
Ascential DataStage
for Ascential Server
Server Job Developer’s Guide
Version 7.5.1
Part No. 00D-008DS751

December 2004

his document, and the software described or referenced in it, are confidential and proprietary to Ascential Software

Corporation ("Ascential"). They are provided under, and are subject to, the terms and conditions of a license

agreement between Ascential and the licensee, and may not be transferred, disclosed, or otherwise provided to

third parties, unless otherwise permitted by that agreement. No portion of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of Ascential. The specifications and other

information contained in this document for some purposes may not be complete, current, or correct, and are

subject to change without notice. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS

DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR

SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A

WARRANTY BY ASCENTIAL FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ASCENTIAL WHATSOEVER.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL ASCENTIAL BE LIABLE FOR ANY CLAIM, OR

ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. If you

are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in

the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause

52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be

classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined

in Clause 252.227-7013 (c) (1) of DFARs.

This product or the use thereof may be covered by or is licensed under one or more of the following issued

patents: US6604110, US5727158, US5909681, US5995980, US6272449, US6289474, US6311265, US6330008,

US6347310, US6415286; Australian Patent No. 704678; Canadian Patent No. 2205660; European Patent No. 799450;

Japanese Patent No. 11500247.

© 2005 Ascential Software Corporation. All rights reserved. DataStage®, EasyLogic®, EasyPath®, Enterprise Data

Quality Management®, Iterations®, Matchware®, Mercator®, MetaBroker®, Application Integration, Simplified®,

Ascential™, Ascential AuditStage™, Ascential DataStage™, Ascential ProfileStage™, Ascential QualityStage™,

Ascential Enterprise Integration Suite™, Ascential Real-time Integration Services™, Ascential MetaStage™, and

Ascential RTI™ are trademarks of Ascential Software Corporation or its affiliates and may be registered in the

United States or other jurisdictions.

The software delivered to Licensee may contain third-party software code. See Legal Notices (legalnotices.pdf) for

more information.

legalnotices.pdf

How to Use this Guide

This manual describes the features of the DataStage® Manager and

DataStage Designer. It is intended for application developers and

system administrators who want to use DataStage to design and

develop data warehousing applications.

If you are new to DataStage, you should read the DataStage Designer

Guide and the DataStage Manager Guide. These provide general

descriptions of the DataStage Manager and DataStage Designer, and

give you enough information to get you up and running.

This manual contains more specific information and is intended to be

used as a reference guide. It gives detailed information about stage

editors for particular data sources. It also provides information about

the powerful programming facilities that are built into DataStage.

To find particular topics you can:

Use the Guide’s contents list (at the beginning of the Guide).

Use the Guide’s index (at the end of the Guide).

Use the Adobe Acrobat Reader bookmarks.

Use the Adobe Acrobat Reader search facility (select Edit ➤
Search).

The guide contains links both to other topics within the guide, and to

other guides in the DataStage manual set. The links are shown in blue.

Note that, if you follow a link to another manual, you will jump to that

manual and lose your place in this manual. Such links are shown in

italics.

Organization of This Manual
This manual contains the following:

Chapter 1 provides a general introduction to DataStage server
jobs.

Chapter 2 gives a guide to optimizing the performance of server
jobs.
Server Job Developer’s Guide iii

Organization of This Manual How to Use this Guide
Chapter 3 describes the ODBC stage editor.

Chapter 4 describes the UniVerse stage editor.

Chapter 5 describes the UniData 6 stage editor

Chapter 6 describes the Hashed File stage editor.

Chapter 7 describes the UniData stage editor.

Chapter 8 describes the Sequential File stage editor.

Chapter 9 describes the Transformer stage editor.

Chapter 10 describes the Aggregator stage editor.

Chapter 11 describes the Folder stage editor.

Chapter 12 describes the Inter-process stage editor.

Chapter describes the Link Partitioner stage editor.

Chapter 14 describes the Link Collector stage editor.

Chapter 15 explains how plug-ins work and describes the standard
plug-in stage editor. It also describes the BCPLoad and Orabulk
plug-ins that are loaded automatically with DataStage.

Chapter 16 describes the debugger that you can use with server
jobs. It also tells you how to compile and release a DataStage
server job.

Chapter 17 gives an overview of the programming facilities that
are available in DataStage.

Chapter 18 provides a reference guide for DataStage BASIC, the
programming language which is built into DataStage. It enables
you to produce custom components that can be reused across
DataStage.

Chapter 19 describes the DataStage Development Kit. This is a set
of programming interfaces that allows you to run DataStage jobs
directly on the server, without using the DataStage Director.

Chapter 20 describes the built-in transforms and routines that are
supplied with DataStage ready for deployment in server jobs.

Appendix A provides a listing of an example Development Kit
program.
iv Server Job Developer’s Guide

How to Use this Guide Documentation Conventions
Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, keywords,
and options that must be input exactly as shown. In text, bold
indicates keys to press, function names, and menu selections.

UPPERCASE In syntax, uppercase indicates BASIC statements and functions
and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and pathnames.

Plain In text, plain indicates Windows commands and options, file
names, and path names.

Lucida
Typewriter

The Lucida Typewriter font indicates examples of source code
and system output.

Lucida
Typewriter

In examples, Lucida Typewriter bold indicates characters that
the user types or keys the user presses (for example,
<Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu commands indicates you should
choose each command in sequence. For example, “Choose File
➤ Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

This line
➥ continues

The continuation character is used in source code examples to
indicate a line that is too long to fit on the page, but must be
entered as a single line on screen.

I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2
Server Job Developer’s Guide v

Documentation Conventions How to Use this Guide
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.

All punctuation marks included in the syntax—for example,
commas, parentheses, or quotation marks—are required unless
otherwise indicated.

Syntax lines that do not fit on one line in this manual are
continued on subsequent lines. The continuation lines are
indented. When entering syntax, type the entire syntax entry,
including the continuation lines, on the same input line.

User Interface Conventions
The following picture of a typical DataStage dialog box illustrates the

terminology used in describing user interface elements:

The DataStage user interface makes extensive use of tabbed pages,

sometimes nesting them to enable you to reach the controls you need

from within a single dialog box. At the top level, these are called

“pages”, at the inner level these are called “tabs”. In the example

S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

T Text mark. For example, the text mark (T) in the following string
delimits elements 4 and 5: 1F2S3V4T5

Convention Usage

Option
Button

Button

Check
Box

Browse
Button

Drop

List
Down

The Inputs Page

The

Tab
General

Field
vi Server Job Developer’s Guide

How to Use this Guide DataStage Documentation
above, we are looking at the General tab of the Inputs page. When

using context sensitive online help you will find that each page has a

separate help topic, but each tab uses the help topic for the parent

page. You can jump to the help pages for the separate tabs from

within the online help.

DataStage Documentation
DataStage documentation includes the following:

DataStage Install and Upgrade Guide: This guide describes
how to install DataStage on Windows and UNIX systems, and
how to upgrade existing installations.

DataStage Server: Server Job Developer’s Guide This guide
describes the tools that are used in building a server job, and it
supplies programmer’s reference information.

DataStage Manager Guide: This guide describes the DataStage
Manager and describes how to use and maintain the DataStage
Repository.

DataStage Designer Guide: This guide describes the DataStage
Designer, and gives a general description of how to create, design,
and develop a DataStage application.

DataStage Director Guide: This guide describes the DataStage
Director and how to validate, schedule, run, and monitor
DataStage server jobs.

DataStage Enterprise Edition: Parallel Job Developer’s
Guide: This guide describes the tools that are used in building a
parallel job, and it supplies programmer’s reference information.

DataStage Enterprise Edition: Parallel Job Advanced
Developer’s Guide: This guide gives more specialized
information about parallel job design.

DataStage Enterprise MVS Edition: Mainframe Job
Developer’s Guide: This guide describes the tools that are used
in building a mainframe job, and it supplies programmer’s
reference information.

DataStage Administrator Guide: This guide describes
DataStage setup, routine housekeeping, and administration.

DataStage NLS Guide. This Guide contains information about
using the NLS features that are available in DataStage when NLS
is installed.

These guides are also available online in PDF format. You can read

them using the Adobe Acrobat Reader supplied with DataStage.
Server Job Developer’s Guide vii

DataStage Documentation How to Use this Guide
You can use the Acrobat search facilities to search the whole

DataStage document set. To use this feature, select Edit ➤ Search

then choose the All PDF documents in option and specify the

DataStage docs directory (by default this is C:\Program

Files\Ascential\DataStage\Docs).

Extensive online help is also supplied. This is especially useful when

you have become familiar with using DataStage and need to look up

particular pieces of information.
viii Server Job Developer’s Guide

Contents
How to Use this Guide
Organization of This Manual . iii

Documentation Conventions . v

User Interface Conventions . vi

DataStage Documentation . vii

Chapter 1
Introduction

DataStage Server Jobs . 1-1

Plug-in Stages. 1-2

DataStage Packs . 1-2

Custom Resources . 1-3

After Development. 1-3

Chapter 2
Optimizing Performance in Server Jobs

DataStage Jobs and Processes. 2-1

Single Processor and Multi-Processor Systems . 2-3

Partitioning and Collecting . 2-6

Diagnosing Job Limitations . 2-7

Interpreting Performance Statistics . 2-10

Improving Performance. 2-10

CPU Limited Jobs – Single Processor Systems . 2-10

CPU Limited Jobs - Multi-processor Systems . 2-11

I/O Limited Jobs . 2-12

Hash File Design . 2-13
Server Job Developer’s Guide ix

Contents
Chapter 3
ODBC Stages

Using ODBC Stages. 3-1

Defining the Connection . 3-2

ODBC Connection Parameters . 3-2

Defining Character Set Maps . 3-3

Handling SQL Server Data Types. 3-4

GUID Type . 3-5

Timestamp type . 3-5

SmallDateTime. 3-5

Defining ODBC Input Data. 3-6

Specifying Transaction Control Information . 3-9

Using a Generated Query . 3-11

Using a User-Defined SQL Statement . 3-12

Using a Stored Procedure . 3-13

Defining ODBC Output Data . 3-14

Key Fields . 3-16

Using a Generated Query . 3-16

Using a User-Defined SQL Statement . 3-21

Using a Stored Procedure . 3-22

Chapter 4
UniVerse Stages

Using UniVerse Stages . 4-1

Defining the Connection . 4-2

UniVerse Connection Parameters. 4-2

Defining UniVerse Input Data . 4-4

Specifying Transaction Control Information . 4-6

Using a Generated Query . 4-9

Using a User-Defined SQL Statement . 4-10

Create Table Options . 4-11

Defining UniVerse Output Data . 4-12

Key Fields . 4-14

Using a Generated Query . 4-14

Using a User-Defined SQL Statement . 4-18
x Server Job Developer’s Guide

Contents
Chapter 5
UniData 6 Stages

Using UniData 6 Stages. 5-1

Connecting to UniData 6 . 5-3

UniData 6 Account . 5-3

DataStage DSN for UniData 6 Server . 5-4

UniData 6 Connection Parameters . 5-4

Defining UniData 6 Input Data . 5-5

Using a Generated Query . 5-7

Defining UniData 6 Output Data . 5-7

Key Fields . 5-9

Using a Generated Query . 5-9

Chapter 6
Hashed File Stages

Using a Hashed File Stage . 6-1

Defining Hashed File Input Data . 6-3

Create File Options . 6-6

Defining Hashed File Output Data . 6-7

Using the Euro Symbol on Non-NLS systems. 6-10

Chapter 7
UniData Stages

Using a UniData Stage . 7-1

Defining Character Set Maps . 7-3

Defining UniData Input Data . 7-4

Defining UniData Output Data . 7-5

Chapter 8
Sequential File Stages

Using a Sequential File Stage . 8-1

Defining Character Set Maps . 8-3

Defining Sequential File Input Data . 8-4

Defining Sequential File Output Data. 8-7

How the Sequential Stage Behaves . 8-11
Server Job Developer’s Guide xi

Contents
Chapter 9
Transformer Stages

Using a Transformer Stage. 9-1

Transformer Editor Components . 9-2

Toolbar . 9-2

Link Area . 9-3

Meta Data Area. 9-3

Shortcut Menus . 9-3

Transformer Stage Basic Concepts . 9-4

Input Links . 9-5

Output Links . 9-5

Before-Stage and After-Stage Routines . 9-6

Editing Transformer Stages . 9-7

Using Drag and Drop . 9-7

Find and Replace Facilities . 9-8

Select Facilities. 9-9

Specifying the Primary Input Link . 9-9

Creating and Deleting Columns . 9-10

Moving Columns Within a Link. 9-10

Editing Column Meta Data . 9-10

Defining Output Column Derivations . 9-10

Editing Multiple Derivations . 9-13

Defining Input Column Key Expressions . 9-16

Defining Multirow Lookup for Reference Inputs . 9-17

Specifying Before-Stage and After-Stage Subroutines 9-17

Defining Constraints and Handling Rejects . 9-19

Specifying Link Order . 9-21

Defining Local Stage Variables . 9-22

The DataStage Expression Editor. 9-23

Expression Format . 9-24

Entering Expressions . 9-25

Completing Variable Names . 9-26

Validating the Expression . 9-27

Exiting the Expression Editor . 9-27

Configuring the Expression Editor . 9-27
xii Server Job Developer’s Guide

Contents
Transformer Stage Properties. 9-27

Stage Page . 9-28

Inputs Page . 9-28

Outputs Page . 9-28

Chapter 10
Aggregator Stages

Using an Aggregator Stage. 10-1

Before-Stage and After-Stage Subroutines . 10-2

Defining Aggregator Input Data . 10-3

Defining the Input Column Sort Order . 10-4

Defining Aggregator Output Data. 10-5

Aggregating Data . 10-6

Chapter 11
Folder Stages

Using Folder Stages. 11-1

Defining Character Set Maps . 11-4

Folder Stage Input Data . 11-4

Folder Stage Output Data . 11-6

Chapter 12
Inter-Process Stages

Using the IPC Stage . 12-3

Defining IPC Stage Properties. 12-3

Defining IPC Stage Input Data. 12-4

Defining IPC Stage Output Data . 12-4

Chapter 13
Link Partitioner Stages

Using a Link Partitioner Stage . 13-2

Before-Stage and After-Stage Subroutines . 13-3

Defining Link Partitioner Stage Properties. 13-3

Defining Link Partitioner Stage Input Data . 13-4

Defining Link Partitioner Stage Output Data . 13-4
Server Job Developer’s Guide xiii

