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Surrogate Key
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being imported. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.
40-10 Parallel Job Developer’s Guide

Surrogate Key Stage Outputs Page
Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Surrogate Key stage. The Surrogate Key stage can have only

one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. Note that the key field will be selected for the output columns

carrying the generated keys.

The Mapping tab allows you to specify the relationship between the

columns being input to the Surrogate Key stage and the Output

columns.

The Advanced tab allows you to change the default buffering settings

for the output links.

Details about Surrogate Key stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
Parallel Job Developer’s Guide 40-11

Outputs Page Surrogate Key Stage
Mapping Tab
For the Surrogate Key stage the Mapping tab allows you to specify

how the output columns are derived.

The left pane shows the columns on the input link plus any surrogate

that the stage is generating.

The right pane shows the output columns.

In the example the columns have been mapped straight across.
40-12 Parallel Job Developer’s Guide

41
Column Import Stage

The Column Import stage is a restructure stage. It can have a single

input link, a single output link and a single rejects link. The

complement to this stage is the Column Export stage, described in

Chapter 42.

The Column Import stage imports data from a single column and

outputs it to one or more columns. You would typically use it to divide

data arriving in a single column into multiple columns. The data

would be fixed-width or delimited in some way to tell the Column

Import stage where to make the divisions. The input column must be

a string or binary data, the output columns can be any data type.

You supply an import table definition to specify the target columns

and their types. This also determines the order in which data from the

import column is written to output columns. Information about the

format of the incoming column (e.g., how it is delimited) is given in

the Format tab of the Outputs page. You can optionally save reject

records, that is, records whose import was rejected, and write them to

a rejects link.

In addition to importing a column you can also pass other columns

straight through the stage. So, for example, you could pass a key

column straight through.
Parallel Job Developer’s Guide 41-1

Examples Column Import Stage
The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Column

Import stage to give you a better idea of how the stage works.

In this example the Column Import stage extracts data from 16-byte

raw data field into four integer output fields. The input data set also

contains a column which is passed straight through the stage. The
41-2 Parallel Job Developer’s Guide

Column Import Stage Examples
example assumes that the job is running sequentially. The screenshot

shows the column definitions for the input data set.

The following are the rows from the input data set:
Parallel Job Developer’s Guide 41-3

Examples Column Import Stage
The import table definition can either be supplied on the Outputs

Page Columns Tab or in a schema file. For the example, the definition

would be:

You have to give DataStage information about how to treat the

imported data to split it into the required columns. This is done on the

Outputs page Format Tab. For this example, you specify a data

format of binary to ensure that the contents of col_to_import are

interpreted as binary integers, and that the data has a field delimiter

of none.
41-4 Parallel Job Developer’s Guide

Column Import Stage Must Do’s
The properties of the Column Import stage are set as follows:

The output data set will be:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Column Import stages in a job. This section specifies the

minimum steps to take to get a Column Import stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.
Parallel Job Developer’s Guide 41-5

Stage Page Column Import Stage
To use a Column Import stage:

In the Stage Page Properties Tab, under the Input category:

– Specify the column that you are importing.

Under the Output category:

– Choose the Column method, this is Explicit by default,
meaning you specify explicitly choose output columns as
destinations. The alternative is to specify a schema file.

– If you are using the Explicit method, choose the output
column(s) to carry your imported input column. Repeat the
Column to Import property to specify all the columns you need.

– If you are using the Schema File method, specify the schema
file that gives the output column details.

In the Output Page Format Tab specify the format of the column
you are importing. This informs DataStage about data format and
enables it to divide a single column into multiple columns.

In the Output Page Mapping Tab check that the input columns
are mapping onto the output columns as you expect. The
mapping is carried out according to what you specified in the
Properties Tab.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Input/Import Input
Column

Input Column N/A Y N N/A
41-6 Parallel Job Developer’s Guide

Column Import Stage Stage Page
Input Category

Import Input Column

Specifies the name of the column containing the string or binary data

to import.

Output Category

Column Method

Specifies whether the columns to import should be derived from

column definitions on the Output page Columns tab (Explicit) or

from a schema file (Schema File).

Column to Import

Specifies an output column. The meta data for this column

determines the type that the import column will be converted to.

Repeat the property to specify multiple columns. You can use the

Column Selection dialog box to select multiple columns at once if

required (see page 3-10). You can specify the properties for each

column using the Parallel tab of the Edit Column Meta dialog box

(accessible from the shortcut menu on the columns grid of the output

Columns tab). The order of the Columns to Import that you specify

should match the order on the Columns tab.

Output/Column
Method

Explicit/Schema
File

Explicit Y N N/A

Output/Column to
Import

Output Column N/A Y (if Column
Method =
Explicit)

Y N/A

Output/Schema File Pathname N/A Y (if Column
Method =
Schema file)

N N/A

Options/Keep Input
Column

True/False False N N N/A

Options/Reject Mode Continue
(warn) /Output/
Fail

Continue N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 41-7

Stage Page Column Import Stage
Schema File

Instead of specifying the source data type details via output column

definitions, you can use a schema file (note, however, that if you have

defined columns on the Columns tab, you should ensure these match

the schema file). Type in a pathname or browse for a schema file.

Options Category

Keep Input Column

Specifies whether the original input column should be transferred to

the output data set unchanged in addition to being imported and

converted. Defaults to False.

Reject Mode

The values of this property specify the following actions:

Fail. The stage fails when it encounters a record whose import is
rejected.

Output. The stage continues when it encounters a reject record
and writes the record to the reject link.

Continue. The stage is to continue but report failures to the log
file.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.
41-8 Parallel Job Developer’s Guide

Column Import Stage Inputs Page
Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Column Import stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being imported. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Column Import stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is imported. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Column Import stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Column Import stage is set to execute in parallel or
sequential mode.
Parallel Job Developer’s Guide 41-9

Inputs Page Column Import Stage
Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Column Import stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Column Import stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Column Import
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Column Import
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.
41-10 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being imported. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Column Import stage. The Column Import stage can have

only one output link, but can also have a reject link carrying records

that have been rejected.

The General tab allows you to specify an optional description of the

output link. The Format tab allows you to specify details about how

data in the column you are importing is formatted so the stage can

divide it into separate columns. The Columns tab specifies the
Parallel Job Developer’s Guide 41-11

Outputs Page Column Import Stage
column definitions of the data. The Mapping tab allows you to

specify the relationship between the columns being input to the

Column Import stage and the Output columns. The Advanced tab

allows you to change the default buffering settings for the output

links.

Details about Column Import stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Format Tab
The Format tab allows you to supply information about the format of

the column you are importing. You use it in the same way as you

would to describe the format of a flat file you were reading. The tab

has a similar format to the Properties tab and is described in detail

on page 3-44.

Select a property type from the main tree then add the properties you

want to set to the tree structure by clicking on them in the Available
properties to add window. You can then set a value for that property

in the Property Value box. Pop up help for each of the available

properties appears if you hover the mouse pointer over it.

Any property that you set on this tab can be overridden at the column

level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Does not apply to output links.

Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
41-12 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter, used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.

– tab. The last column of each record is delimited by the ASCII
tab character.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

– Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
Parallel Job Developer’s Guide 41-13

Outputs Page Column Import Stage
Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To specify a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and record type.

Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.

Field Defaults

Defines default properties for columns read from the file or files.

These are applied to all columns, but can be overridden for individual

columns from the Columns tab using the Edit Column Metadata

dialog box. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.
41-14 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ‘, ‘ (comma space –
you do not need to enter the inverted commas) specifies each field
is delimited by ‘, ‘ unless overridden for individual fields.
DataStage skips the delimiter string when reading.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use

Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.
Parallel Job Developer’s Guide 41-15

Outputs Page Column Import Stage
Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it
reads. The message has the format:

Importing N: D

where:

– N is the field name.

– D is the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and

reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage reads the length

prefix but does not include it as a separate field in the data set. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.
41-16 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

– For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)
Parallel Job Developer’s Guide 41-17

Outputs Page Column Import Stage
Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. This property is ignored for output links.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Not relevant for output links.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.

For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see

DataStage Developer’s Help.
41-18 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when reading

decimal fields. Select No to write a positive sign (0xf)

regardless of the fields’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision of a packed decimal. Enter a
number.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.
Parallel Job Developer’s Guide 41-19

Outputs Page Column Import Stage
– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanf(). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf(). By
default, DataStage invokes the C sscanf() function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanf().

Out_format. This property is not relevant for output links.

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).
41-20 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.
Parallel Job Developer’s Guide 41-21

Outputs Page Column Import Stage
You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the twodigit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.
41-22 Parallel Job Developer’s Guide

Column Import Stage Outputs Page
– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366).

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol (%). Separate the string’s components with any

character except the percent sign (%).

Mapping Tab
For the Column Import stage the Mapping tab allows you to specify

how the output columns are derived.

The left pane shows the columns the stage is deriving from the single

imported column. These are read only and cannot be modified on this

tab.
Parallel Job Developer’s Guide 41-23

Using RCP With Column Import Stages Column Import Stage
The right pane shows the output columns for each link.

In the example the stage has automatically mapped the specified

Columns to Import onto the output columns. The Key column is an

extra input column and is automatically passed through the stage.

Because the Keep Import Column property was set to True, the

original column (comp_col in this example) is available to map onto

an output column.

We recommend that you maintain the automatic mappings of the

generated columns when using this stage.

Reject Link
You cannot change the details of a Reject link. The link uses the

column definitions for the link rejecting the data records.

Using RCP With Column Import Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.

Columns you are importing do not have inherent column definitions,

and so DataStage cannot always tell where there are extra columns

that need propagating. You can only use RCP on Column Import

stages if you have used the Schema File property (see "Schema File"

on page 41-8) to specify a schema which describes all the columns in

the column. You need to specify the same schema file for any similar

stages in the job where you want to propagate columns. Stages that

will require a schema file are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
41-24 Parallel Job Developer’s Guide

Column Import Stage Using RCP With Column Import Stages
Parallel Job Developer’s Guide 41-25

Using RCP With Column Import Stages Column Import Stage
41-26 Parallel Job Developer’s Guide

42
Column Export Stage

The Column Export stage is a restructure stage. It can have a single

input link, a single output link and a single rejects link.

The Column Export stage exports data from a number of columns of

different data types into a single column of data type string or binary.

It is the complementary stage to Column Import (see Chapter 41).

The input data column definitions determine the order in which the

columns are exported to the single output column. Information about

how the single column being exported is delimited is given in the

Formats tab of the Inputs page. You can optionally save reject

records, that is, records whose export was rejected.

In addition to exporting a column you can also pass other columns

straight through the stage. So, for example, you could pass a key

column straight through.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.
Parallel Job Developer’s Guide 42-1

Examples Column Export Stage
Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Column

Export stage to give you a better idea of how the stage works.

In this example the Column Export stage extracts data from three

input columns and outputs two of them in a single column of type

string and passes the other through. The example assumes that the

job is running sequentially. The screenshot shows the column

definitions for the input data set.

The following are the rows from the input data set:
42-2 Parallel Job Developer’s Guide

Column Export Stage Examples
The import table definition is supplied on the Outputs Page

Columns Tab. For our example, the definition would be:

You have to give DataStage information about how to delimit the

exported data when it combines it into a single column. This is done

on the Inputs page Format Tab. For this example, you specify a data

format of text, a Field Delimiter of comma, and a Quote type of

double.
Parallel Job Developer’s Guide 42-3

Must Do’s Column Export Stage
The Properties of the Column Export stage are set as follows:

The output data set will be:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Column Export stages in a job. This section specifies the

minimum steps to take to get a Column Export stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Column Export stage:
42-4 Parallel Job Developer’s Guide

Column Export Stage Stage Page
In the Stage Page Partitioning Tab, under the Input category:

– Choose the Column method, this is Explicit by default,
meaning you specify explicitly choose input columns as
sources. The alternative is to specify a schema file.

– If you are using the Explicit method, choose the input
column(s) to carry your exported input column. Repeat the
Column to Export property to specify all the columns you need.

– If you are using the Schema File method, specify the schema
file that gives the output column details.

Under the Output category:

– Choose the Export Column Type. This is Binary by default, but
you can also choose VarChar. This specifies the format of the
column you are exporting to.

– Specify the column you are exporting to in the Export Output
Column property.

In the Input Page Format Tab specify the format of the column
you are exporting. This informs DataStage about delimiters and
enables it to combine multiple columns into a single column with
delimiters.

In the Output Page Mapping Tab check that the input columns
are mapping onto the output columns as you expect. The
mapping is carried out according to what you specified in the
Properties Tab.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.
Parallel Job Developer’s Guide 42-5

Stage Page Column Export Stage
The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Options Category

Export Output Column

Specifies the name of the single column to which the input column or

columns are exported.

Export Column Type

Specify either binary or VarChar (string).

Reject Mode

The values of this property specify the following actions:

Output. The stage continues when it encounters a reject record
and writes the record to the rejects link.

Continue(warn). The stage is to continue but report failures to
the log file.

Column to Export

Specifies an input column the stage extracts data from. The format

properties for this column can be set on the Format tab of the Inputs

page. Repeat the property to specify multiple input columns. You can

use the Column Selection dialog box to select multiple columns at

once if required (see page 3-10). The order of the Columns to Export

that you specify should match the order on the Columns tab. If it

does not, the order on the Columns tab overrides the order of the

properties.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Export
Output Column

Output Column N/A Y N N/A

Options/Export
Column Type

Binary/ VarChar Binary N N N/A

Options/Reject
Mode

Continue
(warn) /Output

Continue N N N/A

Options/Column to
Export

Input Column N/A N Y N/A

Options/Schema
File

Pathname N/A N N N/A
42-6 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
Schema File

Instead of specifying the source data details via input column

definitions, you can use a schema file (note, however, that if you have

defined columns on the Columns tab, you should ensure these match

the schema file). Type in a pathname or browse for a schema file.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Column Export stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being exported. The Format tab allows you
Parallel Job Developer’s Guide 42-7

Inputs Page Column Export Stage
to specify details how data in the column you are exporting will be

formatted. The Columns tab specifies the column definitions of

incoming data. The Advanced tab allows you to change the default

buffering settings for the input link.

Details about Column Export stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is exported. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Column Export stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Column Export stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Column Export stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Column Export stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Column Export
stage.

Entire. Each file written to receives the entire data set.
42-8 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Column Export
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being exported. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default Auto methods).

Select the check boxes as follows:
Parallel Job Developer’s Guide 42-9

Inputs Page Column Export Stage
Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Format Tab
The Format tab allows you to supply information about the format of

the column you are exporting. You use it in the same way as you

would to describe the format of a flat file you were writing. The tab

has a similar format to the Properties tab and is described in detail

on page 3-44.

Select a property type from the main tree then add the properties you

want to set to the tree structure by clicking on them in the Available
properties to add window. You can then set a value for that property

in the Property Value box. Pop up help for each of the available

properties appears if you over the mouse pointer over it.

This description uses the terms “record“ and “row“ and “field“ and

“column“ interchangeably.

The following sections list the Property types and properties available

for each type.

Record level

These properties define details about how data records are formatted

in the flat file. Where you can enter a character, this can usually be an

ASCII character or a multi-byte Unicode character (if you have NLS

enabled). The available properties are:

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
42-10 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, ‘ (comma space – you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

– whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

– end. The last column of each record does not include the field
delimiter. This is the default setting.

– none. The last column of each record does not have a
delimiter; used for fixed-width fields.

– null. The last column of each record is delimited by the ASCII
null character.

– comma. The last column of each record is delimited by the
ASCII comma character.

– tab. The last column of each record is delimited by the ASCII
tab character.

When writing, a space is now inserted after every field except the

last in the record. Previously, a space was inserted after every field

including the last. (If you want to revert to the pre-release 7.5

behavior of inserting a space after the last field, set the

APT_FINAL_DELIM_COMPATIBLE environment variable.

Field 1

Field 1

Field 1

Field 1

Field 1

Field 1

,

,

,

,

,

,

Last field

Last field

nl

nl,

Field Delimiter

Final Delimiter = comma

Final Delimiter = end

Record delimiter
Parallel Job Developer’s Guide 42-11

Inputs Page Column Export Stage
Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

– UNIX Newline (the default)

– null

(To implement a DOS newline, use the Record delimiter string

property set to “\R\N” or choose Format as ➤ DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter

string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record

delimiter, Record delimiter string, and Record prefix and by

default is not used.
42-12 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
Field Defaults

Defines default properties for columns written to the file or files.

These are applied to all columns written, but can be overridden for

individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can

usually be an ASCII character or a multi-byte Unicode character (if you

have NLS enabled). The available properties are:

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

– whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

– end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

– none. No delimiter (used for fixed-width).

– null. ASCII Null character is used.

– comma. ASCII comma character is used.

– tab. ASCII tab character is used.

Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ‘, ‘ (comma
space – you do not need to enter the inverted commas) would
have each field delimited by ‘, ‘ unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each h is a hexadecimal digit 0 - F. You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and

Actual length. For a fixed width data representation, you can use
Parallel Job Developer’s Guide 42-13

Inputs Page Column Export Stage
Pad char (from the general section of Type defaults) to specify a

repeated trailing character if the value you specify is shorter than

the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length

fields can be either delimited by a character or preceded by a 1-, 2-

, or 4-byte prefix containing the field length. DataStage inserts the

prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and

Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the

data, and a trailing quote character. Quote characters are not

counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a

link to another field in order to specify the number of elements in

the vector. If the variable length vector has a prefix, you use this

property to indicate the prefix length. DataStage inserts the

element count as a prefix of each variable-length vector field. By

default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type

unless specifically overridden at the column level. They are divided

into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at

column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:
42-14 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
– little-endian. The high byte is on the right.

– big-endian. The high byte is on the left.

– native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

– binary

– text (the default)

A setting of binary has different meanings when applied to

different data types:

– For decimals, binary means packed.

– For other numerical data types, binary means “not text”.

– For dates, binary is equivalent to specifying the julian property
for the date field.

– For time, binary is equivalent to midnight_seconds.

– For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

– For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

– For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

– For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

– For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).
Parallel Job Developer’s Guide 42-15

Inputs Page Column Export Stage
– For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it’s a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric

fields written as text have the following number of bytes as their

maximum width:

– 8-bit signed or unsigned integers: 4 bytes

– 16-bit signed or unsigned integers: 6 bytes

– 32-bit signed or unsigned integers: 11 bytes

– 64-bit signed or unsigned integers: 21 bytes

– single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

– double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.
42-16 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,

unless overridden at column level.

Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see

DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type

unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

– Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not

verify.

Signed. Select Yes to use the existing sign when writing decimal

columns. Select No to write a positive sign (0xf) regardless of the

columns’ actual sign value.

– No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

– No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:
Parallel Job Developer’s Guide 42-17

Inputs Page Column Export Stage
Sign Position. Choose leading or trailing as appropriate.

– No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

– up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

– down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

– nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

– truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
42-18 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at

column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf().
By default, DataStage invokes the C sprintf() function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf().

Date

These properties are applied to columns with a date data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1– 366).

– %mmm: Three-character month abbreviation.
Parallel Job Developer’s Guide 42-19

Inputs Page Column Export Stage
The format_string is subject to the following restrictions:

– It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

– It cannot have both %dd and %ddd.

– It cannot have both %yy and %yyyy.

– It cannot have both %mm and %ddd.

– It cannot have both %mmm and %ddd.

– It cannot have both %mm and %mmm.

– If it has %dd, it must have %mm or %mmm.

– It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoff is the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

APT_DATE_CENTURY_BREAK_YEAR (see

"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced

Developer’s Guide), but this is overridden by %year_cutoffyy if

you have set it.

You can specify any four-digit year as the year cutoff. All two-digit

years then specify the next possible year ending in the specified

two digits that is the same or greater than the cutoff. For example,

if you set the year cutoff to 1930, the two-digit year 30 corresponds

to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless

overridden at column level. All of these are incompatible with a Data

Format setting of Text.
42-20 Parallel Job Developer’s Guide

Column Export Stage Inputs Page
Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.

– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent symbol. Separate the string’s components with any

character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type

unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

– %dd: A two-digit day.

– %mm: A two-digit month.

– %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

– %yy: A two-digit year derived from a year cutoff of 1900.

– %yyyy: A four-digit year.

– %ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

– %hh: A two-digit hours component.

– %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

– %ss: A two-digit seconds component.
Parallel Job Developer’s Guide 42-21

Outputs Page Column Export Stage
– %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If n is 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the

percent sign (%). Separate the string’s components with any

character except the percent sign (%).

Outputs Page
The Outputs page allows you to specify details about data output

from the Column Export stage. The Column Export stage can have

only one output link, but can also have a reject link carrying records

that have been rejected.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Column Export stage and the Output

columns. The Advanced tab allows you to change the default

buffering settings for the output links.

Details about Column Export stage mapping is given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.
42-22 Parallel Job Developer’s Guide

Column Export Stage Outputs Page
Mapping Tab
For the Column Export stage the Mapping tab allows you to specify

how the output columns are derived, i.e., what input columns map

onto them or how they are generated.

The left pane shows the input columns plus the composite column

that the stage exports the specified input columns to. These are read

only and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility.

In the example, the Key column is being passed straight through (it

has not been defined as a Column to Export in the stage properties.

The remaining columns are all being exported to comp_col, which is

the specified Export Column. You could also pass the original columns

through the stage, if required.

Reject Link
You cannot change the details of a Reject link. The link uses the

column definitions for the link rejecting the data rows. Rows will be

rejected if they do not match the expected schema.
Parallel Job Developer’s Guide 42-23

Using RCP With Column Export Stages Column Export Stage
Using RCP With Column Export Stages
Runtime column propagation (RCP) allows DataStage to be flexible

about the columns you define in a job. If RCP is enabled for a project,

you can just define the columns you are interested in using in a job,

but ask DataStage to propagate the other columns through the

various stages. So such columns can be extracted from the data

source and end up on your data target without explicitly being

operated on in between.

You can only use RCP on Column Export stages if you have used the

Schema File property (see "Schema File" on page 42-7) to specify a

schema which describes all the columns in the column. You need to

specify the same schema file for any similar stages in the job where

you want to propagate columns. Stages that will require a schema file

are:

Sequential File

File Set

External Source

External Target

Column Import

Column Export
42-24 Parallel Job Developer’s Guide

43
Make Subrecord Stage

The Make Subrecord stage is a restructure stage. It can have a single

input link and a single output link.

The Make Subrecord stage combines specified vectors in an input

data set into a vector of subrecords whose columns have the names

and data types of the original vectors. You specify the vector columns

to be made into a vector of subrecords and the name of the new

subrecord. See "Complex Data Types" on page 2-32 for an explanation

of vectors and subrecords.

The Split Subrecord stage performs the inverse operation. See

Chapter 43, "Make Subrecord Stage."

The length of the subrecord vector created by this operator equals the

length of the longest vector column from which it is created. If a

variable-length vector column was used in subrecord creation, the

subrecord vector is also of variable length.

Vector 1

Vector 3

Vector 4

Vector 2
Column 1

Column 1

Column 2

Column 3

Column 4

In
pu

t D
at

a
O

u t
p u

t D
a t

a Subrec Subrec Subrec Subrec Subrec

1 Vector2.0 1 Vector2.41 Vector2.1 1 Vector2.2 1 Vector2.3
0 Vector1.0 0 Pad0 Vector1.1 0 Vector1.2 0 Vector1.3

2 Vector3.0 2 Pad2 Vector3.1 2 Vector3.2 2 Vector3.33 Vector4.0 3 Pad3 Vector4.1 3 Vector4.2 3 Pad

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

4

Parallel Job Developer’s Guide 43-1

Make Subrecord Stage
Vectors that are smaller than the largest combined vector are padded

with default values: NULL for nullable columns and the corresponding

type-dependent value for non-nullable columns. When the Make

Subrecord stage encounters mismatched vector lengths, it warns you

by writing to the job log.

You can also use the stage to make a simple subrecord rather than a

vector of subrecords. If your input columns are simple data types

rather than vectors, they will be used to build a vector of subrecords

of length 1 – effectively a simple subrecord.

.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Subrec

Colname1

Colname3

Colname4

Colname2

KeycolColumn 1

Column 2

Column 3

Column 4

Column 5

In
pu

t D
at

a

Column 1

O
u t

p u
t D

a t
a

Colname1
Keycol

Colname2
Colname3
Colname4
43-2 Parallel Job Developer’s Guide

Make Subrecord Stage Examples
Examples
This section gives examples of input and output data from a Make

Subrecord stage to give you a better idea of how the stage works.

In this example the Make Subrecord stage extracts data from four

input columns, three of which carry vectors. The data is output in two

columns, one carrying the vectors in a subrecord, and the non-vector

column being passed through the stage. The example assumes that

the job is running sequentially. The screenshot shows the column

definitions for the input data set.

The following are the rows from the input data set (superscripts

represents the vector index):

Key acol bcol ccol
row A 12013142643 Wills0wombat1bill2william3 D00 1

row B 2206142213 Robin0Dally1Rob2RD3 G0A1

row C 7600152223 Beth0Betany1Bethany2Bets3 B071

row D 406181203 Heathcliff0HC1Hchop2Horror3 A011

row E 20416283 Chaz0Swot1Chazlet2Twerp3 C0H1

row F 180815283 kayser0Cuddles1KB2Ibn Kayeed3 M011

row G 1201016213 Jayne0Jane1J2JD3 F021

row H 1200162433 Ann0Anne1AK2AJK3 H0E1

row I 300172823 Kath0Cath1Catherine2Katy3 C0H1

row J 500172023 Rupert0Rupe1Woopert2puss3 B0C1

The stage outputs the subrecord it builds from the input data in a

single column called parent. The column called key will be output
Parallel Job Developer’s Guide 43-3

Examples Make Subrecord Stage
separately. The following screenshot show the output column

definitions:

The Properties of the Make Subrecord stage are set as follows:

The output data set will be:

Key Parent
Vector

Index 0 1 2 4

row A 12 13 4 64

Wills wombat bill william

D 0 pad pad

row B 22 6 4 21

Robin Dally Rob RD
43-4 Parallel Job Developer’s Guide

Make Subrecord Stage Must Do’s
G A pad pad

row C 76 0 52 2

Beth Betany Bethany Bets

B 7 pad pad

row D 4 6 81 0

Heathcliff HC Hchop Horror

A 1 pad pad

row E 2 4 6 8

Chaz Swot Chazlet Twerp

C H pad pad

row F 18 8 5 8

Kayser Cuddles KB Ibn Kayeed

M 1 pad pad

row G 12 10 6 1

Jayne Jane J JD

F 2 pad pad

row H 12 0 6 43

Ann Anne AK AJK

H E pad pad

row I 3 0 7 82

Kath Cath CatherineKaty

C H pad pad

row J 5 0 7 02

Rupert Rupe Woopert puss

B C pad pad

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Make Subrecord stages in a job. This section specifies the

minimum steps to take to get a Make Subrecord stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Make Subrecord stage:

In the Outputs Stage Properties Tab, under the Input category:

– Specify the vector column to combine into the subrecord,
repeat the property to specify multiple vector columns.

Under the Output category:

– Specify the Subrecord output column.
Parallel Job Developer’s Guide 43-5

Stage Page Make Subrecord Stage
Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties that determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Input Category

Subrecord Output Column

Specify the name of the subrecord into which you want to combine

the columns specified by the Vector Column for Subrecord property.

Output Category

Vector Column for Subrecord

Specify the name of the column to include in the subrecord. You can

specify multiple columns to be combined into a subrecord. For each

column, specify the property followed by the name of the column to

include. You can use the Column Selection dialog box to select

multiple columns at once if required (see page 3-10).

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Subrecord
Output Column

Output Column N/A Y N N/A

Options/Vector
Column for
Subrecord

Input Column N/A N Y Key

Options/Disable
Warning of Column
Padding

True/False False N N N/A
43-6 Parallel Job Developer’s Guide

Make Subrecord Stage Stage Page
Options Category

Disable Warning of Column Padding

When the stage combines vectors of unequal length, it pads columns

and displays a message to this effect. Optionally specify this property

to disable display of the message.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 43-7

Inputs Page Make Subrecord Stage
Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Make Subrecord stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Make Subrecord stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode.

If the Make Subrecord stage is operating in sequential mode, it will

first collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Make Subrecord stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Make Subrecord stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Make Subrecord stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method of the Make Subrecord stage.

Entire. Each file written to receives the entire data set.
43-8 Parallel Job Developer’s Guide

Make Subrecord Stage Inputs Page
Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default partitioning method for the Make Subrecord stage.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Make Subrecord
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default for the default Auto methods).

Select the check boxes as follows:
Parallel Job Developer’s Guide 43-9

Outputs Page Make Subrecord Stage
Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Make Subrecord stage. The Make Subrecord stage can have

only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
43-10 Parallel Job Developer’s Guide

44
Split Subrecord Stage

The Split Subrecord stage separates an input subrecord field into a set

of top-level vector columns. It can have a single input link and a single

output link.

The stage creates one new vector column for each element of the

original subrecord. That is, each top-level vector column that is

created has the same number of elements as the subrecord from

which it was created. The stage outputs columns of the same name

and data type as those of the columns that comprise the subrecord.

Vector 1

Vector 3

Vector 4

Vector 2
Column 1

Column 1

Column 2

Column 3

Column 4

In
pu

t D
at

a
O

ut
p u

t D
at

a

Subrec Subrec Subrec Subrec Subrec

1 Vector2.0 1 Vector2.41 Vector2.1 1 Vector2.2 1 Vector2.3
0 Vector1.0 0 Pad0 Vector1.1 0 Vector1.2 0 Vector1.3

2 Vector3.0 2 Pad2 Vector3.1 2 Vector3.2 2 Vector3.33 Vector4.0 3 Pad3 Vector4.1 3 Vector4.2 3 Pad

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

4

Parallel Job Developer’s Guide 44-1

Examples Split Subrecord Stage
The Make Subrecord stage performs the inverse operation (see

Chapter 38, "SAS Stage.")

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Split

Subrecord stage to give you a better idea of how the stage works.

In this example the Split Subrecord stage extracts data from a

subrecord containing three vectors. The data is output in fours

column, three carrying the vectors from the subrecord, plus another

column which is passed through the stage. The example assumes that
44-2 Parallel Job Developer’s Guide

Split Subrecord Stage Examples
the job is running sequentially. The screenshot shows the column

definitions for the input data set.

The following are the rows from the input data set (superscripts

represents the vector index):

Key Parent
Vector

Index 0 1 2 4

row A 12 13 4 64

Wills wombat bill william

D 0 pad pad

row B 22 6 4 21

Robin Dally Rob RD

G A pad pad

row C 76 0 52 2

Beth Betany Bethany Bets

B 7 pad pad

row D 4 6 81 0

HeathcliffHC Hchop Horror

A 1 pad pad

row E 2 4 6 8

Chaz Swot Chazlet Twerp

C H pad pad

row F 18 8 5 8

Kayser Cuddles KB Ibn Kayeed

M 1 pad pad

row G 12 10 6 1

Jayne Jane J JD

F 2 pad pad

row H 12 0 6 43
Parallel Job Developer’s Guide 44-3

Examples Split Subrecord Stage
Ann Anne AK AJK

H E pad pad

row I 3 0 7 82

Kath Cath CatherineKaty

C H pad pad

row J 5 0 7 02

Rupert Rupe Woopert puss

B C pad pad

The stage outputs the data it extracts from the subrecord in three

separate columns each carrying a vector. The column called key will

be output separately. The following screenshot show the output

column definitions:
44-4 Parallel Job Developer’s Guide

Split Subrecord Stage Must Do’s
The Properties of the Make Subrecord stage are set as follows:

The output data set will be (superscripts represents the vector index):

Key acol bcol ccol
row A 12013142643 Wills0wombat1bill2william3 D00 1

row B 2206142213 Robin0Dally1Rob2RD3 G0A1

row C 7600152223 Beth0Betany1Bethany2Bets3 B071

row D 406181203 Heatchcliff0HC1Hchop2Horror3 A011

row E 20416283 Chaz0Swot1Chazlet2Twerp3 C0H1

row F 180815283 kayser0Cuddles1KB2Ibn Kayeed3 M011

row G 1201016213 Jayne0Jane1J2JD3 F021

row H 1200162433 Ann0Anne1AK2AJK3 H0E1

row I 300172823 Kath0Cath1Catherine2Katy3 C0H1

row J 500172023 Rupert0Rupe1Woopert2puss3 B0C1

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Split Subrecord stages in a job. This section specifies the

minimum steps to take to get a Split Subrecord stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Split Subrecord stage:
Parallel Job Developer’s Guide 44-5

Stage Page Split Subrecord Stage
In the Outputs Stage Properties Tab, under the Input category:

– Specify the subrecord column that the stage will extract
vectors from.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. The Split Subrecord only has one

property, and you must supply a value for this.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Options Category

Subrecord Column

Specifies the name of the vector whose elements you want to

promote to a set of similarly named top-level columns.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Subrecord
Column

Input Column N/A Y N N/A
44-6 Parallel Job Developer’s Guide

Split Subrecord Stage Inputs Page
Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. There can be only one input to the Split Subrecord stage.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Split Subrecord stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of
Parallel Job Developer’s Guide 44-7

Inputs Page Split Subrecord Stage
current and preceding stages and how many nodes are specified in

the Configuration file.

If the Split Subrecord stage is operating in sequential mode, it will

first collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Split Subrecord stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Split Subrecord stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Split Subrecord stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Split Subrecord
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
44-8 Parallel Job Developer’s Guide

Split Subrecord Stage Inputs Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Split Subrecord
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 44-9

Outputs Page Split Subrecord Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Split Subrecord stage. The Split Subrecord stage can have

only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of these tabs.
44-10 Parallel Job Developer’s Guide

45
Combine Records Stage

The Combine Records stage is restructure stage. It can have a single

input link and a single output link.

The Combine Records stage combines records (i.e., rows), in which

particular key-column values are identical, into vectors of subrecords.

As input, the stage takes a data set in which one or more columns are

chosen as keys. All adjacent records whose key columns contain the

same value are gathered into the same record as subrecords.

The data set input to the Combine Records stage must be key

partitioned and sorted. This ensures that rows with the same key

column values are located in the same partition and will be processed

by the same node. Choosing the (auto) partitioning method will

ensure that partitioning and sorting is done. If sorting and partitioning

are carried out on separate stages before the Combine Records stage,

DataStage in auto mode will detect this and not repartition

Colname1

Colname1
Keycol Keycol Keycol Keycol Keycol Keycol

Colname1 Colname1

All elements
share same
value of Keycol

Colname1 Colname1 Colname1
Colname2 Colname2 Colname2 Colname2 Colname2 Colname2
Colname3 Colname3 Colname3 Colname3 Colname3 Colname3
Colname4 Colname4 Colname4 Colname4 Colname4 Colname4

Colname3

Colname4

Colname2

KeycolColumn 1

Column 1

Column 2

Column 3

Column 4

Column 5

Subrec Subrec Subrec Subrec Subrec Subrec

In
pu

t D
a t

a
O

u t
p u

t D
a t

a

Examples Combine Records Stage
(alternatively you could explicitly specify the Same partitioning

method).

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Combine

Records stage to give you a better idea of how the stage works.
45-2 Parallel Job Developer’s Guide

Combine Records Stage Examples
Example 1
This example assumes that the job is running sequentially. The

screenshot shows the column definitions for the input data set:

The following are some rows from the input data set:

col1 col2 col3 keycol
row 1 00:11:01 1960-01-02 A

row 3 08:45:54 1946-09-15 A

row 1 12:59:01 1955-12-22 B

row 2 07:33:04 1950-03-10 B

row 2 12:00:00 1967-02-06 B

row 2 07:37:04 1950-03-10 B

row 3 07:56:03 1977-04-14 B

row 3 09:58:02 1960-05-18 B

row 1 11:43:02 1980-06-03 C

row 2 01:30:01 1985-07-07 C

row 2 11:30:01 1985-07-07 C

row 3 10:28:02 1992-11-23 C

row 3 12:27:00 1929-08-11 C

row 3 06:33:03 1999-10-19 C

row 3 11:18:22 1992-11-23 C

Once combined by the stage, each group of rows will be output in a

single column called supercool. This contains the caecal, col1, col2,

and col3 columns. (If you do not take advantage of the runtime

column propagation feature, you would have to set up the subrecord
Parallel Job Developer’s Guide 45-3

Examples Combine Records Stage
using the Edit Column Meta Data dialog box to set a level number for

each of the columns the subrecord column contains.)

