Ascential DataStage

for Ascential DataStage™ Enterprise Edition

Parallel Job Developer’s Guide

\Version 7.5.1

L] /Ascenstgaf
. . ortware

Part No. 00D-023DS751
December 2004

his document, and the software described or referenced in it, are confidential and proprietary to Ascential Software
Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a license
agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise provided to
third parties, unless otherwise permitted by that agreement. No portion of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Ascential. The specifications and other
information contained in this document for some purposes may not be complete, current, or correct, and are
subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR
ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you
are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in
the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be
classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined
in Clause 252.227-7013 (c) (1) of DFARs.

This product or the use thereof may be covered by or is licensed under one or more of the following issued
patents: US6604110, US5727158, US5909681, US5995980, US6272449, US6289474, US6311265, US6330008,
US6347310, US6415286; Australian Patent No. 704678; Canadian Patent No. 2205660; European Patent No. 799450;
Japanese Patent No. 11500247.

© 2005 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise Data
Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration, Simplified®,
Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential QualityStage™,
Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential MetaStage™, and
Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be registered in the
United States or other jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices (legalnotices.pdf) for
more information.

legalnotices.pdf

How to Use this Guide

This guide describes features of the DataStage® Manager and
DataStage Designer. It is intended for application developers and
system administrators who want to use DataStage to design and
develop data warehousing applications using parallel jobs.

If you are new to DataStage, you should read the DataStage Designer
Guide and the DataStage Manager Guide. These provide general
descriptions of the DataStage Manager and DataStage Designer, and
give you enough information to get you up and running.

This manual contains more specific information and is intended to be
used as a reference guide. It gives detailed information about parallel
job design and stage editors. For more advanced information, see
Parallel Job Advanced Developer’s Guide.

To find particular topics you can:

m Use the Guide's contents list (at the beginning of the Guide).
m Use the Guide's index (at the end of the Guide).

m Use the Adobe Acrobat Reader bookmarks.

m Use the Adobe Acrobat Reader search facility (select Edit »
Search).

The guide contains links both to other topics within the guide, and to
other guides in the DataStage manual set. The links are shown in blue.
Note that, if you follow a link to another manual, you will jump to that
manual and lose your place in this manual. Such links are shown in
italics.

Documentation Conventions

This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, keywords,
and options that must be input exactly as shown. In text, bold
indicates keys to press, function names, and menu selections.

Parallel Job Developer’s Guide ifi

Documentation Conventions

How to Use this Guide

Convention Usage

UPPERCASE In syntax, uppercase indicates BASIC statements and functions
and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and pathnames.

Plain In text, plain indicates Windows commands and options, file
names, and path names.

Lucida The Lucida Typewriter font indicates examples of source code

Typewriter and system output.

Lucida In examples, Lucida Typewriter bold indicates characters that

Typewriter the user types or keys the user presses (for example,

[]
1)

itemA | itemB

This line
= continues

<Return>).

Brackets enclose optional items. Do not type the brackets unless
indicated.

Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

Three periods indicate that more of the same type of item can
optionally follow.

A right arrow between menu commands indicates you should
choose each command in sequence. For example, “Choose File
» Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

The continuation character is used in source code examples to
indicate a line that is too long to fit on the page, but must be
entered as a single line on screen.

The following conventions are also used:

— Syntax definitions and examples are indented for ease in

reading.

m All punctuation marks included in the syntax—for example,
commas, parentheses, or quotation marks—are required unless
otherwise indicated.

m Syntax lines that do not fit on one line in this manual are
continued on subsequent lines. The continuation lines are
indented. When entering syntax, type the entire syntax entry,
including the continuation lines, on the same input line.

Parallel Job Developer’s Guide

How to Use this Guide

DataStage Documentation

User Interface Conventions

The following picture of a typical DataStage dialog box illustrates the
terminology used in describing user interface elements:

The Inputs Page

Drop

EICS)}Nn =" C5eqFileStage? - Sequential File Stage

Stage Inp sl

Ut name:

The DSLinkd =

General
Tab ——_General | Format I Columns I

File: name:

Field

— Update action
* Ovenarite existing file

 Append to existing file

I~ Backup existing file

Description

Option
Button

o]

Wiew Data... |
Browse
Button
] \Check
Box
=l
E
Cancel | Help |
Button

The DataStage user interface makes extensive use of tabbed pages,
sometimes nesting them to enable you to reach the controls you need
from within a single dialog box. At the top level, these are called
“pages’ at the inner level these are called “tabs” In the example
above, we are looking at the General tab of the Inputs page. When
using context sensitive online help you will find that each page has a
separate help topic, but each tab uses the help topic for the parent
page. You can jump to the help pages for the separate tabs from

within the online help.

DataStage Documentation

DataStage documentation includes the following:

m DataStage Enterprise Edition: Parallel Job Developer’s
Guide: This guide describes the tools that are used in building a
parallel job, and it supplies programmer’s reference information.

m DataStage Enterprise Edition: Parallel Job Advanced
Developer’s Guide: This guide gives more specialized
information about parallel job design.

Parallel Job Developer’s Guide

DataStage Documentation How to Use this Guide

m DataStage Install and Upgrade Guide: This guide describes
how to install DataStage on Windows and UNIX systems, and
how to upgrade existing installations.

m DataStage Server: Server Job Developer’s Guide: This guide
describes the tools that are used in building a server job, and it
supplies programmer’s reference information.

m DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide: This guide describes the tools that are used
in building a mainframe job, and it supplies programmer’s
reference information.

m DataStage Designer Guide: This guide describes the DataStage
Manager and Designer, and gives a general description of how to
create, design, and develop a DataStage application.

m DataStage Manager Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage server jobs.

m DataStage Director Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage server jobs.

m DataStage Administrator Guide: This guide describes
DataStage setup, routine housekeeping, and administration.

m DataStage NLS Guide. This Guide contains information about
using the NLS features that are available in DataStage when NLS
is installed.

These guides are also available online in PDF format. You can read
them using the Adobe Acrobat Reader supplied with DataStage.

You can use the Acrobat search facilities to search the whole
DataStage document set. To use this feature, select Edit » Search
then choose the All PDF documents in option and specify the
DataStage docs directory (by default this is C:\Program
Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is especially useful when
you have become familiar with using DataStage and need to look up
particular pieces of information.

vi Parallel Job Developer’s Guide

Contents

How to Use this Guide

Documentation Conventions it iii
User Interface Conventions. it v
DataStage Documentation i \%
Chapter 1
Introduction
DataStage Parallel Jobs. e 1-2
Chapter 2
Designing Parallel Jobs
Parallel Processing. e 2-1
Pipeline Parallelism s 2-2
Partition Parallelism 2-3
Combining Pipeline and Partition Parallelism 2-4
Repartitioning Data 2-4
Parallel Processing Environments 2-5
The Configuration File. i e et as 2-6
Partitioning, Repartitioning, and CollectingData 2-7
Partitioning oo e e e 2-7
Collecting . ..o e 2-19
Repartitioning 2-22
The Mechanics of Partitioning and Collecting 2-23
Sorting Data 2-25
Data Sets. . . 2-26

Book Title vii

Contents

Meta Data. e 2-26
Runtime Column Propagation 2-27
Table Definitions i e 2-27
Schema Files and Partial Schemas. 2-28
Data Types . ..o 2-28
Strings and UStringsot e 2-31
ComplexData Types . ..o v v i e e ettt 2-32

Incorporating Server Job Functionality........... 2-33

Chapter 3
Stage Editors

Showing Stage Validation Errors. e 3-7

The Stage Page 3-8
General Tab 3-8
Properties Tab 3-8
Advanced Tab. e 3-12
Link Ordering Tab o 3-14
NLSMap Tab e e 3-16
NLS Locale Tab ... e e 3-17

Inputs Page. e 3-18
General Tab 3-19
Properties Tab e 3-19
Partitioning Tab e 3-20
Format Tab e 3-25
Columns Tab e e e 3-26
Advanced Tab. e 3-45

OUtpUtS Pageo e e 3-47
General Tab 3-48
Properties Tab e 3-48
Format Tab e 3-49
Columns Tab e e e 3-51
Mapping Tab e 3-52
Advanced Tab. e 3-55

viii Book Title

Contents

Chapter 4
Data Set Stage
MUSE DO S .ttt e e e e 4-2
WritingtoaData Set i e 4-2
ReadingfromaDataSet i 4-2
Stage Page . ..o 4-2
Advanced Tab. e 4-3
INPULS Page. . ..o e e 4-3
Input Link Properties Tab. 4-4
Partitioning Tab e 4-5
Outputs Page e 4-7
Output Link Properties Tab i e 4-7
Chapter 5
Sequential File Stage
Example of Writing a Sequential File. 5-3
Example of Reading a Sequential File L. 5-4
MUSE DO S .« v e e 5-6
Writingtoa File e 5-6
ReadingfromaFile i 5-6
Stage Page oo e 5-7
Advanced Tab. ... e 5-7
NLS Map Tab ... i e e e e e e 5-7
Inputs Page. e 5-8
Input Link Properties Tab. i 5-9
Partitioning Tab 5-10
InputLink FormatTab 5-13
Outputs Page e 5-25
Output Link Properties Tab 5-26
Reject LinKS . ..o e 5-30
Output Link Format Tab. i e i 5-30
Using RCP With Sequential Stages 5-42
Chapter 6
File Set Stage
MUSEt DO'S . ot 6-2
Writingtoa File e 6-3
ReadingfromaFile i i 6-3

Book Title ix

Contents

Stage Page e 6-3
Advanced Tab. e e 6-3
NLSMap Tab e 6-4
INPULS Page. . ..o e e e e 6-5
Input Link Properties Tab i 6-5
Partitioning Tab e 6-8
Input Link Format Tab 6-10
OUtpUtS Pageo e e 6-22
Output Link Properties Tab i 6-23
Reject Link Properties i i e 6-25
Output Link Format Tab. 6-25
Using RCP With File SetStages e 6-37
Chapter 7
Lookup File Set Stage
MUSE DO S . oot e 7-3
Creatinga Lookup File Set:........ i 7-3
Looking Up aLookup File Set: 7-3
Stage Page e 7-3
Advanced Tab. e 7-4
INPUES Page. . .. e 7-5
Input Link Properties Tab i, 7-5
Partitioning Tab e 7-7
Outputs Page e 7-9
Output Link Properties Tab e 7-9
Chapter 8
External Source Stage
MUSt DO'S . .o e e 8-2
Stage Pageo e 8-3
Advanced Tab. i e e 8-3
NLSMap Tab . ..o e 8-3
Outputs Page e 8-4
Output Link Properties Tab o e e 8-5
Reject Link Properties e e as 8-6
Format Tab e e 8-7
Using RCP With External Source Stages. 8-18

X Book Title

Contents

Chapter 9
External Target Stage
MUSE DO S .ttt e e e e 9-2
Stage Page 9-3
Advanced Tab. e 9-3
NLSMap Tab ... e 9-3
INPULS Page. . .. e e e 9-4
Input Link Properties Tab. i 9-4
Partitioning Tab 9-6
Format Tab 9-8
Outputs Page 9-20
Using RCP With External Target Stages 9-21
Chapter 10
Complex Flat File Stage
Must DO's . ..o e 10-2
Stage Page 10-3
File Options Tab i 10-3
Record Options Tab i e e 10-8
Columns Tab.o 10-11
Layout Tab e e 10-16
NLSMap Tab e 10-17
Advanced Tab. ... e e 10-17
Input Page. e 10-18
Input Link Columns Tab......... i i 10-18
Partitioning Tab 10-18
OUtpUL Page e 10-21
Selection Tab i 10-21
Output Link Columns Tab 10-26
Reject LinKs . ..o 10-27
Chapter 11
SAS Parallel Data Set Stage
Must DO'S . ..o 11-2
Writingan SAS Data Set e 11-2
Readingan SASDataSet i 11-2
Stage Page 11-2
Advanced Tab. ... e e 11-3

Book Title xi

Contents

Inputs Page. e 11-3
Input Link Properties Tab i 11-4
Partitioning Tab e 11-5

OUtpULS Page . . .o 11-7
Output Link Properties Tab 11-7

Chapter 12
DB2/UDB Enterprise Stage

Accessing DB2 Databases.t i e 12-3
Remote Connection i ettt 12-4
Handling Special Characters (#and $).............. ..., 12-5
Using the Pad Character Property 12-7
Type Conversions - Writingto DB2/UDBo ... 12-8
Type Conversions - Reading from DB2/UDB....................... 12-9

EXamples ... e 12-10
LookingUpaDB2/UDBTable.......... ..., 12-10
Updatinga DB2/UDB Table........ i, 12-12

MUSE DO S . .t e e 12-14
Writinga DB2 Database. 12-14
Updatinga DB2 Database 12-15
Deleting Rows fromaDB2Database 12-15
LoadingaDB2Database e 12-15
ReadingaDB2Database i, 12-16
Performing a Direct Lookup on a DB2 Database Table.............. 12-16
Performing an In Memory Lookup on a DB2 Database Table 12-17

Stage Page e 12-17
Advanced Tab. 12-17
NLS Map Tab e e e e e 12-18

INPULS Page. e e e 12-18
Input Link Properties Tab 12-19
Partitioning Tab 12-36

Outputs Page e 12-38
Output Link Properties Tab i e 12-39

xii Book Title

Contents

Chapter 13
Oracle Enterprise Stage
Accessing Oracle Databases i, 13-3
Handling Special Characters (#and$) 13-4
Loading Tables e 13-5
Type Conversions - WritingtoOracle..........., 13-6
Type Conversions - ReadingfromOracle 13-8
EXamples e e 13-8
LookingUpanOracleTable 13-8
Updatingan Oracle Table 13-10
MUSE DO S .+ v it e 13-12
Updating an Oracle Database 13-12
Deleting Rows from an Oracle Database 13-13
Loadingan Oracle Database 13-13
Reading an Oracle Database 13-14
Performing a Direct Lookup on an Oracle Database Table........... 13-14
Performing an In Memory Lookup on an Oracle Database Table 13-15
Stage Page . ..o oo 13-15
Advanced Tab. ... e 13-15
NLS Map . oo e e e e 13-16
INnputs Page.o 13-17
Input Link Properties Tab. i i 13-17
Partitioning Tab 13-25
Outputs Pageo e 13-27
Output Link Properties Tabc i i 13-28
Chapter 14
Teradata Enterprise Stage
Accessing Teradata Databases. 14-2
Installing the Teradata Utilities Foundation. 14-2
Creating Teradata User i i i 14-2
Creating a Database Server......... i 14-2
Teradata Databases — PointstoNote 14-3
NLS Support and Teradata Database Character Sets................ 14-3
Column Name and Data Type Conversion. 14-4
Restrictions and Limitations when Writing to a Teradata Database 14-6
Restrictions on Reading a Teradata Database. 14-7

Book Title xiii

Contents

MUSE DO S . vt e e 14-7
Writing a Teradata Database. i, 14-7
Reading a Teradata Database............ 14-8
Stage Page . ..o 14-8
Advanced Tab. e 14-8
NLS Map . .ot e e 14-9
Inputs Page. e 14-10
Input Link Properties Tab i 14-10
Partitioning Tab e 14-14
OUutpUtsS Page . ..o 14-16
Output Link Properties Tab 14-17
Chapter 15
Informix Enterprise Stage
Accessing Informix Databases 15-2
Considerations for Using the High Performance Loader (HPL) 15-2
Using Informix XPS Stages on AIX Systems. 15-5
Type Conversions - Writing to Informix. 15-6
Type Conversions - Reading from Informix. 15-6
MUSE DO S . ot e e e 15-7
Writing an Informix Database. L. 15-8
Reading an Informix Database 15-8
Stage Page . ..o 15-9
Advanced Tab. e 15-9
Inputs Page. e 15-10
Input Link Properties Tab i 15-10
Partitioning Tab o 15-13
Outputs Pageo e e 15-16
Output Link Properties Tab i, 15-16
Chapter 16
Transformer Stage
MUSt DO'S . .o e 16-2
Transformer Editor Components 16-3
Toolbar ..o e 16-3
LiNK Ara . . o 16-3
Meta Data Area.o vt e e 16-4
Shortcut Menus e 16-4

Xiv Book Title

Contents

Transformer Stage Basic Concepts 16-5
INpUt Link. . .. e 16-5
Output Links i e e 16-5

Editing Transformer Stages i 16-7
UsingDragand Drop oot 16-7
Find and Replace Facilities i 16-8
Select Facilities. i e 16-9
Creating and Deleting Columns i 16-9
Moving Columns WithinalLink..........., 16-10
Editing Column MetaData. i, 16-10
Defining Output Column Derivations 16-10
Editing Multiple Derivations 16-13
Handling Null Values in Input Columns 16-16
Defining Constraints and Handling Otherwise Links. 16-16
Specifying Link Order. 16-18
Defining Local Stage Variables, 16-18

The DataStage Expression Editor.o i, 16-21
Expression Format. i 16-21
Entering Expressions e 16-22
Completing Variable Names i 16-23
Validating the Expression i 16-23
Exiting the Expression Editor i 16-24
Configuring the Expression Editor 16-24
System Variables 16-24
Guide to Using Transformer Expressions and Stage Variables. 16-24

Transformer Stage Properties. 16-27
Stage Pageo 16-27
INpuUtS Pageo e e e 16-32
Outputs Page e 16-34

Chapter 17
BASIC Transformer Stages

Must DO's e 17-2

BASIC Transformer Editor Components, 17-3
T00lDar .. e e e 17-3
LiNK Ara . .t 17-3
Meta Data Area. e e e 17-4
Shortcut Menus 17-4

Book Title Xv

Contents

BASIC Transformer Stage BasicConceptsccvviiininn... 17-5
INpUt Link ... e 17-5
Output Linkso 17-5
Before-Stage and After-Stage Routines. 17-6

Editing BASIC Transformer Stages 17-7
Using Drag and Drop.o e e 17-7
Find and Replace Facilities i 17-8
Select Facilities. i 17-9
Creating and Deleting Columns 17-10
Moving Columns WithinaLink........... 17-10
Editing ColumnMetaData 17-10
Defining Output Column Derivations. 17-10
Editing Multiple Derivations i 17-13
Specifying Before-Stage and After-Stage Subroutines 17-16
Defining Constraints and Handling Reject Links 17-17
Specifying Link Order e 17-19
Defining Local Stage Variables. 17-20

The DataStage Expression Editor. i, 17-22
Expression Format.o e 17-23
Entering EXpressions.t e 17-24
Completing Variable Names i 17-25
Validating the Expression i i 17-25
Exiting the Expression Editor 17-25
Configuring the Expression Editor 17-26

BASIC Transformer Stage Properties. 17-26
Stage Pageo 17-26
INputs Page. . ..o e 17-27
Outputs Page e e 17-30

Chapter 18
Aggregator Stage

EXample .. e 18-2

MUSE DO S . ot e 18-5

Stage Page . ..o 18-6
Properties Tab 18-6
Advanced Tab. i e 18-13
NLS Locale Tab ... e e 18-14

XVi Book Title

Contents

Inputs Page. e e 18-15
Partitioning Tab 18-15
Outputs Page oo 18-18
Mapping Tab. o e e 18-18
Chapter 19
Join Stage
JoinVersus Lookup i e 19-2
Example JOINs 19-3
INNErJOin ... e 19-4
Left OQuter Join ... o e e 19-4
Right Outer Join e e 19-5
Full QuterJoin ... e e e 19-5
MUSE DO S .« vt e e 19-6
Stage Page . ..o oo 19-6
Properties Tab. o e 19-7
Advanced Tab. ... e 19-8
Link Ordering Tab. e 19-9
NLS Locale Tab. et 19-9
Inputs Page. e 19-10
Partitioningon Input Links. i 19-10
Outputs Page oo 19-13
Mapping Tab. e e 19-13
Chapter 20
Merge Stage
Example Merge e 20-3
MUSE DO S .« vt 20-4
Stage Page . ..o oo 20-5
Properties Tab. e 20-5
Advanced Tab. i e 20-7
Link Ordering Tab. e 20-7
NLS Locale Tab. e et 20-8
INPUES Page. . . e 20-9
Partitioning Tab 20-9
Outputs Page oo 20-12
Reject Linkso oo 20-12
Mapping Tab. 20-13
Book Title xvii

Contents

Chapter 21
Lookup Stage
Lookup Versus Join.o e e 21-5
Example Look Up. . .. e 21-5
MUSE DO S . ot e 21-7
Using In-Memory Lookup tables 21-8
Using Oracle or DB2 Databases Directly 21-9
Using Lookup Fileset i e e 21-10
Lookup Editor Components i 21-11
Toolbar ..o 21-11
LiNK Ara . .« vttt e 21-11
Meta Data Area. . ..o e 21-12
Shortcut Menus e 21-12
Editing Lookup Stages.t e 21-13
UsingDrag and Drop.o oot 21-13
Find and Replace Facilities i, 21-14
Select Facilities. i e 21-15
Creating and Deleting Columns i, 21-16
Moving Columns WithinaLink........... 21-16
Editing Column MetaData i, 21-16
Defining Output Column Derivations., 21-16
Defining Input Column Key Expressionso, 21-19
Lookup Stage Properties.t e 21-20
Stage Pageo 21-20
INpUtsS Page. . ..o e 21-24
Outputs Page e 21-26
Lookup Stage Conditionst e 21-27
The DataStage Expression Editor. 21-29
Expression Format. e 21-29
Entering EXpressions.t e 21-30
Completing Variable Names i 21-31
Validating the Expression i i i 21-31
Exiting the Expression Editor 21-31
Configuring the Expression Editor 21-32
xviii Book Title

Contents

Chapter 22
Funnel Stage
Examples ... 22-2
Continuous Funnel Example o i e 22-2
Sort Funnel Example i e 22-4
Sequence Funnel Example ... 22-6
MUSE DO S .« o 22-7
Stage Pageo e 22-8
Properties Tab. 22-8
Advanced Tab. ... e e 22-9
Link Ordering Tab. 22-11
NLS Locale Tab. s 22-11
INPULS Page. e e 22-12
Partitioningon lnput Links. i e 22-12
Outputs Pageo e 22-15
Mapping Tab. 22-15
Chapter 23
Sort Stage
EXamples e e 23-3
Sequential Sort. e e 23-3
Parallel Sort. 23-6
Total Sort. . .o e e 23-8
MUSE DO S .« ot e 23-9
Stage Page . ..o oo e 23-10
Properties Tab. o i 23-10
Advanced Tab. e 23-14
NLS Locale Tab.o e 23-14
Inputs Page.o 23-15
Partitioning Tab 23-15
Outputs Page e 23-18
Mapping Tab. 23-18
Chapter 24
Remove Duplicates Stage
Example ... 24-2
MUSE DO S .« vt e 24-4

Book Title Xix

Contents

Stage Page e 24-5
Properties Tab i 24-5
Advanced Tab. e 24-6
NLS Locale Tab e e 24-7
INnputs Page. 24-7
Partitioningon Input Links 24-8
Output Page e 24-10
Mapping Tab e 24-10
Chapter 25
Compress Stage
MUSE DO S . . it e e e e 25-2
Stage Page e 25-2
Properties Tab 25-2
Advanced Tab. e 25-3
INpUt Page. e e 25-3
PartitioningonlnputLinks 25-4
Output Pageo e 25-6
Chapter 26
Expand Stage
MUSE DO S . ot e e 26-2
Stage Page . . .o e 26-2
Properties Tab e 26-2
Advanced Tab. e 26-3
INPUL Page. . ..o 26-3
Partitioningon Input Links 26-4
Output Pageo e e 26-4
Chapter 27
Copy Stage
Example 27-2
MUSE DO S . .ttt e e e 27-6
Stage Page e 27-6
Properties Tab i 27-6
Advanced Tab. e 27-6
INpUt Page. e e e 27-7
Partitioningon Input Links 27-8

XX Book Title

Contents

Outputs Page e 27-10
Mapping Tab. 27-10
Chapter 28
Modify Stage
Examples ... 28-2
Dropping and Keeping Columns. it 28-2
Changing Data Type.ttt e e 28-3
NullHandling . ..o e e et 28-4
MUSE DO S .« o 28-4
Stage Pageo e 28-5
Properties Tab. 28-5
Advanced Tab. ... e e 28-13
Input Page. e 28-14
Partitioningon Input Links. i 28-14
Outputs Page oo e 28-16
... 28-16
Chapter 29
Filter Stage
Specifyingthe Filter. i e e 29-2
Input Data Columns e 29-2
Supported Boolean Expressions and Operators 29-3
String CompariSONot e 29-3
Examples. 29-4
MUSE DO S . it e e e e 29-5
Stage Page 29-5
Properties Tab.o 29-6
Advanced Tab. ... e 29-7
Link Ordering Tab. e 29-8
NLS Locale Tab. ettt 29-8
INpUt Page. 29-9
Partitioningon Input Links. 29-9
Outputs Pageo e 29-12
Mapping Tab. 29-12

Book Title xxi

Contents

Chapter 30
External Filter Stage
MUSE DO S . . it e e e e 30-2
Stage Page e 30-2
Properties Tab oo 30-2
Advanced Tab. e 30-3
INpUt Page. e e 30-3
PartitioningonlnputLinks i 30-4
Outputs Page e e 30-6
Chapter 31
Change Capture Stage
Example Data. e 31-2
MUSE DO S . oo e 31-3
Stage Page . ..o e 31-4
Properties Tab 31-4
Advanced Tab. e 31-8
Link Ordering Tab e 31-9
NLS Locale Tab ... et 31-9
INPULS Page. e e e 31-10
Partitioning Tab e 31-10
Outputs Page e 31-13
Mapping Tab e 31-13
Chapter 32
Change Apply Stage
Example Data. e 32-3
MUSE DO S . oo e 32-5
Stage Page e 32-5
Properties Tab 32-5
Advanced Tab. e 32-8
Link Ordering Tabt e e e 32-9
NLS Locale Tab e et as 32-10
INPULS Page. e e e 32-10
Partitioning Tab 32-11
Outputs Page e 32-13
Mapping Tab e 32-13

xxii Book Title

Contents

Chapter 33
Difference Stage
Example Data 33-2
MUSE DO S .« vt e 33-3
Stage Page 33-4
Properties Tab.o 334
Advanced Tab. ... e 33-7
Link Ordering Tab. e 33-8
NLS Locale Tab. ettt 33-9
Inputs Page. e 33-9
Partitioning Tab 33-10
Outputs Pageo e 33-12
Mapping Tab. e e 33-13
Chapter 34
Compare Stage
Example Data i e e 34-2
MUSE DO S .« vt e e 34-3
Stage Page . ..o 34-4
Properties Tab. e 34-4
Advanced Tab. e 34-6
Link Ordering Tab. e 34-7
NLS Locale Tab. e et 34-7
Inputs Page. e 34-8
Partitioning Tab 34-8
Outputs Pageo e 34-11
Chapter 35
Encode Stage
Must DO's .. .o e 35-2
Stage Page 35-2
Properties Tab.o 35-2
Advanced Tab. ... e 35-3
INPULS Page. e e e 35-3
Partitioning Tab 35-4
Outputs Page e 35-6

Book Title xxiii

Contents

Chapter 36
Decode Stage
MUSE DO S . . it e e e e 36-1
Stage Page e 36-2
Properties Tab oo 36-2
Advanced Tab. e 36-2
INPULS Page. e e 36-3
Partitioning Tab e 36-4
Outputs Page e e 36-4
Chapter 37
Switch Stage
EXample ... e 37-2
MUSE DO S . oo e 37-3
Stage Page . ..o e 37-4
Properties Tab 37-4
Advanced Tab. e 37-7
Link Ordering Tab e 37-8
NLS Locale Tab ... et 37-8
INPULS Page. e e e 37-9
Partitioning Tab e e 37-9
Outputs Page e 37-12
Mapping Tab e 37-12
Reject Link. . ..o e 37-13
Chapter 38
SAS Stage
Example Job. e e 38-2
MUSE DO S . .ttt e e e 38-5
Using the SAS Stage on NLS Systems 38-5
Stage Page e 38-6
Properties Tab i 38-6
Advanced Tab. 38-10
Link Ordering Tabo et e e 38-11
NLS Map . .o e 38-11
Inputs Page. e 38-12
Partitioning Tab 38-12

XXiv Book Title

Contents

Outputs Page e 38-15
Mapping Tab. 38-15
Chapter 39
Generic Stage
MUSE DO S . it e e 39-2
Stage Page 39-2
Properties Tab.o 39-2
Advanced Tab. ... e 39-3
Link Ordering Tab.t e 39-4
INPULS Page. e e 39-4
Partitioning Tab 394
Outputs Page e 39-7
Chapter 40
Surrogate Key Stage
KeY SPaCE . . v 40-2
EXamples e e e 40-4
MUSE DO S . it e e e e 40-6
Stage Page 40-7
Properties Tab. oo 40-7
Advanced Tab. ... e 40-8
INPULS Page. e e e 40-8
Partitioning Tab e 40-9
Outputs Page e e 40-11
Mapping Tab. 40-12
Chapter 41
Column Import Stage
EXamples ... e 41-2
MUSE DO S .« ot e 41-5
Stage Page 41-6
Properties Tab. 41-6
Advanced Tab. ... e e 41-8
INPUES Page. . . e e 41-9
Partitioning Tab 41-9

Book Title XXV

Contents

Outputs Page e 41-11
Format Tab e 41-12
Mapping Tab e 41-23
Reject Link. e 41-24
Using RCP With Column ImportStageso, 41-24
Chapter 42
Column Export Stage
EXamples ... e e 42-2
MUSE DO S . oo 42-4
Stage Page . ..o e 42-5
Properties Tab 42-5
Advanced Tab. e e 42-7
Inputs Page. e 42-7
Partitioning Tab o 42-8
Format Tab e 42-10
Outputs Page . ..o 42-22
Mapping Tab e 42-23
Reject Link. . ..o e 42-23
Using RCP With Column Export Stages. o, 42-24
Chapter 43
Make Subrecord Stage
EXamples e e 43-3
MUSE DO S . .t e e e 43-5
Stage Page e 43-6
Properties Tab 43-6
Advanced Tab. e 43-7
INPUES Page. . .. 43-8
Partitioning Tab e 43-8
Outputs Page e 43-10
Chapter 44
Split Subrecord Stage
EXamples ... e 44-2
MUSE DO S . ot e e 44-5

XXVi Book Title

Contents

Stage Page 44-6
Properties Tab.o 44-6
Advanced Tab. ... e 44-6
INPULS Page. e e e 44-7
Partitioning Tab 44-7
Outputs Page e 44-10
Chapter 45
Combine Records Stage
EXamples e e 45-2
Example 1. ... e e e 45-3
Example 2 45-5
MUSE DO S .« vt e 45-7
Stage Page 45-8
Properties Tab.o 45-8
Advanced Tab. e 45-10
NLS Locale Tab. e e 45-10
INnputs Page.o 45-11
Partitioning Tab 45-11
Outputs Page e 45-14
Chapter 46
Promote Subrecord Stage
EXamples e e 46-2
Example 1 ... 46-3
Example 2 46-5
MUSE DO S .« vt e 46-7
Stage Page . ..o oo 46-7
Properties Tab.o 46-7
Advanced Tab. e 46-8
Inputs Page. 46-8
Partitioning Tab 46-9
Outputs Page e 46-11

Book Title XXVii

Contents

Chapter 47
Make Vector Stage
Examples 47-2
Example 1. .. e 47-2
Example 2. .. e 47-5
MUSE DO S . ot e e 47-7
Stage Page . ..o 47-7
Properties Tab e a7-7
Advanced Tab. e 47-8
Inputs Page. e 47-8
Partitioning Tab e 47-9
Outputs Page e e 47-11
Chapter 48
Split Vector Stage
Examples 48-2
Example 1. .. e 48-2
Example 2. .. 48-4
MUSE DO S . ot e e 48-6
Stage Page . ..o 48-6
Properties Tab e 48-6
Advanced Tab. e 48-7
Inputs Page. e 48-7
Partitioning Tab e 48-8
Outputs Pageo e e 48-10
Chapter 49
Head Stage
Examples 49-2
Head Stage Default Behavior 49-2
Skipping Data.ooiiii i e 49-4
MUSE DO S . ot e e 49-4
Stage Page . ..o 49-5
Properties Tab e 49-5
Advanced Tab. i e 49-7
Inputs Page. 49-7
Partitioning Tab e 49-8

xxviii Book Title

Contents

Outputs Page e 49-10
Mapping Tab. 49-11
Chapter 50
Tail Stage
Examples ... 50-2
MUSE DO S .« vt e 50-3
Stage Page 50-4
Properties Tab.o 50-4
Advanced Tab. e 50-5
INPULS Page. e e 50-6
Partitioning Tab 50-6
Outputs Page e 50-8
Mapping Tab. e 50-9
Chapter 51
Sample Stage
Examples e 51-2
SamplinginPercentMode 51-2
SamplinginPeriodMode 51-6
MUSE DO S .« v e e 51-7
Stage Page . ..o oo 51-8
Properties Tab. e 51-8
Advanced Tab. e 51-10
Link Ordering Tab. e 51-11
INPUL Page. . .. 51-11
Partitioningon Input Links. 51-11
Outputs Pageo e 51-14
Mapping Tab. 51-14
Chapter 52
Peek Stage
Must DO's .. .o e 52-2
Stage Page 52-2
Properties Tab.o 52-2
Advanced Tab. ... e 52-5
Link Ordering Tab.t et 52-6

Book Title XXix

Contents

Inputs Page. e 52-6
Partitioning Tab o 52-6
OUutpuUtsS Page . ..o 52-9
Mapping Tab e 52-9
Chapter 53
Row Generator Stage
EXamPles ..o 53-2
Using a Row Generator Stage in DefaultMode 53-2
Example of Specifying Datato be Generated 53-3
Example of Generating DatainParallel 53-6
MUSE DO S . .ot e e e e 53-7
Stage Page e 53-8
Advanced Tab. e e 53-8
OUtpUtS Pageo e e 53-9
Properties Tab e 53-9
Chapter 54
Column Generator Stage
EXample ..o 54-1
MUSE DO S . ot e e 54-5
Stage Page . ..o e 54-6
Properties Tab e 54-6
Advanced Tab. e 54-7
INPUL Page. e 54-8
Partitioningon Input Links 54-8
Outputs Page e 54-11
Mapping Tab e 54-11
Chapter 55
Write Range Map Stage
Example 55-2
MUSE DO S . .ttt e e e 55-3
Stage Page e 55-4
Advanced Tab. e 55-4
NLS Locale Tab et 55-5

XXX Book Title

Contents

Inputs Page. e 55-5
Input Link Properties Tab. i 55-6
Partitioning Tab e 55-6
Chapter 56
Parallel Jobs on USS
St UP . 56-1
Deployment Optionso i it e 56-2
Deploy Under Control of DataStage 56-2
Deploy Standalone. 56-5
Implementation Details e 56-6
Directory Structure. e 56-6
Generated Files. 56-7
Configuration Files. 56-8
Running Jobs onthe USS Machine 56-8
Deploying and Running from DataStage 56-8
Deploying from DataStage, Running Manually..................... 56-9
Deploying and Running Manually 56-11
Chapter 57
Managing Data Sets
Structureof DataSets o 57-1
Starting the Data Set Manager............ it 57-2
Data Set Viewer e e 57-4
Viewingthe Schema 57-5
Viewingthe Data e 57-5
Copying Data Sets i e 57-6
Deleting Data Sets iiiii i e e 57-6
Chapter 58

The Parallel Engine Configuration File

Configurations Editor. e 58-1

Book Title XXXi

Contents

Configuration Considerations. 58-3
Logical Processing Nodes i 58-4
Optimizing Parallelism. i 58-4
Configuration Optionsforan SMP 58-6
Example Configuration FileforanSMP. 58-8
Configuration Options foran MPP System 58-9
An Example of a Four-Node MPP System Configuration............ 58-10
Configuration Options foran SMP Cluster 58-11
An Example of an SMP Cluster Configuration..................... 58-12
Options for a Cluster with the Conductor Unconnected to the High-Speed

SWItCh . . e e 58-13
Diagram of a Cluster Environment.............. 58-15

Configuration Files. i i e e 58-15
The Default Path Name and the APT_CONFIG_FILE................ 58-16
Y NEAX . i e 58-16
Node NameEsS. . ..ottt e e e e 58-17
OPtiONS . e e e 58-18
Node Pools and the Default Node Pool 58-22
Disk and Scratch Disk Pools and Their Defaults 58-23
Buffer Scratch Disk Pools i 58-24

The resource DB2 Optionot e e e 58-25

The resource INFORMIX Option. i 58-26

The resource ORACLE option. e e e e s 58-27

The SAS RESOUICES . . o ottt et e 58-28
Adding SAS Information to your Configuration File................ 58-28
Example ... 58-29

Sort Configuration. e 58-29

Allocation Of RESOUICES.t e e e e e e e e 58-30

Selective Configuration with Startup Scripts 58-30

Hints and Tips ..o e e e e e e 58-32

Chapter 59

SQL Builder
How to Usethe SQL Builder. i 59-1
How to Build Queries with the SQL Builder 59-2

XXXii Book Title

Contents

Selection Tab i 59-5
Toolbar ..o e e 59-5
Repository Window e e et 59-6
Table Selection Canvast i e 59-7
Column Selection Grid. i i e e 59-8
Filter Panel e e 59-9
Filter Expression Panel. i e 59-10

Group Tab. . oo 59-10
Grouping Grid. e e 59-10
Filter Panel e 59-12
Filter Expression Panel. 59-12

Sl Tab .o e 59-12
Resolve Columns Gridt e s 59-12

Expression Eitor.o 59-14
Main Expression Editor 59-14
Calculation/Function Expression Editor 59-20
Expression Editor Menus. 59-21

Joining Tables e 59-23
Specifying JoiNsot 59-25
Join Properties Dialog BOX oo oo oot e 59-26
Alternate Relation Dialog Box........... .. i, 59-27

Properties Dialogsot e 59-28
Table Properties Dialog BoxX s 59-28
SQL Properties DialogBox 59-29

Example QUeries . ..ot e 59-29
Example Simple Select Query. i i 59-29
Example lnnerJdoin 59-32
Example Aggregate Query i 59-34

Chapter 60

Remote Deployment

Enabling a Project for Job Deployment........... 60-2

Book Title xXxxiii

Contents

Deployment Package. i e e 60-4
Command Shell Script—pxrun.sh 60-5
Environment Variable Setting Source Script — evdepfile............. 60-5
Main Parallel (OSH) Program Script — OshScript.osh................ 60-5
Script Parameter File — jpdepfile. 60-5
XML Report File — <jobname>.xml 60-5
Compiled Transformer Binary Files — <jobnamestagenames.trx.so.... 60-5
Self-Contained Transformer Compilation 60-6

DeployingaJob. e e 60-6

Server Side Plug-Ins 60-7

Appendix A

Schemas
Schema Format e A-1
Date Columns. e e A-3
Decimal Columns. e e A-3
Floating-Point Columns. i A-4
Integer Columns. e A-4
Raw Columns e A-4
String Columns A-4
Time ColumNs e e A-5
Timestamp Columns i i e e A-5
VOIS ot e e A-5
SUDIEeCOrds . . .o e A-6
Tagged Columns e A-7
Partial Schemas e A-7

Appendix B

Functions
Date and Time Functions i i enn B-1
Logical FUNCLIONS. e B-4
Mathematical FuNcCtions i e B-5
Null Handling Functions e B-7
Number Functions. e B-7
Raw Functions e B-8
String FUNCLiONS. o B-8
Vector Function e B-11
Type Conversion Functions it B-11

XXXiv

Book Title

Contents

Type ‘Casting’ FUNCLIONSo e e e e e e e e e e B-14
Utility Functions

Appendix C
Fillers

Creating Fillers

C-1

Filler Creation Rules.ot e e et C-2
Filler Creation Examples e C-3
Expanding Fillers C-16

Book Title

XXXV

Contents

XXXVi Book Title

Introduction

This chapter gives an overview of parallel jobs. Parallel jobs are
developed using the DataStage Designer and compiled and run on the
DataStage server. Such jobs commonly connect to a data source,
extract, and transform data and write it to a data warehouse.

DataStage allows you to concentrate on designing your job
sequentially, without worrying too much about how parallel
processing will be implemented. You specify the logic of the job,
DataStage specifies the best implementation on the available
hardware. If required, however, you can exert more exact control on
job implementation.

Once designed, parallel jobs can run on SMP, MPP, or cluster systems.
Jobs are scaleable. The more processors you have, the faster the job
will run.

Parallel jobs can also be run on a USS system, special instructions for
this are given in Chapter 56.

Note You must choose to either run parallel jobs on standard
UNIX systems or on USS systems in the DataStage
Administrator. You cannot run both types of job at the same
time. See DataStage Administrator Guide.

DataStage also supports server jobs and mainframe jobs. Server jobs
are compiled and run on the server. These are for use on non-parallel
systems and SMP systems with up to 64 processors. Server jobs are
described in Server Job Developer’s Guide. Mainframe jobs are
available if have Enterprise MVS Edition installed. These are loaded
onto a mainframe and compiled and run there. Mainframe jobs are
described in DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide.

Parallel Job Developer’s Guide 11

DataStage Parallel Jobs Introduction

DataStage Parallel Jobs

DataStage jobs consist of individual stages. Each stage describes a
particular process, this may be accessing a database or transforming
data in some way. For example, one stage may extract data from a
data source, while another transforms it. Stages are added to a job
and linked together using the Designer.

The following diagram represents one of the simplest jobs you could
have: a data source, a Transformer (conversion) stage, and the final
database. The links between the stages represent the flow of data into
or out of a stage. In a parallel job each stage would correspond to a
process. You can have multiple instances of each process to run on
the available processors in your system.

Data Transformer Data
Source Stage Warehouse

You must specify the data you want at each stage, and how it is
handled. For example, do you want all the columns in the source data,
or only a select few? Are you going to rename any of the columns?
How are they going to be transformed?

You lay down these stages and links on the canvas of the DataStage
Designer. You specify the design as if it was sequential, DataStage
determines how the stages will become processes and how many
instances of these will actually be run.

DataStage also allows you to store reuseable components in the
DataStage Repository which can be incorporated into different job
designs. You can import these components, or entire jobs, from other
DataStage Projects using the DataStage Manager. You can also import
meta data directly from data sources and data targets.

Guidance on how to construct your job and define the required meta
data using the DataStage Designer and the DataStage Manager is in
the DataStage Designer Guide and DataStage Manager Guide.
Chapter 4 onwards of this manual describe the individual stage
editors that you may use when developing parallel jobs.

1-2

Parallel Job Developer’s Guide

Designing Parallel Jobs

The DataStage Parallel Extender brings the power of parallel
processing to your data extraction and transformation applications.

This chapter gives a basic introduction to parallel processing, and
describes some of the key concepts in designing parallel jobs for
DataStage. If you are new to DataStage, you should read the
introductory chapters of the DataStage Designer Guide first so that
you are familiar with the DataStage Designer interface and the way
jobs are built from stages and links.

Parallel Processing

There are two basic types of parallel processing; pipeline and
partitioning. DataStage allows you to use both of these methods. The
following sections illustrate these methods using a simple DataStage
job which extracts data from a data source, transforms it in some way,
then writes it to another data source. In all cases this job would

Parallel Job Developer’s Guide 21

Parallel Processing Designing Parallel Jobs

appear the same on your Designer canvas, but you can configure it to
behave in different ways (which are shown diagrammatically).

&% Parallel - Untitled.1 =

F‘ D5 Link3 * DSLink 4

Oracle_0 Tranzformer_1 De2 2

xl_l;

=
FY

» | M|, Untitled.1

Pipeline Parallelism

If you ran the example job on a system with at least three processors,
the stage reading would start on one processor and start filling a
pipeline with the data it had read. The transformer stage would start
running on another processor as soon as there was data in the
pipeline, process it and start filling another pipeline. The stage writing
the transformed data to the target database would similarly start
writing as soon as there was data available. Thus all three stages are
operating simultaneously. If you were running sequentially, there
would only be one instance of each stage. If you were running in

2-2 Parallel Job Developer’s Guide

Designing Parallel Jobs Parallel Processing

parallel, there would be as many instances as you had partitions (see
next section).

Time taken

Conceptual representation of job running with no parallelism

Time taken

ORALLE

Conceptual representation of same job using pipeline parallelism

Partition Parallelism

Imagine you have the same simple job as described above, but that it
is handling very large quantities of data. In this scenario you could use
the power of parallel processing to your best advantage by
partitioning the data into a number of separate sets, with each
partition being handled by a separate instance of the job stages.

Using partition parallelism the same job would effectively be run
simultaneously by several processors, each handling a separate
subset of the total data.

Parallel Job Developer’s Guide 2-3

Parallel Processing Designing Parallel Jobs

At the end of the job the data partitions can be collected back together
again and written to a single data source.

Conceptual representation of job using partition parallelism

Combining Pipeline and Partition Parallelism

In practice you will be combining pipeline and partition parallel
processing to achieve even greater performance gains. In this
scenario you would have stages processing partitioned data and
filling pipelines so the next one could start on that partition before the

previous one had finished.

Conceptual representation of job using pipeline and partition parallelism

Repartitioning Data

In some circumstances you may want to actually repartition your data
between stages. This might happen, for example, where you want to
group data differently. Say you have initially processed data based on
customer last name, but now want to process on data grouped by zip
code. You will need to repartition to ensure that all customers sharing
the same zip code are in the same group. DataStage allows you to

repartition between stages as and when needed (although note there
are performance implications if you do this and you may affect the

2-4 Parallel Job Developer’s Guide

Designing Parallel Jobs Parallel Processing Environments

balance of your partitions — see "Identifying Superfluous Repartitions"
in Parallel Job Advanced Developer’s Guide).

Conceptual representation of data repartitioning

Further details about how DataStage actually partitions data, and
collects it together again, is given in "Partitioning, Repartitioning, and
Collecting Data" on page 2-7.

Parallel Processing Environments

The environment in which you run your DataStage jobs is defined by
your system'’s architecture and hardware resources. All parallel-
processing environments are categorized as one of:

m SMP (symmetric multiprocessing), in which some hardware
resources may be shared among processors. The processors
communicate via shared memory and have a single operating
system.

m Cluster or MPP (massively parallel processing), also known as
shared-nothing, in which each processor has exclusive access to
hardware resources. MPP systems are physically housed in the
same box, whereas cluster systems can be physically dispersed.
The processors each have their own operating system, and
communicate via a high-speed network.

SMP systems allow you to scale up the number of processors, which
may improve performance of your jobs. The improvement gained
depends on how your job is limited:

Parallel Job Developer’s Guide 2-5

The Configuration File Designing Parallel Jobs

m CPU-limited jobs. In these jobs the memory, memory bus, and
disk I/0 spend a disproportionate amount of time waiting for the
processor to finish its work. Running a CPU-limited application on
more processors can shorten this waiting time so speed up overall
performance.

B Memory-limited jobs. In these jobs CPU and disk I/O wait for the
memory or the memory bus. SMP systems share memory
resources, so it may be harder to improve performance on SMP
systems without hardware upgrade.

m Disk I/O limited jobs. In these jobs CPU, memory and memory
bus wait for disk I/0 operations to complete. Some SMP systems
allow scalability of disk I/0, so that throughput improves as the
number of processors increases. A number of factors contribute
to the I/O scalability of an SMP, including the number of disk
spindles, the presence or absence of RAID, and the number of I/0
controllers.

In a cluster or MPP environment, you can use the multiple processors
and their associated memory and disk resources in concert to tackle a
single job. In this environment, each processor has its own dedicated
memory, memory bus, disk, and disk access. In a shared-nothing
environment, parallelization of your job is likely to improve the
performance of CPU-limited, memory-limited, or disk I/0-limited
applications.

The Configuration File

One of the great strengths of the DataStage Enterprise Edition is that,
when designing jobs, you don’t have to worry too much about the
underlying structure of your system, beyond appreciating its parallel
processing capabilities. If your system changes, is upgraded or
improved, or if you develop a job on one platform and implement it
on another, you don’t necessarily have to change your job design.

DataStage learns about the shape and size of the system from the
configuration file. It organizes the resources needed for a job
according to what is defined in the configuration file. When your
system changes, you change the file not the jobs.

The configuration file describes available processing power in terms
of processing nodes. These may, or may not, correspond to the actual
number of processors in your system. You may, for example, want to
always leave a couple of processors free to deal with other activities
on your system. The number of nodes you define in the configuration
file determines how many instances of a process will be produced
when you compile a parallel job.

2-6

Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

Every MPP, cluster, or SMP environment has characteristics that define
the system overall as well as the individual processors. These
characteristics include node names, disk storage locations, and other
distinguishing attributes. For example, certain processors might have
a direct connection to a mainframe for performing high-speed data
transfers, while others have access to a tape drive, and still others are
dedicated to running an RDBMS application. You can use the
configuration file to set up node pools and resource pools. A pool
defines a group of related nodes or resources, and when you design a
DataStage job you can specify that execution be confined to a
particular pool.

The configuration file describes every processing node that DataStage
will use to run your application. When you run a DataStage job,
DataStage first reads the configuration file to determine the available
system resources.

When you modify your system by adding or removing processing
nodes or by reconfiguring nodes, you do not need to alter or even
recompile your DataStage job. Just edit the configuration file.

The configuration file also gives you control over parallelization of
your job during the development cycle. For example, by editing the
configuration file, you can first run your job on a single processing
node, then on two nodes, then four, then eight, and so on. The
configuration file lets you measure system performance and
scalability without actually modifying your job.

You can define and edit the configuration file using the DataStage
Manager. This is described in the DataStage Manager Guide, which
also gives detailed information on how you might set up the file for
different systems. This information is also given in Chapter 58 of this
manual.

Partitioning, Repartitioning, and Collecting

Data
We have already described how you can use partitioning of data to
implement parallel processing in your job (see "Partition Parallelism"
on page 2-3). This section takes a closer look at how you can partition
data in your jobs, and collect it together again.

Partitioning

In the simplest scenario you probably won’t be bothered how your
data is partitioned. It is enough that it is partitioned and that the job

Parallel Job Developer’s Guide 2-7

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

runs faster. In these circumstances you can safely delegate
responsibility for partitioning to DataStage. Once you have identified
where you want to partition data, DataStage will work out the best
method for doing it and implement it.

The aim of most partitioning operations is to end up with a set of
partitions that are as near equal size as possible, ensuring an even
load across your processors.

When performing some operations however, you will need to take
control of partitioning to ensure that you get consistent results. A
good example of this would be where you are using an aggregator
stage to summarize your data. To get the answers you want (and
need) you must ensure that related data is grouped together in the
same partition before the summary operation is performed on that
partition. DataStage lets you do this.

There are a number of different partitioning methods available, note
that all these descriptions assume you are starting with sequential
data. If you are repartitioning already partitioned data then there are
some specific considerations (see "Repartitioning" on page 2-22):

Round robin

The first record goes to the first processing node, the second to the
second processing node, and so on. When DataStage reaches the last
processing node in the system, it starts over. This method is useful for
resizing partitions of an input data set that are not equal in size. The
round robin method always creates approximately equal-sized

2-8

Parallel Job Developer’s Guide

Designing Parallel Jobs

Partitioning, Repartitioning, and Collecting Data

partitions. This method is the one normally used when DataStage
initially partitions data.

Round Robin
Partioner

~~

Node 1

Input data

=

3

—

Node 2

Ii4

-

15

Node 3

Random

WJ

12
16

Node 4

Round Robin
Partitioning

Records are randomly distributed across all processing nodes. Like
round robin, random partitioning can rebalance the partitions of an
input data set to guarantee that each processing node receives an

approximately equal-sized partition. The random partitioning has a

Parallel Job Developer’s Guide

2-9

Partitioning, Repartitioning, and Collecting Data

Designing Parallel Jobs

slightly higher overhead than round robin because of the extra
processing required to calculate a random value for each record.

Random
Partioner

V|

Node 1

Input data

N

13

Node 2

10

£

Node 3

Same

12

16

Node 4

Random
Partitioning

The operator using the data set as input performs no repartitioning
and takes as input the partitions output by the preceding stage. With
this partitioning method, records stay on the same processing node;
that is, they are not redistributed. Same is the fastest partitioning

Parallel Job Developer’s Guide

Designing Parallel Jobs

Partitioning, Repartitioning, and Collecting Data

method. This is normally the method DataStage uses when passing

data between stages in your job.

Node 1

Node 2

Node 3

©

16

Node 4

Entire

Same
Partioner

Node 1

10

14

Node 2

11

15

Node 3

12

Same

16

Node 4

Partitioning

Every instance of a stage on every processing node receives the
complete data set as input. It is useful when you want the benefits of
parallel execution, but every instance of the operator needs access to

Parallel Job Developer’s Guide

2-11

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

the entire input data set. You are most likely to use this partitioning
method with stages that create lookup tables from their input.

Entire
Partioner

)
]
v

o [~fo|o|s|wln|-

=z
Q
a
)
s

~fo|oa|s|wlrf-

©

Node 2

o|~|o|u|s]|win] e

~Njo|als|w[n|-

=)

Input data

Node 3

Entire
Partitioning

v
~jo|a|s|wld|e

©

Node 4

Hash by field

Partitioning is based on a function of one or more columns (the hash
partitioning keys) in each record. The hash partitioner examines one
or more fields of each input record (the hash key fields). Records with
the same values for all hash key fields are assigned to the same
processing node.

This method is useful for ensuring that related records are in the same
partition, which may be a prerequisite for a processing operation. For
example, for a remove duplicates operation, you can hash partition
records so that records with the same partitioning key values are on
the same node. You can then sort the records on each node using the
hash key fields as sorting key fields, then remove duplicates, again
using the same keys. Although the data is distributed across
partitions, the hash partitioner ensures that records with identical keys
are in the same partition, allowing duplicates to be found.

2-12

Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

Hash partitioning does not necessarily result in an even distribution of
data between partitions. For example, if you hash partition a data set
based on a zip code field, where a large percentage of your records
are from one or two zip codes, you can end up with a few partitions
containing most of your records. This behavior can lead to bottlenecks
because some nodes are required to process more records than other
nodes.

For example, the diagram shows the possible results of hash
partitioning a data set using the field age as the partitioning key. Each
record with a given age is assigned to the same partition, so for
example records with age 36, 40, or 22 are assigned to partition 0. The
height of each bar represents the number of records in the partition.

Age Values
10 54 17
12 18 27

Partition Size

(in records) 35 5 60

36 40 22
15 44 39
(I
0 1 2 3 N

Partition Number

As you can see, the key values are randomly distributed among the
different partitions. The partition sizes resulting from a hash
partitioner are dependent on the distribution of records in the data set
so even though there are three keys per partition, the number of
records per partition varies widely, because the distribution of ages in
the population is non-uniform.

When hash partitioning, you should select hashing keys that create a
large number of partitions. For example, hashing by the first two
digits of a zip code produces a maximum of 100 partitions. This is not
a large number for a parallel processing system. Instead, you could
hash by five digits of the zip code to create up to 10,000 partitions. You
also could combine a zip code hash with an age hash (assuming a
maximum age of 190), to yield 1,500,000 possible partitions.

Fields that can only assume two values, such as yes/no, true/false,
male/female, are particularly poor choices as hash keys.

You must define a single primary collecting key for the sort merge
collector, and you may define as many secondary keys as are required
by your job. Note, however, that each record field can be used only

Parallel Job Developer’s Guide 2-13

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

once as a collecting key. Therefore, the total number of primary and
secondary collecting keys must be less than or equal to the total
number of fields in the record. You specify which columns are to act
as hash keys on the Partitioning tab of the stage editor, see
"Partitioning Tab" on page 3-20. An example is shown below. The data
type of a partitioning key may be any data type except raw, subrecord,
tagged aggregate, or vector (see page 2-28 for data types). By default,
the hash partitioner does case-sensitive comparison. This means that
uppercase strings appear before lowercase strings in a partitioned
data set. You can override this default if you want to perform case-
insensitive partitioning on string fields.