Contents
Chapter 14
Link Collector Stages

Using a Link Collector Stage. 14-2

Before-Stage and After-Stage Subroutines . 14-3

Defining Link Collector Stage Properties . 14-4

Defining Link Collector Stage Input Data. 14-5

Defining Link Collector Stage Output Data . 14-5

Chapter 15
Plug-Ins and Plug-In Stages

Plug-Ins. 15-1

Manually Registering a Plug-In Definition . 15-2

Viewing Plug-In Definition Details . 15-3

Removing a Registered Plug-In . 15-5

Packaging a Plug-In . 15-5

Using a Plug-In . 15-6

Plug-In Stages . 15-6

Before-Stage and After-Stage Subroutines . 15-7

Defining Plug-In Input Data . 15-8

Defining Plug-In Output Data . 15-10

Editing Properties. 15-11

Defining Character Set Maps . 15-13

BCPLoad Stages. 15-13

Overview of the BCPLoad Plug-In. 15-14

Before You Start . 15-14

Table Definitions . 15-15

SQL Data Types . 15-15

The BCPLoad Plug-In Definition . 15-16

Using the BCPLoad Stage . 15-18

Editing the BCPLoad Stage . 15-18

Orabulk Stages. 15-23

Using the Orabulk Stage . 15-23

Specifying the Stage Properties . 15-24

Defining Character Set Maps . 15-26

Loading the Files into Oracle . 15-26
xiv Server Job Developer’s Guide

Contents
Chapter 16
Debugging, Compiling, and Releasing a Job

The DataStage Debugger . 16-1

Debugging Shared Containers . 16-5

Compiling a Job . 16-7

Compilation Checks . 16-7

Successful Compilation . 16-8

Troubleshooting . 16-8

Graphical Performance Monitor . 16-8

Releasing a Job . 16-11

Chapter 17
Programming in DataStage

Programming Components. 17-2

Routines . 17-2

Transforms . 17-3

Functions. 17-3

Expressions. 17-4

Subroutines. 17-4

Macros. 17-5

Precedence Rules . 17-5

Working with Routines . 17-5

The Server Routine Dialog Box . 17-6

Creating a Routine . 17-11

Viewing and Editing a Routine . 17-17

Copying a Routine . 17-17

Renaming a Routine. 17-18

Defining Custom Transforms . 17-18

External ActiveX (OLE) Functions. 17-21

Importing External ActiveX (OLE) Functions . 17-22

Chapter 18
BASIC Programming

Syntax Conventions. 18-2
Server Job Developer’s Guide xv

Contents
The BASIC Language. 18-2

Constants . 18-2

Variables . 18-3

Expressions . 18-4

Functions . 18-4

Statements . 18-5

Subroutines . 18-5

Operators . 18-6

Data Types in BASIC Functions and Statements. 18-13

Empty BASIC Strings and Null Values . 18-14

Fields . 18-14

Reserved Words . 18-15

Source Code and Object Code . 18-16

Special Characters . 18-16

System Variables . 18-17

BASIC Functions and Statements. 18-18

Compiler Directives . 18-18

Declaration . 18-19

Job Control . 18-19

Program Control. 18-21

Sequential File Processing . 18-21

String Verification and Formatting . 18-22

Substring Extraction and Formatting . 18-23

Data Conversion. 18-23

Data Formatting . 18-24

Locale Functions . 18-24

$Define Statement . 18-25

Syntax . 18-25

Remarks . 18-25

Examples . 18-25

$IfDef and $IfNDef Statements . 18-26

Syntax . 18-26

Remarks . 18-26

Example . 18-26

$Include Statement . 18-27

Syntax . 18-27

Remarks . 18-27
xvi Server Job Developer’s Guide

Contents
$Undefine Statement. 18-28

Syntax . 18-28

[] Operator . 18-29

Syntax . 18-29

Remarks. 18-29

Examples. 18-29

* Statement . 18-31

Syntax . 18-31

Remarks. 18-31

Example. 18-31

Abs Function. 18-32

Syntax . 18-32

Remarks. 18-32

Example. 18-32

Alpha Function . 18-33

Syntax . 18-33

Remarks. 18-33

Examples. 18-33

Ascii Function . 18-34

Syntax . 18-34

Remarks. 18-34

Example. 18-34

Assignment Statement . 18-35

Syntax . 18-35

Remarks. 18-35

Bit functions . 18-36

Syntax . 18-36

Remarks. 18-36

Examples. 18-37

Byte-Oriented Functions . 18-39

Byte Function . 18-40

Syntax . 18-40

Remarks. 18-40

ByteLen Functionen . 18-41

Syntax . 18-41

Remarks. 18-41
Server Job Developer’s Guide xvii

Contents
ByteType Function. 18-42

Syntax . 18-42

Remarks . 18-42

ByteVal Function . 18-43

Syntax . 18-43

Remarks . 18-43

Call Statement . 18-44

Syntax . 18-44

Remarks . 18-44

Example . 18-44

Case Statement . 18-45

Syntax . 18-45

Remarks . 18-45

Example . 18-45

Cats Statement. 18-47

Syntax . 18-47

Example . 18-47

Change Function . 18-48

Syntax . 18-48

Remarks . 18-48

Examples . 18-48

Char Function. 18-49

Syntax . 18-49

Remarks . 18-49

Example . 18-49

Checksum Function . 18-50

Syntax . 18-50

Example . 18-50

CloseSeq Statement . 18-51

Syntax . 18-51

Remarks . 18-51

Col1 Function . 18-52

Syntax . 18-52

Remarks . 18-52

Examples . 18-52
xviii Server Job Developer’s Guide

Contents
Col2 Function . 18-53

Syntax . 18-53

Remarks. 18-53

Examples. 18-53

Common Statement. 18-55

Syntax . 18-55

Remarks. 18-55

Example. 18-55

Compare Function . 18-57

Syntax . 18-57

Remarks. 18-57

Example. 18-57

Convert Function . 18-58

Syntax . 18-58

Remarks. 18-58

Example. 18-58

Convert Statement . 18-59

Syntax . 18-59

Remarks. 18-59

Example. 18-59

Count Function . 18-60

Syntax . 18-60

Remarks. 18-60

Example. 18-60

CRC32 Function . 18-61

Syntax . 18-61

Example. 18-61

Date Function . 18-62

Syntax . 18-62

Remarks. 18-62

Example. 18-62

DCount Function . 18-63

Syntax . 18-63

Remarks. 18-63

Example. 18-63
Server Job Developer’s Guide xix

Contents
Deffun Statement. 18-64

Syntax . 18-64

Remarks . 18-64

Example . 18-64

Dimension Statement . 18-65

Syntax . 18-65

Remarks . 18-65

Example . 18-65

Div Function . 18-67

Syntax . 18-67

Remarks . 18-67

Examples . 18-67

DownCase Function. 18-68

Syntax . 18-68

Example . 18-68

DQuote Function . 18-69

Syntax . 18-69

Remarks . 18-69

Example . 18-69

DSAttachJob . 18-70

Syntax . 18-70

Remarks . 18-70

Example . 18-70

DSCheckRoutine . 18-71

Syntax . 18-71

Example . 18-71

DSDetachJob . 18-72

Syntax . 18-72

Example . 18-72

DSExecute . 18-73

Syntax . 18-73

Remarks . 18-73

DSGetCustInfo . 18-74

Syntax . 18-74

DSIPCPageProps . 18-75

Syntax . 18-75

Example . 18-75
xx Server Job Developer’s Guide

Contents
DSGetJobInfo . 18-76

Syntax . 18-76

Remarks. 18-79

Examples. 18-79

DSGetJobMetaBag . 18-80

Syntax . 18-80

Example. 18-80

DSGetLinkInfo . 18-81

Syntax . 18-81

Remarks. 18-82

Example. 18-82

DSGetLinkMetaData. 18-83

Syntax . 18-83

Example. 18-83

DSGetLogEntry. 18-84

Syntax . 18-84

Example. 18-84

DSGetLogSummary. 18-85

Syntax . 18-85

Example. 18-86

DSGetNewestLogId . 18-87

Syntax . 18-87

Example. 18-87

DSGetParamInfo . 18-88

Syntax . 18-88

Remarks. 18-89

Example. 18-89

DSGetProjectInfo . 18-91

Syntax . 18-91

DSGetStageInfo . 18-92

Syntax . 18-92

Remarks. 18-94

Example. 18-94

DSGetStageLinks . 18-95

Syntax . 18-95

Example. 18-95
Server Job Developer’s Guide xxi

Contents
DSGetStagesOfType . 18-96

Syntax . 18-96

Example . 18-96

DSGetStagesTypes . 18-97

Syntax . 18-97

Example . 18-97

DSGetProjectInfo . 18-98

Syntax . 18-98

DSLogEvent . 18-99

Syntax . 18-99

Example . 18-99

DSLogFatal . 18-100

Syntax . 18-100

Remarks . 18-100

Example . 18-100

DSLogInfo. 18-101

Syntax . 18-101

Remarks . 18-101

Example . 18-101

DSLogToController . 18-102

Syntax . 18-102

Remarks . 18-102

Example . 18-102

DSLogWarn . 18-103

Syntax . 18-103

Remarks . 18-103

Example . 18-103

DSMakeJobReport. 18-104

Syntax . 18-104

Remarks . 18-104

Example . 18-104

DSMakeMsg . 18-105

Syntax . 18-105

Remarks . 18-105

Example . 18-105

DSPrepareJob . 18-106

Syntax . 18-106

Example . 18-106
xxii Server Job Developer’s Guide

Contents
DSRunJob. 18-107

Syntax . 18-107

Remarks. 18-107

Example. 18-107

DSSendMail . 18-108

Syntax . 18-108

Remarks. 18-109

Example. 18-109

DSSetGenerateOpMetaData . 18-110

Syntax . 18-110

Example. 18-110

DSSetJobLimit . 18-111

Syntax . 18-111

Example. 18-111

DSSetParam . 18-112

Syntax . 18-112

Example. 18-112

DSSetUserStatus . 18-113

Syntax . 18-113

Example. 18-113

DSStopJob . 18-114

Syntax . 18-114

Example. 18-114

DSTransformError . 18-115

Syntax . 18-115

Remarks. 18-115

Example. 18-115

DSTranslateCode . 18-116

Syntax . 18-116

Remarks. 18-116

Example. 18-116

DSWaitForFile. 18-117

Syntax . 18-117

Examples. 18-117

DSWaitForJob . 18-118

Syntax . 18-118

Remarks. 18-118

Example. 18-118
Server Job Developer’s Guide xxiii

Contents
Dtx Function . 18-119

Syntax . 18-119

Example . 18-119

Ebcdic Function . 18-120

Syntax . 18-120

Remarks . 18-120

Example . 18-120

End Statement . 18-121

Syntax . 18-121

Remarks . 18-121

Examples . 18-121

Equate Statement . 18-123

Syntax . 18-123

Remarks . 18-123

Example . 18-123

Ereplace Function . 18-124

Syntax . 18-124

Remarks . 18-124

Examples . 18-124

Exchange Function . 18-125

Syntax . 18-125

Remarks . 18-125

Example . 18-125

Exp Function. 18-126

Syntax . 18-126

Remarks . 18-126

Example . 18-126

Field Function. 18-127

Syntax . 18-127

Examples . 18-127

FieldStore Function . 18-128

Syntax . 18-128

Example . 18-128

FIX Function . 18-129

Syntax . 18-129

Examples . 18-129
xxiv Server Job Developer’s Guide

Contents
Fmt Function. 18-130

Syntax . 18-130

Remarks. 18-130

Format Expression . 18-131

Syntax . 18-131

Output Length. 18-131

Fill Character . 18-131

Justification. 18-131

Monetary and Numeric Formatting . 18-132

Masked Output . 18-132

FmtDP Function . 18-136

Syntax . 18-136

Remarks. 18-136

Fold Function . 18-137

Syntax . 18-137

Remarks. 18-137

Example. 18-137

FoldDP Function . 18-138

Syntax . 18-138

Remarks. 18-138

For…Next Statements . 18-139

Syntax . 18-139

Remarks. 18-140

Example. 18-140

Function Statement . 18-141

Syntax . 18-141

Remarks. 18-141

Calling the User-Written Function. 18-141

Examples. 18-142

GetLocale Function . 18-143

Syntax . 18-143

Remarks. 18-143

GoSub Statement. 18-144

Syntax . 18-144

Remarks. 18-144

Example. 18-144
Server Job Developer’s Guide xxv

Contents
GoTo Statement. 18-145

Syntax . 18-145

Remarks . 18-145

Example . 18-145

Iconv Function . 18-146

Syntax . 18-146

Remarks . 18-146

Examples . 18-146

If…Else Statements . 18-152

Syntax . 18-152

Remarks . 18-152

Example . 18-152

If…Then…Else Statements . 18-153

Syntax . 18-153

Remarks . 18-153

Example . 18-153

If…Then Statements . 18-155

Syntax . 18-155

Remarks . 18-155

Example . 18-155

If…Then…Else Operator . 18-156

Syntax . 18-156

Remarks . 18-156

Example . 18-156

Index Function . 18-157

Syntax . 18-157

Examples . 18-157

InMat Function . 18-158

Syntax . 18-158

Remarks . 18-158

Example . 18-158

Int Function. 18-159

Syntax . 18-159

Example . 18-159

IsNull Function . 18-160

Syntax . 18-160

Remarks . 18-160

Example . 18-160
xxvi Server Job Developer’s Guide

Contents
Left Function. 18-161

Syntax . 18-161

Examples. 18-161

Len Function . 18-162

Syntax . 18-162

Examples. 18-162

LenDP Function . 18-163

Syntax . 18-163

Remarks. 18-163

Ln Function . 18-164

Syntax . 18-164

Remarks. 18-164

Example. 18-164

LOCATE statement. 18-165

Syntax . 18-165

Remarks. 18-166

Examples. 18-166

Loop…Repeat Statements. 18-168

Syntax . 18-168

Remarks. 18-168

Example. 18-168

Mat Statement . 18-170

Syntax . 18-170

Remarks. 18-170

Examples. 18-170

MatchField Function . 18-171

Syntax . 18-171

Remarks. 18-171

Examples. 18-171

Mod Function . 18-173

Syntax . 18-173

Remarks. 18-173

Examples. 18-173

Nap Statement . 18-174

Syntax . 18-174

Remarks. 18-174

Example. 18-174
Server Job Developer’s Guide xxvii

Contents
Neg Function . 18-175

Syntax . 18-175

Example . 18-175

Not Function. 18-176

Syntax . 18-176

Remarks . 18-176

Examples . 18-176

Null Statement . 18-177

Syntax . 18-177

Remarks . 18-177

Example . 18-177

Num Function. 18-178

Syntax . 18-178

Remarks . 18-178

Examples . 18-178

Oconv Function . 18-179

Syntax . 18-179

Remarks . 18-179

Examples . 18-179

On…GoSub Statements . 18-185

Syntax . 18-185

Remarks . 18-185

Example . 18-185

On…GoTo Statement . 18-187

Syntax . 18-187

Remarks . 18-187

Example . 18-187

OpenSeq Statement . 18-188

Syntax . 18-188

Remarks . 18-188

Example . 18-189

Pattern Matching Operators . 18-190

Syntax . 18-190

Remarks . 18-190

Pwr Function . 18-191

Syntax . 18-191

Remarks . 18-191

Example . 18-191
xxviii Server Job Developer’s Guide

Contents
Randomize Statement . 18-192

Syntax . 18-192

Remarks. 18-192

Example. 18-192

ReadSeq . 18-193

Syntax . 18-193

Remarks. 18-193

Example. 18-194

REAL Function . 18-195

Syntax . 18-195

Return Statement . 18-196

Syntax . 18-196

Remarks. 18-196

Return (value) Statement . 18-197

Syntax . 18-197

Remarks. 18-197

Example. 18-197

Right Function . 18-198

Syntax . 18-198

Examples. 18-198

Rnd Function . 18-199

Syntax . 18-199

Remarks. 18-199

Example. 18-199

Seq Function. 18-200

Syntax . 18-200

Remarks. 18-200

Example. 18-200

SetLocale . 18-201

Syntax . 18-201

Remarks. 18-201

Example. 18-201

Sleep Statement. 18-202

Syntax . 18-202

Remarks. 18-202

Example. 18-202
Server Job Developer’s Guide xxix

Contents
Soundex Function . 18-203

Syntax . 18-203

Remarks . 18-203

Example . 18-203

Space Function. 18-204

Syntax . 18-204

Example . 18-204

Sqrt Function . 18-205

Syntax . 18-205

Example . 18-205

SQuote Function . 18-206

Syntax . 18-206

Example . 18-206

Status Function . 18-207

Syntax . 18-207

Remarks . 18-207

Examples . 18-207

Str Function . 18-209

Syntax . 18-209

Example . 18-209

Subroutine Statement . 18-210

Syntax . 18-210

Remarks . 18-210

Example . 18-210

Time Function . 18-211

Syntax . 18-211

Remarks . 18-211

Example . 18-211

TimeDate Function. 18-212

Syntax . 18-212

Remarks . 18-212

Example . 18-212

Trigomentric Functions . 18-213

General Syntax. 18-213

Remarks . 18-213

Examples . 18-213
xxx Server Job Developer’s Guide

Contents
Trim Function . 18-215

Syntax . 18-215

Remarks. 18-215

Examples. 18-215

TrimB Function. 18-217

Syntax . 18-217

Example. 18-217

TrimF Function . 18-218

Syntax . 18-218

Example. 18-218

UniChar Function . 18-219

Syntax . 18-219

Remarks. 18-219

UniSeq Function. 18-220

Syntax . 18-220

Remarks. 18-220

UpCase Function . 18-221

Syntax . 18-221

Example. 18-221

WEOFSeq Function . 18-222

Syntax . 18-222

Remarks. 18-222

Example. 18-222

WriteSeq Function . 18-223

Syntax . 18-223

Remarks. 18-223

Example. 18-223

WriteSeqF Function . 18-225

Syntax . 18-225

Remarks. 18-225

Example. 18-225

Xtd Function . 18-227

Syntax . 18-227

Example. 18-227

Conversion Codes . 18-228
Server Job Developer’s Guide xxxi

Contents
D . 18-230

Syntax . 18-230

Value Returned by the Status Function . 18-232

Examples . 18-232

G . 18-234

Syntax . 18-234

Examples . 18-234

L. 18-235

Syntax . 18-235

Examples . 18-235

MB. 18-236

Syntax . 18-236

Remarks . 18-236

Examples . 18-236

MCA . 18-237

Syntax . 18-237

Examples . 18-237

MC/A . 18-238

Syntax . 18-238

Examples . 18-238

MCD . 18-239

Syntax . 18-239

Examples . 18-239

MCL. 18-240

Syntax . 18-240

Examples . 18-240

MCM . 18-241

Syntax . 18-241

Example . 18-241

MC/M . 18-242

Syntax . 18-242

Example . 18-242

MCN . 18-243

Syntax . 18-243

Examples . 18-243

MC/N . 18-244

Syntax . 18-244

Examples . 18-244
xxxii Server Job Developer’s Guide

Contents
MCP . 18-245

Syntax . 18-245

Examples. 18-245

MCT . 18-246

Syntax . 18-246

Examples. 18-246

MCU . 18-247

Syntax . 18-247

Examples. 18-247

MCX. 18-248

Syntax . 18-248

Examples. 18-248

MD . 18-249

Syntax . 18-249

Examples. 18-250

ML & MR . 18-253

Syntax . 18-253

Examples. 18-254

MM . 18-256

Syntax . 18-256

Remarks. 18-256

MO. 18-257

Syntax . 18-257

Remarks. 18-257

Examples. 18-257

MP . 18-258

Syntax . 18-258

Remarks. 18-258

MT . 18-259

Syntax . 18-259

Remarks. 18-259

Examples. 18-259

MUOC . 18-261

Syntax . 18-261

Remarks. 18-261

Example. 18-261
Server Job Developer’s Guide xxxiii

Contents
MX. 18-262

Syntax . 18-262

Remarks . 18-262

Examples . 18-262

MY. 18-263

Syntax . 18-263

Remarks . 18-263

Examples . 18-263

NL . 18-264

Syntax . 18-264

Example . 18-264

NLS . 18-265

Syntax . 18-265

Remarks . 18-265

NR . 18-266

Syntax . 18-266

Remarks . 18-266

Examples . 18-266

P . 18-267

Syntax . 18-267

Remarks . 18-267

Examples . 18-267

R . 18-269

Syntax . 18-269

Remarks . 18-269

Examples . 18-269

S . 18-270

Syntax . 18-270

Remarks . 18-270

Examples . 18-270

TI . 18-271

Syntax . 18-271

Example . 18-271
xxxiv Server Job Developer’s Guide

Contents
Chapter 19
DataStage Development Kit (Job Control Interfaces)

DataStage Development Kit . 19-2

The dsapi.h Header File . 19-2

Data Structures, Result Data, and Threads . 19-2

Writing DataStage API Programs . 19-3

Building a DataStage API Application . 19-4

Redistributing Applications . 19-4

API Functions . 19-4

DSAddEnvVar. 19-7

Syntax . 19-7

Parameters . 19-7

Return Values . 19-7

Remarks. 19-8

DSAddProject . 19-9

Syntax . 19-9

Parameters . 19-9

Return Values . 19-9

DSCloseJob . 19-10

Syntax . 19-10

Parameter . 19-10

Return Values . 19-10

Remarks. 19-10

DSCloseProject . 19-11

Syntax . 19-11

Parameter . 19-11

Return Value . 19-11

Remarks. 19-11

DSDeleteEnvVar . 19-12

Syntax . 19-12

Parameters . 19-12

Return Values . 19-12

DSDeleteProject . 19-13

Syntax . 19-13

Parameter . 19-13

Return Value . 19-13
Server Job Developer’s Guide xxxv

Contents
DSFindFirstLogEntry . 19-14

Syntax . 19-14

Parameters . 19-14

Return Values . 19-15

Remarks . 19-15

DSFindNextLogEntry. 19-16

Syntax . 19-16

Parameters . 19-16

Return Values . 19-16

Remarks . 19-16

DSGetProjectList . 19-17

Syntax . 19-17

Parameters . 19-17

Return Values . 19-17

DSGetJobInfo. 19-19

Syntax . 19-19

Parameters . 19-19

Return Values . 19-20

Remarks . 19-20

DSGetLastError . 19-21

Syntax . 19-21

Return Values . 19-21

Remarks . 19-21

DSGetLastErrorMsg. 19-22

Syntax . 19-22

Parameter . 19-22

Return Values . 19-22

Rermarks. 19-22

DSGetLinkInfo . 19-23

Syntax . 19-23

Parameters . 19-23

Return Value . 19-24

Remarks . 19-24

DSGetLogEntry . 19-25

Syntax . 19-25

Parameters . 19-25

Return Values . 19-25

Remarks . 19-25
xxxvi Server Job Developer’s Guide

Contents
DSGetNewestLogId . 19-26

Syntax . 19-26

Parameters . 19-26

Return Values . 19-26

Remarks. 19-27

DSGetParamInfo . 19-28

Syntax . 19-28

Parameters . 19-28

Return Values . 19-28

Remarks. 19-28

DSGetProjectInfo . 19-30

Syntax . 19-30

Parameters . 19-30

Return Values . 19-30

Remarks. 19-30

DSGetProjectList . 19-31

Syntax . 19-31

Return Values . 19-31

Remarks. 19-31

DSGetReposInfo. 19-32

Syntax . 19-32

Parameters . 19-32

Return Value . 19-33

DSGetReposUsage. 19-34

Syntax . 19-34

Parameters . 19-34

Return Value . 19-35

DSGetStageInfo . 19-36

Syntax . 19-36

Parameters . 19-36

Return Values . 19-37

Remarks. 19-37

DSGetProjectList . 19-38

Syntax . 19-38

Parameters . 19-38

Return Values . 19-38
Server Job Developer’s Guide xxxvii

Contents
DSListEnvVars . 19-39

Syntax . 19-39

Parameter . 19-39

Return Values . 19-39

Remarks . 19-39

DSListProjectProperties. 19-40

Syntax . 19-40

Parameter . 19-40

Return Values . 19-40

Remarks . 19-41

DSLockJob . 19-42

Syntax . 19-42

Parameter . 19-42

Return Values . 19-42

Remarks . 19-42

DSLogEvent . 19-43

Syntax . 19-43

Parameters . 19-43

Return Values . 19-43

Remarks . 19-43

DSMakeJobReport. 19-44

Syntax . 19-44

Parameters . 19-44

Return Values . 19-44

DSOpenJob . 19-45

Syntax . 19-45

Parameters . 19-45

Return Values . 19-45

Remarks . 19-45

DSOpenProject. 19-46

Syntax . 19-46

Parameter . 19-46

Return Values . 19-46

Remarks . 19-46
xxxviii Server Job Developer’s Guide

Contents
DSRunJob. 19-47

Syntax . 19-47

Parameters . 19-47

Return Values . 19-47

Remarks. 19-47

DSSetEnvVar . 19-48

Syntax . 19-48

Parameters . 19-48

Return Values . 19-48

Remarks. 19-49

DSSetGenerateOpMetaData . 19-50

Syntax . 19-50

Parameters . 19-50

Return Values . 19-50

DSSetJobLimit . 19-51

Syntax . 19-51

Parameters . 19-51

Return Values . 19-51

Remarks. 19-51

DSSetParam . 19-53

Syntax . 19-53

Parameters . 19-53

Return Values . 19-53

Remarks. 19-54

DSSetProjectProperty . 19-55

Syntax . 19-55

Parameters . 19-55

Return Values . 19-56

Remarks. 19-56

DSSetServerParams . 19-57

Syntax . 19-57

Parameters . 19-57

Return Values . 19-57

Remarks. 19-57
Server Job Developer’s Guide xxxix

Contents
DSStopJob . 19-58

Syntax . 19-58

Parameter . 19-58

Return Values . 19-58

Remarks . 19-58

DSUnlockJob . 19-59

Syntax . 19-59

Parameter . 19-59

Return Values . 19-59

Remarks . 19-59

DSWaitForJob . 19-60

Syntax . 19-60

Parameter . 19-60

Return Values . 19-60

Remarks . 19-60

Data Structures . 19-61

DSCUSTINFO . 19-62

Syntax . 19-62

Members. 19-62

DSJOBINFO . 19-63

Syntax . 19-63

Members. 19-63

DSLINKINFO. 19-66

Syntax . 19-66

Members. 19-66

DSLOGDETAIL . 19-67

Syntax . 19-67

Members. 19-67

DSLOGEVENT . 19-68

Syntax . 19-68

Members. 19-68

DSPARAM. 19-69

Syntax . 19-69

Members. 19-69

DSPARAMINFO . 19-71

Syntax . 19-71

Members. 19-71
xl Server Job Developer’s Guide

Contents
DSPROJECTINFO . 19-73

Syntax . 19-73

Members . 19-73

DSREPOSINFO . 19-74

Syntax . 19-74

Members . 19-74

DSREPOSUSAGE . 19-75

Syntax . 19-75

Members . 19-75

DSSTAGEINFO . 19-76

Syntax . 19-76

Members . 19-76

DSLINKINFO . 19-78

Syntax . 19-78

Members . 19-78

Error Codes. 19-79

DataStage BASIC Interface . 19-86

DSAttachJob. 19-89

Syntax . 19-89

Remarks. 19-89

Example. 19-89

DSCheckRoutine. 19-90

Syntax . 19-90

Example. 19-90

DSDetachJob . 19-91

Syntax . 19-91

Example. 19-91

DSExecute. 19-92

Syntax . 19-92

Remarks. 19-92

DSGetCustInfo . 19-93

Syntax . 19-93

DSIPCPageProps . 19-94

Syntax . 19-94

Example. 19-94
Server Job Developer’s Guide xli

Contents
DSGetJobInfo. 19-95

Syntax . 19-95

Remarks . 19-98

Examples . 19-98

DSGetJobMetaBag . 19-99

Syntax . 19-99

Example . 19-99

DSGetLinkInfo . 19-100

Syntax . 19-100

Remarks . 19-101

Example . 19-101

DSGetLinkMetaData . 19-102

Syntax . 19-102

Example . 19-102

DSGetLogEntry . 19-103

Syntax . 19-103

Example . 19-103

DSGetLogSummary. 19-104

Syntax . 19-104

Example . 19-105

DSGetNewestLogId . 19-106

Syntax . 19-106

Example . 19-106

DSGetParamInfo . 19-107

Syntax . 19-107

Remarks . 19-108

Example . 19-108

DSGetProjectInfo . 19-110

Syntax . 19-110

DSGetStageInfo . 19-111

Syntax . 19-111

Remarks . 19-113

Example . 19-113

DSGetStageLinks . 19-114

Syntax . 19-114

Example . 19-114
xlii Server Job Developer’s Guide

Contents
DSGetStagesOfType . 19-115

Syntax . 19-115

Example. 19-115

DSGetStagesTypes . 19-116

Syntax . 19-116

Example. 19-116

DSGetProjectInfo . 19-117

Syntax . 19-117

DSLogEvent . 19-118

Syntax . 19-118

Example. 19-118

DSLogFatal . 19-119

Syntax . 19-119

Remarks. 19-119

Example. 19-119

DSLogInfo . 19-120

Syntax . 19-120

Remarks. 19-120

Example. 19-120

DSLogToController . 19-121

Syntax . 19-121

Remarks. 19-121

Example. 19-121

DSLogWarn . 19-122

Syntax . 19-122

Remarks. 19-122

Example. 19-122

DSMakeJobReport . 19-123

Syntax . 19-123

Remarks. 19-123

Example. 19-123

DSMakeMsg . 19-124

Syntax . 19-124

Remarks. 19-124

Example. 19-124

DSPrepareJob . 19-125

Syntax . 19-125

Example. 19-125
Server Job Developer’s Guide xliii

Contents
DSRunJob. 19-126

Syntax . 19-126

Remarks . 19-126

Example . 19-126

DSSendMail . 19-127

Syntax . 19-127

Remarks . 19-128

Example . 19-128

DSSetGenerateOpMetaData . 19-129

Syntax . 19-129

Example . 19-129

DSSetJobLimit . 19-130

Syntax . 19-130

Example . 19-130

DSSetParam . 19-131

Syntax . 19-131

Example . 19-131

DSSetUserStatus . 19-132

Syntax . 19-132

Example . 19-132

DSStopJob . 19-133

Syntax . 19-133

Example . 19-133

DSTransformError . 19-134

Syntax . 19-134

Remarks . 19-134

Example . 19-134

DSTranslateCode . 19-135

Syntax . 19-135

Remarks . 19-135

Example . 19-135

DSWaitForFile . 19-136

Syntax . 19-136

Examples . 19-136

DSWaitForJob . 19-137

Syntax . 19-137

Remarks . 19-137

Example . 19-137
xliv Server Job Developer’s Guide

Contents
Job Status Macros . 19-138

Command Line Interface . 19-139

Commands for Controlling DataStage Jobs . 19-139

Commands for Administering DataStage . 19-150

Commands for Searching Jobs. 19-156

XML Schemas and Sample Stylesheets . 19-161

Chapter 20
Built-In Transforms and Routines

Built-In Transforms . 20-1

String Transforms . 20-2

Date Transforms . 20-3

Data Type Transforms . 20-12

Key Management Transforms. 20-15

Measurement Transforms – Area . 20-15

Measurement Transforms – Distance. 20-17

Measurement Transforms – Temperature . 20-18

Measurement Transforms – Time. 20-18

Measurement Transforms – Volume . 20-20

Measurement Transforms – Weight . 20-22

Numeric Transforms . 20-23

Row Processor Transforms . 20-23

Utility Transforms . 20-24

Built-In Routines. 20-25

Built-In Before/After Subroutines . 20-25

Example Transform Functions . 20-27

Appendix A
Development Kit Program Example
Server Job Developer’s Guide xlv

Contents
xlvi Server Job Developer’s Guide

1
Introduction

This chapter gives an overview of server jobs. Server jobs are

compiled and run on the DataStage server. Such jobs connect to a

data source, extract, and transform data and write it to a data

warehouse.

DataStage also supports parallel and mainframe jobs, provided you

have Enterprise Edition and/or MVS Edition installed.

Parallel jobs allow parallel processing on SMP, MPP, and cluster

systems. They are compiled and run on a DataStage UNIX server.

Parallel jobs are described in Parallel Job Developer’s Guide.

Mainframe jobs are loaded onto a mainframe and compiled and run

there. Mainframe jobs are described in Mainframe Job Developer’s

Guide.

DataStage Server Jobs
DataStage jobs consist of individual stages. Each stage describes a

particular database or process. For example, one stage may extract

data from a data source, while another transforms it. Stages are

added to a job and linked together using the Designer.

There are two types of stage:

Built-in stages. Supplied with DataStage and used for extracting,
aggregating, transforming, or writing data.