The Properties of the stage are set as follows:

The Output data set will be:

subreccol
vector

index col1 col2 col3 keycol

row 0 1 00:11:01 1960-01-02 A

1 3 08:45:54 1946-09-15 A

row 0 1 12:59:01 1955-12-22 B
45-4 Parallel Job Developer’s Guide

Combine Records Stage Examples
1 2 07:33:04 1950-03-10 B

2 2 12:00:00 1967-02-06 B

3 2 07:37:04 1950-03-10 B

4 3 07:56:03 1977-04-14 B

5 3 09:58:02 1960-05-18 B

row 0 1 11:43:02 1980-06-03 C

1 2 01:30:01 1985-07-07 C

2 2 11:30:01 1985-07-07 C

3 3 10:28:02 1992-11-23 C

4 3 12:27:00 1929-08-11 C

5 3 06:33:03 1999-10-19 C

6 3 11:18:22 1992-11-23 C

Example 2
This example shows a more complex structure that can be derived

using the Top Level Keys Property. This can be set to True to indicate

that key columns should be left as top level columns and not included

in the subrecord.This example assumes that the job is running

sequentially. The same column definition are used, except both col1

and keycol are defined as keys:

The same input data set is used:

col1 col2 col3 keycol
row 1 00:11:01 1960-01-02 A

row 3 08:45:54 1946-09-15 A

row 1 12:59:01 1955-12-22 B

row 2 07:33:04 1950-03-10 B

row 2 12:00:00 1967-02-06 B
Parallel Job Developer’s Guide 45-5

Examples Combine Records Stage
row 2 07:37:04 1950-03-10 B

row 3 07:56:03 1977-04-14 B

row 3 09:58:02 1960-05-18 B

row 1 11:43:02 1980-06-03 C

row 2 01:30:01 1985-07-07 C

row 2 11:30:01 1985-07-07 C

row 3 10:28:02 1992-11-23 C

row 3 12:27:00 1929-08-11 C

row 3 06:33:03 1999-10-19 C

row 3 11:18:22 1992-11-23 C

The Output column definitions have two separate columns defined for

the keys, as well as the column carrying the subrecords:
45-6 Parallel Job Developer’s Guide

Combine Records Stage Must Do’s
The properties of the stage are set as follows:

The Output data set will be:

keycol col1 subreccol
vector

index col2 col3

row A 1 0 00:11:01 1960-01-02

row A 3 0 08:45:54 1946-09-15

row B 1 0 12:59:01 1955-12-22

row B 2 0 07:33:04 1950-03-10

1 12:00:00 1967-02-06

2 07:37:04 1950-03-10

row B 3 0 07:56:03 1977-04-14

1 09:58:02 1960-05-18

row C 1 0 11:43:02 1980-06-03

row C 2 0 01:30:01 1985-07-07

1 11:30:01 1985-07-07

row C 3 0 10:28:02 1992-11-23

1 12:27:00 1929-08-11

2 06:33:03 1999-10-19

3 11:18:22 1992-11-23

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Combine Records stages in a job. This section specifies the

minimum steps to take to get a Combine Records stage functioning.

DataStage provides a versatile user interface, and there are many
Parallel Job Developer’s Guide 45-7

Stage Page Combine Records Stage
shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Combine Records stage:

In the Stage Page Properties Tab, under the Output category:

– Specify the output column to carry the vector of subrecords in
the Subrecord Output Column.

Under the Combine Keys category:

– Specify the key column. Repeat the property to specify a
composite key. All adjacent rows sharing the same value of the
keys will be combined into a single row using the vector of
subrecords structure.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The

NLS Locale tab appears if your have NLS enabled on your system. It

allows you to select a locale other than the project default to

determine collating rules.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/
Subrecord Output
Column

Output Column N/A Y N N/A

Options/Key Input Column N/A Y Y N/A

Options/Case
Sensitive

True/False True N N Key
45-8 Parallel Job Developer’s Guide

Combine Records Stage Stage Page
Outputs Category

Subrecord Output Column

Specify the name of the subrecord that the Combine Records stage

creates.

Combine Keys Category

Key

Specify one or more columns. You can use the Column Selection

dialog box to select multiple columns at once if required (see

page 3-10). All records whose key columns contain identical values

are gathered into the same record as subrecords. If the Top Level Keys

property is set to False, each column becomes the element of a

subrecord.

If the Top Level Keys property is set to True, the key column appears

as a top-level column in the output record as opposed to in the

subrecord. All non-key columns belonging to input records with that

key column appear as elements of a subrecord in that key column’s

output record. Key has the following dependent property:

Case Sensitive

Use this to property to specify whether each key is case sensitive

or not. It is set to True by default; for example, the values “CASE”

and “case” would not be judged equivalent.

Options Category

Top Level Keys

Specify whether to leave keys as top-level columns or have them put

into the subrecord. False by default.

Options/Top Level
Keys

True/False False N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 45-9

Stage Page Combine Records Stage
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pools or pools specified in the grid. The grid allows you
to make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Combine Records stage uses this when it is determining the sort

order for key columns. Select a locale from the list, or click the arrow
45-10 Parallel Job Developer’s Guide

Combine Records Stage Inputs Page
button next to the list to use a job parameter or browse for a collate

file.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Combine Records stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Combine Records stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in
Parallel Job Developer’s Guide 45-11

Inputs Page Combine Records Stage
the Configuration file.Auto mode ensures that data being input to the

Combine Records stage is hash partitioned and sorted.

If the Combine Records stage is operating in sequential mode, it will

first collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Combine Records stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Combine Records stage is set to execute in parallel, then you can

set a partitioning method by selecting from the Partition type drop-

down list. This will override any current partitioning.

If the Combine Records stage is set to execute in sequential mode, but

the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Combine
Records stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
45-12 Parallel Job Developer’s Guide

Combine Records Stage Inputs Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Combine Records
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available. In the case of a Combine Records stage, Auto will also
ensure that the collected data is sorted.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for
Parallel Job Developer’s Guide 45-13

Outputs Page Combine Records Stage
partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Combine Records stage. The Combine Records stage can

have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
45-14 Parallel Job Developer’s Guide

46
Promote Subrecord Stage

The Promote Subrecord stage is a restructure stage. It can have a

single input link and a single output link.

The Promote Subrecord stage promotes the columns of an input

subrecord to top-level columns. The number of output columns

equals the number of subrecord elements. The data types of the input

subrecord columns determine those of the corresponding top-level

columns.

Colname1

Colname1

Colname3

Colname3

Colname4

Colname4

Colname2

Colname2

Column 1

Column 1

Column 2

Column 3

Column 4

In
pu

t D
at

a

Parent (subrecord)

O
u t

p u
t D

a t
a

Parallel Job Developer’s Guide 46-1

Examples Promote Subrecord Stage
The stage can also promote the columns in vectors of subrecords, in

which case it acts as the inverse of the Combine Subrecord stage (see

Chapter 45).

The Combine Records stage performs the inverse operation. See

Chapter 46, "Promote Subrecord Stage."

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Promote

Subrecord stage to give you a better idea of how the stage works.

Colname1

Colname1
Keycol Keycol Keycol Keycol Keycol Keycol

Colname1 Colname1 Colname1 Colname1 Colname1
Colname2 Colname2 Colname2 Colname2 Colname2 Colname2
Colname3 Colname3 Colname3 Colname3 Colname3 Colname3
Colname4 Colname4 Colname4 Colname4 Colname4 Colname4

Colname3

Colname4

Colname2

KeycolColumn 1

Column 1

Column 2

Column 3

Column 4

Column 5

Subrec Subrec Subrec Subrec Subrec Subrec

In
pu

t D
a t

a
O

ut
pu

t D
at

a

46-2 Parallel Job Developer’s Guide

Promote Subrecord Stage Examples
Example 1
In this example the Promote Subrecord stage promotes the records of

a simple subrecord to top level columns. It extracts data from a single

column containing a subrecord. The data is output in four columns,

each carrying a column from the subrecord. The example assumes

that the job is running sequentially. The screenshot shows the column

definitions for the input data set.

The following are the rows from the input data set:

Subrec
subrecord

column name col1 col2 col3 col4

row 1 AAD Thurs No

row 2 ABD Thurs No

row 3 CAD Weds Yes

row 4 CCC Mon Yes

5 BDD Mon Yes

6 DAK Fri No

7 MDB Tues Yes

The stage outputs the data it extracts from the subrecord in four
Parallel Job Developer’s Guide 46-3

Examples Promote Subrecord Stage
separate columns of appropriate type. The following screenshot show

the output column definitions:

The Properties of the Promote Subrecord stage are set as follows:

The output data set will be:

Col1 Col2 Col3 Col4
row 1 AAD Thurs No

row 2 ABD Thurs No

row 3 CAD Weds Yes

row 4 CCC Mon Yes
46-4 Parallel Job Developer’s Guide

Promote Subrecord Stage Examples
Example 2
This example shows how the Promote Subrecord would operate on

an aggregated vector of subrecords, as would be produced by the

Combine Records stage. It assumes that the job is running

sequentially. The screenshot shows the column definitions for the

input data set:

The following are some rows from the input data set:

subreccol
vector

index col1 col2 col3 keycol

row 0 1 00:11:01 1960-01-02 A

1 3 08:45:54 1946-09-15 A

row 0 1 12:59:01 1955-12-22 B

1 2 07:33:04 1950-03-10 B

2 2 12:00:00 1967-02-06 B

3 2 07:37:04 1950-03-10 B

4 3 07:56:03 1977-04-14 B

5 3 09:58:02 1960-05-18 B

row 0 1 11:43:02 1980-06-03 C

1 2 01:30:01 1985-07-07 C

2 2 11:30:01 1985-07-07 C

3 3 10:28:02 1992-11-23 C

4 3 12:27:00 1929-08-11 C

5 3 06:33:03 1999-10-19 C

6 3 11:18:22 1992-11-23 C
Parallel Job Developer’s Guide 46-5

Examples Promote Subrecord Stage
Once the columns in the subrecords have been promoted the data will

be output in four columns as follows:

The properties of the stage are set as follows:

The Output data set will be:

col1 col2 col3 keycol
row 1 00:11:01 1960-01-02 A

row 3 08:45:54 1946-09-15 A

row 1 12:59:01 1955-12-22 B

row 2 07:33:04 1950-03-10 B

row 2 12:00:00 1967-02-06 B

row 2 07:37:04 1950-03-10 B

row 3 07:56:03 1977-04-14 B

row 3 09:58:02 1960-05-18 B
46-6 Parallel Job Developer’s Guide

Promote Subrecord Stage Must Do’s
row 1 11:43:02 1980-06-03 C

row 2 01:30:01 1985-07-07 C

row 2 11:30:01 1985-07-07 C

row 3 10:28:02 1992-11-23 C

row 3 12:27:00 1929-08-11 C

row 3 06:33:03 1999-10-19 C

row 3 11:18:22 1992-11-23 C

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Promote Subrecord stages in a job. This section specifies the

minimum steps to take to get a Promote Subrecord stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Promote Subrecord stage:

In the Outputs Stage Properties Tab, under the Input category:

– Specify the subrecord column that the stage will promote
subrecords from.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Promote Subrecord Stage has one property:

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/
Subrecord
Column

Input Column N/A Y N N/A
Parallel Job Developer’s Guide 46-7

Inputs Page Promote Subrecord Stage
Options Category

Subrecord Column

Specifies the name of the subrecord whose elements will be

promoted to top-level records.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combineability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Promote Subrecord stage expects one incoming data

set.
46-8 Parallel Job Developer’s Guide

Promote Subrecord Stage Inputs Page
The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Promote Subrecord stage partitioning are given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Promote Subrecord stage is operating in sequential mode, it will

first collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Promote Subrecord stage is set to execute in parallel
or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Promote Subrecord stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partition type

drop-down list. This will override any current partitioning.

If the Promote Subrecord stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Promote Subrecord stage.

Entire. Each file written to receives the entire data set.
Parallel Job Developer’s Guide 46-9

Inputs Page Promote Subrecord Stage
Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default partitioning method for the Promote Subrecord stage.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Promote
Subrecord stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning methods chosen (it is not

available with the default auto methods).

Select the check boxes as follows:
46-10 Parallel Job Developer’s Guide

Promote Subrecord Stage Outputs Page
Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Promote Subrecord stage. The Promote Subrecord stage can

have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
Parallel Job Developer’s Guide 46-11

Outputs Page Promote Subrecord Stage
46-12 Parallel Job Developer’s Guide

47
Make Vector Stage

The Make Vector stage is an active stage. It can have a single input

link and a single output link.

The Make Vector stage combines specified columns of an input data

record into a vector of columns. The stage has the following

requirements:

The input columns must form a numeric sequence, and must all
be of the same type.

The numbers must increase by one.

The columns must be named column_name0 to column_namen,
where column_name starts the name of a column and 0 and n are
the first and last of its consecutive numbers.

The columns do not have to be in consecutive order.

All these columns are combined into a vector of the same length as

the number of columns (n+1). The vector is called column_name. Any

input columns that do not have a name of that form will not be

included in the vector but will be output as top level columns.

Col1

Col1

Col3

Col3

Col4

Col Col4

Col2

Col2

Col0

Col0

Column 1

Column 2

Column 3

Column 4

Column 5

In
pu

t D
at

a

Column 1

O
ut

p u
t D

at
a

Parallel Job Developer’s Guide 47-1

Examples Make Vector Stage
The Split Vector stage performs the inverse operation. See Chapter 48,

"Split Vector Stage."

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Make

Vector stage to give you a better idea of how the stage works.

Example 1
In this example, all the input data will be included in the output vector.

The example assumes that the job is running sequentially. The

screenshot shows the column definitions for the input data set. Note
47-2 Parallel Job Developer’s Guide

Make Vector Stage Examples
the columns all have the same type and names in the form

column_nameN.:

The following are some rows from the input data set:

Col0 Col1 Col2 Col3 Col4
row 3 6 2 9 9

row 3 2 7 2 4

row 7 8 8 5 3

row 4 8 7 1 6

row 1 6 2 5 1

row 0 1 6 7 8

row 9 9 6 4 2

row 0 8 4 4 3

row 1 7 2 5 3

row 7 9 4 7 8

The stage outputs the vectors it builds from the input data in a single

column called column_name. You do not have to explicitly define the
Parallel Job Developer’s Guide 47-3

Examples Make Vector Stage
output column name, DataStage will do this for you as the job runs,

but you may wish to do so to make the job more understandable.

The properties of the stage are set as follows:

The output data set will be:

 Col
Vector
Index0 1 2 3 4
row 3 6 2 9 9

row 3 2 7 2 4

row 7 8 8 5 3

row 4 8 7 1 6

row 1 6 2 5 1
47-4 Parallel Job Developer’s Guide

Make Vector Stage Examples
row 0 1 6 7 8

row 9 9 6 4 2

row 0 8 4 4 3

row 1 7 2 5 3

row 7 9 4 7 8

Example 2
In this example, there are additional columns as well as the ones that

will be included in the vector. The example assumes that the job is

running sequentially. The screenshot shows the column definitions

for the input data set, note the additional columns called name and

code:

The following are some rows from the input data set:

Name Code Col0 Col1 Col2 Col3 Col4
row Will D070 3 6 2 9 9

row Robin GA36 3 2 7 2 4

row Beth B777 7 8 8 5 3

row HeathcliffA100 4 8 7 1 6

row Chaz CH01 1 6 2 5 1

row Kayser CH02 0 1 6 7 8

row Jayne M122 9 9 6 4 2

row Ann F234 0 8 4 4 3

row Kath HE45 1 7 2 5 3

row Rupert BC11 7 9 4 7 8

The stage outputs the vectors it builds from the input data in a single

column called column_name. The two other columns are output

separately. You do not have to explicitly define the output column
Parallel Job Developer’s Guide 47-5

Examples Make Vector Stage
names, DataStage will do this for you as the job runs, but you may

wish to do so to make the job more understandable.

The properties of the stage are set as follows:

The output data set will be:

Name Code Col
Vector
Index0 1 2 3 4

row Will D070 3 6 2 9 9

row Robin GA36 3 2 7 2 4

row Beth B777 7 8 8 5 3

row HeathcliffA100 4 8 7 1 6
47-6 Parallel Job Developer’s Guide

Make Vector Stage Must Do’s
row Chaz CH01 1 6 2 5 1

row Kayser CH02 0 1 6 7 8

row Jayne M122 9 9 6 4 2

row Ann F234 0 8 4 4 3

row Kath HE45 1 7 2 5 3

row Rupert BC11 7 9 4 7 8

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Make Vector stages in a job. This section specifies the

minimum steps to take to get a Make Vector stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Make Vector stage:

In the Stage Page Properties Tab:

– Specify the Column’s Common Partial Name, this is the
column_name part that is shared by all the columns in the
input data set, which will be the name of the output column
containing the vector.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Make Vector stage has one property:

Category/Property Values Default Mandatory? Repeats? Dependent of

Options/Column’s
Common Partial Name

Name N/A Y N N/A
Parallel Job Developer’s Guide 47-7

Inputs Page Make Vector Stage
Options Category

Column’s Common Partial Name

Specifies the beginning column_name of the series of consecutively

numbered columns column_name0 to column_namen to be

combined into a vector called column_name.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Make Vector stage expects one incoming data set.
47-8 Parallel Job Developer’s Guide

Make Vector Stage Inputs Page
The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Make Vector stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode.

If the Make Vector stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Make Vector stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Make Vector stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Make Vector stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.
Parallel Job Developer’s Guide 47-9

Inputs Page Make Vector Stage
Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default partitioning method for the Make Vector stage.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Make Vector
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.
47-10 Parallel Job Developer’s Guide

Make Vector Stage Outputs Page
Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Make Vector stage. The Make Vector stage can have only one

output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
Parallel Job Developer’s Guide 47-11

Outputs Page Make Vector Stage
47-12 Parallel Job Developer’s Guide

48
Split Vector Stage

The Split Vector stage is a restructure stage. It can have a single input

link and a single output link.

The Split Vector stage promotes the elements of a fixed-length vector

to a set of similarly named top-level columns. The stage creates

columns of the format name0 to namen, where name is the original

vector’s name and 0 and n are the first and last elements of the vector.

The Make Vector stage performs the inverse operation (see

Chapter 42).

Col1

Col1

Col3

Col3

Col4

Col Col4

Col2

Col2

Col0

Col0

Column 1

Column 2

Column 3

Column 4

Column 5

In
pu

t D
a t

a

Column 1

O
ut

pu
t D

at
a

Parallel Job Developer’s Guide 48-1

Examples Split Vector Stage
The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
This section gives examples of input and output data from a Split

Vector stage to give you a better idea of how the stage works.

Example 1
In this example the input data comprises a single column carrying a

vector. The example assumes that the job is running sequentially. The

screenshot shows the column definitions for the input data set.

The following are some rows from the input data set:

Col
Vector
Index0 1 2 3 4
row 3 6 2 9 9

row 3 2 7 2 4

row 7 8 8 5 3

row 4 8 7 1 6
48-2 Parallel Job Developer’s Guide

Split Vector Stage Examples
row 1 6 2 5 1

row 0 1 6 7 8

row 9 9 6 4 2

row 0 8 4 4 3

row 1 7 2 5 3

row 7 9 4 7 8

The stage outputs the vectors it builds from the input data in a single

column called column_name. You do not have to explicitly define the

output column name, DataStage will do this for you as the job runs,

but you may wish to do so to make the job more understandable.

The properties of the stage are set as follows:

The output data set will be:
Parallel Job Developer’s Guide 48-3

Examples Split Vector Stage
Col0 Col1 Col2 Col3 Col4
row 3 6 2 9 9

row 3 2 7 2 4

row 7 8 8 5 3

row 4 8 7 1 6

row 1 6 2 5 1

row 0 1 6 7 8

row 9 9 6 4 2

row 0 8 4 4 3

row 1 7 2 5 3

row 7 9 4 7 8

Example 2
In this example, there are additional columns as well as the ones

containing the vector. The example assumes that the job is running

sequentially. The screenshot shows the column definitions for the

input data set, note the additional columns called name and code:

The following are some rows from the input data set:

Name Code Col
Vector
Index0 1 2 3 4

row Will D070 3 6 2 9 9

row Robin GA36 3 2 7 2 4

row Beth B777 7 8 8 5 3

row HeathcliffA100 4 8 7 1 6

row Chaz CH01 1 6 2 5 1

row Kayser CH02 0 1 6 7 8
48-4 Parallel Job Developer’s Guide

Split Vector Stage Examples
row Jayne M122 9 9 6 4 2

row Ann F234 0 8 4 4 3

row Kath HE45 1 7 2 5 3

row Rupert BC11 7 9 4 7 8

The stage outputs the vectors it builds from the input data in a single

column called column_name. The other columns are passed straight

through. You do not have to explicitly define the output column name,

DataStage will do this for you as the job runs, but you may wish to do

so to make the job more understandable.

The properties of the stage are set as follows:

The output data set will be:
Parallel Job Developer’s Guide 48-5

Must Do’s Split Vector Stage
Name Code Col0 Col1 Col2 Col3 Col4
row Will D070 3 6 2 9 9

row Robin GA36 3 2 7 2 4

row Beth B777 7 8 8 5 3

row HeathcliffA100 4 8 7 1 6

row Chaz CH01 1 6 2 5 1

row Kayser CH02 0 1 6 7 8

row Jayne M122 9 9 6 4 2

row Ann F234 0 8 4 4 3

row Kath HE45 1 7 2 5 3

row Rupert BC11 7 9 4 7 8

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Split Vector stages in a job. This section specifies the

minimum steps to take to get a Split Vector stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Split Vector stage:

In the Stage Page Properties Tab:

– Specify the name of the input column carrying the vector to be
split.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Split Vector stage has one property:

Category/Property Values Default Mandatory? Repeats? Dependent of

Options/Vector Column Name N/A Y N N/A
48-6 Parallel Job Developer’s Guide

Split Vector Stage Inputs Page
Options Category

Vector Column

Specifies the name of the vector whose elements you want to

promote to a set of similarly named top-level columns.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. There can be only one input to the Split Vector stage.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming
Parallel Job Developer’s Guide 48-7

Inputs Page Split Vector Stage
data is partitioned before being converted. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Split Vector stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is converted. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file.

If the Split Vector stage is operating in sequential mode, it will first

collect the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Split Vector stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Split Vector stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Split Vector stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Split Vector
stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.
48-8 Parallel Job Developer’s Guide

Split Vector Stage Inputs Page
Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Split Vector
stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being converted. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available with the default Auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.
Parallel Job Developer’s Guide 48-9

Outputs Page Split Vector Stage
Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Split Vector stage. The Split Vector stage can have only one

output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Advanced tab allows you to change the default buffering

settings for the output link.

See Chapter 3, "Stage Editors," for a general description of the tabs.
48-10 Parallel Job Developer’s Guide

49
Head Stage

The Head Stage is a Development/Debug stage. It can have a single

input link and a single output link. It is one of a number of stages that

DataStage provides to help you sample data, see also:

Tail stage, Chapter 50.

Sample stage, Chapter 51.

Peek stage, Chapter 52.

The Head Stage selects the first N rows from each partition of an input

data set and copies the selected rows to an output data set. You

determine which rows are copied by setting properties which allow

you to specify:

The number of rows to copy

The partition from which the rows are copied

The location of the rows to copy

The number of rows to skip before the copying operation begins

This stage is helpful in testing and debugging applications with large

data sets. For example, the Partition property lets you see data from a

single partition to determine if the data is being partitioned as you

want it to be. The Skip property lets you access a certain portion of a

data set.
Parallel Job Developer’s Guide 49-1

Examples Head Stage
The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples

Head Stage Default Behavior
Our input data set comprises details of the inhabitants of Woodstock,

Oxfordshire in the seventeenth century, which has previously been

hash-partititioned into four partitions. We accept the default setting to

sample ten rows from the start of each partition as follows:
49-2 Parallel Job Developer’s Guide

Head Stage Examples
After the job is run we get a data set comprising four partitions each

containing ten rows. Here is a sample of partition 0 as input to the

Head stage, and partition 0 in its entirety as output by the stage:
Parallel Job Developer’s Guide 49-3

Must Do’s Head Stage
Skipping Data
In this example we are using the same data, but this time we are only

interested in partition 0, and are skipping the first 100 rows before we

take our ten rows. The Head stage properties are set as follows:

Here is the data set output by the stage:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Head stages in a job. This section specifies the minimum

steps to take to get a Head stage functioning. DataStage provides a

versatile user interface, and there are many shortcuts to achieving a
49-4 Parallel Job Developer’s Guide

Head Stage Stage Page
particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Head stage:

In the Stage Page Properties Tab, under the Rows category:

– Specify the number of rows per partition that you want to copy
from the source data set to the target data set. This defaults to
ten.

You can also:

– Specify that the stage should skip the first N rows per partition.

– Specify that the stage will output all rows in a partition after the
skip.

– Specify that the stage should output every Nth row.

Under the Partitions category:

– Specify that the stage will only output rows from the selected
partitions.

In the Outputs Page Mapping Tab, specify how the headed data
maps onto your output columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Rows/All Rows True/False False N N N/A

Rows/Number of
Rows (per Partition)

Count 10 N N N/A
Parallel Job Developer’s Guide 49-5

Stage Page Head Stage
Rows Category

All Rows

Copy all input rows to the output data set. You can skip rows before

Head performs its copy operation by using the Skip property. The

Number of Rows property is not needed if All Rows is true.

Number of Rows (per Partition)

Specify the number of rows to copy from each partition of the input

data set to the output data set. The default value is 10. The Number of

Rows property is not needed if All Rows is true.

Period (per Partition)

Copy every Pth record in a partition, where P is the period. You can

start the copy operation after records have been skipped by using the

Skip property. P must equal or be greater than 1.

Skip (per Partition)

Ignore the first number of rows of each partition of the input data set,

where number is the number of rows to skip. The default skip count is

0.

Partitions Category

All Partitions

If False, copy records only from the indicated partition, specified by

number. By default, the operator copies rows from all partitions.

Rows/Period (per
Partition)

Number N/A N N N/A

Rows/Skip (per
Partition)

Number N/A N N N/A

Partitions/All
Partitions

Partition
Number

N/A N Y N/A

Partitions/Partition
Number

Number N/A Y (if All
Partitions =
False)

Y N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
49-6 Parallel Job Developer’s Guide

Head Stage Inputs Page
Partition Number

Specifies particular partitions to perform the Head operation on. You

can specify the Partition Number property multiple times to specify

multiple partition numbers.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Head stage expects one input.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being headed. The Columns tab specifies
Parallel Job Developer’s Guide 49-7

Inputs Page Head Stage
the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Head stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is headed. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages, and how many nodes are specified in

the Configuration file.

If the Head stage is operating in sequential mode, it will first collect

the data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Head stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Head stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Head stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages, and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Head stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.
49-8 Parallel Job Developer’s Guide

Head Stage Inputs Page
Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Head stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being headed. The sort is

always carried out within data partitions. If the stage is partitioning

incoming data the sort occurs after the partitioning. If the stage is

collecting data, the sort occurs before the collection. The availability

of sorting depends on the partitioning or collecting method chosen (it

is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.
Parallel Job Developer’s Guide 49-9

Outputs Page Head Stage
Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Head stage. The Head stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Head stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output link.

Details about Head stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.
49-10 Parallel Job Developer’s Guide

Head Stage Outputs Page
Mapping Tab
For the Head stage the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them

or how they are generated.

The left pane shows the input columns and/or the generated columns.

These are read only and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.
Parallel Job Developer’s Guide 49-11

Outputs Page Head Stage
49-12 Parallel Job Developer’s Guide

50
Tail Stage

The Tail Stage is a Development/Debug stage. It can have a single

input link and a single output link. It is one of a number of stages that

DataStage provides to help you sample data, see also:

Head stage, Chapter 49.

Sample stage, Chapter 51.

Peek stage, Chapter 52.

The Tail Stage selects the last N records from each partition of an

input data set and copies the selected records to an output data set.

You determine which records are copied by setting properties which

allow you to specify:

The number of records to copy

The partition from which the records are copied

This stage is helpful in testing and debugging applications with large

data sets. For example, the Partition property lets you see data from a

single partition to determine if the data is being partitioned as you

want it to be. The Skip property lets you access a certain portion of a

data set.

The stage editor has three pages:
Parallel Job Developer’s Guide 50-1

Examples Tail Stage
Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Examples
Our input data set comprises details of the inhabitants of Woodstock,

Oxfordshire in the seventeenth century, which has previously been

hash-partititioned into four partitions. We accept the default setting to

sample ten rows from the end of each partition as follows:
50-2 Parallel Job Developer’s Guide

Tail Stage Must Do’s
After the job is run we get a data set comprising four partitions each

containing ten rows. Here is a sample of partition 0 as input to the Tail

stage, and partition 0 in its entirety as output by the stage:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Tail stages in a job. This section specifies the minimum steps

to take to get a Tail stage functioning. DataStage provides a versatile

user interface, and there are many shortcuts to achieving a particular
Parallel Job Developer’s Guide 50-3

Stage Page Tail Stage
end, this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

To use a Tail stage:

In the Stage Page Properties Tab, under the Rows category:

– Specify the number of rows per partition that you want to copy
from the source data set to the target data set. This defaults to
ten.

Under the Partitions category:

– Specify that the stage will only output rows from the selected
partitions.

In the Outputs Page Mapping Tab, specify how the tailed data
maps onto your output columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Rows/Number of
Rows (per Partition)

Count 10 N N Key

Partitions/All
Partitions

Partition
Number

N/A N Y N/A

Partitions/Partition
Number

Number N/A Y (if All
Partitions =
False)

Y N/A
50-4 Parallel Job Developer’s Guide

Tail Stage Stage Page
Rows Category

Number of Rows (per Partition)

Specify the number of rows to copy from each partition of the input

data set to the output data set. The default value is 10.

Partitions Category

All Partitions

If False, copy records only from the indicated partition, specified by

number. By default, the operator copies records from all partitions.

Partition Number

Specifies particular partitions to perform the Tail operation on. You

can specify the Partition Number property multiple times to specify

multiple partition numbers.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
Parallel Job Developer’s Guide 50-5

Inputs Page Tail Stage
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Tail stage expects one input.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being tailed. The Columns tab specifies the

column definitions of incoming data. The Advanced tab allows you

to change the default buffering settings for the input link.

Details about Tail stage partitioning are given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is tailed. It also

allows you to specify that the data should be sorted before being

operated on.

By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file. If the Preserve Partitioning option has been set

on the previous stage in the job, this stage will warn if it cannot

preserve the partitioning of the incoming data.

If the Tail stage is operating in sequential mode, it will first collect the

data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Tail stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Tail stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.
50-6 Parallel Job Developer’s Guide

Tail Stage Inputs Page
If the Tail stage is set to execute in sequential mode, but the preceding

stage is executing in parallel, then you can set a collection method

from the Collector type drop-down list. This will override the default

collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Tail stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Tail stages.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.
Parallel Job Developer’s Guide 50-7

Outputs Page Tail Stage
The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being tailed. The sort is always

carried out within data partitions. If the stage is partitioning incoming

data the sort occurs after the partitioning. If the stage is collecting

data, the sort occurs before the collection. The availability of sorting

depends on the partitioning method chosen.

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
The Outputs page allows you to specify details about data output

from the Tail stage. The Tail stage can have only one output link.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Tail stage and the Output columns. The

Advanced tab allows you to change the default buffering settings for

the output link.

Details about Tail stage mapping is given in the following section. See

Chapter 3, "Stage Editors," for a general description of the other tabs.
50-8 Parallel Job Developer’s Guide

Tail Stage Outputs Page
Mapping Tab
For the Tail stage the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them

or how they are generated.

The left pane shows the input columns and/or the generated columns.

These are read only and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.
Parallel Job Developer’s Guide 50-9

Outputs Page Tail Stage
50-10 Parallel Job Developer’s Guide

51
Sample Stage

The Sample stage is a Development/Debug stage. It can have a single

input link and any number of output links when operationg in percent

mode, or a single input and single output link when operating in

period mode. It is one of a number of stages that DataStage provides

to help you sample data, see also:

Head stage, Chapter 49.

Tail stage, Chapter 50.

Peek stage, Chapter 52.

The Sample stage samples an input data set. It operates in two

modes. In Percent mode, it extracts rows, selecting them by means of

a random number generator, and writes a given percentage of these

to each output data set. You specify the number of output data sets,

the percentage written to each, and a seed value to start the random

number generator. You can reproduce a given distribution by

repeating the same number of outputs, the percentage, and the seed

value.
Parallel Job Developer’s Guide 51-1

Examples Sample Stage
In Period mode, it extracts every Nth row from each partition, where N

is the period, which you supply. In this case all rows will be output to a

single data set, so the stage used in this mode can only have a single

output link

For both modes you can specify the maximum number of rows that

you want to sample from each partition.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the data set
being Sampled.

Outputs Page. This is where you specify details about the
Sampled data being output from the stage.

Examples

Sampling in Percent Mode
Our input data set comprises details of the inhabitants of Woodstock,

Oxfordshire in the seventeenth century, which has previously been

hash-partititioned into four partitions. We are going to take three
51-2 Parallel Job Developer’s Guide

Sample Stage Examples
samples, one of 10%, one of 5%, and one of 15%, and write these to

three different data sets. The job to do this is as follows:

In the Stage page Properties tab we specify which percentages are

written to which outputs as follows:
Parallel Job Developer’s Guide 51-3

Examples Sample Stage
We use the Link Ordering tab to specify which outputs relate to

which output links:

When we run the job we end up with three data sets of different sizes

– this is illustrated by using the data set manager tool to look at the

data sets’ size and shape:
51-4 Parallel Job Developer’s Guide

Sample Stage Examples
10 percent sample

5 percent sample
Parallel Job Developer’s Guide 51-5

Examples Sample Stage
Sampling in Period Mode
In this example we are going to extract every twentieth row from each

partition, up to a maximum of forty rows (in paractice our example

data set is not large enough to reach this maximum). In period mode,

you are limited to sampling into a single data set. Here is the job that

performs the period sample:

15 percent sample
51-6 Parallel Job Developer’s Guide

Sample Stage Must Do’s
In the Stage page Properties tab we specify the period sample as

follows:

Because there can only be one output from the stage, we do not need

to bother with the Link Ordering tab.

When we run the job it produces a sample from each partion. Here is

the data sampled from partition 0:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Sample stages in a job. This section specifies the minimum

steps to take to get a Sample stage functioning. DataStage provides a
Parallel Job Developer’s Guide 51-7

Stage Page Sample Stage
versatile user interface, and there are many shortcuts to achieving a

particular end, this section describes the basic method, you will learn

where the shortcuts are when you get familiar with the product.

To use a Sample stage:

In the Stage Page Properties Tab, choose the sample mode.
This is Percent by default, but you can also choose Period.

If you have chosen Percent, Specify the sampling percentage for

an output link, and specify the output link number it will be output

on (links are numbered from 0). Repeat these properties to specify

the percentage for each of your output links.

If you have chosen the Period mode, specify the Period. This will

sample every Nth row in each partition.

If you have chosen Percent mode, in the Stage Page Link
Ordering Tab, specify which of your actual output links
corresponds to link 0, link 1 etc.

In the Outputs Page Mapping Tab, specify how output columns
on each link are derived from the columns of the input data.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes. The
Link Ordering tab allows you to specify which output links are which.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Sample
Mode

percent/period percent Y N N/A
51-8 Parallel Job Developer’s Guide

Sample Stage Stage Page
Options Category

Sample Mode

Specifies the type of sample operation. You can sample on a

percentage of input rows (percent), or you can sample the Nth row of

every partition (period).

Percent

Specifies the sampling percentage for each output data set when use

a Sample Mode of Percent. You can repeat this property to specify

different percentages for each output data set. The sum of the

percentages specified for all output data sets cannot exceed 100%.

You can specify a job parameter if required.

Percent has a dependent property:

Output Link Number

This specifies the output link to which the percentage

corresponds. You can specify a job parameter if required.

Seed

This is the number used to initialize the random number generator.

You can specify a job parameter if required. This property is only

available if Sample Mode is set to percent.

Period (Per Partition)

Specifies the period when using a Sample Mode of Period.

Options/Percent number N/A Y (if Sample
Mode =
Percent)

Y N/A

Options/Output
Link Number

number N/A Y N Percent

Options/Seed number N/A N N N/A

Options/Period
(Per Partition)

number N/A Y (if Sample
Mode = Period)

N N/A

Options/Max
Rows Per Partition

number N/A N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 51-9

Stage Page Sample Stage
Max Rows Per Partition

This specifies the maximum number of rows that will be sampled

from each partition.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request the next stage should attempt to
maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
51-10 Parallel Job Developer’s Guide

Sample Stage Input Page
Link Ordering Tab
In Percent mode, this tab allows you to specify the order in which the

output links are processed. This is how they correspond to the Output

Link Number properties on the Properties Tab.