IB Data_Set_10 - Data Set M=l E3
Stage Input |
it name: I[:'Sl-i”k2 j Calumns. . | Yiew Data. . |

Generall Froperties Partitioning |EOIumns| .-’-‘-.dvancedl

Partitioning / Collecting——————————— [~ Sarting
Partition bpe: ™ Peatfom sort =] Statile
IHash jgl I Whigue gl
Aovailable: Selected:
T addess Key | Options | ?l
narne Aa age Case sensitive + |
Aazip Case sensitive
¥
[+

Modulus

Partitioning is based on a key column modulo the number of
partitions. This method is similar to hash by field, but involves simpler
computation.

In data mining, data is often arranged in buckets, that is, each record
has a tag containing its bucket number. You can use the modulus
partitioner to partition the records according to this number. The
modulus partitioner assigns each record of an input data set to a
partition of its output data set as determined by a specified key field in
the input data set. This field can be the tag field.

The partition number of each record is calculated as follows:

partition_number = fieldname mod number_of_partitions

where:

m fieldname is a numeric field of the input data set.

Parallel Job Developer’s Guide

Designing Parallel Jobs

Partitioning, Repartitioning, and Collecting Data

® number_of_partitions is the number of processing nodes on which
the partitioner executes. If a partitioner is executed on three
processing nodes it has three partitions.

In this example, the modulus partitioner partitions a data set
containing ten records. Four processing nodes run the partitioner, and
the modulus partitioner divides the data among four partitions. The
input data is as follows:

Genelall F'mpertiesl Partitioning Colurnis I.l'-\d\-'ancedl

Calumn name | Fey | SOL type |Length|5c:a|e| Nullable| Description |

1 | bucket [l

Integer

Mo
. m Dat= | | |
]

Save... | Load... |

The bucket is specified as the key field, on which the modulus
operation is calculated.

Here is the input data set. Each line represents a row:

64123
61821
44919
22677
90746
21870
87702
4705

47330
88193

1960-03-30
1960-06-27
1961-06-18
1960-09-24
1961-09-15
1960-01-01
1960-12-22
1961-12-13
1961-03-21
1962-03-12

The following table shows the output data set divided among four
partitions by the modulus partitioner.

Partition O

Partition 1

Partition 2 Partition 3

61821 1960-06-27
22677 1960-09-24
47051961-12-13

88193 1962-03-12

21870 1960-01-01 64123 1960-03-30
87702 1960-12-22 44919 1961-06-18
47330 1961-03-21
90746 1961-09-15

Here are three sample modulus operations corresponding to the

values of three of the key fields:

m 22677 mod 4 = 1; the data is written to Partition 1.

Parallel Job Developer’s Guide

2-15

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

m 47330 mod 4 = 2; the data is written to Partition 2.
m 64123 mod 4 = 3; the data is written to Partition 3.

None of the key fields can be divided evenly by 4, so no data is written
to Partition 0.

You define the key on the Partitioning tab (see "Partitioning Tab" on
page 3-20)

Range

Divides a data set into approximately equal-sized partitions, each of
which contains records with key columns within a specified range.
This method is also useful for ensuring that related records are in the
same partition.

A range partitioner divides a data set into approximately equal size
partitions based on one or more partitioning keys. Range partitioning
is often a preprocessing step to performing a total sort on a data set.

In order to use a range partitioner, you have to make a range map.
You can do this using the Write Range Map stage, which is described
in Chapter 55.

The range partitioner guarantees that all records with the same
partitioning key values are assigned to the same partition and that the
partitions are approximately equal in size so all nodes perform an
equal amount of work when processing the data set.

An example of the results of a range partition is shown below. The
partitioning is based on the age key, and the age range for each
partition is indicated by the numbers in each bar. The height of the bar
shows the size of the partition.

Age values

Partition size 26-44
(in records) 0-2 3-17 18-25 66-71

Partition

All partitions are of approximately the same size. In an ideal
distribution, every partition would be exactly the same size. However,
you typically observe small differences in partition size.

In order to size the partitions, the range partitioner uses a range map
to calculate partition boundaries. As shown above, the distribution of
partitioning keys is often not even; that is, some partitions contain

Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

many partitioning keys, and others contain relatively few. However,
based on the calculated partition boundaries, the number of records
in each partition is approximately the same.

Range partitioning is not the only partitioning method that guarantees
equivalent-sized partitions. The random and round robin partitioning
methods also guarantee that the partitions of a data set are equivalent
in size. However, these partitioning methods are keyless; that is, they
do not allow you to control how records of a data set are grouped
together within a partition.

In order to perform range partitioning your job requires a write range
map stage to calculate the range partition boundaries in addition to
the stage that actually uses the range partitioner. The write range map
stage uses a probabilistic splitting technique to range partition a data
set. This technique is described in Parallel Sorting on a Shared-
Nothing Architecture Using Probabilistic Splitting by DeWitt,
Naughton, and Schneider in Query Processing in Parallel Relational
Database Systems by Lu, Ooi, and Tan, IEEE Computer Society Press,
1994. In order for the stage to determine the partition boundaries, you
pass it a sorted sample of the data set to be range partitioned. From
this sample, the stage can determine the appropriate partition
boundaries for the entire data set. See Chapter 55, "Write Range Map
Stage," for details.

When you come to actually partition your data, you specify the range
map to be used by clicking on the property icon, next to the Partition
type field, the Partitioning/Collection properties dialog box
appears and allows you to specify a range map (see "Partitioning Tab"
on page 3-20 for a description of the Partitioning tab).

_ 1Ol x|
Stage Input |
Input name: IDSLink2 j Colurits. . e Diata. |
i
Genelall Properties Partitioning |EOIumns| .-’-‘«dvancedl
Fartitionitg / Callecting————— Sarting
Partitian type: [~ Perform zort [Statile
IHange I~ Wigue @

Partition / Collection properties

Fianage partition

Sample range map:
c:\\range-mapshesx] |

Ok I Cancel Help | J/

Parallel Job Developer’s Guide 2-17

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

DB2

Partitions an input data set in the same way that DB2 would partition
it. For example, if you use this method to partition an input data set
containing update information for an existing DB2 table, records are
assigned to the processing node containing the corresponding DB2
record. Then, during the execution of the parallel operator, both the
input record and the DB2 table record are local to the processing
node. Any reads and writes of the DB2 table would entail no network
activity.

See the DB2 Parallel Edition for AIX, Administration Guide and
Reference for more information on DB2 partitioning.

To use DB2 partitioning on a stage, select a Partition type of DB2 on
the Partioning tab, then click the Properties button to the right. In
the Partitioning/Collection properties dialog box, specify the
details of the DB2 table whose partitioning you want to replicate (see
"Partitioning Tab" on page 3-20 for a description of the Partitioning

tab).
| D =0l x|
Stage Input |
Input niame: IDSLink2 j Columns... iew Datar. |
Generall Properties Partitioning |EOIumns| Advancedl
Partitioning / Callzcting Sarting
Partition type: [~ Peifarm sort = Statile
[BEE i I= Uricue Jed
el Partition / Collection properties []
DB2 partition I

DE2 Database name:

' |se environment variable APT_DBMAME , if defined, atherwise DEZDBDFT.
£ User defined: I

DB2 Instance name:

& Use envionment variable DB2INSTANCE.

" User defined: I

B2 Table name:

ak. I Cancel Help

Auto

The most common method you will see on the DataStage stages is
Auto. This just means that you are leaving it to DataStage to

2-18 Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

determine the best partitioning method to use depending on the type
of stage, and what the previous stage in the job has done. Typically
DataStage would use round robin when initially partitioning data, and
same for the intermediate stages of a job.

Collecting

Collecting is the process of joining the multiple partitions of a single
data set back together again into a single partition. There are various
situations where you may want to do this. There may be a stage in
your job that you want to run sequentially rather than in parallel, in
which case you will need to collect all your partitioned data at this
stage to make sure it is operating on the whole data set.

Similarly, at the end of a job, you may want to write all your data to a
single database, in which case you need to collect it before you write
it.

There may be other cases where you don’t want to collect the data at
all. For example, you may want to write each partition to a separate
flat file.

Just as for partitioning, in many situations you can leave DataStage to
work out the best collecting method to use. There are situations,
however, where you will want to explicitly specify the collection
method.

Note that collecting methods are mostly non-deterministic. That is, if
you run the same job twice with the same data, you are unlikely to get
data collected in the same order each time. If order matters, you need
to use the sorted merge collection method.

The following methods are available:

Round robin

Reads a record from the first input partition, then from the second
partition, and so on. After reaching the last partition, starts over. After

Parallel Job Developer’s Guide 2-19

Partitioning, Repartitioning, and Collecting Data

Designing Parallel Jobs

reaching the final record in any partition, skips that partition in the

remaining rounds.

Round Robin
Collector

Node 1

EN[*R N

J L

o |~|o|o

RN
NS w

Node 2

10 L

= ©

B

—

o || (2N
o |

12 | — 12

2

Node 3

Output data

13
14

H

16

Node 4

Ordered

Reads all records from the first partition, then all records from the
second partition, and so on. This collection method preserves the
order of totally sorted input data sets. In a totally sorted data set, both
the records in each partition and the partitions themselves are

2-20

Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

ordered. This may be useful as a preprocessing action before
exporting a sorted data set to a single data file.

Ordered
Collector

NI SR ENY

Node 1

o|~|o|o

\
0 |~ o o[~]w [N

Node 2

[[12

Node 3 —
Output data

13
14
15
16

Node 4

Sorted merge

Read records in an order based on one or more columns of the record.
The columns used to define record order are called collecting keys.
Typically, you use the sorted merge collector with a partition-sorted
data set (as created by a sort stage). In this case, you specify as the
collecting key fields those fields you specified as sorting key fields to
the sort stage.

For example, the figure below shows the current record in each of
three partitions of an input data set to the collector:

Partition 0 Partition 1 Partition 2

Current record “Jane” ‘ “Smith” ‘ 42 “Paul” ‘ “Smith” ‘ 34 “Mary” ‘ “Davis” ‘ 42

In this example, the records consist of three fields. The first-name and
last-name fields are strings, and the age field is an integer. The

Parallel Job Developer’s Guide 2-21

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

following figure shows the order of the three records read by the sort
merge collector, based on different combinations of collecting keys.

Primary collecting key Primary collecting key Primary collecting key

Order read l l l

1 ‘ “Jane” ‘ “Smith” ‘ 42 ‘ ‘ “Paul” ‘ “Smith” ‘ 34 ‘ ‘ “Mary” ‘ “Davis” ‘ 42 ‘

2 ‘ “Mary” ‘ “Davis” ‘ 42 ‘ ‘ “Mary” ‘ “Davis” ‘ 42 ‘ ‘ “Paul” ‘ “Smith” ‘ 34 ‘

3 ‘ “Paul” ‘ “Smith” ‘ 34 ‘ ‘“Jane" ‘ “Smith” ‘ 42 ‘ ‘“Jane” ‘ “Smith” ‘ 42 ‘

Secondary collecting key Secondary collecting key

You must define a single primary collecting key for the sort merge
collector, and you may define as many secondary keys as are required
by your job. Note, however, that each record field can be used only
once as a collecting key. Therefore, the total number of primary and
secondary collecting keys must be less than or equal to the total
number of fields in the record. You define the keys on the
Partitioning tab (see "Partitioning Tab" on page 3-20), and the key
you define first is the primary key.

The data type of a collecting key can be any type except raw, subrec,
tagged, or vector (see page 2-28 for data types).

By default, the sort merge collector uses ascending sort order and
case-sensitive comparisons. Ascending order means that records with
smaller values for a collecting field are processed before records with
larger values. You also can specify descending sorting order, so
records with larger values are processed first.

With a case-sensitive algorithm, records with uppercase strings are
processed before records with lowercase strings. You can override
this default to perform case-insensitive comparisons of string fields.

Auto

The most common method you will see on the DataStage stages is
Auto. This normally means that DataStage will eagerly read any row
from any input partition as it becomes available, but if it detects that,
for example, the data needs sorting as it is collected, it will do that.
This is the fastest collecting method.

Repartitioning

If you decide you need to repartion data within your DataStage job
there are some particular considerations as repartitioning can affect
the balance of data partitions.

2-22

Parallel Job Developer’s Guide

Designing Parallel Jobs Partitioning, Repartitioning, and Collecting Data

For example, if you start with four perfectly balanced partitions and
then subsequently repartition into three partitions, you will lose the
perfect balance and be left with, at best, near perfect balance. This is
true even for the round robin method; this only produces perfectly
balanced partitions from a sequential data source. The reason for this
is illustrated below. Each node partitions as if it were a single
processor with a single data set, and will always start writing to the
first target partition. In the case of four partitions repartitioning to
three, more rows are written to the first target partition. With a very
small data set the effect is pronounced; with a large data set the
partitions tend to be more balanced.

Data repartitioned from four partitions to three partitions

e
NI W I A 3

A A

y .

=

AV K

VK & 4

The Mechanics of Partitioning and Collecting

This section gives a quick guide to how partitioning and collecting is
represented in a DataStage job.

Parallel Job Developer’s Guide 2-23

Partitioning, Repartitioning, and Collecting Data Designing Parallel Jobs

Partitioning Icons

Each parallel stage in a job can partition or repartition incoming data
before it operates on it. Equally it can just accept the partitions that the
data comes in. There is an icon on the input link to a stage which
shows how the stage handles partitioning.

In most cases, if you just lay down a series of parallel stages in a
DataStage job and join them together, the auto method will determine
partitioning. This is shown on the canvas by the auto partitioning icon:

[Data Set Sart

In some cases, stages have a specific partitioning method associated
with them that cannot be overridden. It always uses this method to
organize incoming data before it processes it. In this case an icon on
the input link tells you that the stage is repartitioning data:

_=== Ik o u'ul

[Data_Set Sort

If you have a data link from a stage running sequentially to one
running in parallel the following icon is shown to indicate that the
data is being partitioned:

ﬁ ame lnk ¢ U_U]

Data_Set Sort

You can specify that you want to accept the existing data partitions by
choosing a partitioning method of same. This is shown by the
following icon on the input link:

[
Bl
|

[Data Set Sart

Partitioning methods are set on the Partitioning tab of the Inputs
pages on a stage editor (see page 3-20).

Preserve Partitioning Flag

A stage can also request that the next stage in the job preserves
whatever partitioning it has implemented. It does this by setting the
Preserve Partitioning flag for its output link. Note, however, that the
next stage may ignore this request.

2-24

Parallel Job Developer’s Guide

Designing Parallel Jobs Sorting Data

In most cases you are best leaving the preserve partitioning flag in its
default state. The exception to this is where preserving existing
partitioning is important. The flag will not prevent repartioning, but it
will warn you that it has happened when you run the job.

If the Preserve Partitioning flag is cleared, this means that the current
stage doesn’t care what the next stage in the job does about
partitioning.

On some stages, the Preserve Partitioning flag can be set to
Propagate. In this case the stage sets the flag on its output link
according to what the previous stage in the job has set. If the previous
job is also set to Propagate, the setting from the stage before is used
and so on until a Set or Clear flag is encountered earlier in the job. If
the stage has multiple inputs and has a flag set to Propagate, its
Preserve Partitioning flag is set if it is set on any of the inputs, or
cleared if all the inputs are clear.

Collecting Icons

A stage in the job which is set to run sequentially will need to collect
partitioned data before it operates on it. There is an icon on the input
link to a stage which shows that it is collecting data:

Data_Set Sart

Sorting Data

You will probably have requirements in your DataStage jobs to sort
data. DataStage has a sort stage (see Chapter 23), which allows you to
perform complex sorting operations. There are situations, however,
where you require a fairly simple sort as a precursor to a processing
operation. For these purposes, DataStage allows you to insert a sort
operation in most stage types for incoming data. You do this by
selecting the Sorting option on the Input page Partitioning tab (see
"Partitioning Tab" on page 3-20). When you do this you can specify:

m Sorting keys. The field(s) on which data is sorted. You must
specify a primary key, but you can also specify any number of
secondary keys. The first key you define is taken as the primary.

m Stable sort (this is the default and specifies that previously sorted
data sets are preserved).

Parallel Job Developer’s Guide 2-25

Data Sets

Designing Parallel Jobs

m Unique sort (discards records if multiple records have identical
sorting key values).

m Case sensitivity.
m Sort direction.
m Sorted as EBCDIC (ASCII is the default).

If you have NLS enabled, you can also specify the collate convention
used.

Some DataStage operations require that the data they process is
sorted (for example, the Merge operation). If DataStage detects that
the input data set is not sorted in such a case, it will automatically
insert a sort operation in order to enable the processing to take place
unless you have explicitly specified otherwise.

Data Sets

Inside a DataStage parallel job, data is moved around in data sets.
These carry meta data with them, both column definitions and
information about the configuration that was in effect when the data
set was created. If for example, you have a stage which limits
execution to a subset of available nodes, and the data set was created
by a stage using all nodes, DataStage can detect that the data will
need repartitioning.

If required, data sets can be landed as persistent data sets,
represented by a Data Set stage (see Chapter 4, "Data Set Stage.")
This is the most efficient way of moving data between linked jobs.
Persistent data sets are stored in a series of files linked by a control
file (note that you should not attempt to manipulate these files using
UNIX tools such as RM or MV. Always use the tools provided with
DataStage).

Note The example screenshots in the individual stage
descriptions often show the stage connected to a Data Set
stage. This does not mean that these kinds of stage can only
be connected to Data Set stages.

Meta Data

Meta data is information about data. It describes the data flowing
through your job in terms of column definitions, which describe each
of the fields making up a data record.

2-26

Parallel Job Developer’s Guide

Designing Parallel Jobs Meta Data

DataStage has two alternative ways of handling meta data, through
table definitions, or through Schema files. By default, parallel stages
derive their meta data from the columns defined on the Outputs or
Inputs page Column tab of your stage editor. Additional formatting
information is supplied, where needed, by a Formats tab on the
Outputs or Inputs page. In some cases you can specify that the stage
uses a schema file instead by explicitly setting a property on the stage
editor and specify the name and location of the schema file. Note that,
if you use a schema file, you should ensure that runtime column
propagation is turned on. Otherwise the column definitions specified
in the stage editor will always override any schema file.

Where is additional formatting information needed? Typically this is
where you are reading from, or writing to, a file of some sort and
DataStage needs to know more about how data in the file is
formatted.

You can specify formatting information on a row basis, where the
information is applied to every column in every row in the dataset.
This is done from the Formats tab (the Formats tab is described with
the stage editors that support it; for example, for Sequential files, see
page 5-13). You can also specify formatting for particular columns
(which overrides the row formatting) from the Edit Column
Metadata dialog box for each column (see page 3-28).

Runtime Column Propagation

DataStage is also flexible about meta data. It can cope with the
situation where meta data isn’t fully defined. You can define part of
your schema and specify that, if your job encounters extra columns
that are not defined in the meta data when it actually runs, it will
adopt these extra columns and propagate them through the rest of the
job. This is known as runtime column propagation (RCP). This can be
enabled for a project via the DataStage Administrator (see "Enable
Runtime Column Propagation for Parallel Jobs"in DataStage
Administrator Guide), and set for individual links via the Outputs
Page Columns tab (see "Columns Tab" on page 3-51) for most stages,
or in the Outputs page General tab for Transformer stages (see
"Outputs Page" on page 16-34). You should always ensure that
runtime column propagation is turned on if you want to use schema
files to define column meta data.

Table Definitions

A table definition is a set of related columns definitions that are stored
in the DataStage Repository. These can be loaded into stages as and
when required.

Parallel Job Developer’s Guide 2-27

Meta Data

Designing Parallel Jobs

You can import a table definition from a data source via the DataStage
Manager or Designer. You can also edit and define new table
definitions in the Manager or Designer (see "Managing Table
Definitions"in DataStage Manager Guide). If you want, you can edit
individual column definitions once you have loaded them into your
stage.

You can also simply type in your own column definition from scratch
on the Outputs or Inputs page Column tab of your stage editor (see
page 3-26 and page 3-51). When you have entered a set of column
definitions you can save them as a new table definition in the
Repository for subsequent reuse in another job.

Schema Files and Partial Schemas

You can also specify the meta data for a stage in a plain text file
known as a schema file. This is not stored in the DataStage Repository
but you could, for example, keep it in a document management or
source code control system, or publish it on an intranet site.

The format of schema files is described in Appendix A of this manual.

Note If you are using a schema file on an NLS system, the
schema file needs to be in UTF-8 format. It is, however, easy
to convert text files between two different maps with a
DataStage job. Such a job would read data from a text file
using a Sequential File stage and specifying the appropriate
character set on the NLS Map page. It would write the data
to another file using a Sequential File stage, specifying the
UTF-8 map on the NLS Map page.

Some parallel job stages allow you to use a partial schema. This
means that you only need define column definitions for those
columns that you are actually going to operate on. Partial schemas are
also described in Appendix A.

Remember that you should turn runtime column propagation on if
you intend to use schema files to define column meta data.

Data Types

When you work with parallel job column definitions, you will see that
they have an SQL type associated with them. This maps onto an
underlying data type which you use when specifying a schema via a
file, and which you can view in the Parallel tab of the Edit Column
Meta Data dialog box (see page 3-26 for details). The underlying
data type is what a parallel job data set understands. The following

2-28

Parallel Job Developer’s Guide

Designing Parallel Jobs

Meta Data

table summarizes the underlying data types that columns definitions

can have:
SQL Type Underlying Data Size Description
Type
Date date 4 bytes Date with month, day, and year
Decimal decimal (Roundup(p)+1)/2 Packed decimal, compatible with IBM
Numeric packed decimal format
Float sfloat 4 bytes IEEE single-precision (32-bit) floating
Real point value
Double dfloat 8 bytes IEEE double-precision (64-bit)
floating point value
Tinylnt int8 1 byte Signed or unsigned integer of 8 bits
uint8 (Extended (unsigned) option for
unsigned)
Smallint int16 2 bytes Signed or unsigned integer of 16 bits
uint16 (Extended (unsigned) option for
unsigned)
Integer int32 4 bytes Signed or unsigned integer of 32 bits
uint32 (Extended (unsigned) option for
unsigned)
BigInt’ int64 8 bytes Signed or unsigned integer of 64 bits
uint64 (Extended (unsigned) option for
unsigned)
Binary raw 1 byte per Untypes collection, consisting of a
Bit character fixed or variable number of
LongVarBinary contiguous bytes and an optional
VarBinary alignment value
Unknown string 1 byte per ASCII character string of fixed or
Char character variable length (without the
LongVarChar extended(Unicode) option selected)
VarChar
NChar ustring multiple bytes per ASCII character string of fixed or
NVarChar character variable length (without the
LongNVarChar extended(Unicode) option selected)
Char ustring multiple bytes per ASCII character string of fixed or
LongVarChar character variable length (with the
VarChar extended(Unicode) option selected)
Char subrec sum of lengths of Complex data type comprising
subrecord fields nested columns
Char tagged sum of lengths of Complex data type comprising

subrecord fields

tagged columns, of which one can be
referenced when the column is used

Parallel Job Developer’s Guide

2-29

Meta Data Designing Parallel Jobs
SQL Type Underlying Data Size Description
Type

Time time 5 bytes Time of day, with resolution of
seconds.

Time time(microseconds) 5 bytes Time of day, with resolution of
microseconds (Extended
(Microseconds) option selected).

Timestamp timestamp 9 bytes Single field containing both data and
time value

Timestamp timestamp(microsec 9 bytes Single field containing both data and

onds)

time value, with resolution of
microseconds (Extended
(Microseconds) option selected).

T Bigint values map to long long integers on all supported platforms except Tru64 where they
map to longer integers. For all platforms except Tru64, the c_format is:
'%[padding_character][integer]lld'
Because Tru64 supports real 64-bit integers, its c_format is:
'"%[padding_character][integer]ld'
The integer component specifies a minimum field width. The output column is printed at least
this wide, and wider if necessary. If the column has fewer digits than the field width, it is pad-
ded on the left with padding_character to make up the field width. The default padding charac-

ter is a space.

For this example c_format specification: '%09lld' the padding character is zero (0), and the
integers 123456 and 12345678 are printed out as 000123456 and 123456789.

COBOL Data Type

When you work with mainframe data using the CFF stage, the data
types are as follows:

Underlying Data

Type

binary, native binary 2 bytes S9(1-4) int16
COMP/COMP-5

binary, native binary 4 bytes S9(5-9) int32
COMP/COMP-5

binary, native binary = 8 bytes S9(10-18) int64
COMP/COMP-5

binary, native binary 2 bytes 9(1-4) uint16
COMP/COMP-5

binary, native binary 4 bytes 9(5-9) uint32
COMP/COMP-5

binary, native binary 8 bytes 9(10-18) uint64
COMP/COMP-5

character nbytes X(n) string[n]

character for filler n bytes X(n) raw(n)

2-30

Parallel Job Developer’s Guide

Designing Parallel Jobs

Meta Data

COBOL Data Type

Underlying Data

Type
varchar nbytes X(n) string[ma
x=n]
decimal (x+y)/ 9(x)V9(y)COMP-3 decimal[x packed
2+1 +y,Y]
bytes
decimal (x+y)/ S9(x)V9(y)COMP-3 decimal[x packed
2+1 +y,y]
bytes
display_numeric X+y 9(x)VI(y) decimal[x zoned
bytes +y,yl or
string[x+y
display_numeric X+y S9(x)VI(y) decimal[x zoned,
bytes +y,yl or trailing
string[x+y
]
display_numeric X+y S9(x)VI(y) SIGN IS decimal[x zoned,
bytes TRAILING +y,yl trailing
display_numeric X+y S9(x)VI(y) SIGN IS decimal[x zoned,
bytes LEADING +y,yl leading
display_numeric X+y+1 S9(x)V9(y) SIGN IS decimal[x separate,
bytes TRAILING SEPARATE +Y, Y] trailing
display_numeric X+y+1 S9(x)VI(y) SIGN IS decimal[x separate,
bytes LEADING SEPARATE +y,yl leading
float 4 bytes COMP-1 sfloat floating point
8 bytes COMP-2 dfloat
graphic_n, graphic_.g n*2 N(n) or G(n) ustring[n]
bytes DISPLAY-1
vargraphic_g/n n*2 N(n) or G(n) ustring[m
bytes DISPLAY-1 ax=n]
group subrec

Strings and Ustrings

If you have NLS enabled, parallel jobs support two types of underlying
character data types: strings and ustrings. String data represents
unmapped bytes, ustring data represents full Unicode (UTF-16) data.

The Char, VarChar, and LongVarChar SQL types relate to underlying
string types where each character is 8-bits and does not require

Parallel Job Developer’s Guide

2-31

Meta Data

Designing Parallel Jobs

mapping because it represents an ASCII character. You can, however,
specify that these data types are extended, in which case they are
taken as ustrings and do require mapping. (They are specified as such
by selecting the Extended check box for the column in the Edit Meta
Data dialog box.) An Extended field appears in the columns grid,
and extended Char, VarChar, or LongVarChar columns have ‘Unicode’
in this field. The NChar, NVarChar, and LongNVarChar types relate to
underlying ustring types so do not need to be explicitly extended.

Complex Data Types

Parallel jobs support three complex data types:
m Subrecords
m Tagged subrecords

m Vectors

When referring to complex data in DataStage column definitions, you
can specify fully qualified column names, for example:

Parent.Child5.Grandchild2

Subrecords

A subrecord is a nested data structure. The column with type
subrecord does not itself define any storage, but the columns it
contains do. These columns can have any data type, and you can nest
subrecords one within another. The LEVEL property is used to specify
the structure of subrecords. The following diagram gives an example
of a subrecord structure.

Parent (subrecord)

Child1 (string)

Child?2 (string)

Child3 (integer) LEVEL 01

Child4 (date)

Child5 (subrecord)
Grandchild1 (string)
Grandchild2 (time) LEVELO2
Grandchild3 (sfloat)

Tagged Subrecord

This is a special type of subrecord structure, it comprises a number of
columns of different types and the actual column is ONE of these, as
indicated by the value of a tag at run time. The columns can be of any

2-32

Parallel Job Developer’s Guide

Designing Parallel Jobs Incorporating Server Job Functionality

type except subrecord or tagged. The following diagram illustrates a
tagged subrecord.
Parent (tagged)
Child1 (string)
Child2 (int8)
Child3 (raw)

Tag = Child1, so column has data type of string

Vector

A vector is a one dimensional array of any type except tagged. All the
elements of a vector are of the same type, and are numbered from 0.
The vector can be of fixed or variable length. For fixed length vectors
the length is explicitly stated, for variable length ones a property
defines a link field which gives the length at run time. The following
diagram illustrates a vector of fixed length and one of variable length.

Fixed Length

int32 | int32 | int32 | int32| int32 | int32 | int32| int32 | int32

0 1 2 3 4 5 6 7 8

Variable Length
int32 | int32 | int32 | int32| int32 |int32 | int32 |- — ——int32
0 1 2 3 4 5 6 N

link field = N

Incorporating Server Job Functionality

You can incorporate Server job functionality in your Parallel jobs by
the use of Server Shared Container stages. This allows you to, for
example, use Server job plug-in stages to access data source that are
not directly supported by Parallel jobs. (Some plug-ins have parallel
versions that you can use directly in a parallel job.)

You create a new shared container in the DataStage Designer, add
Server job stages as required, and then add the Server Shared
Container to your Parallel job and connect it to the Parallel stages.
Server Shared Container stages used in Parallel jobs have extra pages
in their Properties dialog box, which enable you to specify details
about parallel processing and partitioning and collecting data.

Parallel Job Developer’s Guide 2-33

Incorporating Server Job Functionality Designing Parallel Jobs

You can only use Server Shared Containers in this way on SMP
systems (not MPP or cluster systems).

The following limitations apply to the contents of such Server Shared
Containers:

m There must be zero or one container inputs, zero or more
container outputs, and at least one of either.

m There can be no disconnected flows - all stages must be linked to
the input or an output of the container directly or via an active
stage. When the container has an input and one or more outputs,
each stage must connect to the input and at least one of the
outputs.

m There can be no synchronization by having a passive stage with
both input and output links.

For details on how to use Server Shared Containers, see "Containers”
in DataStage Designer Guide. This also tells you how to use Parallel
Shared Containers, which enable you to package parallel job
functionality in a reuseable form.

2-34 Parallel Job Developer’s Guide

Stage Editors

The Parallel job stage editors all use a generic user interface (with the
exception of the Transformer stage, Shared Container, and Complex
Flat File stages). This chapter describes the generic editor and gives a
guide to using it.

Parallel jobs have a large number of stages available. They are
organized into groups in the tool palette or you can drag all the stages
you use frequently to the Favorites category.

The stage editors are divided into the following basic types:

Database. These are stages that read or write data contained in a
database. Examples of database stages are the Oracle Enterprise
and DB2/UDB Enterprise stages.

Development/Debug. These are stages that help you when you
are developing and troubleshooting parallel jobs. Examples are
the Peek and Row Generator stages.

File. These are stages that read or write data contained in a file or
set of files. Examples of file stages are the Sequential File and
Data Set stages.

Processing. These are stages that perform some processing on
the data that is passing through them. Examples of processing
stages are the Aggregator and Transformer stages.

Real Time. These are the stages that allow Parallel jobs to be
made available as RTl services. They comprise the RTl Source and
RTI Target stages. These are part of the optional Web Services
package.

Restructure. These are stages that deal with and manipulate data
containing columns of complex data type. Examples are Make
Subrecord and Make Vector stages.

Parallel Job Developer’s Guide 31

Stage Editors

Parallel jobs also support local containers and shared containers.
Local containers allow you to tidy your designs by putting portions of
functionality in a container, the contents of which are viewed on a
separate canvas. Shared containers are similar, but are stored
separately in the repository and can be reused by other parallel jobs.
Parallel jobs can use both Parallel Shared Containers and Server
Shared Containers. Using shared containers is described in DataStage
Designer Guide.

The following table lists the available stage types and gives a quick
guide to their function:

Icon Stage Type Function
—, ~ Data Set File Allows you to read data from or write
bt (Chapter 4) data to a persistent data set.

Sequential File File Allows you to read data from or write

(Chapter 5) data to one or more flat files.

File Set File Allows you to read data from or write

(Chapter 6) data to a file set. File sets enable you to
spread data across a set of files
referenced by a single control file.

Lookup File Set File Allows you to create a lookup file set or

(Chapter 7) reference one for a lookup.

External Source File Allows you to read data that is output

(Chapter 8) from one or more source programs.

External Target File Allows you to write data to one or more

(Chapter 9) source programs.

Complex Flat File File Allows you to read or write complex flat
files on a mainframe machine. This is

Chapter 10 :

(Chapter 10) intended for use on USS systems (note
that it uses a different interface from
other file stages).

» SAS Data Set File Allows you to read data from or write
|& (Chapter 11) data to a parallel SAS data set in
conjunction with an SAS stage.
;E; DB2/UDB Database Allows you to read data from and write
I;'-ﬂ Enterprise data to a DB2 database.

(Chapter 12)

3-2

Parallel Job Developer’s Guide

Stage Editors

Icon ‘ Stage

Oracle Enterprise
(Chapter 13)

Teradata Enterprise
(Chapter 14)

Informix Enterprise
(Chapter 15)

Transformer
(Chapter 16)

P o

BASIC Transformer
(Chapter 17)

1 ¥

Aggregator
L (Chapter 18)

N

Join (Chapter 19)

Merge (Chapter 20)

Lookup
(Chapter 21)

2 B

Sort (Chapter 23)

|

== Funnel (Chapter 22)
¢

Type

Database

Database

Database

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Function

Allows you to read data from and write
data to a Oracle database.

Allows you to read data from and write
data to a Teradata database.

Allows you to read data from and write
data to an Informix database.

Handles extracted data, performs any

conversions required, and passes data
to another active stage or a stage that
writes data to a target database or file.

Same as Transformer stage, but gives
access to DataStage BASIC functions.

Classifies incoming data into groups,
computes totals and other summary
functions for each group, and passes
them to another stage in the job.

Performs join operations on two or
more data sets input to the stage and
then outputs the resulting data set.

Combines a sorted master data set with
one or more sorted update data sets.

Used to perform lookup operationson a
data set read into memory from any
other Parallel job stage that can output
data or provided by one of the database
stages that support reference output
links. It can also perform a look up on a
lookup table contained in a Lookup File
Set stage.

Sorts input columns.

Copies multiple input data sets to a
single output data set.

Parallel Job Developer’s Guide

3-3

Stage Editors

Icon

St

Foim
[U“‘*_
H

Ll ol

=

-

=l

gitn

CAR™

1Y

v & @&

‘ Stage

Type

Remove Duplicates Processing

(Chapter 24)

Compress
(Chapter 25)

Expand
(Chapter 26)

Copy (Chapter 27)

Modify
(Chapter 28)

Filter (Chapter 29)
External Filter
(Chapter 30)
Change Capture

(Chapter 31)

Change Apply
(Chapter 32)

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Function

Takes a single sorted data set as input,
removes all duplicate records, and
writes the results to an output data set.

Uses the UNIX compress or GZIP utility
to compress a data set. It converts a
data set from a sequence of records
into a stream of raw binary data.

Uses the UNIX uncompress or GZIP
utility to expand a data set. It converts a
previously compressed data set back
into a sequence of records from a
stream of raw binary data.

Copies a single input data set to a
number of output data sets.

Alters the record schema of its input
data set.

Transfers, unmodified, the records of
the input data set which satisfy
requirements that you specify and
filters out all other records.

Allows you to specify a UNIX command
that acts as a filter on the data you are
processing.

Takes two input data sets, denoted
before and after, and outputs a single
data set whose records represent the
changes made to the before data set to
obtain the after data set.

Takes the change data set, that contains
the changes in the before and after data
sets, from the Change Capture stage
and applies the encoded change
operations to a before data set to
compute an after data set.

34

Parallel Job Developer’s Guide

Stage Editors

Icon

a

511 \
gi10] oo
= 110

& ===

£
VW

1%

I e B

i

‘ Stage

Difference
(Chapter 33)

Compare
(Chapter 34)

Encode
(Chapter 35)

Decode
(Chapter 36)

Switch (Chapter 37)

SAS (Chapter 38)

Generic
(Chapter 39)

Surrogate Key

(Chapter 40)

Column Import

(Chapter 41)

Column Export

(Chapter 42)

Make Subrecord

(Chapter 43)

Split Subrecord

(Chapter 44)

Type

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Processing

Restructure

Restructure

Restructure

Restructure

Function

Performs a record-by-record
comparison of two input data sets,
which are different versions of the same
data set.

Performs a column-by-column
comparison of records in two presorted
input data sets.

Encodes a data set using a UNIX
encoding command that you supply.

Decodes a data set using a UNIX
decoding command that you supply.

Takes a single data set as input and
assigns each input record to an output
data set based on the value of a selector
field.

Allows you to execute part or all of an
SAS application in parallel.

Lets you incorporate an Orchestrate
Operator in your job.

Generates one or more surrogate key
columns and adds them to an existing
data set.

Imports data from a single column and
outputs it to one or more columns.

Exports data from a number of columns
of different data types into a single
column of data type string or binary.

Combines specified vectors in an input
data set into a vector of subrecords
whose columns have the names and
data types of the original vectors.

Creates one new vector column for
each element of the original subrecord.

Parallel Job Developer’s Guide

Stage Editors

Icon

‘ Stage

Combine Records
(Chapter 45)

Promote Subrecord

(Chapter 46)

Make Vector
(Chapter 47)

Split Vector
(Chapter 48)

Head (Chapter 49)

Tail (Chapter 50)

Sample
(Chapter 51)

Peek (Chapter 52)

Row Generator
(Chapter 53)

Column Generator
(Chapter 54)

Write Range Map
(Chapter 55)

Type

Restructure

Restructure

Restructure

Restructure

Development/
Debug

Development/
Debug

Development/
Debug

Development/
Debug

Development/
Debug

Development/
Debug

Development/
Debug

Function

Combines records, in which particular
key-column values are identical, into
vectors of subrecords.

Promotes the columns of an input
subrecord to top-level columns.

Combines specified columns of an
input data record into a vector of
columns of the same type.

Promotes the elements of a fixed-length
vector to a set of similarly named top-
level columns.

Selects the first N records from each
partition of an input data set and copies
the selected records to an output data
set.

Selects the last N records from each
partition of an input data set and copies
the selected records to an output data
set.

Samples an input data set.

Lets you print record column values
either to the job log or to a separate
output link as the stage copies records
from its input data set to one or more
output data sets.

Produces a set of mock data fitting the
specified meta data.

Adds columns to incoming data and
generates mock data for these columns
for each data row processed.

Allows you to write data to a range
map. The stage can have a single input
link.

3-6

Parallel Job Developer’s Guide

Stage Editors Showing Stage Validation Errors

All of the stage types use the same basic stage editor, but the pages
that actually appear when you edit the stage depend on the exact type
of stage you are editing. The following sections describe all the page
types and sub tabs that are available. The individual descriptions of
stage editors in the following chapters tell you exactly which features
of the generic editor each stage type uses.

Showing Stage Validation Errors

If you enable the Show stage validation errors option in the
Diagram menu (or toolbar), the DataStage Designer will give you
visual cues for parallel jobs or parallel shared containers. The visual
cues display compilation errors for every stage on the canvas, without
you having to actually compile the job. The option is enabled by
default.

Here is an example of a parallel job showing visual cues:

il' -—-ﬂ
11 Errar: Property ‘Uszer' for 'Oracle_Enterprise_1"is required but empty

Oracle E|2] Emar: Property Pagswond' for 'Oracle_Enterprize_1"is required but empty
= 3] Emor: Property 'Table' for 'Oracle_Enterprise_1" is required but emply

v DSLink?

Oracle_Enterprize_2 Laookup_ 4 Oracle_Enterprize_3

The top Oracle stage has a warning triangle, showing that there is a
compilation error. If you hover the mouse pointer over the stage a
tooltip appears, showing the particular errors for that stage.

Any local containers on your canvas will behave like a stage, i.e., all
the compile errors for stages within the container are displayed. You
have to open a parallel shared container in order to see any compile
problems on the individual stages.

Note Parallel transformer stages will only show certain errors; to
detect C++ errors in the stage, you have to actually compile
the job containing it.

Parallel Job Developer’s Guide 3-7

The Stage Page Stage Editors

The Stage Page

All stage editors have a Stage page. This contains a number of
subsidiary tabs depending on the stage type. The only field the Stage
page itself contains gives the name of the stage being edited.

General Tab

All stage editors have a General tab, this allows you to enter an

optional description of the stage. Specifying a description here
enhances job maintainability.

@' PxDataSetl - PxDataSet

Stage |Qutput|
Stage name: |F':<DataSetU
General | Advanced I
Description:
source data set for test job ;I
[~

QK I Cancel | Help |

Properties Tab

A Properties tab appears on the Stage page where there are general
properties that need setting for the particular stage you are editing.
Properties tabs can also occur under Input and Output pages
where there are link-specific properties that need to be set.

3-8 Parallel Job Developer’s Guide

Stage Editors The Stage Page

The properties for most general stages are set under the Stage page.
jll Sort_5 - Sort HE=E

Stage |Input I Elutputl

Siagehame S or._5 Property Value field

General Properties |.-’-\dvanc:ec|| KLS Localel

B2 Sorting Keys ¥ Key:

& G <l =]

& Sort KeyMode = Sort L | _

i L@y Sort Order = Ascending Infarmation:

B Options L | Type: Input Calumn -
@ Allaw Duplicates = True The ken colurmn that the sort will be _I

@ Create Cluster Key Change Colur il

@ Create Key Change Column = Fa n | Available properties to add:

utput Statistics = Falze ase Sensitive

& Output 5 Fal © Case 5

% Sort Ltlity = D ataStage & Mulls Position

L&y Stable Sot = True & Sart as EBCDIC

] I Cancel | Help |

7

The available properties are displayed in a tree structure. They are
divided into categories to help you find your way around them. All the
mandatory properties are included in the tree by default and cannot
be removed. Properties that you must set a value for (i.e. which have
not got a default value) are shown in the warning color (red by
default), but change to black when you have set a value. You can
change the warning color by opening the Options dialog box (select
Tools » Options ... from the DataStage Designer main menu) and
choosing the Transformer item from the tree. Reset the Invalid column
color by clicking on the color bar and choosing a new color from the
palette.

To set a property, select it in the list and specify the required property
value in the property value field. The title of this field and the method
for entering a value changes according to the property you have
selected. In the example above, the Key property is selected so the
Property Value field is called Key and you set its value by choosing
one of the available input columns from a drop down list. Key is
shown in red because you must select a key for the stage to work
properly. The Information field contains details about the property you
currently have selected in the tree. Where you can browse for a
property value, or insert a job parameter whose value is provided at
run time, a right arrow appears next to the field. Click on this and a
menu gives access to the Browse Files dialog box and/or a list of
available job parameters (job parameters are defined in the Job

Parallel Job Developer’s Guide 3-9

The Stage Page

Stage Editors

Properties dialog box - see "Job Properties"in DataStage Designer
Guide).

Some properties have default values, and you can always return to
the default by selecting it in the tree and choosing Set to default
from the shortcut menu.

Some properties are optional. These appear in the Available
properties to add field. Click on an optional property to add it to the
tree or choose to add it from the shortcut menu. You can remove it
again by selecting it in the tree and selecting Remove from the
shortcut menu.

Some properties can be repeated. In the example above you can add
multiple key properties. The Key property appears in the Available
properties to add list when you select the tree top level Properties
node. Click on the Key item to add multiple key properties to the tree.
Where a repeatable property expects a column as an argument, a
dialog is available that lets you specify multiple columns at once. To
open this, click the column button next to the properties tree:

El-3 Sorting Keys
R
o83 Sort Key Mode = Sort
'@ Sort Order = Azcending
EI_} Optiong

@ Allow Duplicates = True

@ Create Clugter Key Change Colur il
& Create Key Change Colurn = Fa LI/
i & Dutput Statistics = False -

& Sort Utility = DataStage
i€ Stable Sort = True

q o

50105

Column button

The Column Selection dialog box opens. The left pane lists all the
available columns, use the arrow right keys to select some or all of
them (use the left arrow keys to move them back if you change your

Parallel Job Developer’s Guide

Stage Editors The Stage Page

mind). A separate property will appear for each column you have
selected..

Column Selechion

Available Colurnns: Selected Columts:

| - M ame | Options |

=
W
=
T

Custommner
accountMo
accountType i
balahce
mizc1

misce

[RS

mizc3
mizcd
mizch

3 K S 3

mizch
miscy

mizcH j

N1 I Cancel | Help |

Some properties have dependents. These are properties which
somehow relate to or modify the parent property. They appear under
the parent in a tree structure.

For some properties you can supply a job parameter as their value. At
runtime the value of this parameter will be used for the property. Such
properties will have an arrow next to their Property Value box. Click
the arrow to get a drop-down menu, then choose Insert job
parameter get a list of currently defined job parameters to chose
from (see "Specifying Job Parameters"in DataStage Designer
Guidefor information about job parameters).

You can switch to a multiline editor for entering property values for
some properties. Do this by clicking on the arrow next to their

Parallel Job Developer’s Guide 3-11

The Stage Page

Stage Editors

Property Value box and choosing Switch to multiline editor from
the menu.

[Seq_OUT - Sequential File _ O] x]

Stage Input |
Input name: ILink_DUT 'l

General Properties |F'grtitioning| Fo_rmatl Qolumnsl

Columns... | Yiew Wata,. |

File: |

-4 Target
= [#DSROOTH#A0wpuFist Swiitch to multiine editor

%3 File = HDSROOTHEOUpUFileH
e File Update Mode = Dverwite
= ¢ Optiong

& Cleanup On Failure = True

i PReject Mode = Continue

Inzert job parameter..

Informatior;

Type: Pathname =
Mame of a file that the incoming data will be: _I
-

Browsze for file...

Lyailable properties fo add;

= L Lo o [0

ak. | Cancel | Help |

7

The property capabilities are indicated by different icons in the tree as
follows:

& non-repeating property with no dependents
& non-repeating property with dependents
& repeating property with no dependents

¢ repeating property with dependents

The properties for individual stage types are described in the chapter
about the stage.

Advanced Tab

All stage editors have an Advanced tab. This allows you to:

Specify the execution mode of the stage. This allows you to
choose between Parallel and Sequential operation. If the
execution mode for a particular type of stage cannot be changed,
then this drop down list is disabled. Selecting Sequential
operation forces the stage to be executed on a single node. If you
have intermixed sequential and parallel stages this has
implications for partitioning and collecting data between the
stages. You can also let DataStage decide by choosing the default
setting for the stage (the drop down list tells you whether this is
parallel or sequential).

Set or clear the preserve partitioning flag (this field is not available
for all stage types). It indicates whether the stage wants to
preserve partitioning at the next stage of the job (see "Preserve

3-12

Parallel Job Developer’s Guide

Stage Editors

The Stage Page

Partitioning Flag" on page 2-24). You choose between Set, Clear
and Propagate. For some stage types, Propagate is not available.
The operation of each option is as follows:

— Set. Sets the preserve partitioning flag, this indicates to the
next stage in the job that it should preserve existing
partitioning if possible.

— Clear. Clears the preserve partitioning flag. Indicates that this
stage does not care which partitioning method the next stage
uses.

— Propagate. Sets the flag to Set or Clear depending on what
the previous stage in the job has set (or if that is set to
Propagate the stage before that and so on until a preserve
partitioning flag setting is encountered).

You can also let DataStage decide by choosing the default setting
for the stage (the drop down list tells you whether this is set, clear,
or propagate).

Specify the combinability mode. Under the covers DataStage can
combine the operators that underlie parallel stages so that they
run in the same process. This saves a significant amount of data
copying and preparation in passing data between operators.

The combinability mode setting tells DataStage your preferences
for combining for a particular stage. It has three possible settings:

— Auto. Use the default combination setting.

— Combinable. Ignore the operator's default setting and
combine if at all possible (some operators are marked as
noncombinable by default).

— Don't Combine. Never combine operators.
In most cases the setting should be left to Auto.

Specify node map or node pool or resource pool constraints. The
configuration file allows you to set up pools of related nodes or
resources (see "The Configuration File" on page 2-6). The
Advanced tab allows you to limit execution of a stage to a
particular node or resource pool. You can also use a map to
specify a group of nodes that execution will be limited to just in
this stage. Supply details as follows:

— Node pool and resource constraints. Specify constraints in
the grid. Select Node pool or Resource pool from the
Constraint drop-down list. Select a Type for a resource pool
and, finally, select the name of the pool you are limiting
execution to. You can select multiple node or resource pools.
This is only enabled if you have defined multiple pools in the
configuration file.

Parallel Job Developer’s Guide 3-13

The Stage Page Stage Editors

— Node map constraints. Select the option box and type in the
nodes to which execution will be limited in the text box. You
can also browse through the available nodes to add to the text
box. Using this feature conceptually sets up an additional node
pool which doesn’t appear in the configuration file.

The lists of available nodes, available node pools, and available
resource pools are derived from the configuration file.

IE Data_Set_3 - Data Set =] E2

Stage | Output I

Stage name: IData_S et_3

General Advanced |

Execution mode: Combinability mode: Prezerve partitioning:
IDefauIt [Parallel] j I[Autc-] j IDefauIt [Propagate] j

Configuration file:

default e Ta use resource constraints you must define multiple ‘pools’ in
I J @ the configuration file.

) hade pool andiresauise constaits:

Canstraink | Type | Tame

' Maode map constraint:

L
Ok Cancel | Help I

7

Link Ordering Tab

This tab allows you to order the links for stages that have more than
one link and where ordering of the links is required.

3-14 Parallel Job Developer’s Guide

Stage Editors The Stage Page

The tab allows you to order input links and/or output links as needed.
Where link ordering is not important or is not possible the tab does
not appear.

—PxJoin23 - Pxloin

Stage |1nput |Qutput|

Stage name: |F':-Uu:-in23

Qenerall Eropertiesl &dvanced Link Ordering |

Order the following input links: [relen thefellatwihg eutput ks

Link label | Link name | Link label | Link name |
Al W
& Right DSLirk27

2] B =
SR

0K | Cancel | Help L

The link label gives further information about the links being ordered.
In the example we are looking at the Link Ordering tab for a Join
stage. The join operates in terms of having a left link and a right link,
and this tab tells you which actual link the stage regards as being left
and which right. If you use the arrow keys to change the link order, the
link name changes but not the link label. In our example, if you
pressed the down arrow button, DSLink27 would become the left link,
and DSLink26 the right.

A Join stage can only have one output link, so in the example the
Order the following output links section is disabled.

The following example shows the Link Ordering tab from a Merge
stage. In this case you can order both input links and output links. The
Merge stage handles reject links as well as a stream link and the tab
allows you to order these, although you cannot move them to the

Parallel Job Developer’s Guide 3-15

The Stage Page Stage Editors

stream link position. Again the link labels give the sense of how the
links are being used.

PxMerged3 - PxMerge [[O] x|

Stage |lnput Igutputl

Stage name: IPHMerge43

ﬁenerall Eropertiesl Advanced

Order the following input links: Order the following output links:
Link lsbel | Link name | Link label | Link name |
f b azter D5Link48 jh’laster DSLink54

o Update 1 DSLink4d
& Update 2 DSLink50
& Update 3 DSLinkS1

atvy Update 1 reject DSLinkES
sy Update 2' reject DSLink5E
wy Update 3 reject DSLink53

SN
SIS

0K I Cancel | Help |

7

The individual stage descriptions tell you whether link ordering is
possible and what options are available.

NLS Map Tab

If you have NLS enabled on your system, some of your stages will
have an NLS Map tab. This allows you to override the project default
character set map for this stage, and in some cases, allows you to
enable per-column mapping. When per-column mapping is enabled,
you can override the character set map for particular columns (an NLS
map field appears on the columns tab allowing you to do this).

3-16 Parallel Job Developer’s Guide

Stage Editors

The Stage Page

Select a map from the list, or click the arrow button next to the list to

specify a job parameter.

[. Sequential_File_3 - Sequential File

Stage I Output |

Stage name: ISequentiaI_FiIe_3

Eenerall fdvanced NLS Map |

Map name:

d ™ alow per-column mapping

Project default [150-8855-1) 3
BOCU-1

CESU-B

ebcdic-sml-us

gb18030

HZ

I1SCI version=0

|SCIversion=1

ISCH version=2

ISCI version=3

ISCIversion=4

ISCI version=5

ISCH version=6 ;I

ok | Cancel |

Help

v

The following stage types currently support this feature:

m Sequential File

m File Set

m Lookup File Set
m External Source

m External Target

m DB2/UDB Enterprise (not per-column mapping)

m Oracle Enterprise (not per-column mapping)

NLS Locale Tab

If you have NLS enabled on your system, some of your stages will
have an NLS Locale tab. It lets you view the current default collate
convention, and select a different one for the stage if required. You
can also use a job parameter to specify the locale, or browse for a file
that defines custom collate rules. The collate convention defines the
order in which characters are collated, for example, the character A
follows A in Germany, but follows Z in Sweden.

Parallel Job Developer’s Guide

3-17

Inputs Page

Stage Editors

Select a locale from the list, or click the arrow button next to the list to
use a job parameter or browse for a collate file.

ﬁAgglegatm_1 - Aggregator |_[O

Stage | nput I

Stage name: IAggregator_‘l

Collate:
[Froject defaul (OFF] j

QK I Cancel | Help |

7

The following types of stage have an NLS Locale tab:

m Stages that evaluate expressions, such as the Transformer.
m Stages that need to evaluate the order of key columns.

m The Sort Stage.

Inputs Page

The Inputs page gives information about links going into a stage. In
the case of a file or database stage an input link carries data being
written to the file or database. In the case of a processing or
restructure stage it carries data that the stage will process before
outputting to another stage. Where there are no input links, the stage
editor has no Inputs page.

Where it is present, the Inputs page contains various tabs depending
on stage type. The only field the Inputs page itself contains is Input
name, which gives the name of the link being edited. Where a stage
has more than one input link, you can select the link you are editing
from the Input name drop-down list.

The Inputs page also has a Columns... button. Click this to open a
window showing column names from the meta data defined for this
link. You can drag these columns to various fields in the Inputs page
tabs as required.

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Certain stage types will also have a View Data... button. Press this to
view the actual data associated with the specified data source or data
target. The button is available if you have defined meta data for the
link. Note the interface allowing you to view the file will be slightly
different depending on stage and link type.

General Tab

The Inputs page always has a General tab. this allows you to enter
an optional description of the link. Specifying a description for each
link enhances job maintainability.

—Pxdoin23 - Pxloin

Stage

Input name: IDSLink2B

j Columns... |

General | F'Qrtitioningl Qolumns' .f-‘n.dvancedl

Description:
left hand join input ;l

K I Cancel | Help |

Properties Tab

Some types of file and database stages can have properties that are
particular to specific input links. In this case the Inputs page has a

Parallel Job Developer’s Guide 3-19

Inputs Page

Stage Editors

Properties tab. This has the same format as the Stage page
Properties tab (see "Properties Tab" on page 3-8).

=" PxSequentialFileD - Sequential File [_ O] =]

Stage Input |

Input name: [{al={I Calumns. .. | e Date |

General Properties I Pgrtitioningl Fo[mat' Qolumnsl Advancedl

=2 [Optiors il [ME praperty selected]
i Cleanup On Failure = True
i G File ll
----- & File Update Mode = Create Iftrmatit:
i€ Reject Mode = Conlirue Ll A
A =
I_l Awallable properties ko add:
i File
€ Filter
& Schema File

QK I Cancel Help

Partitioning Tab

Most parallel stages have a default partitioning or collecting method
associated with them. This is used depending on the execution mode
of the stage (i.e., parallel or sequential) and the execution mode of the
immediately preceding stage in the job. For example, if the preceding
stage is processing data sequentially and the current stage is
processing in parallel, the data will be partitioned before it enters the
current stage. Conversely if the preceding stage is processing data in
parallel and the current stage is sequential, the data will be collected
as it enters the current stage.