Plug-in stages. Additional stages that can be installed in
DataStage to perform specialized tasks that the built-in stages do
not support. These include stages that are supplied as part of
DataStage packs.
Server Job Developer’s Guide 1-1

DataStage Server Jobs Introduction
General information on how to construct your job and define the

required meta data using the DataStage Designer and the DataStage

Manager is in the DataStage Designer Guide and DataStage Manager

Guide. Chapters 2 to 13 of this manual describe the individual stage

editors that you may use when developing server jobs using the

supplied built-in stages.Web

Plug-in Stages
There are a large number of specialized plug-in stages available for

DataStage. These can be installed when you initially install DataStage,

or at any time after. General information about plug-ins and a

description of the generic plug-in stage editor is in Chapter 15. Details

of particular plug-ins are in individual guides. Some plug-ins also

have custom GUIs which are described in their respective and in an

online help file supplied with the plug-in. All the plug-in guides are

accessible via the Plug-in Bookshelf.

DataStage Packs
There are a number of packs available with DataStage that affect

server jobs, each providing a set of plug-in stages and associated

functionality.

XML Pack. This package is suppled with DataStage. It provides
tools that enable you to convert data between XML documents
and data tables. Features and functionality are fully described in
the XML Pack Designer Guide.

Java Pack. This Package is supplied with DataStage. It comprises
two template stages and an API which enables you to implement
DataStage stage in Java. It is described in the online
documentation accompanying the pack.

Web Services Pack. There are two versions of the web services
pack, one allows you to access web services through DataStage
jobs, the other also allows you to publish DataStage jobs as Web
Services. Both packages are add-ons to DataStage. Web Services
facilities are described in the Web Services Pack Designer Guide.

ClickPack. This is an add-on package. It provides tools that
enable you to extract and transform data from Web server log files
and email servers. ClickPack facilities are described in the
ClickPack Guide.
1-2 Server Job Developer’s Guide

Introduction Custom Resources
Custom Resources
DataStage provides a large number of built-in transforms and routines

for use in Transformer stages in DataStage jobs. These are described

in Chapter 17. If you have specific requirements for custom

transforms and routines DataStage has a powerful procedural

programming language called BASIC that allows you to define your

own components. Reference material for BASIC is in Chapter 18. Once

you have developed these components, they can be reused by other

DataStage developers for other DataStage jobs.

After Development
When you have completed the development of your DataStage server

job, you will need to compile and test it before releasing it to make it

available to actually run.

DataStage has a debugger to help you iron out any problems with any

server jobs you have designed. The debugger is described in

Chapter 16.

Once you are satisfied with the design of the job, you can validate and

run it using the DataStage Director. You can also run jobs from

another program or from the command line using the facilities

provided by the DataStage Development Kit described in Chapter 19.
Server Job Developer’s Guide 1-3

After Development Introduction
1-4 Server Job Developer’s Guide

2
Optimizing Performance in Server

Jobs

This chapter gives some design techniques for getting the best

possible performance from DataStage jobs you are designing.

Much of the chapter is concerned with designing a job to run on a

multi-processor system, but there are also tips for jobs running on

single processor systems too.

You should read this chapter before designing new jobs, but you may

also want to revisit old job designs based on what you read here.

Note The parallel processing tips are aimed at UNIX or Windows

Symmetric Multi-Processor (SMP) systems with up to 64

processors. For UNIX MPP and clustered systems (and

Windows or UNIX SMP systems), DataStage Enterprise

Edition is available, see Parallel Job Developer’s Guide.

DataStage Jobs and Processes
When you design a job you see it in terms of stages and links. When it

is compiled, the DataStage engine sees it in terms of processes that

are subsequently run on the server.

How does the DataStage engine define a process? It is here that the

distinction between active and passive stages becomes important.

Actives stages, such as the Transformer and Aggregator perform

processing tasks, while passive stages, such as Sequential file stage

and ODBC stage, are reading or writing data sources and provide

services to the active stages. At its simplest, active stages become
Server Job Developer’s Guide 2-1

DataStage Jobs and Processes Optimizing Performance in Server Jobs
processes. But the situation becomes more complicated where you

connect active stages together, and passive stages together.

What happens when you have a job that links two passive stages

together? Obviously there is some processing going on. Under the

covers DataStage inserts a cut-down transformer stage between the

passive stages which just passes data straight from one stage to the

other, and becomes a process when the job is run.

What happens where you have a job that links two or more active

stages together?. By default this will all be run in a single process.

Passive stages mark the process boundaries, all adjacent active stages

between them being run in a single process.
2-2 Server Job Developer’s Guide

Optimizing Performance in Server Jobs DataStage Jobs and Processes
The following diagrams illustrate how jobs become processes.

Single Processor and Multi-Processor Systems
The default behavior when compiling DataStage jobs is to run all

adjacent active stages in a single process. This makes good sense

when you are running the job on a single processor system. When

you are running on a multi-processor system it is better to run each

active stage in a separate process so the processes can be distributed

among available processors and run in parallel. The enhancements to

server jobs at Release 6 of DataStage make it possible for you to
Server Job Developer’s Guide 2-3

DataStage Jobs and Processes Optimizing Performance in Server Jobs
stipulate at design time that jobs should be compiled in this way.

There are two ways of doing this:

Explicitly – by inserting IPC stages between connected active
stages.

Implicitly – by turning on inter-process row buffering either project
wide (using the DataStage Administrator) or for individual jobs (in
the Job Properties dialog box)

The IPC facility can also be used to produce multiple processes where

passive stages are directly connected. This means that an operation

reading from one data source and writing to another could be divided

into a reading process and a writing process able to take advantage of

multi-processor systems.
2-4 Server Job Developer’s Guide

Optimizing Performance in Server Jobs DataStage Jobs and Processes
The following diagram illustrates the possible behavior for active

stages:
Server Job Developer’s Guide 2-5

DataStage Jobs and Processes Optimizing Performance in Server Jobs
The following diagram illustrates the possible behavior for passive

stages:

Partitioning and Collecting
With the introduction of the enhanced multi-processor support at

Release 6 onwards, there are opportunities to further enhance the

performance of server jobs by partitioning data.

The Link Partitioner stage allows you to partition data you are reading

so it can be processed by individual processors running on multiple

processors. The Link Collector stage allows you to collect partitioned

data together again for writing to a single data target.

The following diagram illustrates how you might use the Link

Partitioner and Link Collector stages within a job. Both stages are
2-6 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Diagnosing Job Limitations
active, and you should turn on inter-process row buffering at project

or job level in order to implement process boundaries.

Diagnosing Job Limitations
Once you have designed your job you may want to run some

diagnostics to see if performance could be improved.

There may be two factors affecting the performance of your

DataStage job:

It may be CPU limited

It may be I/O limited

You can now obtain detailed performance statistics on a job to enable

you to identify those parts of a job that might be limiting performance,

and so make changes to increase performance.

The collection of performance statistics can be turned on and off for

each active stage in a DataStage job. This is done via the Tracing tab

of the Job Run Options dialog box, select the stage you want to
Server Job Developer’s Guide 2-7

Diagnosing Job Limitations Optimizing Performance in Server Jobs
monitor and select the Performance statistics check box. Use shift-

click to select multiple active stages to monitor from the list.

When performance tracing is turned on a special log entry is

generated immediately after the stage completion message. This is

identified by the first line job.stage.DSD.StageRun Performance

statistics:

This contains the statistics in a tabular form. You can cut these and

paste them into a spreadsheet if required to make further analysis

possible:
2-8 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Diagnosing Job Limitations
The following diagrams show the job these statistics were collected

from. The highlighted stage is the one which we turned Performance
statistics on for. The annotations help you interpret the statistics,

which have been pasted into a spreadsheet (the letters are for

identification - they don’t infer anything about execution order).

The Stage completion log message reports the actual CPU and

elapsed time used by the stage while the Monitor view on a

completed stage shows the average percentage of CPU used by that

stage.
Server Job Developer’s Guide 2-9

Improving Performance Optimizing Performance in Server Jobs
Interpreting Performance Statistics
The performance statistics relate to the per-row processing cycle of an

active stage, and of each of its input and output links. The information

shown is:

Percent. The percentage of overall execution time that this part of
the process used.

Count. The number of times this part of the process was
executed.

Minimum. The minimum elapsed time in microseconds that this
part of the process took for any of the rows processed.

Average. The average elapsed time in microseconds that this part
of the process took for the rows processed.

You need to take care interpreting these figures. For example, when

in-process active stage to active stage links are used the percent

column will not add up to 100%. Also be aware that, in these

circumstances, if you collect statistics for the first active stage the

entire cost of the downstream active stage is included in the active-to-

active link (as shown in our example diagram). This distortion remains

even where you are running the active stages in different processes

(by having inter-process row buffering enabled) unless you are

actually running on a multi-processor system.

If the Minimum figure and Average figure are very close, this suggests

that the process is CPU limited. Otherwise poorly performing jobs

may be I/O limited.

If the Job monitor window shows that one active stage is using nearly

100% of CPU time this also indicates that the job is CPU limited.

Improving Performance
The following sections gives some tips on improving performance in

your job designs.

CPU Limited Jobs – Single Processor Systems
You can improve the performance of most DataStage jobs by turning

in-process row buffering on and recompiling the job. This allows

connected active stages to pass data via buffers rather than row by

row.

You can turn in-process row buffering on for the whole project using

the DataStage Administrator. Alternatively, you can turn it on for
2-10 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Improving Performance
individual jobs via the Performance tab of the Job Properties

dialog box.

Note You cannot use in-process row-buffering if your job uses

COMMON blocks in transform functions to pass data

between stages. This is not recommended practice, and it is

advisable to redesign your job to use row buffering rather

than COMMON blocks.

CPU Limited Jobs - Multi-processor Systems
You can improve the performance of most DataStage jobs on multi-

processor systems by turning on inter-process row buffering and

recompiling the job. This enables the job to run using a separate

process for each active stage, which will run simultaneously on a

separate processor.

You can turn inter-process row buffering on for the whole project

using the DataStage Administrator. Alternatively, you can turn it on

for individual jobs via the Performance tab of the Job Properties

dialog box.

Note You cannot use inter-process row-buffering if your job uses

COMMON blocks in transform functions to pass data

between stages. This is not recommended practice, and it is

advisable to redesign your job to use row buffering rather

than COMMON blocks.

If you have one active stage using nearly 100% of CPU you can

improve performance by running multiple parallel copies of a stage

process. This is achieved by duplicating the CPU-intensive stages or

stages (using a shared container is the quickest way to do this) and

inserting a Link Partitioner and Link Collector stage before and after

the duplicated stages. The following screen shots show an example of

how you might do this.
Server Job Developer’s Guide 2-11

Improving Performance Optimizing Performance in Server Jobs
I/O Limited Jobs
Although it can be more difficult to diagnose I/O limited jobs and

improve them, there are certain basic steps you can take:

If you have split processes in your job design by writing data to a
Sequential file and then reading it back again, you can use an Inter
Process (IPC) stage in place of the Sequential stage. This will split
the process and reduce I/O and elapsed time as the reading
process can start reading data as soon as it is available rather than
waiting for writing process to finish.
2-12 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Improving Performance
If an intermediate sequential stage is being used to land a file so
that it can be fed to an external tool, for example a bulk loader, or
an external sort, it may be possible to invoke the tool as a filter
command in the Sequential stage and pass the data direct to the
tool (see Chapter 8, "Sequential File Stages.")

If you are processing a large data set you can use the Link
Partitioner stage to split it into multiple parts without landing
intermediate fields

If a job still appears to be I/O limited after taking one or more of the

above steps you can use the performance statistics to determine

which individual stages are I/O limited:

1 Run the job with a substantial data set and with performance
tracing enabled for each of the active stages.

2 Analyze the results and compare them for each stage. In particular
look for active stages that use less CPU than others, and which
have one or more links where the average elapsed time.

Once you have identified the stage the actions you take might depend

on the types of passive stage involved in the process. Poorly designed

hashed files can have particular performance implications (for help

with hashed file design see "Hash File Design" on page 2-13). For all

stage types you might consider:

redistributing files across disk drives

changing memory or disk hardware

reconfiguring databases

reconfiguring operating system

Hash File Design
Poorly designed hashed files can be a cause of disappointing

performance. Hashed files are commonly used to provided a

reference table based on a single key. Performing lookups can be fast

on a well designed file, but slowly on a poorly designed one. Another

use is to host slowly-growing dimension tables in a star-schema

warehouse design. Again, a well-designed file will make extracting

data from dimension files much faster.

Basic Hash File Operation

If you are familiar with the principles of hashed files you can skip this

section.

Hash files work by spreading data over a number of groups within a

file. These speeds up data access as you can go to a specific group
Server Job Developer’s Guide 2-13

Improving Performance Optimizing Performance in Server Jobs
before sequentially searching through the data it contains for a

particular data row. The number of groups you have, the size the

groups, and the algorithm used to work out distribution is decided by

the nature of the data you are storing in the file.

The rows of data are hashed (i.e., allocated to groups) on a key field.

The hashing algorithm efficiently and repeatably converts a string to a

number in the range 1 to n, where n is the file modulus. This gives the

group where the row will be written. The key field can be of any type;

for example it could contain a name, a serial number, a date etc. The

type of data in the key determines the best hashing algorithm to use

when writing data, this algorithm is also used to locate the data when

reading it back. The aim is to use an algorithm that spreads data

evenly over the file.

Another aim is to spread the data as evenly as possible over a number

of groups. It is particularly important as far as performance goes not

to overpopulate groups so that they have to extend into overflow

groups, as this makes accessing the data inefficient. It is important to

consider the size of your records (rows) when designing the file, as

you want them to fit evenly into groups and not overflow.

There is a trade-off between size of group and number of groups. For

most operations a good design has many groups each of small size

(for example four records per group). The sequential search for the

required data row is then never that long. There may be

circumstances, however, where a design would be better served by a

smaller number of large groups.

DataStage Hash Files

There are two basic types of hash file that you might use in these

circumstances: static (hash) and dynamic.

Static Files. These are the most performant if well-designed. If
poorly designed, however, they are likely to offer the worst
performance. Static files allow you to decide the way in which the
file is hashed, you specify:

– Hashing algorithm – the way data rows are allocated to
different groups depending on the value of their key field or
fields.

– Modulus – the number of groups the file has.

– Separation – the size of the group as the number of 512 byte
blocks.

Generally speaking, you should use a static file if you have good

knowledge of the size and shape of the data you will be storing in

the hashed file. You can restructure a static hashed file between
2-14 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Improving Performance
job runs if you want to tune it. Do this using the RESIZE command,

which can be issued using the Command feature of the DataStage

Administrator (see "Issuing DataStage Engine Commands" in

DataStage Administrator Guide). The command for resizing a

static file is:

RESIZE filename [type] [modulus] [separation]

Where:

filename is the name of the file you are resizing

type specifies the hashing algorithm to use (see table on page

page 2-16)

modulus specifies the number of groups in the range 1 through

8,388,608.

separation specifies the size of the groups in 512 byte blocks and

is in the range 1 through 8,388,608.

Dynamic Files. These are hash files which change dynamically as
data is written to them over time. This may sound ideal, but if you
leave a dynamic file to grow organically it will need to perform
several group split operations as data is written to it which can be
very time consuming and can impair performance where you
have a fast growing file. Dynamic files do not perform as well as a
well designed static file, but do perform better than a badly
designed one. When creating a dynamic file you can specify the
following (although all of these have default values):

– Minimum modulus. The minimum number of groups the file
has. The default is 1.

– Group size. The group can be specified as 1 (2048 bytes) or 2
(4096 bytes). The default is 1.

– Split load. This specifies how much (as a percentage) a file can
be loaded before it is split. The file load is calculated as
follows:

File Load = ((total data bytes) / (total file bytes)) * 100

The split load defaults to 80.

– Merge load. This specifies how small (as a percentage) a file
load can be before the file is split. File load is calculated as for
Split load. The default is 50.

– Large record. Specifies the number of bytes a record (row) can
contain. A large record is always placed in an overflow group.

– Hash Algorithm. Choose between GENERAL for most key field
types and SEQ.NUM for keys that are a sequential number
series.
Server Job Developer’s Guide 2-15

Improving Performance Optimizing Performance in Server Jobs
– Record Size. Optionally use this to specify an average record
size in bytes. This can then be used to calculate group size and
large record size.

You can manually resize a dynamic file using the RESIZE

command issued using the Command feature of the DataStage

Administrator (see "Issuing DataStage Engine Commands" in

DataStage Administrator Guide). The command for resizing a

dynamic file is:

RESIZE filename [parameter [value]]

where:

filename is the name of the file you are resizing.

Parameter is one of the following and corresponds to the

arguments described above for creating a dynamic file:

GENERAL | SEQ.NUM

MINIMUM.MODULUS n

SPLIT.LOAD n

MERGE.LOAD n

LARGE.RECORD n

RECORD.SIZE n

By default DataStage will create you a dynamic file with the default

settings described above. You can however use the Create file

options on the Hash file stage Inputs page to specify the type of file

and its settings.

This offers a choice of several types of hash (static) files, and a

dynamic file type. The different types of static files reflect the different

hashing algorithms they use. Choose a type according to the type of

your key as shown in the following table:

Type Suitable for keys that are formed like this:

2 Numeric – significant in last 8 chars

3 Mostly numeric with delimiters significant in last 8 chars

4 Alphabetic significant in last 5 chars

5 Any ASCII significant in last 4 chars

6 Numeric significant in first 8 chars

7 Mostly numeric with delimiters significant in first 8 chars

8 Alphabetic significant in first 5 chars

9 Any ASCII significant in first 4 chars
2-16 Server Job Developer’s Guide

Optimizing Performance in Server Jobs Improving Performance
Operational Enhancements

There are various steps you can take within your job design to speed

up operations that read and write hash files.

Pre-loading. You can speed up read operations of reference links
by pre-loading a hash file into memory. Specify this on the Hash
File stage Outputs page.

Write Caching. You can specify a cache for write operations such
that data is written there and then flushed to disk. This ensures
that hashed files are written to disk in group order rather than the
order in which individual rows are written (which would by its
nature necessitate time consuming random disk accesses). If
server caching is enabled, you can specify the type of write
caching when you create a hash file, the file then always uses the
specified type of write cache. Otherwise you can turn write
caching on at the stage level via the Outputs page of the hash file
stage.

Pre-allocating. If you are using dynamic files you can speed up
loading the file by doing some rough calculations and specifying
minimum modulus accordingly. This greatly enhances operation
by cutting down or eliminating split operations. You can calculate
the minimum modulus as follows:

minimum modulus = estimated data size/(group size * 2048)

When you have calculated your minimum modulus you can create

a file specifying it (using the Create File feature of the Hash file

dialog box - see "Defining Hashed File Input Data" on page 6-3) or

resize an existing file specifying it (using the RESIZE command

described on page 2-16).

10 Numeric significant in last 20 chars

11 Mostly numeric with delimiters significant in last 20 chars

12 Alphabetic significant in last 16 chars

13 Any ASCII significant in last 16 chars

14 Numeric whole key is significant

15 Mostly numeric with delimiters whole key is significant

16 Alphabetic whole key is significant

17 Any ASCII whole key is significant

18 Any chars whole key is significant

Type Suitable for keys that are formed like this:
Server Job Developer’s Guide 2-17

Improving Performance Optimizing Performance in Server Jobs
Calculating static file modulus. You can calculate the modulus
required for a static file using a similar method as described above
for calculating a pre-allocation modulus for dynamic files:

modulus = estimated data size/(separation * 512)

When you have calculated your modulus you can create a file

specifying it (using the Create File feature of the Hash file dialog

box - see "Defining Hashed File Input Data" on page 6-3) or resize

an existing file specifying it (using the RESIZE command

described on page 2-15).
2-18 Server Job Developer’s Guide

3
ODBC Stages

ODBC stages are used to represent a database that supports the

industry standard Open Database Connectivity API.

Using ODBC Stages
You can use an ODBC stage to extract, write, or aggregate data. Each

ODBC stage can have any number of inputs or outputs. Input links

specify the data you are writing. Output links specify the data you are

extracting and any aggregations required.

You can specify the data on an input link using an SQL statement

constructed by DataStage, a user-defined SQL query, or a stored

procedure. You can specify the data on an output link using an SQL

statement processed by ODBC, or one that is passed through ODBC

and processed by the underlying database, or by a stored procedure.
Server Job Developer’s Guide 3-1

Defining the Connection ODBC Stages
This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the name of the stage you are editing. You can
enter text to describe the purpose of the stage in the Description
field. The General tab defines the data source name and allows
you to specify a quote character and schema delimiter used by the
data source or retrieve them automatically using the Get
SQLInfo button. The NLS tab defines a character set map to use
with the stage, if required. For details, see "Defining Character Set
Maps" on page 3-3.

Inputs. This page is displayed only if you have an input link to this
stage. Specifies the SQL tables or stored procedure to use and the
associated column definitions for each data input link. This page
also specifies how data is written and contains the SQL statement
or call syntax used to write the data.

Outputs. This page is displayed only if you have an output link to
this stage. Specifies the SQL tables or stored procedure to use and
the associated column definitions for each data output link. This
page also contains the SQL SELECT statement or call syntax used
to extract the data.

You must perform the following steps to edit an ODBC stage:

1 Define the connection.

2 Define the data on the input links.

3 Define the data on the output links.

These steps are performed in the ODBC Stage dialog box. Click OK

to close this dialog box. Changes are saved when you save the job

design.

Defining the Connection
To connect to an ODBC data source, you must install and configure a

suitable ODBC driver on your system. For more information, see the

DataStage Administrator Guide.

ODBC Connection Parameters
The ODBC connection parameters are set on the General tab on the

Stage page.

To connect to an ODBC data source:
3-2 Server Job Developer’s Guide

ODBC Stages Defining Character Set Maps
1 Choose the data source name from the Data source name drop-
down list box. This drop-down list box contains all the data
sources defined under the Table Definitions ‰ ODBC branch in
the Repository.

Note If the data source name you want is not listed, enter the

name in the Data source name field or define a table

definition. For details on how to import or create a table

definition, see "Managing Table Definitions" in

DataStage Manager Guide.

You can also enter a job parameter in this field. For details on how

to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

2 Enter the name to use to connect to the data source in the User
name field. (You can also enter a job parameter in this field.)

3 Enter the password to use in the Password field. (You can also
enter a job parameter in this field.)

Note Certain ODBC drivers allow you to specify the user

name and password to use on connection. If you are

connecting to an ODBC data source using a driver that

has a user name and password already specified, you

do not need to enter a user name and password on the

General tab.

4 Optionally specify the quote character used by the data source. By
default, this is set to " (double quotes). You can also click the Get
SQLInfo button to connect to the data source and retrieve the
Quote character it uses. An entry of 000 (three zeroes) specifies
that no quote character should be used.

5 Optionally specify the schema delimiter used by the data source.
By default this is set to . (period) but you can specify a different
schema delimiter, or multiple schema delimiters. So, for example,
where table identifiers have the form
Node:Schema.Owner;TableName you would enter :.; into this
field. You can also click the Get SQLInfo button to connect to the
data source and retrieve the Schema delimiter it uses.

6 Enter an optional description of the ODBC stage in the
Description field.

Defining Character Set Maps
You can define a character set map for an ODBC stage using the NLS

tab of the ODBC Stage dialog box.
Server Job Developer’s Guide 3-3

Handling SQL Server Data Types ODBC Stages
The default character set map (defined for the project or the job) can

be changed by selecting a map name from the list. The tab also has

the following fields:

Show all maps. Lists all the maps supplied with DataStage.
Maps cannot be used unless they have been loaded using the
DataStage Administrator.

Loaded maps only. Displays the maps that are loaded and ready
for use.

Use Job Parameter… . Allows you to specify a character set map
as a parameter to the job containing the stage. If the parameter
has not yet been defined, you are prompted to define it from the
Job Properties dialog box.