By default the output links will be processed in the order they were

added. To rearrange them, choose an output link and click the up

arrow button or the down arrow button.

Input Page
The Input page allows you to specify details about the data set being

sampled. There is only one input link.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data.

Details about Sample stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the sample is

performed.
Parallel Job Developer’s Guide 51-11

Input Page Sample Stage
By default the stage uses the auto partitioning method. If the Preserve

Partitioning option has been set on the previous stage in the job, the

stage will warn if it cannot preserve the partitioning of the incoming

data.

If the Sample stage is operating in sequential mode, it will first collect

the data before writing it to the file using the default auto collection

method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Sample stage is set to execute in parallel or
sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Sample stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Sample stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Sample stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
51-12 Parallel Job Developer’s Guide

Sample Stage Input Page
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Sample stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the sample is performed. The

sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The

availability of sorting depends on the partitioning or collecting

method chosen (it is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
Parallel Job Developer’s Guide 51-13

Outputs Page Sample Stage
Outputs Page
The Outputs page allows you to specify details about data output

from the Sample stage. In Percent mode, the stage can have any

number of output links, in Period mode it can only have one output.

Choose the link you want to work on from the Output Link drop down

list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of

outgoing data. The Mapping tab allows you to specify the

relationship between the columns being input to the Sample stage

and the output columns. The Advanced tab allows you to change the

default buffering settings for the output links. The Advanced tab

allows you to change the default buffering settings for the input link.

Details about Sample stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For Sample stages the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them.

The left pane shows the columns of the sampled data. These are read

only and cannot be modified on this tab. This shows the meta data

from the incoming link

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.
51-14 Parallel Job Developer’s Guide

Sample Stage Outputs Page
In the above example the left pane represents the incoming data after

the Sample operation has been performed. The right pane represents

the data being output by the stage after the Sample operation. In this

example the data has been mapped straight across.
Parallel Job Developer’s Guide 51-15

Outputs Page Sample Stage
51-16 Parallel Job Developer’s Guide

52
Peek Stage

The Peek stage is a Development/Debug stage. It can have a single

input link and any number of output links.

The Peek stage lets you print record column values either to the job

log or to a separate output link as the stage copies records from its

input data set to one or more output data sets. Like the Head stage

(Chapter 49) and the Tail stage (Chapter 50), the Peek stage can be

helpful for monitoring the progress of your application or to diagnose

a bug in your application.

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is where you specify the details about the
single input set from which you are selecting records.

Outputs Page. This is where you specify details about the
processed data being output from the stage.

Must Do’s Peek Stage
Must Do’s
DataStage has many defaults which means that it can be very easy to

include Peek stages in a job. This section specifies the minimum steps

to take to get a Peek stage functioning. DataStage provides a versatile

user interface, and there are many shortcuts to achieving a particular

end, this section describes the basic method, you will learn where the

shortcuts are when you get familiar with the product.

To use a Peek stage:

In the Stage Page Properties Tab, check that the default settings
are suitable for your requirements.

In the Stage Page Link Ordering Tab, if you have chosen to
output peeked records to a link rather than the job log, choose
which output link will carry the peeked records.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Rows/All Records
(After Skip)

True/False False N N N/A

Rows/Number of
Records (Per
Partition)

number 10 Y N N/A

Rows/Period (per
Partition)

Number N/A N N N/A
52-2 Parallel Job Developer’s Guide

Peek Stage Stage Page
Rows Category

All Records (After Skip)

True to print all records from each partition. Set to False by default.

Number of Records (Per Partition)

Specifies the number of records to print from each partition. The

default is 10.

Period (per Partition)

Print every Pth record in a partition, where P is the period. You can

start the copy operation after records have been skipped by using the

Skip property. P must equal or be greater than 1.

Skip (per Partition)

Ignore the first number of rows of each partition of the input data set,

where number is the number of rows to skip. The default skip count is

0.

Rows/Skip (per
Partition)

Number N/A N N N/A

Columns/Peek All
Input Columns

True/False True Y N N/A

Columns/Input
Column to Peek

Input Column N/A Y (if Peek All
Input Columns
= False)

Y N/A

Partitions/All
Partitions

True/False True Y N N/A

Partitions/Partition
Number

number N/A Y (if All
Partitions =
False)

Y N/A

Options/Peek
Records Output
Mode

Job Log/
Output

Job Log N N N/A

Options/Show
Column Names

True/False True N N N/A

Options/Delimiter
String

space/nl/tab space N N N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 52-3

Stage Page Peek Stage
Columns Category

Peek All Input Columns

True by default and prints all the input columns. Set to False to specify

that only selected columns will be printed and specify these columns

using the Input Column to Peek property.

Input Column to Peek

If you have set Peek All Input Columns to False, use this property to

specify a column to be printed. Repeat the property to specify multiple

columns.

Partitions Category

All Partitions

Set to True by default. Set to False to specify that only certain

partitions should have columns printed, and specify which partitions

using the Partition Number property.

Partition Number

If you have set All Partitions to False, use this property to specify

which partition you want to print columns from. Repeat the property

to specify multiple columns.

Options Category

Peek Records Output Mode

Specifies whether the output should go to an output column (the Peek

Records column) or to the job log.

Show Column Names

If True, causes the stage to print the column name, followed by a

colon, followed by the column value. If False, the stage prints only the

column value, followed by a space. It is True by default.

Delimiter String

The string to use as a delimiter on columns. Can be space, tab or

newline. The default is space.
52-4 Parallel Job Developer’s Guide

Peek Stage Stage Page
Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
Parallel Job Developer’s Guide 52-5

Inputs Page Peek Stage
Link Ordering Tab
This tab allows you to specify which output link carries the peek

records data set if you have chosen to output the records to a link

rather than the job log.

By default the last link added will represent the peek data set. To

rearrange the links, choose an output link and click the up arrow

button or the down arrow button.

Inputs Page
The Inputs page allows you to specify details about the incoming

data sets. The Peek stage expects one incoming data set.

The General tab allows you to specify an optional description of the

input link. The Partitioning tab allows you to specify how incoming

data is partitioned before being peeked. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Peek stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning Tab
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before it is peeked. It also

allows you to specify that the data should be sorted before being

operated on.
52-6 Parallel Job Developer’s Guide

Peek Stage Inputs Page
By default the stage partitions in Auto mode. This attempts to work

out the best partitioning method depending on execution modes of

current and preceding stages and how many nodes are specified in

the Configuration file. If the Preserve Partitioning option has been set

on the previous stage in the job, this stage will warn if it cannot

preserve the partitioning of the incoming data.

If the Peek stage is operating in sequential mode, it will first collect the

data using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Peek stage is set to execute in parallel or sequential
mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Peek stage is set to execute in parallel, then you can set a

partitioning method by selecting from the Partition type drop-down

list. This will override any current partitioning.

If the Peek stage is set to execute in sequential mode, but the

preceding stage is executing in parallel, then you can set a collection

method from the Collector type drop-down list. This will override

the default collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method of the Peek stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 52-7

Inputs Page Peek Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). DataStage attempts to work out the best collection
method depending on execution modes of current and preceding
stages, and how many nodes are specified in the Configuration
file. This is the default collection method for Peek stages.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being peeked. The sort is always

carried out within data partitions. If the stage is partitioning incoming

data the sort occurs after the partitioning. If the stage is collecting

data, the sort occurs before the collection. The availability of sorting

depends on the partitioning or collecting method chosen (it is not

available with the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.
52-8 Parallel Job Developer’s Guide

Peek Stage Outputs Page
Outputs Page
The Outputs page allows you to specify details about data output

from the Peek stage. The Peek stage can have any number of output

links. Select the link whose details you are looking at from the Output
name drop-down list.

The General tab allows you to specify an optional description of the

output link. The Columns tab specifies the column definitions of the

data. The Mapping tab allows you to specify the relationship between

the columns being input to the Peek stage and the Output columns.

The Advanced tab allows you to change the default buffering settings

for the output links.

Details about Peek stage mapping is given in the following section.

See Chapter 3, "Stage Editors," for a general description of the other

tabs.

Mapping Tab
For the Peek stage the Mapping tab allows you to specify how the

output columns are derived, i.e., what input columns map onto them

or how they are generated.

The left pane shows the columns being peeked. These are read only

and cannot be modified on this tab.

The right pane shows the output columns for each link. This has a

Derivations field where you can specify how the column is derived.

You can fill it in by dragging input columns over, or by using the Auto-

match facility.
Parallel Job Developer’s Guide 52-9

Outputs Page Peek Stage
52-10 Parallel Job Developer’s Guide

53
Row Generator Stage

The Row Generator stage is a Development/Debug stage. It has no

input links, and a single output link.

The Row Generator stage produces a set of mock data fitting the

specified meta data. This is useful where you want to test your job but

have no real data available to process. (See also the Column

Generator stage which allows you to add extra columns to existing

data sets, Chapter 54.)

The meta data you specify on the output link determines the columns

you are generating.

The stage editor has two pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Outputs Page. This is where you specify details about the
generated data being output from the stage.

Examples Row Generator Stage
Examples

Using a Row Generator Stage in Default Mode
In this example we are going to allow the Row Generator stage to

generate a data set using default settings for the data types. The only

change we make is to ask for 100 rows to be generated, rather than

the default ten. We do this in the Outputs Page Properties tab:

We need to tell the stage how many columns in the generated data set

and what type each column has. We do this in the Output page

Columns tab:
53-2 Parallel Job Developer’s Guide

Row Generator Stage Examples
When we run the job, DataStage generates the following data set:

We can see from this the type of that is generated by default. For

example, for date fields, the first row has January 1st 1960, and this is

incremented by one day for each subsequent row.

We can specify more details about each data type if required to shape

the data being generated.

Example of Specifying Data to be Generated
You can specify more details about the type of data being generated

from the Edit Column Meta Data dialog box. This is accessed from
Parallel Job Developer’s Guide 53-3

Examples Row Generator Stage
the Edit row… shortcut menu for individual column definitions on

the Outputs page Columns tab.

The Edit Column Meta Data dialog box contains different options

for each data type. The possible options are described in "Generator"

on page 3-40. We can use the Next> and <Previous buttons to go

through all our columns.

Using this dialog box we specify the following for the generated data:
53-4 Parallel Job Developer’s Guide

Row Generator Stage Examples
string

– Algorithm = cycle

– seven separate Values (assorted animals).

date

– Epoch = 1958-08-18

– Type = cycle

– Increment = 10

time

– Scale factor = 60

– Type = cycle

– Increment = 1

timestamp

– Epoch = 1958-08-18

– Scale factor = 60

– Type = cycle

– Increment = 1

integer

– Type = cycle

– Initial value = 300

– Increment = 10

– Limit = 3000

decimal

– Percent invalid = 20

– Percent zeros = 20

– Type = random

– Seed=200

float

– Type = cycle

– Increment = 10
Parallel Job Developer’s Guide 53-5

Examples Row Generator Stage
Here is the data generated by these settings, compare this with the

data generated by the default settings.

Example of Generating Data in Parallel
By default the Row Generator stage runs sequenially, generating data

in a single partition. You can, however, configure it to run in parallel,

and you can use the partition number when you are generating data

to, for example, increment a value by the number of partitions. You

will also get the Number of Records you specify in each partition (so in

our example where we have asked for 100 records, you will get 100

records in each partition rather than 100 records divided between the

number of partitions).

In this example we are generating a data set comprising two integers.

One is generated by cycling, one by random number generation.

The cycling integer’s initial value is set to the partition number (using

the special value ‘part’) and its increment is set to the number of

partitions (using the special value ‘partcount’). This is set in the Edit
53-6 Parallel Job Developer’s Guide

Row Generator Stage Must Do’s
Column Meta Data dialog box as follows (select column in

Columns tab and choose Edit Row… from shortcut menu):

The random integer’s seed value is set to the partition number, and

the limit to the total number of partitions.

When we run this job in parallel, on a system with four nodes, the

data generated in partition 0 is as follows:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Row Generator stages in a job. This section specifies the

minimum steps to take to get a Row Generator stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic
Parallel Job Developer’s Guide 53-7

Stage Page Row Generator Stage
method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Row Generator stage:

In the Stage Page Properties Tab, specify the Number of
Records you want to generate.

Specify the meta data for the rows you want to generate. You can
do this either in the Output Page Columns Tab, or by specifying a
schema file using the Schema File property on the Stage Page
Properties Tab.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The Generate stage executes in Sequential
mode by default. You can select Parallel mode to generate data
sets in separate partitions.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. If you have
an input data set, it adopts Set or Clear from the previous stage.
You can explicitly select Set or Clear. Select Set to request the
next stage should attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
53-8 Parallel Job Developer’s Guide

Row Generator Stage Outputs Page
Outputs Page
The Outputs page allows you to specify details about data output

from the Row Generator stage.

The General tab allows you to specify an optional description of the

output link. The Properties tab lets you specify what the stage does.

The Columns tab specifies the column definitions of outgoing data.

The Advanced tab allows you to change the default buffering settings

for the output link.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them. The following table gives a quick

reference list of the properties and their attributes. A more detailed

description of each property follows.

Options Category

Number of Records

The number of records you want your generated data set to contain.

The default number is 10.

Schema File

By default the stage will take the meta data defined on the output link

to base the mock data set on. But you can specify the column

definitions in a schema file, if required. You can browse for the

schema file or specify a job parameter.

Category/Property Values Default Mandatory? Repeats? Dependent
of

Options/Number of
Records

number 10 Y N N/A

Options/Schema File pathname N/A N N N/A
Parallel Job Developer’s Guide 53-9

Outputs Page Row Generator Stage
53-10 Parallel Job Developer’s Guide

54
Column Generator Stage

The Column Generator stage is a Development/Debug stage. It can

have a single input link and a single output link.

The Column Generator stage adds columns to incoming data and

generates mock data for these columns for each data row processed.

The new data set is then output. (See also the Row Generator stage

which allows you to generate complete sets of mock data, Chapter 53.)

The stage editor has three pages:

Stage Page. This is always present and is used to specify general
information about the stage.

Input Page. This is where you specify details about the input link.

Outputs Page. This is where you specify details about the
generated data being output from the stage.

Example
For our example we are going to generate an extra column for a data

set containing a list of seventeenth-century inhabitants of Woodstock,
Parallel Job Developer’s Guide 54-1

Example Column Generator Stage
Oxfordshire. The exta column will contain a unique id for each row.

Here is the job that will do this:

The columns for the data input to the Column Generator stage is as

follows:
54-2 Parallel Job Developer’s Guide

Column Generator Stage Example
We set the Column Generator properties to add an extra column

called uniqueid to our data set as follows:

The new column now appears on the Outputs page Mapping tab

and can be mapped across to the output link (so it appears on the

Outputs page Columns tab):

In this example we select the uniqueid column on the Outputs page

Columns tab, then choose Edit Row… from the shortcut menu. The

Edit Column Meta Data dialog box appears and lets us specify

more details about the data that will be generated for the new column.
Parallel Job Developer’s Guide 54-3

Example Column Generator Stage
First we change the type from the default of char to integer. Because

we are running the job in parallel, we want to ensure that the id we are

generating will be unique across all partitions, to do this we set the

initial value to the partition number (using the special value ‘part’) and

the increment to the number of partions (using the special

‘partcount’):

When we run the job in parallel on a four-node system the stage will

generate the uniqueid column for each row. Here are samples of
54-4 Parallel Job Developer’s Guide

Column Generator Stage Must Do’s
partion 0 and partition 1 to show how the unique number is

generated:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Column Generator stages in a job. This section specifies the

minimum steps to take to get a Column Generator stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic
Parallel Job Developer’s Guide 54-5

Stage Page Column Generator Stage
method, you will learn where the shortcuts are when you get familiar

with the product.

To use a Column Generator stage:

In the Stage Page Properties Tab, specify the Column Method.
This is explicit by default, which means that you should specify
the meta data for the columns you want to generate on the
Outputs Page Columns Tab. If you use the Explicit method, you
also need to specify which of the output link columns you are
generating in the Column to Generate property. You can repeat
this property to specify multiple columns. If you use the Schema
File method, you should specify the schema file.

Ensure you have specified the meta data for the columns you
want to add. If you have specified a Column Method of explicit,
you should do this on the Outputs Page Columns Tab. If you
have specified a Column Method of Schema File, you should
specify a schema file.

In the Outputs Page Mapping Tab, specify how the incoming
columns and generated columns map onto the output columns.

Stage Page
The General tab allows you to specify an optional description of the

stage. The Properties tab lets you specify what the stage does. The

Advanced tab allows you to specify how the stage executes.

Properties Tab
The Properties tab allows you to specify properties which determine

what the stage actually does. Some of the properties are mandatory,

although many have default settings. Properties without default

settings appear in the warning color (red by default) and turn black

when you supply a value for them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/Column
Method

Explicit/
Column
Method

Explicit Y N N/A
54-6 Parallel Job Developer’s Guide

Column Generator Stage Stage Page
Options Category

Column Method

Select Explicit if you are going to specify the column or columns you

want the stage to generate data for. Select Schema File if you are

supplying a schema file containing the column definitions.

Column to Generate

When you have chosen a column method of Explicit, this property

allows you to specify which output columns the stage is generating

data for. Repeat the property to specify multiple columns. You can

specify the properties for each column using the Parallel tab of the

Edit Column Meta Dialog box (accessible from the shortcut menu

on the columns grid of the output Columns tab). You can use the

Column Selection dialog box to specify several columns at once if

required (see page 3-10).

Schema File

When you have chosen a column method of schema file, this property

allows you to specify the column definitions in a schema file. You can

browse for the schema file or specify a job parameter.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by

Options/Column to
Generate

output column N/A Y Y (if
Column
Method =
Explicit)

N/A

Options/Schema
File

pathname N/A N Y (if
Column
Method =
Schema
File)

N/A

Category/
Property

Values Default Mandatory? Repeats? Dependent of
Parallel Job Developer’s Guide 54-7

Input Page Column Generator Stage
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Propagate by default. If you have
an input data set, it adopts Set or Clear from the previous stage.
You can explicitly select Set or Clear. Select Set to request the
next stage should attempt to maintain the partitioning.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page
The Inputs page allows you to specify details about the incoming

data set you are adding generated columns to. There is only one input

link and this is optional.

The General tab allows you to specify an optional description of the

link. The Partitioning tab allows you to specify how incoming data

on the source data set link is partitioned. The Columns tab specifies

the column definitions of incoming data. The Advanced tab allows

you to change the default buffering settings for the input link.

Details about Generate stage partitioning are given in the following

section. See Chapter 3, "Stage Editors," for a general description of

the other tabs.

Partitioning on Input Links
The Partitioning tab allows you to specify details about how the

incoming data is partitioned or collected before the generate is

performed.
54-8 Parallel Job Developer’s Guide

Column Generator Stage Input Page
By default the stage uses the auto partitioning method.

If the Column Generator stage is operating in sequential mode, it will

first collect the data before writing it to the file using the default auto

collection method.

The Partitioning tab allows you to override this default behavior. The

exact operation of this tab depends on:

Whether the Column Generator stage is set to execute in parallel
or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Column Generator stage is set to execute in parallel, then you

can set a partitioning method by selecting from the Partition type

drop-down list. This will override any current partitioning.

If the Column Generator stage is set to execute in sequential mode,

but the preceding stage is executing in parallel, then you can set a

collection method from the Collector type drop-down list. This will

override the default auto collection method.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the Column Generator stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .
Parallel Job Developer’s Guide 54-9

Input Page Column Generator Stage
Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Column
Generator stage. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operation starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the column generate operation

is performed. The sort is always carried out within data partitions. If

the stage is partitioning incoming data the sort occurs after the

partitioning. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the partitioning or

collecting method chosen (it is not available for the default auto

methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for
54-10 Parallel Job Developer’s Guide

Column Generator Stage Outputs Page
partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu.

Outputs Page
Details about Column Generator stage mapping is given in the

following section. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Mapping Tab
For Column Generator stages the Mapping tab allows you to specify

how the output columns are derived, i.e., how the generated data

maps onto them.

The left pane shows the generated columns. These are read only and

cannot be modified on this tab. These columns are automatically

mapped onto the equivalent output columns.

The right pane shows the output columns for the output link. This has

a Derivations field where you can specify how the column is

derived.You can fill it in by dragging input columns over, or by using

the Auto-match facility.

The right pane represents the data being output by the stage after the

generate operation. In the above example two columns belong to

incoming data and have automatically been mapped through and the

two generated columns have been mapped straight across.
Parallel Job Developer’s Guide 54-11

Outputs Page Column Generator Stage
54-12 Parallel Job Developer’s Guide

55
Write Range Map Stage

The Write Range Map stage is a Development/Debug stage. It allows

you to write data to a range map. The stage can have a single input

link. It can only run in sequential mode.

The Write Range Map stage takes an input data set produced by

sampling and sorting a data set and writes it to a file in a form usable

by the range partitioning method. The range partitioning method uses

the sampled and sorted data set to determine partition boundaries.

See "Partitioning, Repartitioning, and Collecting Data" on page 2-7 for

a description of the range partitioning method.

A typical use for the Write Range Map stage would be in a job which

used the Sample stage to sample a data set, the Sort stage to sort it

and the Write Range Map stage to write the range map which can then

be used with the range partitioning method to write the original data

set to a file set.

The Write Range Map stage editor has two pages:
Parallel Job Developer’s Guide 55-1

Example Write Range Map Stage
Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing a range map.
This is where you specify details about the file being written to.

Example
In this example, we sample the data in a flat file then pass it to the

Write Range Map stage. The stage sorts the data itself before

constructing a range map and writing it to a file. Here is the example

job:

The stage sorts the data on the same key that it uses to create the

range map. The following shows how the on-stage sort is configured,
55-2 Parallel Job Developer’s Guide

Write Range Map Stage Must Do’s
and the properties that determine how the stage will produce the

range map:

Must Do’s
DataStage has many defaults which means that it can be very easy to

include Write Range Map stages in a job. This section specifies the

minimum steps to take to get a Write Range Map stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar

with the product.
Parallel Job Developer’s Guide 55-3

Stage Page Write Range Map Stage
To use a Write Range Map stage:

In the Input Link Properties Tab:

– Specify the key column(s) for the range map you are creating.

– Specify the name of the range map you are creating.

– Specify whether it is OK to overwrite an existing range map of
that name (be default an error occurs if a range map with that
name already exists).

Ensure that column definitions have been specified for the range
map (this can be done in an earlier stage).

Stage Page
The General tab allows you to specify an optional description of the

stage. The Advanced tab allows you to specify how the stage

executes. The NLS Locale tab appears if your have NLS enabled on

your system. It allows you to select a locale other than the project

default to determine collating rules.

Advanced Tab
This tab allows you to specify the following:

Execution Mode. The stage always executes in sequential mode.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. This is Set by default. The Partition type
is range and cannot be overridden.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).
55-4 Parallel Job Developer’s Guide

Write Range Map Stage Inputs Page
NLS Locale Tab
This appears if you have NLS enabled on your system. It lets you view

the current default collate convention, and select a different one for

this stage if required. You can also use a job parameter to specify the

locale, or browse for a file that defines custom collate rules. The

collate convention defines the order in which characters are collated.

The Write Range Map stage uses this when it is determining the sort

order for key columns. Select a locale from the list, or click the arrow

button next to the list to use a job parameter or browse for a collate

file.

Inputs Page
The Inputs page allows you to specify details about how the Write

Range Map stage writes the range map to a file. The Write Range Map

stage can have only one input link.

The General tab allows you to specify an optional description of the

input link. The Properties tab allows you to specify details of exactly

what the link does. The Partitioning tab allows you to view collecting

details. The Columns tab specifies the column definitions of the data.

The Advanced tab allows you to change the default buffering settings

for the input link.

Details about Write Range Map stage properties and collecting are

given in the following sections. See Chapter 3, "Stage Editors," for a

general description of the other tabs.
Parallel Job Developer’s Guide 55-5

Inputs Page Write Range Map Stage
Input Link Properties Tab
The Properties tab allows you to specify properties for the input link.

These dictate how incoming data is written to the range map file.

Some of the properties are mandatory, although many have default

settings. Properties without default settings appear in the warning

color (red by default) and turn black when you supply a value for

them.

The following table gives a quick reference list of the properties and

their attributes. A more detailed description of each property follows.

Options Category

File Update Mode

This is set to Create by default. If the file you specify already exists this

will cause an error. Choose Overwrite to overwrite existing files.

Key

This allows you to specify the key for the range map. Choose an input

column from the drop-down list. You can specify a composite key by

specifying multiple key properties. You can use the Column
Selection dialog box to select several keys at once if required (see

page 3-10).

Range Map File

Specify the file that is to hold the range map. You can browse for a file

or specify a job parameter.

Partitioning Tab
The Partitioning tab normally allows you to specify details about

how the incoming data is partitioned or collected before it is written to

the file or files. In the case of the Write Range Map stage execution is

Category/
Property

Values Default Mandatory? Repeats? Dependent of

Options/File Update
Mode

Create/
Overwrite

Create Y N N/A

Options/Key input column N/A Y Y N/A

Options/Range Map
File

pathname N/A Y N N/A
55-6 Parallel Job Developer’s Guide

Write Range Map Stage Inputs Page
always sequential, so there is never a need to set a partitioning

method.

You can set a collection method if collection is required. The following

Collection methods are available:

(Auto). This is the default collection method for the Column
Generator stage. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operation starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before the write range map operation

is performed. If the stage is collecting data, the sort occurs before the

collection. The availability of sorting depends on the collecting

method chosen (it is not available for the default auto methods).

Select the check boxes as follows:

Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for

partitioning, or for both. Select the column in the Selected list and

right-click to invoke the shortcut menu. Because the partition mode is

set and cannot be overridden, you cannot use the stage sort facilities,

so these are disabled.
Parallel Job Developer’s Guide 55-7

Inputs Page Write Range Map Stage
55-8 Parallel Job Developer’s Guide

56
Parallel Jobs on USS

This chapter explains how parallel jobs can be deployed and run on

mainframe systems running z/OS UNIX System Services (popularly

known as USS).

For information on installing the parallel engine on the USS machine,

and setting up remote access to it, see "Installing DataStage

Components on a USS System" in DataStage Install and Upgrade

Guide.

You specify that you want to run jobs on USS systems in the

DataStage Administrator client. This is done on a per-project basis.

Once you have elected to deploy jobs in a project to USS, you can no

longer run parallel jobs from that project on your DataStage server

unless you opt to switch back. See "Remote Page" in DataStage

Administrator Guide for details on how to set up a project for

deployment to USS.

Note You cannot include server shared containers, BASIC

Transformer stages, or plugin stages in a job intended for

deployment on a USS system. The DB2 stage is the only

database stage currently supported.

Set Up
To set up the deployment and running of parallel jobs on a USS

system, you need to take the following steps:
Parallel Job Developer’s Guide 56-1

Deployment Options Parallel Jobs on USS
1 Use the DataStage Administrator to specify a project that will be
used for parallel jobs intended for USS deployment (see "Remote
Page" in DataStage Administrator Guide).

2 Install the parallel engine on the USS machine and set up access
to it as described in "Installing DataStage Components on a USS
System" in DataStage Install and Upgrade Guide.

3 On the server machine, set the environment variable
APT_ORCHHOME to identify the parallel engine’s top-level
directory on the USS system.

4 On the DataStage server machine, construct a suitable
configuration file, and set the APT_CONFIG_FILE environment
variable to point to it.

Deployment Options
There are two options for deploying on USS:

Under control of DataStage. Jobs run under the control of the
DataStage Director client. This method suits the scenario where
the job developer has direct access to the USS machine.

Deploy standalone. Parallel jobs scripts are transferred to the USS
machine and run there totally independently of DataStage. This
method suites the scenario where jobs are run by operators or
external schedulers, maybe overnight.

You can have both of these options selected at once, if required, so

you do not have to decide how to run a job until you come to run it.

Deploy Under Control of DataStage
With this option selected, you design a job as normal using the

DataStage Designer. When you compile the job, DataStage

automatically sends it to the machine and the location specified in the

DataStage Administrator.

When you are ready to run the job, you start the DataStage Director

client and select the job and run it as you would any other job.

DataStage sends two more files to the USS machine, specifying

environment variables and job parameters for the job run. It then uses

a remote shell to execute the job on the USS machine. You can specify

the remote shell commands and options in the DataStage

Administrator.

As the job runs, logging information is captured from the remotely

executing job and placed in the DataStage log in real time. The log

messages indicate that they originate from a remote machine. You
56-2 Parallel Job Developer’s Guide

Parallel Jobs on USS Deployment Options
can monitor the job from the Director, and collect process meta data

for MetaStage.

Note Only size-based monitoring is available when jobs run on

the USS system: i.e., you cannot set APT_MONITOR_TIME,

only APT_MONITOR_SIZE.

You can run a job on a USS system using the command line or job

control interfaces on your DataStage Server as described in the

Parallel Job Advanced Developer’s Guide. You can also include jobs in

a job sequence.

There are certain restrictions on the use of the built-in DataStage

macros when running jobs on USS:

When you deploy under the control of DataStage, certain other

functions besides running jobs are available:

View Data.

Data set management tool.

Configuration file editing and validation.

Deployment of build stages on USS.

Importing Orchestrate schemas.

Special considerations about these features are described in the

following sections.

Using View Data

The View Data button is available on some stage editors, and allows

you to view the actual data on a source stage. This facility is available

Macro Restrictions

DSHostName Name of DataStage server, not of USS machine

DSProjectName Supported

DSJobController Supported

DSJobName Supported

DSJobStartTimeStamp Supported, but gives server date and time

DSJobStartDate Supported, but gives server date

DSJobStartTime Supported, but gives server time

DSJobWaveNo Supported

DSJobInvocationId Supported

DSProjectMapName Supported (internal value)
Parallel Job Developer’s Guide 56-3

Deployment Options Parallel Jobs on USS
in USS projects if FTP and remote shell options are enabled.

DataStage FTPs and remotely executes a script on the USS machine

which accesses the data and returns it to the DataStage server.

Using the Data Set Management Tool

The Data Set Management tool is available from the DataStage

Designer, Director, and Manager clients. This allows you to view

source or, provided the job has already been run, target data sets (see

Chapter 57, "Managing Data Sets.")

The tool is available from USS projects if FTP and remote shell

options are enabled. The header bar of the data set Browse File

dialog box indicates that you are browsing data sets on a remote

machine.

Editing and Validating Configuration Files

In order to run parallel jobs on a USS machine, it must have a

configuration file which describes its parallel capabilities. The default

configuration file supplied with the project is NOT suitable for USS

deployment (it is designed to run jobs on the DataStage server).The

DataStage Manager has a tool which allows you to create, edit and

validate configuration files (see Chapter 58, "The Parallel Engine

Configuration File.") When you use this tool from within a USS project

that is deployed under the control of DataStage, the configuration file

is mirrored on the USS machine. It is updated whenever the file on the

server is saved. When you use the Check feature, the file is validated

against the USS syatem configuration. The title bar of the

Configuration file tool indicates that the file is on the USS machine.

We recommend that you change the APT_CONFIG_FILE environment

variable in your project to point to the location of your USS

configuration file on the server machine (DataStage knows the

location on the USS machine and translates as appropriate). Although

you can set it to point directly to the file on the USS machine itself.

Deploying Build Stages

DataStage allows you to develop your own stages for parallel jobs as

described in "Specifying Your Own Parallel Stages" in the Parallel Job

Advanced Developer’s Guide. You can deploy such stages to USS

systems for inclusion in parallel jobs. When you generate a Build

stage in a USS project, it is automatically sent to the USS machine

and built there so that any jobs developed that use the stage will

successfully run under USS.
56-4 Parallel Job Developer’s Guide

Parallel Jobs on USS Deployment Options
Importing Orchestrate Schemas

DataStage allows you to import table definitions from Orchestrate

schemas. This uses the Import Orchestrate Schema wizard, available

from the Manager and the Designer (see "Importing a Table

Definition" in DataStage Manager Guide). When you are importing

definitions into a USS project, the wizard allows you to import from

text files, data sets, or file sets on the USS machine.

Deploy Standalone
With this option selected, you design a job as normal using the

DataStage Designer. When you compile the job, DataStage produces

files which can be transferred to the USS machine using your

preferred method. You can then set the correct execute permissions

for the files and run the job on the USS machine by executing scripts.

If you have specified a remote machine name in the DataStage

Administrator Project Properties Remote tab (see "Remote Page" in

DataStage Administrator Guide), files will automatically be sent to the

USS machine. The job can then be run by executing the scripts on the

machine to compile any transformers the job contains and then run

the job.

You can also enable the send and/or remote shell capabilities in

isolation by supplying the required details to the Remote page in the

project properties in the DataStage Administrator.

Different restrictions reply to the DataStage built-in macros when you

run a job using the deploy standalone method:

Macro Restrictions

DSHostName Name of DataStage server, not of USS machine

DSProjectName Supported

DSJobController Not supported

DSJobName Supported

DSJobStartTimeStamp Not supported

DSJobStartDate Not supported

DSJobStartTime Not supported

DSJobWaveNo Not supported

DSJobInvocationId Not supported

DSProjectMapName Supported (internal value)
Parallel Job Developer’s Guide 56-5

Implementation Details Parallel Jobs on USS
Details of the files that are created and where they should be

transferred to on the USS machine are given in the following section,

"Implementation Details".

Implementation Details
This section describes the directory structure required for job

deployment on USS machines. It also describes files that are

generated by DataStage when you compile a job in a USS project.

Directory Structure
Each job deployed to the USS machine must have a dedicated

directory. If you are allowing DataStage to automatically send files to

the USS machine for you at compile time, the files are, by default,

copied to the following directory:

/Base_directory/project_name/RT_SCjobnumber

Base_directory. You must specify a specific base directory in the
DataStage Administrator (see "Remote Page" in DataStage
Administrator Guide).

project_name. This is a directory named after the USS project.

RT_SCjobnum. This is the directory that holds all the deployment
files for a particular job. By default the job directory is
RT_SCjobnum where jobnum is the internal jobnumber allocated
by DataStage, but you can change the form of this name in the
DataStage Administrator (see see "Remote Page" in DataStage
Administrator Guide).

If you are deploying standalone, and are not automatically sending

files, you can specify your own directory structure, but we

recommend that you follow the /base_directory/project_name/

job_identifier model.

On the DataStage server the files are copied to the directory:

$DSHOME/../Projects/project_name/RT_SCjobnumber
56-6 Parallel Job Developer’s Guide

Parallel Jobs on USS Implementation Details
Generated Files
When you compile a parallel job intended for deployment on a USS

machine, it produces various files which are copied into the job

directory on the USS machine. The files are as follows:

Where you are deploying jobs under the control of DataStage, you

will also see the following files in the job directory on the USS

machine:

OshExecute.sh. This executes the job script, OshScript.osh, under
the control of DataStage. You should NOT attempt to run this file
manually.

File Purpose

OshScript.osh The main parallel job script . This script is
run automatically via a remote shell when
jobs are run under the control of DataStage.
The script needs to be run manually using
the pxrun.sh script when jobs are deployed
standalone.

pxrun.sh This script is run in order to run
OshScript.osh when jobs are deployed
standalone.

jpdepfile This is used by pxrun.sh. It contains the job
parameters for a job deployed standalone
when it is run. It is based on the default job
parameters when the job was compiled.

evdepfile This is sourced by pxrun.sh. It contains the
environment variables for a job deployed
standalone when it is run. It is based on the
environment variables set when the job was
compiled.

pxcompile.sh This file is generated if the job contains one
or more Transformer stages and the Deploy
Standalone option is selected. It is used to
control the compilation of the transformers
on the USS machine.

internalidentifier
_jobname_stagename.trx

There is a file for each Transformer stage in
the job; it contains the source code for each
stage.

internalidentifier
_jobname_stagename.trx.sh

This is a script for compiling Transformer
stages. There is one for each transformer
stage. It is called by pxcompile.sh; it can be
called individually if required.

internalidentifier
_jobname_stagename.trx.osh

Parallel job script to compile the
corresponding Transformer stage. Called
from corresponding .sh file.
Parallel Job Developer’s Guide 56-7

Running Jobs on the USS Machine Parallel Jobs on USS
jpfile and evfile. These are visible while the job is actually running
and contain the job parameters and environment variables used
for the job run.