You can, if required, override the default partitioning or collecting
method on the Partitioning tab. The selected method is applied to
the incoming data as it enters the stage on a particular link, and so the
Partitioning tab appears on the Inputs page. You can also use the
tab to repartition data between two parallel stages. If both stages are
executing sequentially, you cannot select a partition or collection
method and the fields are disabled. The fields are also disabled if the
particular stage does not permit selection of partitioning or collection
methods. The following table shows what can be set from the
Partitioning tab in what circumstances:

Preceding Stage Current Stage Partition Tab Mode

Parallel Parallel Partition

3-20

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Preceding Stage Current Stage Partition Tab Mode
Parallel Sequential Collect

Sequential Parallel Partition

Sequential Sequential None (disabled)

The Partitioning tab also allows you to specify that the data should
be sorted as it enters.

Tt Split¥ect - Split Vector [_ (O] x|

Stage Imput | Output I

Input narme: ILink_IN j Columns... |

General Partitioning |§0Iumns| Advancedl

Partitioning / Collectng———————— [~ Sorting
Partition type: ¥ Perform sort [Stable
IHound robin j EI ™ Unique
Avvailable: Selected:
SaleslD Key | Options

The Partitioning tab has the following fields:

Partition type. Choose the partitioning (or collecting) type from
the drop-down list. The following partitioning types are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and
preceding stages and how many nodes are specified in the
Configuration file. This is the default method for many stages.

Entire. Every processing node receives the entire data set. No
further information is required.

Hash. The records are hashed into partitions based on the
value of a key column or columns selected from the Available
list.

Modulus. The records are partitioned using a modulus
function on the key column selected from the Available list.
This is commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator. No further information
is required.

Parallel Job Developer’s Guide 3-21

Inputs Page

Stage Editors

— Round Robin. The records are partitioned on a round robin
basis as they enter the stage. No further information is
required.

— Same. Preserves the partitioning already in place. No further
information is required.

— DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these

properties by clicking the properties button .

— Range. Divides a data set into approximately equal size
partitions based on one or more partitioning keys. Range
partitioning is often a preprocessing step to performing a total
sort on a data set. Requires extra properties to be set. Access
these properties by clicking the properties button 2.

The following collection types are available:

— (Auto). Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it
becomes available. This is the fastest collecting method and is
the default collection method for many stages. In some
circumstances DataStage will detect further requirements for
collected data, for example, it might need to be sorted. Using
Auto mode will ensure data is sorted if required.

— Ordered. Reads all records from the first partition, then all
records from the second partition, and so on. Requires no
further information.

— Round Robin. Reads a record from the first input partition,
then from the second partition, and so on. After reaching the
last partition, the operator starts over.

— Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting
key column from the Available list.

Available. This lists the input columns for the input link. Key
columns are identified by a key icon. For partitioning or collecting
methods that require you to select columns, you click on the
required column in the list and it appears in the Selected list to
the right. This list is also used to select columns to sort on.

Selected. This list shows which columns have been selected for
partitioning on, collecting on, or sorting on and displays
information about them. The available information is whether a
sort is being performed (indicated by an arrow), if so the order of
the sort (ascending or descending) and collating sequence (sort as
EBCDIC), and whether an alphanumeric key is case sensitive or
not. Nullable columns are marked to indicate if null columns take
first or last position. You can select sort order, case sensitivity,

3-22

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

collating sequence, and nulls position from the shortcut menu. If
applicable, the Usage field indicates whether a particular key
column is being used for sorting, partitioning, or both.

Sorting. The check boxes in the section allow you to specify sort
details. The availability of sorting depends on the partitioning
method chosen.

— Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

— Stable. Select this if you want to preserve previously sorted
data sets. The default is stable.

— Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If
stable sort is also set, the first record is retained.

You can also specify sort direction, case sensitivity, whether
sorted as EBCDIC, and whether null columns will appear first or
last for each column. Where you are using a keyed partitioning
method, you can also specify whether the column is used as a key
for sorting, for partitioning, or for both. Select the column in the
Selected list and right-click to invoke the shortcut menu. The
availability of the sort options depends on the type of data in the
column, whether it is nullable or not, and the partitioning method
chosen.

If you have NLS enabled, the sorting box has an additional button.
Click this to open the NLS Locales tab of the Sort Properties
dialog box. This lets you view the current default collate
convention, and select a different one for the stage if required. You
can also use a job parameter to specify the locale, or browse for a
file that defines custom collate rules. The collate convention
defines the order in which characters are collated, for example, the
character A follows A in Germany, but follows Z in Sweden. Select
a locale from the list, or click the arrow button next to the list to
use a job parameter or browse for a collate file.

If you require a more complex sort operation, you should use the
Sort stage (see Chapter 21).

Parallel Job Developer’s Guide 3-23

Inputs Page

Stage Editors

DB2 Partition Properties

This dialog box appears when you select a Partition type of DB2 and
click the properties button 2. It allows you to specify the DB2 table

whose partitioning method is to be replicated.

DB2 partition properties E

DBZ Databage name:

1 |lse ervvironment variable APT_DBMAME, if defined, otherwise DE2DBDFT.
= User defined:

DB2 Instance name:
& Use environment variable DE2INSTANCE.
" User defined: I

[B2 Table name:

Inewparﬂ

o]

Cancel | Help

Range Partition Properties

This dialog box appears when you select a Partition type of Range and
click the properties button 2. It allows you to specify the range map
that is to be used to determine the partitioning (you create a range

map file using the Write Range Map stage - see Chapter 55). Type in a

pathname or browse for a file.

Range partition properties E

Sample data zet:
I.-’homea"mdebelin.-’rhubarb

QK Cancel Help

3-24

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Format Tab

Stages that write to certain types of file (e.g., the Sequential File stage)
also have a Format tab which allows you to specify the format of the

file or files being written to.

& PxSequentialFile? - Sequential File

Stage lnput |

Input name: IDSLink4 ﬂ

=] B3

Columns... | Wiewbata,

Froperties: [Mo property zelected]
- Record level - I
i B Final delimiter = end
Field defaults Properties that apply to the record az a whaole. ﬂ
B3 Delirmiter = comma
i B3 Cuote = double :I
5. Type defaults Available properties to add:
& Character set B Intact
String - | & Fill char ¥ Record delimiter oF
Decimal % Final delimiter sting % Fecord delimiter str
] | YR 2]
Load... |
ak I Cancel | Help

The Format tab is similar in structure to the Properties tab. A flat file
has a number of properties that you can set different attributes for.

Select the property in the tree and select the attributes you want to set
from the Available properties to add window, it will then appear as
a dependent property in the property tree and you can set its value as
required. This tab sets the format information for the file at row level.
You can override the settings for individual columns using the Edit

Column Metadata dialog box (see page 3-28).

If you click the Load button you can load the format information from
a table definition in the Repository.

The shortcut menu from the property tree gives access to the

following functions:

m Format as. This applies a predefined template of properties.
Choose from the following:

— Delimited/quoted

— Fixed-width records

— UNIX line terminator
— DOS line terminator

— No terminator (fixed width)

— Mainframe (COBOL)

Parallel Job Developer’s Guide

3-25

Inputs Page

Stage Editors

Add sub-property. Gives access to a list of dependent properties
for the currently selected property (visible only if the property has
dependents).

Set to default. Appears if the currently selected property has
been set to a non-default value, allowing you to re-select the
default.

Remove. Removes the currently selected property. This is
disabled if the current property is mandatory.

Remove all. Removes all the non-mandatory properties.

Details of the properties you can set are given in the chapter
describing the individual stage editors:

m Sequential File stage — page 5-13
m File Set stage — page 6-10

m External Target stage — page 9-8

m Column Export stage — page 42-10

Columns Tab

The Inputs page always has a Columns tab. This displays the
column meta data for the selected input link in a grid.

% PxFunnell - PxFunnel H=l E
Stage Input |Qutput |
Ipt rame: IDSLink4 ﬂ Columns... |
Qenerall Fartitioning E
Column name | Key | SOL type | Length |Scale| Nullable| Dizplay | [ata element
1| rumber L1 | Mumeric 10 Mo 48
|2 | number2 O | Char Ho
| 3 | description L1 | Char Mo
| 4 | price [0 | Decimal Ho
5 | rumber3] | Char Ma
1
1 »
Save.. | Load... |
0K I Cancel | Help |
v

There are various ways of populating the grid:

m [f the other end of the link has meta data specified for it, this will
be displayed in the Columns tab (meta data is associated with,
and travels with, a link).

3-26

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

® You can type the required meta data into the grid. When you have
done this, you can click the Save... button to save the meta data

as a table definition in the Repository for subsequent reuse.

® You can load an existing table definition from the Repository. Click

the Load... button to be offered a choice of table definitions to

load. Note that when you load in this way you bring in the

columns definitions, not any formatting information associated

with them (to load that, go to the Format tab).

® You can drag a table definition from the Repository Window on

the Designer onto a link on the canvas. This transfers both the

column definitions and the associated format information.

If you select the options in the Grid Properties dialog box (see "Grid
Properties" in DataStage Designer Guide), the Columns tab will also

display two extra fields: Table Definition Reference and Column

Definition Reference. These show the table definition and individual

columns that the columns on the tab were derived from.

If you click in a row and select Edit Row... from the shortcut menu,
the Edit Column Meta Data dialog box appears, which allows you
edit the row details in a dialog box format. It also has a Parallel tab
which allows you to specify properties that are peculiar to parallel job
column definitions. The dialog box only shows those properties that

are relevant for the current link.

B Edit Column Meta Data [%]
Colurnn name: Key:
Jprv [Na =l
type: ength: cale:
SaL Length Scal
IEhar j |4 ﬂ ID ﬂ
Mullable:
IYes j
Drescription:
Server| COBOL Parallel
Field type: Froperties: [Ma property selected]
|string I Field level I
I Stiing type
Il FLT“t?nd;d] L3 Mullable Properties that apply to fields as a whole. ;I
nicode =
‘ector occurs: LI
j Awailable properties to add:
[~ Variable = B Bytes to skip & Generate on outpu
& Delimiter & Prefix bytes
Level number: & Delimiter string & Print field
I j 2! ' & Dirop on input B Quote
KN i
< Previous | Mest » | Lloze I Lpply | Feset | Help |

4

The Parallel tab enables you to specify properties that give more

detail about each column, and properties that are specific to the data
type. Where you are specifying complex data types, you can specify a

Parallel Job Developer’s Guide

3-27

Inputs Page Stage Editors
level number, which causes the Level Number field to appear in the
grid on the Columns page.

If you have NLS enabled, and the column has an underlying string

type, you can specify that the column contains Unicode data by

selecting the Extended (Unicode) check box. Where you can enter a

character for any property, this can usually be an ASCII character or a

multi-byte Unicode character (if you have NLS enabled).

Some table definitions need format information. This occurs where

data is being written to a file where DataStage needs additional

information in order to be able to locate columns and rows. Properties
for the table definition at row level are set on the Format tab of the
relevant stage editor, but you can override the settings for individual
columns using the Parallel tab. The settings are made in a properties
tree under the following categories:

Field Level

This has the following properties:

m Bytes to Skip. Skip the specified number of bytes from the end
of the previous column to the beginning of this column.

m Delimiter. Specifies the trailing delimiter of the column. Type an
ASCII character or select one of whitespace, end, none, null,
comma, or tab.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).

— null. ASCII Null character is used.

— comma. ASCIl comma character used.

— tab. ASCII tab character used.

= Delimiter string. Specify a string to be written at the end of the
column. Enter one or more characters. This is mutually exclusive
with Delimiter, which is the default. For example, specifying *, ’
(comma space — you do not need to enter the inverted commas)
would have the column delimited by *, “.

m Drop on input. Select this property when you must fully define
the meta data for a data set, but do not want the column actually
read into the data set.

3-28 Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Prefix bytes. Specifies that this column is prefixed by 1, 2, or 4
bytes containing, as a binary value, either the column’s length or
the tag value for a tagged column. You can use this option with
variable-length fields. Variable-length fields can be either
delimited by a character or preceded by a 1-, 2-, or 4-byte prefix
containing the field length. DataStage inserts the prefix before
each field.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for each of the
columns it reads. The message has the format:

Importing N: D
where:
— Nis the column name.

— Dis the imported data of the column. Non-printable characters
conained in D are prefixed with an escape character and written
as C string literals; if the column contains binary data, it is
output in octal format.

Quote. Specifies that variable length columns are enclosed in
single quotes, double quotes, or another ASCII character or pair of
ASCII characters. Choose Single or Double, or enter a character.

Start position. Specifies the starting position of a column in the
record. The starting position can be either an absolute byte offset
from the first record position (0) or the starting position of another
column.

Tag case value. Explicitly specifies the tag value corresponding
to a subfield in a tagged subrecord. By default the fields are
numbered 0 to N-1, where N is the number of fields. (A tagged
subrecord is a column whose type can vary. The subfields of the
tagged subrecord are the possible types. The tag case value of the
tagged subrecord selects which of those types is used to interpret
the column’s value for the record.)

String Type

This has the following properties:

Character Set. Choose from ASCII or EBCDIC (not available for
ustring type (Unicode)).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Parallel Job Developer’s Guide 3-29

Inputs Page

Stage Editors

Export EBCDIC as ASCILI. Select this to specify that EBCDIC
characters are written as ASCII characters (not available for ustring
type (Unicode)).

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters (not available for ustring
type (Unicode)).

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

Date Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

— little-endian. The high byte is on the right.

— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
Character Set. Choose from ASCII or EBCDIC.

3-30

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have defined
a new one on an NLS system (see DataStage NLS Guide).

Data Format. Specifies the data representation format of a
column. Choose from:

— binary
— text

For dates, binary is equivalent to specifying the julian property for
the date field, text specifies that the data to be written contains a
text-based date in the form %yyyy-%mm-%dd or in the default
date format if you have defined a new one on an NLS system (see
DataStage NLS Guide).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Format string. The string format of a date. By default this is
%yyyy-%omm-%dd. The Format string can contain one or a
combination of the following elements:

- %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).
— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.

— It cannot have both %yy and %yyyy.

— It cannot have both %mm and %ddd.

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %mm or %emmm.

— It must have exactly one of %yy or %yyyy.

Parallel Job Developer’s Guide 3-31

Inputs Page

Stage Editors

When you specify a date format string, prefix each component
with the percent symbol (%). Separate the string’s components
with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of
the month in the destination field. If the format string does not
include the month and day, they default to January 1. Note that
the format string must contain a month if it also contains a day;
that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in
which all two digit years fall. By default, the year cutoff is 1900;
therefore, a two-digit year of 97 represents 1997 You can also set
this using the environment variable
APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the two-digit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

— little-endian. The high byte is on the right.

— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
Character Set. Choose from ASCII or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

— Dbinary

- text

3-32

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

For time, binary is equivalent to midnight_seconds, text specifies
that the field represents time in the text-based form %hh:%nn:%ss
or or in the default date format if you have defined a new one on

an NLS system (see DataStage NLS Guide).

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp Type

Byte order. Specifies how multiple byte data types are ordered.
Choose from:

— little-endian. The high byte is on the right.

— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
Character Set. Choose from ASCII or EBCDIC.

Data Format. Specifies the data representation format of a
column. Choose from:

— binary
- text

For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as the
number of seconds from midnight. A binary timestamp specifies
that two 32-but integers are written. Text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in the

Parallel Job Developer’s Guide 3-33

Inputs Page Stage Editors

default date format if you have defined a new one on an NLS
system (see DataStage NLS Guide).

m Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

m Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:
— %dd: A two-digit day.
- %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

- %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1 - 366)
For the time:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol (). Separate the string’s components with any
character except the percent sign (%).

Integer Type

m Byte order. Specifies how multiple byte data types are ordered.
Choose from:

— little-endian. The high byte is on the right.

— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
m Character Set. Choose from ASCII or EBCDIC.

3-34 Parallel Job Developer’s Guide

Stage Editors

Inputs Page

C_format. Perform non-default conversion of data from a string
to integer data. This property specifies a C-language format string
used for reading/writing integer strings. This is passed to sscanf{()
or sprintf().

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

— binary
- text

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to integer. This is passed to sscanf{). By default, DataStage
invokes the C sscanf{) function to convert a numeric field
formatted as a string to either integer or floating point data. If this
function does not output data in a satisfactory format, you can
specify the in_format property to pass formatting arguments to
sscanfi).

Is link field. Selected to indicate that a column holds the length
of another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
integer to a string. This is passed to sprintf(). By default,
DataStage invokes the C sprintf{) function to convert a numeric
field formatted as integer data to a string. If this function does not
output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf{).

Parallel Job Developer’s Guide 3-35

Inputs Page

Stage Editors

Pad char. Specifies the pad character used when the integer is
written to an external string representation. Enter a character
(single-bye for strings, can be multi-byte for ustrings) or choose
null or space. The pad character is used when the external string
representation is larger than required to hold the written field. In
this case, the external string is filled with the pad character to its
full length. Space is the default.

Decimal Type

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No.

Character Set. Choose from ASCIl or EBCDIC.

Decimal separator. Specify the character that acts as the
decimal separator (period by default).

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

— Dbinary
- text

For decimals, binary means packed. Text represents a decimal in a
string format with a leading space or '-' followed by decimal digits
with an embedded decimal point if the scale is not zero. The
destination string format is: [+ | -]Jddd.[ddd] and any precision and
scale arguments are ignored.

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

3-36

Parallel Job Developer’s Guide

Stage Editors Inputs Page

m Packed. Select an option to specify what the decimal columns
contain, choose from:

— Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when writing
decimal columns. Select No to write a positive sign (0xf)
regardless of the columns’ actual sign value.

— No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

— No (zoned) to specify that they contain an unpacked decimal
in either ASCIl or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

— No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

m Precision. Specifies the precision where a decimal column is
represented in text format. Enter a number. When a decimal is
written to a string representation, DataStage uses the precision
and scale defined for the source decimal field to determine the
length of the destination string. The precision and scale properties
override this default. When they are defined, DataStage truncates
or pads the source decimal to fit the size of the destination string.
If you have also specified the field width property, DataStage
truncates or pads the source decimal to fit the size specified by
field width.

® Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

— up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

Parallel Job Developer’s Guide 3-37

Inputs Page

Stage Editors

— down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

— nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

— truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.
Specifies how to round a source decimal when its precision and
scale are greater than those of the destination.

Float Type

C_format. Perform non-default conversion of data from a string
to floating-point data. This property specifies a C-language format
string used for reading floating point strings. This is passed to
sscanf{().

Character Set. Choose from ASCIl or EBCDIC.

Default. The default value for a column. This is used for data
written by a Generate stage. It also supplies the value to substitute
for a column that causes an error (whether written or read).

Data Format. Specifies the data representation format of a
column. Choose from:

— binary
- text

3-38

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. Enter a number. This is
useful where you are storing numbers as text. If you are using a
fixed-width character set, you can calculate the length exactly. If
you are using variable-length character set, calculate an adequate
maximum width for your fields. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

Field width. The number of bytes in a column represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

In_format. Format string used for conversion of data from string
to floating point. This is passed to sscanf{). By default, DataStage
invokes the C sscanf{) function to convert a numeric field
formatted as a string to floating point data. If this function does
not output data in a satisfactory format, you can specify the
in_format property to pass formatting arguments to sscanfi).

Is link field. Selected to indicate that a column holds the length
of a another, variable-length column of the record or of the tag
value of a tagged record field.

Out_format. Format string used for conversion of data from
floating point to a string. This is passed to sprintf{). By default,
DataStage invokes the C sprintf{) function to convert a numeric
field formatted as floating point data to a string. If this function
does not output data in a satisfactory format, you can specify the
out_format property to pass formatting arguments to sprintf{).

Pad char. Specifies the pad character used when the floating
point number is written to an external string representation. Enter
a character (single-bye for strings, can be multi-byte for ustrings)
or choose null or space. The pad character is used when the
external string representation is larger than required to hold the
written field. In this case, the external string is filled with the pad
character to its full length. Space is the default.

Nullable

This appears for nullable fields.

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Parallel Job Developer’s Guide 3-39

Inputs Page Stage Editors

m Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. When a variable-length field is written, DataStage writes a
length value of null field length if the field contains a null. This
property is mutually exclusive with null field value.

m Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first ois < 4, or by
\xhh, where each his a hexadecimal digit O - F You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field. On reading, specifies the value given
to a field containing a null. On writing, specifies the value given to
a field if the source is set to null. Can be a number, string, or C-
type literal escape character.

Generator

If the column is being used in a Row Generator or Column Generator
stage, this allows you to specify extra details about the mock data
being generated. The exact fields that appear depend on the data type
of the column being generated. They allow you to specify features of
the data being generated, for example, for integers they allow you to
specify if values are random or whether they cycle. If they cycle you
can specify an initial value, an increment, and a limit. If they are
random, you can specify a seed value for the random number
generator, whether to include negative numbers, and a limit

3-40 Parallel Job Developer’s Guide

Stage Editors Inputs Page

The diagram below shows the Generate options available for the
various data types:.

Cycle Value

String Algorithm

A

Alphabet String

Increment
Initial value

N

Cycle

Limit
Date
Random Limit
Epoch Seed
Percent invalid “\Signed
Use current date

Increment
Initial value
Cycle Limit

Time
Random Limit
Scale factor Seed
Percent invalid “Signed

Increment
Initial value

'/

N

| i

Cycle

Limit
Timestamp
Random Limit
Epoch Seed
Percent invalid “\Signed
Use current date

Increment
Initial value
Limit

|\ i/

Cycle

Integer <
Random

Limit

E g Seed
Signed
Increment
E Elnitial value
Cycle Limit
Decimal
Random Limit
Percent zerog ESEEd
Percent invalid Signed
Increment
E Elnitial value
Cycle Limit
Float <
Random Limit

Seed
Signed

/

All data types

All data types other than string have two Types of operation, cycle
and random:

m Cycle. The cycle option generates a repeating pattern of values
for a column. It has the following optional dependent properties:

Parallel Job Developer’s Guide 3-41

Inputs Page

Stage Editors

Increment. The increment value added to produce the field
value in the next output record. The default value is 1 (integer)
or 1.0 (float).

Initial value. is the initial field value (value of the first output
record). The default value is 0.

Limit. The maximum field value. When the generated field
value is greater than Limit, it wraps back to /nitial value. The
default value of Limit is the maximum allowable value for the
field’s data type.

You can set these to ‘part’ to use the partition number (e.g., 0, 1, 2,
3 on a four node system), or ‘partcount’ to use the total number of
executing partitions (e.g., 4 on a four node system).

m Random. The random option generates random values for a field.
It has the following optional dependent properties:

Limit. Maximum generated field value. The default value of
limit is the maximum allowable value for the field’s data type.

Seed. The seed value for the random number generator used
by the stage for the field. You do not have to specify seed. By
default, the stage uses the same seed value for all fields
containing the random option.

Signed. Specifies that signed values are generated for the field
(values between -limit and +limit). Otherwise, the operator
creates values between 0 and +/imit.

You can limitand seed to ‘part’ to use the partition number (e.g., 0,
1, 2, 3 on a four node system), or ‘partcount’ to use the total
number of executing partitions (e.g., 4 on a four node system).

Strings

By default the generator stages initialize all bytes of a string field to
the same alphanumeric character. The stages use the following
characters, in the following order:

abcdefghijkImnopqgrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

For example, the following a string with a length of 5 would produce
successive string fields with the values:

aaaaa
bbbbb
ccccc
ddddd

After the last character, capital Z, values wrap back to lowercase a and
the cycle repeats.

3-42

Parallel Job Developer’s Guide

Stage Editors Inputs Page

You can also use the algorithm property to determine how string
values are generated, this has two possible values: cycle and
alphabet:

m Cycle. Values are assigned to a generated string field as a set of
discrete string values to cycle through. This has the following
dependent property:

— Values. Repeat this property to specify the string values that
the generated data cycles through.

m Alphabet. Values are assigned to a generated string field as a
character string each of whose characters is taken in turn. This is
like the default mode of operation except that you can specify the
string cycled through using the dependent property String.

Decimal

As well as the Type property, decimal columns have the following
properties:

m Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

m Percent zero. The percentage of generated decimal columns
where all bytes of the decimal are set to binary zero (0x00). Set to
10% by default.

Date

As well as the Type property, date columns have the following
properties:

m Epoch. Use this to specify the earliest generated date value, in the
format yyyy-mm-dd (leading zeros must be supplied for all parts).
The default is 1960-01-01.

m Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

m Use current date. Set this to generate today’s date in this
column for every row generated. If you set this all other properties
are ignored.

Time

As well as the Type property, time columns have the following
properties:

m Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

Parallel Job Developer’s Guide 3-43

Inputs Page

Stage Editors

m Scale factor. Specifies a multiplier to the increment value for
time. For example, a scale factor of 60 and an increment of 1
means the field increments by 60 seconds.

Timestamp

As well as the Type property, time columns have the following
properties:

m Epoch. Use this to specify the earliest generated date value, in the
format yyyy-mm-dd (leading zeros must be supplied for all parts).
The default is 1960-01-01.

m Use current date. Set this to generate today’s date in this
column for every row generated. If you set this all other properties
are ignored.

m Percent invalid. The percentage of generated columns that will
contain invalid values. Set to 10% by default.

m Scale factor. Specifies a multiplier to the increment value for
time. For example, a scale factor of 60 and an increment of 1
means the field increments by 60 seconds.

Vectors

If the row you are editing represents a column which is a variable
length vector, tick the Variable check box. The Vector properties
appear, these give the size of the vector in one of two ways:

m Link Field Reference. The name of a column containing the
number of elements in the variable length vector. This should
have an integer or float type, and have its Is Link field property set.

m Vector prefix. Specifies 1-, 2-, or 4-byte prefix containing the
number of elements in the vector.

If the row you are editing represents a column which is a vector of
known length, enter the number of elements in the Vector Occurs
box.

Subrecords

If the row you are editing represents a column which is part of a
subrecord the Level Number column indicates the level of the column
within the subrecord structure.

If you specify Level numbers for columns, the column immediately
preceding will be identified as a subrecord. Subrecords can be nested,
so can contain further subrecords with higher level numbers (i.e.,
level 06 is nested within level 05). Subrecord fields have a Tagged
check box to indicate that this is a tagged subrecord.

3-44

Parallel Job Developer’s Guide

Stage Editors

Inputs Page

Extended

For certain data types the Extended check box appears to allow you
to modify the data type as follows:

m Char, VarChar, LongVarChar. Select to specify that the
underlying data type is a ustring.

m Time. Select to indicate that the time field includes microseconds.

m Timestamp. Select to indicate that the timestamp field includes
microseconds.

m Tinyint, Smallint, Integer, Biglnt types. Select to indicate that
the underlying data type is the equivalent uint field.

Advanced Tab

The Advanced tab allows you to specify how DataStage buffers data
being input this stage. By default DataStage buffers data in such a way
that no deadlocks can arise; a deadlock being the situation where a
number of stages are mutually dependent, and are waiting for input
from another stage and cannot output until they have received it.

The size and operation of the buffer are usually the same for all links
on all stages (the default values that the settings take can be set using
environment variables — see "Configuring for Enterprise Edition" of
the Install and Upgrade Guide).

The Advanced tab allows you to specify buffer settings on a per-link
basis. You should only change the settings if you fully understand the
consequences of your actions (otherwise you might cause deadlock
situations to arise).

Parallel Job Developer’s Guide 3-45

Inputs Page

Stage Editors

Any changes you make on this tab will automatically be reflected in
the Outputs Page Advanced Tab of the stage at the other end of this
link.

ﬁ Surrogate_Keyp Generator_0 - Surrogate Key Generator

Stage Imput |Dutput|

|nput name: |DSLink2 j Calurins. . |

Generall Paltitioningl Columng Advanced |

Buffering maods: M asirum rmemamny buffer size (|
Buto buffer 145728

o

ks

Buffer free run [percent):

|50

bkl L

Queue upper bound size [bytes]:
|o

Diigk write increnent (bytez]:
[1048578

21 T

] I Cancel Help

The settings are as follows:

Buffering mode. Select one of the following from the drop-down
list.

(Default). This will take whatever the default settings are as
specified by the environment variables (this will be Auto-buffer
unless you have explicitly changed the value of the
APT_BUFFERING _POLICY environment variable).

Auto buffer. Buffer output data only if necessary to prevent a
dataflow deadlock situation.

Buffer. This will unconditionally buffer all data output from
this stage.

No buffer. Do not buffer output data under any circumstances.
This could potentially lead to deadlock situations if not used
carefully.

If you choose the Auto buffer or Buffer options, you can also set the
values of the various buffering parameters:

Maximum memory buffer size (bytes). Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB).

Buffer free run (percent). Specifies how much of the available
in-memory buffer to consume before the buffer resists. This is
expressed as a percentage of Maximum memory buffer size.
When the amount of data in the buffer is less than this value, new

3-46

Parallel Job Developer’s Guide

Stage Editors

Outputs Page

data is accepted automatically. When the data exceeds it, the
buffer first tries to write some of the data it contains before
accepting more.

The default value is 50% of the Maximum memory buffer size. You
can set it to greater than 100%, in which case the buffer continues
to store data up to the indicated multiple of Maximum memory
buffer size before writing to disk.

Queue upper bound size (bytes). Specifies the maximum
amount of data buffered at any time using both memory and disk.
The default value is zero, meaning that the buffer size is limited
only by the available disk space as specified in the configuration
file (resource scratchdisk). If you set Queue upper bound size
(bytes) to a non-zero value, the amount of data stored in the buffer
will not exceed this value (in bytes) plus one block (where the data
stored in a block cannot exceed 32 KB).

If you set Queue upper bound size to a value equal to or slightly
less than Maximum memory buffer size, and set Buffer free run to
1.0, you will create a finite capacity buffer that will not write to
disk. However, the size of the buffer is limited by the virtual
memory of your system and you can create deadlock if the buffer
becomes full.

Disk write increment (bytes). Sets the size, in bytes, of blocks
of data being moved to/from disk by the buffering operator. The
default is 1048576 (1 MB). Adjusting this value trades amount of
disk access against throughput for small amounts of data.
Increasing the block size reduces disk access, but may decrease
performance when data is being read/written in smaller units.
Decreasing the block size increases throughput, but may increase
the amount of disk access.

Outputs Page

The Outputs page gives information about links going out of a stage.
In the case of a file or database stage an input link carries data being
read from the file or database. In the case of a processing or
restructure stage it carries data that the stage has processed. Where
there are no output links the stage editor has no Outputs page.

Where it is present, the Outputs page contains various tabs
depending on stage type. The only field the Outputs page itself
contains is Output name, which gives the name of the link being
edited. Where a stage has more than one output link, you can select
the link you are editing from the Output name drop-down list.

Parallel Job Developer’s Guide 3-47

Outputs Page

Stage Editors

The Outputs page also has a Columns... button. Click Columns... to
open a window showing column names from the meta data defined
for this link. You can drag these columns to various fields in the
Outputs page tabs as required.

Certain stage types will also have a View Data... button. Press this to
view the actual data associated with the specified data source or data
target. The button is available if you have defined meta data for the
link.

The Sequential File stage has a Show File... button, rather than View
Data... . This shows the flat file as it has been created on disk.

General Tab

The Outputs page always has a General tab. this allows you to enter
an optional description of the link. Specifying a description for each
link enhances job maintainability.

i PxFunnell - PxFunnel Hi=] &3

Stage I Input Dutput |

Olutput name:IDSLinkE ﬂ Columns... |

General |§D|umns| Mappingl .-’-‘«dvancedl

Description:
D ata funneled from orders] and orders 3 ;I

Properties Tab

Some types of file and database stages can have properties that are
particular to specific output links. In this case the Outputs page has a

3-48

Parallel Job Developer’s Guide

Stage Editors Outputs Page

Properties tab. This has the same format as the Stage page
Properties tab (see "Properties Tab" on page 3-8).

=" PxSequentialFile3 - Sequential File H=] &

Stage Output |

Olutput name: |[{ake i Colummrrs. . | Wiew Diata,.. |

General Properties | Fo[matl Qolumnsl Advanced'

=== Options S | [o property selected]
@ Keep File Partiions = False
& Peject Mode = Continue + | _
(o Feport Progress = Yes [farmation:
& Rep g . | c
3 I
-| | Available properties to add:
@ Checkpoint & Filter
i File © Missing F
& File Pattem & Nurmber [
KN — b

k. I Cancel | Help

Format Tab

Stages that read from certain types of file (e.g., the Sequential File
stage) also have a Format tab which allows you to specify the format
of the file or files being read from.

=" PxSequentialFilel - Sequential File M= E
Stage Output |
Clutput narne: | DSLink3 j Columirs. .. | Wiew Data... |
Eenerall Properties t| Eolumnsl Advancedl
Froperties: [Mo property selected]
2= Recard level B I
. B Final delimiter = end
E'{EI Field defaults Properties that apply to the recaord as a whole, ;I
- B2 Delimiter = comma
{8 Quote = double fid
E"EI Type defaults Available properties to add:
@ General & Character set B Intact
£ String . | & Fill char & Record delimiter ch
5 Decimal %) Final delimiter sting 8 Record delimiter str
£ Numeric =] » | 1] | |
Load... |
(0].4 I Cancel | Help |
F

The Format page is similar in structure to the Properties page. A flat
file has a number of properties that you can set different attributes for.
Select the property in the tree and select the attributes you want to set
from the Available properties to add window, it will then appear as

Parallel Job Developer’s Guide 3-49

Outputs Page

Stage Editors

a dependent property in the property tree and you can set its value as
required. This tab sets the format information for the file at row level.
You can override the settings for individual columns using the Edit
Column Metadata dialog box (see page 3-28).

Format details are also stored with table definitions, and you can use
the Load... button to load a format from a table definition stored in
the DataStage Repository.

The short-cut menu from the property tree gives access to the
following functions:

m Format as. This applies a predefined template of properties.
Choose from the following:

— Delimited/quoted

— Fixed-width records

— UNIX line terminator

— DOS line terminator

— No terminator (fixed width)
— Mainframe (COBOL)

m Add sub-property. Gives access to a list of dependent properties
for the currently selected property (visible only if the property has
dependents).

m Set to default. Appears if the currently selected property has
been set to a non-default value, allowing you to re-select the
default.

m Remove. Removes the currently selected property. This is
disabled if the current property is mandatory.

m Remove all. Removes all the non-mandatory properties.

Details of the properties you can set are given in the chapter
describing the individual stage editors:

m Sequential File stage — page 5-30
m File Set stage — page 6-25
m External Source stage — page 8-7

m Column Import stage — page 41-12

3-50

Parallel Job Developer’s Guide

Stage Editors Outputs Page

Columns Tab

The Outputs page always has a Columns tab. This displays the
column meta data for the selected output link in a grid.

&' PxSequentialFile2 - PxSequentialFile _ O]
Stage Output |
Dutput name:IDSLink4 j Columns. .. | e Mata,, |

Qenerall Properties Columns |.&dvanced|

Calumn name | Key | SOL type | Lenath |Sc:a|e| Nullablel Display | Data element
1| rumbert [T Mumeric 10 Mo 42
|2 | number2 [Char Mo
|3 | description] Char No
4 | price] | Decimal No
5 | number3 [1 | Char Mo
1

4 3

¥ Buntime column propagatior: Save... | Load... |

(0] 4 I Canhcel | Help |

g

There are various ways of populating the grid:

m If the other end of the link has meta data specified for it, this will
be displayed in the Columns tab (meta data is associated with,
and travels with a link).

® You can type the required meta data into the grid. When you have
done this, you can click the Save... button to save the meta data
as a table definition in the Repository for subsequent reuse.

® You can load an existing table definition from the Repository. Click
the Load... button to be offered a choice of table definitions to
load.

m [f the stage you are editing is a general or restructure stage with a
Mapping tab, you can drag data from the left pane to the right
pane. This automatically populates the right pane and the
Columns tab.

If runtime column propagation is enabled in the DataStage
Administrator, you can select the Runtime column propagation to
specify that columns encountered by the stage can be used even if
they are not explicitly defined in the meta data. There are some
special considerations when using runtime column propagation with
certain stage types:

m Sequential File
m File Set

Parallel Job Developer’s Guide 3-51

Outputs Page

Stage Editors

m External Source
m External Target
See the individual stage descriptions for details of these.

If the selected output link is a reject link, the column meta data grid is
read only and cannot be modified.

If you select the options in the Grid Properties dialog box (see "Grid
Properties" in DataStage Designer Guide), the Columns tab will also
display two extra fields: Table Definition Reference and Column
Definition Reference. These show the table definition and individual
columns that the columns on the tab were derived from.

If you click in a row and select Edit Row... from the shortcut menu,
the Edit Column meta data dialog box appears, which allows you
edit the row details in a dialog box format. It also has a Parallel tab
which allows you to specify properties that are peculiar to parallel job
column definitions. The properties you can specify here are the same
as those specified for input links (see page 3-27).

Mapping Tab

For processing and restructure stages the Mapping tab allows you to
specify how the output columns are derived, i.e., what input columns
map onto them or how they are generated.

Join - Join H=] E3
Stage | Input Output |
Output name; I Clutput i l Columns... |
General Mapping |§0Iumns| Advancedl
- -
 wew
[Ewrersion ____Colunn o
Left.name harme | Leftname narne
Left. address address | Leftaddress address
Left.date date | Leftdate date
|| Left. orderitern arderitem | Leftorderitem orderitem —
Left. quantitity quantitity || Leftquantiiy quantitity
Right. ordercode ordercode | | Rightordercode ordercode

o of
Find | Auto-Match |

Ok I Cancel | Help |

7

The left pane shows the input columns and/or the generated columns.
These are read only and cannot be modified on this tab. These

3-52

Parallel Job Developer’s Guide

Stage Editors

Outputs Page

columns represent the data that the stage has produced after it has
processed the input data.

The right pane shows the output columns for each link. This has a
Derivations field where you can specify how the column is
derived.You can fill it in by dragging input columns over, or by using
the Auto-match facility. If you have not yet defined any output column
definitions, dragging columns over will define them for you. If you
have already defined output column definitions, DataStage performs
the mapping for you as far as possible: you can do this explicitly using
the auto-match facility, or implicitly by just visiting the Mapping tab
and clicking OK (which is the equivalent of auto-matching on name).

There is also a shortcut menu which gives access to a range of column
selection and editing functions, including the facilities for selecting
multiple columns and editing multiple derivations (this functionality is
described in the Transformer chapter, page 16-9 and page 16-13).

You may choose not to map all the left hand columns, for example if
your output data is a subset of your input data, but be aware that, if
you have Runtime Column Propagation turned on for that link, the
data you have not mapped will appear on the output link anyway.

You can also perform mapping without actually opening the stage
editor. Select the stage in the Designer canvas and choose Auto-map
from the shortcut menu.

In the above example the left pane represents the data after it has
been joined. The Expression field shows how the column has been
derived, the Column Name shows the column after it has been
joined. The right pane represents the data being output by the stage
after the join. In this example the data has been mapped straight
across.

More details about mapping operations for the different stages are
given in the individual stage descriptions:

Stage Chapter Stage Chapter

Aggregator Chapter 18 Change Capture Chapter 31
Join Chapter 19 Change Apply Chapter 32
Funnel Chapter 22 Difference Chapter 33
Lookup Chapter 21 Column Import Chapter 41
Sort Chapter 23 Column Export Chapter 42
Merge Chapter 20 Head Chapter 49
Remove Duplicates Chapter 24 Tail Chapter 50
Sample Chapter 51 Peek Chapter 52

Parallel Job Developer’s Guide 3-53

Outputs Page

Stage Editors

Stage Chapter Stage Chapter
Column Generator Chapter 54 SAS Chapter 38
Copy Chapter 27

A shortcut menu can be invoked from the right pane that allows you
to:

Find and replace column names.

Validate a derivation you have entered.

Clear an existing derivation.
Append a new column.

Select all columns.

Insert a new column at the current position.

Delete the selected column or columns.

Cut and copy columns.

Paste a whole column.

Paste just the derivation from a column.

The Find button opens a dialog box which allows you to search for
particular output columns.

Find and A E=|:||

Expression Test | Colurnn Marmes I Expression Types I

Fitid what:

|| Eird HERE |
Replace with: Feplace |
I Feplace Sl |
™ Match case

. Lloze |
All * | Direction
[~ Al gccurrences within the expression Help |

¥ Selected fink only

3-54

Parallel Job Developer’s Guide

Stage Editors

Outputs Page

The Auto-Match button opens a dialog box which will automatically
map left pane columns onto right pane columns according to the

specified criteria.

Column Auto-Match
It firk

Output link:

[| 0oLk

|

—Match type
" Location match

% MName match

— Input columns

& Match all columng

= Match selected columns

lgnore prefis:

— Dutput columng

lgnore prefis:

Ignare sulfis:

Ignore sulfis:

[~ lanore case

o]

Cancel |

Help

Select Location match to map input columns onto the output ones
occupying the equivalent position. Select Name match to match by
names. You can specify that all columns are to be mapped by name,
or only the ones you have selected. You can also specify that prefixes
and suffixes are ignored for input and output columns, and that case

can be ignored.

Advanced Tab

The Advanced tab allows you to specify how DataStage buffers data
being output from this stage. By default DataStage buffers data in
such a way that no deadlocks can arise; a deadlock being the situation
where a number of stages are mutually dependent, and are waiting
for input from another stage and cannot output until they have

received it.

The size and operation of the buffer are usually the same for all links
on all stages (the default values that the settings take can be set using
environment variables — see "Configuring for Enterprise Edition" of
the Install and Upgrade Guide).

The Advanced tab allows you to specify buffer settings on a per-link
basis. You should only change the settings if you fully understand the
consequences of your actions (otherwise you might cause deadlock

situations to arise).

Parallel Job Developer’s Guide

3-55

Outputs Page

Stage Editors

Any changes you make on this tab will automatically be reflected in
the Input Page Advanced Tab of the stage at the other end of this link

| Data_Set_0 - Data Set [_ (O] =]
Stage Output |
Dutput nare: I DSLink3 j Colurins... | e Data.. |

Generall Propeltiesl Columns Adwvanced |

Buffering mode: b aimum memory buffer size [bytes):

IEuffer

| 345728 =

Buffer free min [percent]:
|50

L]

Queue upper bound size [bytes):

[0 =
=

Diigk, wrrite increment [bytes]):
[1048576

The settings are as follows:

Buffering mode. Select one of the following from the drop-down

list

(Default). This will take whatever the default settings are as
specified by the environment variables (this will be Auto-buffer
unless you have explicitly changed the value of the
APT_BUFFERING _POLICY environment variable).

Auto buffer. Buffer output data only if necessary to prevent a
dataflow deadlock situation.

Buffer. This will unconditionally buffer all data output from
this stage.

No buffer. Do not buffer output data under any circumstances.
This could potentially lead to deadlock situations if not used
carefully.

If you choose the Auto buffer or Buffer options, you can also set the
values of the various buffering parameters:

Maximum memory buffer size (bytes). Specifies the maximum
amount of virtual memory, in bytes, used per buffer. The default
size is 3145728 (3 MB).

Buffer free run (percent). Specifies how much of the available
in-memory buffer to consume before the buffer resists. This is
expressed as a percentage of Maximum memory buffer size.
When the amount of data in the buffer is less than this value, new

3-56

Parallel Job Developer’s Guide

Stage Editors

Outputs Page

data is accepted automatically. When the data exceeds it, the
buffer first tries to write some of the data it contains before
accepting more.

The default value is 50% of the Maximum memory buffer size. You
can set it to greater than 100%, in which case the buffer continues
to store data up to the indicated multiple of Maximum memory
buffer size before writing to disk.

Queue upper bound size (bytes). Specifies the maximum
amount of data buffered at any time using both memory and disk.
The default value is zero, meaning that the buffer size is limited
only by the available disk space as specified in the configuration
file (resource scratchdisk). If you set Queue upper bound size
(bytes) to a non-zero value, the amount of data stored in the buffer
will not exceed this value (in bytes) plus one block (where the data
stored in a block cannot exceed 32 KB).

If you set Queue upper bound size to a value equal to or slightly
less than Maximum memory buffer size, and set Buffer free run to
1.0, you will create a finite capacity buffer that will not write to
disk. However, the size of the buffer is limited by the virtual
memory of your system and you can create deadlock if the buffer
becomes full.

Disk write increment (bytes). Sets the size, in bytes, of blocks
of data being moved to/from disk by the buffering operator. The
default is 1048576 (1 MB). Adjusting this value trades amount of
disk access against throughput for small amounts of data.
Increasing the block size reduces disk access, but may decrease
performance when data is being read/written in smaller units.
Decreasing the block size increases throughput, but may increase
the amount of disk access.

Parallel Job Developer’s Guide 3-57

Outputs Page Stage Editors

3-58 Parallel Job Developer’s Guide

Data Set Stage

The Data Set stage is a file stage. It allows you to read data from or
write data to a data set. The stage can have a single input link or a
single output link. It can be configured to execute in parallel or
sequential mode.

What is a data set? DataStage parallel extender jobs use data sets to
manage data within a job. You can think of each link in a job as
carrying a data set. The Data Set stage allows you to store data being
operated on in a persistent form, which can then be used by other
DataStage jobs. Data sets are operating system files, each referred to
by a control file, which by convention has the suffix .ds. Using data
sets wisely can be key to good performance in a set of linked jobs. You
can also manage data sets independently of a job using the Data Set
Management utility, available from the DataStage Designer, Manager,
or Director, see Chapter 57.

Reading and Writing Data Sets

m L

[0
m
. V_IJ ror
1ot . . .
- Wirtual_dataset_1 Yirtual_dataset_2 Yirtual_dataszet_3

1101
Persistent_dataset_1 I:e&up Transformer Persistent_dataset_2

.
L reference

Lookup File_Set

The stage editor has up to three pages, depending on whether you are
reading or writing a data set:

Parallel Job Developer’s Guide a4-1

Must Do’s Data Set Stage

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are writing to a data set.
This is where you specify details about the data set being written
to.

m Outputs Page. This is present when you are reading from a data
set. This is where you specify details about the data set being read
from.

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Data Set stages in a job. This section specifies the minimum
steps to take to get a Data Set stage functioning. DataStage provides a
versatile user interface, and there are many shortcuts to achieving a
particular end, this section describes the basic methods, you will learn
where the shortcuts are when you get familiar with the product.

The steps required depend on whether you are using the Data Set
stage to read or write a data set.

Writing to a Data Set

® In the Input Link Properties Tab specify the pathname of the
control file for the target data set. Set the Update Policy property,
or accept the default setting of Overwrite.

m Ensure column meta data has been specified for the data set (this
may have already been done in a preceding stage).

Reading from a Data Set

® Inthe Output Link Properties Tab specify the pathname of the
control file for the source data set.

m Ensure column meta data has been specified for the data set.

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes.

4-2 Parallel Job Developer’s Guide

Data Set Stage Inputs Page

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the contents of the data set are
processed by the available nodes as specified in the Configuration
file, and by any node constraints specified on the Advanced tab.
In Sequential mode the entire contents of the data set are
processed by the conductor node.

= Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

= Preserve partitioning. You can select Propagate, Set or Clear.
If you select Set file read operations will request that the next
stage preserves the partitioning as is. Propagate takes the setting
of the flag from the previous stage.

= Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page

The Inputs page allows you to specify details about how the Data Set
stage writes data to a data set. The Data Set stage can have only one
input link.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Columns tab specifies the column definitions
of the data. The Advanced tab allows you to change the default
buffering settings for the input link.

Details about Data Set stage properties are given in the following
sections. See Chapter 3, "Stage Editors," for a general description of
the other tabs.

Parallel Job Developer’s Guide 4-3

Inputs Page

Data Set Stage

Input Link Properties Tab

Category/
Property

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and to what data set.
Some of the properties are mandatory, although many have default
settings. Properties without default settings appear in the warning
color (red by default) and turn black when you supply a value for
them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows:

Values Default Mandatory? Repeats? Dependent of

Target/File

Target/Update
Policy

pathname N/A Y N N/A

Append/Create Overwrite Y N N/A
(Error if exists)/

Overwrite/Use

existing

(Discard

records)/Use

existing

(Discard

records and

schema)

Target Category

File

The name of the control file for the data set. You can browse for the
file or enter a job parameter. By convention, the file has the suffix .ds.

Update Policy

Specifies what action will be taken if the data set you are writing to
already exists. Choose from:

s Append. Append any new data to the existing data.

m Create (Error if exists). DataStage reports an error if the data set
already exists.

= Overwrite. Overwrites any existing data with new data.

m Use existing (Discard records). Keeps the existing data and
discards any new data.

m Use existing (Discard records and schema). Keeps the
existing data and discards any new data and its associated
schema.

4-4

Parallel Job Developer’s Guide

Data Set Stage Inputs Page

The default is Overwrite.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the data
set. It also allows you to specify that the data should be sorted before
being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

If the Data Set stage is operating in sequential mode, it will first collect
the data before writing it to the file using the default Auto collection
method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the Data Set stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Data Set stage is set to execute in parallel, then you can set a
partitioning method by selecting from the Partition type drop-down
list. This will override any current partitioning.

If the Data Set stage is set to execute in sequential mode, but the
preceding stage is executing in parallel, then you can set a collection
method from the Collector type drop-down list. This will override
the default auto collection method.

The following partitioning methods are available:

m (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Data Set stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

B Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

Parallel Job Developer’s Guide 4-5

Inputs Page

Data Set Stage

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for the Data Set
stage. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the data set.
The sort is always carried out within data partitions. If the stage is
partitioning incoming data the sort occurs after the partitioning. If the
stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with Auto methods).

Select the check boxes as follows:

Sort. Select this to specify that data coming in on the link should
be sorted. Select the column or columns to sort on from the
Available list.

Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

4-6

Parallel Job Developer’s Guide

Data Set Stage Outputs Page

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the Data
Set stage reads data from a data set. The Data Set stage can have only
one output link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Columns tab specifies the column
definitions of incoming data. The Advanced tab allows you to change
the default buffering settings for the output link.

Details about Data Set stage properties and formatting are given in
the following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from the data set. A
Data Set stage only has one property, but this is mandatory.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/File pathname N/A Y N N/A

Source Category

File

The name of the control file for the data set. You can browse for the
file or enter a job parameter. By convention the file has the suffix .ds.

Parallel Job Developer’s Guide 4-7

Outputs Page Data Set Stage

4-8 Parallel Job Developer’s Guide

Sequential File Stage

The Sequential File stage is a file stage. It allows you to read data from
or write data one or more flat files. The stage can have a single input
link or a single output link, and a single rejects link.

Writing to a Sequential File

port| [DSLinkd
G
Data_Set_2 T E
! input fink - - reject_link
[r] Join_1 Sequential_File \
/ DSLinks K —
w0
11011 1101
Data_Set_3 rejected_data
Reading from a Seqguential File
[
| E autput_link DSLinkd B 1101
Seguential_File === Tranzfarmer_T1 [Data_Set_2
S
\{Eiect_link

m
ot i
101t

Fejected data

When you edit a Sequential File stage, the Sequential File stage editor
appears. This is based on the generic stage editor described in
Chapter 3, "Stage Editors."

Parallel Job Developer’s Guide 5-1

Sequential File Stage

The stage executes in parallel mode if reading multiple files but
executes sequentially if it is only reading one file. By default a
complete file will be read by a single node (although each node might
read more than one file). For fixed-width files, however, you can
configure the stage to behave differently:

m You can specify that single files can be read by multiple nodes.
This can improve performance on cluster systems. See "Read
From Multiple Nodes" on page 5-29.

m You can specifiy that a number of readers run on a single node.
This means, for example, that a single file can be partitioned as it
is read (even though the stage is constrained to running
sequentially on the conductor node). See "Number Of Readers Per
Node" on page 5-28.

(These two options are mutually exclusive.)

The stage executes in parallel if writing to multiple files, but executes
sequentially if writing to a single file. Each node writes to a single file,
but a node can write more than one file.

When reading or writing a flat file, DataStage needs to know
something about the format of the file. The information required is
how the file is divided into rows and how rows are divided into
columns. You specify this on the Format tab. Settings for individual
columns can be overridden on the Columns tab using the Edit
Column Metadata dialog box.

The stage editor has up to three pages, depending on whether you are
reading or writing a file:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are writing to a flat file.
This is where you specify details about the file or files being
written to.

m Outputs Page. This is present when you are reading from a flat
file and/or have a reject link. This is where you specify details
about the file or files being read from.

There are one or two special points to note about using runtime
column propagation (RCP) with Sequential stages. See "Using RCP
With Sequential Stages" on page 5-42 for details.

5-2

Parallel Job Developer’s Guide

Sequential File Stage Example of Writing a Sequential File

Example of Writing a Sequential File

In the following example, the Sequential File stage is set up to write a
comma-delimited file. Here is a sample of the data as it will be written:

2,Scottish Longbreads,10.00,15,25/04/2001,Should Eat Warm,Q2
6,Maxilaku,16.00,30,02/01/2002,,Q2

10,Perth Pasties,26.20,10,12/08/2001,Warm Before Heating,Q2
14,0utback Lager,12.00,5,02/01/2002,Do Not Shake,Q2
18,Singaporean Hokkien Fried Mee,11.20,2,02/01/2002,,Q2

22 ,Gudbrandsdalsost,28.80,7,02/01/2002,,Q2

26,Escargots de Bourgogne,10.60,30,02/01/2002,,Q2
30,0utback Lager,12.00,30,02/01/2002,Do Not Shake,Q2
34,Flotemysost,17.20,30,02/01/2002,,Q2

38,Chartreuse verte,14.40,4,02/01/2002,,Q2
42,Spegesild,9.60,30,02/01/2002,,Q2
46,Konbu,4.80,12,02/01/2002,,Q2

50,Nord-Ost Matjeshering,20.70,35,02/01/2002,,Q2

54 ,Raclette Courdavault,44.00,9,22/12/2001,,Q2

58,Gnocchi di nonna Alice,30.40,12,02/01/2002,,Q2

62,Zaanse koeken,7.60,16,02/01/2002,,Q2

66,Filo Mix,5.60,8,02/01/2002,Please Hurry,Q2

70,Mascarpone Fabioli,25.60,6,02/01/2002,,Q2

The meta data for the file is defined in the Columns tab as follows:

|l Seq_DUT - Sequential File [_ O] x]
Stage Input |
Input name: ILink_EILIT j Colurnits.... | Shiow File |

Generall F'ropertiesl F'artitioningl Format Columns |.-’-‘n.dvanced|

Colunn nams | Key | SOLtppe | Extended | Length [Scale| Mullable| Description |
1_| OrderlD Intexger 1a Mo
|2 | Product ame [warChar 50 Mo
| 3 [Urit_Price [Float 10 Mo
| 4 | Quantity I Integer 1o Mo
|5 |Omder_Date [Date 10 Mo
| & | Comments [warChar 50 Yes
| 7| CurrentQuarter O varChar 2 Mo
[l

Save... | Load... |

0K, I Cancel | Help |

Z

The Format tab is set as follows to define that the stage will write a
file where each column is delimited by a comma, there is no final

Parallel Job Developer’s Guide 5-3

Example of Reading a Sequential File

Sequential File Stage

delimiter, and any dates in the data are expected to have the format
dd/mm/yyyy, rather than yyyy-mm-dd, which is the default format.:

|l Seq_DUT - Sequential File

Stage Input |

Input name: I Link_0OUT

=

Columns...