Allow per-column mapping. Allows character set maps to be
specified for individual columns within the table definition. If per-
column mapping is selected an extra property, NLS Map, appears
in the grid in the Columns tab.

Handling SQL Server Data Types
The ODBC stage can handle the following SQL Server data types:

GUID

Timestamp

SmallDateTime

To use these types, proceed as follows.
3-4 Server Job Developer’s Guide

ODBC Stages Handling SQL Server Data Types
GUID Type
If you imported the meta data from an SQL Server data source

containing these types, you need take no special action. Just load the

required table definition into the Columns tab, and DataStage will set

up the GUID data types automatically.

If you are manually entering the table definition, for the column you

want to contain a GUID data type:

1 Set the SQL Type to VarChar.

2 Set the length to 36.

3 Set the data element to SQL.GUID.

Data will be read in as a varchar, and written to a database as a

uniqueidentifier.

Note To read new UIDs from a table rather than existing ones,

enter newid() in the Derivation field for that column in the

Outputs Page Columns tab.

Timestamp type
Timestamp types cannot be handled automatically by importing the

meta data, they always need to be set up manually.

For the column you want to contain a Timestamp data type:

1 Set the SQL Type to integer.

2 Set the length to 10.

3 Set the data element to SQL.ROWVERNUM.

Data will be read in as an integer.

For pseudo-timestamp data (where the data is timestamp but the

column in the database is defined as binary):

1 Set the SQL Type to integer.

2 Set the length to 10.

3 Set the data element to SQL.BINARY8.

Data will be read in as an integer, and written to a database as a

binary.

SmallDateTime
If you imported the meta data from an SQL Server data source

containing these types, you need take no special action. Just load the
Server Job Developer’s Guide 3-5

Defining ODBC Input Data ODBC Stages
required table definition into the Columns tab, and DataStage will set

up the SmallDateTime data types automatically.

If you are manually entering the table definition, for the column you

want to contain a SmallDateTime data type:

1 Set the SQL Type to char.

2 Set the length to 16.

3 Set the data element to SQL.SMALLDATETIME.

Data will be read in as a 16-character string of the form yyyy-mm-dd

hh:mm and written to a database as a SmallDateTime.

Defining ODBC Input Data
When you write data to a table (or a stored procedure) in an ODBC

database, the ODBC stage has an input link. The properties of this link

and the column definitions of the data are defined on the Inputs page

of the ODBC Stage dialog box.

The Inputs page has the following field:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the ODBC stage.

The Inputs page also has up to six tabs, depending on the Update
action you select in the General tab, and whether you want to create

a table in the target database:
3-6 Server Job Developer’s Guide

ODBC Stages Defining ODBC Input Data
General. This tab is always present and is displayed by default. It
contains the following parameters:

– Table name. This field appears when the update action is not
Call stored procedure or User-defined SQL. It is the name
of the table the data is written to. Choose the table from the
Table name drop-down list box. This list box contains all the
tables defined under the Table Definitions ‰ ODBC ‰ Data
source branch in the Repository. Data source is the data
source name chosen on the General tab on the Stage page.

Note If the table you want is not listed, you need to define

a table definition. For details on how to import or

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

Alternatively, use Browse… to display the Table

Definitions window and choose a suitable table

definition.

You can also enter a job parameter in this field. For details on how

to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

– Procedure name. This field appears only when the update
action is Call stored procedure. It is the name of the
procedure the data is passed to. Choose the stored procedure
you want to use from the drop-down list box. This list box
contains all the stored procedures defined under the Table
Definitions ‰ StoredProcedures branch in the Repository
for the specified DSN.

Note If the stored procedure you want is not listed, you

need to define it. For details on how to import or

create a stored procedure definition, see "Stored

Procedure Definitions" in DataStage Manager

Guide. Alternatively, use Browse… to search for the

stored procedure you want.

– Update action. Specifies how the data is written. Choose the
option you want from the drop-down list box:

Clear the table, then insert rows. Deletes the contents of

the table and adds the new rows.

Insert rows without clearing. Inserts the new rows in the

table.

Insert new or update existing rows. New rows are added

or, if the insert fails, the existing rows are updated.

Replace existing rows completely. Deletes the existing

rows, then adds the new rows to the table.
Server Job Developer’s Guide 3-7

Defining ODBC Input Data ODBC Stages
Update existing rows only. Updates the existing data rows.

If a row with the supplied key does not exist in the table then

the table is not updated but a warning is logged.

Update existing or insert new rows. The existing data rows

are updated or, if this fails, new rows are added.

Call stored procedure. Writes the data using a stored

procedure. When you select this option, the Procedure name

field appears.

User-defined SQL. Writes the data using a user-defined SQL

statement. When you select this option, the View SQL tab is

replaced by the Enter SQL tab.

– Create table in target database. Select this check box if you
want to automatically create a table in the target database at
run time. A table is created based on the defined column set
for this stage. If you select this option, an additional tab, Edit
DDL, appears. This shows the SQL CREATE statement to be
used for table generation.

– Description. Contains an optional description of the input
link.

Columns. This tab is always present and contains the column
definitions for the data written to the table or file. If you are using
a stored procedure, the column definitions represent the stored
procedure input parameters. You must have at least the same
number of column definitions as expected parameters. The
column definitions are used in the order they appear in the
Columns grid.

View SQL. This tab displays the SQL statement or stored
procedure call syntax used to write the data. This tab appears
when you select any update action other than User-defined SQL.
You cannot edit this statement, but you can use Copy to copy it to
the Clipboard for use elsewhere.

Enter SQL. This tab displays the user-defined SQL statement. It
appears only when you set the update action to User-defined
SQL, when it replaces the View SQL tab.

Edit DDL. This tab appears if you have chosen to automatically
generate a table at run time by selecting the Create table in
target database check box on the General tab. It displays the
SQL CREATE statement that will be used to create the table. To
generate the statement, click the Create DDL button. DataStage
will connect to the target database and generate the statement. (If
you are creating a table in a Sybase database, the Sybase
database needs to have the “Data definition language in
transaction” option set.) You can edit the statement on this tab to
make any required changes. This tab also allows you to specify
3-8 Server Job Developer’s Guide

ODBC Stages Defining ODBC Input Data
that any existing table by this name should be dropped first. If you
do not select this option, and such a table already exists in the
target database, then the create will fail.

Error Codes. This tab is displayed when you set the update
action in the General tab to Call stored procedure (or if you
have not yet set an update action). It allows you to enter a space-
separated list of values in the Fatal errors and Warnings fields
to handle raiserror calls within the stored procedure. You can also
load predefined information from the Repository by clicking the
Load button.

Transaction Handling. This page allows you to specify the
transaction handling features of the stage as it writes to the ODBC
data source. You can choose whether to use transaction grouping
or not, specify an isolation level, the number of rows written
before each commit, and the number of rows written in each
operation. A grid shows details of the transaction group to which
the currently selected input link belongs. For further information
see "Specifying Transaction Control Information" below.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.

Specifying Transaction Control Information
Multiple input links writing to a single ODBC data source may be

associated together as a transaction group. The transaction grouping

feature is turned on and off using the Enable transaction grouping

check box on the Transaction Handling page (it is off by default).

If you set Enable transaction handling off, you can specify the

following on the Transaction Handling page:

Enter a suitable value in the Rows per transaction field. This is
the number of rows written before the data is committed to the
data table. The default value is 0, that is, all the rows are written
before being committed to the data table.

Enter a suitable value in the Parameter array size field. This is
the number of rows written at a time. The default is 1, that is, each
row is written in a separate operation. If the current setting of
Parameter array size causes available storage space to be
exceeded at run time, you will be informed when you compile the
job.

Note If the Parameter array size setting conflicts with the

Rows per transaction setting, the former takes

precedence.
Server Job Developer’s Guide 3-9

Defining ODBC Input Data ODBC Stages
Select a suitable Isolation Level. The isolation level specifies
how potential conflicts between transactions (i.e., dirty reads,
nonrepeatable reads, and phantom reads) are handled.

If transaction grouping is enabled, the following rules govern the

grouping of links:

All the input links in the transaction group must originate from the
same Transformer stage.

The ordering of the links within the transaction group is
determined in the preceding Transformer stage.

A transaction group cannot use a Rows per transaction or
Parameter array size other than 1. Using an Isolation level of
Auto-commit is permitted, but obviates the effect of organizing
links in a transaction group.

You should be aware of the following facts about transaction groups

(assuming that you commit on every row):

A transaction starts at the beginning of each iteration of the
Transformer stage preceding the ODBC stage. Any uncommitted
changes left over from a previous transaction are rolled back.

The links in the transaction group are processed in the order laid
down in the Transformer stage. Individual links may be skipped if
constraints laid down in the preceding Transformer stage so
dictate.

Each link in the transaction group can specify whether to rollback
on failure. A rollback on any link causes the transaction to be
abandoned and any subsequent links in the group to be skipped.

Each link in the transaction group can be set to rollback if a
constraint on that link is not met. Again, such a rollback causes the
transaction to be abandoned and any subsequent links in the
group to be skipped.

The row counter for each link will be incremented only if the SQL
associated with the link executes successfully and the transaction
is successfully committed.

The transaction ends after the last link in the transaction group is
processed, unless a preceding link performs a rollback, in which
case the transaction ends there.

To specify transaction control information for a transaction group:

1 Click the Transaction Handling page.

2 Select the Enable transaction grouping check box. This option
is only available if more than one link exists and the links come
from the same Transformer. The current link must be one of those
from the Transformer.
3-10 Server Job Developer’s Guide

ODBC Stages Defining ODBC Input Data
3 Choose an appropriate transaction isolation level to use from the
Isolation level drop-down list box. The isolation level specifies
how potential conflicts between transactions (i.e., dirty reads,
nonrepeatable reads, and phantom reads) are handled. (If you
select Auto-commit, you are specifying that every statement will
effectively be executed in a separate transaction, which will
obviate the advantages of transaction groups).

4 For transaction groups Rows per transaction is automatically
set to 1 and you cannot alter it.

5 For transaction groups Parameter array size is automatically set
to 1 and you cannot alter it.

6 Supply necessary details about the transaction group in the grid.
The grid has a line for every link in the transaction group. The links
are shown in transaction processing order, which is set in the
preceding Transformer stage. Each line contains the following
information:

– Input name. The name of the input link. You cannot change
this.

– On Skip. This is used to specify whether to continue or to roll
back if a link is skipped due to a constraint on it not being
satisfied. Choose Continue or Rollback from the drop-down
list.

– On Fail. This is used to specify whether or not to continue or
rollback on failure of the SQL statement. Choose Continue or
Rollback from the drop-down list.

– SQL. Shows the SQL statement associated with the input link.
You cannot change this, but clicking the cell will display the
entire statement.

Using a Generated Query
You can write data to an SQL table using an SQL statement

constructed by DataStage. When you specify the table and the column

definitions to use, the SQL statement is automatically constructed and

can be viewed on the View SQL tab.

To use a generated query:

1 Choose a table from the Table name drop-down list box on the
General tab.

2 Specify how you want the data to be written by choosing a
suitable option from the Update action drop-down list box:

– Clear the table, then insert rows

– Insert rows without clearing
Server Job Developer’s Guide 3-11

Defining ODBC Input Data ODBC Stages
– Insert new or update existing rows

– Replace existing rows completely

– Update existing rows only

– Update existing or insert new rows

– Call Stored Procedure. This option switches you from using a
Generated Query to using a Stored Procedure.

– User-defined SQL. This option switches you from using a
Generated Query to using a User-defined SQL Query.

See page 3-7 for a description of each update action.

3 Enter an optional description of the input link in the Description
field.

4 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

5 Edit the Columns grid to specify column definitions for the
columns you want to write.

The SQL statement is automatically constructed using your

chosen update action and the columns you have specified. You

can now optionally view this SQL statement.

6 Click the View SQL tab. The View SQL tab appears at the front of
the Inputs page.

7 Click OK to close the ODBC Stage dialog box. Changes are saved
when you save your job design.

Using a User-Defined SQL Statement
Instead of writing data using an SQL statement constructed by

DataStage, you can enter your own SQL statement for each ODBC

input link.

To enter an SQL statement:

1 Choose User-defined SQL from the Update action drop-down
list box. The View SQL tab is replaced with the Enter SQL tab.

2 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

3 Edit the Columns grid to specify column definitions for the
columns you want to write.

4 Click the Enter SQL tab. The Enter SQL tab appears at the front
of the Inputs page.
3-12 Server Job Developer’s Guide

ODBC Stages Defining ODBC Input Data
5 Enter the SQL statement you want to use. This statement must
contain the table name, the type of update action you want to
perform, and the columns you want to write.

Note You must also ensure that the statement contains the

correct number of ? parameter markers. You must have

a parameter marker for each column you have defined

on the Columns tab.

6 Click OK to close the ODBC Stage dialog box. Changes are saved
when you save your job design.

Using a Stored Procedure
Instead of writing data to a table using an SQL statement, you can

write data to a stored procedure. The columns you define are bound

(in order) to the input parameters in the stored procedure. The call

syntax used to write the data is constructed by DataStage and can be

viewed on the View SQL tab.

The procedure is called once for each row of data presented to the

input link.

To use a stored procedure:

1 Choose Call stored procedure from the Update action drop-
down list box on the General tab. The Table name drop-down
list box is replaced by the Procedure name drop-down list box.

2 Choose the stored procedure from the Procedure name drop-
down list box.

3 Enter an optional description of the input link in the Description
field.

4 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

5 Edit the Columns grid to specify column definitions. The column
definitions are used as the input parameters to the stored
procedure. You must have at least the same number of column
definitions as the number of expected input parameters.

The call statement is automatically constructed using the stored

procedure name and the columns you have specified. You can

now optionally view this SQL statement.

6 Click the View SQL tab. The View SQL tab appears at the front of
the Inputs page.

7 Click OK to close the ODBC Stage dialog box. Changes are saved
when you save your job design.
Server Job Developer’s Guide 3-13

Defining ODBC Output Data ODBC Stages
Defining ODBC Output Data
When you extract data from an ODBC data source, the ODBC stage

has an output link. The properties of this link and the column

definitions of the data are defined on the Outputs page in the ODBC
Stage dialog box.

The Outputs page has the following field and up to six tabs. The tabs

displayed depend on how you choose to specify the SQL statement to

output the data.

Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links from the ODBC stage.

General. Displayed by default. Contains the following
components:

– Table names. This field appears only when you select
Generated query or User-defined SQL query. It contains
the names of the tables or files being accessed. You can also
use a job parameter to specify the table name. For details on
how to define and use job parameters, see "Using the Data
Browser" in the DataStage Designer Guide.

– Available tables. This drop-down list box appears only when
you select Generated query or User-defined SQL query. It
displays the names of the available tables or files that have
definitions in the Repository.

– Add. This button appears only when you select Generated
query or User-defined SQL query. It adds a table from the
Available tables drop-down list box to the Table names
field.
3-14 Server Job Developer’s Guide

ODBC Stages Defining ODBC Output Data
– Stored procedure name. This drop-down list box is available
only when you select Stored procedure. It displays the name
of the stored procedure you want to use. This drop-down list
box displays all the stored procedure definitions under the
Table Definitions ➤ StoredProcedures ➤ DSN branch in
the Repository.

– Apply. This button appears only when you select Stored
procedure. It updates the Columns and Parameters tabs
with the settings for the chosen stored procedure.

– Generated query. This is the default setting. When this option
is selected, the Selection and View SQL tabs appear. It
specifies that the data is extracted using an SQL statement
constructed by DataStage.

– Stored procedure. Specifies that the data is extracted using a
stored procedure. When this option is selected, the View SQL
and Parameters tabs appear.

– User-defined SQL query. Specifies that the data is extracted
using a user-defined SQL query. When this option is selected,
the SQL Query tab appears.

– Description. Contains an optional description of the output
link.

– Browse… . Displays the Table Definitions window, allowing
you to choose a suitable table or stored procedure definition.

Columns. Contains the column definitions for the data being
output on the chosen link. Also specifies which columns are
aggregated.

Selection. This tab appears when you select Generated query. It
contains optional SQL SELECT clauses for the conditional
extraction of data.

View SQL. This tab appears when you select Generated query
or Stored procedure. It displays the SQL statement used to
extract the data from the chosen table or tables. The SQL
statement exists in two forms and you can choose which one to
display:

– SQL for reference inputs. Choose this to view the SQL
statement used when this link is a reference input to a
Transformer stage.

– SQL for primary inputs. Choose this to view the SQL
statement used in all other cases.

You cannot edit the SQL statement, but you can use Copy to copy

it to the Clipboard for use elsewhere.
Server Job Developer’s Guide 3-15

Defining ODBC Output Data ODBC Stages
Parameters. Contains the input parameters for a chosen stored
procedure. This tab appears when you select Stored procedure.

SQL Query. Contains a user-defined SQL query. This tab appears
when you select User-defined SQL query. This tab is divided
into two areas:

– SQL for primary inputs. Contains a user-defined SQL query
for a link that is a primary input to a Transformer stage, or an
input to any other type of stage.

– SQL for reference inputs. Contains a user-defined SQL
query for a link that is a reference input to a Transformer stage.

Error Codes. This page is displayed when you set the update
action in the General page to Call stored procedure (or if you
have not yet set an update action). It allows you to enter a space-
separated list of values in the Fatal errors and Warnings fields
to handle raiserror calls within the stored procedure. You can also
load predefined information from the Repository by clicking the
Load button.

Transaction Handling. Allows you to specify a transaction
isolation level for read data. The isolation level specifies how
potential conflicts between transactions (i.e., dirty read,
nonrepeatable reads, and phantom reads) are handled.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the output link. For a

description of the Data Browser, see "Using the Data Browser" in the

DataStage Designer Guide.

Key Fields
The column definitions for output links contain a key field. Key fields

are used to join primary and reference inputs to a Transformer stage.

For details on how key fields are specified and used, see "Defining

Input Column Key Expressions" on page 9-16.

Using a Generated Query
When you select Generated query, data is extracted from an ODBC

data source using an SQL SELECT statement constructed by

DataStage. SQL SELECT statements have the following syntax:

SELECT clause FROM clause

[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause];
3-16 Server Job Developer’s Guide

ODBC Stages Defining ODBC Output Data
When you specify the tables to use and the columns to be output from

the ODBC stage, the SQL SELECT statement is automatically

constructed and can be viewed by clicking the View SQL tab on the

Outputs page.

Note The View SQL tab appears only when you select
Generated query or Stored procedure from the General
tab on the Outputs page.

For example, if you extract the columns Name, Address, and Phone

from a table called Table1, the SQL statement displayed on the View
SQL tab is:

SELECT Name, Address, Phone FROM Table1;

The SELECT and FROM clauses are the minimum required and are

automatically generated by DataStage. However, you can use any of

these SQL SELECT clauses:

If you want to use the additional SQL SELECT clauses, you must enter

them on the Selection tab on the Outputs page:

SELECT clause Specifies the columns to select from the
database.

FROM clause Specifies the tables containing the selected
columns.

WHERE clause Specifies the criteria that rows must meet to
be selected.

GROUP BY clause Groups rows to summarize results. See
"Aggregating Data" on page 3-20 for a
description of how this clause is used.

HAVING clause Specifies the criteria that grouped rows must
meet to be selected. See "Aggregating Data"
on page 3-20 for a description of how this
clause is used.

ORDER BY clause Sorts selected rows.
Server Job Developer’s Guide 3-17

Defining ODBC Output Data ODBC Stages
The Selection tab is divided into two parts:

WHERE clause. This text box allows you to insert an SQL WHERE
clause to specify criteria that the data must meet before being
selected.

Other clauses. This text box allows you to insert a HAVING or an
ORDER BY clause.

Using a WHERE Clause

You can use a WHERE clause to:

Select only the data that meets certain criteria

Join two tables from the same data source

To use a WHERE clause, type the column and the condition into the

WHERE clause text entry box.

For example, if you have a table (Sales1) containing sales data, you

can choose to only output data where the value in the Price column is

greater than $10.00. In this case, enter:

Price>10

Alternatively, if you are extracting data from two tables in the data

source, you can use a WHERE clause to relate a column in one table to

a column in the another table.

For example, Table1 contains the columns Pcode, OrderNo, and

SaleDate and Table2 contains Pcode, CustNo, Quantity, and Cost.

You can use the WHERE clause to join the two tables together by the

related column. In this case, the column is Pcode and you enter:

Table1.Pcode = Table2.Pcode
3-18 Server Job Developer’s Guide

ODBC Stages Defining ODBC Output Data
Note Only one column definition called Pcode is loaded or

inserted into the grid on the Columns tab.

You can also use a job parameter in the WHERE clause. For details on

how to define and use job parameters, see "Using the Data Browser"

in the DataStage Designer Guide.

The SQL SELECT statement is automatically updated to include the

WHERE clause. Click the View SQL tab to display the statement.

Using a HAVING Clause

If you use an ODBC stage to aggregate data, you can use a HAVING

clause to specify conditions the grouped data must meet before it is

selected. For more information about using an ODBC stage to

aggregate data, see "Aggregating Data" on page 3-20.

To use a HAVING clause, enter the clause, column, and condition into

the Other clauses text entry box on the Selection tab on the

Outputs page.

For example, you could choose to only output summed quantities that

are greater than or equal to 1000. In this case you enter:

HAVING SUM(QtySold)>=1000

The SQL SELECT statement is updated automatically. Click the View
SQL tab to display the statement.

You can also use a job parameter in the HAVING clause. For details on

how to define and use job parameters, see "Using the Data Browser"

in the DataStage Designer Guide.

Using an ORDER BY Clause

You can sort data based on a chosen column by including an ORDER

BY clause in the SELECT statement. Records are sorted by data in the

chosen column before being output. You can specify a column name

or a column position and whether to sort in ascending or descending

order.

To use an ORDER BY clause, enter the clause, column, and condition

into the Other clauses text entry box on the Selection tab on the

Outputs page.

For example, if your table contains a Name column, you may want to

sort the column alphabetically (A to Z). In this case you enter:

ORDER BY Name ASC

The SQL SELECT statement is updated automatically. Click the View
SQL tab to display the statement.
Server Job Developer’s Guide 3-19

Defining ODBC Output Data ODBC Stages
Aggregating Data

If you are using a generated query, you can use an ODBC stage to

aggregate data at the source instead of using an intermediate

Aggregator stage. By aggregating data you can add values in a

particular column for all data records in a table. This summed total is

then output from the stage.

You can aggregate data in two ways:

Using an Aggregator stage. For more information, see Chapter 10,
"Aggregator Stages."

Using an ODBC stage.

If you aggregate data using an ODBC stage, the columns to group by

and sum together are also specified by the SQL SELECT statement. To

specify the columns to group by and summarize, you must edit the

column definitions in the Columns grid on the Columns tab.

For example, if you have a sales database (Sales1) it may contain the

following columns: Product, SaleDate, and QtySold. If this

database is updated daily, you have a record of how many of each

product are sold each day. However, if you want to know how many of

each product were sold since 01/01/96 you need to specify a WHERE

clause for the SaleDate and group (and summarize) the data.

Because you want the total for each product, you need to group all the

occurrences of the same value in the Product column and sum the

value in the QtySold column.

To group by a column, click in the Group cell for the column definition

you want to group by and choose Yes from the drop-down list. In the

example, you would choose the Product column to edit.

To summarize a column, edit the Derivation cell for the column you

want to aggregate (using SUM or COUNT). The Derivation cell

contains by default the name of the table and column in the format

tablename.columnname. You can edit this cell to add SUM or COUNT.

In the example, you would edit the Derivation cell for the QtySold

column. The resulting expression would be SUM(Sales1.QtySold).

You can use the Expression Substitution dialog box to edit multiple

Derivation cells at the same time. Select the columns and choose

Derivation Substitution... from the shortcut menu. This is the same

dialog box as available in the Transformer stage, see "Editing Multiple

Derivations" on page 9-13.