If your job contains one or more Transformer stages, you will also see

the following files in your job directory:

jobnamestagename.trx.so. Object file, one for each Transformer
stage.

jobnamestagename.trx.C. If the compilation of the corresponding
Transformer stage fails for some reason, this file is left behind.

Configuration Files
In order to run parallel jobs on the USS machine, there must be a

configuration file describing the parallel capabilities of that machine

(see Chapter 58, "The Parallel Engine Configuration File.")

If you deploy jobs under the control of DataStage the configuration

maintained on the server will be automatically mirrored on the USS

machine when you edit it.

If you deploy jobs standalone, you must ensure that the USS system

has a valid configuration file identified by the environment variable

APT_CONFIG_FILE. For more information on configuration files and

USS systems, see "Installing DataStage Components on a USS

System" in DataStage Install and Upgrade Guide.

Running Jobs on the USS Machine
This section describes three basic scenarios for running DataStage

parallel jobs on a USS machine:

Deploying under the control of DataStage and running from the
DataStage Director.

Deploying under the control of DataStage but running manually.

Deploying and running manually.

Deploying and Running from DataStage
In order to deploy the job from DataStage and run it from the

DataStage Director, proceed as follows:

1 In the DataStage Administrator, in the Project Properties dialog
box, set up the project on the Remote page as follows:

– Select the Jobs run under control of DataStage option.
56-8 Parallel Job Developer’s Guide

Parallel Jobs on USS Running Jobs on the USS Machine
– Specify the name of the target machine and the username and
password used to connect to it. This is used to send the job
deployment files to the USS machine.

– Specify a template for the remote shell used to run the jobs (in
most cases you can use the default, so need take no action
here).

– Specify a base directory on the USS machine to hold the
project directory and all the individual job directories.

– Optionally specify a template for naming the job directories on
the USS machine.

– Optionally specify commands to be executed on the DataStage
server after the job files have been deployed.

For more details about making these settings in the DataStage

Administrator, see see "Remote Page" in DataStage Administrator

Guide.

2 In the DataStage Designer, design your parallel job as normal (but
remember that you cannot use BASIC Transformer stages, shared
containers, or plugin stages in jobs to run under USS).

3 When you are happy with your job design, compile it. As part of
this process, the necessary files will be sent to the specified
location on the USS machine, and the remote shell invoked to set
permissions and perform other housekeeping tasks. The
environment variables as set at job compile time, and any default
settings for job parameters are transferred as part of this process.

4 In the DataStage Director, select the job and run it. Set the
required parameters and set any environment variables required
for this run in the Job Run Options dialog box. DataStage will
use the remote shell to run the job on the USS machine (if
required you could alternatively run the job from the command
line of the server machine, or using the job control facilities
described in"DataStage Development Kit (Job Control Interfaces)"
in the Parallel Job Advanced Developer’s Guide).

Deploying from DataStage, Running Manually
This section described a halfway-house solution, whereby you can

use DataStage to automatically copy the required files to the USS

machine, and set the correct permissions, but run the jobs manually

directly from the USS machine.
Parallel Job Developer’s Guide 56-9

Running Jobs on the USS Machine Parallel Jobs on USS
1 In the DataStage Administrator, in the Project Properties dialog
box Parallel page, set up the project as follows:

a Select the Jobs run under control of DataStage option and
the Deploy Standalone parallel job scripts option.

b Specify the name of the target machine and the username and
password used to connect to it. This is used to FTP the job
deployment files to the USS machine.

c Specify a template for the remote shell used to run the jobs.

d Optionally specify a base directory on the USS machine to hold
the project directory and all the individual job directories.

e Optionally specify a template for naming the job directories on
the USS machine.

f Optionally specify commands to be executed on the DataStage
server after the job files have been deployed.

For more details about making these settings in the DataStage

Administrator, see see "Remote Page" in DataStage Administrator

Guide.

2 In the DataStage Administrator, set the environment variable
APT_CONFIG_FILE to identify the configuration file used to run
jobs on the USS system.

3 In the DataStage Designer, design your parallel job as normal (but
remember that you cannot use BASIC Transformer stages, server
shared containers, or plugin stages in jobs to run under USS).

4 When you are happy with your job design, compile it. As part of
this process, the necessary files will be FTPed to the specified
location on the USS machine, and the remote shell invoked to set
permissions and perform other housekeeping tasks. The
environment variables as set at job compile time, and any default
settings for job parameters are transferred as part of this process.

5 When you are ready to run your job, on the USS machine, go the
job directory for the required job.

6 If your job contains Transformer stages, execute the following file:

pxcompile.sh

7 When your Transformer stages have successfully compiled, run
the job by executing the following file:

pxrun.sh
56-10 Parallel Job Developer’s Guide

Parallel Jobs on USS Running Jobs on the USS Machine
Deploying and Running Manually
This describes how to set DataStage up so that you both transfer jobs

to the USS machine and run them manually, without further

intervention by DataStage.

1 In the DataStage Administrator, in the Project Properties dialog
box Remote page, set up the project as follows:

– Select the Deploy Standalone parallel job scripts option.

2 In the DataStage Administrator, set the environment variable
APT_CONFIG_FILE to identify the configuration file used to run
jobs on the USS system.

3 In the DataStage Designer, design your parallel job as normal (but
remember that you cannot use BASIC Transformer stages, shared
containers, or plugin stages in jobs to run under USS).

4 When you are happy with your job design, compile it.

5 On your DataStage server, go to the directory:

$DSHOME/../Projects/project_name/RT_SCjobnumber

6 Copy the following files to a directory on your USS machine (each
job must be in a separate directory):

– OshScript.osh

– pxrun.sh

– jpdepfile

– evdepfile

If your job contains Transformer stages, you will also need to copy

the following files:

– pxcompile.sh

– jobnamestagename.trx

– jobnamestagename.trx.sh

– jobnamestagename.trx.osh

Note You can enter commands in the Custom deployment
commands field in the DataStage Administrator

Project Properties dialog box Remote page to

further automate the process of deployment, for

example:

tar -cvf * %j.tar
cp %j.tar /home/mydeploy

7 When you are ready to run your job, on the USS machine, go the
job directory for the required job.
Parallel Job Developer’s Guide 56-11

Running Jobs on the USS Machine Parallel Jobs on USS
8 If your job contains Transformer stages, execute the following file:

pxcompile.sh

9 When your Transformer stages have successfully compiled, run
the job by executing the following file:

pxrun.sh
56-12 Parallel Job Developer’s Guide

57
Managing Data Sets

DataStage parallel extender jobs use data sets to store data being

operated on in a persistent form. Data sets are operating system files,

each referred to by a descriptor file, usually with the suffix .ds.

You can create and read data sets using the Data Set stage, which is

described in Chapter 6. DataStage also provides a utility for managing

data sets from outside a job. This utility is available from the

DataStage Designer, Manager, and Director clients.

Structure of Data Sets
A data set comprises a descriptor file and a number of other files that

are added as the data set grows. These files are stored on multiple

disks in your system. A data set is organized in terms of partitions and

segments. Each partition of a data set is stored on a single processing

node. Each data segment contains all the records written by a single

DataStage job. So a segment can contain files from many partitions,

and a partition has files from many segments.
Parallel Job Developer’s Guide 57-1

Starting the Data Set Manager Managing Data Sets
The descriptor file for a data set contains the following information:

Data set header information.

Creation time and data of the data set.

The schema of the data set.

A copy of the configuration file use when the data set was created.

For each segment, the descriptor file contains:

The time and data the segment was added to the data set.

A flag marking the segment as valid or invalid.

Statistical information such as number of records in the segment
and number of bytes.

Path names of all data files, on all processing nodes.

This information can be accessed through the Data Set Manager.

Starting the Data Set Manager
To start the Data Set Manager from the DataStage Designer, Manager,

or Director:

Partition 1 Partition 2 Partition 3 Partition 4

Segment 1

Segment 2

Segment 3

One or more
data files
57-2 Parallel Job Developer’s Guide

Managing Data Sets Starting the Data Set Manager
1 Choose Tools ➤ Data Set Management, a Browse Files dialog
box appears:

2 Navigate to the directory containing the data set you want to
manage. By convention, data set files have the suffix .ds.

3 Select the data set you want to manage and click OK. The Data Set
Viewer appears. From here you can copy or delete the chosen data
set. You can also view its schema (column definitions) or the data
it contains.
Parallel Job Developer’s Guide 57-3

Data Set Viewer Managing Data Sets
Data Set Viewer
The Data Set viewer displays information about the data set you are

viewing:

Partitions

The partition grid shows the partitions the data set contains and

describes their properties:

#. The partition number.

Node. The processing node that the partition is currently assigned
to.

Records. The number of records the partition contains.

Blocks. The number of blocks the partition contains.

Bytes. The number of bytes the partition contains.

Segments

Click on an individual partition to display the associated segment

details. This contains the following information:

#. The segment number.

Created. Date and time of creation.

Bytes. The number of bytes in the segment.

Pathname. The name and path of the file containing the segment
in the selected partition.

Click the Refresh button to reread and refresh all the displayed

information.

Click the Output button to view a text version of the information

displayed in the Data Set Viewer.

You can open a different data set from the viewer by clicking the Open

icon on the tool bar. The browse dialog open box opens again and lets

you browse for a data set.
57-4 Parallel Job Developer’s Guide

Managing Data Sets Data Set Viewer
Viewing the Schema
Click the Schema icon from the tool bar to view the record schema of

the current data set. This is presented in text form in the Record

Schema window:

Viewing the Data
Click the Data icon from the tool bar to view the data held by the

current data set. This options the Data Viewer Options dialog box,

which allows you to select a subset of the data to view.

Rows to display. Specify the number of rows of data you want
the data browser to display.

Skip count. Skip the specified number of rows before viewing
data.

Period. Display every Pth record where P is the period. You can
start after records have been skipped by using the Skip property. P
must equal or be greater than 1.

Partitions. Choose between viewing the data in All partitions or
the data in the partition selected from the drop-down list.
Parallel Job Developer’s Guide 57-5

Data Set Viewer Managing Data Sets
Click OK to view the selected data, the Data Viewer window appears:

Copying Data Sets
Click the Copy icon on the tool bar to copy the selected data set. The
Copy data set dialog box appears, allowing you to specify a path

where the new data set will be stored:

The new data set will have the same record schema, number of

partitions and contents as the original data set.

Note You cannot use the UNIX cp command to copy a data set

because DataStage represents a single data set with

multiple files.

Deleting Data Sets
Click the Delete icon on the tool bar to delete the current data set data

set. You will be asked to confirm the deletion.
57-6 Parallel Job Developer’s Guide

Managing Data Sets Data Set Viewer
Note You cannot use the UNIX rm command to copy a data set

because DataStage represents a single data set with

multiple files. Using rm simply removes the descriptor file,

leaving the much larger data files behind.
Parallel Job Developer’s Guide 57-7

Data Set Viewer Managing Data Sets
57-8 Parallel Job Developer’s Guide

58
The Parallel Engine Configuration File

One of the great strengths of the DataStage Enterprise Edition is that,

when designing parallel jobs, you don’t have to worry too much about

the underlying structure of your system, beyond appreciating its

parallel processing capabilities. If your system changes, is upgraded

or improved, or if you develop a job on one platform and implement it

on another, you don’t necessarily have to change your job design.

DataStage learns about the shape and size of the system from the

configuration file. It organizes the resources needed for a job

according to what is defined in the configuration file. When your

system changes, you change the file not the jobs.

This chapter describes how to define configuration files that specify

what processing, storage, and sorting facilities on your system should

be used to run a parallel job. You can maintain multiple configuration

files and read them into the system according to your varying

processing needs.

When you install DataStage Enterprise Edition the system is

automatically configured to use the supplied default configuration file.

This allows you to run parallel jobs right away, but is not optimized for

your system. Follow the instructions in this chapter to produce

configuration file specifically for your system.

Configurations Editor
The DataStage Manager provides a configuration file editor to help

you define configuration files for the parallel engine. To use the editor,
Parallel Job Developer’s Guide 58-1

Configurations Editor The Parallel Engine Configuration File
choose Tools ➤ Configurations, the Configurations dialog box

appears:

To define a new file, choose (New) from the Configurations drop-

down list and type into the upper text box. Guidance on the operation

and format of a configuration file is given in the following sections.

Click Save to save the file at any point. You are asked to specify a

configuration name, the config file is then saved under that name with

an .apt extension.
58-2 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
You can verify your file at any time by clicking Check. Verification

information is output in the Check Configuration Output pane at

the bottom of the dialog box.

To edit an existing configuration file, choose it from the

Configurations drop-down list. You can delete an existing

configuration by selecting it and clicking Delete. You are warned if you

are attempting to delete the last remaining configuration file.

You specify which configuration will be used by setting the

APT_CONFIG_FILE environment variable. This is set on installation to

point to the default configuration file, but you can set it on a project

wide level from the DataStage Administrator (see “Setting

Environment Variables” in DataStage Administrator Guide) or for

individual jobs from the Job Properties dialog (see “Environment

Variables” on page -10).

Configuration Considerations
The parallel engine’s view of your system is determined by the

contents of your current configuration file. Your file defines the

processing nodes and disk space connected to each node that you

allocate for use by parallel jobs. When invoking a parallel job, the

parallel engine first reads your configuration file to determine what

system resources are allocated to it and then distributes the job to

those resources.
Parallel Job Developer’s Guide 58-3

Configuration Considerations The Parallel Engine Configuration File
When you modify the system by adding or removing nodes or disks,

you must modify your configuration file correspondingly. Since the

parallel engine reads the configuration file every time it runs a parallel

job, it automatically scales the application to fit the system without

your having to alter the job code.

Your ability to modify the parallel engine configuration means that

you can control the parallelization of a parallel job during its

development cycle. For example, you can first run the job on one

node, then on two, then on four, and so on. You can measure system

performance and scalability without altering application code.

Logical Processing Nodes
A parallel engine configuration file defines one or more processing

nodes on which your parallel job will run. The processing nodes are

logical rather than physical. The number of processing nodes does

not necessarily correspond to the number of CPUs in your system.

Your configuration file can define one processing node for each

physical node in your system, or multiple processing nodes for each

physical node.

Optimizing Parallelism
The degree of parallelism of a parallel job is determined by the

number of nodes you define when you configure the parallel engine.

Parallelism should be optimized for your hardware rather than simply

maximized. Increasing parallelism distributes your work load but it

also adds to your overhead because the number of processes

increases. Increased parallelism can actually hurt performance once

you exceed the capacity of your hardware. Therefore you must weigh

the gains of added parallelism against the potential losses in

processing efficiency.

Obviously, the hardware that makes up your system influences the

degree of parallelism you can establish.

SMP systems allow you to scale up the number of CPUs and to run

your parallel application against more memory. In general, an SMP

system can support multiple logical nodes. Some SMP systems allow

scalability of disk I/O. “Configuration Options for an SMP” on page -6

discusses these considerations.

In a cluster or MPP environment, you can use the multiple CPUs and

their associated memory and disk resources in concert to tackle a

single computing problem. In general, you have one logical node per

CPU on an MPP system. “Configuration Options for an MPP System”

on page -9 describes these issues.
58-4 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
The properties of your system’s hardware also determines

configuration. For example, applications with large memory

requirements, such as sort operations, are best assigned to machines

with a lot of memory. Applications that will access an RDBMS must

run on its server nodes; and stages using other proprietary software,

such as SAS, must run on nodes with licenses for that software.

Here are some additional factors that affect the optimal degree of

parallelism:

CPU-intensive applications, which typically perform multiple CPU-
demanding operations on each record, benefit from the greatest
possible parallelism, up to the capacity supported by your system.

Parallel jobs with large memory requirements can benefit from
parallelism if they act on data that has been partitioned and if the
required memory is also divided among partitions.

Applications that are disk- or I/O-intensive, such as those that
extract data from and load data into RDBMSs, benefit from
configurations in which the number of logical nodes equals the
number of disk spindles being accessed. For example, if a table is
fragmented 16 ways inside a database or if a data set is spread
across 16 disk drives, set up a node pool consisting of 16
processing nodes.

For some jobs, especially those that are disk-intensive, you must
sometimes configure your system to prevent the RDBMS from
having either to redistribute load data or to re-partition the data
from an extract operation.

The speed of communication among stages should be optimized
by your configuration. For example, jobs whose stages exchange
large amounts of data should be assigned to nodes where stages
communicate by either shared memory (in an SMP environment)
or a high-speed link (in an MPP environment). The relative
placement of jobs whose stages share small amounts of data is
less important.

For SMPs, you may want to leave some processors for the
operating system, especially if your application has many stages
in a job. See “Configuration Options for an SMP” on page -6.

In an MPP environment, parallelization can be expected to
improve the performance of CPU-limited, memory-limited, or disk
I/O-limited applications. See “Configuration Options for an MPP
System” on page -9.

The most nearly-equal partitioning of data contributes to the best

overall performance of a job run in parallel. For example, when hash

partitioning, try to ensure that the resulting partitions are evenly

populated.This is referred to as minimizing skew. Experience is the

best teacher. Start with smaller data sets and try different
Parallel Job Developer’s Guide 58-5

Configuration Considerations The Parallel Engine Configuration File
parallelizations while scaling up the data set sizes to collect

performance statistics.

Configuration Options for an SMP
An SMP contains multiple CPUs which share operating system, disk,

and I/O resources. Data is transported by means of shared memory. A

number of factors contribute to the I/O scalability of your SMP. These

include the number of disk spindles, the presence or absence of RAID,

the number of I/O controllers, and the speed of the bus connecting the

I/O system to memory.

SMP systems allow you to scale up the number of CPUs. Increasing

the number of processors you use may or may not improve job

performance, however, depending on whether your application is

CPU-, memory-, or I/O-limited. If, for example, a job is CPU-limited,

that is, the memory, memory bus, and disk I/O of your hardware

spend a disproportionate amount of time waiting for the CPU to finish

its work, it will benefit from being executed in parallel. Running your

job on more processing units will shorten the waiting time of other

resources and thereby speed up the overall application.

All SMP systems allow you to increase your parallel job’s memory

access bandwidth. However, none allow you to increase the memory

bus capacity beyond that of the hardware configuration. Therefore,

memory-intensive jobs will also benefit from increased parallelism,

provided they do not saturate the memory bus capacity of your

system. If your application is already approaching, or at the memory

bus limit, increased parallelism will not provide performance

improvement.

Some SMP systems allow scalability of disk I/O. In those systems,

increasing parallelism can increase the overall throughput rate of jobs

that are disk I/O-limited.
58-6 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
For example, the following figure shows a data flow containing three

parallel stages:

For each stage in this data flow, the parallel engine creates a single

UNIX process on each logical processing node (provided that stage

combining is not in effect). On an SMP defined as a single logical

node, each stage runs sequentially as a single process, and the

parallel engine executes three processes in total for this job. If the

SMP has three or more CPUs, the three processes in the job can be

executed simultaneously by different CPUs. If the SMP has fewer than

three CPUs, the processes must be scheduled by the operating system

for execution, and some or all of the processors must execute

multiple processes, preventing true simultaneous execution.

In order for an SMP to run parallel jobs, you configure the parallel

engine to recognize the SMP as a single or as multiple logical

processing node(s), that is:

1 <= M <= N logical processing nodes, where N is the
number of CPUs on the SMP and M is the number of
processing nodes on the configuration. (Although M can be
greater than N when there are more disk spindles than
there are CPUs.)

As a rule of thumb, it is recommended that you create one processing

node for every two CPUs in an SMP. You can modify this configuration

to determine the optimal configuration for your system and

application during application testing and evaluation. In fact, in most

cases the scheduling performed by the operating system allows for

significantly more than one process per processor to be managed

before performance degradation is seen. The exact number depends

on the nature of the processes, bus bandwidth, caching effects, and

other factors.

stage 1

 data flow

stage 2

stage 3
Parallel Job Developer’s Guide 58-7

Configuration Considerations The Parallel Engine Configuration File
Depending on the type of processing performed in your jobs (sorting,

statistical analysis, database I/O), different configurations may be

preferable.

For example, on an SMP viewed as a single logical processing node,

the parallel engine creates a single UNIX process on the processing

node for each stage in a data flow. The operating system on the SMP

schedules the processes to assign each process to an individual CPU.

If the number of processes is less than the number of CPUs, some

CPUs may be idle. For jobs containing many stages, the number of

processes may exceed the number of CPUs. If so, the processes will

be scheduled by the operating system.

Suppose you want to configure the parallel engine to recognize an

eight-CPU SMP, for example, as two or more processing nodes. When

you configure the SMP as two separate processing nodes, the parallel

engine creates two processes per stage on the SMP. For the three-

stage job shown above, configuring an SMP as more than two parallel

engine processing nodes creates at least nine UNIX processes,

although only eight CPUs are available. Process execution must be

scheduled by the operating system.

For that reason, configuring the SMP as three or more parallel engine

processing nodes can conceivably degrade performance as compared

with that of a one- or two-processing node configuration. This is so

because each CPU in the SMP shares memory, I/O, and network

resources with the others. However, this is not necessarily true if

some stages read from and write to disk or the network; in that case,

other processes can use the CPU while the I/O-bound processes are

blocked waiting for operations to finish.

Example Configuration File for an SMP
This section contains a sample configuration file for the four-CPU SMP

shown below:

CPU CPU

CPUCPU

SMP
58-8 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
The table below lists the processing node names and the file systems

used by each processing node for both permanent and temporary

storage in this example system:

The table above also contains a column for node pool definitions.

Node pools allow you to execute a parallel job or selected stages on

only the nodes in the pool. See “Node Pools and the Default Node

Pool” on page -22 for more details.

In this example, the parallel engine processing nodes share two file

systems for permanent storage. The nodes also share a local file

system (/scratch) for temporary storage.

Here is the configuration file corresponding to this system.

“Configuration Files” on page -15 discusses the keywords and syntax

of configuration files.

{
node "node0" {

fastname "node0_byn" /* node name on a fast network */
pools "" "node0" "node0_fddi" /* node pools */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
node "node1" {

fastname "node0_byn"
pools "" "node1" "node1_fddi"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

}
}

Configuration Options for an MPP System
An MPP consists of multiple hosts, where each host runs its own

image of the operating system and contains its own processors, disk,

I/O resources, and memory. This is also called a shared-nothing

environment. Each host in the system is connected to all others by a

high-speed network. A host is also referred to as a physical node.

In an MPP environment, you can use the multiple CPUs and their

associated memory and disk resources in concert. In this

Node
name

Node name on
fast network

Node
pools

Directory for
permanent
storage

Directory for
temp storage

node0 node0_byn "", node0,
node0_fddi

/orch/s0
/orch/s1

/scratch

node1 node0_byn "", node1,
node1_fddi

/orch/s0
/orch/s1

/scratch
Parallel Job Developer’s Guide 58-9

Configuration Considerations The Parallel Engine Configuration File
environment, each CPU has its own dedicated memory, memory bus,

disk, and disk access.

When configuring an MPP, you specify the physical nodes in your

system on which the parallel engine will run your parallel jobs. You do

not have to specify all nodes.

An Example of a Four-Node MPP System Configuration
The following figure shows a sample MPP system containing four

physical nodes:

This figure shows a disk-everywhere configuration. Each node is

connected to both a high-speed switch and an Ethernet. Note that the

configuration information below for this MPP would be similar for a

cluster of four SMPs connected by a network.

The following table shows the storage local to each node:

Node name Node name on
fast network

Node pools Directory for
permanent
storage

Directory for
temp storage

node0 node0_css "",
node0,
node0_cs
s

/orch/s0
/orch/s1

/scratch

node1 node1_css "", node1,
node1_css

/orch/s0
/orch/s1

/scratch

node2 node2_css "", node2,
node2_css

/orch/s0
/orch/s1

/scratch

node3 node3_css "", node3,
node3_css

/orch/s0
/orch/s1

/scratch

high-speed network (switch)

CPU

node0_css

node0

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

Ethernet
58-10 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
Note that because this is an MPP system, each node in this

configuration has its own disks and hence its own /orch/s0, /orch/s1,

and /scratch. If this were an SMP, the logical nodes would be sharing

the same directories.

Here is the configuration file for this sample system. “Configuration

Files” on page -15 discusses the keywords and syntax of configuration

files.

{
node "node0" {

fastname "node0_css" /* node name on a fast network*/
pools "" "node0" "node0_css" /* node pools */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}

 resource scratchdisk "/scratch" {}
 }

node "node1" {
fastname "node1_css"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

 }
node "node2" {

fastname "node2_css"
pools "" "node2" "node2_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

 }
 node "node3" {

fastname "node3_css"
pools "" "node3" "node3_css"
resource disk "/orch/s0" {}

 resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

 }
}

Configuration Options for an SMP Cluster
An SMP cluster consists of one or more SMPs and, optionally, single-

CPU nodes connected by a high-speed network. In this case, each

SMP in the cluster is referred to as a physical node. When you

configure your system, you can divide a physical node into logical

nodes. The following figure shows a cluster containing four physical

nodes, one of which (node1) is an SMP containing two CPUs.
Parallel Job Developer’s Guide 58-11

Configuration Considerations The Parallel Engine Configuration File

An Example of an SMP Cluster Configuration
The following configuration file divides physical node1 into logical

nodes node1 and node1a. Both are connected to the high-speed

switch by the same fastname; in the configuration file, the same

fastname is specified for both nodes. “Configuration Files” on page

-15 discusses the keywords and syntax of Orchestrate configuration

files.

{
node "node0" {
 fastname "node0_css"/* node name on a fast network */
 pools "" "node0" "node0_css" /* node pools */
 resource disk "/orch/s0" {}
 resource disk "/orch/s1" {}
 resource scratchdisk "/scratch" {}
}

node "node1" {
 fastname "node1_css"
 pools "" "node1" "node1_css"
 resource disk "/orch/s0" {}
 resource disk "/orch/s1" {}
 resource scratchdisk "/scratch" {}
}
node "node1a"{
 fastname "node1_css"
 pools "" "node1" "node1_css"
 resource disk "/orch/s0" {}
 resource disk "/orch/s1" {}
 resource scratchdisk "/scratch" {}
}
node "node2" {
 fastname "node2_css"
 pools "" "node2" "node2_css"
 resource disk "/orch/s0" {}
 resource disk "/orch/s1" {}
 resource scratchdisk "/scratch" {}
}

high-speed network (switch)

CPU

node0_css

node0

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

Ethernet

CPU
58-12 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Considerations
node "node3" {
 fastname "node3_css"
 pools "" "node3" "node3_css"
 resource disk "/orch/s0" {}
 resource disk "/orch/s1" {}
 resource scratchdisk "/scratch" {}
}

}

In this example, consider the disk definitions for /orch/s0. Since node1

and node1a are logical nodes of the same physical node, they share

access to that disk. Each of the remaining nodes, node0, node2, and

node3, has its own /orch/s0 that is not shared. That is, there are four

distinct disks called /orch/s0. Similarly, /orch/s1 and /scratch are

shared between node1 and node1a but not the others.

Options for a Cluster with the Conductor Unconnected
to the High-Speed Switch

The parallel engine starts your parallel job from the Conductor node.

A cluster may have a node that is not connected to the others by a

high-speed switch, as in the following figure:

In this example, node4 is the Conductor, which is the node from which

you need to start your application. By default, the parallel engine

communicates between nodes using the fastname, which in this

example refers to the high-speed switch. But because the Conductor

is not on that switch, it cannot use the fastname to reach the other

nodes.

high-speed network (switch)

CPU

node0_css

CPU

node1_css

node1

CPU

node2_css

node2

CPU

node3_css

node3

ethernet

CPU

CPU

node4

node0
Parallel Job Developer’s Guide 58-13

Configuration Considerations The Parallel Engine Configuration File
Therefore, to enable the Conductor node to communicate with the

other nodes, you need to identify each node on the high-speed switch

by its canonicalhostname and give its Ethernet name as its quoted

attribute, as in the following configuration file. “Configuration Files”

on page -15 discusses the keywords and syntax of Orchestrate

configuration files.

{
node "node0" {

fastname "node0_css"
resource canonicalhostname "node1-eth-1"
pools "" "node0" "node0_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}

 }
node "node1" {

fastname "node1_css"
resource canonicalhostname "node1-eth-1"
pools "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node2" {
fastname "node2_css"
resource canonicalhostname "node1-eth-1"
pools "" "node2" "node2_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node3" {
fastname "node3_css"
resource canonicalhostname "node1-eth-1"
pools "" "node3" "node3_css"
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk "/scratch" {}
}

node "node4" {
pools "" "conductor" "node4" “node4_css”

 /* not in the default pool */
resource disk "/orch/s0" {}
resource disk "/orch/s1" {}
resource scratchdisk “/scratch” {}

}
}

Note Since node4 is not on the high-speed switch and we are

therefore using it only as the Conductor node, we have left

it out of the default node pool (""). This causes the parallel

engine to avoid placing stages on node4. See “Node Pools

and the Default Node Pool” on page -22.
58-14 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Files
Diagram of a Cluster Environment
The following figure shows a mixed MPP and SMP cluster

environment containing six physical nodes. Only the four nodes of the

left are intended to be allocated for use by the parallel engine.

Configuration Files
This section describes parallel engine configuration files, and their

uses and syntax. The parallel engine reads a configuration file to

ascertain what processing and storage resources belong to your

system. Processing resources include nodes; and storage resources

include both disks for the permanent storage of data and disks for the

temporary storage of data (scratch disks). The parallel engine uses

this information to determine, among other things, how to arrange

resources for parallel execution.

You must define each processing node on which the parallel engine

runs jobs and qualify its characteristics; you must do the same for

each disk that will store data. You can specify additional information

about nodes and disks on which facilities such as sorting or SAS

operations will be run, and about the nodes on which to run stages

that access the following relational data base management systems:

DB2, INFORMIX, and Oracle.

You can maintain multiple configuration files and read them into the

system according to your needs.

Orchestrate provides a sample configuration file,

install_dir/etc/config.apt, where install_dir is the top-level directory of

your parallel engine installation.

This section contains the following subsections:

CPUCPU CPUCPU
CPU

CPU CPU

CPU

CPU

high-speed network (switch)

parallel engine processing

CPU
Parallel Job Developer’s Guide 58-15

Configuration Files The Parallel Engine Configuration File
“The Default Path Name and the APT_CONFIG_FILE” on page -16

“Syntax” on page -16

“Node Names” on page -17

“Options” on page -18

“Node Pools and the Default Node Pool” on page -22

“Disk and Scratch Disk Pools and Their Defaults” on page -23

“Buffer Scratch Disk Pools” on page -24

The Default Path Name and the APT_CONFIG_FILE
The default name of the configuration file is config.apt. When you

run a parallel job, the parallel engine searches for the file config.apt

as follows:

In the current working directory

If it is not there, in install_dir/etc, where install_dir is the top-level
directory of your parallel engine installation ($APT_ORCHHOME)

You can give the configuration file a different name or location or both

from their defaults. If you do, assign the new path and file name to the

environment variable APT_CONFIG_FILE. If APT_CONFIG_FILE is

defined, the parallel engine uses that configuration file rather than

searching in the default locations. In a production environment, you

can define multiple configurations and set APT_CONFIG_FILE to

different path names depending on which configuration you want to

use.

You can set APT_CONFIG_FILE on a project wide level from the

DataStage Administrator (see “Setting Environment Variables” in

DataStage Administrator Guide) or for individual jobs from the Job

Properties dialog (see “Environment Variables” on page -10).

Note Although the parallel engine may have been copied to all

processing nodes, you need to copy the configuration file

only to the nodes from which you start parallel engine

applications (conductor nodes).

Syntax
Configuration files are text files containing string data that is passed

to Orchestrate. The general form of a configuration file is as follows:

/* commentary */
{
 node "node name" {
 <node information>

 .
58-16 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Files
 .
 .

 }
 .
 .
 .

 }

These are the syntactic characteristics of configuration files:

Braces { } begin and end the file.

The word node begins every node definition.

The word node is followed by the name of the node enclosed in
quotation marks. For a detailed discussion of node names, see
“Node Names” on page -17.

Braces { } follow the node name. They enclose the information
about the node (its options), including an enumeration of each
disk and scratch disk resource. The legal options are: fastname,
pools, and resource.

Spaces separate items.

Quotation (") marks surround the attributes you assign to options,
that is, the names of nodes, disks, scratch disks, and pools.

Comments are demarcated by /* . . . */, in the style of the C
programming language. They are optional, but are recommended
where indicated in the examples.

Node Names
Each node you define is followed by its name enclosed in quotation

marks, for example:

node "orch0"

For a single CPU node or workstation, the node’s name is typically the

network name of a processing node on a connection such as a high-

speed switch or Ethernet. Issue the following UNIX command to learn

a node’s network name:

$ uname -n

On an SMP, if you are defining multiple logical nodes corresponding

to the same physical node, you replace the network name with a

logical node name. In this case, you need a fast name for each logical

node.

If you run an application from a node that is undefined in the

corresponding configuration file, each user must set the environment
Parallel Job Developer’s Guide 58-17

Configuration Files The Parallel Engine Configuration File
variable APT_PM_CONDUCTOR_NODENAME to the fast name of the

node invoking the parallel job.

Options
Each node takes options that define the groups to which it belongs

and the storage resources it employs. Options are as follows:

fastname

This option takes as its quoted attribute the name of the node as it is

referred to on the fastest network in the system, such as an IBM

switch, FDDI, or BYNET. The fastname is the physical node name that

stages use to open connections for high volume data transfers. The

attribute of this option is often the network name. For an SMP, all

CPUs share a single connection to the network, and this setting is the

same for all parallel engine processing nodes defined for an SMP.

Typically, this is the principal node name, as returned by the UNIX

command uname -n.

pools

The pools option indicates the names of the pools to which this node

is assigned. The option’s attribute is the pool name or a space-

separated list of names, each enclosed in quotation marks. For a

detailed discussion of node pools, see “Node Pools and the Default

Node Pool” on page -22.

Note that the resource disk and resource scratchdisk options can

also take pools as an option, where it indicates disk or scratch disk

pools. For a detailed discussion of disk and scratch disk pools, see

“Disk and Scratch Disk Pools and Their Defaults” on page -23.

Node pool names can be dedicated. Reserved node pool names

include the following names:

Syntax: fastname "name"

Syntax: pools "node_pool_name0" "node_pool_name1"
...

DB2 See the DB2 resource below and “The

resource DB2 Option” on page -25.

INFORMIX See the INFORMIX resource below and “The

resource INFORMIX Option” on page -26.

ORACLE See the ORACLE resource below and “The

resource ORACLE option” on page -27.
58-18 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Files
Reserved disk pool names include the following names:

resource

The resource_type can be one of the following:

canonicalhostname

The canonicalhostname resource takes as its quoted attribute the

ethernet name of a node in a cluster that is unconnected to the

Conductor node by the high-speed network. If the Conductor node

cannot reach the unconnected node by a fastname, you must define

the unconnected node’s canonicalhostname to enable

communication.

DB2

This option allows you to specify logical names as the names of DB2

nodes. For a detailed discussion of configuring DB2, see “The

resource DB2 Option” on page -25.

sas See “The SAS Resources” on page -28.

sort See “Sort Configuration” on page -29.

See “Buffer Scratch Disk Pools” on page -24.

export For use by the export stage.

lookup For use by the lookup stage.

sasdatas
et

See “The SAS Resources” on page -28.

sort See “Sort Configuration” on page -29.

Syntax: resource resource_type "location"
 [{pools "disk_pool_name"}]
|
resource resource_type "value"

Syntax: canonicalhostname "ethernet name"

Syntax: resource DB2 "node_number"
 [{pools "instance_owner" ...}]
Parallel Job Developer’s Guide 58-19

Configuration Files The Parallel Engine Configuration File
disk

Assign to this option the quoted absolute path name of a directory

belonging to a file system connected to the node. The node reads

persistent data from and writes persistent data to this directory. One

node can have multiple disks. Relative path names are not supported.

Typically, the quoted name is the root directory of a file system, but it

does not have to be. For example, the quoted name you assign to disk

can be a subdirectory of the file system.

You can group disks in pools. Indicate the pools to which a disk

belongs by following its quoted name with a pools definition

enclosed in braces. For a detailed discussion of disk pools, see “Disk

and Scratch Disk Pools and Their Defaults” on page -23.

INFORMIX

This option allows you to specify logical names as the names of

INFORMIX nodes. For a detailed discussion of configuring INFORMIX,

see “The resource INFORMIX Option” on page -26.