I[=1 B3

| showrie |

Generall Propeltiesl Partitioning ~ Format | Columnsl .-’-‘«dvancedl

Properties:

[Mo property selected]

=4 Record level

B2 Final delimiter = end
Field defaults

B3 Delimiter = comma
Type defaults

_ General

String

15 Decimal

I3 Murmeric

Date

® Format string = %dd/Zmm/
I Time

_ Timestamp

-]
E1

Available properties to add:

Properties that apply to the recaord az a whale. ;I

|

& Fill char

& Final delimiter string
8 Intact

& Record delimiter

% Record delimiter string

N I—

Load... | Defaults DI

& Record length
& Record prefis
8 Record type

|

ok |

Cancel |

Help |

7

Example of Reading a Sequential File

In the following example, the sequential file stage is set up to read a
fixed width file. Here is a sample of the data in the file:

0136.
0210.

0316

0414.
0517.
0616.
0744,
0814.
0950.
1026.
1120.
1239.
1310.
1412.

1528
1636

801205/04/2001
001525/04/2001
.803002/01/2002
704002/01/2002
200202/01/2002
003002/01/2002
001012/08/2001
403002/01/2002
002502/01/2002
201012/08/2001
701012/08/2001
401012/08/2001
000302/01/2002
000502/01/2002
.800102/01/2002
.802021/06/2001

Parallel Job Developer’s Guide

Sequential File Stage

Example of Reading a Sequential File

The meta data for the file is defined in the Columns tab as follows:

[l Seq IN - Sequential File

Stage Cutput |

Cutput namme: I Lirk j

Generall Propertiesl Format Colurnns IAdvancedI

M= E3

Calumins... | Wiew Data... |

1

Coumnname | Key | SOLtpe | Extended | Length |Scale| Nullable | Description |
1 | OrdedD Char 2 Mo
| 2 |Price [Char 5 Ma
| 3 | quantity] Char 2 Mo
| 4 | Order_date [0 Char 10 Ma
]

4

™ Runtime column propagation

Sawve... | Load.. |

o]

Cancel | Help |/
o

The Format tab is set as follows to define that the stage is reading a

fixed width file where each row is delimited by a UNIX newline, and

the columns have no delimiter:

II Seq IN - Sequential File

Stage Clutput I

Output narne: I Link j

Generall Properties Format IEqumnsI Advancedl

Properties:

IS[= E3

Columns... | Wiew Data...

[Mo property selected]

B Delimiter = none
8455 Tupe defauls

kil
bl

57 Record level -
-8 Record delimiter = UNIX newline
& Record length = fived
EIE| Field defaults
=

Properties that apply to the record as a whole, ;I
=
Awailable properties to add:

8 Fill char
& Final defimiter & Record delimiter sting
& Final delimiter string & Record prefiz

KN i
Load... | Drefaults >|

& Intact

Caticel | Help

Parallel Job Developer’s Guide

5-5

Must Do’s

Sequential File Stage

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Sequential File stages in a job. This section specifies the
minimum steps to take to get a Sequential File stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on whether you are using the Sequential
File stage to read or write a file.

Writing to a File

In the Input Link Properties Tab specify the pathname of the
file being written to (repeat this for writing to multiple files). The
other properties all have default values, which you can change or
not as required.

In the Input Link Format Tab specify format details for the file(s)
you are writing to, or accept the defaults (variable length columns
enclosed in double quotes and delimited by commas, rows
delimited with UNIX newlines).

Ensure column meta data has been specified for the file(s) (this
can be achieved via a schema file if required).

Reading from a File

In the Output Link Properties Tab:

— In Read Method, specify whether to read specific files (the
default) or all files whose name fits a pattern.

— Ifyou are reading specific files, specify the pathname of the file
being read from (repeat this for reading multiple files).

— If you are reading files that fit a pattern, specify the name
pattern to match.

— Accept the default for the options or specify new settings
(available options depend on the Read Method).

In the Output Link Format Tab specify format details for the
file(s) you are reading from, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

Ensure column meta data has been specified for the file(s) (this
can be achieved via a schema file if required).

5-6

Parallel Job Developer’s Guide

Sequential File Stage

Stage Page

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:

NLS Map Tab

Execution Mode. The stage can execute in parallel mode or
sequential mode. When a stage is reading or writing a single file
the Execution Mode is sequential and you cannot change it.
When a stage is reading or writing multiple files, the Execution
Mode is parallel and you cannot change it. In parallel mode, the
files are processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode the entire contents of the file
are processed by the conductor node.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set file read operations will request that the next stage preserves
the partitioning as is (it is ignored for file write operations). If you
set the Keep File Partitions output property this will automatically
set the preserve partitioning flag.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

The NLS Map tab allows you to define a character set map for the
Sequential File stage. This overrides the default character set map set

Parallel Job Developer’s Guide 5-7

Inputs Page

Sequential File Stage

for the project or the job. You can specify that the map be supplied as
a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for
individual columns within the data processed by the Sequential File
stage. An extra property, NLS Map, appears in the Columns grid in
the Columns tab, but note that only ustring data types allow you to
set an NLS map value (see "Data Types" on page 2-28).

[. Sequential_File_3 - Sequential File

Stage | Output I

Stage name: ISequentiaI_FiIe_3

Eenerall &dvanced MLS Map |

d [Allow per-columt mapging

CESU-8
ebcdic-urnl-us
gb18030

HZ

ISCI verzion=0
ISCI verzion=1
ISCl version=2
ISCH . version=3
ISCI verzion=4
ISCI verzion=H
|SCll . version=6 j

(] 4 Cancel Help

Inputs Page

The Inputs page allows you to specify details about how the
Sequential File stage writes data to one or more flat files. The
Sequential File stage can have only one input link, but this can write to
multiple files.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the file or files.
The Formats tab gives information about the format of the files being
written. The Columns tab specifies the column definitions of data
being written. The Advanced tab allows you to change the default
buffering settings for the input link.

Details about Sequential File stage properties, partitioning, and
formatting are given in the following sections. See Chapter 3, "Stage
Editors," for a general description of the other tabs.

5-8

Parallel Job Developer’s Guide

Sequential File Stage

Inputs Page

Input Link

Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and to what files. Some of
the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/File Pathname N/A Y Y N/A
Target/File Update Append/ Overwrite Y N N/A
Mode Create/
Overwrite
Options/Cleanup On True/False True Y N N/A
Failure
Options/Reject Mode Continue/Fail/ Continue Y N N/A
Save
Options/Filter Command N/A N N N/A
Options/Schema File Pathname N/A N N N/A

Target Category

File

This property defines the flat file that the incoming data will be written
to. You can type in a pathname, or browse for a file. You can specify
multiple files by repeating the File property. Do this by selecting the
Properties item at the top of the tree, and clicking on File in the
Available properties to add window. Do this for each extra file you
want to specify.

You must specify at least one file to be written to, which must exist
unless you specify a File Update Mode of Create or Overwrite.

File Update Mode

This property defines how the specified file or files are updated. The
same method applies to all files being written to. Choose from
Append to append to existing files, Overwrite to overwrite existing
files, or Create to create a new file. If you specify the Create property
for a file that already exists you will get an error at runtime.

Parallel Job Developer’s Guide 5-9

Inputs Page

Sequential File Stage

By default this property is set to Overwrite.

Options Category

Cleanup On Failure

This is set to True by default and specifies that the stage will delete
any partially written files if the stage fails for any reason. Set this to
False to specify that partially written files should be left.

Reject Mode

This specifies what happens to any data records that are not written to
a file for some reason. Choose from Continue to continue operation
and discard any rejected rows, Fail to cease writing if any rows are
rejected, or Save to send rejected rows down a reject link.

Continue is set by default.

Filter

This is an optional property. You can use this to specify that the data is
passed through a filter program before being written to the file or
files. Specify the filter command, and any required arguments, in the
Property Value box.

Schema File

This is an optional property. By default the Sequential File stage will
use the column definitions defined on the Columns and Format tabs
as a schema for writing to the file. You can, however, specify a file
containing a schema instead (note, however, that if you have defined
columns on the Columns tab, you should ensure these match the
schema file). Type in a pathname or browse for a schema file.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the file
or files. It also allows you to specify that the data should be sorted
before being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

Parallel Job Developer’s Guide

Sequential File Stage Inputs Page

If the Sequential File stage is operating in sequential mode, it will first
collect the data before writing it to the file using the default Auto
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the Sequential File stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Sequential File stage is set to execute in parallel (i.e., is writing

to multiple files), then you can set a partitioning method by selecting
from the Partition type drop-down list. This will override any current
partitioning.

If the Sequential File stage is set to execute in sequential mode (i.e., is
writing to a single file), but the preceding stage is executing in
parallel, then you can set a collection method from the Collector
type drop-down list. This will override the default auto collection
method.

The following partitioning methods are available:

= (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Sequential File
stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button 2.

Parallel Job Developer’s Guide 5-11

Inputs Page Sequential File Stage
m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.

Requires extra properties to be set. Access these properties by
clicking the properties button .

The following Collection methods are available:

m (Auto). This is the default collection method for the Sequential
File stage. Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it becomes
available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing

you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as

ASCII or EBCDIC, and whether null columns will appear first or last for

each column. Where you are using a keyed partitioning method, you

can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

5-12 Parallel Job Developer’s Guide

Sequential File Stage Inputs Page

Input Link Format Tab

The Format tab allows you to supply information about the format of
the flat file or files to which you are writing. The tab has a similar
format to the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the Sequential File stage
will produce a file of the following format:

m File comprises variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in a row.

m Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

You can use the Defaults button to change your default settings. Use
the Format tab to specify your required settings, then click Defaults
» Save current as default. All your sequential files will use your
settings by default from now on. If your requirements change, you can
choose Defaults > Reset defaults from factory settings to go
back to the original defaults as described above. Once you have done
this, you then have to click Defaults » Set current from default
for the new defaults to take effect.

To change individual properties, select a property type from the main
tree then add the properties you want to set to the tree structure by
clicking on them in the Available properties to set window. You
can then set a value for that property in the Property Value box. Pop-
up help for each of the available properties appears if you hover the
mouse pointer over it.

Any property that you set on this tab can be overridden at the column
level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record” and “row” and “field” and
p
“column” interchangeably.

The following sections list the property types and properties available
for each type.

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Parallel Job Developer’s Guide 5-13

Inputs Page

Sequential File Stage

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to /, * (comma space - you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter; used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

\

" Field1 .| Field1 || Field1 .| Lastfield |nl]

\ Final Delimiter = end

Field Delimiter
| Field1 || Field1 .[Field1 1./ Lastfield |,|ni]

Final Delimiter = comma

When writing, a space is now inserted after every field except the
last in the record. Previously, a space was inserted after every field

Parallel Job Developer’s Guide

Sequential File Stage

Inputs Page

including the last. (If you want to revert to the pre-release 7.5
behavior of inserting a space after the last field, set the
APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

— UNIX Newline (the default)
— null

(To implement a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

Parallel Job Developer’s Guide 5-15

Inputs Page

Sequential File Stage

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns written to the file or files.
These are applied to all columns written, but can be overridden for
individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can
usually be an ASCII character or a multi-byte Unicode character (if you
have NLS enabled). The available properties are:

Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIl comma character is used.
— tab. ASCII tab character is used.

Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying /, * (comma
space — you do not need to enter the inverted commas) would
have each field delimited by ’, * unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by

Parallel Job Developer’s Guide

Sequential File Stage Inputs Page

\ooo, where each o is an octal digit 0 - 7 and the first ois <4, or by
\xhh, where each his a hexadecimal digit 0 - £ You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

m Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length
fields can be either delimited by a character or preceded by a 1-, 2-
, or 4-byte prefix containing the field length. DataStage inserts the
prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

m Print field. This property is not relevant for input links.

m Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the
data, and a trailing quote character. Quote characters are not
counted as part of a field’s length.

m Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in
the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage inserts the
element count as a prefix of each variable-length vector field. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

Parallel Job Developer’s Guide 5-17

Inputs Page

Sequential File Stage

General

These properties apply to several data types (unless overridden at
column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— Dbinary
— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

— For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

5-18

Parallel Job Developer’s Guide

Sequential File Stage

Inputs Page

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes

— 16-bit signed or unsigned integers: 6 bytes
— 32-bit signed or unsigned integers: 11 bytes
— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for

Parallel Job Developer’s Guide 5-19

Inputs Page

Sequential File Stage

ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

m Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,
unless overridden at column level.

Export EBCDIC as ASCIL. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

— Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when writing decimal
columns. Select No to write a positive sign (0xf) regardless of the
columns’ actual sign value.

5-20

Parallel Job Developer’s Guide

Sequential File Stage

Inputs Page

— No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

— No (zoned) to specify that they contain an unpacked decimal
in either ASCIl or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

— No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

— up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

— down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

— nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

— truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Parallel Job Developer’s Guide 5-21

Inputs Page

Sequential File Stage

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf{).
By default, DataStage invokes the C sprintf{) function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf{).

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Days since. Dates are written as a signed integer containing the

number of days since the specified date. Enter a date in the form

%yyyy-%omm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%yyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

- %dd: A two-digit day.
- %mm: A two-digit month.

5-22

Parallel Job Developer’s Guide

Sequential File Stage

Inputs Page

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).
— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.

— It cannot have both %yy and %yyyy.

— It cannot have both %mm and %ddd.

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %mm or %emmm.
— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component
with the percent symbol (%). Separate the string’s components
with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of
the month in the destination field. If the format string does not
include the month and day, they default to January 1. Note that
the format string must contain a month if it also contains a day;
that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in
which all two digit years fall. By default, the year cutoff is 1900;
therefore, a two-digit year of 97 represents 1997. You can also set
this using the environment variable
APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the two-digit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

Parallel Job Developer’s Guide 5-23

Inputs Page

Sequential File Stage

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:
- %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

5-24

Parallel Job Developer’s Guide

Sequential File Stage

Outputs Page

Outputs

— %ddd: Day of year in three-digit form (range of 1 - 366)
For the time:
— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent sign (»). Separate the string’s components with any
character except the percent sign (%).

Page

The Outputs page allows you to specify details about how the
Sequential File stage reads data from one or more flat files. The
Sequential File stage can have only one output link, but this can read
from multiple files.

It can also have a single reject link. This is typically used when you are
writing to a file and provides a location where records that have failed
to be written to a file for some reason can be sent. When you are
reading files, you can use a reject link as a destination for rows that do
not match the expected column definitions.

The Output name drop-down list allows you to choose whether you
are looking at details of the main output link (the stream link) or the
reject link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Formats tab gives information about
the format of the files being read. The Columns tab specifies the
column definitions of the data. The Advanced tab allows you to
change the default buffering settings for the output link.

Details about Sequential File stage properties and formatting are
given in the following sections. See Chapter 3, "Stage Editors," for a
general description of the other tabs.

Parallel Job Developer’s Guide 5-25

Outputs Page

Sequential File Stage

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from what files. Some of
the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/File pathname N/A Y if Read Y N/A
Method =
Specific
Files(s)
Source/File pathname N/A Y if Read N N/A
Pattern Method =
Field Pattern
Source/Read Specific Specific Files(s) Y N N/A
Method File(s)/File
Pattern
Options/Missing Error/OK/ Depends Y if Fileused N N/A
File Mode Depends
Options/Keep file True/False False Y N N/A
Partitions
Options/Reject Continue/ Continue Y N N/A
Mode Fail/Save
Options/Report Yes/No Yes Y N N/A
Progress
Options/Filter command N/A N N N/A
Options/File column fileNameColumn N/A
Name Column name
Options/Number number 1 N N N/A
Of Readers Per
Node
Options/Schema pathname N/A N N N/A

File

5-26

Parallel Job Developer’s Guide

Sequential File Stage Outputs Page

Source Category

File

This property defines the flat file that data will be read from. You can
type in a pathname, or browse for a file. You can specify multiple files
by repeating the File property. Do this by selecting the Properties
item at the top of the tree, and clicking on File in the Available
properties to add window. Do this for each extra file you want to
specify.

File Pattern

Specifies a group of files to import. Specify file containing a list of files
or a job parameter representing the file. The file could also contain be
any valid shell expression, in Bourne shell syntax, that generates a list
of file names.

Read Method

This property specifies whether you are reading from a specific file or
files or using a file pattern to select files (e.g., *.txt).

Options Category

Missing File Mode

Specifies the action to take if one of your File properties has specified
a file that does not exist. Choose from Error to stop the job, OK to
skip the file, or Depends, which means the default is Error, unless the
file has a node name prefix of *: in which case it is OK. The default is
Depends.

Keep file Partitions

Set this to True to partition the imported data set according to the
organization of the input file(s). So, for example, if you are reading
three files you will have three partitions. Defaults to False.

Reject Mode

Allows you to specify behavior if a read record does not match the
expected schema. Choose from Continue to continue operation and
discard any rejected rows, Fail to cease reading if any rows are
rejected, or Save to send rejected rows down a reject link. Defaults to
Continue.

Parallel Job Developer’s Guide 5-27

Outputs Page

Sequential File Stage

Report Progress

Choose Yes or No to enable or disable reporting. By default the stage
displays a progress report at each 10% interval when it can ascertain
file size. Reporting occurs only if the file is greater than 100 KB,
records are fixed length, and there is no filter on the file.

Filter

This is an optional property. You can use this to specify that the data is
passed through a filter program after being read from the files.
Specify the filter command, and any required arguments, in the
Property Value box.

File Name Column

This is an optional property. It adds an extra column of type VarChar
to the output of the stage, containing the pathname of the file the
record is read from. You should also add this column manually to the
Columns definitions to ensure that the column is not dropped if you
are not using runtime column propagation, or it is turned off at some
point.

Number Of Readers Per Node

This is an optional property and only applies to files containing fixed-
length records, it is mutually exclusive with the Read from multiple
nodes property. Specifies the number of instances of the file read
operator on a processing node. The default is one operator per node
per input data file. If numReaders is greater than one, each instance of
the file read operator reads a contiguous range of records from the
input file. The starting record location in the file for each operator, or
seek location, is determined by the data file size, the record length,
and the number of instances of the operator, as specified by
numReaders.

The resulting data set contains one partition per instance of the file
read operator, as determined by numReaders.

This provides a way of partitioning the data contained in a single file.
Each node reads a single file, but the file can be divided according to

5-28

Parallel Job Developer’s Guide

Sequential File Stage Outputs Page

the number of readers per node, and written to separate partitions.
This method can result in better I/0 performance on an SMP system.

Number of readers per node = 4
File Partitioned data set

s

Reader

Reader

i

Reader

Read From Multiple Nodes

This is an optional property and only applies to files containing fixed-
length records, it is mutually exclusive with the Number of Readers
Per Node property. Set this to Yes to allow individual files to be read
by several nodes. This can improve performance on a cluster system.

DataStage knows the number of nodes available, and using the fixed
length record size, and the actual size of the file to be read, allocates
the reader on each node a spearate region within the file to process.
The regions will be of roughly equal size.

Read from multiple nodes = Yes
Partitioned data set

File

Reader
Node

Reader
Node

\.

Reader

Node

Reader

Node

Schema File

This is an optional property. By default the Sequential File stage will
use the column definitions defined on the Columns and Format tabs
as a schema for reading the file. You can, however, specify a file

Parallel Job Developer’s Guide 5-29

Outputs Page Sequential File Stage

containing a schema instead (note, however, that if you have defined
columns on the Columns tab, you should ensure these match the
schema file). Type in a pathname or browse for a schema file.

Reject Links

You cannot change the properties of a Reject link. The Properties tab
for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For
writing files, the link uses the column definitions for the input link. For
reading files, the link uses a single column called rejected containing
raw data for columns rejected after reading because they do not
match the schema.

Output Link Format Tab

The Format tab allows you to supply information about the format of
the flat file or files which you are reading. The tab has a similar format
to the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the Sequential File stage
will expect to read a file of the following format:

m File comprises variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in a row.

m Rows are delimited by a UNIX newline.

You can use the Defaults button to change your default settings. Use
the Format tab to specify your required settings, then click Defaults
>» Save current as default. All your sequential files will use your
settings by default from now on. If your requirements change, you can
choose Defaults > Reset defaults from factory settings to go
back to the original defaults as described above. Once you have done
this, you then have to click Defaults » Set current from default
for the new defaults to take effect.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you
want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that
property in the Property Value box. Pop-up help for each of the
available properties appears if you hover the mouse pointer over it.

5-30 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page

Any property that you set on this tab can be overridden at the column
level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record” and “row” and “field” and
P
“column” interchangeably.

The following sections list the Property types and properties available
for each type.

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

m Fill char. Does not apply to output links.

m Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to *, * (comma space — you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

m Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter, used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

Parallel Job Developer’s Guide 5-31

Outputs Page Sequential File Stage

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

[Field1 || Field1 . Field1], Lastfield |[nl]

\ //Final Delimiter = end

I
o
o
O
o
3
=
@
@

Il Field1][Lastfield |,|[nl]

Final Delimiter = comma

m Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

[Field1 [, Field1

— Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

m Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

m Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

— UNIX Newline (the default)

— null

(To specify a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and record type.

m Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

m Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

5-32 Parallel Job Developer’s Guide

Sequential File Stage Outputs Page

m Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns read from the file or files.
These are applied to all columns, but can be overridden for individual
columns from the Columns tab using the Edit Column Metadata
dialog box. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

m Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

m Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIll comma character is used.
— tab. ASCII tab character is used.

= Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ’, * (comma space -
you do not need to enter the inverted commas) specifies each field
is delimited by ’, unless overridden for individual fields.
DataStage skips the delimiter string when reading.

Parallel Job Developer’s Guide 5-33

Outputs Page

Sequential File Stage

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each his a hexadecimal digit O - E You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it

reads. The message has the format:
Importing N: D

where:
— Nis the field name.

— Dis the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and
reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.

5-34

Parallel Job Developer’s Guide

Sequential File Stage

Outputs Page

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in
the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage reads the length
prefix but does not include it as a separate field in the data set. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at
column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— binary
— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

Parallel Job Developer’s Guide 5-35

Outputs Page

Sequential File Stage

By default data is formatted as text, as follows:

— For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes

— 16-bit signed or unsigned integers: 6 bytes

5-36

Parallel Job Developer’s Guide

Sequential File Stage Outputs Page

— 32-bit signed or unsigned integers: 11 bytes
— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

m Pad char. This property is ignored for output links.

m Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,
unless overridden at column level.

m Export EBCDIC as ASCII. Not relevant for output links.

= Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.

For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

m Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

m Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

m Packed. Select an option to specify what the decimal columns
contain, choose from:

— Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when reading
decimal fields. Select No to write a positive sign (0xf)
regardless of the fields’ actual sign value.

Parallel Job Developer’s Guide 5-37

Outputs Page

Sequential File Stage

No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

m Precision. Specifies the precision of a packed decimal. Enter a
number.

®m Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

m Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

5-38

Parallel Job Developer’s Guide

Sequential File Stage

Outputs Page

C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanfi). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf{). By
default, DataStage invokes the C sscanfi) function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanfi).

Out_format. This property is not relevant for output links.

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%Yyyyy-%omm-%dd. The Format string can contain one or a
combination of the following elements:

- %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).
— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.
— It cannot have both %yy and %yyyy.
— It cannot have both %mm and %ddd.

Parallel Job Developer’s Guide 5-39

Outputs Page

Sequential File Stage

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %mm or %emmm.
— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component
with the percent symbol (%). Separate the string’s components
with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of
the month in the destination field. If the format string does not
include the month and day, they default to January 1. Note that
the format string must contain a month if it also contains a day;
that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in
which all two digit years fall. By default, the year cutoff is 1900;
therefore, a two-digit year of 97 represents 1997. You can also set
this using the environment variable
APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the twodigit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

5-40

Parallel Job Developer’s Guide

Sequential File Stage

Outputs Page

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

m Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:
— %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1 - 366).
For the time:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol (%). Separate the string’s components with any
character except the percent sign (%).

Parallel Job Developer’s Guide 5-41

Using RCP With Sequential Stages Sequential File Stage

Using RCP With Sequential Stages

Runtime column propagation (RCP) allows DataStage to be flexible
about the columns you define in a job. If RCP is enabled for a project,
you can just define the columns you are interested in using in a job,
but ask DataStage to propagate the other columns through the
various stages. So such columns can be extracted from the data
source and end up on your data target without explicitly being
operated on in between.

Sequential files, unlike most other data sources, do not have inherent
column definitions, and so DataStage cannot always tell where there
are extra columns that need propagating. You can only use RCP on
sequential files if you have used the Schema File property (see
"Schema File" on page 5-10 and on page 5-29) to specify a schema
which describes all the columns in the sequential file. You need to
specify the same schema file for any similar stages in the job where
you want to propagate columns. Stages that will require a schema file
are:

m Sequential File

m File Set

m External Source
m External Target

m Column Import

m Column Export

5-42

Parallel Job Developer’s Guide

File Set Stage

The File Set stage is a file stage. It allows you to read data from or
write data to a file set. The stage can have a single input link, a single
output link, and a single rejects link. It only executes in parallel mode.

What is a file set? DataStage can generate and name exported files,
write them to their destination, and list the files it has generated in a
file whose extension is, by convention, .fs. The data files and the file
that lists them are called a file set. This capability is useful because
some operating systems impose a 2 GB limit on the size of a file and
you need to distribute files among nodes to prevent overruns.

The amount of data that can be stored in each destination data file is
limited by the characteristics of the file system and the amount of free
disk space available. The number of files created by a file set depends
on:

m The number of processing nodes in the default node pool

m The number of disks in the export or default disk pool connected
to each processing node in the default node pool

m The size of the partitions of the data set

Parallel Job Developer’s Guide 6-1

Must Do’s File Set Stage

The File Set stage enables you to create and write to file sets, and to
read data back from file sets.

Reading and Writing File Sets

[y o [
= R I N =
W2 | vitual_dataset_1 Virtual_dataset 2 Virual_dataset 3 - |

File_=zeh.1 LDU‘&Jp Tranzfarmer File_zet_2
F=5reject :
n

i refepgence TF

\ : #reiect
yor et
Data_Set 18 Lookup_File_Set lata_Set 22

Unlike data sets, file sets carry formatting information that describe
the format of the files to be read or written.

When you edit a File Set stage, the File Set stage editor appears. This
is based on the generic stage editor described in Chapter 3, "Stage
Editors."

The stage editor has up to three pages, depending on whether you are
reading or writing a file set:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are writing to a file set.
This is where you specify details about the file set being written to.

m Outputs Page. This is present when you are reading from a file
set. This is where you specify details about the file set being read
from.

There are one or two special points to note about using runtime
column propagation (RCP) with File Set stages. See "Using RCP With
File Set Stages" on page 6-37 for details.

Must Do’s

DataStage has many defaults which means that it can be very easy to
include File Set stages in a job. This section specifies the minimum
steps to take to get a File Set stage functioning. DataStage provides a
versatile user interface, and there are many shortcuts to achieving a
particular end, this section describes the basic methods, you will learn
where the shortcuts are when you get familiar with the product.

6-2 Parallel Job Developer’s Guide

File Set Stage Stage Page

The steps required depend on whether you are using the File Set
stage to read or write a file.

Writing to a File

m In the Input Link Properties Tab specify the pathname of the
file set being written to. The other properties all have default
values, which you can change or not as required.

m Inthe Input Link Format Tab specify format details for the file
set you are writing to, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

m Ensure column meta data has been specified for the file set.

Reading from a File

m Inthe Output Link Properties Tab specify the pathname of the
file set being read from. The other properties all have default
values, which you can change or not as required.

® Inthe Output Link Format Tab specify format details for the file
set you are reading from, or accept the defaults (variable length
columns enclosed in double quotes and delimited by commas,
rows delimited with UNIX newlines).

m Ensure column meta data has been specified for the file set (this
can be achieved via a schema file if required).

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:
m Execution Mode. This is set to parallel and cannot be changed.

m Combineability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Parallel Job Developer’s Guide 6-3

Stage Page

File Set Stage

= Preserve partitioning. You can select Set or Clear. If you select
Set, file set read operations will request that the next stage
preserves the partitioning as is (it is ignored for file set write
operations).

m Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab

The NLS Map tab allows you to define a character set map for the File
Set stage. This overrides the default character set map set for the
project or the job. You can specify that the map be supplied as a job
parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for
individual columns within the data processed by the File Set stage An
extra property, NLS Map, appears in the Columns grid in the
Columns tab, but note that only ustring data types allow you to set
an NLS map value (see "Data Types" on page 2-28).

Stage | Iput |

Stage name: IFiIe_Set_?

generall Advanced N

d [Allow per-columt mapging

Praject default [150-2853-1] ﬂ
BocuU-

CESU-E

ebcdic-uml-us

ISEILverzion=0
ISCILverzion=1
|SCIwersion=2
ISCI. werzion=3
ISCIL verzion=4
ISCIL verzion=5
|SCIwerzion=6 ﬂ

(] 4 I Cancel Help

6-4

Parallel Job Developer’s Guide

File Set Stage

Inputs Page

Inputs Page

The Inputs page allows you to specify details about how the File Set
stage writes data to a file set. The File Set stage can have only one
input link.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the file set. The
Formats tab gives information about the format of the files being
written. The Columns tab specifies the column definitions of the data.
The Advanced tab allows you to change the default buffering settings
for the input link.

Details about File Set stage properties, partitioning, and formatting
are given in the following sections. See Chapter 3, "Stage Editors," for
a general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and to what file set. Some
of the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/File Set pathname N/A Y N N/A
Target/File Set Update Create (Error Overwrite Y N N/A
Policy if exists) /

Overwrite/

Use Existing

(Discard

records)/ Use

Existing

(Discard

schema &

records)
Target/File Set Write/Omit Write Y N N/A
Schema policy
Options/Cleanup on True/False True Y N N/A

Failure

Parallel Job Developer’s Guide 6-5

Inputs Page

File Set Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Options/Single File True/False False Y N N/A
Per Partition.
Options/Reject Mode Continue/Fail/ Continue Y N N/A
Save
Options/Diskpool string N/A N N N/A
Options/File Prefix string export.use N N N/A
rname
Options/File Suffix string none N N N/A
Options/Maximum number MB N/A N N N/A
File Size
Options/Schema File pathname N/A N N N/A
Target Category
File Set
This property defines the file set that the incoming data will be written
to. You can type in a pathname of, or browse for a file set descriptor
file (by convention ending in .fs).
File Set Update Policy
Specifies what action will be taken if the file set you are writing to
already exists. Choose from:
m Create (Error if exists)
m Overwrite
m Use Existing (Discard records)
m Use Existing (Discard schema & records)
The default is Overwrite.
File Set Schema policy
Specifies whether the schema should be written to the file set. Choose
from Write or Omit. The default is Write.
6-6 Parallel Job Developer’s Guide

File Set Stage

Inputs Page

Options Category

Cleanup on Failure

This is set to True by default and specifies that the stage will delete
any partially written files if the stage fails for any reason. Set this to
False to specify that partially written files should be left.

Single File Per Partition.

Set this to True to specify that one file is written for each partition. The
default is False.

Reject Mode

Allows you to specify behavior if a record fails to be written for some
reason. Choose from Continue to continue operation and discard any
rejected rows, Fail to cease reading if any rows are rejected, or Save
to send rejected rows down a reject link. Defaults to Continue.

Diskpool

This is an optional property. Specify the name of the disk pool into
which to write the file set. You can also specify a job parameter.

File Prefix

This is an optional property. Specify a prefix for the name of the file
set components. If you do not specify a prefix, the system writes the
following: export.username, where username is your login. You can
also specify a job parameter.

File Suffix

This is an optional property. Specify a suffix for the name of the file set
components. The suffix is omitted by default.

Maximum File Size

This is an optional property. Specify the maximum file size in MB. The
value must be equal to or greater than 1.

Schema File

This is an optional property. By default the File Set stage will use the
column definitions defined on the Columns tab and formatting
information from the Format tab as a schema for writing the file. You
can, however, specify a file containing a schema instead (note,
however, that if you have defined columns on the Columns tab, you

Parallel Job Developer’s Guide 6-7

Inputs Page

File Set Stage

should ensure these match the schema file). Type in a pathname or
browse for a schema file.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the file
set. It also allows you to specify that the data should be sorted before
being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

If the File Set stage is operating in sequential mode, it will first collect
the data before writing it to the file using the default Auto collection
method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the File Set stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the File Set stage is set to execute in parallel, then you can set a
partitioning method by selecting from the Partition type drop-down
list. This will override any current partitioning.

If the File Set stage is set to execute in sequential mode, but the
preceding stage is executing in parallel, then you can set a collection
method from the Collector type drop-down list. This will override
the default collection method.

The following partitioning methods are available:

= (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default method for the File Set stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

6-8

Parallel Job Developer’s Guide

File Set Stage Inputs Page

® Random. The records are partitioned randomly, based on the
output of a random number generator.

® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties

by clicking the properties button .

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button 2.
The following Collection methods are available:

m (Auto). This is the default method for the File Set stage. Normally,
when you are using Auto mode, DataStage will eagerly read any
row from any input partition as it becomes available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving
on the input link should be sorted before being written to the file
or files. The sort is always carried out within data partitions. If the
stage is partitioning incoming data the sort occurs after the
partitioning. If the stage is collecting data, the sort occurs before
the collection. The availability of sorting depends on the
partitioning or collecting method chosen (it is not available with
the Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

Parallel Job Developer’s Guide 6-9

Inputs Page

File Set Stage

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Input Link Format Tab

The Format tab allows you to supply information about the format of
the files in the file set to which you are writing. The tab has a similar
format to the Properties tab and is described on page 3-25.

If you do not alter any of the Format settings, the File Set stage will
produce files of the following format:

m Files comprise variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in a row.

m Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

To change individual properties, select a property type from the main
tree then add the properties you want to set to the tree structure by
clicking on them in the Available properties to set window. You
can then set a value for that property in the Property Value box. Pop-
up help for each of the available properties appears if you hover the
mouse pointer over it.

Any property that you set on this tab can be overridden at the column
level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record” and “row” and “field” and
“column” interchangeably.

The following sections list the Property types and properties available
for each type.

Parallel Job Developer’s Guide

File Set Stage

Inputs Page

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to ‘, * (comma space — you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter; used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

Parallel Job Developer’s Guide 6-11

Inputs Page

File Set Stage

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

[Field1 || Field1 . Field1], Lastfield |[nl]

\ //Final Delimiter = end

I
o
o
O
o
3
=
@
@

Il Field1][Lastfield |,|[nl]

Final Delimiter = comma

[Field1 [, Field1

When writing, a space is now inserted after every field except the
last in the record. Previously, a space was inserted after every field
including the last. (If you want to revert to the pre-release 7.5
behavior of inserting a space after the last field, set the
APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

— UNIX Newline (the default)

— null

(To implement a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

6-12

Parallel Job Developer’s Guide

File Set Stage Inputs Page

m Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

m Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns written to the file or files.
These are applied to all columns written, but can be overridden for
individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can
usually be an ASCII character or a multi-byte Unicode character (if you
have NLS enabled). The available properties are:

m Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

m Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIll comma character is used.
— tab. ASCII tab character is used.

= Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ’, ‘ (comma

Parallel Job Developer’s Guide 6-13

Inputs Page

File Set Stage

space — you do not need to enter the inverted commas) would
have each field delimited by ’, * unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first ois < 4, or by
\xhh, where each his a hexadecimal digit O - E You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length
fields can be either delimited by a character or preceded by a 1-, 2-
, or 4-byte prefix containing the field length. DataStage inserts the
prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the
data, and a trailing quote character. Quote characters are not
counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in

Parallel Job Developer’s Guide

File Set Stage

Inputs Page

the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage inserts the
element count as a prefix of each variable-length vector field. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at
column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— binary
— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

Parallel Job Developer’s Guide 6-15

Inputs Page

File Set Stage

— For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes
— 16-bit signed or unsigned integers: 6 bytes
— 32-bit signed or unsigned integers: 11 bytes

6-16

Parallel Job Developer’s Guide

File Set Stage Inputs Page

— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

m Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

m Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,
unless overridden at column level.

m Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

= Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

m Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

= Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

m Packed. Select an option to specify what the decimal columns
contain, choose from:

Parallel Job Developer’s Guide 6-17

Inputs Page

File Set Stage

— Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when writing decimal
columns. Select No to write a positive sign (0xf) regardless of the
columns’ actual sign value.

— No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

— No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

— No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

— up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

— down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

6-18

Parallel Job Developer’s Guide

File Set Stage

Inputs Page

— nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

— truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf{).
By default, DataStage invokes the C sprintf{) function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf).

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Parallel Job Developer’s Guide 6-19

Inputs Page File Set Stage
Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-Y%omm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is

%Yyyyy-%mm-%dd. The Format string can contain one or a

combination of the following elements:

- %dd: A two-digit day.

- %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.

- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).

— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.

— It cannot have both %yy and %yyyy.

— It cannot have both %mm and %ddd.

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %omm or %emmm.

— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

6-20 Parallel Job Developer’s Guide

File Set Stage

Inputs Page

APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the two-digit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If n is O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Parallel Job Developer’s Guide 6-21

Outputs Page

File Set Stage

m Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:
- %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1 - 366)
For the time:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent sign (»). Separate the string’s components with any
character except the percent sign (%).

Outputs Page

The Outputs page allows you to specify details about how the File
Set stage reads data from a file set. The File Set stage can have only
one output link. It can also have a single reject link, where rows that
have failed to be written or read for some reason can be sent. The
Output name drop-down list allows you to choose whether you are
looking at details of the main output link (the stream link) or the reject
link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Formats tab gives information about
the format of the files being read. The Columns tab specifies the

6-22

Parallel Job Developer’s Guide

File Set Stage Outputs Page

column definitions of the data. The Advanced tab allows you to
change the default buffering settings for the output link.

Details about File Set stage properties and formatting are given in the
following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from files in the file set.
Some of the properties are mandatory, although many have default
settings. Properties without default settings appear in the warning
color (red by default) and turn black when you supply a value for
them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of

Property

Source/File Set pathname N/A Y N N/A

Options/Keep file True/False False Y N N/A

Partitions

Options/Reject Mode Continue/Fail/ Continue Y N N/A
Save

Options/Report Yes/No Yes Y N N/A

Progress

Options/Filter command N/A N N N/A

Options/Schema File pathname N/A N N N/A

Options/Use Schema True/False False Y N N/A

Defined in File Set

Options/File Name column name fileNameColumn N N N/A

Column

Source Category

File Set

This property defines the file set that the data will be read from. You
can type in a pathname of, or browse for, a file set descriptor file (by
convention ending in .fs).

Parallel Job Developer’s Guide 6-23

Outputs Page

File Set Stage

Options Category

Keep file Partitions

Set this to True to partition the read data set according to the
organization of the input file(s). So, for example, if you are reading
three files you will have three partitions. Defaults to False.

Reject Mode

Allows you to specify behavior for read rows that do not match the
expected schema. Choose from Continue to continue operation and
discard any rejected rows, Fail to cease reading if any rows are
rejected, or Save to send rejected rows down a reject link. Defaults to
Continue.

Report Progress

Choose Yes or No to enable or disable reporting. By default the stage
displays a progress report at each 10% interval when it can ascertain
file size. Reporting occurs only if the file is greater than 100 KB,
records are fixed length, and there is no filter on the file.

Filter

This is an optional property. You can use this to specify that the data is
passed through a filter program after being read from the files.
Specify the filter command, and any required arguments, in the
Property Value box.

Schema File

This is an optional property. By default the File Set stage will use the
column definitions defined on the Columns and Format tabs as a
schema for reading the file. You can, however, specify a file containing
a schema instead (note, however, that if you have defined columns on
the Columns tab, you should ensure these match the schema file).
Type in a pathname or browse for a schema file. This property is
mutually exclusive with Use Schema Defined in File Set.

Use Schema Defined in File Set

When you create a file set you have an option to save the schema
along with it. When you read the file set you can use this schema in
preference to the column definitions by setting this property to True.
This property is mutually exclusive with Schema File.

6-24

Parallel Job Developer’s Guide

File Set Stage Outputs Page

File Name Column

This is an optional property. It adds an extra column of type VarChar
to the output of the stage, containing the pathname of the file the
record is read from. You should also add this column manually to the
Columns definitions to ensure that the column is not dropped if you
are not using runtime column propagation, or it is turned off at some
point.

Reject Link Properties

You cannot change the properties of a Reject link. The Properties tab
for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For
writing file sets, the link uses the column definitions for the input link.
For reading file sets, the link uses a single column called rejected
containing raw data for columns rejected after reading because they
do not match the schema.

Output Link Format Tab

The Format tab allows you to supply information about the format of
the files in the file set which you are reading. The tab has a similar
format to the Properties tab and is described on page 3-25.

If you do not alter any of the Format settings, the File Set stage will
expect to write files in the following format:

m Files comprise variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in a row.

m Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you
want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that
property in the Property Value box. Pop-up help for each of the
available properties appears if you hover the mouse pointer over it.

Any property that you set on this tab can be overridden at the column
level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

Parallel Job Developer’s Guide 6-25

Outputs Page

File Set Stage

This description uses the terms “record” and “row” and “field” and
p
“column” interchangeably.

The following sections list the Property types and properties available
for each type.

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Fill char. Does not apply to output links.

Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to /, “ (comma space - you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter, used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

6-26

Parallel Job Developer’s Guide

File Set Stage Outputs Page

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

\ / Final Delimiter = end

Field Delimiter

AN

[Field1 || Field1 . Field1 |, Lastfield |,|[nl]

Final Delimiter = comma

m Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

\

[Field1 || Field1 | Field1], Lastfield |[nl]

— Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

m Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

m Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

— UNIX Newline (the default)

— null

(To specify a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and record type.

m Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

m Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Parallel Job Developer’s Guide 6-27

Outputs Page

File Set Stage

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns read from the file or files.
These are applied to all columns, but can be overridden for individual
columns from the Columns tab using the Edit Column Metadata
dialog box. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIll comma character is used.
— tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ’, * (comma space -
you do not need to enter the inverted commas) specifies each field
is delimited by ’, unless overridden for individual fields.
DataStage skips the delimiter string when reading.

6-28

Parallel Job Developer’s Guide

File Set Stage

Outputs Page

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each his a hexadecimal digit O - E You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it

reads. The message has the format:
Importing N: D

where:
— Nis the field name.

— Dis the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and
reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.

Parallel Job Developer’s Guide 6-29

Outputs Page

File Set Stage

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in
the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage reads the length
prefix but does not include it as a separate field in the data set. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at
column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— binary

— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

6-30

Parallel Job Developer’s Guide

File Set Stage Outputs Page

By default data is formatted as text, as follows:

— For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

m Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

m Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes

— 16-bit signed or unsigned integers: 6 bytes

Parallel Job Developer’s Guide 6-31

Outputs Page

File Set Stage

— 32-bit signed or unsigned integers: 11 bytes
— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

m Pad char. This property is ignored for output links.

m Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,
unless overridden at column level.

= Export EBCDIC as ASCII. Not relevant for output links.

= Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.
For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

— Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when reading
decimal fields. Select No to write a positive sign (0xf)
regardless of the fields’ actual sign value.

6-32

Parallel Job Developer’s Guide

File Set Stage

Outputs Page

No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

No (zoned) to specify that they contain an unpacked decimal in
either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

m Precision. Specifies the precision of a packed decimal. Enter a
number.

®m Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

m Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

Parallel Job Developer’s Guide 6-33

Outputs Page

File Set Stage

C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanfi). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf{). By
default, DataStage invokes the C sscanfi) function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanfi).

Out_format. This property is not relevant for output links.

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%Yyyyy-%omm-%dd. The Format string can contain one or a
combination of the following elements:

- %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).
— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.
— It cannot have both %yy and %yyyy.
— It cannot have both %mm and %ddd.

6-34

Parallel Job Developer’s Guide

File Set Stage

Outputs Page

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %mm or %emmm.
— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component
with the percent symbol (%). Separate the string’s components
with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of
the month in the destination field. If the format string does not
include the month and day, they default to January 1. Note that
the format string must contain a month if it also contains a day;
that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in
which all two digit years fall. By default, the year cutoff is 1900;
therefore, a two-digit year of 97 represents 1997. You can also set
this using the environment variable
APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the twodigit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

Parallel Job Developer’s Guide 6-35

Outputs Page

File Set Stage

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

= Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:
— %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1 - 366).
For the time:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis 0,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol (%). Separate the string’s components with any
character except the percent sign (%).

6-36

Parallel Job Developer’s Guide

File Set Stage Using RCP With File Set Stages

Using RCP With File Set Stages

Runtime column propagation (RCP) allows DataStage to be flexible
about the columns you define in a job. If RCP is enabled for a project,
you can just define the columns you are interested in using in a job,
but ask DataStage to propagate the other columns through the
various stages. So such columns can be extracted from the data
source and end up on your data target without explicitly being
operated on in between.

The File Set stage handles a set of sequential files. Sequential files,
unlike most other data sources, do not have inherent column
definitions, and so DataStage cannot always tell where there are extra
columns that need propagating. You can only use RCP on File Set
stages if you have used the Schema File property (see "Schema File"
on page 6-7) to specify a schema which describes all the columns in
the sequential files referenced by the stage. You need to specify the
same schema file for any similar stages in the job where you want to
propagate columns. Stages that will require a schema file are:

m Sequential File

m File Set

m External Source
m External Target

m Column Import

m Column Export

Parallel Job Developer’s Guide 6-37

Using RCP With File Set Stages File Set Stage

6-38 Parallel Job Developer’s Guide

Lookup File Set Stage

The Lookup File Set stage is a file stage. It allows you to create a
lookup file set or reference one for a lookup. The stage can have a
single input link or a single output link. The output link must be a
reference link. The stage can be configured to execute in parallel or
sequential mode when used with an input link.

When creating Lookup file sets, one file will be created for each
partition. The individual files are referenced by a single descriptor file,
which by convention has the suffix .fs.

When performing lookups, Lookup File stages are used in conjunction
with Lookup stages. For more information about look up operations,
see Chapter 20,"Merge Stage."

Creating a Lookup File Set

T I .,
-) i Q
D5Link3 D5LinkE

Sequential_File_1 Transformer_2 Lookup_File_Set

Parallel Job Developer’s Guide 71

Lookup File Set Stage

Looking up a Lookup File set

| =tk 2
L= G (T —E_,
lirk_1 .

)
File_seby,1 Looﬁlp '_'\ File zat 2
=5 reject : -

. : ™~
@\‘ refengenu:e Eliéca L

%@ | Feject_data?
111

Reject_Datal Lookup_File_Set

When using an Lookup File Set stage as a source for lookup data,
there are special considerations about column naming. If you have
columns of the same name in both the source and lookup data sets,
note that the source data set column will go to the output data. If you
want this column to be replaced by the column from the lookup data
source, you need to drop the source data column before you perform
the lookup (you could, for example, use a Modify stage to do this). See
Chapter 20, "Merge Stage," for more details about performing
lookups.

When you edit a Lookup File Set stage, the Lookup File Set stage
editor appears. This is based on the generic stage editor described in
Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are
creating or referencing a file set:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are creating a lookup
table. This is where you specify details about the file set being
created and written to.

m Outputs Page. This is present when you are reading from a
lookup file set, i.e., where the stage is providing a reference link to
a Lookup stage. This is where you specify details about the file set
being read from.

7-2

Parallel Job Developer’s Guide

Lookup File Set Stage Must Do’s

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Lookup File Set stages in a job. This section specifies the
minimum steps to take to get a Lookup File Set stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on whether you are using the Lookup File
Set stage to create a lookup file set, or using it in conjunction with a
Lookup stage.

Creating a Lookup File Set:

m [nthe Input Link Properties Tab:

— Specify the key that the lookup on this file set will ultimately be
performed on. You can repeat this property to specify multiple
key columns. You must specify the key when you create the file
set, you cannot specify it when performing the lookup.

— Specify the name of the Lookup File Set.
— Set Allow Duplicates, or accept the default setting of False.

m Ensure column meta data has been specified for the lookup file
set.

Looking Up a Lookup File Set:

® In the Output Link Properties Tab specify the name of the
lookup file set being used in the look up.

m Ensure column meta data has been specified for the lookup file
set.

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Parallel Job Developer’s Guide 7-3

Stage Page Lookup File Set Stage

Advanced Tab

This tab only appears when you are using the stage to create a
reference file set (i.e., where the stage has an input link). It allows you
to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the contents of the table are
processed by the available nodes as specified in the Configuration
file, and by any node constraints specified on the Advanced tab.
In Sequential mode the entire contents of the table are processed
by the conductor node.

m Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

m Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pools or pools specified in the grid. The grid allows you
to make choices from drop down lists populated from the
Configuration file.

The NLS Map tab allows you to define a character set map for the
Lookup File Set stage. This overrides the default character set map set
for the project or the job. You can specify that the map be supplied as
a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for
individual columns within the data processed by the Lookup File Set
stage An extra property, NLS Map, appears in the Columns grid in the

7-4 Parallel Job Developer’s Guide

Lookup File Set Stage Inputs Page

Columns tab, but note that only ustring data types allow you to set
an NLS map value (see "Data Types" on page 2-28).

E' Lookup_File_S5et_9 - Lookup File Set

Stage | Qutput |

Stage name: ILUDkup_FiIe_Set_S

General NLY Map
tdap name:
150-8853-1 ﬂ ™ Allow per-column mapping
Project default (150-8853-1) i’

CESU-A
ebecdic-sml-us
gb13030

HZ

I15CI verzion=0
15 wersion=1
15 werzion=2
I15CIl verzion=3
15C1 wersion=4
|51 werzion=5
I1SCI verzion=6 ;I

0K I Cancel Help

Inputs Page

The Inputs page allows you to specify details about how the Lookup
File Set stage writes data to a file set. The Lookup File Set stage can
have only one input link.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the file set. The
Columns tab specifies the column definitions of the data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Details about Lookup File Set stage properties and partitioning are
given in the following sections. See Chapter 3, "Stage Editors." for a
general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written to the file set. Some of the
properties are mandatory, although many have default settings.

Parallel Job Developer’s Guide 7-5

Inputs Page Lookup File Set Stage
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.
Category/ Values Default NMandatory? Repeats? Dependent of
Property
Lookup Keys/Key Input column N/A Y Y N/A
Lookup Keys/Case True/False True N N Key
Sensitive.
Target/Lookup File pathname N/A Y N N/A
Set
Options/Allow True/False False Y N N/A
Duplicates
Options/Diskpool string N/A N N N/A

Lookup Keys Category

Key

Specifies the name of a lookup key column. The Key property can be
repeated if there are multiple key columns. The property has a
dependent property:

m Case Sensitive.

This is a dependent property of Key and specifies whether the
parent key is case sensitive or not. Set to true by default.

Target Category

Lookup File Set

This property defines the file set that the incoming data will be written
to. You can type in a pathname of, or browse for a file set descriptor
file (by convention ending in .fs).

Options Category

Allow Duplicates

Set this to cause multiple copies of duplicate records to be saved in
the lookup table without a warning being issued. Two lookup records
are duplicates when all lookup key columns have the same value in
the two records. If you do not specify this option, DataStage issues a

7-6

Parallel Job Developer’s Guide

Lookup File Set Stage Inputs Page

warning message when it encounters duplicate records and discards
all but the first of the matching records.

Diskpool

This is an optional property. Specify the name of the disk pool into
which to write the file set. You can also specify a job parameter.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the
lookup file set. It also allows you to specify that the data should be
sorted before being written.

By default the stage will write to the file set in entire mode. The
complete data set is written to each partition.

If the Lookup File Set stage is operating in sequential mode, it will first
collect the data before writing it to the file using the default (auto)
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the Lookup File Set stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Lookup File Set stage is set to execute in parallel, then you can
set a partitioning method by selecting from the Partition type drop-
down list. This will override any current partitioning.

If the Lookup File Set stage is set to execute in sequential mode, but
the preceding stage is executing in parallel, then you can set a
collection method from the Collector type drop-down list. This will
override the default auto collection method.

The following partitioning methods are available:

m Entire. Each file written to receives the entire data set. This is the
default partitioning method for the Lookup File Set stage.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

Parallel Job Developer’s Guide 7-7

Inputs Page Lookup File Set Stage
® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties
by clicking the properties button .

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by
clicking the properties button .

The following Collection methods are available:

m (Auto). This is the default method for the Lookup Data Set stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

® Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over. This is the default method for
the Lookup File Set stage.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the file or files.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

7-8 Parallel Job Developer’s Guide

Lookup File Set Stage Outputs Page

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the
Lookup File Set stage references a file set. The Lookup File Set stage
can have only one output link which is a reference link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Columns tab specifies the column
definitions of the data. The Advanced tab allows you to change the
default buffering settings for the output link.

Details about Lookup File Set stage properties are given in the
following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from the lookup table.
There is only one output link property.

Category/Property Values Default Mandatory? Repeats? Dependent of
Lookup Source/Lookup pathname N/A Y N N/A
File Set

Lookup Source Category

Lookup File Set

This property defines the file set that the data will be referenced from.
You can type in a pathname of, or browse for a file set descriptor file
(by convention ending in .fs).

Parallel Job Developer’s Guide 7-9

Outputs Page Lookup File Set Stage

7-10 Parallel Job Developer’s Guide

External Source Stage

The External Source stage is a file stage. It allows you to read data
that is output from one or more source programs. The stage calls the
program and passes appropriate arguments. The stage can have a
single output link, and a single rejects link. It can be configured to
execute in parallel or sequential mode. There is also an External
Target stage which allows you to write to an external program (see
Chapter 9).

The External Source stage allows you to perform actions such as
interface with databases not currently supported by the DataStage
Enterprise Edition.

rsiect_link /’ _|\ Using An External Source Stage
:=:% rejects
%j | data_link, Sk .
Cutput_from_esternal_program] WE.EE_P 11”1IJ
Transformer_11 Data Set_10

When reading output from a program, DataStage needs to know
something about its format. The information required is how the data
is divided into rows and how rows are divided into columns. You
specify this on the Format tab. Settings for individual columns can be
overridden on the Columns tab using the Edit Column Metadata
dialog box.

When you edit an External Source stage, the External Source stage
editor appears. This is based on the generic stage editor described in
Chapter 3, "Stage Editors."

Parallel Job Developer’s Guide 8-1

Must Do’s External Source Stage

The stage editor has two pages:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Outputs Page. This is where you specify details about the
program or programs whose output data you are reading.

There are one or two special points to note about using runtime

column propagation (RCP) with External Source stages. See "Using

RCP With External Source Stages" on page 8-18 for details.

14

Must Do’s

DataStage has many defaults which means that it can be very easy to

include External Source stages in a job. This section specifies the

minimum steps to take to get a External Source stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar
with the product.

To use the External Source stage:

m In the Output Link Properties Tab:

— Specify whether the stage is providing details of the program
(the default) or whether details will be provided in a file (using
the latter method you can provide a list of files and arguments).

— If using the default source method, specify the name of the
source program executable. You can also specify required
arguments that DataStage will pass when it calls the program.
Repeat this to specify multiple program calls.

— If using the program file source method, specify the name of
the file containing the list of program names and arguments.

— Specify whether to maintain any partitions in the source data
(False by default).

— Specify how to treat rejected rows (by default the stage
continues and the rows are discarded).

m In the Format Tab specify format details for the source data you
are reading from, or accept the defaults (variable length columns
enclosed in double quotes and delimited by commas, rows
delimited with UNIX newlines).

m Ensure that column definitions have been specified (you can use a
schema file for this if required).

8-2 Parallel Job Developer’s Guide

External Source Stage Stage Page

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data input from external
programs is processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode all the data from the source
program is processed by the conductor node.

m Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

= Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning as
is. Clear is the default.

® Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab

The NLS Map tab allows you to define a character set map for the
External Source stage. This overrides the default character set map set
for the project or the job. You can specify that the map be supplied as
a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for
individual columns within the data processed by the External Source
stage. An extra property, NLS Map, appears in the Columns grid in

Parallel Job Developer’s Guide 8-3

Outputs Page

External Source Stage

the Columns tab, but note that only ustring data types allow you to
set an NLS map value (see "Data Types" on page 2-28).