When you group by or summarize columns, the SQL statement is

automatically updated to include the GROUP BY clause and the

aggregation expression. To view the SQL statement, click the View
SQL tab on the Outputs page.
3-20 Server Job Developer’s Guide

ODBC Stages Defining ODBC Output Data
For example, the SQL statement for the example would be:

SELECT Product, SUM(QtySold) FROM Sales1
WHERE Saledate>=01/01/96
GROUP BY Product;

See "Using a WHERE Clause" on page 3-18 for details of how to use a

WHERE clause.

Using a User-Defined SQL Statement
Instead of using the SQL statement constructed by DataStage, you

can enter your own SQL statement for each ODBC output link.

To enter an SQL statement:

1 Click the User-defined SQL query option button on the General
tab on the Outputs page. The SQL Query tab appears.

2 Click the SQL Query tab. The SQL Query tab appears at the front
of the Outputs page:

When you first view this tab, the SQL for primary inputs and

SQL for reference inputs fields may contain the SQL

statements constructed by DataStage. These are displayed if you

selected Generated query or Stored procedure before

selecting User-defined SQL query. You can modify or overwrite

each statement to construct your own SQL query or call to a

stored procedure.

The entries in these fields depend on whether the output is a

primary input to a stage or a reference input to a Transformer

stage:
Server Job Developer’s Guide 3-21

Defining ODBC Output Data ODBC Stages
– If the output is a primary input to any stage, whether or not it is
a Transformer stage, edit the SQL for primary inputs field.
The SQL query must contain the same number of columns
(and column names) as the SQL statement constructed by
DataStage.

You must ensure that the table definitions for the output link

are correct and represent the columns that are expected. The

result set generated from this statement returns at least one

row.

Note If more than one result set is produced, only the first

set is used.

– If the output is a reference input to a Transformer stage, edit
the SQL for reference inputs field. The SQL query must
contain the same number of columns as the SQL statement
constructed by DataStage. You must ensure that the table
definitions for the output link are correct and represent the
columns that are expected. The statement must have the same
number of parameter values (?) as key columns on the link.
The result set generated by this statement or procedure
contains at most one row.

3 Click OK to close the ODBC Stage dialog box. Changes are saved
when you save your job design.

Using a Stored Procedure
Instead of using a user-defined SQL statement or one constructed by

DataStage, you can use a stored procedure to define the data you

want to extract for each ODBC output link.

Note You cannot use the output from a stored procedure as a

reference input to a Transformer stage.

If the ODBC output is an input to another stage in the job design, you

must specify values for the stored procedure’s parameters. To use a

stored procedure for an input:

1 Click the Stored procedure option button on the General tab on
the Outputs page. The View SQL and Parameters tabs appear.

2 Choose the stored procedure you want to use from the Stored
procedure name drop-down list box on the General tab. This
list box contains the names of the defined stored procedures
under the Table Definitions ➤ StoredProcedures ➤ DSN
branch in the Repository.

Note If you can’t see the name of the stored procedure you

want to use, you must define it using the DataStage

Manager. For more information about importing,
3-22 Server Job Developer’s Guide

ODBC Stages Defining ODBC Output Data
creating, and editing stored procedure definitions, see

DataStage Manager Guide. Alternatively, use Browse…

to search the system for the stored procedure you want.

3 Click the Apply button. The Columns and Parameters tabs are
updated with the column and parameter definitions for the chosen
stored procedure.

4 Click the Parameters tab. The Parameters tab appears at the
front of the Outputs page:

5 Click in the Value cell for each parameter and enter suitable
values. You can enter constants or use job parameters. For more
information about using job parameters, see "Using the Data
Browser" in the DataStage Designer Guide.

The call syntax used to extract the data is automatically updated

with the parameter values. You can view this syntax on the View
SQL tab.

6 Click OK to close the ODBC Stage dialog box. Changes are saved
when you save your job design.

When the job runs, the stored procedure is called once with the given

parameter values. The result set generated should contain at least one

row.
Server Job Developer’s Guide 3-23

Defining ODBC Output Data ODBC Stages
3-24 Server Job Developer’s Guide

4
UniVerse Stages

UniVerse stages allow you to connect to UniVerse tables using SQL.

Using UniVerse Stages
You can use a UniVerse stage to extract, write, or aggregate data. (Use

a Hashed File stage to connect to UniVerse files.) Each UniVerse stage

can have any number of inputs or outputs. Input links specify the data

you are writing. Output links specify the data you are extracting and

any aggregations required.

You can specify the data on an input or output link using an SQL

statement constructed by DataStage or a user-defined query.

When you edit a UniVerse stage, the UniVerse Stage dialog box

appears:
Server Job Developer’s Guide 4-1

Defining the Connection UniVerse Stages
This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the name of the stage you are editing. You can
enter text to describe the purpose of the stage in the Description
field. The General tab defines the data source name.

Inputs. This page is displayed only if you have an input link to this
stage. Specifies the UniVerse table to use and the associated
column definitions for each data input link. This page also
specifies how data is written and contains the SQL statement or
call syntax used to write the data.

Outputs. This page is displayed only if you have an output link to
this stage. Specifies the UniVerse tables to use and the associated
column definitions for each data output link. This page also
contains the SQL SELECT statement or call syntax used to extract
the data.

To edit a UniVerse stage, you carry out the following steps:

1 Define the connection.

2 Define the data on the input links.

3 Define the data on the output links.

These steps are performed in the UniVerse Stage dialog box. Click

OK to close this dialog box. Changes are saved when you save the job

design.

Defining the Connection
The UniVerse connection parameters are set on the General tab on

the Stage page. To connect to a UniVerse data source, the data source

must be configured in the uvodbc.config file. For more information,

see the DataStage Administrator Guide.

The DataStage Engine can host UniVerse tables. Such tables are

accessed by the data source name localuv, which is already set up in

the uvodbc.config file.

UniVerse Connection Parameters
The UniVerse connection parameters are set on the General and

Details tabs on the Stage page. To connect to a UniVerse data

source:
4-2 Server Job Developer’s Guide

UniVerse Stages Defining the Connection
1 Choose the data source name from the Data source name drop-
down list box. This drop-down list box contains all the data
sources defined under the Table Definitions ➤ UniVerse
branch in the Repository.

Note If the data source name you want is not listed, you can

either enter the name in the Data source name field or

define a table definition. For details on how to import or

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

You can also enter a job parameter in this field. For details on how

to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

2 Enter the user name to use in the User name field. You can enter
a job parameter here, in the form #parameter#.

3 Enter the password to use in the Password field. You can enter a
job parameter here, in the form #parameter#, but it will be
displayed as asterisks.

Note If you are connecting to a remote UniVerse system

using LAN Manager, or accessing a data file in localuv,

you do not need to enter a user name and password. In

the case of localuv data sources, the User name and

Password fields are disabled.

4 Enter an optional description of the UniVerse stage in the
Description field.

5 If you are using a DSN other than localuv, click the Details tab.
The Details tab appears at the front of the Stage page.

6 Specify the UniVerse account to use for the connection either by
account name or account directory:

– Use account name. Enter the account name in the Account
name field. This must represent a valid UniVerse account
which is also a schema.

– Use directory path. Enter the directory path where the
project is stored in the Directory path field.

Note If you are accessing a file on localuv, you do not need to

specify an account or directory path, and the Details

tab is disabled.

You can use a job parameter in any of the fields described in steps 1,

2, 3, 4, and 6. For details on how to define and use job parameters, see

"Specifying Job Parameters" in DataStage Designer Guide.
Server Job Developer’s Guide 4-3

Defining UniVerse Input Data UniVerse Stages
Defining UniVerse Input Data
When you write data to a table in a UniVerse database, the UniVerse

stage has an input link. The properties of this link and the column

definitions of the data are defined on the Inputs page of the

UniVerse Stage dialog box.

The Inputs page has the following field:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the UniVerse stage.

The Inputs page also has up to six tabs, depending on the Update
action you select in the General tab, and whether you want to create

a table in the target database:

General. This tab is displayed by default. It contains the following
parameters:

– Table name. The name of the table or UniVerse file the data is
written to. Choose the table or file from the Table name drop-
down list box. This list box contains all the tables defined
under the Table Definitions ➤ UniVerse ➤ Data source
branch in the Repository. Data source is the data source name
chosen on the General tab on the Stage page.

Note If the table you want is not listed, you need to define

a table definition. For details on how to import or

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

Alternatively, use Browse… to display the Table

Definitions window and choose a suitable table

definition.
4-4 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Input Data
You can also enter a job parameter in this field.

This field appears when the update action is not User-defined
SQL.

– Update action. Specifies how the data is written. Choose the
option you want from the drop-down list box:

Clear the table, then insert rows. Deletes the contents of

the table and adds the new rows.

Insert rows without clearing. Inserts the new rows in the

table.

Replace existing rows completely. Deletes the existing

rows, then adds the new rows to the table.

Update existing rows only. Updates the existing data rows.

If a row with the supplied key does not exist in the table then

the table is not updated but a warning is logged.

Update existing rows or insert new ones. The existing

data rows are updated and new rows are added.

User-defined SQL. The data is written using a user-defined

SQL statement. When you select this option, the View SQL tab

is replaced by the Enter SQL tab.

– Create table in target database. Select this check box if you
want to automatically create a table in the target database at
run time. A table is created based on the defined column set
for this stage. If you select this box, an additional tab, Edit
DDL, appears. This shows the SQL CREATE statement to be
used for table generation.

– Description. Contains an optional description of the input
link.

Columns. This tab is always present and contains the column
definitions for the data written to the table or file. The column
definitions are used in the order they appear in the Columns grid.

View SQL. This tab displays the SQL statement call syntax used
to write the data. This tab appears when you select any update
action other than User-defined SQL. You cannot edit this
statement, but you can use Copy to copy it to the Clipboard for
use elsewhere.

Enter SQL. This tab displays the user-defined SQL statement.
This tab appears only when you set the update action to User-
defined SQL, when it replaces the View SQL tab.
Server Job Developer’s Guide 4-5

Defining UniVerse Input Data UniVerse Stages
Edit DDL. This tab appears if you have chosen to automatically
generate a table at run time by selecting the Create table in
target database check box on the General tab. It displays the
SQL CREATE statement that will be used to create the table. To
generate the statement, click the Create DDL button. DataStage
will connect to the target database and generate the statement.
You can edit the statement on this tab to make any required
changes. This tab also allows you to specify that any existing table
by this name should be dropped first. If you do not select this
option, and such a table already exists in the target database, then
the create will fail. You can specify details about the table to be
created in the Create Table Options dialog box. Open this by
clicking the Options button. For more information see "Create
Table Options" on page 4-11.

Transaction Handling. This page allows you to specify the
transaction handling features of the stage as it writes to the
UniVerse data source. You can choose whether to use transaction
grouping or not, specify an isolation level, and the number of
rows written before data is committed. A grid shows details of the
transaction group to which the currently selected input link
belongs. For further information see "Specifying Transaction
Control Information" below.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.

Specifying Transaction Control Information
Multiple input links writing to a single UniVerse data source may be

associated together as a transaction group. The transaction grouping

feature is turned on and off using the Enable transaction grouping

check box on the Transaction Handling page (it is off by default).

If you set Enable transaction handling off, you can specify the

following on the Transaction Handling page:

Enter a suitable value in the Rows per transaction field. This is
the number of rows written before the data is committed to the
data table. The default value is 0, that is, all the rows are written
before being committed to the data table.

Select a suitable Isolation Level. The isolation level specifies
how potential conflicts between transactions (i.e., dirty reads,
nonrepeatable reads, and phantom reads) are handled.

If transaction grouping is enabled, the following rules govern the

grouping of links:
4-6 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Input Data
All the input links in the transaction group must originate from the
same Transformer stage.

The ordering of the links within the transaction group is
determined in the preceding Transformer stage.

A transaction group cannot use a Rows per transaction other
than 1. Using an Isolation level of Auto-commit is permitted,
but obviates the effect of organizing links in a transaction group.

You should be aware of the following facts about transaction groups

(assuming that you commit on every row):

A transaction starts at the beginning of each iteration of the
Transformer stage preceding the UniVerse stage. Any
uncommitted changes left over from a previous transaction are
rolled back.

The links in the transaction group are processed in the order laid
down in the Transformer stage. Individual links may be skipped if
constraints laid down in the preceding Transformer stage so
dictate.

Each link in the transaction group can specify whether to rollback
on failure. A rollback on any link causes the transaction to be
abandoned and any subsequent links in the group to be skipped.

Each link in the transaction group can be set to rollback if a
constraint on that link is not met. Again, such a rollback causes the
transaction to be abandoned and any subsequent links in the
group to be skipped.

The row counter for each link will be incremented only if the SQL
associated with the link executes successfully and the transaction
is successfully committed.

The transaction ends after the last link in the transaction group is
processed, unless a preceding link performs a rollback, in which
case the transaction ends there.

To specify transaction control information for a transaction group:
Server Job Developer’s Guide 4-7

Defining UniVerse Input Data UniVerse Stages
1 Click the Transaction Handling page.

2 Select the Enable transaction grouping check box.

3 Choose an appropriate transaction isolation level to use from the
Isolation level drop-down list box. The isolation level specifies
how potential conflicts between transactions (i.e., dirty reads,
nonrepeatable reads, and phantom reads) are handled. (If you
select Auto-commit, you are specifying that every statement will
effectively be executed in a separate transaction, which will
obviate the advantages of transaction groups.)

4 For transaction groups Rows per transaction is automatically
set to 1 and you cannot alter it.

5 Supply necessary details about the transaction group in the grid.
The grid has a line for every link in the transaction group. The links
are shown in transaction processing order, which is set in the
preceding Transformer stage. Each line contains the following
information:

– Input name. The name of the input link. You cannot change
this.

– On Skip. This is used to specify whether to continue or to roll
back if a link is skipped due to a constraint on it not being
satisfied. Choose Continue or Rollback from the drop-down
list.

– On Fail. This is used to specify whether or not to continue or
rollback on failure of the SQL statement. Choose Continue or
Rollback from the drop-down list.

– SQL. Shows the SQL statement associated with the input link.
You cannot change this, but clicking the cell will display the
entire statement.
4-8 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Input Data
Note If the UniVerse stage uses a local connection to

DSEngine, i.e. the data source is localuv, then you

cannot associate data written from different input links

in a single transaction group. Every input link appears in

a transaction group on its own, even if the links

originate from the same Transformer stage. You can

view the transaction group information for a particular

link by choosing it from the Input name drop-down

list.

Using a Generated Query
You can write data to an SQL table using an SQL statement

constructed by DataStage. When you specify the table and the column

definitions to use, the SQL statement is automatically constructed and

can be viewed on the View SQL tab.

To use a generated query:

1 Choose a table from the Table name drop-down list box on the
General tab.

2 Specify how you want the data to be written by choosing a
suitable option from the Update action drop-down list box.
There are six options for a generated query:

– Clear the table, then insert rows

– Insert rows without clearing

– Replace existing rows completely

– Update existing rows only

– Insert new or update existing rows

– Update existing or insert new rows

– User-defined SQL. This switches you from using a
Generated Query to using user defined SQL query.

See page 4-5 for a description of each update action.

3 Enter an optional description of the input link in the Description
field.

4 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

5 Edit the Columns grid to specify column definitions for the
columns you want to write.

The SQL statement is automatically constructed using your

chosen update action and the columns you have specified. You

can now optionally view this SQL statement.
Server Job Developer’s Guide 4-9

Defining UniVerse Input Data UniVerse Stages
6 Click the View SQL tab. The View SQL tab appears at the front of
the Inputs page.

7 Click OK to close the UniVerse Stage dialog box. Changes are
saved when you save your job design.

Using a User-Defined SQL Statement
Instead of writing data using an SQL statement constructed by

DataStage, you can enter your own SQL statement for each UniVerse

input link.

To enter an SQL statement:

1 Choose User-defined SQL from the Update action drop-down
list box on the General tab. The View SQL tab is replaced with
the Enter SQL tab.

2 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

3 Edit the Columns grid to specify column definitions for the
columns you want to write.

4 Click the Enter SQL tab. The Enter SQL tab appears at the front
of the Inputs page.

5 Enter the SQL statement you want to use. This statement must
contain the table name, the type of update action you want to
perform, and the columns you want to write.

Note You must also ensure that the statement contains the

correct number of ? parameter markers. You must have

a parameter marker for each column you have defined

on the Columns tab.

6 Click OK to close the UniVerse Stage dialog box. Changes are
saved when you save your job design.
4-10 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Input Data
Create Table Options
If you choose Options or Create DDL from the Edit DDL tab, the

Create Table Options dialog box allows you to specify various

options about how the underlying file holding the table is created.

The dialog box contains the following fields:

File Type. The file type chosen determines what other options are
available in the dialog box. The default is Type30(Dynamic)

Minimum Modulus. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file minimum modulus in the range 1 to
999999. The default is 1.

Group Size. Visible only for Type30(Dynamic) file types. Specifies
the dynamic group size. Choose 1 to select a group size of 2048
bytes, or 2 to select a group size of 4096 bytes. The default is 1.

Split Load. Visible only for Type30(Dynamic) file types. Specifies
the dynamic file split as a percentage in the range 1 to 99. The
default is 80.

Merge Load. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file merge load as a percentage in the range
1 to 99. The default is 50.

Large Record. Visible only for Type30(Dynamic) file types.
Specifies the large record value in bytes in the range 1 to 999999.
The default is 1628.

Hash Algorithm. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file hashing algorithm. Choose from
GENERAL or SEQ.NUM. The default is GENERAL.

Record Size. Visible only for Type30(Dynamic) file types.
Specifies the record size in the range 1 to 999999.
Server Job Developer’s Guide 4-11

Defining UniVerse Output Data UniVerse Stages
Minimize Space. Visible only for Type30(Dynamic) file types.
Select this to Specify that some of the other options are adjusted
to optimize for minimum file size.

Modulus. Visible only for hashed file types. Specifies the hashed
file modulus in the range 1 to 999999. The default is 1.

Separation. Visible only for hashed file types. Specifies the
hashed file separation in the range 1 to 999999. The default is 2.

Defining UniVerse Output Data
When you extract data from a UniVerse data source, the UniVerse

stage has an output link. The properties of this link and the column

definitions of the data are defined on the Outputs page in the

UniVerse Stage dialog box.

The Outputs page has the following two fields and up to five tabs.

The tabs displayed depend on how you choose to specify the SQL

statement to output the data.

Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links from the UniVerse stage.

Normalize on. This drop-down list box allows you to normalize
(or unnest) data. You can normalize either on an association or on
a single unassociated multivalued column. The Normalize on
drop-down list box is only enabled for nonreference output links
where meta data has been defined that contains multivalued
fields.
4-12 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Output Data
General. Displayed by default. Contains the following
components:

– Table names. Contains the names of the tables or files being
accessed in a comma-separated list. You can also use a job
parameter to specify the table name. For details on how to
define and use job parameters, see "Specifying Job
Parameters" in DataStage Designer Guide.

– Available tables. Displays the names of the available tables
or files that have definitions in the Repository.

– Add. Adds a table from the Available tables drop-down list
box to the Table names field.

– Generated query. Specifies that the data is extracted using an
SQL statement constructed by DataStage. This is the default
setting. When this option is selected, the Selection and View
SQL tabs appear.

– User-defined SQL query. Specifies that the data is extracted
using a user-defined SQL query. When this option is selected,
the SQL Query tab appears.

– Description. Contains an optional description of the output
link.

– Browse… . Displays the Table Definitions window, allowing
you to choose a suitable table or stored procedure definition.

Columns. Contains the column definitions for the data being
output on the chosen link. Also specifies which columns are
aggregated.

Selection. Contains optional SQL SELECT clauses for the
conditional extraction of data. This tab appears when you select
Generated query.

View SQL. Displays the SQL statement used to extract the data
from the chosen table or tables. This tab appears when you select
Generated query. The SQL statement exists in two forms and
you can choose which one to display:

– SQL for reference inputs. Choose this to view the SQL
statement used when this link is a reference input to a
Transformer stage.

– SQL for primary inputs. Choose this to view the SQL
statement used in all other cases.

You cannot edit the SQL statement, but you can use Copy to copy

it to the Clipboard for use elsewhere.

SQL Query. Contains a user-defined SQL query. This tab appears
when you select User-defined SQL query. This tab is divided
into two areas:
Server Job Developer’s Guide 4-13

Defining UniVerse Output Data UniVerse Stages
– SQL for primary inputs. Contains a user-defined SQL query
for a link that is a primary input to a Transformer stage, or an
input to any other type of stage.

– SQL for reference inputs. Contains a user-defined SQL
query for a link that is a reference input to a Transformer stage.

Transaction Handling. Allows you to specify a transaction
isolation level for read data. The isolation level specifies how
potential conflicts between transactions (i.e., dirty read,
nonrepeatable reads, and phantom reads) are handled.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.

Key Fields
The column definitions for output links contain a key field. Key fields

are used to join primary and reference inputs to a Transformer stage.

For details on how key fields are specified and used, see "Defining

Input Column Key Expressions"on page 9-16.

Using a Generated Query
When you select Generated query, data is extracted from a UniVerse

data source using an SQL SELECT statement constructed by

DataStage. SQL SELECT statements have the following syntax:

SELECT clause FROM clause

[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause];

When you specify the tables to use and the columns to be output from

the UniVerse stage, the SQL SELECT statement is automatically

constructed and can be viewed by clicking the View SQL tab on the

Outputs page.

Note The View SQL tab appears only when you select
Generated query on the General tab on the Outputs

page.

For example, if you extract the columns Name, Address, and Phone

from a table called Table1, the SQL statement displayed on the View
SQL tab is:

SELECT Name, Address, Phone FROM Table1;
4-14 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Output Data
The SELECT and FROM clauses are the minimum required and are

automatically generated by DataStage. However, you can use any of

these SQL SELECT clauses:

If you want to use the additional SQL SELECT clauses, you must enter

them on the Selection tab on the Outputs page:

The Selection tab is divided into two parts:

WHERE clause. This text box allows you to insert an SQL WHERE
clause to specify criteria that the data must meet before being
selected.

Other clauses. This text box allows you to insert a HAVING or an
ORDER BY clause.

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected
columns.

WHERE clause Specifies the criteria that rows must meet to be
selected.

GROUP BY clause Groups rows to summarize results. See
"Aggregating Data" on page 4-17 for a description
of how this clause is used.

HAVING clause Specifies the criteria that grouped rows must meet
to be selected. See "Aggregating Data" on
page 4-17 for a description of how this clause is
used.

ORDER BY clause Sorts selected rows.
Server Job Developer’s Guide 4-15

Defining UniVerse Output Data UniVerse Stages
Using a WHERE Clause

You can use a WHERE clause to:

Select only the data that meets certain criteria

Join two tables from the same data source

To use a WHERE clause, type the column and the condition into the

WHERE clause text entry box.

For example, if you have a table (Sales1) containing sales data, you

can choose to only output data where the value in the Price column is

greater than $10.00. In this case, enter:

Price>10

Alternatively, if you are extracting data from two tables in the data

source, you can use a WHERE clause to relate a column in one table to

a column in the another table.

For example, Table1 contains the columns Pcode, OrderNo, and

SaleDate and Table2 contains Pcode, CustNo, Quantity, and Cost.

You can use the WHERE clause to join the two tables together by the

related column. In this case, the column is Pcode and you enter:

Table1.Pcode = Table2.Pcode

Note Only one column definition called Pcode is loaded or

inserted into the grid on the Columns tab.

You can also use a job parameter in the WHERE clause. For details on

how to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

The SQL SELECT statement is automatically updated to include the

WHERE clause. Click the View SQL tab to display the statement.