ORACLE

This option allows you to define the nodes on which Oracle runs. For a

detailed discussion of configuring Oracle, see “The resource ORACLE

option” on page -27.

sasworkdisk

This option is used to specify the path to your SAS work directory. See

“The SAS Resources” on page -28.

Syntax: resource disk "directory_path"
 [{pools "poolname"...}]

Syntax: resource INFORMIX "coserver_basename"
 [{pools "db_server_name" ... }]

Syntax: resource ORACLE "nodename"
 [{pools "db_server_name" ...}]

Syntax: resource sasworkdisk "directory_path"
 [{pools "poolname"...}]
58-20 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Files
scratchdisk

Assign to this option the quoted absolute path name of a directory on

a file system where intermediate data will be temporarily stored. All

Orchestrate users using this configuration must be able to read from

and write to this directory. Relative path names are unsupported.

The directory should be local to the processing node and reside on a

different spindle from that of any other disk space. One node can have

multiple scratch disks.

Assign at least 500 MB of scratch disk space to each defined node.

Nodes should have roughly equal scratch space. If you perform

sorting operations, your scratch disk space requirements can be

considerably greater, depending upon anticipated use.

We recommend that:

Every logical node in the configuration file that will run sorting
operations have its own sort disk, where a sort disk is defined as a
scratch disk available for sorting that resides in either the sort or
default disk pool.

Each logical node’s sorting disk be a distinct disk drive.
Alternatively, if it is shared among multiple sorting nodes, it
should be striped to ensure better performance.

For large sorting operations, each node that performs sorting have
multiple distinct sort disks on distinct drives, or striped.

You can group scratch disks in pools. Indicate the pools to which a

scratch disk belongs by following its quoted name with a pools

definition enclosed in braces. For more information on disk pools, see

“Disk and Scratch Disk Pools and Their Defaults” on page -23.

The following sample SMP configuration file defines four logical

nodes.

{
node "borodin0" {
 fastname "borodin"
 pools "compute_1" ""

 resource disk "/sfiles/node0" {pools ""}
 resource scratchdisk "/scratch0" {pools "" "sort"}

 }
 node "borodin1" {

 fastname "borodin"
 pools "compute_1" ""
 resource disk "/sfiles/node1" {pools ""}

 resource scratchdisk "/scratch1" {pools "" "sort"}
 }

Syntax: resource scratchdisk "directory_path"
 [{pools "poolname"...}]
Parallel Job Developer’s Guide 58-21

Configuration Files The Parallel Engine Configuration File
 node "borodin2" {
 fastname "borodin"

 pools "compute_1" ""
 resource disk "/sfiles/node2" {pools ""}

 resource scratchdisk "/scratch2" {pools "" "sort"}
 }
 node "borodin3"
 {
 fastname "borodin"

 pools "compute_1" ""
 resource disk "/sfiles/node3" {pools ""}

 resource scratchdisk "/scratch3" {pools "" "sort"}
 }
}

In the example shown above:

All nodes are elements of pool compute_1 and the default node
pool, indicated by "".

The resource disk of node borodin0 is the directory /sfiles/node0.

The resource disks of nodes borodin1 to borodin3 are the
directories /sfiles/node1, /sfiles/node2, and /sfiles/node3.

All resource disks are elements of the default disk pool, indicated
by "".

For sorting, each logical node has its own scratch disk.

All scratch disks are elements of the sort scratch disk pool and the
default scratch disk pool which is indicated by "".

Node Pools and the Default Node Pool
Node pools allow association of processing nodes based on their

characteristics. For example, certain nodes can have large amounts of

physical memory, and you can designate them as compute nodes.

Others can connect directly to a mainframe or some form of high-

speed I/O. These nodes can be grouped into an I/O node pool.

The option pools is followed by the quoted names of the node pools

to which the node belongs. A node can be assigned to multiple pools,

as in the following example, where node1 is assigned to the default

pool ("") as well as the pools node1, node1_css, and pool4.

node "node1"
{
fastname "node1_css"
pools "" "node1" "node1_css" "pool4"
resource disk "/orch/s0" {}
resource scratchdisk "/scratch" {}
}

A node belongs to the default pool unless you explicitly specify a

pools list for it, and omit the default pool name ("") from the list.
58-22 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Configuration Files
Once you have defined a node pool, you can constrain a parallel stage

or parallel job to run only on that pool, that is, only on the processing

nodes belonging to it. If you constrain both an stage and a job, the

stage runs only on the nodes that appear in both pools.

Nodes or resources that name a pool declare their membership in that

pool.

We suggest that when you initially configure your system you place

all nodes in pools that are named after the node’s name and fast

name. Additionally include the default node pool in this pool, as in the

following example:

node "n1"
{
fastname "nfast"
pools "" "n1" "nfast"
}

By default, the parallel engine executes a parallel stage on all nodes

defined in the default node pool. You can constrain the processing

nodes used by the parallel engine either by removing node

descriptions from the configuration file or by constraining a job or

stage to a particular node pool.

Disk and Scratch Disk Pools and Their Defaults
When you define a processing node, you can specify the options

resource disk and resource scratchdisk. They indicate the directories

of file systems available to the node. You can also group disks and

scratch disks in pools. Pools reserve storage for a particular use, such

as holding very large data sets. The syntax for setting up disk and

scratch disk pools is as follows:

resource disk "disk_name"
{pools "disk_pool0" ... "disk_poolN"}

resource scratchdisk "s_disk_name"
 {pools "s_pool0" ... "s_poolN"}

where:

disk_name and s_disk_name are the names of directories.

disk_pool... and s_pool... are the names of disk and scratch
disk pools, respectively.

Pools defined by disk and scratchdisk are not combined; therefore,

two pools that have the same name and belong to both resource disk

and resource scratchdisk define two separate pools.

A disk that does not specify a pool is assigned to the default pool. The

default pool may also be identified by "" by and { } (the empty pool

list). For example, the following code configures the disks for node1:
Parallel Job Developer’s Guide 58-23

Configuration Files The Parallel Engine Configuration File
node "node1" {
resource disk "/orch/s0" {pools "" "pool1"}
resource disk "/orch/s1" {pools "" "pool1"}
resource disk "/orch/s2" { } /* empty pool list */
resource disk "/orch/s3" {pools "pool2"}
resource scratchdisk "/scratch"{pools "" "scratch_pool1"}

}

In this example:

The first two disks are assigned to the default pool.

The first two disks are assigned to pool1.

The third disk is also assigned to the default pool, indicated by { }.

The fourth disk is assigned to pool2 and is not assigned to the
default pool.

The scratch disk is assigned to the default scratch disk pool and to
scratch_pool1.

Application programmers make use of pools based on their

knowledge of both their system and their application.

Buffer Scratch Disk Pools
Under certain circumstances, the parallel engine uses both memory

and disk storage to buffer virtual data set records.The amount of

memory defaults to 3 MB per buffer per processing node. The amount

of disk space for each processing node defaults to the amount of

available disk space specified in the default scratchdisk setting for

the node.

The parallel engine uses the default scratch disk for temporary storage

other than buffering. If you define a buffer scratch disk pool for a

node in the configuration file, the parallel engine uses that scratch

disk pool rather than the default scratch disk for buffering, and all

other scratch disk pools defined are used for temporary storage other

than buffering.

Here is an example configuration file that defines a buffer scratch disk

pool:

{
node node1 {
 fastname "node1_css"
 pools "" "node1" "node1_css"
 resource disk "/orch/s0" {}
 resource scratchdisk "/scratch0" {pools "buffer"}
 resource scratchdisk "/scratch1" {}
 }
node node2 {
 fastname "node2_css"
 pools "" "node2" "node2_css"
58-24 Parallel Job Developer’s Guide

The Parallel Engine Configuration File The resource DB2 Option
 resource disk "/orch/s0" {}
 resource scratchdisk "/scratch0" {pools "buffer"}
 resource scratchdisk "/scratch1" {}
 }

}

In this example, each processing node has a single scratch disk

resource in the buffer pool, so buffering will use /scratch0 but not

/scratch1. However, if /scratch0 were not in the buffer pool, both

/scratch0 and /scratch1 would be used because both would then be in

the default pool.

The resource DB2 Option
The DB2 file db2nodes.cfg contains information for translating DB2

node numbers to node names. You must define the node names

specified in db2nodes.cfg in your configuration file, if you want the

parallel engine to communicate with DB2. You can designate each

node specified in db2nodes.cfg in one of the following ways:

By assigning to node its quoted network name, as returned by the
UNIX operating system command uname -n; for example, node
"node4".

By assigning to node a logical name, for example "DB2Node3". If
you do so, you must specify the option resource DB2 followed by
the node number assigned to the node in db2nodes.cfg.

The resource DB2 option can also take the pools option. You assign to

it the user name of the owner of each DB2 instance configured to run

on each node. DB2 uses the instance to determine the location of

db2nodes.cfg.

Here is a sample DB2 configuration:

{
node "Db2Node0" {

/* other configuration parameters for node0 */
resource DB2 "0" {pools "Mary" "Tom"}

}
node "Db2Node1" {

/* other configuration parameters for node1 */
resource DB2 "1" {pools "Mary" "Tom"}

}
node "Db2Node2" {

/* other configuration parameters for node2 */
resource DB2 "2" {pools "Mary" "Tom" "Bill"}

}

node "Db2Node3" {
/* other configuration parameters for node3 */
resource DB2 "3" {pools "Mary" "Bill"}
Parallel Job Developer’s Guide 58-25

The resource INFORMIX Option The Parallel Engine Configuration File
}

/* other nodes used by the parallel engine*/

}

In the example above:

The resource DB2 option takes the DB2 node number
corresponding to the processing node.

All nodes are used with the DB2 instance Mary.

Nodes 0, 1, and 2 are used with the DB2 instance Tom.

Nodes 2 and 3 are used with the DB2 instance Bill.

If you now specify a DB2 instance of Mary in your Orchestrate

application, the location of db2nodes.cfg is

~Mary/sqllib/db2nodes.cfg.

The resource INFORMIX Option
To communicate with INFORMIX, the parallel engine must be

configured to run on all processing nodes functioning as INFORMIX

coservers. This means that the Orchestrate configuration must include

a node definition for the coserver nodes. The list of INFORMIX

coservers is contained in the file pointed to by the environment

variable $INFORMIXSQLHOSTS or in the file

$INFORMIXDIR/etc/sqlhosts.

There are two methods for specifying the INFORMIX coserver names

in the Orchestrate configuration file.

1 Your Orchestrate configuration file can contain a description of
each node, supplying the node name (not a synonym) as the
quoted name of the node. Typically, the node name is the network
name of a processing node as returned by the UNIX command
uname -n.

Here is a sample configuration file for a system containing

INFORMIX coserver nodes node0, node1, node2, and node3:
{

 node "node0" {
/* configuration parameters for node0 */

 }
 node "node1" {

/* configuration parameters for node1 */
}

 node "node2" {
/* configuration parameters for node2 */

 }
58-26 Parallel Job Developer’s Guide

The Parallel Engine Configuration File The resource ORACLE option
 node "node3" {
/* configuration parameters for node3 */

 }

 /* other nodes used by the parallel engine*/
}

2 You can supply a logical rather than a real network name as the
quoted name of node. If you do so, you must specify the resource
INFORMIX option followed by the name of the corresponding
INFORMIX coserver.

Here is a sample INFORMIX configuration:
{

 node "IFXNode0" {
/* other configuration parameters for node0 */
resource INFORMIX "node0" {pools "server"}

 }
 node "IFXNode1" {

/* other configuration parameters for node1 */
resource INFORMIX "node1" {pools "server"}

 }
 node "IFXNode2" {

/* other configuration parameters for node2 */
resource INFORMIX "node2" {pools "server"}

 }
 node "IFXNode3" {

/* other configuration parameters for node3 */
resource INFORMIX "node3" {pools "server"}

 }

/* other nodes used by the parallel engine*/
 }

When you specify resource INFORMIX, you must also specify the

pools parameter. It indicates the base name of the coserver groups for

each INFORMIX server. These names must correspond to the coserver

group base name using the shared-memory protocol. They also

typically correspond to the DBSERVERNAME setting in the

ONCONFIG file. For example, coservers in the group server are

typically named server.1, server.2, and so on.

The resource ORACLE option
By default, the parallel engine executes Oracle stages on all

processing nodes belonging to the default node pool, which typically

corresponds to all defined nodes.

You can optionally specify the resource ORACLE option to define the

nodes on which you want to run the Oracle stages. If you do,

Orchestrate runs the Oracle stages only on the processing nodes for
Parallel Job Developer’s Guide 58-27

The SAS Resources The Parallel Engine Configuration File
which resource ORACLE is defined. You can additionally specify the

pools parameter of resource ORACLE to define resource pools, which

are groupings of Oracle nodes.

Here is a sample Oracle configuration:

{
node "node0" {

/* other configuration parameters for node0 */
resource ORACLE "node0" {pools "group1" "group2"

 "group3"}
}
node "node1" {

/* other configuration parameters for node1 */
resource ORACLE "node1" {pools "group1" "group2"}

}
node "node2" {

/* other configuration parameters for node2 */
resource ORACLE "node2" {pools "group1" "group3"}

}
node "node3" {

/* other configuration parameters for node3 */
resource ORACLE "node3" {pools "group1" "group2" "group3"}

}

/* any other nodes used by the parallel engine*/
}

In the example above, Oracle runs on node0 to node3.

node0–node3 are used with node pool group1.

node0, node1, and node3 are used with node pool group2.

node0, node2, and node3 are used with node pool group3.

The SAS Resources

Adding SAS Information to your Configuration File
To configure your system to use the SAS stage, you need to specify

the following information in your configuration file:

The location of the SAS executable, if it is not in your PATH;

An SAS work disk directory, one for each parallel engine node;

Optionally, a disk pool specifically for parallel SAS data sets,
called sasdataset.

The resource names sas and sasworkdisk and the disk pool name

sasdataset are all reserved words. Here is an example of each of these

declarations:
58-28 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Sort Configuration
resource sas "/usr/sas612/" { }
resource sasworkdisk "/usr/sas/work/" { }
resource disk "/data/sas/" {pools "" "sasdataset"}

While the disks designated as sasworkdisk need not be a RAID

configuration, best performance will result if each parallel engine

logical node has its own reserved disk that is not shared with other

parallel engine nodes during sorting and merging. The total size of

this space for all nodes should optimally be equal to the total work

space you use when running SAS sequentially (or a bit more, to allow

for uneven distribution of data across partitions).

The number of disks in the sasdataset disk pool is the degree of

parallelism of parallel SAS data sets. Thus if you have 24 processing

nodes, each with its associated disk in the sasdataset disk pool,

parallel SAS data sets will be partitioned among all 24 disks, even if

the operation preceding the disk write is, for example, only four-way

parallel.

Example
Here a single node, grappelli0, is defined, along with its fast name.

Also defined are the path to a SAS executable, a SAS work disk

(corresponding to the SAS work directory), and two disk resources,

one for parallel SAS data sets and one for non-SAS file sets.

node "grappelli0"
{
fastname "grappelli"
pools "" "a"
resource sas "/usr/sas612" { }
resource scratchdisk "/scratch" { }
resource sasworkdisk "/scratch" { }
disk "/data/pds_files/node0" { pools "" "export" }
disk "/data/pds_files/sas" { pools "" "sasdataset" }

 }

Sort Configuration
You may want to define a sort scratch disk pool to assign scratch disk

space explicitly for the storage of temporary files created by the Sort

stage. In addition, if only a subset of the nodes in your configuration

have sort scratch disks defined, we recommend that you define a sort

node pool, to specify the nodes on which the sort stage should run.

Nodes assigned to the sort node pool should be those that have

scratch disk space assigned to the sort scratch disk pool.

The parallel engine then runs sort only on the nodes in the sort node

pool, if it is defined, and otherwise uses the default node pool. The
Parallel Job Developer’s Guide 58-29

Allocation of Resources The Parallel Engine Configuration File
Sort stage stores temporary files only on the scratch disks included in

the sort scratch disk pool, if any are defined, and otherwise uses the

default scratch disk pool.

When the parallel engine runs, it determines the locations of

temporary files by:

1 Searching the parallel engine configuration for any scratch disk
resources in the sort resource pool on the nodes sort will run on. If
found, the scratch disks are used as a location for temporary
storage by sort.

2 If no scratch disk resources are found that belong to the disk pool
sort, the system determines whether any scratch disk resources
belong to the default scratch disk pool on the nodes sort will run
on. If so, the scratch disks belonging to the default pool are used
by tsort for temporary storage.

3 If no scratch disk resources are found that belong to either sort or
the default scratch disk pool, the parallel engine issues a warning
message and runs sort using the directory indicated by the
TMPDIR environment variable or /tmp for temporary storage.

Allocation of Resources
The allocation of resources for a given stage, particularly node and

disk allocation, is done in a multi-phase process. Constraints on which

nodes and disk resources are used are taken from the parallel engine

arguments, if any, and matched against any pools defined in the

configuration file. Additional constraints may be imposed by, for

example, an explicit requirement for the same degree of parallelism

as the previous stage. After all relevant constraints have been applied,

the stage allocates resources, including instantiation of Player

processes on the nodes that are still available and allocation of disks

to be used for temporary and permanent storage of data.

Selective Configuration with Startup Scripts
As part of running an application, the parallel engine creates a remote

shell on all parallel engine processing nodes on which the application

will be executed. After the parallel engine creates the remote shell, it

copies the environment from the system on which the application was

invoked to each remote shell. This means that all remote shells have

the same configuration by default.
58-30 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Selective Configuration with Startup Scripts
However, you can override the default and set configuration

parameters for individual processing nodes. To do so, you create a

parallel engine startup script. If a startup script exists, the parallel

engine runs it on all remote shells before it runs your application.

When you invoke an application, the parallel engine looks for the

name and location of a startup script as follows:

1 It uses the value of the APT_STARTUP_SCRIPT environment
variable.

2 It searches the current working directory for a file named
startup.apt.

3 Searches for the file install_dir/etc/startup.apt on the
system that invoked the parallel engine application, where
install_dir is the top-level directory of the installation.

4 If the script is not found, it does not execute a startup script.

Here is a template you can use with Korn shell to write your own

startup script.

#!/bin/ksh # specify Korn shell
your shell commands go here

shift 2 # required for all shells
exec $* # required for all shells

You must include the last two lines of the shell script. This prevents

your application from running if your shell script detects an error.

The following startup script for the Bourne shell prints the node name,

time, and date for all processing nodes before your application is run:

#!/bin/sh # specify Bourne shell

echo ‘hostname‘ ‘date‘
shift 2
exec $*

A single script can perform node-specific initialization by means of a

case statement. In the following example, the system has two nodes

named node1 and node2. This script performs initialization based on

which node it is running on.

#!/bin/sh # use Bourne shell

Example APT startup script.
case `hostname` in

node1)
perform node1 init
node-specific directives
;;

node2)
perform node2 init
Parallel Job Developer’s Guide 58-31

Hints and Tips The Parallel Engine Configuration File
node-specific directives
;;

esac
shift 2
exec $*

The parallel engine provides the APT_NO_STARTUP_SCRIPT
environment variable to prevent the parallel engine from running the

startup script. By default, the parallel engine executes the startup

script. If the variable is set, the parallel engine ignores the startup

script. This can be useful for debugging a startup script.

Hints and Tips
The configuration file tells the engine how to exploit the underlying

computer system. For a given system there is not necessarily one

ideal configuration file because of the high variability between the

way different jobs work. So where do you start?

Let's assume you are running on a shared-memory multi-processor

system, i.e., an SMP box (these are the most common platforms

today). Let's assume these properties. You can adjust the illustration

below to match your precise situation:

computer's hostname "fastone"

6 CPUs

4 separate file systems on 4 drives named /fs0 /fs1 /fs2 /fs3

The configuration file to use as a starting point would look like the one

below. Note the way the disk/scratchdisk resources are handled.

That's the real trick here.

{ /* config file allows C-style comments. */
/*

config files look like they have flexible syntax.
They do NOT. Keep all the sub-items of the individual
node specifications in the order shown here.

*/
node "n0" {
pools "" /* on an SMP node pools aren't used often. */
fastname "fastone"
resource scratchdisk "/fs0/ds/scratch" {} /*start with fs0*/
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs0/ds/disk" {} /* start with fs0 */
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
}

58-32 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Hints and Tips
node "n1" {pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {} /*start with fs1*/
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs1/ds/disk" {} /* start with fs1 */
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
}
node "n2" {
pools ""
fastname "fastone"
resource scratchdisk "/fs2/ds/scratch" {} /*start with fs2*/
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource scratchdisk "/fs1/ds/scratch" {}
resource disk "/fs2/ds/disk" {} /* start with fs2 */
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
resource disk "/fs1/ds/disk" {}
}
node "n3" {
pools ""
fastname "fastone"
resource scratchdisk "/fs3/ds/scratch" {} /*start with fs3*/
resource scratchdisk "/fs0/ds/scratch" {}
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource disk "/fs3/ds/disk" {} /* start with fs3 */
resource disk "/fs0/ds/disk" {}
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
}
node "n4" {
pools ""
fastname "fastone"
/*
* Ok, now what. We rotated through starting with a
* different disk, but we have a basic problem here which is
* that there are more CPUs than disks. So what do we do
* now? The answer: something that is not perfect. We're
* going to repeat the sequence. You could shuffle
* differently i.e., use /fs0 /fs2 /fs1 /fs3 as an order.
* I'm not sure it will matter all that much.
*/
resource scratchdisk "/fs0/ds/scratch" {} /*start with fs0

again*/
resource scratchdisk "/fs1/ds/scratch" {}
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs0/ds/disk" {} /* start with fs0 again */
resource disk "/fs1/ds/disk" {}
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
}

Parallel Job Developer’s Guide 58-33

Hints and Tips The Parallel Engine Configuration File
node "n5" {
pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {} /*start with fs1*/
resource scratchdisk "/fs2/ds/scratch" {}
resource scratchdisk "/fs3/ds/scratch" {}
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs1/ds/disk" {} /* start with fs1 */
resource disk "/fs2/ds/disk" {}
resource disk "/fs3/ds/disk" {}
resource disk "/fs0/ds/disk" {}
}

} /* end of whole config */

The above config file pattern could be called "give everyone all the

disk". This configuration style works well when the flow is complex

enough that you can't really figure out and precisely plan for good I/O

utilization. Giving every partition (node) access to all the I/O resources

can cause contention, but the parallel engine tends to use fairly large

blocks for I/O so the contention isn't as much of a problem as you

might think. This configuration style works for any number of CPUs

and any number of disks since it doesn't require any particular

correspondence between them. The heuristic principle at work here is

this "When it's too difficult to figure out precisely, at least go for

achieving balance."

The alternative to the above configuration style is more careful

planning of the I/O behavior so as to reduce contention. You can

imagine this could be hard given our hypothetical 6-way SMP with 4

disks because setting up the obvious one-to-one correspondence

doesn't work. Doubling up some nodes on the same disk is unlikely to

be good for overall performance since we create a hotspot. We could

give every CPU 2 disks and rotate around, but that would be little

different than our above strategy. So, let's imagine a less constrained

environment and give ourselves 2 more disks /fs4 and /fs5. Now a

config file might look like this:

{
node "n0" {
pools ""
fastname "fastone"
resource scratchdisk "/fs0/ds/scratch" {}
resource disk "/fs0/ds/disk" {}
}
node "n1" {
pools ""
fastname "fastone"
resource scratchdisk "/fs1/ds/scratch" {}
resource disk "/fs1/ds/disk" {}
}

58-34 Parallel Job Developer’s Guide

The Parallel Engine Configuration File Hints and Tips
node "n2" {
pools ""
fastname "fastone"
resource scratchdisk "/fs2/ds/scratch" {}
resource disk "/fs2/ds/disk" {}
}
node "n3" {
pools ""
fastname "fastone"
resource scratchdisk "/fs3/ds/scratch" {}
resource disk "/fs3/ds/disk" {}
}
node "n4" {
pools ""
fastname "fastone"
resource scratchdisk "/fs4/ds/scratch" {}
resource disk "/fs4/ds/disk" {}
}
node "n5" {
pools ""
fastname "fastone"
resource scratchdisk "/fs5/ds/scratch" {}
resource disk "/fs5/ds/disk" {}
}
} /* end of whole config */

This is simplest, but realize that no single player (stage/operator

instance) on any one partition can go faster than the single disk it has

access to.

You could combine strategies by adding in a node pool where disks

have this one-to-one association with nodes. These nodes would then

not be in the default node pool, but a special one that you would

assign stages/operators to specifically.

Other configuration file hints:

Consider avoiding the disk/disks that your input files reside on.
Often those disks will be hotspots until the input phase is over. If
the job is large and complex this is less of an issue since the input
part is proportionally less of the total work.

Ensure that the different file systems mentioned as the disk and
scratchdisk resources hit disjoint sets of spindles even if they're
located on a RAID system.

Know what is real and what is NFS: Real disks are directly
attached, or are reachable over a SAN (storage-area network -
dedicated, just for storage, low-level protocols).

– Never use NFS file systems for scratchdisk resources.

– If you use NFS file system space for disk resources, then you
need to know what you are doing. For example, your final
result files may need to be written out onto the NFS disk area,
but that doesn't mean the intermediate data sets created and
Parallel Job Developer’s Guide 58-35

Hints and Tips The Parallel Engine Configuration File
used temporarily in a multi-job sequence should use this NFS
disk area. Better to setup a "final" disk pool, and constrain the
result sequential file or data set to reside there, but let
intermediate storage go to local or SAN resources, not NFS.

Know what data points are striped (RAID) and which are not.
Where possible, avoid striping across data points that are already
striped at the spindle level.
58-36 Parallel Job Developer’s Guide

59
SQL Builder

The SQL Builder provides a graphical interface that helps you build

SQL SELECT statements. These statements allow you to select rows

of data from your relational database. The statement can be a simple

one that selects rows from a single table, or it can be complex,

performing joins between multiple tables or aggregations of values

within columns.

In Parallel jobs you can invoke the SQL Builder from:

DB2/UDB Enterprise stage

Oracle Enterprise stage

Different databases have slightly different SQL syntax (particularly

when it comes to more complex operations such as joins). The exact

form of the SQL statements that the SQL builder produces depends

on which stage you invoked it from. The examples given here are

based on the Oracle Enterprise stage.

You do not have to be an SQL expert to use the SQL Builder, but we

assume some familiarity with the basic structure of an SQL query in

this documentation.

How to Use the SQL Builder
You reach the SQL Builder through the stage editors:

1 Choose a Read Method property of SQL Builder generated
SQL in the Output page Properties tab.

2 Select the SQL Query property, the SQL Query window will
initially be blank.
Parallel Job Developer’s Guide 59-1

How to Build Queries with the SQL Builder SQL Builder
3 Choose Build New Query Syntax from the Right-Arrow menu
(where Syntax indicates the vesrion of the Database you are
querying). The SQL builder opens.

4 When you have constructed the required query, it appears in the
SQL Query window on the stage editor. and from here you can
edit it, if required.

Note If you have previously built a query using a Read Method
of Auto-generated SQL or User-defined SQL, this will

be lost if you then select a Read Method of SQL builder
generated SQL.

If you have constructed a query using the SQL Builder, it

will be retained if you switch to a Read Method of User-
defined SQL, but lost if you choose Auto-generated
SQL.

How to Build Queries with the SQL Builder
This section describes the general steps you have to take when using

the SQL Builder to construct a query. The examples on page 59-29

give you more detailed instructions for building different types of

query.

To use the SQL Builder:
59-2 Parallel Job Developer’s Guide

SQL Builder How to Build Queries with the SQL Builder
1 Ensure that the SQL Builder has the Selection tab on top.

2 Drag any tables you want to include in your query from the
repository window to the canvas (you must have previously
placed the table definitions in the DataStage repository – the
easiest way to do this is to import the definitions directly from
your relational database). You can drag multiple tables onto the
canvas to enable you to specify complex queries such as joins.

3 Specify the columns that you want to select from the table or
tables on the column selection grid.

4 If you want to refine the selection you are performing, choose a
predicate from the Predicate list in the filter panel. Then use the
expression editor to specify the actual filter (the fields displayed
depend on the predicate you choose). For example, use the
Comparison predicate to specify that a column should match a
particular value, or the Between predicate to specify that a column
falls within a particular range. The filter appears as a WHERE
clause in the finished query.

5 Click the Add button in the filter panel. The filter that you specify
appears in the filter expression panel and is added to the SQL
statement that you are building.

6 If you are joining multiple tables, and the automatic joins inserted
by the SQL Builder are not what's required, manually alter the
joins.
Parallel Job Developer’s Guide 59-3

How to Build Queries with the SQL Builder SQL Builder
7 If you want to group your results according to the values in certain
columns, select the Group tab. Select the Grouping check box in
the column grouping and aggregation grid for the column or
columns that you want to group the results by.

8 If you want to aggregate the values in the columns, you should
also select the Group tab. Select the aggregation that you want to
perform on a column from the Aggregation drop-down list in the
column grouping and aggregation grid.
59-4 Parallel Job Developer’s Guide

SQL Builder Selection Tab
9 Click on the Sql tab to view the finished query, and to resolve the
columns generated by the SQL statement with the columns
loaded on the stage (if necessary)..

Selection Tab
When the SQL Builder opens, it has the Selection tab on top (see

page 59-3). This has the components described in the following

sections.

Toolbar
The toolbar contains various tools:

clear click this to completely clear the query you are currently
building.

cut allows certain items to be removed and placed on the
clipboard so they can be pasted elsewhere.
Parallel Job Developer’s Guide 59-5

Selection Tab SQL Builder
copy allows certain items to be copied and placed on the
clipboard so they can be pasted elsewhere.

paste allows you to paste items from the clipboard to certain
places in the SQL Builder.

SQL properties opens the Properties dialog box.

quoting toggles between having table and column names in
quotation marks in the SQL statement and having them unquoted.

validation toggles the validation feature on and off.

view data this is available when you invoke the SQL Builder
from stages that support the viewing of data. It causes the calling
stage to run the SQL as currently built and return the results for
you to view.

refresh refreshes the contents of all the panels on the SQL
Builder.

window view allows you to select which items are shown in the
SQL Builder.

help opens the online help.

Repository Window
This displays the table definitions that currently exist within the

DataStage repository. The easiest way to get a table definition into the

repository is to import it directly from the database you want to query,

you can do this via the DataStage Designer or DataStage Manager, or

you can do it directly from the shortcut menu in the repository tree.

You can also manually define a table definition from within the SQL

Builder by selecting New Table... from the repository window

shortcut menu.

To select a table to query, select it in the repository window and drag it

to the table selection canvas. A window appears in the canvas

representing the table and listing all its individual columns.

A shortcut menu allows you to:

Refresh the repository view

Define a new table definition (the Table Definition dialog box
opens)

Import Meta Data directly from a data source (a sub menu offers a
list of source types)

Copy a table definition (you can paste it in the table selection
canvas)
59-6 Parallel Job Developer’s Guide

SQL Builder Selection Tab
View the properties of the table definition (the Table Definition
dialog box opens)

You can also view the properties of a table definition by double-

clicking on it in the repository window.

Table Selection Canvas
The canvas allows you to define the tables that are used in the query.

Drag a table form the repository window, and it will appear as a

window on the canvas, listing all the columns in the table and their

types. (If the desired table does not exist in the repository, you can

import it from the database you are querying by choosing Import
Meta Data from the repository window shortcut menu.)

Wherever you try to place the table on the canvas, the first table you

drag will always be placed in the top left hand corner. Subsequent

tables can be dragged before or after the initial, or on a new row

underneath. Eligible areas are highlighted on the canvas as you drag

the table, and you can only drop a table in one of the highlighted

areas.

When you place tables on the same row, the SQL Builder will

automatically join the tables (you can alter the join if it's not what you

want). When you place tables on a separate row, no join is added and

you will get a cartesian product (otherwise known as a 'cross-join') of

the tables on the different rows, unless you explicitly join the tables.

For details about joining tables, see "Joining Tables" on page 59-23.

Click the Select All button underneath the table title bar to select all

the columns in the table.

With a table selected in the canvas, a shortcut menu allows you to:

Add a related table. A submenu shows you tables that have a
foreign key relationship with the currently selected one. Select a
table to insert it in the canvas, together with the type of join
inferred by the foreign key relationship.

Remove the selected table.

Select all the columns in the table (so that you could, for example,
drag them all to the column selection grid).

Open a Select Table dialog box to allow you to bind an
alternative table definition in the repository to the currently
selected table.

Open the Table Properties dialog box for the currently selected
table.

With a join selected in the canvas, a shortcut menu allows you to:
Parallel Job Developer’s Guide 59-7

Selection Tab SQL Builder
Open the Alternate Relation dialog box to specify that the join
should be based on a different foreign key relationship.

Open the Join Properties dialog box.

From the canvas background, a shortcut menu allows you to:

Refresh the view of the table selection canvas.

Paste a table that you have copied from the repository window.

View data – this is available when you invoke the SQL Builder
from stages that support the viewing of data. It causes the calling
stage to run the SQL as currently built and return the results for
you to view.

Open the Properties dialog box to view details of the SQL syntax
that the SQL Builder is currently building a query for.

Column Selection Grid
This is where you specify which columns are to be included in your

query. You can populate the grid in two ways:

drag columns from the tables in the table selection canvas.

choose columns from a drop-down list in the grid.

copy and paste from the table selection canvas.

The grid has the following fields:

Column expression

Identifies the column to be included in the query. You can specify one

of the following in identifying a column:

Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value to
be used in the query at run time (the stage you are using the SQL
Builder from must allow job parameters for this to appear).

Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be used
in the query.

Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the SQL
Builder from must support data flow variables for this to appear)

Column. You can directly select a column from one of the tables
in the table selection canvas.
59-8 Parallel Job Developer’s Guide

SQL Builder Selection Tab
Table

Identifies the table that the column belongs to. If you populate the

column grid by dragging a column from the table selection canvas,

the table is filled in automatically. Otherwise, choose a table from the

drop-down list, or choose a job parameter to enable you to specify the

table name at run time.

Column Alias

This allows you to specify an alias for the column.

Output

This is selected to indicate that the column will be output by the

query. This is automatically selected when you add a column to the

grid.

Sort

Choose Ascending or Descending to have the query sort the returned

rows by the value of this column. Selecting to sort results in an

ORDER BY clause being added to the query.

Sort Order

Allows you to specify the order in which rows are sorted if you are

ordering by more than one column.

A shortcut menu allows you to:

Paste a column that you've copied from the table selection canvas

Refresh the view of the grid

Show or hide the filter panel

Remove a row from the grid

Filter Panel
The filter panel allows you to specify a WHERE clause for the SELECT

statement you are building. It comprises a predicate list and an

expression editor panel, the contents of which depends on the chosen

predicate.

See "Expression Editor" on page 59-14 for details on using the

expression editor that the filter panel provides.
Parallel Job Developer’s Guide 59-9

Group Tab SQL Builder
Filter Expression Panel
This panel displays any filters that you have added to the query being

built. You can edit the filter manually in this panel. Alternatively you

can type a filter straight in, without using the filter expression editor.

Group Tab
The Group tab (see page 59-4) allows you to specify that the results of

a query are grouped by a column, or columns. Also, it allows you to

aggregate the results in some of the columns, for example, you could

specify COUNT to count the number of rows that contain a not-null

value in a column.

The Group tab gives access to the toolbar (see page 59-5), repository

window (see page 59-6), and the table selection canvas (see

page 59-7) in exactly the same way as the Selection tab. Other

components are described in the following sections.

Grouping Grid
This is where you specify which columns are to be grouped by or

aggregated on.

The grid is populated with the columns that you selected on the

Selection tab. although you can change the selected columns or select

new ones, which will be reflected in the selection your query makes.

The grid has the following fields:

Column expression. Identifies the column to be included in the
query. If you want to change the column selections that were
made on the Selection tab, you can specify one of the following in
identifying a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear).
59-10 Parallel Job Developer’s Guide

SQL Builder Group Tab
– Column. You can directly select a column from one of the
tables in the table selection canvas.

Column Alias. This allows you to specify an alias for the column.
If you select an aggregation operation for a column, SQL Builder
will automatically insert an alias of the form alias_n; you can edit
this if required.

Output. This is selected to indicate that the column will be output
by the query. This is automatically selected when you add a
column to the grid.

Distinct. Select this check box if you want to add the DISTINCT
qualifier to an aggregation. For example, a COUNT aggregation
with the distinct qualifier will count the number of rows with
distinct values in a field (as opposed to just the not-null values).
(Not all SQL syntaxes support the DISTINCT feature - see "SQL
Properties Dialog Box" on page 59-29.)