E External_Source_12 - External Source

Stage | Dutput I

Stage name: IEr:temaI_Snurce_'I 2

Qenerall Adwanced NL

b ap name:

ﬂ [~ Allow per-colurmn mapping

Project default [|S0-8853-1) il
BOCU-1

CESL-8

ebcdic-=ml-uz

gb18030

HZ

ISCI wersion=0

ISCI wersion=1

ISCI wersion=2

I15CI wersion=3

ISCI version=4

ISCI wersion=5

ISCI wersion=6 LI

Ok I Cancel Help

Outputs Page

The Outputs page allows you to specify details about how the
External Source stage reads data from an external program. The
External Source stage can have only one output link. It can also have a
single reject link, where rows that do not match the expected schema
can be sent. The Output name drop-down list allows you to choose
whether you are looking at details of the main output link (the stream
link) or the reject link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Format tab gives information about
the format of the files being read. The Columns tab specifies the
column definitions of the data. The Advanced tab allows you to
change the default buffering settings for the output link.

Details about External Source stage properties and formatting are
given in the following sections. See Chapter 3, "Stage Editors," for a
general description of the other tabs.

8-4

Parallel Job Developer’s Guide

External Source Stage Outputs Page

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how data is read from the external program or
programs. Some of the properties are mandatory, although many
have default settings. Properties without default settings appear in the
warning color (red by default) and turn black when you supply a value
for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/Source string N/A Y if Source Y N/A
Program Method =

Specific

Program(s)
Source/Source pathname N/A Y if Source Y N/A
Programs File Method =

Program

File(s)
Source/Source Specific Specific Program(s) Y N N/A
Method Program(s)/

Program
File(s)

Options/Keep True/False False Y N N/A
File Partitions
Options/Reject ~ Continue/Fail/ Continue Y N N/A
Mode Save
Options/Schema pathname N/A N N N/A
File
Options/Source column name sourceNameColum N N N/A

Name Column

Source Category

Source Program

Specifies the name of a program providing the source data. DataStage
calls the specified program and passes to it any arguments specified.
You can repeat this property to specify multiple program instances
with different arguments. You can use a job parameter to supply
program name and arguments.

Parallel Job Developer’s Guide 8-5

Outputs Page

External Source Stage

Source Programs File

Specifies a file containing a list of program names and arguments.
You can browse for the file or specify a job parameter. You can repeat
this property to specify multiple files.

Source Method

This property specifies whether you directly specifying a program
(using the Source Program property) or using a file to specify a
program (using the Source Programs File property).

Options Category

Keep File Partitions

Set this to True to maintain the partitioning of the read data. Defaults
to False.

Reject Mode

Allows you to specify behavior if a record fails to be read for some
reason. Choose from Continue to continue operation and discard any
rejected rows, Fail to cease reading if any rows are rejected, or Save
to send rejected rows down a reject link. Defaults to Continue.

Schema File

This is an optional property. By default the External Source stage will
use the column definitions defined on the Columns tab and Schema
tab as a schema for reading the file. You can, however, specify a file
containing a schema instead (note, however, that if you have defined
columns on the Columns tab, you should ensure these match the
schema file). Type in a pathname or browse for a schema file.

Source Name Column

This is an optional property. It adds an extra column of type VarChar
to the output of the stage, containing the pathname of the source the
record is read from. You should also add this column manually to the
Columns definitions to ensure that the column is not dropped if you
are not using runtime column propagation, or it is turned off at some
point.

Reject Link Properties

You cannot change the properties of a Reject link. The Properties tab
for a reject link is blank.

8-6

Parallel Job Developer’s Guide

External Source Stage Outputs Page

Similarly, you cannot edit the column definitions for a reject link. The
link will use a single column of type raw carrying the row which did
not match the expected schema.

Format Tab

The Format tab allows you to supply information about the format of
the source data that you are reading. The tab has a similar format to
the Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the External Source
stage will expect to read a file of the following format:

m Data comprises variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in a row.

m Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

Select a property type from the main tree then add the properties you
want to set to the tree structure by clicking on them in the Available
properties to set window. You can then set a value for that
property in the Property Value box. Pop-up help for each of the
available properties appears if you hover the mouse pointer over it.

Any property that you set on this tab can be overridden at the column
level by setting properties for individual columns on the Edit Column
Metadata dialog box (see page 3-26).

This description uses the terms “record” and “row” and “field” and
p
“column® interchangeably.

The following sections list the Property types and properties available
for each type.

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

= Fill char. Does not apply to output links.

Parallel Job Developer’s Guide 8-7

Outputs Page

External Source Stage

Final delimiter string. Specify the string written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to /, * (comma space — you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character. DataStage skips the
specified delimiter string when reading the file.

Final delimiter. Specify the single character written after the last
column of a record in place of the field delimiter. Type a character
or select one of whitespace, end, none, null, tab, or comma.
DataStage skips the specified delimiter string when reading the
file. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter, used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

_ Field1 || Field1 || Field1 .| Lastfield |nl]

\ //Final Delimiter = end

[J Field1][Lastfield ,]ni]

Final Delimiter = comma

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Outputs tab. This
property has a dependent property:

[Field1 |, Field1

8-8

Parallel Job Developer’s Guide

External Source Stage

Outputs Page

— Check intact. Select this to force validation of the partial
schema as the file or files are imported. Note that this can
degrade performance.

Record delimiter string. Specify the string at the end of each
record. Enter one or more characters. This is mutually exclusive
with Record delimiter, which is the default, and record type and
record prefix.

Record delimiter. Specify the single character at the end of each
record. Type a character or select one of the following:

— UNIX Newline (the default)
— null

(To specify a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and record type.

Record length. Select Fixed where fixed length fields are being
read. DataStage calculates the appropriate length for the record.
Alternatively specify the length of fixed records as number of
bytes. This is not used by default (default files are comma-
delimited).

Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns read from the file or files.
These are applied to all columns, but can be overridden for individual
columns from the Columns tab using the Edit Column Metadata
dialog box. Where you can enter a character, this can usually be an

Parallel Job Developer’s Guide 8-9

Outputs Page

External Source Stage

ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Actual field length. Specifies the actual number of bytes to skip
if the field’s length equals the setting of the null field length
property.

Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab. DataStage skips the delimiter when
reading.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIl comma character is used.
— tab. ASCII tab character is used.

Delimiter string. Specify the string at the end of each field. Enter
one or more characters. This is mutually exclusive with Delimiter,
which is the default. For example, specifying ’, * (comma space -
you do not need to enter the inverted commmas) specifies each field
is delimited by *, “ unless overridden for individual fields.
DataStage skips the delimiter string when reading.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is read, a length
of null field length in the source field indicates that it contains a
null. This property is mutually exclusive with null field value.

Null field value. Specifies the value given to a null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first o is < 4, or by
\xhh, where each his a hexadecimal digit O - E You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

8-10

Parallel Job Developer’s Guide

External Source Stage

Outputs Page

Prefix bytes. You can use this option with variable-length fields.
Variable-length fields can be either delimited by a character or
preceded by a 1-, 2-, or 4-byte prefix containing the field length.
DataStage reads the length prefix but does not include the prefix
as a separate field in the data set it reads from the file.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is intended for use when debugging
jobs. Set it to have DataStage produce a message for every field it

reads. The message has the format:
Importing N: D

where:
— Nis the field name.

— Dis the imported data of the field. Non-printable characters
conained in D are prefixed with an escape character and
written as C string literals; if the field contains binary data, it is
output in octal format.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to double
quotes by default.

When reading, DataStage ignores the leading quote character and
reads all bytes up to but not including the trailing quote character.

Vector prefix. For fields that are variable length vectors,
specifies that a 1-, 2-, or 4-byte prefix contains the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in
the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage reads the length
prefix but does not include it as a separate field in the data set. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at
column level):

Parallel Job Developer’s Guide 8-11

Outputs Page

External Source Stage

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— binary
— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

— For the date data type, text specifies that the data read,
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

8-12

Parallel Job Developer’s Guide

External Source Stage

Outputs Page

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or or in the default
date format if you have defined a new one on an NLS system
(see NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes

— 16-bit signed or unsigned integers: 6 bytes
— 32-bit signed or unsigned integers: 11 bytes
— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

Pad char. This property is ignored for output links.

Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

Parallel Job Developer’s Guide 8-13

Outputs Page

External Source Stage

String

These properties are applied to columns with a string data type,
unless overridden at column level.

s Export EBCDIC as ASCII. Not relevant for output links.

= Import ASCII as EBCDIC. Select this to specify that ASCII
characters are read as EBCDIC characters.
For ASCII-EBCDIC and EBCDIC-ASCII coversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

Packed. Select an option to specify what the decimal columns
contain, choose from:

— Yes to specify that the decimal fields contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when reading
decimal fields. Select No to write a positive sign (0xf)
regardless of the fields’ actual sign value.

— No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

— No (zoned) to specify that they contain an unpacked decimal in

either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

— No (overpunch) to specify that the field has a leading or end

byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Parallel Job Developer’s Guide

External Source Stage

Outputs Page

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision of a packed decimal. Enter a
number.

Rounding. Specifies how to round the source field to fit into the
destination decimal when reading a source field to a decimal.
Choose from:

— up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

— down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

— nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

— truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies the scale of a source packed decimal.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

C_format. Perform non-default conversion of data from string
data to a integer or floating-point. This property specifies a C-
language format string used for reading integer or floating point
strings. This is passed to sscanf{). For example, specifying a C-
format of %x and a field width of 8 ensures that a 32-bit integer is
formatted as an 8-byte hexadecimal string.

In_format. Format string used for conversion of data from string
to integer or floating-point data This is passed to sscanf{). By
default, DataStage invokes the C sscanf{) function to convert a
numeric field formatted as a string to either integer or floating
point data. If this function does not output data in a satisfactory
format, you can specify the in_format property to pass formatting
arguments to sscanfi).

Out_format. This property is not relevant for output links.

Parallel Job Developer’s Guide 8-15

Outputs Page

External Source Stage

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-%mm-%dd or in the default date format if you have
defined a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is
%Yyyyy-%mm-%dd. The Format string can contain one or a
combination of the following elements:

— %dd: A two-digit day.
— %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.
- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).
— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.

— It cannot have both %yy and %yyyy.

— It cannot have both %mm and %ddd.

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %mm or %emmm.
— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component
with the percent symbol (%). Separate the string’s components
with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of
the month in the destination field. If the format string does not
include the month and day, they default to January 1. Note that
the format string must contain a month if it also contains a day;
that is, you cannot omit only the month.

8-16

Parallel Job Developer’s Guide

External Source Stage

Outputs Page

The year_cutoffis the year defining the beginning of the century in
which all two digit years fall. By default, the year cutoff is 1900;
therefore, a two-digit year of 97 represents 1997 You can also set
this using the environment variable
APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the twodigit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Parallel Job Developer’s Guide 8-17

Using RCP With External Source Stages External Source Stage

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

%dd: A two-digit day.
%mm: A two-digit month.

%year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

%yy: A two-digit year derived from a year cutoff of 1900.
%yyyy: A four-digit year.
%ddd: Day of year in three-digit form (range of 1 - 366).

For the time:

%hh: A two-digit hours component.

%nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

%ss: A two-digit seconds component.

%ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis 0O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol (%). Separate the string’s components with any
character except the percent sign (%).

Using RCP With External Source Stages

Runtime column propagation (RCP) allows DataStage to be flexible
about the columns you define in a job. If RCP is enabled for a project,
you can just define the columns you are interested in using in a job,
but ask DataStage to propagate the other columns through the
various stages. So such columns can be extracted from the data
source and end up on your data target without explicitly being
operated on in between.

8-18

Parallel Job Developer’s Guide

External Source Stage Using RCP With External Source Stages

External Source stages, unlike most other data sources, do not have
inherent column definitions, and so DataStage cannot always tell
where there are extra columns that need propagating. You can only
use RCP on External Source stages if you have used the Schema File
property (see "Schema File" on page 8-6) to specify a schema which
describes all the columns in the sequential files referenced by the
stage. You need to specify the same schema file for any similar stages
in the job where you want to propagate columns. Stages that will
require a schema file are:

m Sequential File

m File Set

m External Source
m External Target

m Column Import

m Column Export

Parallel Job Developer’s Guide 8-19

Using RCP With External Source Stages External Source Stage

8-20 Parallel Job Developer’s Guide

External Target Stage

The External Target stage is a file stage. It allows you to write data to
one or more source programs. The stage can have a single input link
and a single rejects link. It can be configured to execute in parallel or
sequential mode. There is also an External Source stage, which allows
you to read from an external program (see Chapter 8)

The External Target stage allows you to perform actions such as
interface with databases not currently supported by the DataStage
Parallel Extender.

S

Using an External Target Stage

Hei#m
% Reject_link

i b
R £ S
- D5Link? Data_Link E

[Data_Set_1 Tranzformer_4 Input_to_external_program

When writing to a program, DataStage needs to know something
about how to format the data. The information required is how the
data is divided into rows and how rows are divided into columns. You
specify this on the Format tab. Settings for individual columns can be
overridden on the Columns tab using the Edit Column Metadata
dialog box.

When you edit an External Target stage, the External Target stage
editor appears. This is based on the generic stage editor described in
Chapter 3, "Stage Editors."

The stage editor has up to three pages:

Parallel Job Developer’s Guide 9-1

Must Do’s External Target Stage

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is where you specify details about the program
or programs you are writing data to.

m Outputs Page. This appears if the stage has a rejects link.

There are one or two special points to note about using runtime

column propagation (RCP) with External Target stages. See "Using

RCP With External Target Stages" on page 9-21 for details.

r

Must Do’s

DataStage has many defaults which means that it can be very easy to

include External Target stages in a job. This section specifies the

minimum steps to take to get a External Target stage functioning.

DataStage provides a versatile user interface, and there are many

shortcuts to achieving a particular end, this section describes the basic

method, you will learn where the shortcuts are when you get familiar
with the product.

To use the External Target stage:

m In the Input Link Properties Tab:

— Specify whether the stage is providing details of the program
(the default) or whether details will be provided in a file (using
the latter method you can provide a list of files and arguments).

— If using the default target method, specify the name of the
target program executable. You can also specify required
arguments that DataStage will pass when it calls the program.
Repeat this to specify multiple program calls.

— Ifusing the program file target method, specify the name of the
file containing the list of program names and arguments.

— Specify whether to delete partially written data if the write fails
for some reason (True by default).

— Specify how to treat rejected rows (by default the stage
continues and the rows are discarded).

m In the Format Tab specify format details for the data you are
writing, or accept the defaults (variable length columns enclosed
in double quotes and delimited by commas, rows delimited with
UNIX newlines).

m Ensure that column definitions have been specified (this can be
done in an earlier stage or in a schema file).

9-2 Parallel Job Developer’s Guide

External Target Stage Stage Page

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data output to external
programs is processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the
Advanced tab. In Sequential mode all the data from the source
program is processed by the conductor node.

m Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

= Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning as
is. Clear is the default.

® Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map Tab

The NLS Map tab allows you to define a character set map for the
External Target stage. This overrides the default character set map set
for the project or the job. You can specify that the map be supplied as
a job parameter if required. You can also select Allow per-column
mapping. This allows character set maps to be specified for
individual columns within the data processed by the External Target
stage. An extra property, NLS Map, appears in the Columns grid in

Parallel Job Developer’s Guide 9-3

Inputs Page

External Target Stage

the Columns tab, but note that only ustring data types allow you to
set an NLS map value (see "Data Types" on page 2-28).

I‘_:?_. External_Target_13 - External Target

Stage | Input |

Stage name: |E:-:tema|_Target_1 3

d [&llow per-column mapping

Project default [|150-8853-1) é
BOCU-1

CESU-8

ehcdic-=ml-uz

|SCI wersion=0
ISCI wersion=1
|SCI wersion=2
|SCI wersion=3
|SCIL wersion=4
|SCI version=h
|SCIL wersion=h j

K I Cancel Help

Inputs Page

The Inputs page allows you to specify details about how the External
Target stage writes data to an external program. The External Target
stage can have only one input link.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the external
program. The Format tab gives information about the format of the
data being written. The Columns tab specifies the column definitions
of the data. The Advanced tab allows you to change the default
buffering settings for the input link.

Details about External Target stage properties, partitioning, and
formatting are given in the following sections. See Chapter 3, "Stage
Editors," for a general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and to what program.
Some of the properties are mandatory, although many have default

9-4

Parallel Job Developer’s Guide

External Target Stage Inputs Page

settings. Properties without default settings appear in the warning
color (red by default) and turn black when you supply a value for
them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/Property Values Default Mandatory? Repeats? Dependent of
Target /Destination string N/A Y if Source Y N/A
Program Method =
Specific
Program(s)
Target /Destination pathname N/A Y if Source Y N/A
Programs File Method =
Program
File(s)
Target /Target Method Specific Specific Y N N/A
Program(s)/ Program(s)
Program
File(s)
Options/Reject Mode Continue/Fail/ Continue N N N/A
Save
Options/Schema File pathname N/A N N N/A

Target Category

Destination Program

This is an optional property. Specifies the name of a program
receiving data. DataStage calls the specified program and passes to it
any arguments specified.You can repeat this property to specify
multiple program instances with different arguments. You can use a
job parameter to supply program name and arguments.

Destination Programs File

This is an optional property. Specifies a file containing a list of
program names and arguments. You can browse for the file or specify
a job parameter. You can repeat this property to specify multiple files.

Target Method

This property specifies whether you directly specifying a program
(using the Destination Program property) or using a file to specify a
program (using the Destination Programs File property).

Parallel Job Developer’s Guide 9-5

Inputs Page

External Target Stage

Options Category

Reject Mode

This is an optional property. Allows you to specify behavior if a record
fails to be written for some reason. Choose from Continue to
continue operation and discard any rejected rows, Fail to cease
reading if any rows are rejected, or Save to send rejected rows down
a reject link. Defaults to Continue.

Schema File

This is an optional property. By default the External Target stage will
use the column definitions defined on the Columns tab as a schema
for writing the file. You can, however, specify a file containing a
schema instead (note, however, that if you have defined columns on
the Columns tab, you should ensure these match the schema file).
Type in a pathname or browse for a schema file.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the
target program. It also allows you to specify that the data should be
sorted before being written.

By default the stage will partition data in Auto mode.

If the External Target stage is operating in sequential mode, it will first
collect the data before writing it to the file using the default auto
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the External Target stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the External Target stage is set to execute in parallel, then you can
set a partitioning method by selecting from the Partitioning type
drop-down list. This will override any current partitioning.

If the External Target stage is set to execute in sequential mode, but
the preceding stage is executing in parallel, then you can set a
collection method from the Collector type drop-down list. This will
override the default Auto collection method.

The following partitioning methods are available:

9-6

Parallel Job Developer’s Guide

External Target Stage Inputs Page

m (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the External Target
stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties
by clicking the properties button .

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .
The following Collection methods are available:

m (Auto). This is the default method for the External Target stage.
Normally, when you are using Auto mode, DataStage will eagerly
read any row from any input partition as it becomes available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

®m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the target
program. The sort is always carried out within data partitions. If the
stage is partitioning incoming data the sort occurs after the
partitioning. If the stage is collecting data, the sort occurs before the

Parallel Job Developer’s Guide 9-7

Inputs Page

External Target Stage

collection. The availability of sorting depends on the partitioning or
collecting method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

= Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Format Tab

The Format tab allows you to supply information about the format of
the data you are writing. The tab has a similar format to the
Properties tab and is described on page 3-44.

If you do not alter any of the Format settings, the External Target stage
will produce a file of the following format:

m Data comprises variable length columns contained within double
quotes.

m All columns are delimited by a comma, except for the final column
in arow.

m Rows are delimited by a UNIX newline.

You can use the Format As item from the shortcut menu in the
Format Tab to quickly change to a fixed-width column format, using
DOS newlines as row delimiters, or producing a COBOL format file.

To change individual properties, select a property type from the main
tree then add the properties you want to set to the tree structure by
clicking on them in the Available properties to set window. You
can then set a value for that property in the Property Value box. Pop
up help for each of the available properties appears if you hover the
mouse pointer over it.

9-8

Parallel Job Developer’s Guide

External Target Stage

Inputs Page

This description uses the terms “record” and “row” and “field” and
“column” interchangeably.

The following sections list the Property types and properties available
for each type.

Record level

These properties define details about how data records are formatted
in the flat file. Where you can enter a character, this can usually be an
ASCII character or a multi-byte Unicode character (if you have NLS
enabled). The available properties are:

Fill char. Specify an ASCII character or a value in the range 0 to
255. You can also choose Space or Null from a drop-down list.
This character is used to fill any gaps in a written record caused by
column positioning properties. Set to 0 by default (which is the
NULL character). For example, to set it to space you could also
type in the space character or enter 32. Note that this value is
restricted to one byte, so you cannot specify a multi-byte Unicode
character.

Final delimiter string. Specify a string to be written after the last
column of a record in place of the column delimiter. Enter one or
more characters, this precedes the record delimiter if one is used.
Mutually exclusive with Final delimiter, which is the default. For
example, if you set Delimiter to comma (see under "Field Defaults"
for Delimiter) and Final delimiter string to , * (comma space — you
do not need to enter the inverted commas) all fields are delimited
by a comma, except the final field, which is delimited by a comma
followed by an ASCII space character.

Final delimiter. Specify a single character to be written after the
last column of a record in place of the field delimiter. Type a
character or select one of whitespace, end, none, null, tab, or
comma. See the following diagram for an illustration.

— whitespace. The last column of each record will not include
any trailing white spaces found at the end of the record.

— end. The last column of each record does not include the field
delimiter. This is the default setting.

— none. The last column of each record does not have a
delimiter; used for fixed-width fields.

— null. The last column of each record is delimited by the ASCII
null character.

— comma. The last column of each record is delimited by the
ASCIl comma character.

Parallel Job Developer’s Guide 9-9

Inputs Page

External Target Stage

— tab. The last column of each record is delimited by the ASCII

tab character.
Record delimiter

[Field1 || Field1 . Field1], Lastfield |[nl]

\ //Final Delimiter = end

I
o
o
O
o
3
=
@
@

Il Field1][Lastfield |,|nl]

Final Delimiter = comma

[Field1 [, Field1

When writing, a space is now inserted after every field except the
last in the record. Previously, a space was inserted after every field
including the last. (If you want to revert to the pre-release 7.5
behavior of inserting a space after the last field, set the
APT_FINAL_DELIM_COMPATIBLE environment variable.

Intact. The intact property specifies an identifier of a partial
schema. A partial schema specifies that only the column(s) named
in the schema can be modified by the stage. All other columns in
the row are passed through unmodified. (See "Partial Schemas" in
Appendix A for details.) The file containing the partial schema is
specified in the Schema File property on the Properties tab (see
page 5-9). This property has a dependent property, Check intact,
but this is not relevant to input links.

Record delimiter string. Specify a string to be written at the end
of each record. Enter one or more characters. This is mutually
exclusive with Record delimiter, which is the default, record type
and record prefix.

Record delimiter. Specify a single character to be written at the
end of each record. Type a character or select one of the following:

— UNIX Newline (the default)

— null

(To implement a DOS newline, use the Record delimiter string
property set to “\R\N” or choose Format as » DOS line
terminator from the shortcut menu.)

Record delimiter is mutually exclusive with Record delimiter
string, Record prefix, and Record type.

Record length. Select Fixed where fixed length fields are being
written. DataStage calculates the appropriate length for the
record. Alternatively specify the length of fixed records as number
of bytes. This is not used by default (default files are comma-
delimited). The record is padded to the specified length with either
zeros or the fill character if one has been specified.

9-10

Parallel Job Developer’s Guide

External Target Stage Inputs Page

m Record Prefix. Specifies that a variable-length record is prefixed
by a 1-, 2-, or 4-byte length prefix. It is set to 1 by default. This is
mutually exclusive with Record delimiter, which is the default, and
record delimiter string and record type.

m Record type. Specifies that data consists of variable-length
blocked records (varying) or implicit records (implicit). If you
choose the implicit property, data is written as a stream with no
explicit record boundaries. The end of the record is inferred when
all of the columns defined by the schema have been parsed. The
varying property allows you to specify one of the following IBM
blocked or spanned formats: V, VB, VS, VBS, or VR.

This property is mutually exclusive with Record length, Record
delimiter, Record delimiter string, and Record prefix and by
default is not used.

Field Defaults

Defines default properties for columns written to the file or files.
These are applied to all columns written, but can be overridden for
individual columns from the Columns tab using the Edit Column
Metadata dialog box. Where you can enter a character, this can
usually be an ASCII character or a multi-byte Unicode character (if you
have NLS enabled). The available properties are:

m Actual field length. Specifies the number of bytes to fill with the
Fill character when a field is identified as null. When DataStage
identifies a null field, it will write a field of this length full of Fill
characters. This is mutually exclusive with Null field value.

m Delimiter. Specifies the trailing delimiter of all fields in the
record. Type an ASCII character or select one of whitespace, end,
none, null, comma, or tab.

— whitespace. Whitespace characters at the end of a column are
ignored, i.e., are not treated as part of the column.

— end. The end of a field is taken as the delimiter, i.e., there is no
separate delimiter. This is not the same as a setting of ‘None’
which is used for fields with fixed-width columns.

— none. No delimiter (used for fixed-width).
— null. ASCII Null character is used.

— comma. ASCIll comma character is used.
— tab. ASCII tab character is used.

= Delimiter string. Specify a string to be written at the end of each
field. Enter one or more characters. This is mutually exclusive with
Delimiter, which is the default. For example, specifying ’, ‘ (comma

Parallel Job Developer’s Guide 9-11

Inputs Page

External Target Stage

space — you do not need to enter the inverted commas) would
have each field delimited by ’, * unless overridden for individual
fields.

Null field length. The length in bytes of a variable-length field
that contains a null. When a variable-length field is written,
DataStage writes a length value of null field length if the field
contains a null. This property is mutually exclusive with null field
value.

Null field value. Specifies the value written to null field if the
source is set to null. Can be a number, string, or C-type literal
escape character. For example, you can represent a byte value by
\ooo, where each o is an octal digit 0 - 7 and the first ois < 4, or by
\xhh, where each his a hexadecimal digit O - E You must use this
form to encode non-printable byte values.

This property is mutually exclusive with Null field length and
Actual length. For a fixed width data representation, you can use
Pad char (from the general section of Type defaults) to specify a
repeated trailing character if the value you specify is shorter than
the fixed width of the field.

Prefix bytes. Specifies that each column in the data file is
prefixed by 1, 2, or 4 bytes containing, as a binary value, either the
column’s length or the tag value for a tagged field.

You can use this option with variable-length fields. Variable-length
fields can be either delimited by a character or preceded by a 1-, 2-
, or 4-byte prefix containing the field length. DataStage inserts the
prefix before each field.

This property is mutually exclusive with the Delimiter, Quote, and
Final Delimiter properties, which are used by default.

Print field. This property is not relevant for input links.

Quote. Specifies that variable length fields are enclosed in single
quotes, double quotes, or another character or pair of characters.
Choose Single or Double, or enter a character. This is set to
double quotes by default.

When writing, DataStage inserts the leading quote character, the
data, and a trailing quote character. Quote characters are not
counted as part of a field’s length.

Vector prefix. For fields that are variable length vectors,
specifies a 1-, 2-, or 4-byte prefix containing the number of
elements in the vector. You can override this default prefix for
individual vectors.

Variable-length vectors must use either a prefix on the vector or a
link to another field in order to specify the number of elements in

9-12

Parallel Job Developer’s Guide

External Target Stage

Inputs Page

the vector. If the variable length vector has a prefix, you use this
property to indicate the prefix length. DataStage inserts the
element count as a prefix of each variable-length vector field. By
default, the prefix length is assumed to be one byte.

Type Defaults

These are properties that apply to all columns of a specific data type
unless specifically overridden at the column level. They are divided
into a number of subgroups according to data type.

General

These properties apply to several data types (unless overridden at
column level):

Byte order. Specifies how multiple byte data types (except string
and raw data types) are ordered. Choose from:

— little-endian. The high byte is on the right.
— big-endian. The high byte is on the left.

— native-endian. As defined by the native format of the machine.
This is the default.

Data Format. Specifies the data representation format of a field.
Applies to fields of all data types except string, ustring, and raw
and to record, subrec or tagged fields containing at least one field
that is neither string nor raw. Choose from:

— binary
— text (the default)

A setting of binary has different meanings when applied to
different data types:

— For decimals, binary means packed.
— For other numerical data types, binary means “not text”

— For dates, binary is equivalent to specifying the julian property
for the date field.

— For time, binary is equivalent to midnight_seconds.

— For timestamp, binary specifies that the first integer contains a
Julian day count for the date portion of the timestamp and the
second integer specifies the time portion of the timestamp as
the number of seconds from midnight. A binary timestamp
specifies that two 32-but integers are written.

By default data is formatted as text, as follows:

Parallel Job Developer’s Guide 9-13

Inputs Page

External Target Stage

— For the date data type, text specifies that the data to be written
contains a text-based date in the form %yyyy-%mm-%dd or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

— For the decimal data type: a field represents a decimal in a
string format with a leading space or '-' followed by decimal
digits with an embedded decimal point if the scale is not zero.
The destination string format is: [+ | -]ddd.[ddd] and any
precision and scale arguments are ignored.

— For numeric fields (int8, int16, int32, uint8, uint16, uint32,
sfloat, and dfloat): DataStage assumes that numeric fields are
represented as text.

— For the time data type: text specifies that the field represents
time in the text-based form %hh:%nn:%ss or in the default date
format if you have defined a new one on an NLS system (see
NLS Guide).

— For the timestamp data type: text specifies a text-based
timestamp in the form %yyyy-%mm-%dd %hh:%nn:%ss or in
the default date format if you have defined a new one on an
NLS system (see NLS Guide).

(See page 2-28 for a description of data types.)

Field max width. The maximum number of bytes in a column
represented as a string. Enter a number. This is useful where you
are storing numbers as text. If you are using a fixed-width
character set, you can calculate the length exactly. If you are using
variable-length character set, calculate an adequate maximum
width for your fields. Applies to fields of all data types except date,
time, timestamp, and raw; and record, subrec, or tagged if they
contain at least one field of this type.

Field width. The number of bytes in a field represented as a
string. Enter a number. This is useful where you are storing
numbers as text. If you are using a fixed-width charset, you can
calculate the number of bytes exactly. If it's a variable length
encoding, base your calculation on the width and frequency of
your variable-width characters. Applies to fields of all data types
except date, time, timestamp, and raw; and record, subrec, or
tagged if they contain at least one field of this type.

If you specify neither field width nor field max width, numeric
fields written as text have the following number of bytes as their
maximum width:

— 8-bit signed or unsigned integers: 4 bytes
— 16-bit signed or unsigned integers: 6 bytes
— 32-bit signed or unsigned integers: 11 bytes

9-14

Parallel Job Developer’s Guide

External Target Stage Inputs Page

— 64-bit signed or unsigned integers: 21 bytes

— single-precision float: 14 bytes (sign, digit, decimal point, 7
fraction, "E", sign, 2 exponent)

— double-precision float: 24 bytes (sign, digit, decimal point, 16
fraction, "E", sign, 3 exponent)

m Pad char. Specifies the pad character used when strings or
numeric values are written to an external string representation.
Enter a character (single-byte for strings, can be multi-byte for
ustrings) or choose null or space. The pad character is used when
the external string representation is larger than required to hold
the written field. In this case, the external string is filled with the
pad character to its full length. Space is the default. Applies to
string, ustring, and numeric data types and record, subrec, or
tagged types if they contain at least one field of this type.

m Character set. Specifies the character set. Choose from ASCII or
EBCDIC. The default is ASCII. Applies to all data types except raw
and ustring and record, subrec, or tagged containing no fields
other than raw or ustring.

String

These properties are applied to columns with a string data type,
unless overridden at column level.

m Export EBCDIC as ASCII. Select this to specify that EBCDIC
characters are written as ASCII characters. Applies to fields of the
string data type and record, subrec, or tagged fields if they contain
at least one field of this type.

= Import ASCII as EBCDIC. Not relevant for input links.

For ASCII-EBCDIC and EBCDIC-ASCII conversion tables, see
DataStage Developer’s Help.

Decimal

These properties are applied to columns with a decimal data type
unless overridden at column level.

m Allow all zeros. Specifies whether to treat a packed decimal
column containing all zeros (which is normally illegal) as a valid
representation of zero. Select Yes or No. The default is No.

= Decimal separator. Specify the ASCII character that acts as the
decimal separator (period by default).

m Packed. Select an option to specify what the decimal columns
contain, choose from:

Parallel Job Developer’s Guide 9-15

Inputs Page

External Target Stage

— Yes to specify that the decimal columns contain data in packed
decimal format (the default). This has the following sub-
properties:

Check. Select Yes to verify that data is packed, or No to not
verify.

Signed. Select Yes to use the existing sign when writing decimal
columns. Select No to write a positive sign (0xf) regardless of the
columns’ actual sign value.

— No (separate) to specify that they contain unpacked decimal
with a separate sign byte. This has the following sub-property:

Sign Position. Choose leading or trailing as appropriate.

— No (zoned) to specify that they contain an unpacked decimal
in either ASCII or EBCDIC text. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

— No (overpunch) to specify that the field has a leading or end
byte that contains a character which specifies both the numeric
value of that byte and whether the number as a whole is
negatively or positively signed. This has the following sub-
property:

Sign Position. Choose leading or trailing as appropriate.

Precision. Specifies the precision where a decimal column is
written in text format. Enter a number. When a decimal is written
to a string representation, DataStage uses the precision and scale
defined for the source decimal field to determine the length of the
destination string. The precision and scale properties override this
default. When they are defined, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Rounding. Specifies how to round a decimal column when
writing it. Choose from:

— up (ceiling). Truncate source column towards positive infinity.
This mode corresponds to the IEEE 754 Round Up mode. For
example, 1.4 becomes 2, -1.6 becomes -1.

— down (floor). Truncate source column towards negative
infinity. This mode corresponds to the IEEE 754 Round Down
mode. For example, 1.6 becomes 1, -1.4 becomes -2.

9-16

Parallel Job Developer’s Guide

External Target Stage

Inputs Page

— nearest value. Round the source column towards the nearest
representable value. This mode corresponds to the COBOL
ROUNDED mode. For example, 1.4 becomes 1, 1.5 becomes 2, -
1.4 becomes -1, -1.5 becomes -2.

— truncate towards zero. This is the default. Discard fractional
digits to the right of the right-most fractional digit supported by
the destination, regardless of sign. For example, if the
destination is an integer, all fractional digits are truncated. If
the destination is another decimal with a smaller scale,
truncate to the scale size of the destination decimal. This mode
corresponds to the COBOL INTEGER-PART function. Using this
method 1.6 becomes 1, -1.6 becomes -1.

Scale. Specifies how to round a source decimal when its
precision and scale are greater than those of the destination. By
default, when the DataStage writes a source decimal to a string
representation, it uses the precision and scale defined for the
source decimal field to determine the length of the destination
string. You can override the default by means of the precision and
scale properties. When you do, DataStage truncates or pads the
source decimal to fit the size of the destination string. If you have
also specified the field width property, DataStage truncates or
pads the source decimal to fit the size specified by field width.

Numeric

These properties apply to integer and float fields unless overridden at
column level.

C_format. Perform non-default conversion of data from integer
or floating-point data to a string. This property specifies a C-
language format string used for writing integer or floating point
strings. This is passed to sprintf(). For example, specifying a C-
format of %x and a field width of 8 ensures that integers are
written as 8-byte hexadecimal strings.

In_format. This property is not relevant for input links..

Out_format. Format string used for conversion of data from
integer or floating-point data to a string. This is passed to sprintf{).
By default, DataStage invokes the C sprintf{) function to convert a
numeric field formatted as either integer or floating point data to a
string. If this function does not output data in a satisfactory
format, you can specify the out_format property to pass
formatting arguments to sprintf).

Date

These properties are applied to columns with a date data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Parallel Job Developer’s Guide 9-17

Inputs Page External Target Stage
Days since. Dates are written as a signed integer containing the
number of days since the specified date. Enter a date in the form
%yyyy-Y%omm-%dd or in the default date format if you have defined
a new one on an NLS system (see NLS Guide).

Format string. The string format of a date. By default this is

%Yyyyy-%mm-%dd. The Format string can contain one or a

combination of the following elements:

- %dd: A two-digit day.

- %mm: A two-digit month.

— %year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff, for example %1970yy.

— %yy: A two-digit year derived from a year cutoff of 1900.

- %yyyy: A four-digit year.

— %ddd: Day of year in three-digit form (range of 1- 366).

— %mmm: Three-character month abbreviation.

The format_string is subject to the following restrictions:

— It cannot have more than one element of the same type, for
example it cannot contain two %dd elements.

— It cannot have both %dd and %ddd.

— It cannot have both %yy and %yyyy.

— It cannot have both %mm and %ddd.

— It cannot have both %mmm and %ddd.

— It cannot have both %mm and %emmm.

— If it has %dd, it must have %omm or %emmm.

— It must have exactly one of %yy or %yyyy.

When you specify a date format string, prefix each component

with the percent symbol (%). Separate the string’s components

with any character except the percent sign (%).

If this format string does not include a day, it is set to the first of

the month in the destination field. If the format string does not

include the month and day, they default to January 1. Note that

the format string must contain a month if it also contains a day;

that is, you cannot omit only the month.

The year_cutoffis the year defining the beginning of the century in

which all two digit years fall. By default, the year cutoff is 1900;

therefore, a two-digit year of 97 represents 1997. You can also set

this using the environment variable

9-18 Parallel Job Developer’s Guide

External Target Stage

Inputs Page

APT_DATE_CENTURY_BREAK_YEAR (see
"APT_DATE_CENTURY_BREAK_YEAR" in Parallel Job Advanced
Developer’s Guide), but this is overridden by %year_cutoffyy if
you have set it.

You can specify any four-digit year as the year cutoff. All two-digit
years then specify the next possible year ending in the specified
two digits that is the same or greater than the cutoff. For example,
if you set the year cutoff to 1930, the two-digit year 30 corresponds
to 1930, and the two-digit year 29 corresponds to 2029.

m Is Julian. Select this to specify that dates are written as a numeric
value containing the Julian day. A Julian day specifies the date as
the number of days from 4713 BCE January 1, 12:00 hours (noon)
GMT.

Time

These properties are applied to columns with a time data type unless
overridden at column level. All of these are incompatible with a Data
Format setting of Text.

Format string. Specifies the format of columns representing
time as a string. By default this is %hh-%mm-%ss. The possible
components of the time format string are:

— %hh: A two-digit hours component.

— %nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

— %ss: A two-digit seconds component.

— %ss.n: A two-digit seconds plus fractional part, where nis the
number of fractional digits with a maximum value of 6. If n is O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent symbol. Separate the string’s components with any
character except the percent sign (%).

Is midnight seconds. Select this to specify that times are written
as a binary 32-bit integer containing the number of seconds
elapsed from the previous midnight.

Timestamp

These properties are applied to columns with a timestamp data type
unless overridden at column level.

Parallel Job Developer’s Guide 9-19

Outputs Page

External Target Stage

m Format string. Specifies the format of a column representing a
timestamp as a string. Defaults to %yyyy-%mm-%dd
%hh:%nn:%ss. Specify the format as follows:

For the date:

%dd: A two-digit day.
%mm: A two-digit month.

%year_cutoffyy: A two-digit year derived from yy and the
specified four-digit year cutoff.

%yy: A two-digit year derived from a year cutoff of 1900.
%yyyy: A four-digit year.
%ddd: Day of year in three-digit form (range of 1 - 366)

For the time:

%hh: A two-digit hours component.

%nn: A two-digit minute component (nn represents minutes
because mm is used for the month of a date).

%ss: A two-digit seconds component.

%ss.n: A two-digit seconds plus fractional part, where n is the
number of fractional digits with a maximum value of 6. If nis O,
no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

You must prefix each component of the format string with the
percent sign (»). Separate the string’s components with any
character except the percent sign (%).

Outputs Page

The Outputs page appears if the stage has a Reject link

The General tab allows you to specify an optional description of the
output link.

You cannot change the properties of a Reject link. The Properties tab
for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. The
link uses the column definitions for the link rejecting the data records.

9-20

Parallel Job Developer’s Guide

External Target Stage Using RCP With External Target Stages

Using RCP With External Target Stages

Runtime column propagation (RCP) allows DataStage to be flexible
about the columns you define in a job. If RCP is enabled for a project,
you can just define the columns you are interested in using in a job,
but ask DataStage to propagate the other columns through the
various stages. So such columns can be extracted from the data
source and end up on your data target without explicitly being
operated on in between.

External Target stages, unlike most other data targets, do not have
inherent column definitions, and so DataStage cannot always tell
where there are extra columns that need propagating. You can only
use RCP on External Target stages if you have used the Schema File
property (see "Schema File" on page 9-6) to specify a schema which
describes all the columns in the sequential files referenced by the
stage. You need to specify the same schema file for any similar stages
in the job where you want to propagate columns. Stages that will
require a schema file are:

m Sequential File

m File Set

m External Source
m External Target

m Column Import

m Column Export

Parallel Job Developer’s Guide 9-21

Using RCP With External Target Stages External Target Stage

9-22 Parallel Job Developer’s Guide

10

Complex Flat File Stage

The Complex Flat File (CFF) stage is a file stage. You can use the stage
to read a file or write a file, but you cannot use the same stage to do
both. As a source, the stage can have multiple output links and a
single reject link. As a target, the stage can have a single input link.

Note The interface for the CFF stage is different to that for
standard parallel file stages - properties are defined in the
Stage page File Options tab, format information is
defined in the Stage page Record Options tab, and
column information for both input and output tabs is
described in the Stage page Columns tab.

When used as a source, the stage allows you to read data from one or
more complex flat files, including MVS datasets with QSAM and
VSAM files. A complex flat file may contain one or more GROUPs,
REDEFINES, OCCURS, or OCCURS DEPENDING ON clauses. Complex
Flat File source stages execute in parallel mode when they are used to
read multiple files, but you can configure the stage to execute
sequentially if it is only reading one file with a single reader.

When used as a target, the stage allows you to write data to one or
more complex flat files. It does not write to MVS datasets.

Parallel Job Developer’s Guide 10-1

Must Do’s

Complex Flat File Stage

11811 11011
reject_s8ad_rows reject rows
write_reject
read_reject
= B

DSLink3 DSLink4

e

Comples_Flat_File_Source tranzfarm Complex_Flat_File Target

When you edit a CFF stage, the CFF stage editor appears.

The stage editor has up to three pages, depending on whether you are
reading or writing a file:

Must Do’s

Stage Page. This is always present and is used to specify general
information about the stage, including details about the file or
files being read from or written to.

Input Page. This is present when you are writing to a complex
flat file. It allows you to specify details about how data should be
written to a target file, including partitioning and buffering
information.

Output Page. This is present when you are reading from a
complex flat file. It allows you to select columns for output and
change the default buffering settings on the output link if desired.

Ascential DataStage has many defaults which means that it can be
very easy to include CFF stages in a job. This section specifies the
minimum steps to take to get a CFF stage functioning. Ascential
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end. This section describes the
basic method, you will learn where the shortcuts are when you get
familiar with the product.

To use the CFF stage:
m Inthe File Options Tab, specify the stage properties.
If reading a file or files:
— Specify the type of file you are reading.
— Give the name of the file or files you are going to read.
— Specify the record type of the files you are reading.

Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page

Define what action to take if files are missing from the source.

Define what action to take with records that fail to match the
expected meta data.

If writing a file or files:

— Specify the type of file you are writing.

— Give the name of the files you are writing.

— Specify the record type of the files you are writing.

— Define what action to take if records fail to be written to the
target file(s).

® Inthe Record Options Tab, describe the format of the data you
are reading or writing.

® In the Stage page Columns Tab, define the column definitions
for the data you are reading or writing using this stage.

Stage Page

The General tab allows you to specify an optional description of the
stage. The File Options tab allows you to specify the stage
properties, while the Record Options tab allows you to describe the
format of the files that you are reading or writing. The Columns page
gives the column definitions for the input or output links, while the
Layout page displays the meta data either as a parallel schema or a
COBOL definition. The NLS Map tab appears if you have NLS enabled
on your system, it allows you to specify a character set map for the
stage. The Advanced tab allows you to specify further information
about how the stage is executed.

File Options Tab

The File Options tab allows you to specify properties about how data
is read from or written to files. The appearance of this tab differs
depending on whether the stage is being used as a source or a target.

Source CFF Stage

Source stage file options include settings for the file type and name,
record type, missing file action, reject mode, multiple node reading,
reporting, and file partitioning.

Parallel Job Developer’s Guide 10-3

Stage Page

Complex Flat File Stage

@ Complex_Flat_File_0 - PXCFF stage ;Iglll

Stage | Dutput |

1 =T NN R omplex Flat File 0

General File options | Fecaord optionsl Eolumnsl Layoutl MLS Map | Advanced

File type:
Iﬁe[s] j [T MwS dataset

File name(s]:

| -
Fecord type: Mizzing file mode: Fieject mode:
I Fixed j I Depends j I Continue

Filter:

o
o]

Multiple node read.lng: ¥ Feport progress
™ Read from multiple nodes ™ Keep file partitions

Mumber of readers per node: Read first n roves:

= C—

QK I Cancel Help

Y

The tab has the following fields:

File Type. Specifies the type of source to import. This determines
how your entry in the File name(s) field is interpreted. Select one
of the following:

— File(s). A single file or multiple files. This is the default.
— File pattern. A group of files.

— Source. One or more programs and arguments that provide
source data to the import operator.

— Source list. A file containing the names of multiple programs
that provide source data to the import operator.

MVS dataset. Select this box to specify that the source is an MVS
dataset. This appears only if the project within which you are
working is USS-enabled (i.e., parallel jobs are intended to run on a
USS system - see Chapter 56, "Parallel Jobs on USS.")

For MVS datasets, the file type must be File(s). Neither a filter nor
multiple node reading is allowed. If you enclose the filename with
single quotes in the File name(s) field, Ascential DataStage will
add an escape character (\) before each quote.

File name(s). Type the names of the files to import, or click the
arrow button to search for file names on the server. Your entry
should correspond to your selection in the File type field using
these guidelines:

— For File(s), type either a single file name or multiple file names
separated by commas, semicolons, or newlines.

104

Parallel Job Developer’s Guide

Complex Flat File Stage

Stage Page

— For File pattern, type the name of the file that contains the list
of files to be imported. You can also use a valid shell
expression (in Bourne shell syntax) to generate a list of file
names.

— For Source, type one or more program names and their
associated arguments, separated either by semicolons or
newlines.

— For Source list, type the name of a file containing multiple
program names. The file must contain program command
lines.

Job parameters can be used for one or more file names, or for a
file pattern. To specify a job parameter, type the parameter name
enclosed in #, such as #JobParametenr#. You can specify multiple
job parameters by separating the parameter names with commas,
semicolons, or newlines. Click the arrow button to browse for an
existing job parameter or to define a new one using the Job
Properties dialog box.

Record type. Select the record type of the source data. The
options are:

— Fixed. All records are the same length. This is the default.

— Fixed block. All records are the same length and are grouped
in fixed-length blocks.

— Variable. Records have variable lengths.

— Variable block. Records have variable lengths and are
grouped in variable-length blocks.

— Variable spanned. Records have variable lengths and may
span one or more control interval boundaries within a single
control area.

— Variable block spanned. Records have variable lengths and
are grouped in variable-length blocks, where the blocks may
span one or more control interval boundaries within a single
control area.

- VR.

If your source file contains OCCURS DEPENDING ON clauses,
select Fixed as the record type for non-MVS data sources.

Missing file mode. Specifies the action to take if a file does not
exist. Select one of the following:

— Depends. Stops the job unless the file has a node name prefix
of *: in which case the file is skipped. This is the default.

— Error. Stops the job.

Parallel Job Developer’s Guide 10-5

Stage Page

Complex Flat File Stage

— OK. Skips the file.

Filter. Type a UNIX command to process input files as the data is
read from each file, or click the arrow button to insert a job
parameter. Filters do not apply to file patterns, source, or source
list file types.

Multiple node reading. This area determines how files with
multiple nodes are read. Select one option:

— Read from multiple nodes. Select this box if you want the
source file to be read in sections from multiple nodes. This is
only allowed for a single file with a record type of fixed or fixed
block.

— Number of readers per node. Specify the number of
instances of the import operator on each processing node. The
default is one operator per node per input file. If you specify
more than one reader, each instance of the file read operator
reads a contiguous range of records from the input file. The
starting record location in the file for each operator, or seek
location, is determined by the data file size, the record length,
and the number of instances of the operator as specified.

The resulting data set contains one partition per instance of the
file read operator, as determined by the number of readers
specified. The data file(s) being read must contain fixed-length
records.

These options are mutually exclusive with Read first n rows. If
the MVS dataset box is selected, these fields are unavailable.

Report progress. Select this box to have the stage display a
progress report at each 10% interval when it can ascertain file size.
Reporting occurs only if the file is greater than 100 KB, records are
fixed length, and there is no filter on the file. The file type must be
File(s) or File pattern.

Keep file partitions. Select this box to partition the imported
data according to the organization of the input file(s). For example,
if you are reading three files, you will have three partitions. This
means that each file's contents stay in its own partition.

Read first n rows. Specifies the number of rows to read from
each source file. The default value is 0, which means all rows are
read. This option is mutually exclusive with Multiple node reading
and does not apply to File pattern, Source or Source list file

types.

Target CFF Stages

Target stage file options include settings for the file type and name,
record type, write option, reject mode, filter, and cleanup on failure.

10-6

Parallel Job Developer’s Guide

Complex Flat File Stage

Stage Page

@ Complex_Flat_File_2 - PXCFF stage ;Iglll

Stage |Input I

IR Comnples, Flat File 2|

General File options | Fecaord optionsl Eolumnsl Layoutl MLS Mapl Advanced
File type:

| File(s) |

File: names):

| =1
E

Record type: “wirite option:

I Fixed j lmerwrite j

Fieject mode:

IEontinue j [¥ Cleanup on failure

Filter:

QK I Cancel Help

Y

The tab has the following fields:

File type. Specifies the type of target file. This determines how
your entry in the File name(s) field is interpreted. Select one of
the following:

File(s). A single file or multiple files. This is the default.

Destination. One or more programs and arguments that read
the exported data.

Destination list. A file containing the names of multiple
programs that provide destinations for the exported data.

File name(s). Type the name of the file that data will be written to,
or click the arrow button to search for file names on the server.
This field is required, and the specified file must exist unless the
write option is Create or Overwrite. Your entry should
correspond to your selection in the File type field using these
guidelines:

For File(s), type either a single file name or multiple file names
separated by commas, semicolons, or newlines.

For Destination, type one or more program names and their
associated arguments, separated either by semicolons or
newlines.

For Destination list, type the name of a file containing
multiple program names. The file must contain program
command lines.

Writing to MVS datasets is not supported.

Parallel Job Developer’s Guide 10-7

Stage Page

Complex Flat File Stage

To specify a job parameter, type the parameter name enclosed in
#, such as #JobParameter#. You can specify multiple job
parameters by separating the parameter names with commas,
semicolons, or newlines. Click the arrow button to browse for an
existing job parameter or to define a new one using the Job
Properties dialog box.

Record type. Select the record type of the output data. The
options are:

— Fixed. All records are the same length. This is the default.

— Fixed block. All records are the same length and are grouped
in fixed-length blocks.

Write option. Specifies how to write data to the target file(s). The
same method applies to all files being written to. There are three
options:

— Append. Adds data to the existing file.

— Create (Error if exists). Creates a new file without checking
to see if one already exists. This is the default. If Create is
specified for a file that already exists, a runtime error will
occur.

— Overwrite. Deletes the existing file and replaces it with a new
file. This is the default.

Reject mode. Specifies the action to take if any records are not
written to the target file(s). Select one of the following:

— Continue. Continues the operation and discards any rejected
rows. This is the default.

— Fail. Stops writing to the target if any rows are rejected.

— Save. Sends rejected rows down a reject link. Select this
option if a reject link exists.

Cleanup on failure. Select this box to delete any partially written
files if the stage fails. If this box is not selected, any partially
written files are left. The file type must be File(s).

Filter. Type a UNIX command to pass data through a filter
program before it is written to the target file(s), or click the arrow
button to insert a job parameter. Filters do not apply to
Destination or Destination list file types.

Record Options Tab

The Record Options tab allows you to specify properties about the
records in the source or target file. The appearance of this tab differs
depending on whether the stage is being used as a source or a target.

10-8

Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page

Source stage record options include settings for the byte order,
character set, data format, record delimiter, and decimals. There is
also an option to print the fields to the log file during the import:

@ Complex_Flat_File_0 - PXCFF stage

=lolx|

Stage | Dutput |

Stage name: IEompIex_FIat_FiIe_D

Generall File options Fecard aptions | Eolumnsl Layoutl Advancedl
Float representation:
JIEEE |
r— General:
Byte order:

I M ative-endian J

™ Print fields

Character set:

|EBCDIC 4|

4

[ata format:

I Binary j

Record delimiter:

— Decimal:
Fiounding:

I Mearest value j
[T Allow all zercs

Separator:
IF'roiec:t default j

QK I Cancel Help |

4

Target stage record options include the same settings, plus one for the
pad character:

@ Complex_Flat_File_2 - PXCFF stage

_|olx|
Stage | Input |
Stage name: IEompIex_FIat_FiIe_2
Generall File options Record options | Eolumnsl Layoutl Advanced
Float representation:
JIEEE |
r— General:
Byte order: Character set:
| Native-endian | |eBcoic 4|
[ata format: Pad char:
Binary j
Record delimiter:
— Decimal:
Fiounding: Separator:
INearest value j IF'roiec:t default j
[T Allow all zercs
QK I Cancel Help
| 4

This tab has the following fields:

m Float representation. Specifies that float fields are represented
in IEEE format. This field is read-only.

Parallel Job Developer’s Guide 10-9

Stage Page

Complex Flat File Stage

Print fields. Appears only when the stage is used as a source.
Select this check box to have the names and values of all fields in
the schema printed to the log file during the import.

Byte order. Specifies how multiple-byte data types (integer, date,
time, and timestamp) are ordered. Select from:

— Little-endian. The high byte is on the right.
— Big-endian. The high byte is on the left.

— Native-endian. As defined by the native format of the
machine. This is the default.

Does not apply to string or character data types.

Character set. Specifies the character data representation. Select
ASCII or EBCDIC (the default).

Data format. Specifies the data representation format of a
column. Select one of the following:

— Binary. Field values are represented in binary format and
decimals are represented in packed decimal format. This is the
default.

— Text. Fields are represented as text-based data and decimals
are represented in string format.

Pad char. Appears only if the stage is being used as a target.
Specifies the pad character used when character or numeric
values are exported to an external string representation. Space is
the default.

Record delimiter. Specifies a delimiter to indicate the end of a
record. By default this is empty.

Rounding. Specifies how to round a decimal column when
writing it. Select one of the following:

— Up. Truncate source column towards positive infinity.
— Down. Truncate source column towards negative infinity.

— Nearest value. Round the source column towards the nearest
representable value. This is the default.

— Truncate towards zero. Discard fractional digits to the right
of the right-most fractional digit supported by the destination,
regardless of sign.

Separator. Specifies the character that acts as the decimal
separator. Select Project default to use the value specified at the
project level, ,(comma), or .(period).

Allow all zeros. Select this to specify that a packed decimal
column containing all zeros (which is normally illegal) be treated
as a valid representation of zero.

10-10

Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page

Columns Tab

Unlike other parallel job file stages, the CFF stage has a Columns tab
on the Stage page. This is where you define the actual columns your
stage uses. These columns are then projected to the Input page
Columns tab, or the Output page Selection tab, depending on
whether the stage is being used as a source or a target.

Note You can also define columns by dragging a table definition
from the Repository window to the CFF stage icon on the
Designer canvas. (This differs from other parallel stages
where you drag a table to a link.) You can then propagate
source stage columns to one or more output links using the
stage’s shortcut menu.

The Columns tab allows you to define the COBOL file description for
the data being read or written by the stage. This file description is then
translated to column definitions.