Using a HAVING Clause

If you use a UniVerse stage to aggregate data, you can use a HAVING

clause to specify conditions the grouped data must meet before it is

selected. For more information about using a UniVerse stage to

aggregate data, see "Aggregating Data" on page 4-17.

To use a HAVING clause, enter the clause, column, and condition into

the Other clauses text entry box on the Selection tab on the

Outputs page.

For example, you could choose to only output summed quantities that

are greater than or equal to 1000. In this case you enter:

HAVING SUM(QtySold)>=1000

The SQL SELECT statement is updated automatically. Click the View
SQL tab to display the statement.
4-16 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Output Data
You can also use a job parameter in the HAVING clause. For details on

how to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide..

Using an ORDER BY Clause

You can sort data based on a chosen column by including an ORDER

BY clause in the SELECT statement. Records are sorted by data in the

chosen column before being output. You can specify a column name

or a column position and whether to sort in ascending or descending

order.

To use an ORDER BY clause, enter the clause, column, and condition

into the Other clauses text entry box on the Selection tab on the

Outputs page.

For example, if your table contains a Name column, you may want to

sort the column alphabetically (A to Z). In this case you enter:

ORDER BY Name ASC

The SQL SELECT statement is updated automatically. Click the View
SQL tab to display the statement.

Aggregating Data

If you are using a generated query, you can use a UniVerse stage to

aggregate data at the source instead of using an intermediate

Aggregator stage. By aggregating data you can add values in a

particular column for all data records in a table. This summed total is

then output from the stage.

You can aggregate data in two ways:

Using an Aggregator stage. For more information, see Chapter 10,
"Aggregator Stages."

Using a UniVerse stage.

If you aggregate data using a UniVerse stage, the columns to group by

and sum together are also specified by the SQL SELECT statement. To

specify the columns to group by and summarize, you must edit the

column definitions in the Columns grid on the Columns tab.

For example, if you have a sales database (Sales1) it may contain the

following columns: Product, SaleDate, and QtySold. If this

database is updated daily, you have a record of how many of each

product are sold each day. However, if you want to know how many of

each product were sold since 01/01/96 you need to specify a WHERE

clause for the SaleDate and group (and summarize) the data.
Server Job Developer’s Guide 4-17

Defining UniVerse Output Data UniVerse Stages
Because you want the total for each product, you need to group all the

occurrences of the same value in the Product column and sum the

value in the QtySold column.

To group by a column, click in the Group cell for the column definition

you want to group by and choose Yes from the drop-down list. In the

example, you would choose the Product column to edit.

To summarize a column, click in the Derivation cell for the column

you want to aggregate (using SUM or COUNT). The Derivation cell

contains by default the name of the table and column in the format

tablename.columnname. You can edit this cell to add SUM or COUNT.

In the example, you would edit the Derivation cell for the QtySold

column. The resulting expression would be SUM(Sales1.QtySold).

You can use the Expression Substitution dialog box to edit multiple

Derivation cells at the same time. Select the columns and choose

Derivation Substitution... from the shortcut menu. This is the same

dialog box as available in the Transformer stage, see "Editing Multiple

Derivations" on page 9-13.

When you group by or summarize columns, the SQL statement is

automatically updated to include the GROUP BY clause and the

aggregation expression. To view the SQL statement, click the View
SQL tab on the Outputs page.

For example, the SQL statement for the example would be:

SELECT Product, SUM(QtySold) FROM Sales1
WHERE Saledate>=01/01/96
GROUP BY Product;

See "Using a WHERE Clause" on page 4-16 for details of how to use a

WHERE clause.

Using a User-Defined SQL Statement
Instead of using the SQL statement constructed by DataStage, you

can enter your own SQL statement for each UniVerse output link.

To enter an SQL statement:
4-18 Server Job Developer’s Guide

UniVerse Stages Defining UniVerse Output Data
1 Click the User-defined SQL query option on the General tab on
the Outputs page. The SQL Query tab appears.

2 Click the SQL Query tab. The SQL Query tab appears at the front
of the Outputs page:

When you first view this tab, the SQL for primary inputs and

SQL for reference inputs fields may contain the SQL

statements constructed by DataStage. These are displayed if you

selected Generated query before selecting User-defined SQL

query. You can modify or overwrite each statement to construct

your own SQL query or call to a stored procedure.

The entries in these fields depend on whether the output is a

primary input to a stage or a reference input to a Transformer

stage:

– If the output is a primary input to any stage, whether or not it is
a Transformer stage, edit the SQL for primary inputs field.
The SQL query must contain the same number of columns
(and column names) as the SQL statement constructed by
DataStage.

You must ensure that the table definitions for the output link

are correct and represent the columns that are expected. The

result set generated from this statement returns at least one

row.

Note If more than one result set is produced, only the first

set is used.
Server Job Developer’s Guide 4-19

Defining UniVerse Output Data UniVerse Stages
– If the output is a reference input to a Transformer stage, edit
the SQL for reference inputs field. The SQL query must
contain the same number of columns as the SQL statement
constructed by DataStage. You must ensure that the table
definitions for the output link are correct and represent the
columns that are expected. The statement must have the same
number of parameter values (?) as key columns on the link.
The result set generated by this statement or procedure
contains at most one row.

3 Click OK to close the UniVerse Stage dialog box. Changes are
saved when you save your job design.
4-20 Server Job Developer’s Guide

5
UniData 6 Stages

UniData 6 stages allow you to connect to UniData 6 tables using SQL.

If you are using an older version of UniData, you need to use the

UniData Stage (see Chapter 7).

Using UniData 6 Stages
You can use a UniData 6 stage to extract, write, or aggregate data.

Each UniData 6 stage can have any number of inputs or outputs. Input

links specify the data you are writing. Output links specify the data

you are extracting and any aggregations required.

You can specify the data on an input or output link using an SQL

statement constructed by DataStage or a user-defined query.
Server Job Developer’s Guide 5-1

Using UniData 6 Stages UniData 6 Stages
When you edit a UniData 6 stage, the UniData 6 Stage dialog box

appears:

This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the name of the stage you are editing. You can
enter text to describe the purpose of the stage in the Description
field. The General tab defines the data source name.

Inputs. This page is displayed only if you have an input link to this
stage. Specifies the UniData 6 table to use and the associated
column definitions for each data input link. This page also
specifies how data is written and contains the SQL statement or
call syntax used to write the data.

Outputs. This page is displayed only if you have an output link to
this stage. Specifies the UniData 6 tables to use and the associated
column definitions for each data output link. This page also
contains the SQL SELECT statement or call syntax used to extract
the data.

To edit a UniData 6 stage, you carry out the following steps:

1 Define the connection.

2 Define the data on the input links.

3 Define the data on the output links.

These steps are performed in the UniData 6 Stage dialog box. Click

OK to close this dialog box. Changes are saved when you save the job

design.
5-2 Server Job Developer’s Guide

UniData 6 Stages Connecting to UniData 6
Connecting to UniData 6
The UniData 6 stage can only access UniData 6 accounts that have

been made publicly accessible. To connect via DataStage you must

then specify a DSN for the UniData 6 account.

UniData 6 Account
When a new account is created in UniData 6, it is not a UniData 6

account until MIGRATE.SQL is run in the account. To make an account

a UniData 6 account:

1 Telnet into the UniData account as an admin user.

2 At the UniData prompt type MIGRATE.SQL

To make the account accessible:

1 Open the UniAdmin client.

2 Add the account you wish to make accessible to the Accounts
Admin configuration:

a Double click on the Accounts item in the tree to open the
Accounts Admin dialog box.

b Click the New button to add a new account.

c Enter the name of your UniData 6 account and its full
pathname.

3 Add the account you wish to make accessible to the Network
Services/Database Admin configuration:

a Double click the Database Admin item under the Network
Service branch to open the Database Configuration dialog
box.

b Click the Add button to add a new database.

c Enter a database name, and the full pathname to the UniData 6
account you wish to access.

In a UniData 6 account, all new tables created will be accessible by

client applications. Any existing files before MIGRATE.SQL was

executed will not be accessible.

To make all existing files accessible:

1 The DataStage 7.0 media contains a UniBasic program called
Privilege.B. Copy the file Privilege.B from the DataStage Install
Image. This can be found under the following directory structure:
Utilities\Supported\UDT6\Privilege.B

2 Place this file into the BP directory of the UniData6 account.
Server Job Developer’s Guide 5-3

Connecting to UniData 6 UniData 6 Stages
3 Telnet to the account using the login credentials of the user that
you wish to access these files.

4 Compile and run the program using the following commands.

BASIC BP Privilege.B

RUN BP Privilege.B

DataStage DSN for UniData 6 Server
For the UniData 6 stage to connect to a UniData 6 server, a DSN needs

to be set up in the uvodbc.config file in the DataStage project.

The DSN entry should follow the format:

<Name>
DBMSTYPE = UNIDATA
network = TCP/IP
service = udserver
host = IP_ADDRESS:31438

Where IP_ADDRESS is the IP address of the UniData 6 machine.

An example of a DSN is:

<remoteud>
DBMSTYPE = UNIDATA
network = TCP/IP
service = udserver
host = 193.128.90.100:31438

UniData 6 Connection Parameters
The UniData 6 connection parameters are set on the General and

Details tabs on the Stage page. To connect to a UniData 6 data

source:

1 Choose the data source name from the Data source name drop-
down list box. This drop-down list box contains all the data
sources defined under the Table Definitions ➤ UniData 6
branch in the Repository.

Note If the data source name you want is not listed, you can

either enter the name in the Data source name field or

define a table definition. For details on how to import or

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

You can also enter a job parameter in this field. For details on how

to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

2 Enter the user name to use in the User name field. You can enter
a job parameter here, in the form #parameter#.
5-4 Server Job Developer’s Guide

UniData 6 Stages Defining UniData 6 Input Data
3 Enter the password to use in the Password field. You can enter a
job parameter here, in the form #parameter#, but it will be
displayed as asterisks.

4 Enter an optional description of the UniVerse stage in the
Description field.

5 Click the Details tab. The Details tab appears at the front of the
Stage page.

6 Specify the UniVerse account to use for the connection either by
account name or account directory:

– Use account name. Enter the account name in the Account
name field. This must represent a valid UniData 6 account
which is also a schema.

– Use directory path. Enter the directory path where the
project is stored in the Directory path field.

You can use a job parameter in any of the fields described in steps 1,

2, 3, 4, and 6. For details on how to define and use job parameters, see

"Specifying Job Parameters" in DataStage Designer Guide.

Defining UniData 6 Input Data
When you write data to a table in a UniData 6 database, the UniVerse

stage has an input link. The properties of this link and the column

definitions of the data are defined on the Inputs page of the

UniVerse Stage dialog box.

The Inputs page has the following field:
Server Job Developer’s Guide 5-5

Defining UniData 6 Input Data UniData 6 Stages
Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the UniData 6 stage.

The Inputs page also has up to six tabs, depending on the Update
action you select in the General tab, and whether you want to create

a table in the target database:

General. This tab is displayed by default. It contains the following
parameters:

– Table name. The name of the table or UniData 6 file the data
is written to. Choose the table or file from the Table name
drop-down list box. This list box contains all the tables defined
under the Table Definitions ➤ UniData 6 ➤ Data source
branch in the Repository. Data source is the data source name
chosen on the General tab on the Stage page.

Note If the table you want is not listed, you need to define

a table definition. For details on how to import or

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

Alternatively, use Browse… to display the Table

Definitions window and choose a suitable table

definition.

You can also enter a job parameter in this field.

This field appears when the update action is not User-defined
SQL.

– Clear the table before writing. Deletes the contents of the
table before adding the new rows.

– Description. Contains an optional description of the input
link.

Columns. This tab is always present and contains the column
definitions for the data written to the table or file. The column
definitions are used in the order they appear in the Columns grid.

View SQL. This tab displays the SQL statement call syntax used
to write the data. You cannot edit this statement, but you can use
Copy to copy it to the Clipboard for use elsewhere.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.
5-6 Server Job Developer’s Guide

UniData 6 Stages Defining UniData 6 Output Data
Using a Generated Query
You can write data to an SQL table using an SQL statement

constructed by DataStage. When you specify the table and the column

definitions to use, the SQL statement is automatically constructed and

can be viewed on the View SQL tab.

To use a generated query:

1 Choose a table from the Table name drop-down list box on the
General tab.

2 If required, specify that the existing table is cleared before new
rows are written by selecting the Clear table before writing
check box.

3 Enter an optional description of the input link in the Description
field.

4 Click the Columns tab. The Columns tab appears at the front of
the Inputs page.

5 Edit the Columns grid to specify column definitions for the
columns you want to write. For more information, see the
DataStage Manager Guide.

The SQL statement is automatically constructed using your

chosen update action and the columns you have specified. You

can now optionally view this SQL statement.

6 Click the View SQL tab. The View SQL tab appears at the front of
the Inputs page.

7 Click OK to close the UniData 6 Stage dialog box. Changes are
saved when you save your job design.

Defining UniData 6 Output Data
When you extract data from a UniData 6 data source, the UniData 6

stage has an output link. The properties of this link and the column

definitions of the data are defined on the Outputs page in the

UniData 6 Stage dialog box.
Server Job Developer’s Guide 5-7

Defining UniData 6 Output Data UniData 6 Stages
The Outputs page has the following two fields and up to five tabs.

The tabs displayed depend on how you choose to specify the SQL

statement to output the data.

Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links from the UniVerse stage.

Normalize on. This drop-down list box allows you to normalize
(or unnest) data. You can normalize either on an association or on
a single unassociated multivalued column. The Normalize on
drop-down list box is only enabled for nonreference output links
where meta data has been defined that contains multivalued
fields.

General. Displayed by default. Contains the following
components:

– Table name. Contains the name of the tables being accessed.
You can also use a job parameter to specify the table name. For
details on how to define and use job parameters, see
DataStage Designer Guide.

– Description. Contains an optional description of the output
link.

– Browse… . Displays the Table Definitions window, allowing
you to choose a suitable table.

Columns. Contains the column definitions for the data being
output on the chosen link. For a description of how to enter and
edit column definitions, see DataStage Designer Guide. Also
specifies which columns are aggregated.
5-8 Server Job Developer’s Guide

UniData 6 Stages Defining UniData 6 Output Data
Selection. Contains optional SQL SELECT clauses for the
conditional extraction of data.

View SQL. Displays the SQL statement used to extract the data
from the chosen table or tables. You cannot edit the SQL
statement, but you can use Copy to copy it to the Clipboard for
use elsewhere.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.

Key Fields
The column definitions for output links contain a key field. Key fields

are used to join primary and reference inputs to a Transformer stage.

For details on how key fields are specified and used, see "Defining

Input Column Key Expressions"on page 9-16.

Using a Generated Query
When you select Generated query, data is extracted from a UniData

6 data source using an SQL SELECT statement constructed by

DataStage. SQL SELECT statements have the following syntax:

SELECT clause FROM clause

[WHERE clause]
[ORDER BY clause];

When you specify the tables to use and the columns to be output from

the UniData 6 stage, the SQL SELECT statement is automatically

constructed and can be viewed by clicking the View SQL tab on the

Outputs page.

For example, if you extract the columns Name, Address, and Phone

from a table called Table1, the SQL statement displayed on the View
SQL tab is:

SELECT Name, Address, Phone FROM Table1;

The SELECT and FROM clauses are the minimum required and are

automatically generated by DataStage. However, you can use any of

these SQL SELECT clauses:

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be
selected.
Server Job Developer’s Guide 5-9

Defining UniData 6 Output Data UniData 6 Stages
If you want to use the additional SQL SELECT clauses, you must enter

them on the Selection tab on the Outputs page:

The Selection tab is divided into two parts:

WHERE clause. This text box allows you to insert an SQL WHERE
clause to specify criteria that the data must meet before being
selected.

Other clauses. This text box allows you to insert an ORDER BY
clause.

Using a WHERE Clause

You can use a WHERE clause to:

Select only the data that meets certain criteria

Join two tables from the same data source

To use a WHERE clause, type the column and the condition into the

WHERE clause text entry box.

For example, if you have a table (Sales1) containing sales data, you

can choose to only output data where the value in the Price column is

greater than $10.00. In this case, enter:

Price>10

Alternatively, if you are extracting data from two tables in the data

source, you can use a WHERE clause to relate a column in one table to

a column in the another table.

ORDER BY clause Sorts selected rows.
5-10 Server Job Developer’s Guide

UniData 6 Stages Defining UniData 6 Output Data
For example, Table1 contains the columns Pcode, OrderNo, and

SaleDate and Table2 contains Pcode, CustNo, Quantity, and Cost.

You can use the WHERE clause to join the two tables together by the

related column. In this case, the column is Pcode and you enter:

Table1.Pcode = Table2.Pcode

Note Only one column definition called Pcode is loaded or

inserted into the grid on the Columns tab.

You can also use a job parameter in the WHERE clause. For details on

how to define and use job parameters, see "Specifying Job

Parameters" in DataStage Designer Guide.

The SQL SELECT statement is automatically updated to include the

WHERE clause. Click the View SQL tab to display the statement.

Using an ORDER BY Clause

You can sort data based on a chosen column by including an ORDER

BY clause in the SELECT statement. Records are sorted by data in the

chosen column before being output. You can specify a column name

or a column position and whether to sort in ascending or descending

order.

To use an ORDER BY clause, enter the clause, column, and condition

into the Other clauses text entry box on the Selection tab on the

Outputs page.

For example, if your table contains a Name column, you may want to

sort the column alphabetically (A to Z). In this case you enter:

ORDER BY Name ASC

The SQL SELECT statement is updated automatically. Click the View
SQL tab to display the statement.
Server Job Developer’s Guide 5-11

Defining UniData 6 Output Data UniData 6 Stages
5-12 Server Job Developer’s Guide

6
Hashed File Stages

Hashed File stages represent a hashed file, i.e., a file that uses a

hashing algorithm for distributing records in one or more groups on

disk. Use a Hashed File stage to access UniVerse files. The DataStage

Engine can host UniVerse files locally. You can use a hashed file as an

intermediate file in a job, taking advantage of DSEngine’s local

hosting.

Using a Hashed File Stage
You can use a Hashed File stage to extract or write data, or to act as an

intermediate file in a job. The primary role of a Hashed File stage is as

a reference table based on a single key field.
Server Job Developer’s Guide 6-1

Using a Hashed File Stage Hashed File Stages
Each Hashed File stage can have any number of inputs or outputs.

When you edit a Hashed File stage, the Hashed File Stage dialog

box appears:

This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the name of the stage you are editing. This page
has a General tab, where you can enter text to describe the
purpose of the stage in the Description field and specify where
the data files are by clicking one of the option buttons:

– Use account name. If you choose this option, you must
choose the name of the account from the Account name
drop-down list box. This list box contains all the accounts
defined under the Table Definitions ‰ Hashed branch in the
DataStage Manager. If the account you want is not listed, you
need to define a table definition. For details on how to create a
table definition, see "Managing Table Definitions" in DataStage
Manager Guide. Alternatively, you can enter an account name
or use a job parameter. For details on how to define and use
job parameters, see "Specifying Job Parameters" in DataStage
Designer Guide.

– Use directory path. If you choose this option, you must
specify a directory path containing the UV account. The
directory must be a UniVerse account and is used for UniVerse
accounts that do not appear in the UV.ACCOUNT file. If the
hashed file is hosted locally by DSEngine, the directory you
need to specify the DataStage project directory as the directory
path, for example, C:\Ascential\DataStage\Projects\Dstage. The
directory is specified in the Directory path field. You can
enter a path directly, click Browse… to search the system for a
6-2 Server Job Developer’s Guide

Hashed File Stages Defining Hashed File Input Data
suitable directory, or use a job parameter. For more
information about using Browse…, see "Using the Data
Browser" in the DataStage Designer Guide.

– SQL Null Value. Determines what character represents the
SQL Null value in the hashed file corresponding to this stage. If
your system will be using the Euro symbol, select the Special
(allow Euro) option from the drop-down list. Select Auto
detect to have DataStage determine what represents SQL
Null.

– UniVerse Stage Compatibility. Select this check box to
ensure that any job conversions will work correctly. With this
option selected, the date or time will be represented in ISO
format (depending on the Extended type) and numerics will be
scaled according to the meta data. (The job conversion utility is
a special standalone tool – it is not available in the DataStage
Designer.)

Inputs. This page is only displayed if you have an input link to this
stage. Specifies the data file to use and the associated column
definitions for each data input link. This page also specifies how
data is written to the data file.

Outputs. This page is displayed only if you have an output link to
this stage. Specifies the data file to use and the associated column
definitions for each data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

If a Hashed File stage references a hashed file that does not already

exist, use the DataStage Director Validate Job feature before you run

the job, and DataStage will create it for you. To validate a job, choose

Job ➤ Validate from the Director. The Job Run Options dialog box

appears. Click Validate. For more information on validating a job and

setting job options, see "Validating a Job" in DataStage Director

Guide.

Defining Hashed File Input Data
When you write data to a hashed file, the Hashed File stage has an

input link. The properties of this link and the column definitions of the
Server Job Developer’s Guide 6-3

Defining Hashed File Input Data Hashed File Stages
data are defined on the Inputs page in the Hashed File Stage dialog

box.

The Inputs page has the following field and two tabs:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the Hashed File stage.

General. Displayed by default. Contains the following fields and
options:

– File name. The name of the file the data is written to. You can
either use a job parameter to represent the file created during
run time (see "Specifying Job Parameters" in DataStage
Designer Guide for more details) or choose the file from the
File name drop-down list box. This list box contains all the
files defined under the Table Definitions ‰ Hashed ‰
Account name branch in the Manager, where Account name
is the name of the account chosen on the Stage page. By
default the name of the input link is used as the file name.

Note If the file you want is not listed, you may need to

define a table definition. For details on how to

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

– Clear file before writing. If you select this check box, the
existing file is cleared and new data records are written to the
empty file. This check box is cleared by default.
6-4 Server Job Developer’s Guide

Hashed File Stages Defining Hashed File Input Data
– Backup existing file. If you select this check box, a backup
copy of the existing file is made before the new data records
are written to the file. The backup can be used to reset the file if
a job is stopped or aborted at run time. This check box is
cleared by default.

– Allow write stage cache. Select this check box to specify
that all records should be cached, rather than written to the
hashed file immediately. This is not recommended where your
job writes and reads to the same hashed file in the same
stream of execution, for example, where a Transformer stage
checks if a record already exists to determine the required
operation. (If you have caching on the server enabled, any
caching attributes that the file was created with will override
the stage level caching).

– Create File. Select this check box to specify that the stage will
create the hashed file for writing to. Click the Options button
to open the Create File Options dialog box to specify details
about how the file is created (see "Create File Options" on
page 6-6).

– Description. Contains an optional description of the input
link.

Columns. Contains the column definitions for the data written to
the file.

Note You should use the Key checkboxes to identify the key

columns. If you don’t, the first column definition is

taken as the hashed file’s key field. The remaining

columns dictate the order in which data will be written

to the hashed file. Do not reorder the column definitions

in the grid unless you are certain you understand the

consequences of your action.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.
Server Job Developer’s Guide 6-5

Defining Hashed File Input Data Hashed File Stages
Create File Options
If you choose to create the hashed file to write to, the Create File
Options dialog box allows you to specify various options about how

the file is created.

The dialog box contains the following fields:

File Type. The file type chosen determines what other options are
available in the dialog box. The default is Type30(Dynamic)

Minimum Modulus. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file minimum modulus in the range 1 to
999999. The default is 1.

Group Size. Visible only for Type30(Dynamic) file types. Specifies
the dynamic group size. Choose 1 to select a group size of 2048
bytes, or 2 to select a group size of 4096 bytes. The default is 1.