Aggregation. Allows you to select an aggregation function to
apply to the column (note that this is mutually exclusive with the
Group by option). See "Aggregation Functions" on page 59-11 for
details about the available functions.

Group By. Select the check box to specify that query results
should be grouped by the results in this column.

Aggregation Functions

The aggregation functions available vary according to the stage you

have opened the SQL Builder from. The following are the basic ones

supported by all SQL syntax variants:

AVG. This returns the mean average of the values in a column. For
example, if you had six rows with a column containing a price, the
six rows would be added together and divided by six to yield the
mean average. If you specify the DISTINCT qualifier, only distinct
values will be averaged; if our six rows only contained four
distinct prices then these four would be added together and
divided by four to produce a mean average.

COUNT. This counts the number of rows that contain a not-null
value in a column. If you specify the DISTINCT qualifier, only
distinct values will be counted.

MAX. This returns the maximum value that the rows hold in a
particular column. (The DISTINCT qualifier can be selected, but
has no affect on this function).

MIN. This returns the minimum value that the rows hold in a
particular column. (The DISTINCT qualifier can be selected, but
has no affect on this function).
Parallel Job Developer’s Guide 59-11

Sql Tab SQL Builder
The SQL Builder offers additional aggregation functions according to

what is supported by the database you are building the query for.

Filter Panel
The filter panel allows you to specify a HAVING clause for the SELECT

statement you are building. It comprises a predicate list and an

expression editor panel, the contents of which depends on the chosen

predicate.

See "Expression Editor" on page 59-14 for details on using the

expression editor that the filter panel provides.

Filter Expression Panel
This panel displays any filters that you have added to the query being

built. You can edit the filter manually in this panel. Alternatively you

can type a filter straight in, without using the filter panel.

Sql Tab
Visit the Sql tab (see page 59-5) at any time to view the query being

built. This tab displays the SQL statement as it currently stands. You

cannot edit the statement here, but a shortcut menu allows you to

copy and paste text.

If the columns you have defined as output columns for your stage do

not match the columns the SQL statement is generating, you can use

the Resolve columns grid to reconcile them (in most cases they would

match).

Resolve Columns Grid
If the columns you have loaded onto your stage editor (the loaded

columns) do not match the columns generated by the SQL statement

(the result columns) you have defined, the Resolve columns grid gives

you the opportunity to reconcile them. Ideally the columns should

match (and in normal circumstances usually would). A mismatch

would cause the meta data in your job to become out of step with the

meta data as loaded from your source database (which could cause a

problem if you are performing usage analysis based on that table).

If there is a mismatch, the grid displays a warning message. Click the

Auto Match button to resolve the mismatch. You are offered the choice

of matching by name, by order, or by both. When matching, the SQL
59-12 Parallel Job Developer’s Guide

SQL Builder Sql Tab
builder seeks to alter the columns generated by the SQL statement to

match the columns loaded onto the stage.

If you choose Name matching, and a column of the same name with a

compatible data type is found, the SQL builder:

Moves the result column to the equivalent position in the grid to
the loaded column (this will change the position of the named
column in the SQL).

Modifies all the attributes of the result column to match those of
the loaded column.

If you choose Order matching, the builder works through comparing

each results column to the loaded column in the equivalent position. If

a mismatch is found, and the data type of the two columns is

compatible, the SQL builder:

Changes the name of the result column to match the loaded
column (provided the results set does not already include a
column of than name).

Modifies all the attributes of the result column to match those of
the loaded column.

If you choose Both, the SQL Builder applies Name matching and then

Order matching.

If auto matching fails to reconcile the columns as described above,

any mismatched results column that represents a single column in a

table is overwritten with the details of the loaded column in the

equivalent position.

When you click OK in the SQL tab, the SQL builder checks to see if the

results columns match the loaded columns. If they don't, a warning

message is displayed allowing you to proceed or cancel. Proceeding

causes the loaded columns to be merged with the results columns:

Any matched columns are not affected.

Any extra columns in the results columns are added to the loaded
columns.

Any columns in the loaded set that do not appear in the results set
are removed.

For columns that don't match, if data types are compatible the
loaded column is overwritten with the results column. If data
types are not compatible, the existing loaded column is removed
and replaced with the results column.

You can also edit the columns in the Results part of the grid in order to

reconcile mismatches manually.
Parallel Job Developer’s Guide 59-13

Expression Editor SQL Builder
Expression Editor
The Expression Editor allows you to specify details of a WHERE clause

that will be inserted in your query, or of a Join condition where you

are joining multiple tables, or of a HAVING clause. A variant of the

expression editor allows you to specify a calculation or a function

within a function (see . The Expression Editor can be opened from

various places in theSQL Builder.

Main Expression Editor
To specify an expression:

Choose the type of filter by choosing a predicate from the list.

Fill in the information required by the Expression Editor fields that
appear.

Click the Add button to add the filter to the query you are building.
This clears the expression editor so that you can add another filter
if required.

The contents of the expression editor vary according to which

predicate you have selected. The following predicates are available:

Between. Allows you to specify that the value in a column should
lay within a certain range.

Comparison. Allows you to specify that the value in a column
should be equal to, or greater than or less than, a certain value.

In. Allows you to specify that the value in a column should match
one of a list ofvalues.

Like. Allows you to specify that the value in a column should
contain, start with, end with, or match a certain value.

Null. Allows you to specify that a column should, or should not
be, null.

If you are building an Oracle 8i query, an additional predicate is

available:

Join. Allows you to specify a join. This appears in the query as a
WHERE statement (Oracle 8i does not support JOIN statements).
59-14 Parallel Job Developer’s Guide

SQL Builder Expression Editor
Between

The expression editor when you have selected the Between predicate

is as follows:

The fields it contains are:

Column. Choose the column on which you are filtering from the
drop-down list. You can specify one of the following in identifying
a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear)

– Column. You can directly select a column from one of the
tables in the table selection canvas.

Between/Not Between. Choose Between or Not Between from
the drop-down list to specify whether the value you are testing
should be inside or outside your specified range.

Start of range. Use this field to specify the start of your range.
Click the menu button to the right of the field and specify details
about the argument you are using to specify the start of the range,
then specify the value itself in the field.

End of range. Use this field to specify the end of your range. Click
the menu button to the right of the field and specify details about
the argument you are using to specify the end of the range, then
specify the value itself in the field.
Parallel Job Developer’s Guide 59-15

Expression Editor SQL Builder
Comparison

The expression editor when you have selected the Comparison

predicate is as follows:

The fields it contains are:

Column. Choose the column on which you are filtering from the
drop-down list. You can specify one of the following in identifying
a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear)

– Column. You can directly select a column from one of the
tables in the table selection canvas.

Comparison operator. Choose the comparison operator from
the drop-down list. The available operators are:

– = equals

– <> not equal to

– < less than

– <= less than or equal to

– > greater than

– >= greater than or equal to

Comparison value. Use this field to specify the value you are
comparing to. Click the menu button to the right of the field and
choose the data type for the value from the menu, then specify the
value itself in the field.
59-16 Parallel Job Developer’s Guide

SQL Builder Expression Editor
In

The expression editor when you have selected the In predicate is as

follows:

The fields it contains are:

Column. Choose the column on which you are filtering from the
drop-down list. You can specify one of the following in identifying
a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear)

– Column. You can directly select a column from one of the
tables in the table selection canvas.

In/Not In. Choose IN or NOT IN from the drop-down list to specify
whether the value should be in the specified list or not in it.

Selection. These fields allows you to specify the list used by the
query. Use the menu button to the right of the single field to
specify details about the argument you are using to specify a list
item, then enter a value. Click the double right arrow to add the
value to the list.

To remove an item from the list, select it then click the double left

arrow.
Parallel Job Developer’s Guide 59-17

Expression Editor SQL Builder
Like

The expression editor when you have selected the Like predicate is as

follows:

The fields it contains are:

Column. Choose the column on which you are filtering from the
drop-down list. You can specify one of the following in identifying
a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear)

– Column. You can directly select a column from one of the
tables in the table selection canvas.

Like/Not Like. Choose LIKE or NOT LIKE from the drop-down list
to specify whether you are including or excluding a value in your
comparison.

Like Operator. Choose the type of Like or Not Like comparison
you want to perform from the drop-down list. Available operators
are:

– Match Exactly. Your query will ask for an exact match to the
value you specify.

– Starts With. Your query will match rows that start with the
value you specify.

– Ends With. Your query will match rows that end with the value
you specify.

– Contains. Your query will match rows that contain the value
you specify anywhere within them.
59-18 Parallel Job Developer’s Guide

SQL Builder Expression Editor
Like Value. Specify the value that your LIKE predicate will
attempt to match.

Null

The expression editor when you have selected the Null predicate is as

follows:

The fields it contains are:

Column. Choose the column on which you are filtering from the
drop-down list. You can specify one of the following in identifying
a column:

– Job parameter. A dialog box appears offering you a choice of
available job parameters. This allows you to specify the value
to be used in the query at run time (the stage you are using the
SQL Builder from must allow job parameters for this to
appear).

– Expression. An expression editor dialog box appears, allowing
you to specify an expression that represents the value to be
used in the query.

– Data flow variable. A dialog box appears offering you a choice
of available data flow variables (the stage you are using the
SQL Builder from must support data flow variables for this to
appear)

– Column. You can directly select a column from one of the
tables in the table selection canvas.

Is Null/Is Not Null. Choose whether your query will match a
NULL or NOT NULL condition in the column.

Join

This predicate is only available when you are building an Oracle 8i

query. The Expression Editor is as follows:

Left column. Choose the column to be on the left of your join
from the drop-down list.
Parallel Job Developer’s Guide 59-19

Expression Editor SQL Builder
Join type. Choose the type of join from the drop-down list.

Right column. Choose the column to be on the right of your
query from the drop-down list.

Calculation/Function Expression Editor
This version of the expression editor allows you to specify an

expression within a WHERE or HAVING expression, or a join

condition. Expression Editor dialogs are numbered to show how

deeply you are nesting them. Here is Calculation/Function expression

editor opened from within an ordinary expression editor:

Fields in the Expression Editor panel vary according to the chosen

predicate as follows:

Calculation

The expression editor when you have selected the Calculation

predicate is as follows:

The fields it contains are:

Left Value. Enter the argument you want on the left of your
calculation. You can choose the type of argument by clicking the
menu button on the right and choosing a type from the menu.

Calculation Operator. Choose the operator for your calculation
from the drop-down list.

Right Value. Enter the argument you want on the right of your
calculation. You can choose the type of argument by clicking the
menu button on the right and choosing a type from the menu.
59-20 Parallel Job Developer’s Guide

SQL Builder Expression Editor
Functions

The expression editor when you have selected the Functions predicate

is as follows:

The fields it contains are:

Function. Choose a function from the drop-down list. The
functions available depend on what stage you have invoked the
SQL Builder from (i.e. which database you are building the query
for).

Description. Gives a description of the function you have
selected.

Parameters. Enter the parameters required by the function you
have selected. The parameters that are required vary according to
the selected function.

Expression Editor Menus

A button appears to the right of many of the fields in the

expression editor and related dialogs. Where it appears you can click

it to open a menu that allows you to specify more details about an

argument being given in an expression.

Bit. Specifies that the argument is of type bit. The argument field
offers a choice of 0 or 1 in a drop-down list.

Column. Specifies that the argument is a column name. The
argument field offer a choice of available columns in a drop-down
list.
Parallel Job Developer’s Guide 59-21

Expression Editor SQL Builder
Date. Specifies that the argument is a date. The SQL Builder
enters today's date in the format expected by the database you
are building the query for. You can edit this date as required or
click the drop-down button and select from a calendar.

Date Time. Specifies that the argument is a date time. The SQL
Builder inserts the current date and time in the format that the
database the query is being built for expects. You can edit the date
time as required.

Default. Allows you to select the default value of an argument (if
one is defined).

Expression Editor. You can specify a function or calculation
expression as an argument of an expression. Selecting this causes
the Calculation/Function version of the expression editor to open.

Function. You can specify a function as an argument to an
expression. Selecting this causes the Functions Form dialog box
to open. The functions available depend on the database that the
query you are building is intended for.

Job Parameter. You can specify that the argument is a job
parameter, the value for which is supplied when you actually run
the DataStage job. Selecting this opens the Parameters dialog
box.

Integer. Choose this to specify that the argument is of integer
type.

String. Select this to specify that the argument is of string type.

Timestamp. Specifies that the argument is a timestamp. The SQL
Builder inserts the current date and time in the format that the
database the query is being built for expects. You can edit the
timestamp as required.

Function Form Dialog Box

This dialog box allows you to select a function for use within and

expression, and specify parameters for the function.
59-22 Parallel Job Developer’s Guide

SQL Builder Joining Tables
The fields are as follows:

Function. Choose a function from the drop-down list. The
functions available depend on what stage you have invoked the
SQL Builder from (i.e. which database you are building the query
for).

Format. Gives the format of the selected function as a guide.

Description. Gives a description of the function you have
selected.

Result. Shows the actual function that will be included in the
query as specified in this dialog box.

Parameters. Enter the parameters required by the function you
have selected. The parameters that are required vary according to
the selected function.

Parameters Dialog Box

This dialog box lists the job parameters that are currently defined for

the job within which you are working. It also gives the data type of the

parameter. Note that the SQL Builder does not check that the type of

parameter you are inserting matches the type expected by the

argument you are using it for.

Joining Tables
When you drag multiple tables onto the table selection canvas, the

SQL Builder attempts to create a join between the table added and the

one already on the canvas to its left. It uses captured foreign key meta

data where this is available. The join is represented by a line joining

the columns the SQL Builder has decided to join on (after the SQL
Parallel Job Developer’s Guide 59-23

Joining Tables SQL Builder
Builder has automatically inserted a join, you can amend it if

required).

Different types of join are represented by different types of line, as

follows:

The SQL Builder follows this procedure when determining what type

of join to initially insert between two tables:

1 If the added table has a table to its left, make the table to the left
the subject:

2 If foreign key information exists between the added table and the
subject table:

3 Choose between alternatives based on the following precedence:

Relations that relate to the added tables’ key fields

Any other join

4 Construct an INNER JOIN between the two tables with the chosen
relationship dictating the join criteria

5 Otherwise take the subject as the next table to the left and try
again from step 2.

6 Otherwise construct a join based on which are supported, chosen
in the following precedence order:

INNER JOIN with no join condition (will fail validation)

CROSS JOIN (cartesian product)
59-24 Parallel Job Developer’s Guide

SQL Builder Joining Tables
7 If the added table has a table to its right, make the added table the
subject and the table to the right the target:

8 If foreign key information exists between the target and the
subject table:

9 Choose between alternatives based on the following precedence:

Relations that relate to the added tables’ key fields

Any other join

10 Construct an INNER JOIN between the two tables with the chosen
relationship dictating the join criteria

11 Otherwise take the subject as the next table to the left and try
again from step 8.

12 Otherwise construct a join based on which are supported, chosen
in the following precedence order:

INNER JOIN with no join condition (will fail validation)

CROSS JOIN (cartesian product)

If the join inserted by SQL Builder is not what is required, you can

specify your own join.

Specifying Joins
There are three ways of altering the automatic join that the SQL

Builder inserts when you add more than one table to the table

selection canvas:

Using the Join Properties dialog box. Open this by selecting the
link in the table selection canvas, right clicking and choosing
Properties from the short cut menu. This dialog allows you to
choose a different type of join, choose alternative conditions for
the join, or choose a natural join.

Using the Alternate Relation dialog box. Open this by selecting
the link in the table selection canvas, right clicking and choosing
Alternate Relation from the shortcut menu. This dialog allows
you to change foreign key relationships that have been specified
for the joined tables.

By dragging a column from one table to another column in any
table to its right on the canvas. This replaces the existing
automatic join and specifies an equijoin between the source and
target column. If the join being replaced is currently specified as
an inner or outer join, then the type is preserved, otherwise the
new join will be an inner join.
Parallel Job Developer’s Guide 59-25

Joining Tables SQL Builder
Yet another approach is specify the join using a WHERE clause rather

than an explicit join operation (although this is not recommended

where your database supports explicit join statements). In this case

you would:

1 Specify the join as a cartesian product. (SQL Builder does this
automatically if it cannot determine the type of join required).

2 Specify a filter in the Selection tab filter panel. This specifies a
WHERE clause that selects rows from within the cartesian product.

If you are you are using the SQL Builder to build an Oracle 8i query,

you can use the Expression Editor to specify a join condition, which

will be implemented as a WHERE statement (Oracle 8i does not

support JOIN statements).

Join Properties Dialog Box
This dialog box allows you to change the type of an existing join and

modify or specify the join condition.

The dialog box contains the following fields:

Cartesian Product. The cartesian product (also known as a cross
join) is the result returned from two or more tables that are
selected from, but not joined as such (i.e., no join condition is
specified). The output is all possible rows from all the tables
selected from. For example, if you selected from two tables, the
database would pair every row in the first table with every row in
the second table. If each table had 6 rows, the cartesian product
would return 36 rows.

Where the SQL Builder cannot insert a join based on available

information, it will default to the cartesian product. You can

explicitly specify a cartesian product by selecting the Cartesian
59-26 Parallel Job Developer’s Guide

SQL Builder Joining Tables
product option in the Join Properties dialog box. The cross join

icon is shown on the join.

Table join. Select the Table Join option to specify that your
query will contain join condition for the two tables being joined.
The Join Condition panel is enabled, allowing you to specify
further details about the join.

Expression panel. This shows the expression that the join
condition will contain. You can enter or edit the expression
manually or you can use the menu button to the right of the panel
to specify a natural join, open the Expression Editor, or open the
Alternate relation dialog box.

Include. These fields allow you to specify that the join should be
an outer join.

– Select All rows from left table name to specify a left outer
join

– Select All rows from right table name to specify a right
outer join

– Select both All rows from left table name and All rows
from right table name to specify a full outer join

Join Icon. This tells you the type of join you have specified.

Alternate Relation Dialog Box
This dialog box displays all the foreign key relationships that have

been defined between the target table and other tables that appear to

the left of it in the table selection canvas. You can select the

relationship that you want to appear as the join in your query by

selecting it so that it appears in the lower window, and clicking OK.
Parallel Job Developer’s Guide 59-27

Properties Dialogs SQL Builder
Properties Dialogs
Depending where you are in the SQL Builder, choosing Properties

from the shortcut menu opens a dialog box as follows:

The Table Properties dialog box opens when you select a table
in the table selection canvas and choose Properties from the
shortcut menu.

The SQL Properties dialog box opens when you select the
Properties icon in the toolbox or Properties from the table
selection canvas background.

The Join Properties dialog box opens when you select a join in
the table selection canvas and choose Properties from the
shortcut menu. This dialog is described on page 59-26.

Table Properties Dialog Box
The Table Properties dialog box is as follows:

It contains the following fields:

Table name. The name of the table whose properties you are
viewing. You can click the menu button and choose Job
Parameter to open the Parameter dialog box (see page 59-23).
This allows you to specify a job parameter to replace the table
name if required, but note that the SQL Builder will always refer to
this table using its alias.

Alias. The alias that the SQL Builder uses to refer to this table.
You can edit the alias if required. If the table alias is used in the
selection grid or filters, changing the alias in this dialog box will
update the alias there.
59-28 Parallel Job Developer’s Guide

SQL Builder Example Queries
SQL Properties Dialog Box
This dialog box gives you details about the syntax of the SQL that the

SQL Builder is currently building. The syntax depends on the type of

stage that you invoked the builder from.

It contains the following fields:

Syntax. This panel gives the name, version, and description of
the SQL syntax that the SQL Builder is currently building. This
depends on the stage that you have invoked the SQL Builder from.

SQL. This panel allows you to select whether the SQL builder
supports the DISTINCT qualifier. This is normally filled in by
default according to the syntax in operation.

Example Queries
This section gives some examples of how different queries are built

from the SQL Builder to illustrate its use. It includes examples of the

following types of query.

Simple select query

Selecting from two tables with an inner join based on equality.

Query performing an aggregation.

Example Simple Select Query
This query selects the columns Customer, AccountNo, AccountType,

and balance from the table accounts. Only those rows where the
Parallel Job Developer’s Guide 59-29

Example Queries SQL Builder
balance exceeds $1,000 are will be returned. The results will be in

alphabetical order by customer.

First, we need to find the table definition for the table accounts, which

has previously been imported into the DataStage repository:

Next, we drag the highlighted table to the table selection canvas:

Then we need to define the columns that the query will select from

this table. We do this by selecting from the Column Expression
59-30 Parallel Job Developer’s Guide

SQL Builder Example Queries
drop-down list in the column selection grid. We also specify that the

results will appear in alphabetical order by customer name.

The last step is to specify that only rows containing a balance column

of more than 1000 should be returned. This is done in the Filter

expression panel, first by selecting the comparison predicate, then by

specifying the comparison in the expression editor and clicking the

Add button:

The completed query can be viewed on the Sql tab:
Parallel Job Developer’s Guide 59-31

Example Queries SQL Builder
Example Inner Join
This query selects the columns Customer, accountType and balance

from the table accounts, and the column InterestRate from the table

interest. Both tables have a column called accountType, and the tables

will be joined on rows where the accountType contains identical

values. Only rows that have matching accountType columns will be

returned.

For this query, both the accounts table and the interest table are

dragged from the repository window to the table selection canvas.

Because the table definitions have no foreign key information defined,

the SQL Builder inserts a cross-join (i.e., the query would return the

cartesian product of the two tables if it was run at this point).

The next step is to define the actual join required. The Join
Properties dialog box is opened by selecting the link, right-clicking

and choosing Properties from the shortcut menu. The Table Join
option is selected, and the Expression Editor opened by clicking the

menu button and selecting Expression Editor from the menu. The

comparison predicate is chosen, and the expression editor used to

define a test of equality as follows:

1 Choose accounts.accountsType from the column drop-down list.

2 Choose = from the operator drop-down list.

3 Click the menu button next to the comparison value field and
choose a type of Column from the menu that appears.

4 Choose interest.accountType from the drop-down list of columns
that appears in the comparison value field.
59-32 Parallel Job Developer’s Guide

SQL Builder Example Queries
5 Click OK.

The join expression appears in the Join Condition window:

The columns to be returned by the query are defined in the column

selection grid:

The finished query can be viewed on the Sql tab:
Parallel Job Developer’s Guide 59-33

Example Queries SQL Builder
Example Aggregate Query
This query returns the average account balance for different types of

account. The results are grouped by account type, and only account

types where the average balance is greater than $1000 are asked for.

The whole query can be defined on the Group tab. Firstly the

accounts table is dragged to the table definition canvas from the

repository window.

Next, the columns to be included in the query are defined in the

grouping grid:

The average aggregation is performed on the balance column and the

results are grouped by the accountType column.

Next the HAVING clause is specified in the filter panel to limit the

groups displayed to those with an average greater than 1000. Because

we want to test the average of the balance column in the expression,

we have to open the expression editor from the column drop-down

list in the Filter expression panel. The expression editor allows you to

use calculations or functions in place of a column name. In this case

we define that we want the average of the balance column.
59-34 Parallel Job Developer’s Guide

SQL Builder Example Queries
The expression then appears in the filter panel:

And, when Add is clicked, the final HAVING expression appears in the

filter expression panel:

Finally, the completed query can be viewed in the Sql tab:
Parallel Job Developer’s Guide 59-35

Example Queries SQL Builder
59-36 Parallel Job Developer’s Guide

60
Remote Deployment

Remote deployment of parallel jobs allows job scripts to be stored

and run on a separate machine from the DataStage Server machine.

The remote deployment option can, for example, be used to run jobs

on a computer grid.

Any remote system that has a job so deployed must have access to

the Parallel Engine in order to run the job (see the section "Copying

the Parallel Engine to Your System Nodes" in DataStage Install and

Upgrade Guide). Such systems must also have the correct runtime

libraries for that platform type (see "Deployment Systems" in Install

and Upgrade Guide).

Because these jobs are not run on the DataStage Server, server

components (such as BASIC Transformer stages, server shared

containers, before and after subroutines, and job control routines)

cannot be used. There is also a limited set of plug-in stages available

for use in these jobs.

When you run the jobs the logging, monitoring, and operational meta

data collection facilities provided by DataStage are not available.

Deployed jobs do output logging information in internal paralle

engine format, but provision for collecting this is the user’s

responsibility.

You develop a Parallel job for deployment using the DataStage

Designer, and then compile it. A deployment package is automatically

produced at compilation. Such jobs can also be run under the control

of the DataStage Server (using Designer or Director clients, or the

dsjob command) as per normal. (Note that running jobs in the

‘normal’ way runs the executables in the project directory, not the

deployment scripts.)
Parallel Job Developer’s Guide 60-1

Enabling a Project for Job Deployment Remote Deployment
It is your responsibility to define a configuration file on the remote

machine, transfer the deployment package to the remote computer

and to run the job.

The following diagram gives a conceptual view of an example

deployment system. In this example, deployable jobs are transferred

to three ‘conductor node’ machines. Each conductor node has a

configuration file describing the resources that it has available for

running the jobs. The jobs then run under the control of that

conductor:

Note The DataStage Server system and the Node systems must

be running the same operating system.

Enabling a Project for Job Deployment
Projects are made capable of deploying jobs in this way from the

DataStage Administrator client. To make the jobs in a project

deployable:

Design time

Conductor
Node

Conductor
Node

Conductor
Node

Node

Node

Node

Node

Node

Node

Node

Node

Deployable
scripts

Design time

Acxiom Grid

DS Server

DS Server
60-2 Parallel Job Developer’s Guide

Remote Deployment Enabling a Project for Job Deployment
1 Start the DataStage Administrator client.

2 Go to the Projects tab and select the project whose parallel jobs
you want to make deployable from the list.

3 Click the Properties button to open the Project Properties
dialog box.

4 Go to the Remote tab.

5 In the Base directory name field, provide a home directory
location for deployment; in this directory there will be one
directory for each project. This location has to be accessible from
the server machine, but does not have to be a disk local to that
machine. Providing a location here enables the job deployment
features.

6 In the Deployed job directory template field, optionally specify
an alternative name for the deployment directory associated with
a particular job. This field is used in conjunction with Base
directory name in the form base_name/project_name/
job_directory. By default, if nothing is specified, the name
corresponds to the internal script directory used on the DataStage
server project directory, RT_SCjobnum, where jobnum is the
internal job number allocated to the job. Substitution strings
provided are:

– %j – jobname
Parallel Job Developer’s Guide 60-3

Deployment Package Remote Deployment
– %d – internal number

The simplest case is just “%j” - use the jobname. A prefix can be

used, i.e., “job_%j”. The default corresponds to RT_SC%d.

7 In the Custom deployment commands field, optionally specify
further actions to be carried out at the end of a deployment
compile. You can specify Unix programs and /or calls to user shell
scripts as required. The actions take place in the deployment
directory for the job.

This field uses the same substitution strings as the directory

template. For example:

tar –cvf ../%j.tar * ; compress ../%j.tar

will create a compressed tar archive of the deployed job, named

after the job.

Note If either, or both, of the USS check boxes on this tab are

selected, then USS deployment will be implemented – see

Chapter 56, "Parallel Jobs on USS". You should not check

these boxes.

Deployment Package
When you compile a job in the DataStage Designer with project

deployment enabled, the following files are produced:

Command shell script

Environment variable setting source script

Main Parallel (osh) program script

Script parameter file

XML report file (if enabled – see "Enabling/Disabling Generation of
XML Report" in Parallel Job Advanced User Guide).

Compiled transformer binary files (if the job contains any
Transformer stages)

Transformer source compilation scripts

These are the files that will be copied to a job directory in the base

directory specified in the Administrator client for the project. By

default the job directory is called RT_SCjobnum, where jobnum is the

internal job number allocated to the job (you can change the form of

the name in the Administrator client).

If you have additional custom components designed outside the job

(for example, custom, built, or wrapped stages) you should ensure
60-4 Parallel Job Developer’s Guide

Remote Deployment Deployment Package
that these are available when the job is run. They are not

automatically packaged and deployed.

Command Shell Script – pxrun.sh
The command shell script sources the environment variable script,

then calls the PXEngine, specifying the main osh program script and

script parameter file as parameters. Run this script to run your job.

Environment Variable Setting Source Script – evdepfile
This file contains the environment variables for a deployed job when it

is run. It is based on the environment variables set when the job was

compiled.

It is possible to edit this file manually if required before running a job.

The file can be removed altogether, but it is then your responsibility to

set up the environment before running the job.

Main Parallel (OSH) Program Script – OshScript.osh
The main parallel job script. You must execute the command shell

script in order to run this, you should not run it directly.

Script Parameter File – jpdepfile
This is used by pxrun.sh. It contains the job parameters for a deployed

job when it is run. It is based on the default job parameters when the

job was compiled.

It is possible to edit this file manually if required before running a job.

XML Report File – <jobname>.xml
An XML report of the job design can be automatically generated at

compile time (if enabled using an administration command – see

"Enabling/Disabling Generation of XML Report" in Parallel Job

Advanced User Guide and the report is included in the job

deployment package. For more information on HTML and XML job

reports, see "Job Reports" in DataStage Designer Guide.

Compiled Transformer Binary Files –
<jobnamestagename>.trx.so

There is one of these for each Transformer stage in your job.
Parallel Job Developer’s Guide 60-5

Deploying a Job Remote Deployment
Self-Contained Transformer Compilation
In order to make the job self-contained with regard to transformer

compilation, there are the following additional files which can

optionally be used for transformer recompilation; none are present if

there are no transformers in the job:

Transformer source files (internal transformer language). It has a
name in the form
<internalidentifier>_<jobname>_<stagename>.trx. There is one
such file for each Transformer stage in the job.

Shell scripts to run transformer operator compile jobs. It has a
name in the form
<internalidentifier>_<jobname>_<stagename>.trx.sh. There is one
such file for each Transformer stage in the job.

Transformer compilation operator osh scripts. This is a Parallel job
script to compile the corresponding Transformer stage. It is called
from corresponding .sh file. It has a name in the form
<internalidentifier>_<jobname>_<stagename>.trx.osh. There is
one such file for each Transformer stage in the job.

One master shell script to call all transformer compile scripts
called pxcompile.sh.

If you want to recompile transformers on your deployment platform

before running the job, you should run pxcompile.sh.

Deploying a Job
This describes how to design a job on the DataStage system in a

remote deployment project, transfer it to the deployment machine,

and run it.

1 In the DataStage Administrator, specify a remote deployment
project as described in "Enabling a Project for Job Deployment" on
page 60-2.

2 Define a configuration file on your remote deployment systems
that will describe it. Use the environment variable
APT_CONFIG_FILE to identify it on the remote machine. You can
do this in one of three ways:

– If you are always going to use the same configuration file on
the same remote system, define APT_CONFIG_FILE on a
project-wide basis in the DataStage administrator. All your
remote deployment job packages will have that value for
APT_CONFIG_FILE.
60-6 Parallel Job Developer’s Guide

Remote Deployment Server Side Plug-Ins
– To specify the value at individual job level, specify
APT_CONFIG_FILE as a job parameter and set the default value
to the location of the configuration file. This will be packaged
with that particular job.

– To specify the value at run time, set the value of
APT_CONFIG_FILE to $ENV in the DataStage Administrator and
then define APT_CONFIG_FILE as an environment variable on
your remote machine. The job will pick up the value at run
time.

3 In the DataStage Designer, design your parallel job as normal (but
remember that you cannot use BASIC Transformer stages, shared
containers, or plugin stages in remote deployment jobs).

4 When you are happy with your job design, compile it.

5 If your job contains Transformer stages, you can if required
recompile the transformers on the deployment machine. To do
this, execute the following file:

pxcompile.sh

6 When your Transformer stages have successfully compiled, run
the job by executing the following file:

pxrun.sh

Server Side Plug-Ins
DataStage XML and Java plug-ins operate on remote nodes. The

following directories are required on the nodes in order to run a plug-

in, these can be copied from a DataStage Server installation:

DSEngine/java

DSEngine/lib

DSCAPIOp

Note The Java plug-in does not run on Red Hat Enterprise Linux

AS 2.1/Red Hat 7.3.
Parallel Job Developer’s Guide 60-7

Server Side Plug-Ins Remote Deployment
60-8 Parallel Job Developer’s Guide

A
Schemas

Schemas are an alternative way for you to specify column definitions

for the data used by parallel jobs. By default, most parallel job stages

take their meta data from the Columns tab, which contains table

definitions, supplemented, where necessary by format information

from the Format tab. For some stages, you can specify a property that

causes the stage to take its meta data from the specified schema file

instead. Some stages also allow you to specify a partial schema. This

allows you to describe only those columns that a particular stage is

processing and ignore the rest.

The schema file is a plain text file, this appendix describes its format.

A partial schema has the same format.

Note If you are using a schema file on an NLS system, the

schema file needs to be in UTF-8 format. It is, however, easy

to convert text files between two different maps with a

DataStage job. Such a job would read data from a text file

using a Sequential File stage and specifying the appropriate

character set on the NLS Map page. It would write the data

to another file using a Sequential File stage, specifying the

UTF-8 map on the NLS Map page.

Schema Format
A schema contains a record (or row) definition. This describes each

column (or field) that will be encountered within the record, giving

column name and data type. The following is an example record

schema:
Parallel Job Developer’s Guide A-1

Schema Format Schemas
record (
name:string[255];
address:nullable string[255];
value1:int32;
value2:int32
date:date)

(The line breaks are there for ease of reading, you would omit these if

you were defining a partial schema, for example

record(name:string[255];value1:int32;date:date) is a valid

schema.)

The format of each line describing a column is:

column_name:[nullability]datatype;

column_name. This is the name that identifies the column. Names
must start with a letter or an underscore (_), and can contain only
alphanumeric or underscore characters. The name is not case
sensitive. The name can be of any length.

nullability. You can optionally specify whether a column is allowed
to contain a null value, or whether this would be viewed as invalid.
If the column can be null, insert the word ’nullable’. By default
columns are not nullable.

You can also include ’nullable’ at record level to specify that all

columns are nullable, then override the setting for individual

columns by specifying ‘not nullable’. For example:

record nullable (
name:not nullable string[255];
value1:int32;
date:date)

datatype. This is the data type of the column. This uses the
internal data types as described on page 2-28, not SQL data types
as used on Columns tabs in stage editors.

You can include comments in schema definition files. A comment is

started by a double slash //, and ended by a newline.
A-2 Parallel Job Developer’s Guide

Schemas Schema Format
The example schema corresponds to the following table definition as

specified on a Columns tab of a stage editor:

The following sections give special consideration for representing

various data types in a schema file.

Date Columns
The following examples show various different data definitions:

record (dateField1:date;) // single date
record (dateField2[10]:date;) // 10-element date vector
record (dateField3[]:date;) // variable-length date vector
record (dateField4:nullable date;) // nullable date

(See "Complex Data Types" on page 2-32 for information about

vectors.)

Decimal Columns
To define a record field with data type decimal, you must specify the

column’s precision, and you may optionally specify its scale, as

follows:

column_name:decimal[precision, scale];

where precision is greater than or equal 1 and scale is greater than or

equal to 0 and less than precision.

If the scale is not specified, it defaults to zero, indicating an integer

value.

The following examples show different decimal column definitions:
Parallel Job Developer’s Guide A-3

Schema Format Schemas
record (dField1:decimal[12];) // 12-digit integer
record (dField2[10]:decimal[15,3];)// 10-element

 //decimal vector
record (dField3:nullable decimal[15,3];) // nullable decimal

Floating-Point Columns
To define floating-point fields, you use the sfloat (single-precision) or

dfloat (double-precision) data type, as in the following examples:

record (aSingle:sfloat; aDouble:dfloat;) // float definitions
record (aSingle: nullable sfloat;) // nullable sfloat
record (doubles[5]:dfloat;) // fixed-length vector of dfloats
record (singles[]:sfloat;) // variable-length vector of sfloats

Integer Columns
To define integer fields, you use an 8-, 16-, 32-, or 64-bit integer data

type (signed or unsigned), as shown in the following examples:

record (n:int32;) // 32-bit signed integer
record (n:nullable int64;) // nullable, 64-bit signed integer record
(n[10]:int16;) // fixed-length vector of 16-bit

//signed integer
record (n[]:uint8;) // variable-length vector of 8-bit unsigned

//int

Raw Columns
You can define a record field that is a collection of untyped bytes, of

fixed or variable length. You give the field data type raw. The

definition for a raw field is similar to that of a string field, as shown in

the following examples:

record (var1:raw[];) // variable-length raw field
record (var2:raw;) // variable-length raw field; same as raw[]
record (var3:raw[40];) // fixed-length raw field
record (var4[5]:raw[40];)// fixed-length vector of raw fields

You can specify the maximum number of bytes allowed in the raw

field with the optional property max, as shown in the example below:

record (var7:raw[max=80];)

The length of a fixed-length raw field must be at least 1.