This tab contains a columns tree that displays the names of the stage
columns, a columns grid with the detailed column definitions, and a
properties tree that allows you to set properties for each column. Use
the right mouse menu to display or hide these panels to suit your
needs.

You can load, add, modify, or delete columns here. Click the Load
button to load column definitions from a table in the DataStage
Repository. You can also enter column definitions directly into the
grid. If your column definitions describe array data, you are asked to
specify how to handle array data within the stage (see "Complex File
Load Options" on page 10-14).

Columns displayed here should reflect the actual layout of the file
format. If you do not want to display all of the columns, you can
specify that unwanted ones be replaced by filler columns. This is done
in the Select Columns From Table dialog box when you load table
definitions. Fillers can be expanded later if you need to reselect any
columns. For more information about fillers, see "Filler Creation and
Expansion" on page 10-14).

To edit column properties, select a property in the properties tree and
use the Value field to make changes. Use the Available properties
to add window to add optional attributes to the properties tree.

Parallel Job Developer’s Guide 10-11

Stage Page Complex Flat File Stage

@ Complex_Flat_File_0 - PXCFF stage ;Iglll

Stage | Dutput |

Stage name: IEompIex_FIat_FiIe_D

Generall File optionsl Record options ~ Colurns | Layoutl MLS Map | Advanced

=9 D - Level number Column name M ative type Length |§«
‘-4 PRODUCT_LINE 05 PRODUCT _ID g
-4 PRODUCT_MODEL 10 PRODUCT_LINE CHARACTER 4

----- 4 LAST_UPDATE_DATE 10 PRODUCT_MOD CHARACTER 5

----- % EFF_START_DATE 05 LAST_UPDATE_ CHARACTER a

----- 4 EFF_EMD_DATE 05 EFF_START_D& CHARACTER a

----- 4 ORDER_LEAD_TIME 05 EFF_END_DATE CHARACTER a -

----- 4 STOCK_INVENTORY 1 | »

----- 4 UOM_CODE -

_____ & UNIT_PRICE Froperties: Walue:

..... & WARRAMTY_TYPE 23 General ﬂ I

..... & WARRANTY_PERIOD - & Column name = PRODUCT —

..... 4 PRODUCT_DESC - & Mative type = GROUP L“ =

i s il:ﬂvailablenronertiestoadd:

----- % DISCOUNT_CODE -
1 | v

Save As... | Clear &l | Load |

QK I Cancel | Help |

| Y

This tab contains the following components:

m Columns tree. Displays the stage column names and record
structure in a tree that can be collapsed or expanded using the
right mouse menu. Selecting a column in the tree allows you to
view or edit its properties in the columns grid or the properties
tree.

The tree contains four icon types: yellow folders represent group
columns, blue folders represent group columns with arrays, single
purple rectangles represent simple columns, and double purple
rectangles represent columns with arrays.

m Columns grid. Displays the column definitions for the stage. You
can add, modify, or delete column definitions using the right
mouse menu. When you select a column definition in the grid, itis
highlighted in the columns tree, allowing you to view its location
in the record structure. Its properties are also displayed in the
properties tree, allowing you to set general and extended column
attributes.

m Properties tree. Displays the currently defined properties for
each column. Properties are divided into three categories:
General, Extended Attributes, and Derived Attributes. All of the
mandatory properties are included in the tree by default and
cannot be removed. Optional properties are displayed in the
Available properties to add pane for each selected category. To
add an optional property to the tree, click on it. You can remove it
again by selecting it in the tree and clicking the arrow button.

To edit properties, select a property in the tree and use the Value
field to make changes. Properties that you must set a value for (i.e.

10-12 Parallel Job Developer’s Guide

Complex Flat File Stage

Stage Page

which do not have a default value) are shown in the warning color
(red by default), but change to black when you have set a value.
You can change the warning color from the Options dialog box.

Value. Displays the value for the column property selected in the
properties tree. You can change the value for general and
extended attributes, but not for derived attributes. The method for
entering a value changes according to the property you have
selected. A description of the property appears in the box below
this field.

Available properties to add. Displays optional properties for
the selected category in the properties tree. Only properties which
are not already defined for the column are shown. To add a
property to the tree, click on it. You can remove it again by
selecting it in the tree and clicking the arrow button.

Save As... . When you click the Save As... button, the Save
table definition dialog box appears. This dialog box allows you
to save a table definition into the DataStage Repository, where
you can subsequently reuse it to provide column definitions for
other stages. You can also save the table definition as a COBOL
file definition (CFD) or DB2 DCLGen file (DFD) file from the same
dialog box.

Clear AILl. Click this to clear all column definitions from the stage.

Load. Click this to selectively load columns from a table definition
in the DataStage Repository:

— First, the Table Definitions dialog box appears, allowing you
to select an existing table or import a new one.

— Next, the Select Columns From Table dialog box appears,
allowing you to select the columns that you want to load. The
Available columns tree displays COBOL structures such as
groups and arrays. If you select a subset of columns, fillers can
be generated to maintain the byte order of the columns. See
"Filler Creation and Expansion" on page 10-14 for details.

— If there are arrays in the column structure for which flattening
is an option, the Complex file load option dialog box
appears. See "Complex File Load Options" on page 10-14 for
details.

If you load more than one table definition, the list of columns from
the subsequent tables is added to the end of the current list. In
cases where the first column of the subsequent list has a level
number higher than the last column of the current list, Ascential
DataStage inserts an “02 FILLER"” group item before the
subsequent list is loaded. (This is not done, however, if the first
column being loaded already has a level number of 02.)

Parallel Job Developer’s Guide 10-13

Stage Page

Complex Flat File Stage

Filler Creation and Expansion

Mainframe table definitions frequently contain hundreds of columns,
therefore to save storage space and processing time, there is a
Create fillers option in the Select Columns From Table dialog
box. This option, which is selected by default, is available only when
you load columns from a simple or complex flat file.

The sequences of unselected columns are collapsed into FILLER items
with the appropriate size. The native data type is set to CHARACTER
and the name set to FILLER_XX_YY, where XX is the start offset and
YY is the end offset. Fillers for elements of a group array or an
OCCURS DEPENDING ON (ODO) column have the name of
FILLER_NN, where NN is the element number. The NN begins at 1 for
the first unselected group element and continues sequentially. Any
fillers that follow an ODO column will also be numbered sequentially.

See Appendix C for examples of how fillers are created for different
COBOL structures.

You can expand fillers in the Columns tree if you want to reselect any
columns. Right-click on the filler in the left pane and select Expand
Filler... from the shortcut menu. The Expand Filler dialog box
appears, allowing you to select some or all of the columns from the
given filler. There is no need to reload the table definition and reselect
the columns.

Complex File Load Options

When you enter or load column definitions containing arrays in a CFF
stage, the stage prompts you for information on how it should handle
the array data in the stage. The Complex file load option dialog box
appears.

If you choose to pass an array as is, the columns with arrays are
loaded as is.

If you choose to flatten an array, all the elements of the array will
appear as separate columns in the table definition. The data is
presented as one row at execution time. Each array element is given a
numeric suffix to make its name unique.

For example, given the following complex flat file structure (in CFD
format):
05 1ID PIC X(10)

05 NAME PIC X(30)
05 CHILD PIC X(30) OCCURS 5 TIMES

10-14

Parallel Job Developer’s Guide

Complex Flat File Stage

Stage Page

You will get the following column definitions:

05 1ID PIC X(10)
05 NAME PIC X(30)
05 CHILD PIC X(30)
05 CHILD_2 PIC X(30)
05 CHILD_3 PIC X(30)
05 CHILD_4 PIC X(30)
05 CHILD_5 PIC X(30)

A parallel array is flattened out in the same way.

Array columns that have redefined fields or OCCURS DEPENDING ON
clauses may not be flattened. Even if you choose to flatten all arrays in
the Complex file load option dialog box, these columns are passed

as is.

The Complex file load option dialog box is as follows:

Complex_Flat_File_0 - Complex file load opkion o] |

— D ptions:

{* Flatten selective amays
" Flatten all araps
" Agis

The selected arayz are flattened on load and the rest
are pazzed for normalizing at rwn time.

% WARRANTY_PERIOD
% PRODUCT_DESC

% DISCOUNT_CODE
&ILABLE_COLORS(4]
...4 COLOR_CODE

& COLOR_DESC

£3 PROD_DISCOUNTS(Z)
i % DISC_FROM_DATE
% DISC_EMND_DATE
‘.. % DISC_PCT

w Flatten |

QK I Cancel Help

A

m Options. Select an option to specify how array data will be treated

in the stage:

— Flatten selective arrays. Allows you to select arrays for
flattening on an individual basis. This is the default option.
Click on an array in the columns list and use the right mouse
button to select Flatten. Columns that cannot be flattened are

unavailabl

e for selection.

— Flatten all arrays. All arrays are flattened. Creates new
columns for each element of the arrays.

— As is. Passes arrays as is.

m Description. Gives information about the load option you have

chosen.

Parallel Job Developer’s Guide

10-15

Stage Page

Complex Flat File Stage

m Columns. Displays the names of the column definitions and their
structure. Array sizes are shown in parentheses. When using the
Flatten selective arrays option, right-click on individual column
definitions and choose Flatten as required. The array icon
changes for the arrays that will be flattened.

Layout Tab

The Layout tab displays the schema format of the column definitions
used in the stage. Select a button to view the data representation in
one of two formats:

m Parallel. Displays the OSH record schema.

m COBOL. Displays the COBOL representation, including the
column name, COBOL picture clause, starting and ending offsets,
and column storage length.

You can use the shortcut menu to save the parallel view as a text file
in *.osh format, or the COBOL view as an HTML file.

_ioix
Stage |Dutput|
Stage name: IEompIex_FIat_FiIe_D
Generall File optionsl Fecaord optionsl Columns Lavout | MLS Mapl Advancedl
" Parallel {* COBOL
Colurnmn | Ficture clauze | Starting column | Ending column | Storage length
=23 01 Complex_Flat_File_0 {183) =]
23 05 PRODUCT_ID 1 9 9
L% 10 PRODUCT _LINE PIC 8(4). 1 4 4
i..% 10 PRODUCT_MODEL PIC %(S). 5 9 5
""" % 05 LAST_UPDATE_DATE PIC x(8). 10 17 g
""" % 05 EFF_START_DATE PIC x(8). 15 25 g
""" % 05 EFF_END_DATE PIC x(8). 26 33 g
""" % 05 ORCER_LEAD_TIME PIC 9(2). 34 35 2
""" % 05 STOCK_IMYEMTORY PIC (1), 36 36 1
""" % 05 UoM_CODE PIC (1), 37 37 1
----- & 05 UMIT_PRICE PIC S9(5¥9(2) COMP-3, 3 41 4
""" % 05 WARRANTY_TYPE PIC ¥(2). 42 43 z
""" % 05 WARRANTY_PERIOD PIC 59(3) COMP-3, 44 45 2
""" % 05 PRODUCT_DESC PIC ¥{25). 46 70 25
""" % 05 DISCOUMT_CODE PIC 91}, 71 71 1
Ela 05 AVAILABLE_COLORS QOCCURS 4 TIMES, 7z 147 76
. L% 10 COLOR_CODE PIC %(4). 4 _ILI
<I I »

QK I Cancel | Help |

[Total File Length: 183, 4

In the parallel view, the mapping of COBOL native data types to
parallel data types is displayed. If there are date masks on columns
with CHARACTER native type, the column type is changed to DATE
with the date mask translated to the appropriate parallel type. For date
masks on columns with DECIMAL or INTEGER native type, the
columns are translated to the parallel type using the CFF stage’s
underlying modify operator. For more information about the data type

10-16

Parallel Job Developer’s Guide

Complex Flat File Stage Stage Page

conversions that this operator performs, see "Changing Data Type" on
page 28-3.

In the COBOL view, the storage lengths for a group are the sum of the
storage lengths of the individual elements. If an element within the
group redefines another element, the element storage length is not
included in the group storage length. However, the storage length of
the element itself is computed based on its picture clause.

NLS Map Tab

The NLS Map tab allows you to define a character set map for the CFF
stage. This is applicable when the native data type for the stage
columns is GRAPHIC_N, GRAPHIC_G, VARGRAPHIC_N, or
VARGRAPHIC_G. The setting on this tab overrides the default
character set map set for the project or the job. You can specify that
the map be supplied as a job parameter if required.

_ioix
Stage |Dutput|
Stage name: IEompIex_FIat_FiIe_D
Generall File optionsl Fecaord optionsl Eolumnsl Layout MLS Map |Advanced
Map name:
IF'roiec:t default [150-88559-1] Iﬂ

Project default [150-8855-1]

QK I Cancel Help

Advanced Tab

This tab allows you to specify the following:

= Execution mode. The execution mode is set automatically and
cannot be changed. If the stage is only operating on one file (and
there is one reader) the execution mode will be sequential.
Otherwise it will be parallel.

= Combinability mode. This is Auto by default, which allows
Ascential DataStage to combine the operators that underlie
parallel stages so that they run in the same process if it is sensible
for this type of stage.

Parallel Job Developer’s Guide 10-17

Input Page Complex Flat File Stage

= Preserve partitioning. You can select Set or Clear. If you select
Set, it will request that the next stage preserves the partitioning
as is. Clear is the default. This only appears if the stage has an
output link.

m Node pool and resource constraints. This option is not
applicable to CFF stages.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Input Page

The Input page allows you to specify details about how the CFF stage
writes data to a file. The CFF stage can have only one input link.

The General tab allows you to specify an optional description of the
input link. The Partitioning tab allows you to specify how incoming
data is partitioned before being written. The Columns tab gives the
column definitions of the data. The Advanced tab allows you to
change the default buffering settings for the input link.

Details about CFF stage Columns tab and Partitioning tab are given
in the following sections. See Chapter 3, "Stage Editors," for a general
description of the Advanced tab.

Input Link Columns Tab

The Columns tab displays the column definitions for the data coming
into the stage, which will then be written out to a complex flat file. You
cannot edit the column definitions on this tab, only view them. The
columns are defined on the Stage page Columns tab (see "Columns
Tab" on page 10-11).

The tab contains a columns tree that displays the names of the stage
columns, a columns grid with the detailed column definitions, and a
properties tree that displays properties for each column. Use the right
mouse menu to display or hide these panels to suit your needs.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the

10-18 Parallel Job Developer’s Guide

Complex Flat File Stage Input Page

target file. It also allows you to specify that the data should be sorted
before being written.

By default the stage will partition data in Auto mode.

If the CFF stage is operating in sequential mode, it will first collect the
data before writing it to the file using the default auto collection
method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the CFF stage is set to execute in parallel or sequential
mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the CFF stage is set to execute in parallel, then you can set a
partitioning method by selecting from the Partitioning type drop-
down list. This will override any current partitioning.

If the CFF stage is set to execute in sequential mode, but the
preceding stage is executing in parallel, then you can set a collection
method from the Collector type drop-down list. This will override
the default Auto collection method.

The following partitioning methods are available:

= (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the CFF stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties
by clicking the properties button .

Parallel Job Developer’s Guide 10-19

Input Page

Complex Flat File Stage

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .
The following Collection methods are available:

m (Auto). This is the default method for the CFF stage. Normally,
when you are using Auto mode, DataStage will eagerly read any
row from any input partition as it becomes available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

® Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the target file.
The sort is always carried out within data partitions. If the stage is
partitioning incoming data the sort occurs after the partitioning. If the
stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the Auto methods).

Select the check boxes as follows:

m Perform sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled, an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

10-20

Parallel Job Developer’s Guide

Complex Flat File Stage Output Page

Output Page

The Output page allows you to specify details about how the CFF
stage reads data. The CFF stage can have multiple output links, and
each link can read from multiple files.

It can also have a single reject link. This is typically used when you are
writing to a file and provides a location where records that have failed
to be written to a file for some reason can be sent. When you are
reading files, you can use a reject link as a destination for rows that do
not match the expected column definitions.

The Output name drop-down list allows you to choose whether you
are looking at details of an output link (stream link) or the reject link.

The General tab allows you to specify an optional description of the
output link. The Selection tab allows you to select columns to output
from the stage. The Columns tab specifies the column definitions of
the data. The Advanced tab allows you to change the default
buffering settings for the output link.

Details about CFF stage properties and formatting are given in the
following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Selection Tab

The Selection tab on the output link allows you to select columns to
be output from the stage. The column definitions for the stage are
given on the Stage page Columns tab (see "Columns Tab" on

page 10-11). You can output all of these on an output link or choose a
subset of them.

Parallel Job Developer’s Guide 10-21

Output Page

Complex Flat File Stage

@ Complex_Flat_File_0 - PXCFF stage ;Iglll
Stage Cutput |
Output name: I D5Link3 'l Wiew Data... |
General Selection | Eolumnsl Advancedl
Available columng: Selected columns:
=43 PRODUCT_ID = Name | 50L type | Anay handing |
i PRODUCT_LINE PRODUCT_LINE Char
‘*’ PRODUCT_MODEL FRODUCT_MODEL Char

LAST_UPDATE_DATE Char
EFF_START_DATE Char
EFF_END_DATE Char
ORDER_LEAD_TIME Decimal
STOCK_INVENTORY Char

- |LAST_UPDATE_DATE 3 |

- EFF_START_DATE

- EFF_END_DATE LI

- ORDER_LEAD_TIME

*’ STOCK_IMVEMTORY JOM_CODE Char

- [UOM_CODE i | UNIT_PRICE Decimal

- UNIT_PRICE WARRANTY_TYPE Char

“: WARRANTY TYFE il WARRANTY_PERIOD Decimal
- PRODUCT_DESC Char

- RS I DISCOUNT_CODE Decimal

- PRODUCT_DESC

Find| | COLOR_CODE Char
- DISCOUNT_CODE — COLOR_DESC Char
[—]a AvalLABLE_COLORS(4) DISC_FROM_DATE Char
i COLOR_CODE DISC_END_DATE Char
‘*’ COLOR_DESC DISC_PCT Decimal
=23 PROD_DISCOUNTS[Z) ;I
[~ Enable all group column selection iew Columns |

QK I Cancel | Help |

| Y

To select a column for output, copy it from the Available columns
tree to the Selected columns list. Groups, elements, and arrays can
be selected. Arrays can be kept as is or denormalized. For REDEFINES,
you can select the original column, the redefined field, or both.
Column icons have a checkmark in the Available columns tree after
a column is selected.

Click >> to add all columns to the Selected columns list. By default
group columns are not included, unless you first select the Enable all
group column selection check box.

If you select columns out of order, they will be reordered in the
Selected columns list to match the structure of the input columns.
When you highlight a selected column, the corresponding column is
highlighted in the Available columns list. To view the COBOL
structure of the selected columns, click View Columns. To go back to
the columns list, where you can modify your selections, click Edit
Columns.

If no columns are selected on this tab, then all stage columns except
group columns are automatically propagated to each empty output
link when you click OK to exit the stage.

The Selection tab is not available for the reject link.

Selecting Array Columns for Output

When you load columns into the CFF stage, you are given three
options for handling source data containing arrays. You can pass the

10-22

Parallel Job Developer’s Guide

Complex Flat File Stage Output Page

data as is, flatten all arrays on input to the stage, or flatten selected
arrays on input. You choose one of these options from the Complex
file load option dialog box, which appears when you load column
definitions into the Stage Columns tab.

If you choose to flatten arrays, the flattening is done at the time the
column meta data is loaded into the stage. All of the array elements
appear as separate columns in the table. Each array column has a
numeric suffix to make its name unique. You can select any or all of
these columns for output.

If you choose to pass arrays as is, the array structure is preserved. The
data is presented as a single row at execution time for each incoming
row. If the array is normalized, the incoming single row is resolved
into multiple output rows.

Following are several cases for normalizing different types of array
columns for output.

Selecting a Simple Normalized Array Column

A simple array is a single, one-dimensional array. This example shows
the result when you select all columns as output columns. For each
record that is read from the input file, five rows are written to the
output link. The sixth row out the link causes the second record to be
read from the file, starting the process over again.

Input Record:

05 ID PIC X(10)
05 NAME PIC X(30)
05 CHILD PIC X(30) OCCURS 5 TIMES.

Output Rows:

Row 1: ID NAME CHILD(1)
Row 2: ID NAME CHILD(2)
Row 3: ID NAME CHILD(3)
Row 4: ID NAME CHILD(4)
Row b: ID NAME CHILD(5)

Selecting a Nested Normalized Array Column

This example shows the result when you select a nested array column
as output. If you select FIELD-A, FIELD-C and FIELD-D as output

Parallel Job Developer’s Guide 10-23

Output Page

Complex Flat File Stage

columns, Ascential DataStage multiplies the OCCURS values at each
level. In this case, 6 rows are written to the output link.

Input Record:

05 FIELD-A PIC X(4)
05 FIELD-B OCCURS 2 TIMES.
10 FIELD-C PIC X(4)
10 FIELD-D PIC X(4) OCCURS 3 TIMES.

Output Rows:

Row
Row
Row
Row
Row

Row

1:

2
3
4:
5
5

FIELD-A
FIELD-A
FIELD-A
FIELD-A
FIELD-A
FIELD-A

FIELD-C(1) FIELD-D (1,1)
FIELD-C(1) FIELD-D (1,2)
FIELD-C(1) FIELD-D (1,3)
FIELD-C(2) FIELD-D (2,1)
FIELD-C(2) FIELD-D (2,2)
FIELD-C(2) FIELD-D (2,3)

Selecting Parallel Normalized Array Columns

Parallel arrays are array columns at the same level. The first example
shows the result when you select all parallel array columns as output
columns. Ascential DataStage determines the number of output rows
using the largest subscript. As a result, the smallest array gets padded
with default values and the element columns get repeated. In this

case, if you select all of the input fields as output columns, four rows
are written to the output link.

Input Record:

05
05
05
05
05

FIELD-A
FIELD-B
FIELD-C
FIELD-D
FIELD-E

PIC X(4)

PIC X(4) OCCURS 2 TIMES.

PIC X(4)

PIC X(4) OCCURS 3 TIMES.
PIC X(4) OCCURS 4 TIMES.

Output Rows:

Row
Row
Row

Row

1:

2
3:
4

FIELD-A FIELD-B(1) FIELD-C FIELD-D(1)
FIELD-A FIELD-B(2) FIELD-C FIELD-D(2)

FIELD-A
FIELD-A

FIELD-C FIELD-D(3)
FIELD-C

FIELD-E(1)
FIELD-E(2)
FIELD-E(3)
FIELD-E(4)

10-24

Parallel Job Developer’s Guide

Complex Flat File Stage

Output Page

In the next example, only a subset of the parallel array columns are
selected (FIELD-B and FIELD-E). FIELD-D is passed as is. The number
of output rows is determined by the maximum size of the

denormalized columns. In this case, four rows are written to the

output link.

Output Rows:

Row 1:
Row 2:
Row 3:
Row 4:

FIELD-A FIELD-B(1) FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(1)
FIELD-A FIELD-B(2) FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(2)
FIELD-A FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(3)
FIELD-A FIELD-C FIELD-D(1) FIELD-D(2) FIELD-D(3) FIELD-E(4)

Selecting Nested Parallel Denormalized Array Columns

This complex scenario shows the result when you select both parallel
array fields and nested array fields as output. If you select FIELD-A,
FIELD-C, and FIELD-E as output columns in this example, Ascential
DataStage determines the number of output rows by using the largest
OCCURS value at each level and multiplying them. In this case, three
is the largest OCCURS value at the outer (05) level, and five is the
largest OCCURS value at the inner (10) level. Therefore, 15 rows are
written to the output link. Notice that some of the subscripts repeat. In
particular, those that are smaller than the largest OCCURS value at
each level start over, including the second subscript of FIELD-C and
the first subscript of FIELD-E.

Input Record:

05 FIELD-A PIC X(10)
05 FIELD-B OCCURS 3 TIMES.

10 FIELD-C PIC X(2) OCCURS 4 TIMES.
05 FIELD-D OCCURS 2 TIMES.

10 FIELD-E PIC 9(3) OCCURS 5 TIMES.

Parallel Job Developer’s Guide

10-25

Output Page

Output Rows:

Complex Flat File Stage

Row 1: FIELD-A FIELD-C (1,1) FIELD-E (1,1)
Row 2: FIELD-A FIELD-C (1,2) FIELD-E (1,2)
Row 3: FIELD-A FIELD-C (1,3) FIELD-E (1,3)
Row 4: FIELD-A FIELD-C (1,4) FIELD-E (1,4)
Row 5: FIELD-A FIELD-E (1,5)
Row 6: FIELD-A FIELD-C (2,1) FIELD-E (2,1)
Row 7: FIELD-A FIELD-C (2,2) FIELD-E (2,2)
Row 8: FIELD-A FIELD-C (2,3) FIELD-E (2,3)
Row 9: FIELD-A FIELD-C (2,4) FIELD-E (2,4)
Row 10: FIELD-A FIELD-E (2,5)
Row 11: FIELD-A FIELD-C (3,1)

Row 12: FIELD-A FIELD-C (3,2)

Row 13: FIELD-A FIELD-C (3,3)

Row 14: FIELD-A FIELD-C (3,4)

Row 15: FIELD-A

Selecting Group Columns for Output

Group columns contain elements or subgroups. When you select
groups or their elements for output, they are handled in the following
manner:

m If a group column is selected with any of its elements, the group
column and the selected element columns are passed as group
and element columns.

m If only elements of the group are selected and not the group
column itself, the selected element columns are treated as
individual columns. Even if the selected element columns are
within multiple or nested groups, all element columns are treated
as top-level columns in the selection list on the Selection tab.

m A group column may not be selected without any of its elements.

Output Link Columns Tab

The Columns tab displays the column definitions for the data to be
output on the link. You cannot edit the column definitions on this tab,
only view them.

The tab contains a columns tree that displays the names of the stage
columns, a columns grid with the detailed column definitions, and a

10-26

Parallel Job Developer’s Guide

Complex Flat File Stage Output Page

properties tree that displays properties for each column. Use the right
mouse menu to display or hide these panels to suit your needs. The
columns are defined on the Stage page Columns tab (see "Columns
Tab" on page 10-11).

Reject Links

You cannot change the selection properties of a reject link. The
Selection tab for a reject link is blank.

Similarly, you cannot edit the column definitions for a reject link. For
writing files, the link uses the column definitions for the input link. For
reading files, the link uses a single column called rejected containing
raw data for columns rejected after reading because they do not
match the schema.

Parallel Job Developer’s Guide 10-27

Output Page Complex Flat File Stage

10-28 Parallel Job Developer’s Guide

11

SAS Parallel Data Set Stage

The SAS Parallel Data Set stage is a file stage. It allows you to read
data from or write data to a parallel SAS data set in conjunction with
an SAS stage (described in Chapter 38). The stage can have a single
input link or a single output link. It can be configured to execute in
parallel or sequential mode. (More information about using Enterprise
Edition with SAS is given in SAS Stage Supplementary Guide.)

DataStage uses an SAS parallel data set to store data being operated
on by an SAS stage in a persistent form. An SAS parallel data set is a
set of one or more sequential SAS data sets, with a header file
specifying the names and locations of all the component files. By
convention, the header file has the suffix .psds.

SAS Data Sets used as source and target

[[
: D5Link4 = D5Link2 |

Parallel_SAS_Data Set_1 SAS Parallel_SAS_Data Set_2

The stage editor has up to three pages, depending on whether you are
reading or writing a data set:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are writing to a data set.
This is where you specify details about the data set being written
to.

Parallel Job Developer’s Guide 111

Must Do’s SAS Parallel Data Set Stage

m Outputs Page. This is present when you are reading from a data
set. This is where you specify details about the data set being read
from.

Must Do’s

DataStage has many defaults which means that it can be very easy to
include SAS Data Set stages in a job. This section specifies the
minimum steps to take to get a SAS Data Set stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on whether you are reading or writing SAS
data sets.

Writing an SAS Data Set

m [nthe Input Link Properties Tab:
— Specify the name of the SAS data set you are writing to.

— Specify what happens if a data set with that name already
exists (by default this causes an error).

m Ensure that column definitions have been specified for the data
set (this can be done in an earlier stage).

Reading an SAS Data Set

m In the Output Link Properties Tab:
— Specify the name of the SAS data set you are reading.

m Ensure that column definitions have been specified for the data
set (this can be done in an earlier stage).

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes.

11-2 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Inputs Page

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the input data is processed by
the available nodes as specified in the Configuration file, and by
any node constraints specified on the Advanced tab. In
Sequential mode the entire data set is processed by the conductor
node.

= Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

m Preserve partitioning. This is Propagate by default. It adopts
Set or Clear from the previous stage. You can explicitly select Set
or Clear. Select Set to request that next stage in the job should
attempt to maintain the partitioning.

= Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

m Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page

The Inputs page allows you to specify details about how the SAS
Data Set stage writes data to a data set. The SAS Data Set stage can
have only one input link.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the data set. The
Columns tab specifies the column definitions of the data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Parallel Job Developer’s Guide 11-3

Inputs Page SAS Parallel Data Set Stage

Details about SAS Data Set stage properties are given in the following
sections. See Chapter 3, "Stage Editors," for a general description of
the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and to what data set.
Some of the properties are mandatory, although many have default
settings. Properties without default settings appear in the warning
color (red by default) and turn black when you supply a value for
them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows:

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/File pathname N/A Y N N/A
Target/Update Append/Create Create Y N N/A
Policy (Error if exists)/ (Error if

Overwrite/ exists)

Options Category

File

The name of the control file for the data set. You can browse for the
file or enter a job parameter. By convention the file has the suffix
.psds.

Update Policy

Specifies what action will be taken if the data set you are writing to
already exists. Choose from:

s Append. Append to the existing data set

m Create (Error if exists). DataStage reports an error if the data set
already exists

= Overwrite. Overwrite any existing file set
The default is Create (Error if exists).

11-4 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Inputs Page

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the data
set. It also allows you to specify that the data should be sorted before
being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

If the SAS Data Set stage is operating in sequential mode, it will first
collect the data before writing it to the file using the default Auto
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the SAS Data Set stage is set to execute in parallel or
sequential mode.

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the SAS Data Set stage is set to execute in parallel, then you can set
a partitioning method by selecting from the Partition type drop-
down list. This will override any current partitioning.

If the SAS Data Set stage is set to execute in sequential mode, but the
preceding stage is executing in parallel, then you can set a collection
method from the Collector type drop-down list. This will override
the default auto collection method.

The following partitioning methods are available:

= (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Parallel SAS
Data Set stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

Parallel Job Developer’s Guide 11-5

Inputs Page SAS Parallel Data Set Stage
® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place.

m DB2. Replicates the DB2 partitioning method of a specific DB2
table. Requires extra properties to be set. Access these properties
by clicking the properties button .

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by
clicking the properties button .

The following Collection methods are available:

m (Auto). This is the default collection method for Parallel SAS Data
Set stages. Normally, when you are using Auto mode, DataStage
will eagerly read any row from any input partition as it becomes
available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

® Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on

the input link should be sorted before being written to the data set.

The sort is always carried out within data partitions. If the stage is

partitioning incoming data the sort occurs after the partitioning. If the

stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

11-6 Parallel Job Developer’s Guide

SAS Parallel Data Set Stage Outputs Page

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the
Parallel SAS Data Set stage reads data from a data set. The Parallel
SAS Data Set stage can have only one output link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Columns tab specifies the column
definitions of incoming data. The Advanced tab allows you to change
the default buffering settings for the output link.

Details about Data Set stage properties and formatting are given in
the following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from the data set. The
SAS Data Set stage only has a single property.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/File pathname N/A Y N N/A

Source Category

File

The name of the control file for the parallel SAS data set. You can
browse for the file or enter a job parameter. The file has the suffix
.psds.

Parallel Job Developer’s Guide 11-7

Outputs Page SAS Parallel Data Set Stage

11-8 Parallel Job Developer’s Guide

12

DB2/UDB Enterprise Stage

The DB2/UDB Enterprise stage is a database stage. It allows you to
read data from and write data to a DB2 database. It can also be used in
conjunction with a Lookup stage to access a lookup table hosted by a
DB2 database (see Chapter 20, "Merge Stage.")

DB2 databases distribute data in multiple partitions. DataStage can
match the partitioning as it reads or writes data from/to a DB2
database.

The DB2/UDB Enterprise stage can have a single input link and a
single output reject link, or a single output link or output reference
link.

The stage performs one of the following operations:
m Writes to a DB2 table (using INSERT).

m Updates a DB2 table (using INSERT and/or UPDATE as
appropriate). Uses the DB2 CLI to enhance performance.

m Loads a DB2 table (using DB2 fast loader).

m Reads a DB2 table.

m Deletes rows from a DB2 table.

m Performs a lookup directly on a DB2 table.

m Loads a DB2 table into memory and then performs a lookup on it.

When using an DB2/UDB Enterprise stage as a source for lookup data,
there are special considerations about column naming. If you have
columns of the same name in both the source and lookup data sets,
the source data set column will go to the output data. If you want this
column to be replaced by the column from the lookup data source,
you need to drop the source data column before you perform the
lookup (you could, for example, use a Modify stage to do this). See

DB2/UDB Enterprise Stage

Chapter 20, "Merge Stage," for more details about performing
lookups.

Writing to a DE2 Database

Tl\

Rl ===

U DS Linkd

DSLink?

Data_Set Transformer

Reading from a DB2 Database

N
10
1T

D=
DSLinkd

Transformer Data_Set_1

Using the DBE2/UDEB Enterprise stage to access a
Lookup table

. o LY
-:-_':_lq ___—"'-—@_—* ‘/j:‘ a=z]I -_'-_-:_n_l
= DSLinkd DSLinkE =
Data_Set o ’ Lookup_1 Data Set 3
- -]u:uok_up

DEZ_lookup_table

When you edit a DB2/UDB Enterprise stage, the stage editor appears.
This is based on the generic stage editor described in Chapter 3,
"Stage Editors."

The stage editor has up to three pages, depending on whether you are
reading or writing a database:

m Stage Page. This is always present and is used to specify general
information about the stage.

m Inputs Page. This is present when you are writing to a DB2
database. This is where you specify details about the data being
written.

m Outputs Page. This is present when you are reading from a DB2
database, or performing a lookup on a DB2 database. This is
where you specify details about the data being read.

12-2 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases

Accessing DB2 Databases

Before using DB2/UDB Enterprise stages for the first time, you should
carry out the configuration procedure described in "Configuring for
Enterprise Edition" in the DataStage Install and Upgrade Guide.

To use DB2/UDB Enterprise stages you must have valid accounts and
appropriate privileges on the databases to which they connect. If
using DB2 8.1 ESE (Enterprise Server edition), DPF (database
partitioning feature) must be installed along with DB2 8.1 ESE, in
order to take advantage of DataStage's parallel capabilities. DB2 8.1
ESE with DPF is equivalent to 7.2 EEE.

The required DB2 privileges are as follows:

m SELECT on any tables to be read.

m INSERT on any existing tables to be updated.

m TABLE CREATE to create any new tables.

m INSERT and TABLE CREATE on any existing tables to be replaced.
m DBADM on any database written by LOAD method.

You can grant this privilege in several ways in DB2. One is to start
DB2, connect to a database, and grant DBADM privilege to a user, as
shown below:

db2> CONNECT TO db_name

db2> GRANT DBADM ON DATABASE TO USER user_name

where db_name is the name of the DB2 database and user_name is
the login name of the DataStage user. If you specify the message file
property, the database instance must have read/write privilege on that
file.

The user’s PATH should include $DB2_HOME/bin (e.g., /opt/IBMdb2/
V7 1/bin). The LIBPATH should include $DB2_HOME/lib before any
other lib statements (e.g., /opt/IBMdb2/V'7.1/lib)

The following DB2 environment variables set the run-time
characteristics of your system:

m DB2INSTANCE specifies the user name of the owner of the DB2
instance. DB2 uses DB2INSTANCE to determine the location of
db2nodes.cfg. For example, if you set DB2INSTANCE to "Mary",
the location of db2nodes. cfg is ~Mary/sqllib/dbZ2nodes.cfg.

m DB2DBDFT specifies the name of the DB2 database that you want
to access from your DB2/UDB Enterprise Stage.

There are two other methods of specifying the DB2 database:

Parallel Job Developer’s Guide 12-3

Accessing DB2 Databases DB2/UDB Enterprise Stage

1 The override database property of the DB2/UDB Enterprise
Stage Inputs or Outputs link.

2 The APT_DBNAME environment variable (this takes precedence
over DB2DBDFT).

You should normally use the input property Row Commit Interval to
specify the number of records to insert into a table between commits
(see page 12-25). Previously the environment variable
APT_RDBMS_COMMIT_ROWS was used for this, and this is still
available for backwards compatibility. You can set this environment

variable to any value between 1 and (23 - 1) to specify the number of
records. The default value is 2000. If you set
APT_RDBMS_COMMIT_ROWS to 0, a negative number, or an invalid
value, a warning is issued and each partition commits only once after
the last insertion.

If you set APT_RDBMS_COMMIT_ROWS to a small value, you force
DB2 to perform frequent commits. Therefore, if your program
terminates unexpectedly, your data set can still contain partial results
that you can use. However, you may pay a performance penalty
because of the high frequency of the commits. If you set a large value
for APT_RDBMS_COMMIT_ROWS, DB2 must log a correspondingly
large amount of rollback information. This, too, may slow your
application.

If you set neither the Row Commit Interval property, or the
APT_RDBMS_COMMIT_ROWS environment variable, the commit
interval defaults to 2000.

Note If you are using DB2 7.2, you must ensure that the directory
holding the configuration file (as specified by
APT_CONFIG_FILE) has the permissions 777.

Remote Connection

You can also connect from a DB2/UDB Enterprise stage to a remote
DB2 Server. The connection is made via a DB2 client.

In order to remotely connect from a DB2 client to a DB2 server, the
DB2 client should be located on the same machine as the DataStage
server. Both DB2 client and DB2 server need to be configured for
remote connection communication (see your DB2 Database
Administrator).

The DataStage configuration file needs to contain the node on which
DataStage and the DB2 client are installed and the nodes of the
remote computer where the DB2 server is installed (see "The Parallel
Engine Configuration File").

12-4

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases

On the DB2/UDB Enterprise stage in your parallel job, you need to set
the following properties:

m Client Instance Name. Set this to the DB2 client instance name.
If you set this property, DataStage assumes you require remote
connection.

m Server. Optionally set this to the instance name of the DB2 server.
Otherwise use the DB2 environment variable, DB2ZINSTANCE, to
identify the instance name of the DB2 server.

m Client Alias DB Name. Set this to the DB2 client’s alias database
name for the remote DB2 server database. This is required only if
the client’s alias is different from the actual name of the remote
server database.

m Database. Optionally set this to the remote server database
name. Otherwise use the environment variables APT_DBNAME or
APT_DB2DBDFT to identify the database.

m User. Enter the user name for connecting to DB2, this is required
for a remote connection.

m Password. Enter the password for connecting to DB2, this is
required for a remote connection

You can use DataStage’s remote connection facilities to connect to
different DB2 server within the same job. You could, for example, read
from a DB2 database on one server, use this data to access a lookup
table on another DB2 server, then write any rejected rows to a third
DB2 server. Each database would be accessed by a different stage in
the job with the Client Instance Name and Server properties set
appropriately.

Handling Special Characters (# and $)

The characters # and $ are reserved in DataStage and special steps are
needed to handle DB2 databases which use the characters # and $ in
column names. DataStage converts these characters into an internal
format, then converts them back as necessary.

To take advantage of this facility, you need to do the following:

Parallel Job Developer’s Guide 12-5

Accessing DB2 Databases DB2/UDB Enterprise Stage

m In DataStage Administrator, open the Environment Variables
dialog for the project in question, and set the environment
variable DS_ENABLE_RESERVED_CHAR_CONVERT to true (this
can be found in the General\Customize branch).

¢ Environment variables O]

[~ Environment wariabl

The fallowing categorized environment wariables are defined in this project. Either set a default value for an existing environment variable or add a new
environment wariable to the user defined categon.

Categories: Details:
= General

. Customize andin

= Parallel D5_TOM_PIPE_DPEN_TIMEOLIT TDMLaad plugin pipe open timeaut

i i Operatar Specific OS_TOM_TRACE_SUBROUTINE_CALLS Trace TDMLoad plug-in subrauting c. False
t i Repatting EM&BLE_RESERVED _CHAR_COMVERT Enable reserved character handing False
[Compiler
- User Defined

Set to Default |
Al to Default |

Wariable Help |

oK I Cancel | Help |
P

m Avoid using the strings _ 035__and __036__in your DB2 column
names (these are used as the internal representations of # and $
respectively).

When using this feature in your job, you should import meta data
using the Plug-in Meta Data Import tool, and avoid hand-editing (this
minimizes the risk of mistakes or confusion).

Once the table definition is loaded, the internal column names are
displayed rather than the original DB2 names both in table definitions
and in the Data Browser. They are also used in derivations and
expressions. The original names are used in generated SQL
statements, however, and you should use them if entering SQL in the
job yourself.

Generally, in the DB2 stage, you enter external names everywhere
except when referring to stage column names, where you use names
in the form ORCHESTRATE.internal_name.

When using the DB2 stage as a target, you should enter external
names as follows:

m For Write and Load options, use external names for select list
properties.

m For Upsert option, for update and insert, use external names when
referring to DB2 table column names, and internal names when
referring to the stage column names. For example:

INSERT INTO tablename ($A#, ##B$) VALUES
(ORCHESTRATE.__036__A_ 035__, ORCHESTRATE.__035__035__B_ 036_)
UPDATE tablename SET ##B$ = ORCHESTRATE.__035_ 035_ B_ 036__ WHERE
($A# = ORCHESTRATE.__036__A_ 035_)

12-6

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases

When using the DB2 stage as a source, you should enter external
names as follows:

m For Read using the user-defined SQL method, use external names
for DB2 columns for SELECT: For example:

SELECT #M$, #D$ FROM tablename WHERE (#M$ > 5)

m For Read using Table method, use external names in select list and
where properties.

When using the DB2 stage in parallel jobs as a look-up, you should
enter external or internal names as follows:

m For Lookups using the user-defined SQL method, use external
names for DB2 columns for SELECT, and for DB2 columns in any
WHERE clause you might add. Use internal names when referring
to the stage column names in the WHERE clause. For example:

SELECT #M$, #D$ FROM tablename
WHERE (#B$ = ORCHESTRATE._ 035 B _ 036_)

m For Lookups using the Table method, use external names in select
list and where properties.

m Use internal names for the key option on the Inputs page
Properties tab of the Lookup stage to which the DB2 stage is
attached.

Using the Pad Character Property

Use the Pad Character property when using upsert or performing a
lookup to pad string and ustring fields that are less than the length of
the DB2 CHAR column. Use this property for string and ustring fields
that are inserted in DB2 or are used in the WHERE clause of an
UPDATE, DELETE, or SELECT statement when all three of these
conditions are met:

1 The UPDATE or SELECT statement contains string or ustring fields
that map to CHAR columns in the WHERE clause.

2 The length of the string or ustring field is less than the length of
the CHAR column.

3 The padding character for the CHAR columns is not the null
terminator.

For example, if you add rows to a table using an INSERT statement in
SQL, DB2 automatically pads CHAR fields with spaces. When you
subsequently use the DB2/UDB Enterprise stage to update or query
the table, you must use the Pad Character property with the value of a
space in order to produce the correct results.

Parallel Job Developer’s Guide 12-7

Accessing DB2 Databases

DB2/UDB Enterprise Stage

When you both insert rows and subsequently update or query them
using the DB2/UDB Enterprise stage, you do not need to specify the
Pad Character property.The stage automatically pads with null
terminators, and the default pad character for the stage is the null

terminator.

Type Conversions - Writing to DB2/UDB

When writing or loading, the DB2/UDB Enterprise stage automatically
converts DataStage data types to DB2/UDB data types as shown in the

following table:

DataStage SQL Data Underlying Data Type DB2/UDB Data Type

Type
Date date DATE
Time time TIME
Timestamp timestamp TIMESTAMP
Decimal decimal (p, s) DECIMAL (p, s)
Numeric
TinyInt int8 SMALLINT
Smalllnt int16 SMALLINT
Integer int32 INTEGER
Float sfloat FLOAT
Real
Double dfloat FLOAT
Unknown fixed-length string in the ~ CHAR(n)
Char form string[n] and where n is the string
ustring[n]; length <= 254 length
bytes
LongVarChar fixed-length string inthe =~ VARCHAR(n)
VarChar form string[n] and where n is the string
ustring[n]; 255 < = length length
<= 4000 bytes
LongVarChar variable-length string, in VARCHAR(n)
VarChar the form string[max=n] e T e
and ustring[max=n]; string length
maximum length <= 4000
bytes
LongVarChar variable-length string in VARCHAR(32)*
VarChar the form string and ustring
LongVarChar string and ustring, 4000 Not supported
VarChar bytes < length

12-8

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Accessing DB2 Databases

The default length of VARCHAR is 32 bytes. That is, 32 bytes are
allocated for each variable-length string field in the input data set. If an
input variable-length string field is longer than 32 bytes, the stage
issues a warning.

Type Conversions - Reading from DB2/UDB

When reading, the DB2/UDB Enterprise stage automatically converts
DB2/UDB data types to DataStage data types as shown in the
following table:

DataStage SQL Data Underlying Data Type DB2/UDB Data Type

Type
Time or Timestamp time or timestamp with DATETIME

corresponding fractional

precision for time

If the DATETIME starts

with a year component,

the result is a timestamp

field. If the DATETIME

starts with an hour, the

result is a time field.
Decimal decimal (p, s) where p is DECIMAL (p, s)
Numeric the precision and s is the

scale

The maximum precision is

32, and a decimal with

floating scale is converted

to a dfloat
TinylInt int8 SMALLINT
Smalllnt int16 SMALLINT
Integer int32 INTEGER
Double dfloat FLOAT
Float sfloat SMALLFLOAT
Real
Float sfloat REAL
Real
Double dfloat DOUBLE-PRECISION
Decimal decimal MONEY

Parallel Job Developer’s Guide 12-9

Examples

DB2/UDB Enterprise Stage

DataStage SQL Data
Type

Underlying Data Type DB2/UDB Data Type

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

Unknown
Char
LongVarChar
VarChar
NChar
NVarChar
LongNVarChar

string[n] or ustring[n]

string[max = n] or
ustring[max = n]

string[max = n] or
ustring[max = n]

NCHAR(n, r)

NVARCHAR(n, r)

VARCHAR(n)

Examples

Looking Up a DB2/UDB Table

This example shows what happens when data is looked up in a DB2/
UDB table. The stage in this case will look up the interest rate for each
customer based on the account type. Here is the data that arrives on

the primary link:

Customer accountNo accountType balance
Latimer 7125678 plat 7890.76
Ridley 7238892 flexi 234.88
Cranmer 7611236 gold 1288.00
Hooper 7176672 flexi 3456.99
Moore 7146789 gold 424.76

12-10

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Examples
Here is the data in the DB2/UDB lookup table:
accountType InterestRate
bronze 1.25
silver 1.50
gold 1.75
plat 2.00
flexi 1.88
fixterm 3.00
Here is what the lookup stage will output:
Customer accountNo accountType balance InterestRate
Latimer 7125678 plat 7890.76 2.00
Ridley 7238892 flexi 234.88 1.88
Cranmer 7611236 gold 1288.00 1.75
Hooper 7176672 flexi 3456.99 1.88
Moore 7146789 gold 424.76 1.75

The job looks like the one illustrated on page 12-2. The Data_set stage
provides the primary input, DB2_lookup_table provides the lookup
data, Lookup_1 performs the lookup and outputs the resulting data to
Data_Set_3. In the DB2/UDB stage we specify that we are going to look
up the data directly in the DB2/UDB database, and the name of the
table we are going to look up. In the Look up stage we specify the
column that we are using as the key for the look up.

Parallel Job Developer’s Guide

12-11

Examples

DB2/UDB Enterprise Stage

The properties for the DB2/UDB stage are as follows:

gii DB2_UDB_Enterprise_0 - DB2/UDB Enterprise

Stage Dutput I

Output name: [R

Columns.. e ata, . |

General Froperties |§o|umns| Advanced

= Source [HEprepeity selected]
& Lookup Type = Sparse

& Fead Method = Table

i @ Table = interest

E|) Cannection

& Use Database Enviionment Yariable = True

& Use Server Envionment Yariable = Tue

It

L Lo

=SS

Ayailable propertics bo add:

oK I Cancel | Help |

w

The properties for the look up stage are as follows:

‘j Lookup_2 - Lookup H[=] E3

Stage Input | DOutput |

Input name: [k

Colurmns. .. |

[e property selected]

General Properties | Pgrtitioningl Qolumnsl Advancedl

B Lookup Keps
LB Key = Interest_rate

| rfarmaticr:

L x|

Available properties to add:

&) Key

E S S [

Ok I Cancel Help

Updating a DB2/UDB Table

This example shows a DB2/UDB table being updated with three new
columns. The database records the horse health records of a large
stud. Details of the worming records are being added to the main
table and populated with the most recent data, using the existing

12-12

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Examples

column “name” as a key. The meta data for the new columns is as
follows:

Qenerall Eropertiesl Partitioning | .-’-‘«dvancedl
Coumnname | Key | SOLtype | Estended | Length |Scale| Mullable | Description
1 | name Char Mo
|2 | warmer_type [| Char Unicode Mo
| 3 | dose_interval [l | Char Unicode Mo
4 | dose_level [1 | Char Unicode Mo
|

4 L4

Save. | Load... |

We are going to specify upsert as the write method and choose User-
defined Update & Insert as the upsert mode, this is so that we do not
include the existing name column in the INSERT statement. The
properties (showing the INSERT statement) are shown below. The
INSERT statement is as generated by the DataStage, except the name
column is removed.

gf Lookup_2 - Lookup

Stage lnput | Dutput I

Input name: [l Columns... |

General Properties I Pgrtitioningl Qolumnsl Advancedl

EH_ Lookup Keys

...... &8 Key = Interest_rate

[properi selected]

| tiarmatian;

= Lo Lo L= [
[KIE 1

Aveailable properties to add:

[+ Fep

Ok I Cancel Help

Parallel Job Developer’s Guide 12-13

Must Do’s DB2/UDB Enterprise Stage

The UPDATE statement is as automatically generated by DataStage:

|Jpdate SOL:

LIPDATE =]+

horze_health

SET

warmer_type = ORCHESTRATE wormer_type,
doze interval = ORCHESTRATE dose_interval,
doze_level = ORCHESTRATE . dose_lewvel
"WHERE

[name = DORCHESTRATE.name]

[

fml=hleinrmmerhse bniaddt

Must Do’s

DataStage has many defaults which means that it can be very easy to
include DB2/UDB Enterprise stages in a job. This section specifies the
minimum steps to take to get a DB2/UDB Enterprise stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on what you are using a DB2/UDB
Enterprise Stage for.

Writing a DB2 Database

m In the Input Link Properties Tab:
— Choose a Write Method of Write.
— Specify the Table you are writing.

— Ifyou are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

m By default the stage uses the same partitioning method as the DB2
table defined by the environment variables (see "Accessing DB2
Databases" on page 12-3). The method can be changed, or you
can specify a different database, on the Input Link Partitioning
Tab.

m Ensure column meta data has been specified for the write.

12-14 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage

Must Do’s

Updating a DB2 Database

This is the same as writing a DB2 database, except you need to
specify details of the SQL statements used to update the database:

m [nthe Input Link Properties Tab:

Choose a Write Method of Upsert.

Choose the Upsert Mode, this allows you to specify whether to
insert and update, or update only, and whether to use a
statement automatically generated by DataStage or specify
your own.

If you have chosen an Upsert Mode of User-defined Update
and Insert, specify the Insert SQL statement to use. DataStage
provides the auto-generated statement as a basis, which you
can edit as required.

If you have chosen an Upsert Mode of User-defined Update
and Insert or User-defined Update only, specify the Update SQL
statement to use. DataStage provides the auto-generated
statement as a basis, which you can edit as required.

If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Deleting Rows from a DB2 Database

This is the same as writing a DB2 database, except you need to
specify details of the SQL statements used to delete rows from the
database:

m [nthe Input Link Properties Tab:

Choose a Write Method of Delete Rows.

Choose the Delete Rows Mode, this allows you to specify
whether to use a statement automatically generated by
DataStage or specify your own.

If you have chosen a Delete Rows Mode of User-defined delete,
specify the Delete SQL statement to use. DataStage provides
the auto-generated statement as a basis, which you can edit as
required.

If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Loading a DB2 Database

This is the default method. Loading has the same requirements as
writing, except:

Parallel Job Developer’s Guide 12-15

Must Do’s DB2/UDB Enterprise Stage

m [nthe Input Link Properties Tab:
— Choose a Write Method of Load.

Reading a DB2 Database

m In the Output Link Properties Tab:

— Choose a Read Method. This is Table by default (which reads
directly from a table and operates in parallel), but you can also
choose to read using auto-generated SQL or user-generated
SQL (which operates sequentially on a single node by default).

— Specify the table to be read.

— If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

— If using a Read Method apart from Table, you can specify a
Partition Table property. This specifies execution of the query
in parallel on the processing nodes containing a partition
derived from the named table. If you do not specify this, the
stage executes the query sequentially on a single node.

— Ifyou are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

m Ensure column meta data has been specified for the read.

Performing a Direct Lookup on a DB2 Database Table

m Connect the DB2/UDB Enterprise Stage to a Lookup stage using a
reference link.

m [n the Output Link Properties Tab:
— Set the Lookup Type to Sparse.

— Choose a Read Method. This is Table by default (which reads
directly from a table), but you can also choose to read using
auto-generated SQL or user-generated SQL.

— Specify the table to be read for the lookup.

— If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.
You would use this if, for example, you wanted to perform a
non-equality based lookup.

12-16 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Stage Page

— Ifyou are not using environment variables to specify the server
and database (as described in "Accessing DB2 Databases" on
page 12-3), set Use Database Environment Variable and Use
Server Environment Variable to False, and supply values for
the Database and Server properties.

m Ensure column meta data has been specified for the lookup.

Performing an In Memory Lookup on a DB2 Database
Table

This is the default method. It has the same requirements as a direct
lookup, except:

m [n the Output Link Properties Tab:
— Set the Lookup Type to Normal.

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the entire write is processed by the conductor node.

m Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

= Preserve partitioning. You can select Set or Clear. If you select
Set file read operations will request that the next stage preserves
the partitioning as is (it does not appear if your stage only has an
input link).

Parallel Job Developer’s Guide 12-17

Inputs Page

DB2/UDB Enterprise Stage

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in

the Configuration file).

Note This page is blank if you are using the stage to perform a
lookup directly on DB2 table (i.e. operating in sparse mode).

NLS Map Tab

The NLS Map tab allows you to define a character set map for the
DB2/UDB Enterprise stage. This overrides the default character set
map set for the project or the job. You can specify that the map be
supplied as a job parameter if required.

g8 DB2_UDE_Enterprise_0 - DB2/UDB Enterprise

Stage | Output |

Stage name: IDBZ_U DE_Enterprize_0

Project default (150-28259-1) i’
BOCU-1

CESU-8

ebedic-sml-us

1SCI,wersion=0
ISCIlLversion=1
ISCIlLverzion=2
1SCI, wersion=3
ISCIlLverzion=4
ISCIlLverzion=a
|5CILverzion=6 ;I

(0] 4 I Cancel Help

Inputs Page

The Inputs page allows you to specify details about how the DB2/
UDB Enterprise Stage writes data to a DB2 database. The DB2/UDB
Enterprise Stage can have only one input link writing to one table.