Split Load. Visible only for Type30(Dynamic) file types. Specifies
the dynamic file split as a percentage in the range 1 to 99. The
default is 80.

Merge Load. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file merge load as a percentage in the range
1 to 99. The default is 50.

Large Record. Visible only for Type30(Dynamic) file types.
Specifies the large record value in bytes in the range 1 to 999999.
The default is 1628.

Hash Algorithm. Visible only for Type30(Dynamic) file types.
Specifies the dynamic file hashing algorithm. Choose from
GENERAL or SEQ.NUM. The default is GENERAL.

Record Size. Visible only for Type30(Dynamic) file types.
Specifies the record size in the range 1 to 999999.
6-6 Server Job Developer’s Guide

Hashed File Stages Defining Hashed File Output Data
Modulus. Visible only for hashed file types. Specifies the hashed
file modulus in the range 1 to 999999. The default is 1.

Separation. Visible only for hashed file types. Specifies the
hashed file separation in the range 1 to 999999. The default is 2.

Caching attributes. If you have server caching enabled, this
allows you to choose caching attributes for the file you are
creating. These attributes will stay with the file wherever it is used
subsequently. NONE means no caching is performed, WRITE
DEFERRED is the fastest method, but file integrity can be lost is a
system crash should occur. WRITE IMMEDIATE is slower, but safer
in file integrity terms.

Minimize Space. Visible only for Type30(Dynamic) file types.
Select this to Specify that some of the other options are adjusted
to optimize for minimum file size.

Delete file before create. Select this check-box to specify that
any existing file of the same name is deleted before a new one is
created.

Defining Hashed File Output Data
When you extract data from a hashed file, the Hashed File stage has

an output link. The properties of this link and the column definitions of

the data are defined on the Outputs page in the Hashed File Stage

dialog box.

The Outputs page has the following two fields and three tabs:
Server Job Developer’s Guide 6-7

Defining Hashed File Output Data Hashed File Stages
Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links from the Hashed File stage.

Normalize on. This drop-down list box allows you to normalize
(or unnest) data. You can normalize either on an association or on
a single unassociated multivalued column. The Normalize on
drop-down list box is only enabled for nonreference output links
where meta data has been defined that contains multivalued
fields.

General. Displayed by default. Contains the following fields and
options:

– File name. The name of the file the data is read from. You can
use a job parameter to represent the file created during run
time (see "Specifying Job Parameters" in DataStage Designer
Guide for more details) or choose the file from the File name
drop-down list box. This list box contains all the files defined
under the Table Definitions ‰ Hashed ‰ Account name
branch in the Repository, where Account name is the name of
the account chosen on the Stage page.

Note If the file you want is not listed, you need to define a

table definition. For more information, see

"Managing Table Definitions" in DataStage Manager

Guide.

– Record Level Read. Select this to force the file to be read
record by record. This is slower, but is necessary if you want to
read and write the hashed file at the same time. If you specify a
select statement on the Selection tab, the file is read at the
record level anyway and this checkbox is ticked but grayed out.

– Pre-load file to memory. You can use these options to
improve performance if the output link is a reference input to a
Transformer stage. If you select Enabled, the hashed file is
read into memory when the job is run (Disabled is selected by
default). The remaining two options are for specialist use and
cater for situations where you need to modify a lookup table as
a job runs. If Enabled, Lock for Updates is selected the
hashed file is read into memory when the job is run. If a lookup
is not found in memory, the job looks in the file on disk, if the
lookup is still not found, an update lock is taken in the
knowledge that the record will subsequently be written in the
hashed file by this job. The operation for Disabled, Lock for
Updates is similar, except that the hashed file is not read into
memory.

– Description. Contains an optional description of the output
link.
6-8 Server Job Developer’s Guide

Hashed File Stages Defining Hashed File Output Data
Columns. Contains the column definitions for the data on the
chosen output link.

You should be aware of the following when outputting data from a

hashed file:

– Key fields should be identified by ticking the Key boxes. (If you
fail to do this be warned that the first column will be treated as
the key, which may lead to undesired results).

– By default other columns are ordered according to their
position in the file. You can also use the hashed file stage to
reorder columns as they are read in. Do this by specifying the
order you want the columns to be in the Position field. The
columns will then be written to the output link in that order,
although they retain the same column names. If you use this
feature you should identify the key column or columns by
setting their Position field to 0.

– Do not reorder the column definitions in the grid unless you
are certain you understand the consequences of your action.
You should be especially wary of using the Position field to
reorder columns and then saving the definition as a table
definition in the DataStage Repository for subsequent reuse. In
particular, if you use this column definition to write to the same
hashed file, you will be reordering the file itself.

– You can output an entire record as a single column if required.
Do this by inserting a value of -1 in the Position field of the
record field’s column definition. (The key column Position
field should be 0.)

Selection. Contains optional SELECT clauses for the conditional
extraction of data from a file. This tab is only available if you have
specified the hashed file by account name, rather than directory
path, on the Stage page.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the output link. For a

description of the Data Browser, see "Using the Data Browser" in the

DataStage Designer Guide.

If you intend to read and write from a hashed file at the same time,

you must either set up a selection on the Selection tab, or you should

select the Record Level Read checkbox on the General tab. This

ensures the file is read in records rather than in groups, and that

record locks can operate. Note, however, that this mode of operation

is much slower and should only be used when there is a clear need to

read and write the same file at the same time.
Server Job Developer’s Guide 6-9

Using the Euro Symbol on Non-NLS systems Hashed File Stages
Using the Euro Symbol on Non-NLS systems
If you wish to include the Euro symbol in hashed files on non-NLS

systems, you have to take some steps to support the symbol. The

steps you take depend on what type of system you are running your

DataStage server on.

UNIX Systems using ISO 8859-15 code page

To support the Euro symbol on this system you need to edit the file

msg.txt in the DataStage home directory as follows:

In line LOC0016 replace the $ with the euro symbol (you can
generate a Euro symbol using a keyboard that generates it, or use
the BASIC command char(128) or char(164).

In line LOC0015 ensure the proper decimal separator is set.

In line LOC0014 ensure the proper thousand separator is set.

Windows Systems and UNIX Systems using the
Windows Code Page

On these systems the code that represents the Euro system can clash

with the hashed files representation of SQL null. A number of steps

are needed to overcome this problem:

If your system will never require a Euro symbol to appear in
isolation in a column of a hashed file, then all you need do is edit
the file msg.txt in the DataStage home directory as follows:

– In line LOC0016 replace the $ with the euro symbol (you can
generate a Euro symbol using a keyboard that generates it, or
use the BASIC command char(128) or char(164).

– In line LOC0015 ensure the proper decimal separator is set.

– In line LOC0014 ensure the proper thousand separator is set.

If your system does require to use a Euro symbol in isolation, then
you need to choose another character to represent SQL null. This
is done on the General Tab of the Hashed File stage editor Stage
page. Choose one of the following from the SQL NULL value
drop down list:

– Special (allow Euro). This sets SQL null to 0x19.

– Auto Detect. Detects if Euro is the local currency symbol and, if
it is, sets SQL null to 0x19.
6-10 Server Job Developer’s Guide

7
UniData Stages

UniData stages represent a UniData file. The stage is provided for

accessing pre-release 6 databases. Use the UniData 6 stage for

accessing UniData 6 databases and later.

Using a UniData Stage
You can use a UniData stage to extract or write data, or to act as an

intermediate file in a job.

Each UniData stage can have any number of inputs or outputs. When

you edit a UniData stage, the UniData Stage dialog box appears:
Server Job Developer’s Guide 7-1

Using a UniData Stage UniData Stages
This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):

Stage. Displays the name of the stage you are editing. This page
has a General tab, where you can enter text to describe the
purpose of the stage in the Description field. You can also
specify where the data files are by selecting a data source name
and supplying logon details for the server where the data source
is located.

– Server. Choose a server name from the drop-down list or type
a server name. The list is populated from the Table
Definitions ➤ UniData branch in the Manager. You can use a
job parameter in this field. For details on how to define and use
job parameters, see "Specifying Job Parameters" in DataStage
Designer Guide.

– Database. Choose a database from the drop-down list or type
a database name. The list is populated from the Table
Definitions ➤ UniData branch in the Manager. You can use a
job parameter in this field.

– User name. Enter the user name to be used for logging on to
the server. You can use a job parameter in this field.

– Password. Enter the password to be used for logging on to
the server. You can use a job parameter in this field.

– UniVerse Stage Compatibility. Select this check box to
ensure that any job conversions will work correctly. With this
option selected, the date or time will be represented in ISO
format (depending on the Extended type) and numerics will be
scaled according to the meta data. (The job conversion utility is
a special standalone tool – it is not available within the
DataStage Designer.)

The NLS tab defines a character set map to use with this stage if

NLS is enabled. For details, see "Defining Character Set Maps" on

page 7-3.

Inputs. This page is displayed only if you have an input link to this
stage. Specifies the data file to use and the associated column
definitions for each data input link. This page also specifies how
data is written to the data file.

Outputs. This page is displayed only if you have an output link to
this stage. Specifies the data file to use and the associated column
definitions for each data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

If you encounter an error when connecting to a UniData data source,

such as:
7-2 Server Job Developer’s Guide

UniData Stages Defining Character Set Maps
UniData Client error: call to UniOpenPos returned 45 - Client version (11)
and server version (12) are incompatible

you need to edit the UNIAPI.INI file in the Windows directory on your

client machine to change the value of the PROTOCOL variable to

match the server version. So, in the case of the example error, you

would need to change the variable value from 11 to 12:

PROTOCOL = 12

Defining Character Set Maps
You can define a character set map for a UniData stage using the NLS

tab of the UniData Stage dialog box.

The default character set map (defined for the project or the job) can

be changed by selecting a map name from the list. The tab also has

the following fields:

Show all maps. Lists all the maps supplied with DataStage.
Maps cannot be used unless they have been loaded using the
DataStage Administrator.

Loaded maps only. Display the maps that are loaded and ready
for use.

Use Job Parameter… . Allows you to specify a character set map
as a parameter to the job containing the stage. If the parameter
has not yet been defined, you are prompted to define it from the
Job Properties dialog box.
Server Job Developer’s Guide 7-3

Defining UniData Input Data UniData Stages
Defining UniData Input Data
When you write data to a UniData file, the UniData stage has an input

link. The properties of this link and the column definitions of the data

are defined on the Inputs page in the UniData Stage dialog box.

The Inputs page has the following field and two tabs:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the UniData stage.

General. Displayed by default. Contains the following fields and
options:

– File name. The name of the file the data is written to. You can
use a job parameter to represent the file created during run
time (see "Specifying Job Parameters" in DataStage Designer
Guide for more details), choose the file from the File name
drop-down list box, or enter a file name. This list box contains
all the files defined under the Table Definitions ‰ UniData
‰ Server ‰ Database branch in the Manager.

Note If the file you want is not listed, you may need to

define a table definition. For details on how to

create a table definition, see "Managing Table

Definitions" in DataStage Manager Guide.

– Clear file before writing. If you select this check box, the
existing file is cleared and new data records are written to the
empty file. This check box is cleared by default.
7-4 Server Job Developer’s Guide

UniData Stages Defining UniData Output Data
– Description. Contains an optional description of the input
link.

Note If your data has very large records, you may need to change

the records per chunk value in order to accommodate them.

This is done by adding the following text in the

Description box:

RecsPerChunk=nnn

Where nnn is the number of records returned per chunk.

You may need to use trial and error in getting the right value

for this. You will get error message when you run the job if

you are attempting to return too many records per chunk.

Columns. Contains the column definitions for the data written to
the file. .

Note If you are using meta data that does not specify column

positions, then the first column definition describes the

UniData file’s key field. The remaining columns are

ordered according to their position in the file. Do not

reorder the column definitions in the grid unless you

are certain you understand the consequences of your

action.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see "Using the Data Browser" in the DataStage

Designer Guide.

Defining UniData Output Data
When you extract data from a UniData file, the UniData stage has an

output link. The properties of this link and the column definitions of
Server Job Developer’s Guide 7-5

Defining UniData Output Data UniData Stages
the data are defined on the Outputs page in the UniData Stage
dialog box.

The Outputs page has the following two fields and three tabs:

Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links from the UniData stage.

Normalize on. This drop-down list box allows you to normalize
(or unnest) data. You can normalize either on an association or on
a single unassociated multivalued column. The Normalize on
drop-down list box is only enabled for nonreference output links
where meta data has been defined that contains multivalued
fields.

General. Displayed by default. Contains the following fields and
options:

– File name. The name of the file the data is read from. You can
use a job parameter to represent the file created during run
time (see "Specifying Job Parameters" in DataStage Designer
Guide for more details) or choose the file from the File name
drop-down list box. This list box contains all the files defined
under the Table Definitions ‰ UniData ‰ Server ‰
Database branch in the Repository.

Note If the file you want is not listed, you need to define a

table definition. For more information, see

"Managing Table Definitions" in DataStage Manager

Guide.
7-6 Server Job Developer’s Guide

UniData Stages Defining UniData Output Data
– Pre-load file to memory. You can enable o disable this
option using the drop-down box. Pre-loading a file into
memory can improve performance if the output link is a
reference input to a Transformer stage. If enabled, the UniData
file is read into memory when the job is run. The default is
disabled.

– Description. Contains an optional description of the output
link.

Columns. Contains the column definitions for the data on the
chosen output link.

Note If you are using meta data that does not specify column

positions, then the first column definition describes the

UniData file’s key field. The remaining columns are

ordered according to their position in the file. Do not

reorder the column definitions in the grid unless you

are certain you understand the consequences of your

action.

Selection. Contains optional SQL SELECT clauses for the
conditional extraction of data from a file.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the output link. For a

description of the Data Browser, see "Using the Data Browser" in the

DataStage Designer Guide.
Server Job Developer’s Guide 7-7

Defining UniData Output Data UniData Stages
7-8 Server Job Developer’s Guide

8
Sequential File Stages

Sequential File stages are used to extract data from, or write data to, a

text file. The text file can be created or exist on any drive that is either

local or mapped to the server. Each Sequential File stage can have any

number of inputs or outputs.

Using a Sequential File Stage
When you edit a Sequential File stage, the Sequential File Stage

dialog box appears:

This dialog box can have up to three pages (depending on whether

there are inputs to and outputs from the stage):
Server Job Developer’s Guide 8-1

Stage. Displays the name of the stage you are editing. The
General tab also allows you to specify line termination options,
an optional description of the stage, and whether the stage uses
named pipes or filter commands.

The line termination options let you set the type of line terminator

to use in the Sequential File stage. By default, line termination

matches the type used on your DataStage server. To change the

value, choose one of Unix style (LF), DOS style (CR LF), or
None.

Select the Stage uses named pipes check box if you want to use

the named pipe facilities. These allow you to split up a large job

into a number of smaller jobs. You may want to do this where

there is a large degree of parallelism in your design, as it will

increase performance and allow several developers to work on

the design at the same time. With this check box selected, all

inputs and outputs to the stage use named pipes. Examples of

how to use the named pipe facilities are in DataStage Developer’s

Help.

Select Stage uses filter commands if you want to specify a

filter command to process data on the input or output links.

Details of the actual command are specified on the Inputs page or

Outputs page General tab (see "Defining Sequential File Input

Data" on page 8-4 and "Defining Sequential File Output Data" on

page 8-7).

The Stage uses named pipes and Stage uses filter
commands options are mutually exclusive.

If NLS is enabled, the NLS tab allows you to define character set

mapping and Unicode settings for the stage. For more

information, see "Defining Character Set Maps" on page 8-3.

Inputs. Contains information about the file formats and column
definitions for each data input link. This page is displayed only if
you have an input link to this stage.

Outputs. Contains information about the file format and column
definitions for the data output links. This page is displayed only if
you have an output link to this stage.

Click OK to close this dialog box. Changes are saved when you save

the job.
Server Job Developer’s Guide 8-2

Defining Character Set Maps
You can define a character set map for a Sequential File stage using

the NLS tab of the Sequential File Stage dialog box.

The default character set map (defined for the project or the job) can

be changed by selecting a map name from the list. The tab also has

the following fields:

Show all maps. Choose this to display all the maps supplied with
DataStage in the list. Maps cannot be used unless they have been
loaded using the DataStage Administrator.

Loaded maps only. Displays the maps that are loaded and ready
for use.

Use Job Parameter… . Allows you to specify a character set map
as a parameter to the job containing the stage. If the parameter
has not yet been defined, you are prompted to define it from the
Job Properties dialog box.

Use UNICODE map. If you select this, the character set map is
overridden, and all data is read and written in Unicode format with
two bytes per character.

– If Byte swapped is selected, the data is read or written with
the lower-order byte first. For example, 0X0041 (that is, “A”) is
written as bytes 0X41,0X00. Otherwise it is written as
0X00,0X41.

– If First character is Byte Order Mark is selected, the stage
reads or writes the sequence 0XFE,0XFF if byte swapped, or
0XFF,0XFE if not byte swapped.
Server Job Developer’s Guide 8-3

Defining Sequential File Input Data
When you write data to a sequential file, the Sequential File stage has

an input link. The properties of this link and the column definitions of

the data are defined on the Inputs page in the Sequential File
Stage dialog box.

The Inputs page has the following field and three tabs:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the Sequential File stage.

General. Displayed by default. Contains the following
parameters:

– File name. The pathname of the file the data is written to. You
can enter a job parameter to represent the file created during
run time. For details on how to define job parameters, see the
DataStage Designer Guide. You can also browse for the file.
The file name will default to the link name if you do not specify
one here.

– Filter command. Here you can specify a filter program that
will process the data before it is written to the file. This could
be used, for example, to specify a zip program to compress the
data. You can type in or browse for the filter program, and
specify any command line arguments it requires in the text
box. This text box is enabled only if you have selected the
Stage uses filter commands checkbox on the Stage page
General tab (see page 8-1). Note that, if you specify a filter
command, data browsing is not available so the View Data
button is disabled.
Server Job Developer’s Guide 8-4

– Description. Contains an optional description of the input
link.

The General tab also contains options that determine how the

data is written to the file. These are displayed under the Update
action area:

– Overwrite existing file. This is the default option. If this
option button is selected, the existing file is truncated and new
data records are written to the empty file.

– Append to existing file. If you select this option button, the
data records are appended to the end of the existing file.

– Backup existing file. If you select this check box, a backup
copy of the existing file is taken. The new data records are
written based on whether you chose to append to or overwrite
the existing file.

Note: The backup can be used to reset the file if a job is stopped or aborted at run
time. See the DataStage Manager Guide for more details.

Format. Contains parameters that determine the format of the
data in the file. There are up to four check boxes:

– Fixed-width columns. If you select this check box, the data is
written to the file in fixed-width columns. The width of each
column is specified by the SQL display size (set in the Display
column in the Columns grid). This option is cleared by default.

– First line is column names. Select this check box if the first
row of data in the file contains column names. This option is
cleared by default, that is, the first row in the file contains data.
Server Job Developer’s Guide 8-5

– Omit last new-line. Select this check box if you want to
remove the last newline character in the file. This option is
cleared by default, i.e., the newline character is not removed.

– Flush after every row. This only appears if you have selected
Stage uses named pipes on the Stage page. Selecting this
check box causes data to be passed between the reader and
writer of the pipe one record at a time.

There are up to seven fields on the Format tab:

– Delimiter. Only active if you have not specified fixed-width
columns. Contains the delimiter that separates the data fields
in the file. By default this field contains a comma. You can enter
a single printable character or a decimal or hexadecimal
number to represent the ASCII code for the character you want
to use. Valid ASCII codes are in the range 1 to 253. Decimal
values 1 through 9 must be preceded with a zero. Hexadecimal
values must be prefixed with &h. Enter 000 to suppress the
delimiter.

– Quote character. Only active if you have not specified fixed-
width columns. Contains the character used to enclose strings.
By default this field contains a double quotation mark. You can
enter a single printable character or a decimal or hexadecimal
number to represent the ASCII code for the character you want
to use. Valid ASCII codes are in the range 1 to 253. Decimal
values 1 through 9 must be preceded with a zero. Hexadecimal
values must be prefixed with &h. Enter 000 to suppress the
quote character.

– Spaces between columns. This field is only active when you
select the Fixed-width columns check box. Contains a
number to represent the number of spaces used between
columns.

– Default NULL string. Contains the default characters that are
written to the file when a column contains an SQL null (this can
be overridden for individual column definition in the Columns
tab).

– Default Padding. Contains the character used to pad missing
columns. This is # by default, but can be set to another
character here to apply to all columns, or can be overridden for
individual column definitions in the Columns tab.

The following fields appear only if you have selected Stage uses
named pipes on the Stage page:

– Wait for reader timeout. Specifies how long the stage will
wait for a connection when reading from a pipe before timing
out. Recommended values are from 30 to 600 seconds. If the
stage times out, an error is raised and the job is aborted.
Server Job Developer’s Guide 8-6

– Write timeout. Specifies how long the stage will attempt to
write data to a pipe before timing out. Recommended values
are from 30 to 600 seconds. If the stage times out, an error is
raised and the job is aborted.

Columns. Contains the column definitions for the data on the
chosen input link. In addition to the standard column definition
fields (Column name, Key, SQL Type, Length, Scale, Nullable,
Display, Data Element, and Description), Sequential File stage
Column tabs also have the following fields:

– Null string. Fill this in if you want to override the default
setting on the Format tab for this particular column.

– Padding. Fill this in if you want to override the default setting
on the Format tab for this particular column.

– Contains terminators. Does not apply to input links.

– Incomplete column. Does not apply to input links.

Note that the Scale for a sequential file column has a practical

limit of 14. If values higher than this are used the results may be

ambiguous.

The SQL data type properties affect how data is written to a

sequential file. The SQL display size determines the size of fixed-

width columns. The SQL data type determines how the data is

justified in a column: character data types are quoted and left

justified, numeric data types are not quoted and are right justified.

The SQL properties are in the Columns grid when you edit an

input column.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the input link. For a description

of the Data Browser, see the DataStage Designer Guide.

Defining Sequential File Output Data
When you extract (read) data from a sequential file, the Sequential File

stage has an output link. The properties of this link and the column

definitions of the data are defined on the Outputs page in the

Sequential File Stage dialog box.
Server Job Developer’s Guide 8-7

The Outputs page has the following field and three tabs:

Output name. The name of the output link. Choose the link you
want to edit from the Output name drop-down list box. This list
box displays all the output links to the Sequential File stage.

General. Displayed by default. There are two fields:

– File name. The pathname of the file the data is extracted from.
You can enter a job parameter to represent the file created
during run time. For details on how to define job parameters,
see the DataStage Designer Guide. You can also browse for the
file.

– Filter command. Here you can specify a filter program for
processing the file you are extracting data from. This feature
can be used, for example, to unzip a compressed file before
reading it. You can type in or browse for the filter program, and
specify any command line arguments it requires in the text
box. This text box is enabled only if you have selected the
Stage uses filter commands checkbox on the Stage page
General tab (see page 8-1). Note that, if you specify a filter
command, data browsing is not available so the View Data
button is disabled.

– Description. Contains an optional description of the output
link.

Format. Contains parameters that determine the format of the
data in the file. There are three check boxes:
Server Job Developer’s Guide 8-8

– Fixed-width columns. If you select this check box, the data is
extracted from the file in fixed-width columns. The width of
each column is specified by the SQL display size (set in the
Display column in the Columns grid). This option is cleared by
default.

– First line is column names. Select this check box if the first
row of data in the file contains column names. This option is
cleared by default, that is, the first row in the file contains data.

– Suppress row truncation warnings. If the sequential file
being read contains more columns that you have defined, you
will normally receive warnings about overlong rows when the
job is run. If you want to suppress these message (for example,
you may only be interested in the first three columns and
happy to ignore the rest), select this checkbox.