String Columns
You can define string fields of fixed or variable length. For variable-

length strings, the string length is stored as part of the string as a

hidden integer. The storage used to hold the string length is not

included in the length of the string.
A-4 Parallel Job Developer’s Guide

Schemas Schema Format
The following examples show string field definitions:

record (var1:string[];) // variable-length string
record (var2:string;) // variable-length string; same as string[]
record (var3:string[80];) // fixed-length string of 80 bytes
record (var4:nullable string[80];) // nullable string
record (var5[10]:string;) // fixed-length vector of strings
record (var6[]:string[80];) // variable-length vector of strings

You can specify the maximum length of a string with the optional

property max, as shown in the example below:

record (var7:string[max=80];)

The length of a fixed-length string must be at least 1.

Time Columns
By default, the smallest unit of measure for a time value is seconds,

but you can instead use microseconds with the [microseconds] option.

The following are examples of time field definitions:

record (tField1:time;) // single time field in seconds
record (tField2:time[microseconds];)// time field in //microseconds
record (tField3[]:time;) // variable-length time vector
record (tField4:nullable time;) // nullable time

Timestamp Columns
Timestamp fields contain both time and date information. In the time

portion, you can use seconds (the default) or microseconds for the

smallest unit of measure. For example:

record (tsField1:timestamp;)// single timestamp field in //seconds
record (tsField2:timestamp[microseconds];)// timestamp in //microseconds
record (tsField3[15]:timestamp;)// fixed-length timestamp //vector
record (tsField4:nullable timestamp;)// nullable timestamp

Vectors
Many of the previous examples show how to define a vector of a

particular data type. You define a vector field by following the column

name with brackets []. For a variable-length vector, you leave the

brackets empty, and for a fixed-length vector you put the number of

vector elements in the brackets. For example, to define a variable-

length vector of int32, you would use a field definition such as the

following one:

intVec[]:int32;

To define a fixed-length vector of 10 elements of type sfloat, you

would use a definition such as:

sfloatVec[10]:sfloat;
Parallel Job Developer’s Guide A-5

Schema Format Schemas
You can define a vector of any data type, including string and raw. You

cannot define a vector of a vector or tagged type. You can, however,

define a vector of type subrecord, and you can define that subrecord

includes a tagged column or a vector.

You can make vector elements nullable, as shown in the following

record definition:

record (vInt[]:nullable int32;
vDate[6]:nullable date;)

In the example above, every element of the variable-length vector vInt

will be nullable, as will every element of fixed-length vector vDate. To

test whether a vector of nullable elements contains no data, you must

check each element for null.

Subrecords
Record schemas let you define nested field definitions, or subrecords,

by specifying the type subrec. A subrecord itself does not define any

storage; instead, the fields of the subrecord define storage. The fields

in a subrecord can be of any data type, including tagged.

The following example defines a record that contains a subrecord:

record (intField:int16;
aSubrec:subrec (
aField:int16;
bField:sfloat;);
)

In this example, the record contains a 16-bit integer field, intField, and

a subrecord field, aSubrec. The subrecord includes two fields: a 16-bit

integer and a single-precision float.

Subrecord columns of value data types (including string and raw) can

be nullable, and subrecord columns of subrec or vector types can

have nullable elements. A subrecord itself cannot be nullable.

You can define vectors (fixed-length or variable-length) of subrecords.

The following example shows a definition of a fixed-length vector of

subrecords:

record (aSubrec[10]:subrec (
aField:int16;
bField:sfloat;);

)

You can also nest subrecords and vectors of subrecords, to any depth

of nesting. The following example defines a fixed-length vector of

subrecords, aSubrec, that contains a nested variable-length vector of

subrecords, cSubrec:

record (aSubrec[10]:subrec (
aField:int16;
bField:sfloat;
A-6 Parallel Job Developer’s Guide

Schemas Partial Schemas
cSubrec[]:subrec (
cAField:uint8;
cBField:dfloat;);
);

)

Subrecords can include tagged aggregate fields, as shown in the

following sample definition:

record (aSubrec:subrec (
aField:string;
bField:int32;
cField:tagged (

dField:int16;
eField:sfloat;
);

);
)

In this example, aSubrec has a string field, an int32 field, and a tagged

aggregate field. The tagged aggregate field cField can have either of

two data types, int16 or sfloat.

Tagged Columns
You can use schemas to define tagged columns (similar to C unions),

with the data type tagged. Defining a record with a tagged type allows

each record of a data set to have a different data type for the tagged

column. When your application writes to a field in a tagged column,

DataStage updates the tag, which identifies it as having the type of the

column that is referenced.

The data type of a tagged columns can be of any data type except

tagged or subrec. For example, the following record defines a tagged

subrecord field:

record (tagField:tagged (
aField:string;
bField:int32;
cField:sfloat;

) ;
)

In the example above, the data type of tagField can be one of

following: a variable-length string, an int32, or an sfloat.

Partial Schemas
Some parallel job stages allow you to use a partial schema. This

means that you only need define column definitions for those

columns that you are actually going to operate on. The stages that

allow you to do this are file stages that have a Format tab. These are:
Parallel Job Developer’s Guide A-7

Partial Schemas Schemas
Sequential File stage

File Set stage

External Source stage

External Target stage

Column Import stage

You specify a partial schema using the Intact property on the Format

tab of the stage together with the Schema File property on the

corresponding Properties tab. To use this facility, you need to turn

Runtime Column Propagation on, and provide enough information

about the columns being passed through to enable DataStage to skip

over them as necessary.

In the file defining the partial schema, you need to describe the record

and the individual columns. Describe the record as follows:

intact. This property specifies that the schema being defined is a
partial one. You can optionally specify a name for the intact
schema here as well, which you can then reference from the Intact
property of the Format tab.

record_length. The length of the record, including record
delimiter characters.

record_delim_string. String giving the record delimiter as an
ASCII string in single quotes. (For a single character delimiter, use
record_delim and supply a single ASCII character in single
quotes).

Describe the columns as follows:

position. The position of the starting character within the record.

delim. The column trailing delimiter, can be any of the following:

– ws to skip all standard whitespace characters (space, tab, and
newline) trailing after a field.

– end to specify that the last field in the record is composed of
all remaining bytes until the end of the record.

– none to specify that fields have no delimiter.

– null to specify that the delimiter is the ASCII null character.

– ASCII_char specifies a single ASCII delimiter. Enclose
ASCII_char in single quotation marks. (To specify multiple
ASCII characters, use delim_string followed by the string in
single quotes.)

text specifies the data representation type of a field as being text
rather than binary. Data is formatted as text by default. (Specify
binary if data is binary.)
A-8 Parallel Job Developer’s Guide

Schemas Partial Schemas
Columns that are being passed through intact only need to be

described in enough detail to allow DataStage to skip them and locate

the columns that are to be operated on.

For example, say you have a sequential file defining rows comprising

six fixed width columns, and you are in interested in the last two. You

know that the first four columns together contain 80 characters. Your

partial schema definition might appear as follows:

record { intact=details, record_delim_string = '\r\n' }
(colstoignore: string [80]
name: string [20] { delim=none };
income: uint32 {delim = “,”, text };

Your stage would not be able to alter anything in a row other than the

name and income columns (it could also add a new column to either

the beginning or the end of a row).
Parallel Job Developer’s Guide A-9

Partial Schemas Schemas
A-10 Parallel Job Developer’s Guide

B
Functions

This appendix describes the functions that are available from the

expression editor under the Function… menu item. You would

typically use these functions when defining a column derivation in a

Transformer stage. The functions are described by category.

This set includes functions that take string arguments or return string

values. If you have NLS enabled, the arguments strings or returned

strings can be strings or ustrings. The same function is used for either

string type. The only exceptions are the functions StringToUstring ()

and UstringToString ().

Date and Time Functions
The following table lists the functions available in the Date & Time

category (Square brackets indicate an argument is optional):

Name Description Arguments Output

DateFromDaysSince Returns a date by
adding an integer to a
baseline date

number (int32)
[baseline date]

date

DateFromJulianDay Returns a date from the
given julian date

juliandate (uint32) date

DaysSinceFromDate Returns the number of
days from source date
to the given date

source_date

given_date

days since (int32)

HoursFromTime Returns the hour
portion of a time

time hours (int8)
Parallel Job Developer’s Guide B-1

Date and Time Functions Functions
JulianDayFromDate Returns julian day from
the given date

date julian date (int32)

MicroSecondsFromTime Returns the
microsecond portion
from a time

time microseconds
(int32)

MinutesFromTime Returns the minute
portion from a time

time minutes (int8)

MonthDayFromDate Returns the day of the
month given the date

date day (int8)

MonthFromDate Returns the month
number given the date

date month number
(int8)

NextWeekdayFromDate Returns the date of the
specified day of the
week soonest after the
source date

source date

day of week (string)

date

PreviousWeekdayFromDate Returns the date of the
specified day of the
week most recent
before the source date

source date

day of week (string)

date

SecondsFromTime Returns the second
portion from a time

time seconds (dfloat)

SecondsSinceFromTimestamp Returns the number of
seconds between two
timestamps

timestamp
base timestamp

seconds (dfloat)

TimeDate Returns the system
time and date as a
formatted string

- system time and
date (string)

TimeFromMidnightSeconds Returns the time given
the number of seconds
since midnight

seconds (dfloat) time

TimestampFromDateTime Returns a timestamp
form the given date
and time

date
time

timestamp

TimestampFromSecondsSince Returns the timestamp
from the number of
seconds from the base
timestamp

seconds (dfloat)

[base timestamp]

timestamp

TimestampFromTimet Returns a timestamp
from the given unix
time_t value

timet (int32) timestamp

TimetFromTimestamp Returns a unix time_t
value from the given
timestamp

timestamp timet (int32)

Name Description Arguments Output
B-2 Parallel Job Developer’s Guide

Functions Date and Time Functions
Date, Time, and Timestamp functions that specify dates, times, or

timestamps in the argument use strings with specific formats:

For a date, the format is %yyyy-%mm-%dd

For a time, the format is %hh:%nn:%ss, or, if extended to include

microseconds, %hh:%nn:%ss.x where x gives the number of decimal

places seconds is given to.

For a timestamp the format is %yyyy-%mm-%dd %hh:%nn:%ss, or, if

extended to include microseconds, %yyyy-%mm-%dd

%hh:%nn:%ss.x where x gives the number of decimal places seconds

is given to.

This applies to the arguments date, baseline date, given date, time,

timestamp, and base timestamp.

Functions that have days of week in the argument take a string

specifying the day of the week, this applies to day of week and origin

day.

WeekdayFromDate Returns the day
number of the week
from the given date.
Origin day optionally
specifies the day
regarded as the first in
the week and is Sunday
by default

date
[origin day]

day (int8)

YeardayFromDate Returns the day
number in the year
from the given date

date day (int16)

YearFromDate Returns the year from
the given date

date year (int16)

YearweekFromDate Returns the week
number in the year
from the given date

date week (int16)

Name Description Arguments Output
Parallel Job Developer’s Guide B-3

Logical Functions Functions
Logical Functions
The following table lists the functions available in the Logical category

(square brackets indicate an argument is optional):

Name Description Arguments Output

Not Returns the
complement of the
logical value of an
expression

expression Complement (int8)

BitAnd Returns the bitwise
AND of the two integer
arguments

number 1 (uint64)
number 2 (uint64)

number (uint64)

BitOr Returns the bitwise OR
of the two integer
arguments

number 1 (uint64)
number 2 (uint64)

number (uint64)

BitXOr Returns the bitwise
Exclusive OR of the two
integer arguments

number 1 (uint64)
number 2 (uint64)

number (uint64)

BitExpand Returns a string
containing the binary
representation in "1"s
and "0"s of the given
integer

number (uint64) string

BitCompress Returns the integer
made from the string
argument, which
contains a binary
representation of "1"s
and "0"s.

number (string) number (uint64)

SetBit Returns an integer with
specific bits set to a
specific state, where

origfield is the input
value to perform the
action on,

bitlist is a string
containing a list of
comma separated bit
numbers to set the
state of, and bitstate is
either 1 or 0, indicating
which state to set those
bits.

origfield (uint64)
bitlist (string)

bitstate (uint8)

number (uint64)
B-4 Parallel Job Developer’s Guide

Functions Mathematical Functions
Mathematical Functions
The following table lists the functions available in the Mathematical

category (square brackets indicate an argument is optional):

Name Description Arguments Output

Abs Absolute value of any
numeric expression

number (int32) result (dfloat)

Acos Calculates the
trigonometric arc-cosine of
an expression

number (dfloat) result (dfloat)

Asin Calculates the
trigonometric arc-sine of
an expression

number (dfloat) result (dfloat)

Atan Calculates the
trigonometric arc-tangent
of an expression

number (dfloat) result (dfloat)

Ceil Calculates the smallest
integer value greater than
or equal to the given
decimal value

number (decimal) result (int32)

Cos Calculates the
trigonometric cosine of an
expression

number (dfloat) result (dfloat)

Cosh Calculates the hyperbolic
cosine of an expression

number (dfloat) result (dfloat)

Div Outputs the whole part of
the real division of two real
numbers (dividend,
divisor)

dividend (dfloat)
divisor (dfloat)

result (dfloat)

Exp Calculates the result of
base 'e' raised to the power
designated by the value of
the expression

number (dfloat) result (dfloat)

Fabs Calculates the absolute
value of the given value

number (dfloat) result (dfloat)

Floor Calculates the largest
integer value less than or
equal to the given decimal
value

number (decimal) result (int32)

Ldexp Calculates a number from
an exponent and mantissa

mantissa (dfloat)

exponent (int32)

result (dfloat)

Llabs Returns the absolute value
of the given integer

number (uint64) result (int64)
Parallel Job Developer’s Guide B-5

Mathematical Functions Functions
Ln Calculates the natural
logarithm of an expression
in base 'e'

number (dfloat) result (dfloat)

Log10 Returns the log to the base
10 of the given value

number (dfloat) result (dfloat)

Max Returns the greater of the
two argument values

number 1 (int32)
number 2(int32)

result (int32)

Min Returns the lower of the
two argument values

number 1 (int32)
number 2 (int32)

result (int32)

Mod Calculates the modulo (the
remainder) of two
expressions (dividend,
divisor)

dividend (int32)
divisor (int32)

result (int32)

Neg Negate a number number (dfloat) result (dfloat)

Pwr Calculates the value of an
expression when raised to
a specified power
(expression, power)

expression (dfloat)
power (dfloat)

result (dfloat)

Rand Return a psuedo random

integer between 0 and 232-
1

- result (uint32)

Random Returns a random number

between 0 232-1

- result (uint32)

Sin Calculates the
trigonometric sine of an
angle

number (dfloat) result (dfloat)

Sinh Calculates the hyperbolic
sine of an expression

number (dfloat) result (dfloat)

Sqrt Calculates the square root
of a number

number (dfloat) result (dfloat)

Tan Calculates the
trigonometric tangent of an
angle

number (dfloat) result (dfloat)

Tanh Calculates the hyperbolic
tangent of an expression

number (dfloat) result (dfloat)

Name Description Arguments Output
B-6 Parallel Job Developer’s Guide

Functions Null Handling Functions
Null Handling Functions
The following table lists the functions available in the Null Handling

category (square brackets indicate an argument is optional):

true = 1

false = 0

Number Functions
The following table lists the functions available in the Number

category (square brackets indicate an argument is optional):

Name Description Arguments Output

IsNotNull Returns true when an
expression does not
evaluate to the null
value

any true/false (int8)

IsNull Returns true when an
expression evaluates to
the null value

any true/false (int8)

MakeNull Change an in-band null
to out of band null

any (column)

string (string)

-

NullToEmpty Returns an empty
string if input column is
null, otherwise returns
the input column value

input column input column
value or empty
string

NullToZero Returns zero if input
column is null,
otherwise returns the
input column value

input column input column
value or zero

NullToValue Returns specified value
if input column is null,
otherwise returns the
input column value

input column,
value

input column
value or value

SetNull Assign a null value to
the target column

- -

Name Description Arguments Output

MantissaFromDecimal Returns the mantissa from
the given decimal

number (decimal) result (dfloat)
Parallel Job Developer’s Guide B-7

Raw Functions Functions
Raw Functions
The following table lists the functions available in the Raw category

(square brackets indicate an argument is optional):

String Functions
The following table lists the functions available in the String category

(square brackets indicate an argument is optional):

MantissaFromDFloat Returns the mantissa from
the given dfloat

number (dfloat) result (dfloat)

Name Description Arguments Output

Name Description Arguments Output

RawLength Returns the length of a
raw string

input string (raw) Result (int32)

Name Description Arguments Output

AlNum Return whether the given string
consists of alphanumeric
characters

string (string) true/false (int8)

Alpha Returns 1 if string is purely
alphabetic

string (string) result (int8)

CompactWhiteSpace Return the string after reducing
all consective whitespace to a
single space

string (string) result (string)

Compare Compares two strings for
sorting

string1 (string)

string2 (string)

[justification (L or R)]

result (int8)

ComparNoCase Case insensitive comparison of
two strings

string1 (string)
string2 (string)

result (int8)

ComparNum Compare the first n characters
of the two strings

string1 (string)
string2 (string)

length (int16)

result (int8)

CompareNumNoCase Caseless comparison of the first
n characters of the two strings

string1 (string)
string2 (string)

length (int16)

result (int8)
B-8 Parallel Job Developer’s Guide

Functions String Functions
Convert Converts specified characters in
a string to designated
replacement characters

fromlist (string)

tolist (string)

expression (string)

result (string)

Count Count number of times a
substring occurs in a string

string (string)

substring (string)

result (int32)

Dcount Count number of delimited
fields in a string

string (string)

delimiter (string)

result (int32)

DownCase Change all uppercase letters in
a string to lowercase

string (string) result (string)

DQuote Enclose a string in double
quotation marks

string (string) result (string)

Field Return 1 or more delimited
substrings

string (string)
delimiter (string)

occurrence (int32)
[number (int32)]

result (string)

Index Find starting character position
of substring

string (string) substring
(string)
occurrence (int32)

result (int32)

Left Leftmost n characters of string string (string)

number (int32)

result (string)

Len Length of string in characters string (string) result (int32)

Num Return 1 if string can be
converted to a number

string (string) result (int8)

PadString Return the string padded with
the optional pad character and
optional length

string (string)

padlength (int32)

result (string)

Right Rightmost n characters of string string (string)

number (int32)

result (string)

Soundex Returns a string which identifies
a set of words that are (roughly)
phonetically alike based on the
standard, open algorithm for
SOUNDEX evaluation

string (string) result (string)

Space Return a string of N space
characters

length (int32) result (string)

Squote Enclose a string in single
quotation marks

string (string) result (string)

Str Repeat a string string (string)

repeats (int32)

result (string)

Name Description Arguments Output
Parallel Job Developer’s Guide B-9

String Functions Functions
true = 1

false = 0

Possible options for the Trim function are:

L Removes leading occurrences of character.

T Removes trailing occurrences of character.

B Removes leading and trailing occurrences of character.

R Removes leading and trailing occurrences of character, and
reduces multiple occurrences to a single occurrence.

A Removes all occurrences of character.

F Removes leading spaces and tabs.

E Removes trailing spaces and tabs.

D Removes leading and trailing spaces and tabs, and reduces
multiple spaces and tabs to single ones.

StripWhiteSpace Return the string after stripping
all whitespace from it

string (string) result (string)

Trim Remove all leading and trailing
spaces and tabs plus reduce
internal occurrences to one

string (string)
[stripchar (string)]
[options (string)]

result (string)

TrimB Remove all trailing spaces and
tabs

string (string) result (string)

TrimF Remove all leading spaces and
tabs

string (string) result (string)

Trim
Leading
Trailing

Returns a string with leading
and trailing whitespace
removed

string (string) result (string)

Upcase Change all lowercase letters in a
string to uppercase

string (string) result (string)

Name Description Arguments Output
B-10 Parallel Job Developer’s Guide

Functions Vector Function
Vector Function
The following function can be used within expressions to access an

element in a vector column. The vector index starts at 0.

This can be used as part of, or the whole of an expression. For

example, an expression to add 1 to the third element of an vector

input column 'InLink.col1' would be:

ElementAt(InLink.col1, 2) + 1

Type Conversion Functions
The following table lists the functions available in the Type

Conversion category (square brackets indicate an argument is

optional):

Name Description Arguments Output

ElementAt Accesses an element of
a vector

input column
index (int)

element of vector

Name Description Arguments Output

DateToString Return the string representation
of the given date

date

[format (string)]

result (string)

DecimalToDecimal Returns the given decimal in
decimal representation with
specified precision and scale

decimal (decimal)
[rtype (string)]
[packedflag (int8)]

result (decimal)

DecimalToDFloat Returns the given decimal in
dfloat representation

number (decimal)
[“fix_zero”]

result (dfloat)

DecimalToString Return the string representation
of the given decimal

number (decimal)
[“fix_zero”]

result (string)

DfloatToDecimal Returns the given dfloat in
decimal representation

number (dfloat)
[rtype (string)]

result (decimal)

DfloatToStringNoExp Returns the given dfloat in its
string representation with no
exponent, using the specified
scale

number (dfloat)
scale (string)

result (string)
Parallel Job Developer’s Guide B-11

Type Conversion Functions Functions
Rtype. The rtype argument is a string, and should contain one of the

following:

ceil. Round the source field toward positive infinity. E.g, 1.4 -> 2, -
1.6 -> -1.

IsValid Return whether the given string
is valid for the given type. Valid
types are "date", "decimal",
"dfloat", "sfloat", "int8", "uint8",
"int16", "uint16", "int32",
"uint32", "int64", "uint64", "raw",
"string", "time", "timestamp".
“ustring”

type (string)
format (string)

result (int8)

StringToDate Returns a date from the given
string in the given format

date (string)

format (string)

date

StringToDecimal Returns the given string in
decimal representation

string (string)
[rtype (string)]

result (decimal)

StringToRaw Returns a string in raw
representation

string (string) result (raw)

StringToTime Returns a time representation
of the given string

string (string)
[format (string)]

time

StringToTimestamp Returns a timestamp
representation of the given
string

string (string)
[format (string)]

timestamp

TimestampToDate Returns a date from the given
timestamp

timestamp date

TimestampToString Return the string representation
of the given timestamp

timestamp
[format (string)]

result (string)

TimestampToTime Returns the time from a given
timestamp

timestamp time

TimeTotring Return the string representation
of the given time

time
[format (string)]

result (string)

StringToUstring Returns a ustring from the
given string, optionally using
the specified map (otherwise
uses project default)

string (string)
[,mapname (string)]

result (ustring)

UstringToString Returns a string from the given
ustring, optionally using the
specified map (otherwise uses
project default)

string(ustring)

[,mapname (string)]

result (string)

Name Description Arguments Output
B-12 Parallel Job Developer’s Guide

Functions Type Conversion Functions
floor. Round the source field toward negative infinity. E.g, 1.6 -> 1,
-1.4 -> -2.

round_inf. Round or truncate the source field toward the nearest
representable value, breaking ties by rounding positive values
toward positive infinity and negative values toward negative
infinity. E.g, 1.4 -> 1, 1.5 -> 2, -1.4 -> -1, -1.5 -> -2.

trunc_zero. Discard any fractional digits to the right of the
rightmost fractional digit supported in the destination, regardless
of sign. For example, if the destination is an integer, all fractional
digits are truncated. If the destination is another decimal with a
smaller scale, round or truncate to the scale size of the destination
decimal. E.g, 1.6 -> 1, -1.6 -> -1.

The default is trunc_zero.

Format string. Date, Time, and Timestamp functions that take a

format string (e.g., timetostring(time, stringformat)) need specific

formats:

For a date, the format components are:

%dd two digit day

%mm two digit month

%yy two digit year (from 1900)

%year_cutoffyy two digit year from year_cutoff (e.g. %2000yy)

%yyyy four digit year

%ddd three digit day of the year

The default format is %yyyy-%mm-%dd

For a time, the format components are:

%hh two digit hour

%nn two digit minutes

%ss two digit seconds or

%ss.x two digit seconds and microseconds to x decimal places

The default is %hh:%nn:%ss

A timestamp can include the components for date and time above.

The default format is %yyyy-%mm-%dd %hh:%nn:%ss.

Where your dates, times, or timestamps convert to or from ustrings,

DataStage will pick this up automatically. In these cases the

separators in your format string (for example, ‘:’ or ‘-’) can themselves

be Unicode characters.

fix_zero. By default decimal numbers comprising all zeros are treated

as invalid. If the string fix_zero is specified as a second argument, then

all zero decimal values are regarded as valid.
Parallel Job Developer’s Guide B-13

Type ‘Casting’ Functions Functions
Type ‘Casting’ Functions
There is a special class of type conversion function to help you when

performing mathematical calculations using numeric fields. For

example, if you have a calculation using an output column of type

float derived from an input column of type integer in a Parallel

Transformer stage the result will be derived as an integer regardless

of its float type. If you want a non-integral result for a calculation

using integral operands, you can use the following functions (which

act in a similar way as casting in C) to cast the integer operands into

non-integral operands:

Utility Functions
The following table lists the functions available in the Utility category

(square brackets indicate an argument is optional):

Name Description Arguments Output

AsDouble Treat the given number as a
double

number (number) number (double)

AsFloat Treat the given number as a
float

number (number) number (float)

AsInteger Treat the given number as an
integer

number (number) number (int)

Name Description Arguments Output

GetEnvironment Return the value of the
given environment
variable

environment
variable (string)

result (string)
B-14 Parallel Job Developer’s Guide

C
Fillers

This appendix describes how fillers are created when you load

columns from COBOL file definitions that represent simple or

complex flat files. Since these file definitions can contain hundreds of

columns, you can choose to collapse sequences of unselected

columns into FILLER items. This maintains the byte order of the

columns, and saves storage space and processing time.

This appendix gives examples of filler creation for different types of

COBOL structures, and shows how you can expand fillers later if you

need to reselect any columns.

Creating Fillers
Unlike other parallel stages, Complex Flat File stages have stage

columns. You load columns on the Columns tab of the Complex Flat

File Stage page. After you select a table from the Table Definitions

dialog box, the Select Columns From Table dialog box appears.
Parallel Job Developer’s Guide C-1

Creating Fillers Fillers
This dialog box has an Available columns tree that displays COBOL

structures such as groups and arrays, and a Selected columns list

that displays the columns to be loaded into the stage. The Create
fillers checkbox is selected by default.

When columns appear on the Columns tab, FILLER items are shown

for the unselected columns. FILLER columns have a native data type

of CHARACTER and a name of FILLER_XX_YY, where XX is the start

offset and YY is the end offset. Fillers for elements of a group array or

an OCCURS DEPENDING ON (ODO) column have the name of

FILLER_NN, where NN is the element number. The NN begins at 1 for

the first unselected group element and continues sequentially. Any

fillers that follow an ODO column are also numbered sequentially.

Level numbers of column definitions, including filler columns, are

changed after they are loaded into the Complex Flat File stage.

However, the underlying structure is preserved.

Filler Creation Rules
The rules for filler creation are designed to preserve the storage

length of all columns being replaced by a filler column. They allow a

filler column to be expanded back to the original set of defining

columns, each having the correct name, data type, and storage length.
C-2 Parallel Job Developer’s Guide

Fillers Creating Fillers
The basic filler creation rules are:

1 A filler column will replace one or more original columns with a
storage length equal to the sum of the storage length of each
individual column being replaced.

2 Separate fillers are created when column level numbers decrease.
For example, if an unselected column at level 05 follows an
unselected column at level 10, separate fillers are created for the
columns at the 05 and 10 levels.

3 Any ODO column and its associated ‘depending on’ column will
be automatically selected and not replaced by a filler column.

4 If a REDEFINE column is selected, the column that it is redefining
is also automatically selected and will not be included as part of a
filler column.

5 If two fillers share the same storage offset (such as for a
REDEFINE) the name of the subsequent fillers will be
FILLER_XX_YY_NN, where NN is a sequential number that begins
at 1.

6 If the starting or ending column for a filler is the child of a parent
that contains an OCCURS clause, then the generated FILLER name
will be FILLER_NN instead of FILLER_XX_YY.

The remaining rules are explained through the following set of

examples.

Filler Creation Examples
The following examples explain filler creation for groups, REDEFINES,

and arrays using different scenarios for column selection. The source

table contains single columns, a group that redefines a column, a

nested group with an array, and a column that redefines another

column, as shown:
Parallel Job Developer’s Guide C-3

Creating Fillers Fillers
Select a Simple Column

Suppose a simple column (A) is selected from the table, as shown:

On the Columns tab, a single filler is created with the name

FILLER_2_11 and a length of 10. The length represents the sum of the

lengths of columns B (8), E (1), and G (1). GRP1 and its elements,

along with column F, are excluded because they redefine other

columns that were not selected:
C-4 Parallel Job Developer’s Guide

Fillers Creating Fillers
Select a Column Redefined by a Group

Now suppose column B is selected, which is redefined by GRP1:

Two fillers are created, one for column A and the other for columns E

and G. Since GRP1 redefines column B, it is dropped along with its

elements. Column F is also dropped because it redefines column E.

The dropped columns will be available during filler expansion (see

"Expanding Fillers" on page C-16):
Parallel Job Developer’s Guide C-5

Creating Fillers Fillers
Select a Group Column that Redefines a Column

Next, suppose a group column is selected (GRP1) that redefines

another column (B):

This time three fillers are created: one for column A, one for columns

C1 through D3 (which are part of GRP1), and one for columns E and G.

Column B is preserved since it is redefined by the selected group

column:
C-6 Parallel Job Developer’s Guide

Fillers Creating Fillers
Select a Group Element

This example shows what happens when a group element (C1) is

selected by itself:

Three fillers are created: one for column A, one for columns C2

through D3, and one for columns E and G. Since an element of GRP1

is selected and GRP1 redefines column B, both column B and GRP1

are preserved:
Parallel Job Developer’s Guide C-7

Creating Fillers Fillers
The next example shows what happens when a different group

element is selected, in this case, column C2:

Four fillers are created: one for column A, one for column C1, one for

GRP2 and its elements, and one for columns E and G. Column B and

GRP1 are preserved for the same reasons as before:
C-8 Parallel Job Developer’s Guide

Fillers Creating Fillers
Select a Group Array Column

Consider what happens when a group array column (GRP2) is

selected and passed as is:

Four fillers are created: one for column A, one for columns C1 and C2,

one for columns D1 through D3, and one for columns E and G. Since

GRP2 is nested within GRP1, and GRP1 redefines column B, both

column B and GRP1 are preserved:
Parallel Job Developer’s Guide C-9

Creating Fillers Fillers
If the selected array column (GRP2) is flattened, both occurrences

(GRP2 and GRP2_2) appear on the Columns tab:

Select an Array Element

Suppose an element (D1) of a group array is selected:

If the array GRP2 is passed as is, fillers are created for column A,

columns C1 and C2, columns D2 and D3, and columns E and G.
C-10 Parallel Job Developer’s Guide

Fillers Creating Fillers
Column B, GRP1, and GRP2 are preserved for the same reasons as

before:

Select a Column Redefined by Another Column

Let’s see what happens when column E is selected, which is redefined

by another column:
Parallel Job Developer’s Guide C-11

Creating Fillers Fillers
Two fillers are created: one for columns A through D3, and another for

column G. Since column F redefines column E, it is dropped, though it

will be available for expansion (see "Expanding Fillers" on page C-16):

Now suppose the REDEFINE column (F) is selected:
C-12 Parallel Job Developer’s Guide

Fillers Creating Fillers
In this case column E is preserved since it is redefined by column F.

One filler is created for columns A through D3, and another for

column G:

Select Multiple Redefine Columns

This example describes how fillers are created for multiple redefine

columns. In this case the same column is being redefined multiple

times. The source table contains a column and a group that redefine

column A, as well as two columns that redefine the group that

redefines column A:

If columns C2 and E are selected, four fillers are created: one for

column B, one for column C1, one for column D, and one for column F.

Since an element of GRP1 is selected and GRP1 redefines column A,

both column A and GRP1 are preserved. The first three fillers have the
Parallel Job Developer’s Guide C-13

Creating Fillers Fillers
same start offset because they redefine the same storage area, as

shown:

Select Multiple Cascading Redefine Columns

This example shows filler creation for multiple redefine columns,

except this time they are cascading redefines instead of redefines of

the same column. Consider the following source table, where column

B redefines column A, GRP1 redefines column B, column D redefines

GRP1, and column E redefines column D:

If columns C2 and E are selected, this time only two fillers are created:

one for column C1 and one for column F. Column A, column B, GRP1,
C-14 Parallel Job Developer’s Guide

Fillers Creating Fillers
and column D are preserved because they are redefined by other

columns, as shown:

Select an OCCURS DEPENDING ON Column

The final example how an ODO column is handled. Suppose the

source table has the following structure:
Parallel Job Developer’s Guide C-15

Expanding Fillers Fillers
If column B is selected, four fillers are created as shown:

Fillers are created for column A, column C1, columns D1 through D3,

and columns E and G. GRP1 is preserved because it redefines column

B. Since GRP2 (an ODO column) depends on column C2, column C2 is

preserved. GRP2 is preserved because it is an ODO column.