12-18

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the database. The
Columns tab specifies the column definitions of incoming data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Details about DB2/UDB Enterprise Stage properties, partitioning, and
formatting are given in the following sections. See Chapter 3, "Stage
Editors," for a general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and where. Some of the
properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes (the properties for stages in jobs being deployed on
USS systems are slightly different — see page 12-28 for details). A
more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/Table String N/A Y N N/A
Target/Delete Rows Auto- Auto- Y if Write N N/A
Mode generated generated method =

delete/user- delete Delete Rows

defined

delete
Target/Delete SQL String N/A Y if Write N N/A

method =

Delete Rows

Parallel Job Developer’s Guide 12-19

Inputs Page

DB2/UDB Enterprise Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/Upsert Mode Auto- Auto- Y if Write N N/A
generated generated method =
Update & Update & Upsert
Insert/ Insert
Auto-
generated
Update
Only/User-
defined
Update &
Insert/User-
defined
Update Only
Target/Insert SOL String N/A Y if Write N N/A
method =
Upsert
Target/Update SQL String N/A Y if Write N N/A
method =
Upsert
Target/Write Delete Load Y N N/A
Method Rows/Write/
Load/
Upsert
Target/\Write Mode Append/ Append Y N N/A
Create/
Replace/
Truncate
Connection/Use True/False True Y N N/A
Default Database
Connection/Use True/False True Y N N/A
Default Server
Connection/ string N/A Y (if Use N N/A
ServerDatabase Database
environment
variable =
False)
Connection/Server string N/A Y (if Use N N/A
Server
environment
variable =
False)
Connection/Client string N/A N N N/A

Instance Name

12-20

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage

Inputs Page

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Options/Array Size number 2000 Y (if Write N N/A
Method =
Delete)
Options/Output True/False False Y (if Write N N/A
Rejects Method =
Upsert)
Options/Row number value of Array N N N/A
Commit Interval Size
Options/Time number 2 N N N/A
Commit Interval
Options/Silently True/False False Y N N/A
Drop Columns Not
in Table
Options/Truncate True/False False Y N N/A
Column Names
Options/Truncation number 18 N N Truncate Column
Length Names
Options/Close string N/A N N N/A
Command
Options/Default number 32 N N N/A
String Length
Options/Open string N/A N N N/A
Command
Options/Use ASCII True/False False Y (if Write N N/A
Delimited Format Method =
Load)
Options/Cleanupon True/False False Y (if Write N N/A
Failure Method =
Load)
Options/Message pathname N/A N N N/A
File
Options/DB Options string N/A N N N/A
Options/Non- True/False False N N N/A
recoverable
Transactions
Options/Pad string null N N N/A
Character
Options/Exception string N/A N N N/A

Table

Parallel Job Developer’s Guide

12-21

Inputs Page DB2/UDB Enterprise Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Options/Statistics stats_none/ stats_none N N N/A
stats_exttabl
e_only/
stats_extind
ex_only/

stats_index/
stats_table/
stats_extind

ex_table/
stats_all/
stats_both
Options/Number of number 1 N N
Processes per Node
Options/Arbitrary True/False True N N Number of
Loading Order Processes per

Node

Target Category

Table

Specify the name of the table to write to. You can specify a job
parameter if required.

Delete Rows Mode

This only appears for the Delete Rows write method. Allows you to
specify how the delete statement is to be derived. Choose from:

= Auto-generated Delete. DataStage generates a delete
statement for you, based on the values you have supplied for
table name and column details. The statement can be viewed by
selecting the Delete SQL property.

m User-defined Delete. Select this to enter your own delete
statement. Then select the Delete SQL property and edit the
statement proforma.

Delete SOL

Only appears for the Delete Rows write method. This property allows
you to view an auto-generated Delete statement, or to specify your
own (depending on the setting of the Delete Rows Mode property).

12-22 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Upsert Mode

This only appears for the Upsert write method. Allows you to specify
how the insert and update statements are to be derived. Choose from:

= Auto-generated Update & Insert. DataStage generates update
and insert statements for you, based on the values you have
supplied for table name and on column details. The statements
can be viewed by selecting the Insert SQL or Update SQL
properties.

= Auto-generated Update Only. DataStage generates an update
statement for you, based on the values you have supplied for
table name and on column details. The statement can be viewed
by selecting the Update SQL properties.

m User-defined Update & Insert. Select this to enter your own
update and insert statements. Then select the Insert SQL and
Update SQL properties and edit the statement proformas.

m User-defined Update Only. Select this to enter your own update
statement. Then select the Update SQL property and edit the
statement proforma.

Insert SQL

Only appears for the Upsert write method. This property allows you to
view an auto-generated Insert statement, or to specify your own
(depending on the setting of the Update Mode property).

Update SQL

Only appears for the Upsert write method. This property allows you to
view an auto-generated Update statement, or to specify your own
(depending on the setting of the Update Mode property).

Write Method

Choose from Delete Rows, Write, Upsert, or Load (the default). Load
takes advantage of fast DB2 loader technology for writing data to the
database. Upsert uses Insert and Update SQL statements to write to
the database. (Upsert is not available when you are using the DB2
load stage on a USS system.)

Write Mode
Select from the following:

m Append. This is the default. New records are appended to an
existing table.

Parallel Job Developer’s Guide 12-23

Inputs Page

DB2/UDB Enterprise Stage

m Create. Create a new table. If the DB2 table already exists an error
occurs and the job terminates. You must specify this mode if the
DB2 table does not exist.

m Replace. The existing table is first dropped and an entirely new
table is created in its place. DB2 uses the default partitioning
method for the new table.

Note that you cannot create or replace a table that has primary
keys, you should not specify primary keys in your meta data.

m Truncate. The existing table attributes (including schema) and the
DB2 partitioning keys are retained, but any existing records are
discarded. New records are then appended to the table.

Connection Category

Use Default Server

This is set to True by default, which causes the stage to use the setting
of the DB2INSTANCE environment variable to derive the server. If you
set this to False, you must specify a value for the Override Server
property.

Use Default Database

This is set to True by default, which causes the stage to use the setting
of the environment variable APT_DBNAME, if defined, and DB2DBDFT
otherwise to derive the database. If you set the property to False, you
must specify a value for the Override Database property.

Server

Optionally specifies the DB2 instance name for the table. This
property appears if you set Use Server Environment Variable property
to False.

Database

Optionally specifies the name of the DB2 database to access. This
property appears if you set Use Database Environment Variable
property to False.

Client Instance Name

This property is only required if you are connecting to a remote DB2
server. It specifies the DB2 client through which you are making the
connection (see "Remote Connection" on page 12-4).

Note Connection details are normally specified by environment
variables as described in "Accessing DB2 Databases" on

12-24

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

page 12-3. If you are specifying a remote connection, when
you fill in the client instance name, user and password
fields appear and allow you to specify these for connection
to the remote server.

Options Category

Array Size

This is only available for Write Methods of Delete and Upsert, and is

optional for upsert. This specifies the size the insert/delete host array.
It defaults to 2000, but you can enter 1 if you want each insert/delete

statement to be executed individually.

Output Rejects

This appears for the Upsert Write Method. It specifies how to handle
rows that fail to be inserted. Choose True to send them down a reject
link, or False to drop them.

Row Commit Interval

This is available for Write Methods of Upsert, Delete Rows, and Write.
It specifies the number of records that should be committed before
starting a new transaction. The specified number must be a multiple
of the array size. For Upsert and Delete Rows, the default is the array
size (which in turn defaults to 2000). For Write the default is 2000.

If you set a small value for Row Commit Interval, you force DB2 to
perform frequent commits. Therefore, if your program terminates
unexpectedly, your data set can still contain partial results that you
can use. However, you may pay a performance penalty because of the
high frequency of the commits. If you set a large value for Row
Commit Interval, DB2 must log a correspondingly large amount of
rollback information. This, too, may slow your application.

Time Commit Interval

This is available for Write Methods of Upsert and Delete. It specifies
the number of seconds DataStage should allow between committing
the input array and starting a new transaction. The default time period
is 2 seconds

Silently Drop Columns Not in Table

This is False by default. Set to True to silently drop all input columns
that do not correspond to columns in an existing DB2 table. Otherwise
the stage reports an error and terminates the job.

Parallel Job Developer’s Guide 12-25

Inputs Page

DB2/UDB Enterprise Stage

Truncate Column Names

Select this option to truncate column names to 18 characters. To
specify a length other than 18, use the Truncation Length dependent
property:

m Truncation Length

This is set to 18 by default. Change it to specify a different
truncation length.

Close Command

This is an optional property. Use it to specify any command to be
parsed and executed by the DB2 database on all processing nodes
after the stage finishes processing the DB2 table. You can specify a job
parameter if required.

Default String Length

This is an optional property and is set to 32 by default. Sets the default
string length of variable-length strings written to a DB2 table. Variable-
length strings longer than the set length cause an error.

The maximum length you can set is 4000 bytes. Note that the stage
always allocates the specified number of bytes for a variable-length
string. In this case, setting a value of 4000 allocates 4000 bytes for
every string. Therefore, you should set the expected maximum length
of your largest string and no larger.

Open Command

This is an optional property. Use it to specify any command to be
parsed and executed by the DB2 database on all processing nodes
before the DB2 table is opened. You can specify a job parameter if
required.

Use ASCII Delimited Format

This property only appears if Write Method is set to Load. Specify this
option to configure DB2 to use the ASCII-delimited format for loading
binary numeric data instead of the default ASCII-fixed format.

This option can be useful when you have variable-length columns,
because the database will not have to allocate the maximum amount
of storage for each variable-length column. However, all numeric
columns are converted to an ASCIl format by DB2, which is a CPU-
intensive operation. See the DB2 reference manuals for more
information.

12-26

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Cleanup on Failure

This property only appears if Write Method is set to Load. Specify this
option to deal with failures during stage execution that leave the
tablespace being loaded in an inaccessible state.

The cleanup procedure neither inserts data into the table nor deletes
data from it. You must delete rows that were inserted by the failed
execution either through the DB2 command-level interpreter or by
using the stage subsequently using the replace or truncate write
modes.

Message File

This property only appears if Write Method is set to Load. Specifies
the file where the DB2 loader writes diagnostic messages. The
database instance must have read/write privilege to the file.

DB Options

This only appears if Write Method is set to load and Write Mode is set
to Create or Replace. It specifies an optional table space or
partitioning key to be used by DB2 to create the table.

By default, DataStage creates the table on all processing nodes in the
default table space and uses the first column in the table,
corresponding to the first field in the input data set, as the partitioning
key.

You specify arguments as a string enclosed in braces in the form:
{tablespace=t_space, [key=co10,...]}

Non-recoverable Transactions

This only appears if Write Method is set to Load. It is False by default.
If set to True, it indicates that your load transaction is marked as
nonrecoverable. It will not be possible to recover your transaction
with a subsequent roll forward action. The roll forward utility will skip
the transaction, and will mark the table into which data was being
loaded as "invalid". The utility will also ignore any subsequent
transactions against the table. After a roll forward is completed, the
table can only be dropped. Table spaces are not put in a backup
pending state following the load operation, and a copy of the loaded
data is not made during the load operation.

Pad Character

This appears for a Write Method of Upsert or Delete Rows. It specifies
the padding character to be used in the construction of a WHERE
clause when it contains string columns that have a length less than

Parallel Job Developer’s Guide 12-27

Inputs Page

DB2/UDB Enterprise Stage

the DB2 char column in the database. It defaults to null. (See "Using
the Pad Character Property" on page 12-7.)

Exception Table

This property only appears if Write Method is set to Load. It allows
you to specify the name of a table where rows that violate load table
constraints are inserted. The table needs to have been created in the
DB2 database. The exception table cannot be used when the Write
Mode is set to create or replace.

Statistics

This property only appears if Write Method is set to Load. It allows
you to specify which statistics should be generated upon load
completion, as part of the loading process DB2 will collect the
requisite statistics for table optimization. This option is only valid for a
Write Mode of truncate, it is ignored otherwise.

Number of Processes per Node

This property only appears if Write Method is set to Load. It allows
you to specify the number of processes to initiate on every node. If set
to 0, the stage uses its own algorithm to determine the optimal
number, based on the number of CPUs available at runtime (this does
not, however, take into account the workload from the rest of the job).
By default it is set to 1. It has the following dependent property:

m Arbitrary Loading Order

This only appears if Number of Processes per Node is set to a
value greater than 1. If set true, it specifies that the loading of
every node can be arbitrary, leading to a potential performance
gain.

USS Options

If you are designing jobs within a USS deployment project (see
Chapter 56, "Parallel Jobs on USS,"), the properties available under
the Connection and Options categories are different, and there is an
extra category: MVS Datasets. The following table describes the
properties available for these categores; see page 12-22 for the
properties available under the target category.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Connection/Use True/False True Y N N/A

Default Database

12-28

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Category/ Values Default Mandatory? Repeats? Dependent of
Property

Connection/ string N/A Y (if Use N N/A
ServerDatabase Database

environment
variable = False)

Options/Enforce True/False False Y (if Write N N/A
Constraints Method = Load)
Options/Keep True/False False Y (if Write N N/A
Dictionary Method = Load)
Options/Preformat True/False False Y (if Write N N/A
Method = Load)
Options/Silently True/False False Y (if Write N N/A
Drop Columns Not Method = Load
in Table or Write)
Options/Truncate True/False False Y (if Write N N/A
Column Names Method = Load
or Write)
Options/Truncation number 18 N N Truncate Column
Length Names
Options/Verbose True/False False Y (if Write N N/A
Method = Load)
Options/Close string N/A N N N/A
Command
Options/Default number 32 N N N/A
String Length
Options/Exception string N/A N N N/A
Table
Options/Number of number 1 N N
Processes per Node
Options/Arbitrary True/False True N N Number of
Loading Order Processes per
Node
Options/Open string N/A N N N/A
Command
Options/Row integer N/A N N N/A
Estimate
Options/SortDevice string N/A N N N/A
Type
Options/Sort Keys integer N/A N N N/A
Options/When string N/A N N N/A
Clause

Parallel Job Developer’s Guide 12-29

Inputs Page DB2/UDB Enterprise Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Options/Create True/False False Y (if Write N N/A
Statement Method = Load
and Write Mode
= Create)
Options/DB Options string N/A N N N/A
Options/Reuse True/False False Y (if Write N N/A
Datasets Method = Load
and Write Mode
= Replace)
Options/Statistics stats_all/ stats_none N N N/A
stats_both/
stats_extin
dex_only/
stats_extin
dex_table/
stats_extta
ble_only/
stats_index

/
stats_none/

stats_table
Options/Array Size number 2000 Y (if Write N N/A
Method =
Delete)
Options/Pad string null N N N/A
Character
Options/Row number value of Array N N N/A
Commit Interval Size
Options/Time number 2 N N N/A
Commit Interval
Options/Output True/False False Y (if Write N N/A
Rejects Method =
Upsert)

Connection Category

Use Default Database

This is set to True by default, which causes the stage to use the default
DB2 subsystem. If you set the property to False, you must specify a
value for the Override Database property.

12-30 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Database

Optionally specifies the name of the DB2 database to access. This
property appears if you set Use Database Environment Variable
property to False.

MVS DataSets Category

Discard DSN

Specifies the name of the MVS dataset that stores the rejected
records. It has the following sub-properties:

m Discard Device Type
The device type that is used for the specified discard dataset.
m Discard Space

The primary allocation space for the discard dataset, specified in
cylinders.

m Max Discards Per Node
An integer which specifies the maximum number of discarded
rows to keep in a dataset per node.

Error DSN

The name of the MVS dataset that stores rows that could not be
loaded into DB2 because of an error. It has the following sub-
properties:

m Error Device Type
The device type that is used for the specified Error dataset.

m Error Space
The primary allocation space for the error dataset, specified in
cylinders.

Map DSN

specifies the name of the MVS dataset for mapping identifiers back to
the input records that caused an error. It has the following sub-
properties:

s Map Device Type
The device type that is used for the specified Map dataset.

Parallel Job Developer’s Guide 12-31

Inputs Page DB2/UDB Enterprise Stage
m Map Space
The primary allocation space for the map dataset, specified in
cylinders.
Work 1 DSN
Specifies the name of the MVS dataset for sorting input. It has the
following sub-properties:
m Work 1 Device Type
The device type that is used for the specified Work 1 dataset.
m Work 1 Space
The primary allocation space for the Work 1 dataset, specified in
cylinders.
Work 2 DSN
Specifies the name of the MVS dataset for sorting output. It has the
following sub-properties:
® Work 2 Device Type
The device type that is used for the specified Work 2 dataset.
m Work 2 Space
The primary allocation space for the Work 2 dataset, specified in
cylinders.
Options Category
Enforce Constraints
Only available when Write Method = Load. If this is set to True, load
will delete errant rows when encountering them, and issue a message
identifying such row. This requires that:
m referential constraints exist
m the input must be sorted
m a Map DSN dataset must be specified under the MVS datasets
category.
Keep Dictionary
Only available when Write Method = Load. If this is set to true, load is
prevented from building a new compresiion dictionary. This property
is ignored unless the associated tablespace has the COMPRESS YES
attribute.
12-32 Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Preformat

Only available when Write Method = Load. If set to True, the
remaining pages are preformatted in the tablespace and its index
space.

Silently Drop Columns Not in Table

This is False by default. Set to True to silently drop all input columns
that do not correspond to columns in an existing DB2 table. Otherwise
the stage reports an error and terminates the job.

Truncate Column Names

Select this option to truncate column names to 18 characters. To
specify a length other than 18, use the Truncation Length dependent

property:
m Truncation Length

This is set to 18 by default. Change it to specify a different
truncation length.

Verbose

Only available when Write Method = Load. If this is set to True,
DataStage logs all messages generated by DB2 when a record is
rejected because of prime key or other violations.

Close Command

This is an optional property. Use it to specify any command to be
parsed and executed by the DB2 database on all processing nodes
after the stage finishes processing the DB2 table. You can specify a job
parameter if required.

Default String Length

This is an optional property and is set to 32 by default. Sets the default
string length of variable-length strings written to a DB2 table. Variable-
length strings longer than the set length cause an error.

The maximum length you can set is 4000 bytes. Note that the stage
always allocates the specified number of bytes for a variable-length
string. In this case, setting a value of 4000 allocates 4000 bytes for
every string. Therefore, you should set the expected maximum length
of your largest string and no larger.

Parallel Job Developer’s Guide 12-33

Inputs Page

DB2/UDB Enterprise Stage

Exception Table

This property only appears if Write Method is set to Load. It allows
you to specify the name of a table where rows that violate load table
constraints are inserted. The table needs to have been created in the
DB2 database. The exception table cannot be used when the Write
Mode is set to create or replace.

Number of Processes per Node

This property only appears if Write Method is set to Load. It allows
you to specify the number of processes to initiate on every node. If set
to 0, the stage uses its own algorithm to determine the optimal
number, based on the number of CPUs available at runtime (this does
not, however, take into account the workload from the rest of the job).
By default it is set to 1. It has the following dependent property:

= Arbitrary Loading Order

This only appears if Number of Processes per Node is set to a
value greater than 1. If set true, it specifies that the loading of
every node can be arbitrary, leading to a potential performance
gain.

Open Command

This is an optional property. Use it to specify any command to be
parsed and executed by the DB2 database on all processing nodes
before the DB2 table is opened. You can specify a job parameter if
required.

Row Estimate

Only available when Write Method = Load. Specify the estimated
number of rows (across all nodes) to be loaded into the database. An
estimate of the required primary allocation space for storing all rows
is made before load is engaged.

Sort Device Type

Only available when Write Method = Load. Specify the device type for
dynamically allocated datasets used by DFSORT.

Sort Keys

Only available when Write Method = Load. Set this to have rows
presorted according to keys, the value is an estimate of the number of
index keys to be sorted. Do not use this property if tablespace does
not have an indes, has only one index, or data is already sorted
according to index keys.

12-34

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

When Clause

Only available when Write Method = Load. Specify a WHEN clause for
the load script.

Create Statement

Only available when Write Method = Load and Write Mode = Create or
Replace. Specify the SQL statement to create the table.

DB Options

This only appears if Write Method is set to load and Write Mode is set
to Create or Replace. It specifies an optional table space or
partitioning key to be used by DB2 to create the table.

By default, DataStage creates the table on all processing nodes in the
default table space and uses the first column in the table,
corresponding to the first field in the input data set, as the partitioning
key.

You specify arguments as a string enclosed in braces in the form:
{tablespace=t_space, [key=co10,...]}

Reuse Datasets

This only appears if Write Method is set to Load and Write Mode is set
to Replace. If True, DB2 reuses DB2 managed datasets without
relocating them.

Statistics

This only appears if Write Method is set to load and Write Mode is set
to Truncate. Specifies which statistics should be generated upon
completion of load. As a part of the loading process, DB2 collects the
statistics required for table access optimization (alternatively use the
RUNSTAT utility).

Array Size

This is only available for Write Methods of Delete and Upsert, and is

optional for upsert. This specifies the size the insert/delete host array.
It defaults to 2000, but you can enter 1 if you want each insert/delete

statement to be executed individually.

Pad Character

This appears for a Write Method of Upsert or Delete Rows. It specifies
the padding character to be used in the construction of a WHERE
clause when it contains string columns that have a length less than

Parallel Job Developer’s Guide 12-35

Inputs Page

DB2/UDB Enterprise Stage

the DB2 char column in the database. It defaults to null. (See "Using
the Pad Character Property" on page 12-7.)

Row Commit Interval

This is available for Write Methods of Upsert, Delete Rows, and Write.
It specifies the number of records that should be committed before
starting a new transaction. The specified number must be a multiple
of the array size. For Upsert and Delete Rows, the default is the array
size (which in turn defaults to 2000). For Write the default is 2000.

If you set a small value for Row Commit Interval, you force DB2 to
perform frequent commits. Therefore, if your program terminates
unexpectedly, your data set can still contain partial results that you
can use. However, you may pay a performance penalty because of the
high frequency of the commits. If you set a large value for Row
Commit Interval, DB2 must log a correspondingly large amount of
rollback information. This, too, may slow your application.

Time Commit Interval

This is available for Write Methods of Upsert and Delete. It specifies
the number of seconds DataStage should allow between committing
the input array and starting a new transaction. The default time period
is 2 seconds

Output Rejects

This appears for the Upsert Write Method. It specifies how to handle
rows that fail to be inserted. Choose True to send them down a reject
link, or False to drop them.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the DB2
database. It also allows you to specify that the data should be sorted
before being written.

By default the stage partitions in DB2 mode. This takes the
partitioning method from a selected DB2 database (or the one
specified by the environment variables described in "Accessing DB2
Databases" on page 12-3).

If the DB2/UDB Enterprise Stage is operating in sequential mode, it
will first collect the data before writing it to the file using the default
Auto collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

12-36

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Inputs Page

Whether the DB2/UDB Enterprise Stage is set to execute in parallel
or sequential mode.

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the DB2/UDB Enterprise Stage is set to execute in parallel, then you
can set a partitioning method by selecting from the Partition type
drop-down list. This will override any current partitioning.

If the DB2/UDB Enterprise Stage is set to execute in sequential mode,
but the preceding stage is executing in parallel, then you can set a
collection method from the Collector type drop-down list. This will
override the default Auto collection method.

The following partitioning methods are available:

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place.

DB2. Replicates the DB2 partitioning method of the specified DB2
table. This is the default method for the DB2/UDB Enterprise
Stage.

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button

The following Collection methods are available:

(Auto). This is the default collection method for DB2/UDB
Enterprise Stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Parallel Job Developer’s Guide 12-37

Outputs Page

DB2/UDB Enterprise Stage

m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the file or files.
The sort is always carried out within data partitions. If the stage is
partitioning incoming data the sort occurs after the partitioning. If the
stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the DB2/
UDB Enterprise Stage reads data from a DB2 database. The DB2/UDB
Enterprise Stage can have only one output link. Alternatively it can
have a reference output link, which is used by the Lookup stage when
referring to a DB2 lookup table. It can also have a reject link where
rejected records are routed (used in conjunction with an input link).

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of

12-38

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page

exactly what the link does. The Columns tab specifies the column
definitions of the data. The Advanced tab allows you to change the
default buffering settings for the output link.

Details about DB2/UDB Enterprise Stage properties are given in the
following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from what table. Some
of the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

& BuidsaLy | The Build SQL button allows you to instantly open the SQL Builder to
help you construct an SQL query to read data. See Chapter 59, "SQL
Builder" for guidance on using it.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/Lookup Type Normal/ Normal Y (if output is N N/A

Sparse reference link

connected to
Lookup stage)

Source/Read Method Table/ Table Y N N/A
Auto-
generated
SQL/User-
defined
SQL
Source/Table string N/A Y (if Read N N/A
Method = Table)
Source/Where clause string N/A N N Table
Source/Select List string N/A N N Table
Source/Query string N/A Y (if Read N N/A
Method = Query)
Source/Partition string N/A N N Query
Table
Connection/Use True/False True Y N N/A

Default Database

Parallel Job Developer’s Guide 12-39

Outputs Page

DB2/UDB Enterprise Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Connection/Use True/False True Y N N/A
Default Server
Connection/Server string N/A Y (if Use N N/A
Database

environment
variable = False)

Connection/Database string N/A Y (if Use Server N N/A

Connection/Client
Instance Name

Options/Close
Command

Options/Open
Command

environment

variable = False)
string N/A N N N/A
string N/A N N N/A

string N/A N N N/A

Source Category

Lookup Type

Where the DB2/UDB Enterprise Stage is connected to a Lookup stage
via a reference link, this property specifies whether the DB2/UDB
Enterprise Stage will provide data for an in-memory look up (Lookup
Type = Normal) or whether the lookup will access the database
directly (Lookup Type = Sparse). If the Lookup Type is Normal, the
Lookup stage can have multiple reference links. If the Lookup Type is
Sparse, the Lookup stage can only have one reference link.

Read Method

This property specifies whether you are specifying a table or a query
when reading the DB2/UDB database, and how you are generating the

query:

m Select the Table method in order to use the Table property to
specify the read. This will read in parallel.

m Select Auto-generated SQL to have DataStage automatically
generate an SQL query based on the columns you have defined
and the table you specify in the Table property.

m Select User-defined SQL to define your own query.

m Select SQL Builder Generated SQL to open the SQL Builder and
define the query using its helpful interface (see Chapter 59, "SQL
Builder.")

12-40

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page

By default, Read methods of SQL Builder Generated SQL, Auto-
generated SQL, and User-defined SQL operate sequentially on a
single node. You can have the User-defined SQL read operate in
parallel if you specify the Partition Table property.

Query

This property is used to contain the SQL query when you choose a
Read Method of User-defined query or Auto-generated SQL. If you are
using Auto-generated SQL you must select a table and specify some
column definitions. An SQL statement can contain joins, views,
database links, synonyms, and so on. It has the following dependent
option:

m Partition Table

Specifies execution of the query in parallel on the processing
nodes containing a partition derived from the named table. If you
do not specify this, the stage executes the query sequentially on a
single node.

Table

Specifies the name of the DB2 table. The table must exist and you
must have SELECT privileges on the table. If your DB2 user name
does not correspond to the owner of the specified table, you can
prefix it with a table owner in the form:

table_owner.table_name

If you use a Read method of Table, then the Table property has two
dependent properties:

m Where clause

Allows you to specify a WHERE clause of the SELECT statement to
specify the rows of the table to include or exclude from the read
operation. If you do not supply a WHERE clause, all rows are read.

m Select List

Allows you to specify an SQL select list of column names.

Connection Category

Use Default Server

This is set to True by default, which causes the stage to use the setting
of the DB2INSTANCE environment variable to derive the server. If you
set this to False, you must specify a value for the Override Server
property. (This does not appear if you are developing a job for
deployment on a USS system).

Parallel Job Developer’s Guide 12-41

Outputs Page

DB2/UDB Enterprise Stage

Use Default Database

This is set to True by default, which causes the stage to use the setting
of the environment variable APT_DBNAME, if defined, and DB2DBDFT
otherwise to derive the database. For USS systems, True causes the
default DB2 sub-system to be used. If you set the property to False,
you must specify a value for the Override Database property.

Server

Optionally specifies the DB2 instance name for the table. This
property appears if you set Use Server Environment Variable property
to False. (This does not appear if you are developing a job for
deployment on a USS system).

Database

Optionally specifies the name of the DB2 database to access. This
property appears if you set Use Database Environment Variable
property to False.

Client Instance Name

This property is only required if you are connecting to a remote DB2
server. It specifies the DB2 client through which you are making the
connection (see "Remote Connection" on page 12-4). (This does not
appear if you are developing a job for deployment on a USS system).

Note Connection details are normally specified by environment
variables as described in "Accessing DB2 Databases" on
page 12-3. If you are specifying a remote connection, when
you fill in the client instance name, user and password
fields appear and allows you to specify these for connection
to the remote server.

Options Category

Close Command

This is an optional property. Use it to specify a command to be parsed
and executed by the DB2 database on all processing nodes after the
stage finishes processing the DB2 table. You can specify a job
parameter if required.

Open Command

This is an optional property. Use it to specify a command to be parsed
and executed by the DB2 database on all processing nodes before the
DB2 table is opened. You can specify a job parameter if required.

12-42

Parallel Job Developer’s Guide

DB2/UDB Enterprise Stage Outputs Page

Pad Character

This appears when you are using a DB2 table as a lookup (i.e. have a
Lookup Type of Sparse). It specifies the padding character to be used
in the construction of a WHERE clause when it contains string
columns that have a length less than the DB2 char column in the
database. It defaults to null. (See "Using the Pad Character Property"
on page 12-7.)

Parallel Job Developer’s Guide 12-43

Outputs Page DB2/UDB Enterprise Stage

12-44 Parallel Job Developer’s Guide

13

Oracle Enterprise Stage

The Oracle Enterprise Stage is a database stage. It allows you to read
data from and write data to an Oracle database. It can also be used in
conjunction with a Lookup stage to access a lookup table hosted by an
Oracle database (see Chapter 20, "Merge Stage.")

The Oracle Enterprise Stage can have a single input link and a single
reject link, or a single output link or output reference link.

The stage performs one of the following operations:

m Updates an Oracle table using INSERT and/or UPDATE as
appropriate. Data is assembled into arrays and written using
Oracle host-array processing.

m Loads an Oracle table (using Oracle fast loader).
m Reads an Oracle table.

m Deletes rows from an Oracle table.

m Performs a lookup directly on an Oracle table.

m Loads an Oracle table into memory and then performs a lookup on
it.
When using an Oracle stage as a source for lookup data, there are
special considerations about column naming. If you have columns of
the same name in both the source and lookup data sets, note that the
source data set column will go to the output data. If you want this
column to be replaced by the column from the lookup data source,
you need to drop the source data column before you perform the
lookup (you could, for example, use a Modify stage to do this). See
Chapter 20, "Merge Stage," for more details about performing
lookups.

Parallel Job Developer’s Guide 131

Oracle Enterprise Stage

Writing to an Oracle Database

o] - i —
D5Link3 DSLink4

Data_Set Transformer Oracle

Reading from an Oracle Database

- pald = o
DSLink3 DSLinkd n

Oracle Tranzformer [ata Set

Using the Oracle Enterprise stage to access a
Lookup table

.
Sol| =R e g [
s D5Linkd o DSLinks =

[Data Set ;%t Lookup_1 [Data_Set_3

’J’Jlocuk_up

Oracle_8

When you edit a Oracle Enterprise Stage, the Oracle Enterprise Stage
editor appears. This is based on the generic stage editor described in
Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are
reading or writing a database:

Stage Page. This is always present and is used to specify general
information about the stage.

Inputs Page. This is present when you are writing to a Oracle
database. This is where you specify details about the data being
written.

Outputs Page. This is present when you are reading from a
Oracle database, or performing a lookup on an Oracle database.
This is where you specify details about the data being read.

13-2

Parallel Job Developer’s Guide

Oracle Enterprise Stage Accessing Oracle Databases

Accessing Oracle Databases

You need to be running Oracle 8 or better, Enterprise Edition in order
to use the Oracle Enterprise Stage.

You must also do the following:

1 Create the user defined environment variable ORACLE_HOME and
set this to the $ORACLE_HOME path (e.g., /disk3/oracle9i).

2 Create the user defined environment variable ORACLE_SID and
set this to the correct service name (e.g., ODBCSOL).

3 Add ORACLE_HOME/bin to your PATH and ORACLE_HOME/lib to
your LIBPATH, LD_LIBRARY_PATH, or SHLIB_PATH.

4 Have login privileges to Oracle using a valid Oracle user name and
corresponding password. These must be recognized by Oracle
before you attempt to access it.

5 Have SELECT privilege on:
— DBA_EXTENTS
— DBA_DATA_FILES
— DBA_TAB_PARTITONS
— DBA_TAB_SUBPARTITONS
— DBA_OBJECTS
— ALL_PART_INDEXES
— ALL_PART_TABLES
— ALL_INDEXES
— SYS.GV_$INSTANCE (Only if Oracle Parallel Server is used)

Note APT_ORCHHOME/bin must appear before ORACLE_HOME/
bin in your PATH.

We suggest that you create a role that has the appropriate SELECT
privileges, as follows:

CREATE ROLE DSXE;

GRANT SELECT on sys.dba_extents to DSXE;

GRANT SELECT on sys.dba_data_files to DSXE;
GRANT SELECT on sys.dba_tab_partitions to DSXE;
GRANT SELECT on sys.dba_tab_subpartitions to DSXE;
GRANT SELECT on sys.dba_objects to DSXE;

GRANT SELECT on sys.all_part_indexes to DSXE;
GRANT SELECT on sys.all_part_tables to DSXE;
GRANT SELECT on sys.all_indexes to DSXE;

Parallel Job Developer’s Guide 13-3

Accessing Oracle Databases Oracle Enterprise Stage

Once the role is created, grant it to users who will run DataStage jobs,
as follows:

GRANT DSXE to <oracle userid>;

Handling Special Characters (# and $)

The characters # and $ are reserved in DataStage and special steps are
needed to handle Oracle databases which use the characters # and $
in column names. DataStage converts these characters into an
internal format, then converts them back as necessary.

To take advantage of this facility, you need to do the following:

m |n DataStage Administrator, open the Environment Variables
dialog for the project in question, and set the environment
variable DS_ENABLE_RESERVED_CHAR_CONVERT to true (this
can be found in the General\Customize branch).

¥ Environment variables [_[a]x]

i~ Environment variabl

The fallowing categarized environment wariables are defined in this project. Either set a default value for an existing environment variable or add a new
enwironment wariable to the user defined categor.

Categories: D etails:

[=- General

¢ b Customize

= Parallel DS_TOM_PIPE_OPEN_TIMEOUT

Operatar Specific 0S_TOM_TRACE_SUBROUTIME_CALLS Trace TDMLoad plug-in subroutine c. False

: Reparting EMABLE _RESERVED _CHAR_COMVERT Enable reserved character handling Fake
- Compiler

- User Defined

Set to Default |
Al ta Default |

Wariable Help I

oK I Cancel | Help I
P

m Avoid using the strings __035__and __036__in your Oracle
column names (these are used as the internal representations of #
and $ respectively).

When using this feature in your job, you should import meta data
using the Plug-in Meta Data Import tool, and avoid hand-editing (this
minimizes the risk of mistakes or confusion).

Once the table definition is loaded, the internal column names are
displayed rather than the original Oracle names both in table
definitions and in the Data Browser. They are also used in derivations
and expressions. The original names are used in generated SQL
statements, however, and you should use them if entering SQL in the
job yourself.

Generally, in the Oracle stage, you enter external names everywhere
except when referring to stage column names, where you use names
in the form ORCHESTRATE.internal name.

134

Parallel Job Developer’s Guide

Oracle Enterprise Stage Accessing Oracle Databases

When using the Oracle stage as a target, you should enter external
names as follows:

m For Load options, use external names for select list properties.

m For Upsert option, for update and insert, use external names when
referring to Oracle table column names, and internal names when
referring to the stage column names. For example:

INSERT INTO tablename (A#, B$#) VALUES
(ORCHESTRATE.A__036__A__035__, ORCHESTRATE.B__035__035_B_ 036_)

UPDATE tablename SET B$#= ORCHESTRATE.B__035__035__B_ 036__ WHERE (A#
= ORCHESTRATE.A__036__A__035_)
When using the Oracle stage as a source, you should enter external
names as follows:

m For Read using the user-defined SQL method, use external names
for Oracle columns for SELECT: For example:

SELECT M#$, D#$ FROM tablename WHERE (M#$ > 5)

m For Read using Table method, use external names in select list and
where properties.

When using the Oracle stage in parallel jobs as a look-up, you should
enter external or internal names as follows:

m For Lookups using the user-defined SQL method, use external
names for Oracle columns for SELECT, and for Oracle columns in
any WHERE clause you might add. Use internal names when
referring to the stage column names in the WHERE clause. For
example:

SELECT M$##, D#$ FROM tablename
WHERE (B$# = ORCHESTRATE.B__035__ B _ 036_).

m For Lookups using the Table method, use external names in select
list and where properties.

m Use internal names for the key option on the Inputs page
Properties tab of the Lookup stage to which the Oracle stage is
attached.

Loading Tables

There are some special points to note when using the Load method in
this stage (which uses the Oracle fast loader) to load tables with
indexes.

By default, the stage sets the following options in the Oracle load
control file:

m DIRECT=TRUE
m PARALLEL = TRUE

Parallel Job Developer’s Guide 13-5

Accessing Oracle Databases Oracle Enterprise Stage

This causes the load to run using parallel direct load mode. In order to
use the parallel direct mode load, the table must not have indexes, or
you must include one of the Index Mode properties, 'rebuild’ or
'maintenance’ (see page 13-24). If the only index on the table is from a
primary key or unique key constraint, you can instead use the Disable
Constraints property (see page 13-23) which will disable the primary
key or unique key constraint, and enable it again after the load.

If you set the Index Mode property to rebuild, the following options
are set in the file:

m SKIP_INDEX_MAINTENANCE=YES

m PARALLEL=TRUE

If you set the Index Mode property to maintenance, the following
option is set in the file:

m PARALLEL=FALSE

You can use the environment variable APT_ORACLE_LOAD_OPTIONS
to control the options that are included in the Oracle load control
file.You can load a table with indexes without using the Index Mode or
Disable Constraints properties by setting the
APT_ORACLE_LOAD_OPTIONS environment variable appropriately.
You need to set the Direct option and/or the PARALLEL option to
FALSE, for example:

APT_ORACLE_LOAD_OPTIONS="'OPTIONS(DIRECT=FALSE, PARALLEL=TRUE)"

In this example the stage would still run in parallel, however, since
DIRECT is set to FALSE, the conventional path mode rather than the
direct path mode would be used.

If APT_ORACLE_LOAD_OPTIONS is used to set PARALLEL to FALSE,
then you must set the execution mode of the stage to run sequentially
on the Advanced tab of the Stage page (see page 13-15).

If loading index organized tables (IOTs), you should not set both
DIRECT and PARALLEL to true as direct parallel path load is not
allowed for I0Ts.

Type Conversions - Writing to Oracle

When writing or loading, the Oracle Enterprise stage automatically
converts DataStage data types to Oracle data types as shown in the
following table::

DataStage SQL Data Underlying Data Type Oracle Data Type
Type

Date date DATE

13-6

Parallel Job Developer’s Guide

Oracle Enterprise Stage

Accessing Oracle Databases

DataStage SQL Data
Type

Underlying Data Type

Oracle Data Type

Time

Timestamp

Decimal
Numeric

TinyInt
Smalllnt
Integer
Biglnt
BigInt

Float
Real

Double

Binary

Bit
LongVarBinary
VarBinary

Unknown
Char

LongVarChar
VarChar

LongVarChar
VarChar

time

timestamp

decimal (p, s)

int8/uint8
int16/uint16
int32/uint32
int64
uint64

sfloat

dfloat

raw

fixed-length string in the
form string[n] and
ustring[n]; length <= 255
bytes

variable-length string, in
the form string[max=n]
and ustring[max=n];
maximum length <= 2096
bytes

variable-length string in
the form string and ustring

DATE (does not support
microsecond resolution)

DATE (does not support
microsecond resolution)

NUMBER (p, s)

NUMBER (3, 0)

NUMBER (3, 0)

NUMBER (10, 0)
NUMBER (19, 0)
NUMBER (20, 0)
NUMBER

NUMBER

not supported

CHAR(n)

where n is the string
length

VARCHAR(n)

where nis the maximum
string length

VARCHAR(32)*

The default length of VARCHAR is 32 bytes. That is, 32 bytes are
allocated for each variable-length string field in the input data set. If an
input variable-length string field is longer than 32 bytes, the stage

issues a warning.

Parallel Job Developer’s Guide

13-7

Examples Oracle Enterprise Stage

Type Conversions - Reading from Oracle

When reading, the Oracle Enterprise stage automatically converts
Oracle data types to DataStage data types as shown in the following
table:

DataStage SQL Data Underlying Data Type Oracle Data Type

Type
Unknown string[n] or ustring[n] CHAR(n)
Char Fixed length string with
LongVarChar length = n
VarChar
NChar
NVarChar
LongNVarChar
Unknown string[max = n] or VARCHAR(n)
Char ustring[max = n]
LongVarChar variable length string with
VarChar length = n
NChar
NVarChar
LongNVarChar
Timestamp Timestamp DATE
Decimal decimal (38,10) NUMBER
Numeric
Integer int32 if precision (p) <11 NUMBER(p, s)
Decimal and scale (s) =0
Numeric decimal[p, s] if precision
(p) =>11 and scale (s) > 0
not supported not supported RAW(n)
Examples

Looking Up an Oracle Table

This example shows what happens when data is looked up in an
Oracle table. The stage in this case will look up the interest rate for
each customer based on the account type. Here is the data that arrives
on the primary link:

Customer accountlNo accountType balance

Latimer 7125678 plat 7890.76

13-8 Parallel Job Developer’s Guide

Oracle Enterprise Stage

Examples

Ridley 7238892 flexi 234.88
Cranmer 7611236 gold 1288.00
Hooper 7176672 flexi 3456.99
Moore 7146789 gold 424.76

Here is the data in the Oracle lookup table:

accountType InterestRate

bronze 1.25
silver 1.50
gold 1.75
plat 2.00
flexi 1.88
fixterm 3.00

Here is what the lookup stage will output:

Customer accountNo accountType balance InterestRate

Latimer 7125678 plat 7890.76 2.00
Ridley 7238892 flexi 234.88 1.88
Cranmer 7611236 gold 1288.00 1.75
Hooper 7176672 flexi 3456.99 1.88
Moore 7146789 gold 424.76 1.75

The job looks like the one illustrated on page 13-2. The Data_set stage
provides the primary input, Oracle_8 provides the lookup data,
Lookup_1 performs the lookup and outputs the resulting data to
Data_Set_3. In the Oracle stage we specify that we are going to look
up the data directly in the Oracle database, and the name of the table
we are going to look up. In the Look up stage we specify the column
that we are using as the key for the look up.

Parallel Job Developer’s Guide

13-9

Examples

Oracle Enterprise Stage

The properties for the Oracle stage are as follows:

ﬁii Oracle_Enterprize_11 - Oracle Enterprize

Stage Qutput |

Output nameZIDSLink? ﬂ Columnsz... i [ata. |

General Properties |Qo|umns| Advancedl

B+ Source
. ety Lookup Tupe = Sparse
&y Fead Method = Table

Infarmation:

1l
o

oy 1tk o e -
5
i

Lookup Type:

€ DB Optiors = {user=gwil password="" Determine what type of lookup we are doing. ;I
- DE Optionzs Mode = Auto-generate
@ Pazsword = =

& User = gwil

Lovalatle properties fo) add:

4] | @

k. I Cancel | Help

4

The properties for the look up stage are as follows:

gf Lookup_2 - Lookup =] E3

Stage Input I DOutput |

Input name: [{n{ o

Columns... |

General Properties | Pgltitioningl Qolumnsl Advancedl

= Lookup Keys [property eelected]

...... @ Key = Interest_rate

| rfarmaticr:

= L L = |
[KIEI31

Available properties bo add:

[&] Kep

] 4 I Cancel Help

Updating an Oracle Table

This example shows an Oracle table being updated with three new
columns. The database records the horse health records of a large
stud. Details of the worming records are being added to the main
table and populated with the most recent data, using the existing

13-10

Parallel Job Developer’s Guide

Oracle Enterprise Stage Examples

column “name” as a key. The meta data for the new columns is as
follows:

Qenerall Elopertiesl Fartitioning | .t’-‘n.dvancedl

Column name | Fey | SOL type | Extended | Length |Sca|e| Nullable| Description
1 | name Char Mo
|2 | wormer_type [Char Unicode Mo
| 3 | dose_interval [Char Unicode Mo
4 | dose_level] Char Unicode Mo
O

4 L3

Sawve.. | Load... |

We are going to specify upsert as the write method and choose User-
defined Update & Insert as the upsert mode, this is so that we do not
include the existing name column in the INSERT statement. The
properties (showing the INSERT statement) are shown below. The
INSERT statement is as generated by the DataStage, except the name
column is removed.

Eii Oracle_Enterprize_3 - Oracle Enterprizse

Stage Input |
Input name: | DSLink2 i Columns... |
General Properties | F'grtitioningl Qolumnsl Advancedl
B3 Target -~ | Insert SOL:
& Insert SOL = INSERT INTO horse_he INSERT 1= d
- Table = horse_health * Lri-rrs?a health
~@ Update SOL = UPDATE harse_health | [wormer_type, dase_interval, dase_level]
~& Upsert Mode = User-defined Update & Ii ES
L Wiite Method = Upsert 3 | [ORCHESTRATE name,
B3 Connection OREHESTRATE warmer_type,
L o . ORCHESTRATE. dose_interval,
~$ DB Options = fuser-guilpassword=" § | |0RCHECTRATE doserlovel
= @ DB Options Mode = Auto-generate LI
el Passwird = s
. & User = gwil Available properties to add:
=+ Options & Insert Array Size

------ & Output Reject Records = False

QK I Cancel Help

Parallel Job Developer’s Guide 13-11

Must Do’s Oracle Enterprise Stage

The UPDATE statement is as automatically generated by DataStage:

|Jpdate SOL:

LIPDATE =]+

horze_health

SET

warmer_type = ORCHESTRATE wormer_type,
doze interval = ORCHESTRATE dose_interval,
doze_level = ORCHESTRATE . dose_lewvel
"WHERE

[name = DORCHESTRATE.name]

[

fml=hleinrmmerhse bniaddt

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Oracle Enterprise Stages in a job. This section specifies the
minimum steps to take to get a Oracle Enterprise Stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on what you are using an Oracle
Enterprise Stage for.

Updating an Oracle Database

m In the Input Link Properties Tab, under the Target category
specify the update method as follows:

— Specify a Write Method of Upsert.
— Specify the Table you are writing.

— Choose the Upsert Mode, this allows you to specify whether to
insert and update, or update only, and whether to use a
statement automatically generated by DataStage or specify
your own.

— If you have chosen an Upsert Mode of User-defined Update
and Insert, specify the Insert SQL statement to use. DataStage
provides the auto-generated statement as a basis, which you
can edit as required.

— If you have chosen an Upsert Mode of User-defined Update
and Insert or User-defined Update only, specify the Update SQL
statement to use. DataStage provides the auto-generated
statement as a basis, which you can edit as required.

13-12 Parallel Job Developer’s Guide

Oracle Enterprise Stage

Must Do’s

Under the Connection category, you can either manually specify a
connection string, or have DataStage generate one for you using a
user name and password you supply. Either way you need to
supply a valid username and password. DataStage encrypts the
password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,
but you can specify a remote server if required.

Under the Options category:

— If you want to send rejected rows down a rejects link, set
Output Rejects to True (it is false by default).

Ensure column meta data has been specified for the write.

Deleting Rows from an Oracle Database

This is the same as writing an Oracle database, except you need to
specify details of the SQL statements used to delete rows from the
database:

In the Input Link Properties Tab:
— Choose a Write Method of Delete Rows.

— Choose the Delete Rows Mode, this allows you to specify
whether to use a statement automatically generated by
DataStage or specify your own.

— If you have chosen a Delete Rows Mode of User-defined delete,
specify the Delete SQL statement to use. DataStage provides
the auto-generated statement as a basis, which you can edit as
required.

Loading an Oracle Database

This is the default write method.

In the Input Link Properties Tab, under the Target category:
— Specify a Write Method of Load.
— Specify the Table you are writing.

— Specify the Write Mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).

Under the Connection category, you can either manually specify a
connection string, or have DataStage generate one for you using a
user name and password you supply. Either way you need to

Parallel Job Developer’s Guide 13-13

Must Do’s

Oracle Enterprise Stage

supply a valid username and password. DataStage encrypts the
password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,
but you can specify a remote server if required.

Ensure column meta data has been specified for the write.

Reading an Oracle Database

In the Output Link Properties Tab:

— Choose a Read Method. This is Table by default, but you can
also choose to read using auto-generated SQL or user-
generated SQL. The read operates sequentially on a single
node unless you specify a Partition Table property (which
causes parallel execution on the processing nodes containing a
partition derived from the named table).

— Specify the table to be read.

— If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category, you can either manually specify a
connection string, or have DataStage generate one for you using a
user name and password you supply. Either way you need to
supply a valid username and password. DataStage encrypts the
password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,
but you can specify a remote server if required.

Ensure column meta data has been specified for the read.

Performing a Direct Lookup on an Oracle Database Table

Connect the Oracle Enterprise Stage to a Lookup stage using a
reference link.

In the Output Link Properties Tab:
— Set the Lookup Type to Sparse.

— Choose a Read Method. This is Table by default (which reads
directly from a table), but you can also choose to read using
auto-generated SQL or user-generated SQL.

— Specify the table to be read for the lookup.

13-14

Parallel Job Developer’s Guide

Oracle Enterprise Stage Stage Page

— If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.
You would use this if, for example, you wanted to perform a
non-equality based lookup.

Under the Connection category, you can either manually specify a
connection string, or have DataStage generate one for you using a
user name and password you supply. Either way you need to
supply a valid username and password. DataStage encrypts the
password when you use the auto-generate option.

By default, DataStage assumes Oracle resides on the local server,
but you can specify a remote server if required.

m Ensure column meta data has been specified for the lookup.

Performing an In Memory Lookup on an Oracle Database
Table

This is the default method. It has the same requirements as a direct
lookup, except:

m [n the Output Link Properties Tab:
— Set the Lookup Type to Normal.

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

Advanced Tab

This tab allows you to specify the following:

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the data is processed by the conductor node.

m Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Parallel Job Developer’s Guide 13-15

Stage Page

Oracle Enterprise Stage

NLS Map

Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (it is ignored for write operations). Note that this
field is only visible if the stage has output links.

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

The NLS Map tab allows you to define a character set map for the

Oracle Enterprise stage. You can set character set maps separately for

NCHAR and NVARCHAR2 types and all other data types. This
overrides the default character set map set for the project or the job.
You can specify that the map be supplied as a job parameter if
required.

§E§ Oracle_Enterprise_3 - Oracle Enterprise

Stage | Output I

Stage name: |Dracle_Enterprise_3

ﬁeneral' Advanced N

Select category to set map for:
MCHAR /A MYaRCHARZ
Other types

tap name for MCHAR / NYARCHAR 2"
Project default [1S0-8253-1) ﬂ

I5CH werzion=0
ISCI werzion=1

ISCI wersion=2 hd|

0k I Cancel | Help |

v

Load performance may be improved by specifying an Oracle map
instead of a DataStage map. To do this, add an entry to the file

13-16

Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page

oracle_cs, located at $APT_ORCHHOME/etc, to associate the
DataStage map with an Oracle map.

The oracle_cs file has the following format:

UTF-8 UTF8
IS0-8859-1 WE8IS08859P1
EUC-JP JA16EUC

The first column contains DataStage map names and the second
column the Oracle map names they are associated with.

So, using the example file shown above, specifying the DataStage
map EUC-JP in the Oracle stage will cause the data to be loaded using
the Oracle map JA16EUC.

Inputs Page

The Inputs page allows you to specify details about how the Oracle
Enterprise Stage writes data to a Oracle database. The Oracle
Enterprise Stage can have only one input link writing to one table.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the database. The
Columns tab specifies the column definitions of incoming data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Details about Oracle Enterprise Stage properties, partitioning, and
formatting are given in the following sections. See Chapter 3, "Stage
Editors," for a general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and where. Some of the
properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

Parallel Job Developer’s Guide 13-17

Inputs Page

Oracle Enterprise Stage

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/Table string N/A Y (if Write N N/A
Method = Load)
Target/Delete Auto- Auto- Y if Write N N/A
Rows Mode generated generate method = Delete
delete/user- d delete Rows
defined
delete
Target/Delete SQL String N/A Y if Write N N/A
method = Delete
Rows
Target/Upsert Auto- Auto- Y (if Write N N/A
mode generated generate Method =
Update & d Update Upsert)
insert/Auto- & insert
generated
Update Only/
User-defined
Update &
Insert/User-
defined
Update Only
Target/Insert SOL string N/A N N/A
Target/Insert number 500 N Insert SQL
Array Size
Target/Update string N/A Y (if Write N N/A
SQL Method =
Upsert)
Target/\Write Delete Rows/ Load Y N N/A
Method Upsert/Load
Target/Write Append/ Append Y (if Write N N/A
Mode Create/ Method = Load)
Replace/
Truncate
Connection/DB string N/A Y N N/A
Options
Connection/DB Auto- Auto- Y N N/A
Options Mode generate/ generate

User-defined

13-18

Parallel Job Developer’s Guide

Oracle Enterprise Stage

Inputs Page

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Connection/User string N/A Y (if DB Options N DB Options Mode
Mode = Auto-
generate)
Connection/ string N/A Y (if DB Options N DB Options Mode
Password Mode = Auto-
generate)
Connection/ string N/A N N N/A
Remote Server
Options/Output True/False False Y (if Write N N/A
Reject Records Method =
Upsert)
Options/Silently True/False False Y (if Write N N/A
Drop Columns Method = Load)
Not in Table
Options/Table Heap/Index Heap Y (if Write N N/A
Organization Method = Load
and Write Mode
= Create or
Replace)
Options/Truncate True/False False Y (if Write N N/A
Column Names Method = Load)
Options/Close string N/A N N N/A
Command
Options/Default number 32 N N N/A
String Length
Options/Index Maintenance/ N/A N N N/A
Mode Rebuild
Options/Add True/False False N N Index Mode
NOLOGGING
clause to Index
rebuild
Options/Add True/False False N N Index Mode
COMPUTE
STATISTICS
clause to Index
rebuild
Options/Open string N/A N N N/A
Command
Options/Oracle 8 string N/A N N N/A

Partition

Parallel Job Developer’s Guide

13-19

Inputs Page Oracle Enterprise Stage

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Options/Create True/False False Y (if Write Mode N N/A
Primary Keys = Create or
Replace)
Options/Disable True/False False Y (if Write N N/A
Constraints Method = Load)
Options/ string N/A N N Disable Constraints
Exceptions Table
Options/Table has True/False False N N N/A
NCHAR/
NVARCHAR

Target Category

Table

Specify the name of the table to write to. You can specify a job
parameter if required.

Delete Rows Mode

This only appears for the Delete Rows write method. Allows you to
specify how the delete statement is to be derived. Choose from:

= Auto-generated Delete. DataStage generates a delete
statement for you, based on the values you have supplied for
table name and column details. The statement can be viewed by
selecting the Delete SQL property.

m User-defined Delete. Select this to enter your own delete
statement. Then select the Delete SQL property and edit the
statement proforma.

Delete SOL

Only appears for the Delete Rows write method. This property allows
you to view an auto-generated Delete statement, or to specify your
own (depending on the setting of the Delete Rows Mode property).

Upsert mode

This only appears for the Upsert write method. Allows you to specify
how the insert and update statements are to be derived. Choose from:

13-20 Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page

= Auto-generated Update & Insert. DataStage generates update
and insert statements for you, based on the values you have
supplied for table name and on column details. The statements
can be viewed by selecting the Insert SQL or Update SQL
properties.

= Auto-generated Update Only. DataStage generates an update
statement for you, based on the values you have supplied for
table name and on column details. The statement can be viewed
by selecting the Update SQL properties.

m User-defined Update & Insert. Select this to enter your own
update and insert statements. Then select the Insert SQL and
Update SQL properties and edit the statement proformas.

m User-defined Update Only. Select this to enter your own update
statement. Then select the Update SQL property and edit the
statement proforma.