Expanding Fillers
After you select columns to load into a Complex Flat File stage, the

selected columns and fillers appear on the Columns tab of the Stage

page. If you need to reselect any columns represented by fillers, it is

not necessary to reload your table definition. An Expand Filler...
option allows you to reselect any or all of the columns from a given

filler.
C-16 Parallel Job Developer’s Guide

Fillers Expanding Fillers
To expand a filler, right-click the filler column in the columns tree and

select Expand Filler... from the shortcut menu. The Expand Filler

dialog box appears:

The contents of the given filler are displayed in the Available
columns tree, allowing you to reselect those columns you need. In

this example, you expanded FILLER_2_9. Suppose you select column
Parallel Job Developer’s Guide C-17

Expanding Fillers Fillers
C1 in the Expand Filler dialog box. The Columns tab now appears

similar to this:

If you expand FILLER_3_9 and select column C2, the Columns tab

now appears similar to this:
C-18 Parallel Job Developer’s Guide

Fillers Expanding Fillers
If you continue to expand the fillers, eventually the Columns tab will

contain all of the original columns in the table, as shown:
Parallel Job Developer’s Guide C-19

Expanding Fillers Fillers

C-20 Parallel Job Developer’s Guide

Index
A
Abs B–5

Acos B–5

Advanced tab Inputs page 3–45

Advanced tab Ouputs page 3–55

advanced tab, stage page 3–12

after-stage subroutines

for Transformer stages 17–6, 17–16

aggragator stage 18–1

aggragator stage properties 18–6

AlNum B–8

Alpha B–8

AsDouble B–14

AsFloat B–14

Asin B–5

AsInteger B–14

Atan B–5

automatic type conversions 28–6

B
before-stage subroutines

for Transformer stages 17–6, 17–16

BitAnd B–4

BitCompress B–4

BitExpand B–4

BitOr B–4

BitXOr B–4

C
Ceil B–5

change apply stage 32–1

change apply stage properties 32–5

change capture stage 31–1

change capture stage properties

properties

change capture stage 29–6, 31–4

Cluster systems 2–5
Book Title
cluster systems 1–1

collecting data 2–7

collection types

ordered 2–20

round robin 2–19

sorted merge 2–21

column auto-match facility 16–11, 17–11, 21–17

column export stage 42–1

column export stage properties

properties

column export stage 42–5

column generator stage 28–1, 54–1

column generator stage properties 28–5, 54–6

column import stage 41–1

column import stage properties

properties

column import stage 37–4, 40–7, 41–6

columns tab, inputs page 3–26

columns tab, outputs page 3–51

combine records stage 45–1

combine records stage properties 45–8

CompactWhiteSpace B–8

Compare B–8

compare stage 34–1, 34–4

compare stage properties 34–4

CompareNoCase B–8

CompareNum B–8

CompareNumNoCase B–8

complex data types 2–32

complex flat file input properties 10–18

complex flat file output properties 10–21

compress stage 25–1

compress stage properties 25–2

configuration file 2–6

configuration file editor 58–1

containers 2–33

Convert B–9
Index-1

Index
copy stage 27–1, 29–1

copy stage properties 27–6

Cos B–5

Cosh B–5

Count B–9

D
data set 2–26

data set stage 4–1

data set stage input properties 4–4

data set stage output properties 4–7

data types 2–28

complex 2–32

DateFromDaysSince B–1

DateFromJulianDay B–1

DateToString B–11

DaysSinceFromDate B–1

DB2 partition properties 3–24

DB2 partitioning 2–18

DB2 stage 12–1

DB2 stage input properties 12–19

DB2 stage output properties 12–39

Dcount B–9

DecimalToDecimal B–11

DecimalToDFloat B–11

DecimalToString B–11

decode stage 36–1

decode stage properties 36–2

defining

local stage variables 16–18, 17–20

DfloatToDecimal B–11

DfloatToStringNoExp B–11

difference stage 33–1

difference stage properties 33–4

Div B–5

documentation conventions iii—iv
DownCase B–9

DQuote B–9

E
editing

Transformer stages 16–7, 17–7, 21–13

encode stage 35–1, 35–2

encode stage properties 35–2

entire partitioning 2–11

examples

Development Kit program A–1

Exp B–5

expand stage 26–1

expand stage properties 26–2
Index-2
Expression Editor 17–22

expression editor 16–21, 21–29

external fileter stage 30–1

external fileter stage properties 30–2

external source stage 8–1

external source stage output properties 8–5

external target stage 9–1

external target stage input properties 9–4

F
Fabs B–5

Field B–9

file set output properties 6–23

file set stage 6–1

file set stage input properties 6–5

filler creation and expansion 10–14

Find and Replace dialog box 16–8, 17–8, 21–14

Floor B–5

Folder stages 12–1

format tab, inputs page 3–25

functions B–1

funnel stage 22–1

funnel stage properties 22–8

G
general tab, inputs page 3–19

general tab, outputs page 3–48

general tab, stage page 3–8

Generic stage 39–1

generic stage properties 39–2

GetEnvironment B–14

H
hash by field partitioning 2–12

head stage 49–1

head stage properties 49–5

HoursFromTime B–1

I
Index B–9

index organized tables (Oracle) 13–6, 13–23

Informix XPS stage 15–1

Informix XPS stage input properties 15–10

Informix XPS stage output properties

properties

Informix XPS stage output 15–16

input links 16–5, 17–5

inputs page 3–14, 3–18

columns tab 3–26

format tab 3–25
Book Title

Index
general tab 3–19

partitioning tab 3–20

properties tab 3–19

IsNotNull B–7

IsNull B–7

IsValid B–12

J
join stage 19–1

join stage properties 19–7

JulianDayFromDate B–2

L
Ldexp B–5

Left B–9

Len B–9

level number 3–28

link ordering tab, stage page 3–14

links

input 16–5, 17–5

output 16–5, 17–5

reject 16–5, 17–5

specifying order 16–18, 17–19, 21–20

Llabs B–5

Ln B–6

Log10 B–6

lookup file set stage 7–1

lookup file set stage output properties 7–9

lookup stage 21–1

M
make subrecord stage 43–1

make subrecord stage properties 43–6

make vector stage 47–1, 47–7

make vector stage properties 47–7

MakeNull B–7

MantissaFromDecimal 28–9, B–7

MantissaFromDFloat 28–9, B–8

mapping tab, outputs page 3–52

Max B–6

merge stage 20–1

merge stage properties 20–5

meta data 2–26

MicroSecondsFromTime B–2

Min B–6

MinutesFromTime B–2

Mod B–6

modulus partitioning 2–14

MonthDayFromDate B–2

MonthFromDate B–2
Book Title
MPP ssystems 2–5

MPP systems 1–1

N
Neg B–6

NextWeekdayFromDate B–2

Not B–4

Nulls

handling in Transformer stage input

columns 16–16

NullToEmpty B–7

NullToValue B–7

NullToZero B–7

Num B–9

O
optimizing performance 2–1

Oracle stage 13–1

Oracle stage input properties 13–17

Oracle stage output properties 13–28

ordered collection 2–20

output links 16–5, 17–5

outputs page 3–47

columns tab 3–51

general tab 3–48

mapping tab 3–52

properties tab 3–48

P
PadString B–9

parallel engine configuration file 58–1

parallel processing 2–1

parallel processing environments 2–5

partial schemas 2–28

partition parallel processing 2–1

partition paralllelism 2–3

partitioning data 2–7

partitioning icons 2–24

partitioning tab, inputs page 3–20

partitioning types

DB2 2–18

entire 2–11

hash by field 2–12

modulus 2–14

random 2–9

range 2–16

round robin 2–8

same 2–10

Peek stage 39–1, 52–1

peek stage 39–1, 52–1
Index-3

Index
peek stage properties 52–2

pipeline processing 2–1, 2–2

PreviousWeekdayFromDate B–2

promote subrecord stage 46–1

promote subrecord stage properties 46–7

properties 24–5, 35–2

aggragator stage 18–6

change apply stage 32–5

combine records stage 45–8

compare stage 34–4

complex flat file input 10–18

complex flat file output 10–21

compress stage 25–2

copy stage 27–6

data set stage input 4–4

data set stage output 4–7

DB2 stage input 12–19

DB2 stage output 12–39

decode stage 36–2

difference stage 33–4

expand stage 26–2

external fileter stage 30–2

external source stage output 8–5

external stage input 9–4

file set input 6–5

file set output 6–23

funnel stage 22–8

generic stage 39–2

head stage 49–5

Informix XPS stage input 15–10

join stage 19–7

lookup file set stage output 7–9

make subrecord stage 43–6

make vector stage 47–7

merge stage 20–5

Oracle stage input 13–17

Oracle stage output 13–28

peek stage 52–2

promote subrecord stage 46–7

sample stage 51–8

SAS data set stage input 11–4

SASA data set stage output 11–7

sequential file input 5–9

sequential file output 5–25

sort stage 23–10

split subrecord stage 44–6

split vector stage 48–6

tail stage 50–4

Teradata stage input 14–10

Teradata stage output 14–17

trnsformer stage 16–22, 21–30
Index-4
write range map stage input

properties 55–6

properties tab, inputs page 3–19

properties tab, outputs page 3–48

properties tab, stage page 3–8

propertiesrow generator stage output 53–9

prperties

column generator stage 28–5, 54–6

Pwr B–6

R
Rand B–6

Random B–6

random partitioning 2–9

range partition properties 3–24

range partitioning 2–16

RawLength B–8, B–11

reject links 16–5, 17–5

remove duplicates stage 24–1, 24–5

remove duplicates stage properties 24–5

repartioning data 2–7

restructure operators

splitvect 48–1

Right B–9

round robin collection 2–19

round robin partitioning 2–8

row generator stage 53–1

row generator stage output properties 53–9

runtime column propagation 2–27, 3–51, 5–42,
41–24, 42–24

S
same partitioning 2–10

sample stage 51–1

sample stage properties 51–8

SAS data set stage 11–1

SAS data set stage input input properties 11–4

SAS data set stage output properties 11–7

SAS stage 38–1

schema files 2–28

SecondsFromTime B–2

SecondsSinceFromTimestamp B–2

sequential file input properties 5–9

sequential file output properties 5–25

sequential file stage 5–1

SetBit B–4

SetNull B–7

shared containers 2–33

shortcut menus in Transformer Editor 16–4,
17–4, 21–12

Sin B–6
Book Title

Index
Sinh B–6

SMP systems 1–1, 2–5

sort stage 23–1

sort stage properties 23–10

sorted merge collection 2–21

soundex B–9

Space B–9

split subrecord stage 44–1

split subrecord stage properties 44–6

split vector stage 48–1

split vector stage properties 48–6

splitvect restructure operator 48–1

Sqrt B–6

Squote B–9

stage editors 3–1

stage page 3–8

advanced tab 3–12

general tab 3–8

link ordering tab 3–14

properties tab 3–8

stage validation errors 3–7

stages

editing

Sequential File 7–1

sequential file 5–1

Str B–9

StringToDate B–12

StringToDecimal B–12

StringToRaw B–12

StringToTime B–12

StringToTimestamp B–12

StringToUstring B–12

StripWhiteSpace B–10

subrecords 2–32

surrogate key stage 40–1

switch stage 37–1

T
table definitions 2–27

tagged subrecords 2–32

tail stage 50–1

tail stage properties 50–4

Tan B–6

Tanh B–6

Teradata stage 14–1

Teradata stage input properties 14–10

Teradata stage output properties 14–17

TimeDate B–2

TimeFromMidnightSeconds B–2

TimestampFromDateime B–2

TimestampFromSecondsSince B–2
Book Title
TimestampFromTimet B–2

TimestampToDate B–12

TimestampToString B–12

TimestampToTime B–12

TimetFromimestamp B–2

TimeToString B–12

toolbars

Transformer Editor 16–3, 17–3, 21–11

Transformer Editor 17–2

link area 16–3, 17–3, 21–11

meta data area 16–4, 17–4, 21–12

shortcut menus 16–4, 17–4, 21–12

toolbar 16–3, 17–3, 21–11

transformer stage 16–1

transformer stage properties 16–22, 21–30

Transformer stages

basic concepts 16–5, 17–5, 21–13

editing 16–7, 17–7, 21–13

Expression Editor 17–22

specifying after-stage subroutines 17–16

specifying before-stage subroutines 17–16

Trim B–10

TrimB B–10

TrimF B–10

TrimLeadingTrailing B–10

type conversion functions 28–7

type conversions 28–6

U
UniVerse stages 5–1

Upcase B–10

USS systems 1–1, 56–1

UstringToString B–12

V
vector 2–33

visual cues 3–7

W
WeekdayFromDate B–3

write range map stage 55–1

write range map stage input properties 55–6

Y
YeardayFromDate B–3

YearFromDate B–3

YearweekFromDate B–3

Z
z/OS systems 56–1
Index-5

Index
Index-6
 Book Title

	Parallel Job Developer’s Guide
	How to Use this Guide
	Documentation Conventions
	User Interface Conventions

	DataStage Documentation

	Contents
	Introduction
	DataStage Parallel Jobs

	Designing Parallel Jobs
	Parallel Processing
	Pipeline Parallelism
	Partition Parallelism
	Combining Pipeline and Partition Parallelism
	Repartitioning Data

	Parallel Processing Environments
	The Configuration File
	Partitioning, Repartitioning, and Collecting Data
	Partitioning
	Round robin
	Random
	Same
	Entire
	Hash by field
	Modulus
	Range
	DB2
	Auto

	Collecting
	Round robin
	Ordered
	Sorted merge
	Auto

	Repartitioning
	The Mechanics of Partitioning and Collecting
	Partitioning Icons
	Preserve Partitioning Flag
	Collecting Icons

	Sorting Data
	Data Sets
	Meta Data
	Runtime Column Propagation
	Table Definitions
	Schema Files and Partial Schemas
	Data Types
	Strings and Ustrings
	Complex Data Types
	Subrecords
	Tagged Subrecord
	Vector

	Incorporating Server Job Functionality

	Stage Editors
	Showing Stage Validation Errors
	The Stage Page
	General Tab
	Properties Tab
	Advanced Tab
	Link Ordering Tab
	NLS Map Tab
	NLS Locale Tab

	Inputs Page
	General Tab
	Properties Tab
	Partitioning Tab
	DB2 Partition Properties
	Range Partition Properties

	Format Tab
	Columns Tab
	Field Level
	String Type
	Date Type
	Time Type
	Timestamp Type
	Integer Type
	Decimal Type
	Float Type
	Nullable
	Generator
	All data types
	Strings
	Decimal
	Date
	Time
	Timestamp

	Vectors
	Subrecords
	Extended

	Advanced Tab

	Outputs Page
	General Tab
	Properties Tab
	Format Tab
	Columns Tab
	Mapping Tab
	Advanced Tab

	Data Set Stage
	Must Do’s
	Writing to a Data Set
	Reading from a Data Set

	Stage Page
	Advanced Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	File
	Update Policy

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	File

	Sequential File Stage
	Example of Writing a Sequential File
	Example of Reading a Sequential File
	Must Do’s
	Writing to a File
	Reading from a File

	Stage Page
	Advanced Tab
	NLS Map Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	File
	File Update Mode

	Options Category
	Cleanup On Failure
	Reject Mode
	Filter
	Schema File

	Partitioning Tab
	Input Link Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Outputs Page
	Output Link Properties Tab
	Source Category
	File
	File Pattern
	Read Method

	Options Category
	Missing File Mode
	Keep file Partitions
	Reject Mode
	Report Progress
	Filter
	File Name Column
	Number Of Readers Per Node
	Read From Multiple Nodes
	Schema File

	Reject Links
	Output Link Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Using RCP With Sequential Stages

	File Set Stage
	Must Do’s
	Writing to a File
	Reading from a File

	Stage Page
	Advanced Tab
	NLS Map Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	File Set
	File Set Update Policy
	File Set Schema policy

	Options Category
	Cleanup on Failure
	Single File Per Partition.
	Reject Mode
	Diskpool
	File Prefix
	File Suffix
	Maximum File Size
	Schema File

	Partitioning Tab
	Input Link Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Outputs Page
	Output Link Properties Tab
	Source Category
	File Set

	Options Category
	Keep file Partitions
	Reject Mode
	Report Progress
	Filter
	Schema File
	Use Schema Defined in File Set
	File Name Column

	Reject Link Properties
	Output Link Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Using RCP With File Set Stages

	Lookup File Set Stage
	Must Do’s
	Creating a Lookup File Set:
	Looking Up a Lookup File Set:

	Stage Page
	Advanced Tab

	Inputs Page
	Input Link Properties Tab
	Lookup Keys Category
	Key

	Target Category
	Lookup File Set

	Options Category
	Allow Duplicates
	Diskpool

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Lookup Source Category
	Lookup File Set

	External Source Stage
	Must Do’s
	Stage Page
	Advanced Tab
	NLS Map Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	Source Program
	Source Programs File
	Source Method

	Options Category
	Keep File Partitions
	Reject Mode
	Schema File
	Source Name Column

	Reject Link Properties
	Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Using RCP With External Source Stages

	External Target Stage
	Must Do’s
	Stage Page
	Advanced Tab
	NLS Map Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	Destination Program
	Destination Programs File
	Target Method

	Options Category
	Reject Mode
	Schema File

	Partitioning Tab
	Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Outputs Page
	Using RCP With External Target Stages

	Complex Flat File Stage
	Must Do’s
	Stage Page
	File Options Tab
	Source CFF Stage
	Target CFF Stages

	Record Options Tab
	Columns Tab
	Filler Creation and Expansion
	Complex File Load Options

	Layout Tab
	NLS Map Tab
	Advanced Tab

	Input Page
	Input Link Columns Tab
	Partitioning Tab

	Output Page
	Selection Tab
	Selecting Array Columns for Output
	Selecting a Simple Normalized Array Column
	Selecting a Nested Normalized Array Column
	Selecting Parallel Normalized Array Columns
	Selecting Nested Parallel Denormalized Array Columns

	Selecting Group Columns for Output

	Output Link Columns Tab
	Reject Links

	SAS Parallel Data Set Stage
	Must Do’s
	Writing an SAS Data Set
	Reading an SAS Data Set

	Stage Page
	Advanced Tab

	Inputs Page
	Input Link Properties Tab
	Options Category
	File
	Update Policy

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	File

	DB2/UDB Enterprise Stage
	Accessing DB2 Databases
	Remote Connection
	Handling Special Characters (# and $)
	Using the Pad Character Property
	Type Conversions - Writing to DB2/UDB
	Type Conversions - Reading from DB2/UDB

	Examples
	Looking Up a DB2/UDB Table
	Updating a DB2/UDB Table

	Must Do’s
	Writing a DB2 Database
	Updating a DB2 Database
	Deleting Rows from a DB2 Database
	Loading a DB2 Database
	Reading a DB2 Database
	Performing a Direct Lookup on a DB2 Database Table
	Performing an In Memory Lookup on a DB2 Database Table

	Stage Page
	Advanced Tab
	NLS Map Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	Table
	Delete Rows Mode
	Delete SQL
	Upsert Mode
	Insert SQL
	Update SQL
	Write Method
	Write Mode

	Connection Category
	Use Default Server
	Use Default Database
	Server
	Database
	Client Instance Name

	Options Category
	Array Size
	Output Rejects
	Row Commit Interval
	Time Commit Interval
	Silently Drop Columns Not in Table
	Truncate Column Names
	Close Command
	Default String Length
	Open Command
	Use ASCII Delimited Format
	Cleanup on Failure
	Message File
	DB Options
	Non-recoverable Transactions
	Pad Character
	Exception Table
	Statistics
	Number of Processes per Node

	USS Options
	Connection Category
	Use Default Database
	Database

	MVS DataSets Category
	Discard DSN
	Error DSN
	Map DSN
	Work 1 DSN
	Work 2 DSN

	Options Category
	Enforce Constraints
	Keep Dictionary
	Preformat
	Silently Drop Columns Not in Table
	Truncate Column Names
	Verbose
	Close Command
	Default String Length
	Exception Table
	Number of Processes per Node
	Open Command
	Row Estimate
	Sort Device Type
	Sort Keys
	When Clause
	Create Statement
	DB Options
	Reuse Datasets
	Statistics
	Array Size
	Pad Character
	Row Commit Interval
	Time Commit Interval
	Output Rejects

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	Lookup Type
	Read Method
	Query
	Table

	Connection Category
	Use Default Server
	Use Default Database
	Server
	Database
	Client Instance Name

	Options Category
	Close Command
	Open Command
	Pad Character

	Oracle Enterprise Stage
	Accessing Oracle Databases
	Handling Special Characters (# and $)
	Loading Tables
	Type Conversions - Writing to Oracle
	Type Conversions - Reading from Oracle

	Examples
	Looking Up an Oracle Table
	Updating an Oracle Table

	Must Do’s
	Updating an Oracle Database
	Deleting Rows from an Oracle Database
	Loading an Oracle Database
	Reading an Oracle Database
	Performing a Direct Lookup on an Oracle Database Table
	Performing an In Memory Lookup on an Oracle Database Table

	Stage Page
	Advanced Tab
	NLS Map

	Inputs Page
	Input Link Properties Tab
	Target Category
	Table
	Delete Rows Mode
	Delete SQL
	Upsert mode
	Insert SQL
	Update SQL
	Write Method
	Write Mode

	Connection Category
	DB Options
	DB Options Mode
	Remote Server

	Options Category
	Create Primary Keys
	Disable Constraints
	Output Reject Records
	Silently Drop Columns Not in Table
	Table Organization
	Truncate Column Names
	Close Command
	Default String Length
	Index Mode
	Open Command
	Oracle 8 Partition
	Table has NCHAR/NVARCHAR

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	Lookup Type
	Read Method
	Query
	Table
	Partition Table

	Connection Category
	DB Options
	DB Options Mode
	Remote Server

	Options Category
	Close Command
	Open Command
	Make Combinable
	Table has NCHAR/NVARCHAR

	Teradata Enterprise Stage
	Accessing Teradata Databases
	Installing the Teradata Utilities Foundation
	Creating Teradata User
	Creating a Database Server

	Teradata Databases - Points to Note
	NLS Support and Teradata Database Character Sets
	Column Name and Data Type Conversion
	Restrictions and Limitations when Writing to a Teradata Database
	Restrictions on Reading a Teradata Database

	Must Do’s
	Writing a Teradata Database
	Reading a Teradata Database

	Stage Page
	Advanced Tab
	NLS Map

	Inputs Page
	Input Link Properties Tab
	Target Category
	Table
	Write Mode

	Connection Category
	DB Options
	DB Options Mode
	Database
	Server

	Options Category
	Close Command
	Open Command
	Silently Drop Columns Not in Table
	Default String Length
	Truncate Column Names
	Progress Interval

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	Read Method
	Table
	Query

	Connection Category
	DB Options
	DB Options Mode
	Database
	Server

	Options Category
	Close Command
	Open Command
	Progress Interval

	Informix Enterprise Stage
	Accessing Informix Databases
	Considerations for Using the High Performance Loader (HPL)
	Reading Data on a Remote Machine using HPL

	Using Informix XPS Stages on AIX Systems
	Type Conversions - Writing to Informix
	Type Conversions - Reading from Informix

	Must Do’s
	Writing an Informix Database
	Reading an Informix Database

	Stage Page
	Advanced Tab

	Inputs Page
	Input Link Properties Tab
	Target Category
	Write Mode
	Table

	Connection Category
	Connection Method
	Remote Server
	User
	Password
	Database
	Server

	Option Category
	Close Command
	Open Command
	Silently Drop Columns Not in Table
	Default String Length

	Partitioning Tab

	Outputs Page
	Output Link Properties Tab
	Source Category
	Read Method
	Table
	Query

	Connection Category
	Connection Method
	Remote Server
	User
	Password
	Database
	Server

	Options Category
	Close Command
	Open Command

	Transformer Stage
	Must Do’s
	Transformer Editor Components
	Toolbar
	Link Area
	Meta Data Area
	Shortcut Menus

	Transformer Stage Basic Concepts
	Input Link
	Output Links

	Editing Transformer Stages
	Using Drag and Drop
	Find and Replace Facilities
	Select Facilities
	Creating and Deleting Columns
	Moving Columns Within a Link
	Editing Column Meta Data
	Defining Output Column Derivations
	Column Auto-Match Facility

	Editing Multiple Derivations
	Whole Expression
	Part of Expression

	Handling Null Values in Input Columns
	Defining Constraints and Handling Otherwise Links
	Specifying Link Order
	Defining Local Stage Variables

	The DataStage Expression Editor
	Expression Format
	Entering Expressions
	Completing Variable Names
	Validating the Expression
	Exiting the Expression Editor
	Configuring the Expression Editor
	System Variables
	Guide to Using Transformer Expressions and Stage Variables

	Transformer Stage Properties
	Stage Page
	General Tab
	Advanced Tab
	Triggers Tab
	NLS Locale Tab
	Build Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	BASIC Transformer Stages
	Must Do’s
	BASIC Transformer Editor Components
	Toolbar
	Link Area
	Meta Data Area
	Shortcut Menus

	BASIC Transformer Stage Basic Concepts
	Input Link
	Output Links
	Before-Stage and After-Stage Routines

	Editing BASIC Transformer Stages
	Using Drag and Drop
	Find and Replace Facilities
	Select Facilities
	Creating and Deleting Columns
	Moving Columns Within a Link
	Editing Column Meta Data
	Defining Output Column Derivations
	Column Auto-Match Facility

	Editing Multiple Derivations
	Whole Expression
	Part of Expression

	Specifying Before-Stage and After-Stage Subroutines
	Defining Constraints and Handling Reject Links
	Specifying Link Order
	Defining Local Stage Variables

	The DataStage Expression Editor
	Expression Format
	Entering Expressions
	Completing Variable Names
	Validating the Expression
	Exiting the Expression Editor
	Configuring the Expression Editor

	BASIC Transformer Stage Properties
	Stage Page
	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Aggregator Stage
	Example
	Must Do’s
	Stage Page
	Properties Tab
	Grouping Keys Category
	Group

	Aggregations Category
	Aggregation Type
	Column for Calculation
	Count Output Column
	Summary Column for Recalculation
	Weighting column
	Default To Decimal Output

	Options Category
	Method
	Allow Null Outputs

	Calculation and Recalculation Dependent Properties

	Advanced Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Join Stage
	Join Versus Lookup
	Example Joins
	Inner Join
	Left Outer Join
	Right Outer Join
	Full Outer Join

	Must Do’s
	Stage Page
	Properties Tab
	Join Keys Category
	Key

	Options Category
	Join Type

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	Merge Stage
	Example Merge
	Must Do’s
	Stage Page
	Properties Tab
	Merge Keys Category
	Key

	Options Category
	Unmatched Masters Mode
	Warn On Reject Masters
	Warn On Reject Updates

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Reject Links
	Mapping Tab

	Lookup Stage
	Lookup Versus Join
	Example Look Up
	Must Do’s
	Using In-Memory Lookup tables
	Using Oracle or DB2 Databases Directly
	Using Lookup Fileset

	Lookup Editor Components
	Toolbar
	Link Area
	Meta Data Area
	Shortcut Menus

	Editing Lookup Stages
	Using Drag and Drop
	Find and Replace Facilities
	Select Facilities
	Creating and Deleting Columns
	Moving Columns Within a Link
	Editing Column Meta Data
	Defining Output Column Derivations
	Column Auto-Match Facility

	Defining Input Column Key Expressions

	Lookup Stage Properties
	Stage Page
	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab
	Build Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Reject Links

	Lookup Stage Conditions
	The DataStage Expression Editor
	Expression Format
	Entering Expressions
	Completing Variable Names
	Validating the Expression
	Exiting the Expression Editor
	Configuring the Expression Editor

	Funnel Stage
	Examples
	Continuous Funnel Example
	Sort Funnel Example
	Sequence Funnel Example

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Funnel Type

	Sorting Keys Category
	Key

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	Sort Stage
	Examples
	Sequential Sort
	Parallel Sort
	Total Sort

	Must Do’s
	Stage Page
	Properties Tab
	Sorting Keys Category
	Key

	Options Category
	Sort Utility
	Stable Sort
	Allow Duplicates
	Output Statistics
	Create Cluster Key Change Column
	Create Key Change Column
	Restrict Memory Usage
	Workspace

	Advanced Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Remove Duplicates Stage
	Example
	Must Do’s
	Stage Page
	Properties Tab
	Keys that Define Duplicates Category
	Key

	Options Category
	Duplicate to retain

	Advanced Tab
	NLS Locale Tab

	Inputs Page
	Partitioning on Input Links

	Output Page
	Mapping Tab

	Compress Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Command

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Output Page

	Expand Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Command

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Output Page

	Copy Stage
	Example
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Force

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	Modify Stage
	Examples
	Dropping and Keeping Columns
	Changing Data Type
	Null Handling

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Specification

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Outputs Page

	Filter Stage
	Specifying the Filter
	Input Data Columns
	Supported Boolean Expressions and Operators
	Order of Association

	String Comparison
	Examples
	Comparing Two Fields
	Testing for a Null
	Evaluating Input Columns

	Must Do’s
	Stage Page
	Properties Tab
	Predicates Category
	Where clause
	Output link

	Options Category
	Output rejects
	Output rows only once
	Nulls value

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Input Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	External Filter Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Filter Command
	Arguments

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Outputs Page

	Change Capture Stage
	Example Data
	Must Do’s
	Stage Page
	Properties Tab
	Change Keys Category
	Key

	Change Value category
	Value

	Options Category
	Change Mode
	Log Statistics
	Drop Output for Insert
	Drop Output for Delete
	Drop Output for Edit
	Drop Output for Copy
	Code Column Name
	Copy Code
	Deleted Code
	Edit Code
	Insert Code

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Change Apply Stage
	Example Data
	Must Do’s
	Stage Page
	Properties Tab
	Change Keys Category
	Key

	Change Value category
	Value

	Options Category
	Change Mode
	Log Statistics
	Check Value Columns on Delete
	Code Column Name
	Copy Code
	Deleted Code
	Edit Code
	Insert Code

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Difference Stage
	Example Data
	Must Do’s
	Stage Page
	Properties Tab
	Difference Keys Category
	Key

	Difference Values Category
	All non-Key Columns are Values

	Options Category
	Tolerate Unsorted Inputs
	Log Statistics
	Drop Output for Insert
	Drop Output for Delete
	Drop Output for Edit
	Drop Output for Copy
	Copy Code
	Deleted Code
	Edit Code
	Insert Code

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Compare Stage
	Example Data
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Abort On Difference
	Warn on Record Count Mismatch
	‘Equals’ Value
	‘First is Empty’ Value
	‘Greater Than’ Value
	‘Less Than’ Value
	‘Second is Empty’ Value
	Key

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Encode Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Command Line

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Decode Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Command Line

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Switch Stage
	Example
	Must Do’s
	Stage Page
	Properties Tab
	Input Category
	Selector
	Case Sensitive
	Selector Mode

	User-defined Mapping Category
	Case

	Options Category
	If not found
	Discard Value

	Advanced Tab
	Link Ordering Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab
	Reject Link

	SAS Stage
	Example Job
	Must Do’s
	Using the SAS Stage on NLS Systems

	Stage Page
	Properties Tab
	SAS Source Category
	Source Method
	Source
	Source File

	Inputs Category
	Input Link Number

	Outputs Category
	Output Link Number

	Options Category
	Disable Working Directory Warning
	Convert Local
	Debug Program
	SAS List File Location Type
	SAS Log File Location Type
	SAS Options
	Working Directory

	Advanced Tab
	Link Ordering Tab
	NLS Map

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Generic Stage
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Operator
	Option name

	Advanced Tab
	Link Ordering Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Surrogate Key Stage
	Key Space
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Keys Category
	Surrogate Key Name

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Column Import Stage
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Input Category
	Import Input Column

	Output Category
	Column Method
	Column to Import
	Schema File

	Options Category
	Keep Input Column
	Reject Mode

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Mapping Tab
	Reject Link

	Using RCP With Column Import Stages

	Column Export Stage
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Export Output Column
	Export Column Type
	Reject Mode
	Column to Export
	Schema File

	Advanced Tab

	Inputs Page
	Partitioning Tab
	Format Tab
	Record level
	Field Defaults
	Type Defaults
	General
	String
	Decimal
	Numeric
	Date
	Time
	Timestamp

	Outputs Page
	Mapping Tab
	Reject Link

	Using RCP With Column Export Stages

	Make Subrecord Stage
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Input Category
	Subrecord Output Column
	Vector Column for Subrecord

	Options Category
	Disable Warning of Column Padding

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Split Subrecord Stage
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Subrecord Column

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Combine Records Stage
	Examples
	Example 1
	Example 2

	Must Do’s
	Stage Page
	Properties Tab
	Outputs Category
	Subrecord Output Column

	Combine Keys Category
	Key

	Options Category
	Top Level Keys

	Advanced Tab
	NLS Locale Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Promote Subrecord Stage
	Examples
	Example 1
	Example 2

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Subrecord Column

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Make Vector Stage
	Examples
	Example 1
	Example 2

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Column’s Common Partial Name

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Split Vector Stage
	Examples
	Example 1
	Example 2

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Vector Column

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page

	Head Stage
	Examples
	Head Stage Default Behavior
	Skipping Data

	Must Do’s
	Stage Page
	Properties Tab
	Rows Category
	All Rows
	Number of Rows (per Partition)
	Period (per Partition)
	Skip (per Partition)

	Partitions Category
	All Partitions
	Partition Number

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Tail Stage
	Examples
	Must Do’s
	Stage Page
	Properties Tab
	Rows Category
	Number of Rows (per Partition)

	Partitions Category
	All Partitions
	Partition Number

	Advanced Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Sample Stage
	Examples
	Sampling in Percent Mode
	Sampling in Period Mode

	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Sample Mode
	Percent
	Seed
	Period (Per Partition)
	Max Rows Per Partition

	Advanced Tab
	Link Ordering Tab

	Input Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	Peek Stage
	Must Do’s
	Stage Page
	Properties Tab
	Rows Category
	All Records (After Skip)
	Number of Records (Per Partition)
	Period (per Partition)
	Skip (per Partition)

	Columns Category
	Peek All Input Columns
	Input Column to Peek

	Partitions Category
	All Partitions
	Partition Number

	Options Category
	Peek Records Output Mode
	Show Column Names
	Delimiter String

	Advanced Tab
	Link Ordering Tab

	Inputs Page
	Partitioning Tab

	Outputs Page
	Mapping Tab

	Row Generator Stage
	Examples
	Using a Row Generator Stage in Default Mode
	Example of Specifying Data to be Generated
	Example of Generating Data in Parallel

	Must Do’s
	Stage Page
	Advanced Tab

	Outputs Page
	Properties Tab
	Options Category
	Number of Records
	Schema File

	Column Generator Stage
	Example
	Must Do’s
	Stage Page
	Properties Tab
	Options Category
	Column Method
	Column to Generate
	Schema File

	Advanced Tab

	Input Page
	Partitioning on Input Links

	Outputs Page
	Mapping Tab

	Write Range Map Stage
	Example
	Must Do’s
	Stage Page
	Advanced Tab
	NLS Locale Tab

	Inputs Page
	Input Link Properties Tab
	Options Category
	File Update Mode
	Key
	Range Map File

	Partitioning Tab

	Parallel Jobs on USS
	Set Up
	Deployment Options
	Deploy Under Control of DataStage
	Using View Data
	Using the Data Set Management Tool
	Editing and Validating Configuration Files
	Deploying Build Stages
	Importing Orchestrate Schemas

	Deploy Standalone

	Implementation Details
	Directory Structure
	Generated Files
	Configuration Files

	Running Jobs on the USS Machine
	Deploying and Running from DataStage
	Deploying from DataStage, Running Manually
	Deploying and Running Manually

	Managing Data Sets
	Structure of Data Sets
	Starting the Data Set Manager
	Data Set Viewer
	Partitions
	Segments
	Viewing the Schema
	Viewing the Data
	Copying Data Sets
	Deleting Data Sets

	The Parallel Engine Configuration File
	Configurations Editor
	Configuration Considerations
	Logical Processing Nodes
	Optimizing Parallelism
	Configuration Options for an SMP
	Example Configuration File for an SMP
	Configuration Options for an MPP System
	An Example of a Four-Node MPP System Configuration
	Configuration Options for an SMP Cluster
	An Example of an SMP Cluster Configuration
	Options for a Cluster with the Conductor Unconnected to the High-Speed Switch
	Diagram of a Cluster Environment

	Configuration Files
	The Default Path Name and the APT_CONFIG_FILE
	Syntax
	Node Names
	Options
	Node Pools and the Default Node Pool
	Disk and Scratch Disk Pools and Their Defaults
	Buffer Scratch Disk Pools

	The resource DB2 Option
	The resource INFORMIX Option
	The resource ORACLE option
	The SAS Resources
	Adding SAS Information to your Configuration File
	Example

	Sort Configuration
	Allocation of Resources
	Selective Configuration with Startup Scripts
	Hints and Tips

	SQL Builder
	How to Use the SQL Builder
	How to Build Queries with the SQL Builder
	Selection Tab
	Toolbar
	Repository Window
	Table Selection Canvas
	Column Selection Grid
	Column expression
	Table
	Column Alias
	Output
	Sort
	Sort Order

	Filter Panel
	Filter Expression Panel

	Group Tab
	Grouping Grid
	Aggregation Functions

	Filter Panel
	Filter Expression Panel

	Sql Tab
	Resolve Columns Grid

	Expression Editor
	Main Expression Editor
	Between
	Comparison
	In
	Like
	Null
	Join

	Calculation/Function Expression Editor
	Calculation
	Functions

	Expression Editor Menus
	Function Form Dialog Box
	Parameters Dialog Box

	Joining Tables
	Specifying Joins
	Join Properties Dialog Box
	Alternate Relation Dialog Box

	Properties Dialogs
	Table Properties Dialog Box
	SQL Properties Dialog Box

	Example Queries
	Example Simple Select Query
	Example Inner Join
	Example Aggregate Query

	Remote Deployment
	Enabling a Project for Job Deployment
	Deployment Package
	Command Shell Script - pxrun.sh
	Environment Variable Setting Source Script - evdepfile
	Main Parallel (OSH) Program Script - OshScript.osh
	Script Parameter File - jpdepfile
	XML Report File - <jobname>.xml
	Compiled Transformer Binary Files - <jobnamestagename>.trx.so
	Self-Contained Transformer Compilation

	Deploying a Job
	Server Side Plug-Ins

	Schemas
	Schema Format
	Date Columns
	Decimal Columns
	Floating-Point Columns
	Integer Columns
	Raw Columns
	String Columns
	Time Columns
	Timestamp Columns
	Vectors
	Subrecords
	Tagged Columns

	Partial Schemas

	Functions
	Date and Time Functions
	Logical Functions
	Mathematical Functions
	Null Handling Functions
	Number Functions
	Raw Functions
	String Functions
	Vector Function
	Type Conversion Functions
	Type ‘Casting’ Functions
	Utility Functions

	Fillers
	Creating Fillers
	Filler Creation Rules
	Filler Creation Examples
	Select a Simple Column
	Select a Column Redefined by a Group
	Select a Group Column that Redefines a Column
	Select a Group Element
	Select a Group Array Column
	Select an Array Element
	Select a Column Redefined by Another Column
	Select Multiple Redefine Columns
	Select Multiple Cascading Redefine Columns
	Select an OCCURS DEPENDING ON Column

	Expanding Fillers

	Index