Insert SOL

Only appears for the Upsert write method. This property allows you to
view an auto-generated Insert statement, or to specify your own
(depending on the setting of the Update Mode property). It has a
dependent property:

m Insert Array Size

Specify the size of the insert host array. The default size is 500
records. If you want each insert statement to be executed
individually, specify 1 for this property.

Update SQL

Only appears for the Upsert write method. This property allows you to
view an auto-generated Update statement, or to specify your own
(depending on the setting of the Upsert Mode property).

Write Method

Choose from Delete Rows, Upsert or Load (the default). Upsert allows
you to provide the insert and update SQL statements and uses Oracle
host-array processing to optimize the performance of inserting
records. Load sets up a connection to Oracle and inserts records into a
table, taking a single input data set. The Write Mode property
determines how the records of a data set are inserted into the table.

Write Mode

This only appears for the Load Write Method. Select from the
following:

Parallel Job Developer’s Guide 13-21

Inputs Page

Oracle Enterprise Stage

m Append. This is the default. New records are appended to an
existing table.

m Create. Create a new table. If the Oracle table already exists an
error occurs and the job terminates. You must specify this mode if
the Oracle table does not exist.

m Replace. The existing table is first dropped and an entirely new
table is created in its place. Oracle uses the default partitioning
method for the new table.

m Truncate. The existing table attributes (including schema) and the
Oracle partitioning keys are retained, but any existing records are
discarded. New records are then appended to the table.

Connection Category

DB Options

Specify a user name and password for connecting to Oracle in the
form:

<user=<user>,password=<password>[,arraysize=
<num_records>]

DataStage does not encrypt the password when you use this option.
Arraysize is only relevant to the Upsert Write Method.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a
DB Options string for you. If you select User-defined, you have to edit
the DB Options property yourself. When Auto-generate is selected,
there are two dependent properties:

m User
The user name to use in the auto-generated DB options string.
m Password
The password to use in the auto-generated DB options string.
DataStage encrypts the password.
Remote Server

This is an optional property. Allows you to specify a remote server
name.

13-22

Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page

Options Category

Create Primary Keys

This option is available with a Write Mode of Create or Replace. It is
False by default, if you set it True, the columns marked as keys in the
Columns tab will be marked as primary keys. You must set this true if
you want to write index organized tables, and indicate which are the
primary keys on the Columns tab. Note that, if you set it to True, the
Index Mode option is not available.

Disable Constraints

This is False by default. Set True to disable all enabled constraints on a
table when loading, then attempt to reenable them at the end of the
load. This option is not available when you select a Table Organization
type of Index to use index organized tables. When set True, it has a
dependent property:

m Exceptions Table

This property enables you to specify an exceptions table, which is
used to record ROWID information on rows that violate
constraints when the constraints are reenabled. The table must
already exist.

Output Reject Records

This only appears for the Upsert write method. It is False by default,
set to True to send rejected records to the reject link.

Silently Drop Columns Not in Table

This only appears for the Load Write Method. It is False by default. Set
to True to silently drop all input columns that do not correspond to
columns in an existing Oracle table. Otherwise the stage reports an
error and terminates the job.

Table Organization

This appears only for the Load Write Method using the Create or
Replace Write Mode. Allows you to specify Index (for index organized
tables) or heap organized tables (the default). When you select Index,
you must also set Create Primary Keys to true. In index organized
tables (I0Ts) the rows of the table are held in the index created from
the primary keys.

Parallel Job Developer’s Guide 13-23

Inputs Page

Oracle Enterprise Stage

Truncate Column Names

This only appears for the Load Write Method. Set this property to True
to truncate column names to 30 characters.

Close Command

This is an optional property and only appears for the Load Write
Method. Use it to specify any command, in single quotes, to be parsed
and executed by the Oracle database on all processing nodes after the
stage finishes processing the Oracle table. You can specify a job
parameter if required.

Default String Length

This is an optional property and only appears for the Load Write
Method. It is set to 32 by default. Sets the default string length of
variable-length strings written to a Oracle table. Variable-length
strings longer than the set length cause an error.

The maximum length you can set is 2000 bytes. Note that the stage
always allocates the specified number of bytes for a variable-length
string. In this case, setting a value of 2000 allocates 2000 bytes for
every string. Therefore, you should set the expected maximum length
of your largest string and no larger.

Index Mode

This is an optional property and only appears for the Load Write
Method. Lets you perform a direct parallel load on an indexed table
without first dropping the index. You can choose either Maintenance
or Rebuild mode. The Index property only applies to append and
truncate Write Modes.

Rebuild skips index updates during table load and instead rebuilds the
indexes after the load is complete using the Oracle alter index rebuild
command. The table must contain an index, and the indexes on the
table must not be partitioned. The Rebuild option has two dependent
properties:

m Add NOLOGGING clause to Index rebuild
This is False by default. Set True to add a NOLOGGING clause.
m Add COMPUTE STATISTICS clause to Index rebuild

This is False by default. Set True to add a COMPUTE STATISTICS
clause.

Maintenance results in each table partition’s being loaded
sequentially. Because of the sequential load, the table index that
exists before the table is loaded is maintained after the table is loaded.

13-24

Parallel Job Developer’s Guide

Oracle Enterprise Stage Inputs Page

The table must contain an index and be partitioned, and the index on
the table must be a local range-partitioned index that is partitioned
according to the same range values that were used to partition the
table. Note that in this case sequential means sequential per partition,
that is, the degree of parallelism is equal to the number of partitions.

Open Command

This is an optional property and only appears for the Load Write
Method. Use it to specify a command, in single quotes, to be parsed
and executed by the Oracle database on all processing nodes before
the Oracle table is opened. You can specify a job parameter if
required.

Oracle 8 Partition

This is an optional property and only appears for the Load Write
Method. Name of the Oracle 8 table partition that records will be
written to. The stage assumes that the data provided is for the
partition specified.

Table has NCHAR/NVARCHAR

This option applies to Create or Replace Write Modes. Set it True if the
table being written contains NCHAR and NVARCHARS, so that the
correct columns are created in the target table.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the
Oracle database. It also allows you to specify that the data should be
sorted before being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

If the Oracle Enterprise Stage is operating in sequential mode, it will
first collect the data before writing it to the file using the default Auto
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the Oracle Enterprise Stage is set to execute in parallel or
sequential mode.

Parallel Job Developer’s Guide 13-25

Inputs Page

Oracle Enterprise Stage

Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Oracle Enterprise Stage is set to execute in parallel, then you can
set a partitioning method by selecting from the Partition type drop-
down list. This will override any current partitioning.

If the Oracle Enterprise Stage is set to execute in sequential mode, but
the preceding stage is executing in parallel, then you can set a
collection method from the Collector type drop-down list.

The following partitioning methods are available:

(Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Oracle
Enterprise Stage.

Entire. Each file written to receives the entire data set.

Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag fields.

Random. The records are partitioned randomly, based on the
output of a random number generator.

Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

Same. Preserves the partitioning already in place. This is the
default for Oracle Enterprise Stages.

DB2. Replicates the partitioning method of the specified DB2
table. Requires extra properties to be set. Access these properties
by clicking the properties button .

Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button .

The following Collection methods are available:

(Auto). This is the default collection method for Oracle Enterprise
Stages. Normally, when you are using Auto mode, DataStage will
eagerly read any row from any input partition as it becomes
available.

Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

13-26

Parallel Job Developer’s Guide

Oracle Enterprise Stage Outputs Page

m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the file or files.
The sort is always carried out within data partitions. If the stage is
partitioning incoming data the sort occurs after the partitioning. If the
stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the Oracle
Enterprise Stage reads data from a Oracle database. The Oracle
Enterprise Stage can have only one output link. Alternatively it can
have a reference output link, which is used by the Lookup stage when
referring to a Oracle lookup table. It can also have a reject link where
rejected records are routed (used in conjunction with an input link).
The Output Name drop-down list allows you to choose whether you
are looking at details of the main output link or the reject link.

Parallel Job Developer’s Guide 13-27

Outputs Page

Oracle Enterprise Stage

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Columns tab specifies the column
definitions of the data. The Advanced tab allows you to change the
default buffering settings for the output link.

Details about Oracle Enterprise Stage properties are given in the
following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Output Link Properties Tab

BuldsaLs |

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read from what table. Some
of the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The Build SQL button allows you to instantly open the SQL Builder to
help you construct an SQL query to read data. See Chapter 59, "SQL
Builder" for guidance on using it.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Source/Lookup Type Normal/ Normal Y (if output is N N/A

Sparse reference link

connected to
Lookup stage)

Source/Read Method Auto- SQL builder Y N N/A

generated generated

SQL SQL

/Table/SQL

builder

generated

SQL

/User-defined

saL
Source/Table string N/A N N N/A
Source/Where string N/A N N Table
Source/Select List string N/A N N Table
Source/Query string N/A N N N/A
Source/Partition string N/A N N N/A

Table

13-28

Parallel Job Developer’s Guide

Oracle Enterprise Stage

Outputs Page

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Connection/DB string N/A Y N N/A
Options
Connection/DB Auto- Auto- Y N N/A
Options Mode generate/ generate
User-defined
Connection/User string N/A Y (if DB Options N DB Options Mode
Mode = Auto-
generate)
Connection/ string N/A Y (if DB Options N DB Options Mode
Password Mode = Auto-
generate)
Connection/Remote string N/A N N N/A
Server
Options/Close string N/A N N N/A
Command
Options/Open string N/A N N N/A
Command
Options/Make True/False False Y (if link is N N/A
Combinable reference and
Lookup type =
sparse)
Options/Table has True/False False N N N/A

NCHAR/NVARCHAR

Source Category

Lookup Type

Where the Oracle Enterprise Stage is connected to a Lookup stage via
a reference link, this property specifies whether the Oracle Enterprise
Stage will provide data for an in-memory look up (Lookup Type =
Normal) or whether the lookup will access the database directly
(Lookup Type = Sparse). If the Lookup Type is Normal, the Lookup
stage can have multiple reference links. If the Lookup Type is Sparse,
the Lookup stage can only have one reference link.

Read Method

This property specifies whether you are specifying a table or a query
when reading the Oracle database, and how you are generating the

query.

Parallel Job Developer’s Guide

13-29

Outputs Page

Oracle Enterprise Stage

m Select the Table method in order to use the Table property to
specify the read. This will read in parallel.

m Select Auto-generated SQL to have DataStage automatically
generate an SQL query based on the columns you have defined
and the table you specify in the Table property.

m Select User-defined SQL to define your own query. By default a
user-defined or auto-generated SQL will read sequentially on one
node. Read methods of Auto-generated SQL and User-defined
SQL operate sequentially on a single node. You can have the User-
defined SQL read operate in parallel if you specify the Partition
Table property.

m Select SQL Builder Generated SQL to open the SQL Builder and
define the query using its helpful interface (see Chapter 59, "SQL
Builder.")

By default, Read methods of SQL Builder Generated SQL, Auto-
generated SQL, and User-defined SQL operate sequentially on a
single node. You can have the User-defined SQL read operate in
parallel if you specify the Partition Table property.

Query

Optionally allows you to specify an SQL query to read a table. The
query specifies the table and the processing that you want to perform
on the table as it is read by the stage. This statement can contain
joins, views, database links, synonyms, and so on.

Table

Specifies the name of the Oracle table. The table must exist and you
must have SELECT privileges on the table. If your Oracle user name
does not correspond to the owner of the specified table, you can
prefix it with a table owner in the form:

table_owner.table_name

Table has dependent properties:
2 Where

Stream links only. Specifies a WHERE clause of the SELECT
statement to specify the rows of the table to include or exclude
from the read operation. If you do not supply a WHERE clause, all
rows are read.

m Select List

Optionally specifies an SQL select list, enclosed in single quotes,
that can be used to determine which columns are read. You must
specify the columns in list in the same order as the columns are
defined in the record schema of the input table.

13-30

Parallel Job Developer’s Guide

Oracle Enterprise Stage Outputs Page

Partition Table

Specifies execution of the SELECT in parallel on the processing nodes
containing a partition derived from the named table. If you do not
specify this, the stage executes the query sequentially on a single
node.

Connection Category

DB Options

Specify a user name and password for connecting to Oracle in the
form:

<user=<user>,password=<password>[,arraysize=<num_records>]

DataStage does not encrypt the password when you use this option.
Arraysize only applies to stream links. The default arraysize is 1000.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a
DB Options string for you. If you select User-defined, you have to edit
the DB Options property yourself. When Auto-generate is selected,
there are two dependent properties:

= User
The user name to use in the auto-generated DB options string.
m Password
The password to use in the auto-generated DB options string.
DataStage encrypts the password
Remote Server

This is an optional property. Allows you to specify a remote server
name.

Options Category

Close Command

This is an optional property and only appears for stream links. Use it
to specify any command to be parsed and executed by the Oracle
database on all processing nodes after the stage finishes processing
the Oracle table. You can specify a job parameter if required.

Parallel Job Developer’s Guide 13-31

Outputs Page Oracle Enterprise Stage

Open Command

This is an optional property only appears for stream links. Use it to
specify any command to be parsed and executed by the Oracle
database on all processing nodes before the Oracle table is opened.
You can specify a job parameter if required

Make Combinable

Only applies to reference links where the Lookup Type property has
been set to Sparse. Set to True to specify that the lookup can be
combined with its preceding and/or following process.

Table has NCHAR/NVARCHAR

Set this True if the table being read from contains NCHAR and
NVARCHARS.

13-32 Parallel Job Developer’s Guide

14

Teradata Enterprise Stage

The Teradata Enterprise stage is a database stage. It allows you to
read data from and write data to a Teradata database.

The Teradata Enterprise stage can have a single input link or a single

output link.
Writing to Teradata
- I N
oo ib =z » =z
11011 — I
o D5Link3 DSLink4
Data_Set Transformer Teradata

Reading from Teradata

N N HT’}
r _-—-_E_. '.'L'I.|1|E|
DGLinkS .

Teradata Tranzfarmer Data_Set

When you edit a Teradata Enterprise stage, the Teradata Enterprise
stage editor appears. This is based on the generic stage editor
described in Chapter 3, "Stage Editors,"

The stage editor has up to three pages, depending on whether you are
reading or writing a file:

m Stage Page. This is always present and is used to specify general
information about the stage.

Parallel Job Developer’s Guide 141

Accessing Teradata Databases Teradata Enterprise Stage

m Inputs Page. This is present when you are writing to a Teradata
database. This is where you specify details about the data being
written.

m Outputs Page. This is present when you are reading from a
Teradata database. This is where you specify details about the
data being read.

Accessing Teradata Databases

Installing the Teradata Utilities Foundation

You must install Teradata Utilities Foundation on all nodes that will
run DataStage parallel jobs. Refer to the installation instructions
supplied by Teradata. (You need system administrator status for the
install.)

Creating Teradata User

You must set up a Teradata database user (this is the user that will be
referred to by the DB options property in the Teradata stage). The user
must be able to create tables and insert and delete data. The database
for which you create this account requires at least 100 MB of PERM
space and 10 MB of SPOOL. Larger allocations may be required if you
run large and complex jobs. (You need database administrator status
in order to create user and database.)

The example below shows you how to create the orchserver account.
The user information is stored in the terasync table. The name of the
database in this example is userspace. The following four commands
for BTEQ set up the account:

CREATE USER orchserver FROM userspace AS
PASSWORD = orchserver

PERM = 100000000

SPOOL = 10000000

Once the account is set up, issue the following command:
GRANT select ON dbc TO orchserver;

Creating a Database Server

If you want to use a pre-existing Teradata user, you only need install a
database server and configure it to use a new database. Install the
new database server with the same PERM and SPOOL values as
shown above. Here is an example of creating a database server called
devserver using table userspace:

14-2

Parallel Job Developer’s Guide

Teradata Enterprise Stage Teradata Databases — Points to Note

CREATE DATABASE devserver FROM userspace AS

PERM = 100000000

SPOOL = 10000000

GRANT create table, insert, delete, select ON devserver TO orchclient;
GRANT create table, insert, delete, select ON devserver TO orchserver;

Teradata Databases — Points to Note

NLS Support and Teradata Database Character Sets

The Teradata database supports a fixed number of character set types
for each char or varchar column in a table. Use this query to get the
character set for a Teradata column:

select ‘column_name', chartype from dbc.columns
where tablename = 'table_name'

The database character set types are:

m Latin: chartype=1. The character set for U.S. and European
applications which limit character data to the ASCIl or ISO 8859
Latin1 character sets. This is the default.

m Unicode: chartype=2. 16-bit Unicode characters from the ISO
10646 Level 1 character set. This setting supports all of the ICU
multi-byte character sets.

B KANJISJIS: chartype=3. For Japanese third-party tools that rely on
the string length or physical space allocation of KANJISJIS.

m Graphic: chartype=4. Provided for DB2 compatibility.

Note The KANJI1: chartype=5 character set is available for
Japanese applications that must remain compatible with
previous releases; however, this character set will be
removed in a subsequent release because it does not
support the new string functions and will not support future
characters sets. We recommend that you use the set of SQL
translation functions provided to convert KANJI1 data to
Unicode.

DataStage maps characters between Teradata columns and the
internal UTF-16 Unicode format using the project default character set
map unless this has been overridden at the job level (on the Job
Properties dialog box) or the stage level (using the NLS Map tab -
see page 14-9).

The file tera_cs.txt in the directory $SAPT_ORCHHOME/etc maps

DataStage NLS character sets to Teradata character sets. For example,
we select the EUC_JP as the NLS map for the current project. EUC_JP
is the NLS character set for Japanese, 118 is the Teradata character set

Parallel Job Developer’s Guide 14-3

Teradata Databases — Points to Note Teradata Enterprise Stage

code for the KANJIEUC_OU character set. EUC_JPN is mapped to 118
in tera_cs.txt as follows:

EUC_JP 118
ASC_JPN_EUC 118
SJIS 119

On reading, DataStage converts a Teradata varchar(n) field to ustring
[n/min] where min is the minimum size in bytes of the largest
codepoint for your specified character set. On writing, ustring data is
converted to the specified character set and written to a char or
varchar column in the Teradata database; the type is ustring[n*max]
where max is the maximum size in of the largest codepoint for your
specified character set.

DataStage also supports the use of Unicode character data in
usernames, passwords, column names, table names, and database
names.

Column Name and Data Type Conversion

DataStage column names are case sensitive, Teradata column names
are not. You must ensure that the DataStage column names are
unique regardless of case.

Both DataStage and Teradata columns support nulls, and a DataStage
column that contains a null is stored as a null in the corresponding
Teradata column.

The Teradata stage automatically converts DataStage data types to
Teradata data types and vice versa as shown in the following table:

DataStage SQL Data Underlying Data Type Teradata Data Type

Type

Date date date

Decimal decimal (p, s) numeric (p, s)
Numeric

Double dfloat double precision
Double dfloat float

Double dfloat real

TinyInt int8 byteint
Smallint int16 smallint
Integer int32 integer

Bigint int64 unsupported

14-4 Parallel Job Developer’s Guide

Teradata Enterprise Stage

Teradata Databases — Points to Note

DataStage SQL Data
Type

Underlying Data Type Teradata Data Type

LongVarBinary
VarBinary

Binary
Bit

LongVarBinary
VarBinary

LongVarBinary
VarBinary

LongVarBinary
VarBinary

LongVarBinary
VarBinary

Float
Real

LongVarChar
VarChar

Unknown
Char

LongVarChar
VarChar

LongVarChar
Time
Timestamp
TinyInt
Smallint

Integer

raw

raw [fixed_size]

raw [max=size]

raw [max=size]

raw [max=size]

raw [max=size]

sfloat

string

string [fixed_size]

string[max = size]

string[max = size]
time

timestamp

uint8

uint16

uint32

varbyte (default)

byte (fixed_size)

varbyte (size)

graphic (c)

vargraphic (size)

long vargraphic

unsupported

varchar (default length)

char (fixed_size)

varchar(size)

long varchar (size)
unsupported
unsupported
unsupported
unsupported

unsupported

DataStage columns are matched by name and data type to columns of
the Teradata table, but they do not have to appear in the same order.
The following rules determine which DataStage columns are written

to a Teradata table:

m If there are DataStage columns for which there are no matching
columns in the Teradata table, the job terminates. However, you
can deal with this by setting the Silently drop columns not in
table property (see page 14-14) or by dropping the column before

you write the data.

Parallel Job Developer’s Guide

14-5

Teradata Databases — Points to Note Teradata Enterprise Stage

If the Teradata table contains a column that does not have a
corresponding DataStage column, Teradata writes the column’s
default value into the field. If no default value is defined for the
Teradata column, Teradata writes a null. If the field is not nullable,
an error is generated and the job fails.

Restrictions and Limitations when Writing to a Teradata

Database

There are the following limitations when using a Teradata Enterprise
stage to write to a Teradata database:

A Teradata row may contain a maximum of 256 columns.

While the names of DataStage columns can be of any length, the
names of Teradata columns cannot exceed 30 characters. Rename
your columns if necessary or specify the Truncate column
names property to deal automatically with overlength column
names (see page 14-14.

DataStage assumes that the stage writes to buffers whose
maximum size is 32 KB. However, you can override this and
enable the use of 64 KB buffers by setting the environment
variable APT_TERA_64K_BUFFERS (see
"APT_TERA_64K_BUFFERS"in Parallel Job Advanced Developer’s
Guide).

When writing to Teradata, the DataStage column definitions
should not contain fields of the following types:

— Biglnt (int64)

— Unsigned integer of any size

— String, fixed- or variable-length, longer than 32 KB
— Raw, fixed- or variable-length, longer than 32 KB
— Subrecord

— Tagged aggregate

— \Vectors

If DataStage tries to write data whose columns contain a data type
listed above, the write is not begun and the job containing the
stage fails. You can convert unsupported data types by using the
Modify stage (see Chapter 28, "Modify Stage").

The Teradata Enterprise stage uses a distributed FastLoad to write
the data and is subject to all the restrictions on FastLoad. Briefly,
these are:

— There is a limit to the number of concurrent FastLoad and
FastExport jobs in Teradata.

14-6

Parallel Job Developer’s Guide

Teradata Enterprise Stage Must Do’s

— Each instance of the Teradata stage using FastLoad or
FastExport in a job counts towards this limit.

Restrictions on Reading a Teradata Database

The Teradata Enterprise stage uses a distributed FastExport to access
the data and is subject to all the restrictions on FastExport. Briefly,
these are:

m Thereis a limit to the number of concurrent FastLoad and
FastExport jobs.

m Each instance of the Teradata stage using FastLoad or FastExport
in a job counts towards this limit.

m Aggregates and most arithmetic operators in the SELECT
statement are not allowed.

m The use of the USING modifier is not allowed.

m Non-data access (that is, pseudo-tables like DATE or USER) is not
allowed.

m Single-AMP requests are not allowed. These are SELECTs
satisfied by an equality term on the primary index or on a unique
secondary index.

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Teradata Enterprise Stages in a job. This section specifies the
minimum steps to take to get a Teradata Enterprise Stage functioning.
DataStage provides a versatile user interface, and there are many
shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar
with the product.

The steps required depend on what you are using a Teradata
Enterprise Stage for.

Writing a Teradata Database

m Inthe Input Link Properties Tab, under the Target category:
— Specify the Table you are writing.

— Specify the write mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).

Parallel Job Developer’s Guide 14-7

Stage Page

Teradata Enterprise Stage

Under the Connection category:

You can either manually specify a connection string, or have
DataStage generate one for you using a user name and
password you supply. Either way you need to supply a valid
username and password. DataStage encrypts the password
when you use the auto-generate option.

Specify the name of the server hosting Teradata.

m Ensure column meta data has been specified for the write.

Reading a Teradata Database

m Inthe Output Link Properties Tab, under the Source category:

Choose a Read Method. This is Table by default directly from a
table, but you can also choose to read using auto-generated
SQL or user-generated SQL.

Specify the table to be read.

If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category:

Stage Page

Advanced Tab

You can either manually specify a connection string, or have
DataStage generate one for you using a user name and
password you supply. Either way you need to supply a valid
username and password. DataStage encrypts the password
when you use the auto-generate option.

Specify the name of the server hosting Teradata.

Ensure column meta data has been specified for the read.

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes. The NLS Map tab appears if you have NLS enabled on your
system, it allows you to specify a character set map for the stage.

This tab allows you to specify the following:

14-8

Parallel Job Developer’s Guide

Teradata Enterprise Stage Stage Page

m Execution Mode. The stage can execute in parallel mode or
sequential mode. In parallel mode the data is processed by the
available nodes as specified in the Configuration file, and by any
node constraints specified on the Advanced tab. In Sequential
mode the data is processed by the conductor node.

. Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

= Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (the Preserve partitioning field is not visible
unless the stage has an output links).

m Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

® Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

NLS Map

The NLS Map tab allows you to define a character set map for the
Teradata Enterprise stage. This overrides the default character set map

Parallel Job Developer’s Guide 14-9

Inputs Page

Teradata Enterprise Stage

set for the project or the job. You can specify that the map be supplied
as a job parameter if required.

it Teradata_Enterprize_15 - Teradata Enterprise

Stage | Output |

Stage name: ITeradata_EnterpriseJ 5

ﬁenerall Advanced NL

M ap name:

IProiect default [150-8853-1) ﬂ
Project default [I150-8853-1)
Adobe-Standard-Encoding

ANSI_+3.4-1968

Bigh

BOCU-1

CESU-8

EUCKR
Eutended_lMI%_Code_Packed_Farmat_
ebcdic-=ml-uz

GB_2312-80

GEBK

ab18030

HZ-GB-2312 LI

0K I Cancel Help

Inputs Page

The Inputs page allows you to specify details about how the Teradata
Enterprise Stage writes data to a Teradata database. The Teradata
Enterprise Stage can have only one input link writing to one table.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the database. The
Columns tab specifies the column definitions of incoming data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Details about Teradata Enterprise Stage properties, partitioning, and
formatting are given in the following sections. See Chapter 3, "Stage
Editors," for a general description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and where. Some of the
properties are mandatory, although many have default settings.

14-10

Parallel Job Developer’s Guide

Teradata Enterprise Stage

Inputs Page

Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/Table Table_Name N/A N/A
Target/Primary Columns List N/A N Table
Index
Target/Select List List N/A N N Table
Target/\Write Mode Append/ Append Y N N/A
Create/
Replace/
Truncate
Connection/DB String N/A Y N N/A
Options
Connection/ Database N/A N N N/A
Database Name
Connection/Server Server Name N/A Y N N/A
Options/Close Close 500 N N Insert SQL
Command Command
Options/Open Open False N N N/A
Command Command
Options/Silently True/False False Y N N/A
Drop Columns Not
in Table
Options/Default String Length 32 N N N/A
String Length
Options/Truncate True/False False Y N N/A
Column Names
Options/Progress Number 100000 N N N/A

Interval

Target Category

Table

Specify the name of the table to write to. The table name must be a
valid Teradata table name. Table has two dependent properties:

Select List

Parallel Job Developer’s Guide

14-11

Inputs Page

Teradata Enterprise Stage

Specifies a list that determines which columns are written. If you
do not supply the list, the Teradata Enterprise Stage writes to all
columns. Do not include formatting characters in the list.

Primary Index

Specify a comma-separated list of column names that will become
the primary index for tables. Format the list according to Teradata
standards and enclose it in single quotes.

For performance reasons, the data set should not be sorted on the
primary index. The primary index should not be a smallint, or a
column with a small number of values, or a high proportion of null
values. If no primary index is specified, the first column is used.
All the considerations noted above apply to this case as well.

Write Mode

Select from the following:

Append. Appends new records to the table. The database user
must have TABLE CREATE privileges and INSERT privileges on the
table being written to. This is the default.

Create. Creates a new table. The database user must have TABLE
CREATE privileges. If a table exists of the same name as the one
you want to create, the data flow that contains Teradata
terminates in error.

Replace. Drops the existing table and creates a new one in its
place; the database user must have TABLE CREATE and TABLE
DELETE privileges. If a table exists of the same name as the one
you want to create, it is overwritten.

Note that you cannot create or replace a table that has primary
keys, you should not specify primary keys in your meta data.

Truncate. Retains the table attributes, including the table
definition, but discards existing records and appends new ones.
The database user must have DELETE and INSERT privileges on
the table.

Connection Category

DB Options
Specify a user name and password for connecting to Teradata in the
form:

<user = <user>, password= <password> [SessionsPerPlayer =
<num_sessions>][RequestedSessions = <num_requested>]

14-12

Parallel Job Developer’s Guide

Teradata Enterprise Stage Inputs Page

The value of sessionsperplayer determines the number of connections
each player has to Teradata. Indirectly, it also determines the number
of players. The number selected should be such that
(sessionsperplayer * number of nodes * number of players per node)
equals the total requested sessions. The default is 2.

Setting the value of sessionsperplayer too low on a large system can
result in so many players that the step fails due to insufficient
resources. In that case, sessionsperplayer should be increased.

The value of the optional requestedsessions is a number between 1
and the number of vprocs in the database. The default is the
maximum number of available sessions.

DataStage does not encrypt the password when you use this option.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a
DB Options string for you. If you select User-defined, you have to edit
the DB Options property yourself. When Auto-generate is selected,
there are two dependent properties:

= User
The user name to use in the auto-generated DB options string.
s Password

The password to use in the auto-generated DB options string.
DataStage encrypts the password.

Database

By default, the write operation is carried out in the default database of
the Teradata user whose profile is used. If no default database is
specified in that user’s Teradata profile, the user name is the default
database. If you supply the database name, the database to which it
refers must exist and you must have necessary privileges.

Server

Specify the name of a Teradata server.

Options Category

Close Command

Specify a Teradata command to be parsed and executed by Teradata
on all processing nodes after the table has been populated.

Parallel Job Developer’s Guide 14-13

Inputs Page

Teradata Enterprise Stage

Open Command

Specify a Teradata command to be parsed and executed by Teradata
on all processing nodes before the table is populated.

Silently Drop Columns Not in Table

Specifying True causes the stage to silently drop all unmatched input
columns; otherwise the job fails.

Default String Length

Specify the maximum length of variable-length raw or string columns.
The default length is 32 bytes. The upper bound is slightly less than 32
KB.

Truncate Column Names

Specify whether the column names should be truncated to 30
characters or not.

Progress Interval

By default, the stage displays a progress message for every 100,000
records per partition it processes. Specify this option either to change
the interval or to disable the message. To change the interval, specify
a new number of records per partition. To disable the messages,
specify 0.

Partitioning Tab

The Partitioning tab allows you to specify details about how the
incoming data is partitioned or collected before it is written to the
Teradata database. It also allows you to specify that the data should
be sorted before being written.

By default the stage partitions in Auto mode. This attempts to work
out the best partitioning method depending on execution modes of
current and preceding stages and how many nodes are specified in
the Configuration file.

If the Teradata Enterprise Stage is operating in sequential mode, it will
first collect the data before writing it to the file using the default Auto
collection method.

The Partitioning tab allows you to override this default behavior. The
exact operation of this tab depends on:

m Whether the Teradata Enterprise Stage is set to execute in parallel
or sequential mode.

14-14

Parallel Job Developer’s Guide

Teradata Enterprise Stage Inputs Page

m Whether the preceding stage in the job is set to execute in parallel
or sequential mode.

If the Teradata Enterprise Stage is set to execute in parallel, then you
can set a partitioning method by selecting from the Partition type
drop-down list. This will override any current partitioning.

If the Teradata Enterprise Stage is set to execute in sequential mode,
but the preceding stage is executing in parallel, then you can set a
collection method from the Collector type drop-down list. This will
override the default collection method.

The following partitioning methods are available:

= (Auto). DataStage attempts to work out the best partitioning
method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration
file. This is the default partitioning method for the Teradata
Enterprise Stage.

m Entire. Each file written to receives the entire data set.

m Hash. The records are hashed into partitions based on the value
of a key column or columns selected from the Available list.

m Modulus. The records are partitioned using a modulus function
on the key column selected from the Available list. This is
commonly used to partition on tag columns.

m Random. The records are partitioned randomly, based on the
output of a random number generator.

® Round Robin. The records are partitioned on a round robin basis
as they enter the stage.

m Same. Preserves the partitioning already in place. This is the
default for Teradata Enterprise Stages.

m Range. Divides a data set into approximately equal size partitions
based on one or more partitioning keys. Range partitioning is
often a preprocessing step to performing a total sort on a data set.
Requires extra properties to be set. Access these properties by

clicking the properties button 2.
The following Collection methods are available:

m (Auto). This is the default collection method for Teradata
Enterprise Stages. Normally, when you are using Auto mode,
DataStage will eagerly read any row from any input partition as it
becomes available.

m Ordered. Reads all records from the first partition, then all
records from the second partition, and so on.

Parallel Job Developer’s Guide 14-15

Outputs Page

Teradata Enterprise Stage

m Round Robin. Reads a record from the first input partition, then
from the second partition, and so on. After reaching the last
partition, the operator starts over.

m Sort Merge. Reads records in an order based on one or more
columns of the record. This requires you to select a collecting key
column from the Available list.

The Partitioning tab also allows you to specify that data arriving on
the input link should be sorted before being written to the database.
The sort is always carried out within data partitions. If the stage is
partitioning incoming data the sort occurs after the partitioning. If the
stage is collecting data, the sort occurs before the collection. The
availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

m Perform Sort. Select this to specify that data coming in on the
link should be sorted. Select the column or columns to sort on
from the Available list.

m Stable. Select this if you want to preserve previously sorted data
sets. This is the default.

m Unique. Select this to specify that, if multiple records have
identical sorting key values, only one record is retained. If stable
sort is also set, the first record is retained.

If NLS is enabled an additional button opens a dialog box allowing
you to select a locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as
ASCII or EBCDIC, and whether null columns will appear first or last for
each column. Where you are using a keyed partitioning method, you
can also specify whether the column is used as a key for sorting, for
partitioning, or for both. Select the column in the Selected list and
right-click to invoke the shortcut menu.

Outputs Page

The Outputs page allows you to specify details about how the
Teradata Enterprise Stage reads data from a Teradata database. The
Teradata Enterprise Stage can have only one output link.

The General tab allows you to specify an optional description of the
output link. The Properties tab allows you to specify details of
exactly what the link does. The Columns tab specifies the column
definitions of the data. The Advanced tab allows you to change the
default buffering settings for the output link.

14-16

Parallel Job Developer’s Guide

Teradata Enterprise Stage

Outputs Page

Details about Teradata Enterprise Stage properties are given in the
following sections. See Chapter 3, "Stage Editors," for a general

description of the other tabs.

Output Link Properties Tab

The Properties tab allows you to specify properties for the output
link. These dictate how incoming data is read and from what table.
Some of the properties are mandatory, although many have default
settings. Properties without default settings appear in the warning
color (red by default) and turn black when you supply a value for
them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category\Property Values Default Mandatory? Repeats? Dependent of
Source/Read Method Table/Auto- Table Y N N/A
generated
SQL/User-
defined SQL
Source/Table Table Name Y Y (if Read N N/A
Method = Table
or Auto-
generated SQL)
Source/Select List List N/A N Table
Source/Where Clause Filter N/A N Table
Source/Query SQL query N/A Y (if Read N/A
Method = User-
defined SQL or
Auto-generated
SQOL
Connection/DB String N/A Y N N/A
Options
Connection/Database Database N/A N N N/A
Name
Connection/Server Server Name N/A N/A
Options/Close String N/A N/A
Command
Options/Open String N/A N N N/A
Command
Options/Progress Number 100000 N N N/A

Interval

Parallel Job Developer’s Guide

14-17

Outputs Page

Teradata Enterprise Stage

Source Category

Read Method

Select Table to use the Table property to specify the read (this is the
default). Select Auto-generated SQL this to have DataStage
automatically generate an SQL query based on the columns you have
defined and the table you specify in the Table property. You must
select the Query property and select Generate from the right-arrow
menu to actually generate the statement. Select User-defined SQL to
define your own query.

Table

Specifies the name of the Teradata table to read from. The table must
exist, and the user must have the necessary privileges to read it.

The Teradata Enterprise Stage reads the entire table, unless you limit
its scope by means of the Select List and/or Where suboptions:

m Select List

Specifies a list of columns to read. The items of the list must
appear in the same order as the columns of the table.

m Where Clause

Specifies selection criteria to be used as part of an SQL
statement’s WHERE clause. Do not include formatting characters
in the query.

These dependent properties are only available when you have
specified a Read Method of Table rather than Auto-generated SQL.

Query

This property is used to contain the SQL query when you choose a
Read Method of User-defined query or Auto-generated SQL. If you are
using Auto-generated SQL you must select a table and specify some
column definitions, then select Generate from the right-arrow menu
to have DataStage generate the query.

Connection Category

DB Options
Specify a user name and password for connecting to Teradata in the
form:

<user = <user>, password= <password> [SessionsPerPlayer =
<num_sessions>] [RequestedSessions = <num_requested>]

14-18

Parallel Job Developer’s Guide

Teradata Enterprise Stage Outputs Page

The value of sessionsperplayer determines the number of connections
each player has to Teradata. Indirectly, it also determines the number
of players. The number selected should be such that
(sessionsperplayer * number of nodes * number of players per node)
equals the total requested sessions. The default is 2.

Setting the value of sessionsperplayer too low on a large system can
result in so many players that the step fails due to insufficient
resources. In that case, sessionsperplayer should be increased.

The value of the optional requestedsessions is a number between 1
and the number of vprocs in the database. The default is the
maximum number of available sessions.

DataStage does not encrypt the password when you use this option.

DB Options Mode

If you select Auto-generate for this property, DataStage will create a
DB Options string for you. If you select User-defined, you have to edit
the DB Options property yourself. When Auto-generate is selected,
there are two dependent properties:

= User
The user name to use in the auto-generated DB options string.
s Password

The password to use in the auto-generated DB options string.
DataStage encrypts the password.

Database

By default, the read operation is carried out in the default database of
the Teradata user whose profile is used. If no default database is
specified in that user’s Teradata profile, the user name is the default
database. This option overrides the default.

If you supply the database name, the database to which it refers must
exist and you must have the necessary privileges.

Server

Specify the name of a Teradata server.

Options Category

Close Command

Optionally specifies a Teradata command to be run once by Teradata
on the conductor node after the query has completed.

Parallel Job Developer’s Guide 14-19

Outputs Page Teradata Enterprise Stage

Open Command

Optionally specifies a Teradata command run once by Teradata on the
conductor node before the query is initiated.

Progress Interval

By default, the stage displays a progress message for every 100,000
records per partition it processes. Specify this option either to change
the interval or to disable the message. To change the interval, specify
a new number of regards per partition. To disable the messages,
specify 0.

14-20 Parallel Job Developer’s Guide

15

Informix Enterprise Stage

The Informix Enterprise Stage is a database stage. It allows you to
read data from and write data to an Informix 7.x, 8.x or 9.x database.

The Informix Enterprise Stage can have a single input link or a single
output link.

Writing to Informix

. b N .
| =

D5SLink3 D5SLinkd4

Data_Set Transformer Informix_11

Reading from Informix

QM1] "
S T R S “ﬁ}
DSLink4 D5Link5

|nfarmiv_B Transformer Data_Set

When you edit a Informix Enterprise Stage, the Informix Enterprise
Stage editor appears. This is based on the generic stage editor
described in Chapter 3, "Stage Editors."

The stage editor has up to three pages, depending on whether you are
reading or writing a database:

m Stage Page. This is always present and is used to specify general
information about the stage.

Parallel Job Developer’s Guide 15-1

Accessing Informix Databases Informix Enterprise Stage

m Inputs Page. This is present when you are writing to an Informix
database. This is where you specify details about the data being
written.

m Outputs Page. This is present when you are reading from an
Informix database. This is where you specify details about the
data being read.

Accessing Informix Databases

You must have the correct privileges and settings in order to use the
Informix Enterprise Stage. You must have a valid account and
appropriate privileges on the databases to which you connect.

You require read and write privileges on any table to which you
connect, and Resource privileges for using the Partition Table property
on an output link or using create and replace modes on an input link.

To configure access to Informix:

1 Make sure that Informix is running.

2 Make sure the INFORMIXSERVER is set in your environment. This
corresponds to a server name in sqlhosts and is set to the
coserver name of coserver 1. The coserver must be accessible
from the node on which you invoke your DataStage job.

3 Make sure that INFORMIXDIR points to the installation directory of
your INFORMIX server.

4 Make sure that INFORMIXSQLHOSTS points to the sql hosts path
(e.g., /disk6/informix/informix_runtime/etc/sqlhosts).

Considerations for Using the High Performance Loader

(HPL)

You can read and write data to an Informix 7.x or 9.x database using
the Informix High Performance Loader by specifying a connection
method of HPL in the input or output properties (see page 15-12 and
page 15-18).

Note the following when reading or writing using the High
Performance Loader:

m The INFORMIX onpload database must exist and be set up. You
do this by running the INFORMIX ipload utility once and exiting it.
An appropriate warning appears if the database is not set up

properly.

15-2

Parallel Job Developer’s Guide

Informix Enterprise Stage Accessing Informix Databases

m The High Performance Loader uses more shared memory, and
therefore more semaphores, than INFORMIX does in general. If
the HPL is unable to allocate enough shared memory or
semaphores, the DataStage read or write may not work. For more
information about shared memory limits, contact your system
administrator.

Reading Data on a Remote Machine using HPL

You can use read data on a remote machine using the High
Performance Loader without having INFORMIX installed on your local
machine. This uses the HPL connect method in the Output properties
(see "Connection Method" on page 15-18). The machines must be
cross-mounted in order to make a remote connection.

These instructions assume that DataStage has already been installed
on your local machine and that the Parallel engine is available on the
remote machine. (See the section "Copying the Parallel Engine to Your
System Nodes"in the DataStage Install and Upgrade Guide.)

To establish a remote connection to an Informix Enterprise Stage:

1 Verify that the INFORMIX sqglhosts file on the remote machine has
a TCP interface. A TCP interface is necessary to use the remote
connection functionality.

2 Copy the INFORMIX etc/sqlhosts file from the remote machine to
a directory on your local machine. Set the INFORMIX
INFORMIXDIR environment variable to this directory.

For example, if the directory on the local machine is /apt/informix,
the sqglhosts file should be in the directory /apt/informix/etc, and
the INFORMIXDIR variable should be set to /apt/informix.

3 Setthe INFORMIXSERVER environment variable to the name of
the remote INFORMIX server.

4 Add the remote INFORMIX server nodes to your PX node
configuration file located in $APT_ORCHHOMIE/../../config; and use
a nodepool resource constraint to limit the execution of the
Informix Enterprise Stage to these nodes.

In the example configuration file below, the local machine is
fastname local_machine, and the INFORMIX remote server
machine is fastname remote_machine. The nodepool for the
remote nodes is arbitrarily named “InformixServer". The
configuration file must contain at least two nodes, one for the
local machine and one for the remote machine.

Here is the DataStage example configuration file before any
changes have been made:

Parallel Job Developer’s Guide 15-3

Accessing Informix Databases

Informix Enterprise Stage

{

node "node0"
{
fastname
pools ""

"local_machine"

"/orch/s0" {}

resource
resource
}

node "nodel"
{
fastname
pools ""
resource
resource
resource
3

¥

disk "/orch/s1" {}
scratchdisk "/scratch" {}

"local_machine"

"nodel" "Tocal_machine"
disk "/orch/s0" {}

disk "/orch/s1" {}
scratchdisk "/scratch" {}

node0" "local_machine"resource disk

Here is the DataStage example configuration file with changes made
for the Informix Enterprise Stage:

{

node "node0"
{
fastname
pools ""
resource
resource
resource
}

node "nodel"
{
fastname
pools ""
resource
resource
resource
}

node "node2"

{

fastname

pools "InformixServer

resource
resource
resource
}

node "node3"

{

fastname

pools "InformixServer" "remote_machine"

"local_machine"
"local_machine"

disk "/orch/s0" {}

disk "/orch/s1" {}
scratchdisk "/scratch" {}

"local_machine"
"local_machine"

disk "/orch/s0" {}

disk "/orch/s1" {}
scratchdisk "/scratch" {}

"remote_machine"

disk "/orch/s0" {}
disk "/orch/s1" {}
scratchdisk "/scratch" {}

"remote_machine"

resource disk "/orch/s0" {}
resource disk "/orch/s1" {}

resource

}

scratchdisk "/scratch" {}

remote_machine"

154

Parallel Job Developer’s Guide

Informix Enterprise Stage Accessing Informix Databases

5 Go to the Stage page Advanced tab of the Informix Enterprise
Stage (see page 15-9). Select Node pool and resource
constraints and Nodepool along with the name of the node
pool constraint (i.e., "InformixServer" in the example
configuration file above).

6 Set up environment variables. Remote access to an INFORMIX
database requires the use of two INFORMIXDIR environment
variable settings, one for the local DataStage machine which is set
as in step 2 above, and one for the machine with the remote
INFORMIX database. The remote variable needs to be setin a
startup script which you must create on the local machine. This
startup script is executed automatically by the Parallel Engine.

Here is a sample startup.apt file with INFORMIXDIR being set to /
usr/informix/9.4, the INFORMIX directory on the remote machine:
#! /bin/sh

INFORMIXDIR=/usr/informix/9.4

export INFORMIXDIR

INFORMIXSQLHOSTS=$INFORMIXDIR/etc/sqlhosts

export INFORMIXSQLHOSTS

shift 2

exec $*

7 Set the environment variable APT_STARTUP_SCRIPT to the full
pathname of the startup.apt file.

You are now ready to run a DataStage job which uses the Informix
Enterprise Stage HPL read method to connect to a remote INFORMIX
server. If you are unable to connect to the remote server, try making
either one or both of the following changes to your sqlhosts file on the
local machine:

m In the fourth column in the row corresponding to the remote
INFORMIX server name, replace the INFORMIX server name with
the INFORMIX server port number found in the /etc/services file
on the remote machine.

m The third column contains the hostname of the remote machine.
Change this to the IP address of the remote machine.

Using Informix XPS Stages on AIX Systems

In order to run jobs containing Informix XPS stages on AlX systems,
you need to have the Informix client sdk 2.81 version installed along
with the Informix XPS server. The LIBPATH order should be set as
follows:

LIBPATH=$APT_ORCHHOME/1ib: $INFORMIXDIR/1ib: *dirname $DSHOME "/
branded_odbc/1ib:$DSHOME/11ib: $DSHOME /uvd11s: $DSHOME/java/jre/bin/

classic:$DSHOME/java/jre/bin:$INFORMIXDIR/1ib: $INFORMIXDIR/Tib/
c14i : $INFORMIXDIR/11ib/esql

Parallel Job Developer’s Guide 15-5

Accessing Informix Databases Informix Enterprise Stage

Type Conversions - Writing to Informix

When writing or loading, the Informix Enterprise stage automatically
converts DataStage data types to Informix data types as shown in the
following table:

DataStage SQL Underlying Data Type Informix Data Type
Data Type
Unknown string[n] CHAR(n)
Char
LongVarChar string[max = n] VARCHAR(n)
VarChar variable length string with
maximum length = n
Date date DATE
Date, Time, or date, time or timestamp DATETIME
Timestamp
Decimal decimallp, s] DECIMAL(p, s)
Numeric
Double dfloat DOUBLE_PRECISION
Double dfloat FLOAT
Float sfloat FLOAT
Real
Integer int32 INTEGER
Smalllnt int16 SMALLINT
Tinylint int8 SMALLINT

The default length of VARCHAR is 32 bytes. That is, 32 bytes are
allocated for each variable-length string field in the input data set. If an
input variable-length string field is longer than 32 bytes, the stage
issues a warning.

Type Conversions - Reading from Informix

When reading, the Informix Enterprise stage automatically converts
Informix data types to DataStage data types as shown in the following
table:

DataStage SQL Underlying Data Type Informix Data Type
Data Type

Unknown string[n] CHAR(n)

Char

15-6

Parallel Job Developer’s Guide

Informix Enterprise Stage Must Do’s

DataStage SQL Underlying Data Type Informix Data Type
Data Type
LongVarChar string[max = n] CHARACTER VARYING(n, r)
VarChar variable length string with
maximum length = n
Unknown string[n] NCHAR(n, r)
Char
LongVarChar string[max = n] NVARCHAR(n, r)
VarChar

variable length string with
maximum length = n

Date date DATE

Date, Time, or date, time or timestamp DATETIME
Timestamp

Decimal decimallp, s] DECIMAL(p, s)
Numeric

Double dfloat DOUBLE_PRECISION
Double dfloat FLOAT

Float sfloat SMALLFLOAT
Real

Decimal decimal MONEY
Numeric

Float sfloat REAL

Real

Integer int32 INTEGER
Integer int32 SERIAL
Smallint int16 SMALLINT

Must Do’s

DataStage has many defaults which means that it can be very easy to
include Informix Enterprise Stages in a job. This section specifies the
minimum steps to take to get an Informix Enterprise Stage
functioning. DataStage provides a versatile user interface, and there
are many shortcuts to achieving a particular end, this section
describes the basic method, you will learn where the shortcuts are
when you get familiar with the product.

The steps required depend on what you are using an Informix
Enterprise Stage for.

Parallel Job Developer’s Guide 15-7

Must Do’s

Informix Enterprise Stage

Writing an Informix Database

m Inthe Input Link Properties Tab, under the Target category:

Specify the Table you are writing.

Specify the write mode (by default DataStage appends to
existing tables, you can also choose to create a new table,
replace an existing table, or keep existing table details but
replace all the rows).

Under the Connection category:

Specify the connection method, this can be one of XPS Fast
(for connecting to the XPS framework directly), HPL (for
connecting to HPL servers), or Native (for connecting to any
version release 7.x and above).

Optionally specify the name of the database you are
connecting to.

If you have specified the XPS Fast or HPL Connection Method,
specify the name of the server hosting Informix XPS (by
default DataStage will take this from the INFORMIXSERVER
environment variable — see "Accessing Informix Databases" on
page 15-2).

m Ensure column meta data has been specified for the write.

Reading an Informix Database

m Inthe Output Link Properties Tab, under the Source category:

Choose a Read Method. This is Table by default, which reads
directly from a table, but you can also choose to read using
auto-generated SQL or user-generated SQL.

Specify the table to be read.

If using a Read Method of user-generated SQL, specify the
SELECT SQL statement to use. DataStage provides the auto-
generated statement as a basis, which you can edit as required.

Under the Connection category:

Specify the connection method, this can be one of XPS Fast
(for connecting to the XPS framework directly), HPL (for
connecting to HPL servers), or Native (for connecting to any
version release 7.x and above).

Optionally specify the name of the database you are
connecting to.

15-8

Parallel Job Developer’s Guide

Informix Enterprise Stage

Stage Page

— If you have specified the XPS Fast or HPL Connection Method,
specify the name of the server hosting Informix XPS (by
default DataStage will take this from the INFORMIXSERVER
environment variable — see "Accessing Informix Databases" on
page 15-2).

Ensure column meta data has been specified for the read.

Stage Page

The General tab allows you to specify an optional description of the
stage. The Advanced tab allows you to specify how the stage
executes.

Advanced Tab

This tab allows you to specify the following:

Execution Mode. The execution mode depends on the type of
operation the stage is performing.

— Writing to an XPS database using the XPS Fast connection
method is always parallel, and cannot be changed.

— Writing to a database using the HPL connection method is
always sequential and cannot be changed.

— Writing to a database using the Native connection method is
always sequential and cannot be changed.

— Reading an database using the HPL connection method is
always sequential and cannot be changed.

— The execution mode for reading an XPS database depends on
the setting of the Connection Method and Partition Table
properties.

Combinability mode. This is Auto by default, which allows
DataStage to combine the operators that underlie parallel stages
so that they run in the same process if it is sensible for this type of
stage.

Preserve partitioning. You can select Set or Clear. If you select
Set read operations will request that the next stage preserves the
partitioning as is (it is ignored for write operations).

Node pool and resource constraints. Select this option to
constrain parallel execution to the node pool or pools and/or
resource pool or pools specified in the grid. The grid allows you to
make choices from drop down lists populated from the
Configuration file.

Parallel Job Developer’s Guide 15-9

Inputs Page

Informix Enterprise Stage

® Node map constraint. Select this option to constrain parallel
execution to the nodes in a defined node map. You can define a
node map by typing node numbers into the text box or by clicking
the browse button to open the Available Nodes dialog box and
selecting nodes from there. You are effectively defining a new
node pool for this stage (in addition to any node pools defined in
the Configuration file).

Inputs Page

The Inputs page allows you to specify details about how the Informix
Enterprise Stage writes data to an Informix database. The stage can
have only one input link writing to one table.

The General tab allows you to specify an optional description of the
input link. The Properties tab allows you to specify details of exactly
what the link does. The Partitioning tab allows you to specify how
incoming data is partitioned before being written to the database. The
Columns tab specifies the column definitions of incoming data. The
Advanced tab allows you to change the default buffering settings for
the input link.

Details about stage properties, partitioning, and formatting are given
in the following sections. See Chapter 3, "Stage Editors," for a general
description of the other tabs.

Input Link Properties Tab

The Properties tab allows you to specify properties for the input link.
These dictate how incoming data is written and where. Some of the
properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by
default) and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and
their attributes. A more detailed description of each property follows.

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Target/Write Append/ Append Y N N/A
Mode Create/
Replace/
Truncate
Target/Table Table Name N/A Y N N/A

15-10

Parallel Job Developer’s Guide

Informix Enterprise Stage

Inputs Page

Category/ Values Default Mandatory? Repeats? Dependent of
Property
Connection/ XPS Fast/ XPS Fast Y N N/A
Connection HPL/Native
Method
Connection/ True/False False Y (if N N/A
Remote Server Connection

Method =

Native)
Connection/User User id N/A Y (if N N/A

Connection

Method =

Native and

Remote Server

= True)
Connection/ Password N/A Y (if N N/A
Password Connection

Method =

Native and

Remote Server

= True)
Connection/ Database N/A Y N N/A
Database Name
Connection/ Server Name N/A N N N/A
Server
Options/Close Close N/A N N N/A
Command Command
Options/Open Open N/A N N N/A
Command Command
Options/Silently True/False False Y N N/A
Drop Columns
Not in Table
Options/Default String Length 32 Y N N/A

String Length

Target Category

Write Mode

Select from the following:

m Append. Appends new records to the table. The database user
who writes in this mode must have Resource privileges. This is

the default mode.

Parallel Job Developer’s Guide

15-11

Inputs Page

Informix Enterprise Stage

m Create. Creates a new table. The database user who writes in this
mode must have Resource privileges. The stage returns an error if
the table already exists.

m Replace. Deletes the existing table and creates a new one in its
place. The database user who writes in this mode must have
Resource privileges.

Note that you cannot create or replace a table that has primary
keys, you should not specify primary keys in your meta data.

m Truncate. Retains the table attributes but discards existing
records and appends new ones. The stage will run more slowly in
this mode if the user does not have Resource privileges.

Table

Specify the name of the Informix table to write to. It has a dependent
property:

m Select List

Specifies a list that determines which columns are written. If you
do not supply the list, the stage writes to all columns.

Connection Category

Connection Method

Specify the method to use to connect to the Informix database.
Choose from:

m XPS fast. Use this to connect to an Informix XPS (8.x) database.
DataStage connects directly to the XPS framework.

m HPL. Use this to connect to Informix servers (7.x, 9.x) using the
High Performance Loader (HPL).

m Native. Use this to connect to any version of Informix (7.x, 8.x, or
9.x) using native interfaces.

Remote Server

This option appears if you select the Native connection method. It is
False by default. If you select True, the Password and User options
appear, allowing you to specify authentication details for the remote
server.

User

This is only available for a Connection Method of Native with Remote
Server set to true. Specify the user id for connecting to the remote
database.

15-12

Parallel Job Developer’s Guide