There are up to eight fields on the Format tab:

– Missing columns action. Allows you to specify the action to
take when a column is missing from the input data. Choose
Pad with SQL null, Map empty string, or Pad with empty string
from the drop-down list.

– Delimiter. Only active if you have not specified fixed-width
columns. Contains the delimiter that separates the data fields
in the file. By default this field contains a comma. You can enter
a single printable character or a decimal or hexadecimal
number to represent the ASCII code for the character you want
to use. Valid ASCII codes are in the range 1 to 253. Decimal
values 1 through 9 must be preceded with a zero. Hexadecimal
values must be prefixed with &h. Enter 000 to suppress the
delimiter.

– Quote character. Only active if you have not specified fixed-
width columns. Contains the delimiter that separates the data
fields in the file. By default this field contains a comma. You
can enter a single printable character or a decimal or
hexadecimal number to represent the ASCII code for the
character you want to use. Valid ASCII codes are in the range 1
to 253. Decimal values 1 through 9 must be preceded with a
zero. Hexadecimal values must be prefixed with &h. Enter 000
to suppress the delimiter.

– Spaces between columns. This field is only active when you
select the Fixed-width columns check box. Contains a
number to represent the number of spaces used between
columns.

– Default NULL string. Contains characters which, when
encountered in a sequential file being read, are interpreted as
the SQL null value (this can be overridden for individual
column definitions in the Columns tab).
Server Job Developer’s Guide 8-9

– Default Padding. Contains the character used to pad missing
columns. This is # by default, but can be set to another
character here to apply to all columns, or can be overridden for
individual column definitions in the Columns tab.

The following fields appear only if you have selected Stage uses
named pipes on the Stage page:

– Wait for writer timeout. Specifies how long the stage will
wait for a connection when writing to a pipe before timing out.
Recommended values are from 30 to 600 seconds. If the stage
times out, an error is raised and the job is aborted.

– Read timeout. Specifies how long the stage will attempt to
read data from a pipe before timing out. Recommended values
are from 30 to 600 seconds. If the stage times out, an error is
raised and the job is aborted.

Columns. Contains the column definitions for the data on the
chosen output link. In addition to the standard column definition
fields (Column name, Key, SQL Type, Length, Scale, Nullable,
Display, Data Element, and Description), Sequential File stage
Column tabs also have the following fields:

– Null string. Fill this in if you want to override the default
setting on the Format tab for this particular column.

– Padding. Fill this in if you want to override the default setting
on the Format tab for this particular column.

– Contains terminators. Use this to specify how End of Record
(EOR) marks are treated in this column. Choose from:

Yes to specify that the data may include EOR marks and they

should not be treated as meaning end of record. For the final

column definition for a CSV file, the Yes option is disabled.

Quoted to specify that any EOR marks that are part of the data

are quoted, while unquoted EOR marks should be interpreted

as end of record.

No to specify that any EOR marks in the column should be

interpreted as end of record.

– Incomplete column. Allows you to specify the action taken if
the column contains insufficient data to match the meta data.
Choose from:

Error to abort the job as soon as such a row is found.

Discard & Warn to discard the current data row and issue a

warning.
Server Job Developer’s Guide 8-10

Replace & Warn to pad a short column with SQL null, or act

in accordance with Missing columns action if missing, and

write a warning to the log file.

Retain & Warn to pass the data on as it is, but issue a

warning.

Retain to pass the data on as it is.

Replace to pad a short column with SQL null, or act in

accordance with Missing columns action if missing.

The behavior of Incomplete column also depends on

whether the sequential file is fixed-width or CSV. In CSV format

it is impossible to have a short column, so the option applies

only to missing columns and the Retain options have no

meaning.

Click the View Data… button to open the Data Browser. This enables

you to look at the data associated with the output link. For a

description of the Data Browser, see the DataStage Designer Guide.

How the Sequential Stage Behaves
The following table shows how a Sequential Stage processes two

rows of data with various options set in the stage editor.

The meta data for the link specifies that the data is organized in three

columns containing three characters each. In the table, <EMPTY>

indicates one of SQL null, empty string, or mapped empty string,

depending on the settings
Server Job Developer’s Guide 8-11

.

Server Job Developer’s Guide 8-12

Server Job Developer’s Guide 8-13

Server Job Developer’s Guide 8-14

Sequential File Stages How the Sequential Stage Behaves

Server Job Developer’s Guide 8-15

How the Sequential Stage Behaves Sequential File Stages
8-16 Server Job Developer’s Guide

9
Transformer Stages

FTransformer stages do not extract data or write data to a target

database. They are used to handle extracted data, perform any

conversions required, and pass data to another Transformer stage or

a stage that writes data to a target data table.

Using a Transformer Stage
Transformer stages can have any number of inputs and outputs. The

link from the main data input source is designated the primary input

link. There can only be one primary input link, but there can be any

number of reference inputs.

Note The same Transformer stage editor is used for both server

and mainframe jobs. Only the server functionality is

described in this chapter. For mainframe functionality, see

the Mainframe Job Developer’s Guide.
Server Job Developer’s Guide 9-1

Transformer Editor Components Transformer Stages
When you edit a Transformer stage, the Transformer Editor appears.

An example Transformer stage is shown below. In this example, meta

data has been defined for the input and the output links.

Transformer Editor Components
The Transformer Editor has the following components.

Toolbar
The Transformer toolbar contains the following buttons:

stage
properties

show all or selected relations

constraints cut copy paste load column definition
save column definition

find/replace
column auto-match

show/hide
stage variables input link

execution order

execution order
output link
9-2 Server Job Developer’s Guide

Transformer Stages Transformer Editor Components
Link Area
The top area displays links to and from the Transformer stage,

showing their columns and the relationships between them.

The link area is where all column definitions, key expressions, and

stage variables are defined.

The link area is divided into two panes; you can drag the splitter bar

between them to resize the panes relative to one another. There is

also a horizontal scroll bar, allowing you to scroll the view left or right.

The left pane shows input links, the right pane shows output links. The

input link shown at the top of the left pane is always the primary link.

Any subsequent links are reference links. For all types of link, key

fields are shown in bold. Reference link key fields that have no

expression defined are shown in red (or the color defined in Tools ‰
Options), as are output columns that have no derivation defined.

Within the Transformer Editor, a single link may be selected at any one

time. When selected, the link’s title bar is highlighted, and arrowheads

indicate any selected columns.

Meta Data Area
The bottom area shows the column meta data for input and output

links. Again this area is divided into two panes: the left showing input

link meta data and the right showing output link meta data.

The meta data for each link is shown in a grid contained within a

tabbed page. Click the tab to bring the required link to the front. That

link is also selected in the link area.

If you select a link in the link area, its meta data tab is brought to the

front automatically.

You can edit the grids to change the column meta data on any of the

links. You can also add and delete meta data.

Shortcut Menus
The Transformer Editor shortcut menus are displayed by right-clicking

the links in the links area.

There are slightly different menus, depending on whether you right-

click an input link, an output link, or a stage variable. The input link

menu offers you operations on key expressions, the output link menu

offers you operations on derivations, and the stage variable menu

offers you operations on stage variables.

The shortcut menu enables you to:
Server Job Developer’s Guide 9-3

Transformer Stage Basic Concepts Transformer Stages
Open the Properties dialog box to enter a description of the link.

Open the Constraints dialog box to specify a constraint (only
available for output links).

Open the Column Auto Match dialog box.

Display the Find/Replace dialog box.

Display the Select dialog box.

Edit, validate, or clear a key expression, derivation, or stage
variable.

Edit several derivations in one operation.

Append a new column or stage variable to the selected link.

Select all columns on a link.

Insert or delete columns or stage variables.

Cut, copy, and paste a column or a key expression or a derivation
or stage variable.

If you display the menu from the links area background, you can:

Open the Stage Properties dialog box in order to specify a
before- or after-stage subroutine.

Open the Constraints dialog box in order to specify a constraint
for the selected output link.

Open the Link Execution Order dialog box in order to specify
the order in which links should be processed.

Toggle between viewing link relations for all links, or for the
selected link only.

Toggle between displaying stage variables and hiding them.

Right-clicking in the meta data area of the Transformer Editor opens

the standard grid editing shortcut menus.

Transformer Stage Basic Concepts
When you first edit a Transformer stage, it is likely that you will have

already defined what data is input to the stage on the input links. You

will use the Transformer Editor to define the data that will be output

by the stage and how it will be transformed. (You can define input

data using the Transformer Editor if required.)

This section explains some of the basic concepts of using a

Transformer stage.
9-4 Server Job Developer’s Guide

Transformer Stages Transformer Stage Basic Concepts
Input Links
The main data source is joined to the Transformer stage via the

primary link, but the stage can also have any number of reference

input links.

A reference link represents a table lookup. These are used to provide

information that might affect the way the data is changed, but do not

supply the actual data to be changed.

Reference input columns can be designated as key fields. You can

specify key expressions that are used to evaluate the key fields. The

most common use for the key expression is to specify an equijoin,

which is a link between a primary link column and a reference link

column. For example, if your primary input data contains names and

addresses, and a reference input contains names and phone numbers,

the reference link name column is marked as a key field and the key

expression refers to the primary link’s name column. During

processing, the name in the primary input is looked up in the

reference input. If the names match, the reference data is consolidated

with the primary data. If the names do not match, i.e., there is no

record in the reference input whose key matches the expression

given, all the columns specified for the reference input are set to the

null value.

Where a reference link originates from a UniVerse or ODBC stage, you

can look up multiple rows from the reference table. The rows are

specified by a foreign key, as opposed to a primary key used for a

single-row lookup.

Output Links
You can have any number of output links from your Transformer

stage.

You may want to pass some data straight through the Transformer

stage unaltered, but it’s likely that you’ll want to transform data from

some input columns before outputting it from the Transformer stage.

You can specify such an operation by entering a BASIC expression or

by selecting a transform to apply to the data. DataStage has many

built-in transforms, or you can define your own custom transforms

that are stored in the Repository and can be reused as required.

The source of an output link column is defined in that column’s

Derivation cell within the Transformer Editor. You can use the

Expression Editor to enter expressions or transforms in this cell. You

can also simply drag an input column to an output column’s
Server Job Developer’s Guide 9-5

Transformer Stage Basic Concepts Transformer Stages
Derivation cell, to pass the data straight through the Transformer

stage.

In addition to specifying derivation details for individual output

columns, you can also specify constraints that operate on entire

output links. A constraint is a BASIC expression that specifies criteria

that data must meet before it can be passed to the output link. You can

also specify a reject link, which is an output link that carries all the

data not output on other links, that is, columns that have not met the

criteria.

Each output link is processed in turn. If the constraint expression

evaluates to TRUE for an input row, the data row is output on that link.

Conversely, if a constraint expression evaluates to FALSE for an input

row, the data row is not output on that link.

Constraint expressions on different links are independent. If you have

more than one output link, an input row may result in a data row

being output from some, none, or all of the output links.

For example, if you consider the data that comes from a paint shop, it

could include information about any number of different colors. If you

want to separate the colors into different files, you would set up

different constraints. You could output the information about green

and blue paint on LinkA, red and yellow paint on LinkB, and black

paint on LinkC.

When an input row contains information about yellow paint, the LinkA

constraint expression evaluates to FALSE and the row is not output on

LinkA. However, the input data does satisfy the constraint criterion for

LinkB and the rows are output on LinkB.

If the input data contains information about white paint, this does not

satisfy any constraint and the data row is not output on Links A, B or

C, but will be output on the reject link. The reject link is used to route

data to a table or file that is a “catch-all” for rows that are not output

on any other link. The table or file containing these rejects is

represented by another stage in the job design.

Before-Stage and After-Stage Routines
Because the Transformer stage is an active stage type, you can specify

routines to be executed before or after the stage has processed the

data. For example, you might use a before-stage routine to prepare

the data before processing starts. You might use an after-stage routine

to send an electronic message when the stage has finished.
9-6 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Editing Transformer Stages
The Transformer Editor enables you to perform the following

operations on a Transformer stage:

Create new columns on a link

Delete columns from within a link

Move columns within a link

Edit column meta data

Define output column derivations

Define input column key expressions

Specify before- and after-stage subroutines

Define link constraints and handle rejects

Specify the order in which links are processed

Define local stage variables

Using Drag and Drop
Many of the Transformer stage edits can be made simpler by using

the Transformer Editor’s drag and drop functionality. You can drag

columns from any link to any other link. Common uses are:

Copying input columns to output links

Moving columns within a link

Copying derivations in output links

Copying key expressions in input links.

To use drag and drop:

1 Click the source cell to select it.

2 Click the selected cell again and, without releasing the mouse
button, drag the mouse pointer to the desired location within the
target link. An insert point appears on the target link to indicate
where the new cell will go.

3 Release the mouse button to drop the selected cell.

You can drag and drop multiple columns, key expressions, or

derivations. Use the standard Explorer keys when selecting the source

column cells, then proceed as for a single cell.

You can drag and drop the full column set by dragging the link title.

You can add a column to the end of an existing derivation or key

expression by holding down the Ctrl key as you drag the column.
Server Job Developer’s Guide 9-7

Editing Transformer Stages Transformer Stages
The drag and drop insert point is shown below:

Find and Replace Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the find/replace column facility to help locate a particular

column or expression and change it.

The find/replace facility enables you to:

Find and replace a column name

Find and replace expression text

Find the next empty expression

Find the next expression that contains an error

To use the find/replace facilities, do one of the following:

Click the find/replace button on the toolbar

Choose find/replace from the link shortcut menu

Type Ctrl-F

The Find and Replace dialog box appears. It has three tabs:

Expression Text. Allows you to locate the occurrence of a
particular string within an expression, and replace it if required.
You can search up or down, and choose to match case, match
whole words, or neither. You can also choose to replace all
occurrences of the string within an expression.

Columns Names. Allows you to find a particular column and
rename it if required. You can search up or down, and choose to
match case, match the whole word, or neither.

Expression Types. Allows you to find the next empty expression
or the next expression that contains an error. You can also press
Ctrl-M to find the next empty expression or Ctrl-N to find the
next erroneous expression.

Note The find and replace results are shown in the color specified

in Tools ‰ Options.
9-8 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Press F3 to repeat the last search you made without opening the Find
and Replace dialog box.

Select Facilities
If you are working on a complex job where several links, each

containing several columns, go in and out of the Transformer stage,

you can use the select column facility to select multiple columns. This

facility is also available in the Mapping tabs of certain Parallel job

stages.

The select facility enables you to:

Select all columns/stage variables whose expressions contains
text that matches the text specified.

Select all column/stage variables whose name contains the text
specified (and, optionally, matches a specified type).

Select all columns/stage variable with a certain data type.

Select all columns with missing or invalid expressions.

To use the select facilities, choose Select from the link shortcut menu.

The Select dialog box appears. It has three tabs:

Expression Text. This Expression Text tab allows you to select
all columns/stage variables whose expressions contain text that
matches the text specified. The text specified is a simple text
match, taking into account the Match case setting.

Column Names. The Column Names tab allows you to select all
column/stage variables whose Name contains the text specified.
There is an additional Data Type drop down list, that will limit the
columns selected to those with that data type. You can use the
Data Type drop down list on its own to select all columns of a
certain data type. For example, all string columns can be selected
by leaving the text field blank, and selecting String as the data
type. The data types in the list are generic data types, where each
of the column SQL data types belong to one of these generic
types.

Expression Types. The Expression Types tab allows you to
select all columns with either empty expressions or invalid
expressions.

Specifying the Primary Input Link
The first link to a Transformer stage is always designated as the

primary input link. However, you can choose an alternative link to be

the primary link if necessary. To do this:
Server Job Developer’s Guide 9-9

Editing Transformer Stages Transformer Stages
1 Select the current primary input link in the Diagram window.

2 Choose Convert to Reference from the Diagram window
shortcut menu.

3 Select the reference link that you want to be the new primary input
link.

4 Choose Convert to Stream from the Diagram window shortcut
menu.

Creating and Deleting Columns
You can create columns on links to the Transformer stage using any of

the following methods:

Select the link, then click the load column definition button in
the toolbar to open the standard load columns dialog box.

Use drag and drop or copy and paste functionality to create a new
column by copying from an existing column on another link.

Use the shortcut menus to create a new column definition.

Edit the grids in the link’s meta data tab to insert a new column.

When copying columns, a new column is created with the same meta

data as the column it was copied from.

To delete a column from within the Transformer Editor, select the

column you want to delete and click the cut button or choose Delete

Column from the shortcut menu.

Moving Columns Within a Link
You can move columns within a link using either drag and drop or cut

and paste. Select the required column, then drag it to its new location,

or cut it and paste it in its new location.

Editing Column Meta Data
You can edit column meta data from within the grid in the bottom of

the Transformer Editor. Select the tab for the link meta data that you

want to edit, then use the standard DataStage edit grid controls.

The meta data shown does not include column derivations or key

expressions, since these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the

Transformer Editor in five ways:
9-10 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
If you require a new output column to be directly derived from an
input column, with no transformations performed, then you can
use drag and drop or copy and paste to copy an input column to
an output link. The output columns will have the same names as
the input columns from which they were derived.

If the output column already exists, you can drag or copy an input
column to the output column’s Derivation field. This specifies
that the column is directly derived from an input column, with no
transformations performed.

You can use the column auto-match facility to automatically set
that output columns are derived from their matching input
columns.

You may need one output link column derivation to be the same
as another output link column derivation. In this case you can use
drag and drop or copy and paste to copy the derivation cell from
one column to another.

In many cases you will need to transform data before deriving an
output column from it. For these purposes you can use the
Expression Editor. To display the Expression Editor, double-click
on the required output link column Derivation cell. (You can also
invoke the Expression Editor using the shortcut menu or the
shortcut keys.)

If a derivation is displayed in red (or the color defined in Tools ‰
Options), it means that the Transformer Editor considers it incorrect.

(In some cases this may simply mean that the derivation does not

meet the strict usage pattern rules of the DataStage engine, but will

actually function correctly.)

Once an output link column has a derivation defined that contains any

input link columns, then a relationship line is drawn between the input

column and the output column, as shown in the following example.

This is a simple example; there can be multiple relationship lines

either in or out of columns. You can choose whether to view the

relationships for all links, or just the relationships for the selected

links, using the button in the toolbar.
Server Job Developer’s Guide 9-11

Editing Transformer Stages Transformer Stages
Column Auto-Match Facility

This time-saving feature allows you to automatically set columns on

an output link to be derived from matching columns on an input link.

Using this feature you can fill in all the output link derivations to route

data from corresponding input columns, then go back and edit

individual output link columns where you want a different derivation.

To use this facility:

1 Do one of the following:

– Click the Auto-match button in the Transformer Editor toolbar.

– Choose Auto-match from the input link header or output link
header shortcut menu.

The Column Auto-Match dialog box appears:

2 Choose the input link and output link that you want to match
columns for from the drop down lists.

3 Click Location match or Name match from the Match type
area.

If you choose Location match, this will set output column

derivations to the input link columns in the equivalent positions. It

starts with the first input link column going to the first output link

column, and works its way down until there are no more input

columns left.

If you choose Name match, you need to specify further

information for the input and output columns as follows:

– Input columns:
9-12 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Match all columns or Match selected columns. Choose

one of these to specify whether all input link columns should

be matched, or only those currently selected on the input link.

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.

Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Output columns:

Ignore prefix. Allows you to optionally specify characters at

the front of the column name that should be ignored during the

matching procedure.

Ignore suffix. Allows you to optionally specify characters at

the end of the column name that should be ignored during the

matching procedure.

– Ignore case. Select this check box to specify that case should
be ignored when matching names. The setting of this also
affects the Ignore prefix and Ignore suffix settings. For
example, if you specify that the prefix IP will be ignored, and
turn Ignore case on, then both IP and ip will be ignored.

4 Click OK to proceed with the auto-matching.

Note Auto-matching does not take into account any data type

incompatibility between matched columns; the derivations

are set regardless.

Editing Multiple Derivations
You can make edits across several output column or stage variable

derivations by choosing Derivation Substitution… from the

shortcut menu. This opens the Expression Substitution dialog box.

The Expression Substitution dialog box allows you to make the

same change to the expressions of all the currently selected columns

within a link. For example, if you wanted to add a call to the trim()

function around all the string output column expressions in a link, you

could do this in two steps. First, use the Select dialog to select all the

string output columns. Then use the Expression Substitution

dialog to apply a trim() call around each of the existing expression

values in those selected columns.

You are offered a choice between Whole expression substitution and

Part of expression substitution.
Server Job Developer’s Guide 9-13

Editing Transformer Stages Transformer Stages
Whole Expression

With this option the whole existing expression for each column is

replaced by the replacement value specified. This replacement value

can be a completely new value, but will usually be a value based on

the original expression value. When specifying the replacement value,

the existing value of the column’s expression can be included in this

new value by including “$1”. This can be included any number of

times.

For example, when adding a trim() call around each expression of the

currently selected column set, having selected the required columns,

you would:

1 Select the Whole expression option.

2 Enter a replacement value of:

trim($1)

3 Click OK

Where a column’s original expression was:

DSLink3.col1

This will be replaced by:

trim(DSLink3.col1)

This is applied to the expressions in each of the selected columns.

If you need to include the actual text $1 in your expression, enter it as

“$$1”.

Part of Expression

With this option, only part of each selected expression is replaced

rather than the whole expression. The part of the expression to be

replaced is specified by a Regular Expression match.

It is possible that more that one part of an expression string could

match the Regular Expression specified. If Replace all occurrences

is checked, then each occurrence of a match will be updated with the

replacement value specified. If it is not checked, then just the first

occurrence is replaced.

When replacing part of an expression, the replacement value specified

can include that part of the original expression being replaced. In

order to do this, the Regular Expression specified must have round

brackets around its value. "$1” in the replacement value will then

represent that matched text. If the Regular Expression is not

surrounded by round brackets, then “$1” will simply be the text “$1”.

For complex Regular Expression usage, subsets of the Regular

Expression text can be included in round brackets rather than the
9-14 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
whole text. In this case, the entire matched part of the original

expression is still replaced, but “$1”, “$2” etc can be used to refer to

each matched bracketed part of the Regular Expression specified.

The following is an example of the Part of expression replacement.

Suppose a selected set of columns have derivations that use input

columns from ‘DSLink3’. For example, two of these derivations could

be:

DSLink3.OrderCount + 1
If (DSLink3.Total > 0) Then DSLink3.Total Else -1

You may want to protect the usage of these input columns from null

values, and use a zero value instead of the null. To do this:

1 Select the columns you want to substitute expressions for.

2 Select the Part of expression option.

3 Specify a Regular Expression value of:

(DSLink3\.[a-z,A-Z,0-9]*)

This will match strings that contain “DSLink3.”, followed by any

number of alphabetic characters or digits. (This assumes that

column names in this case are made up of alphabetic characters

and digits). The round brackets around the whole Expression

means that $1 will represent the whole matched text in the

replacement value.

4 Specify a replacement value of

NullToZero($1)

This replaces just the matched substrings in the original

expression with those same substrings, but surrounded by the

NullToZero call.

5 Click OK, to apply this to all the selected column derivations.

From the examples above:

DSLink3.OrderCount + 1

would become

NullToZero(DSLink3.OrderCount) + 1

and

If (DSLink3.Total > 0) Then DSLink3.Total Else –1

would become:

If (NullToZero(DSLink3.Total) > 0) Then DSLink3.Total Else –1

If the Replace all occurrences option is selected, the second

expression will become:
Server Job Developer’s Guide 9-15

Editing Transformer Stages Transformer Stages
If (NullToZero(DSLink3.Total) > 0)
Then NullToZero(DSLink3.Total)
Else –1

The replacement value can be any form of expression string. For

example in the case above, the replacement value could have been:

(If (StageVar1 > 50000) Then $1 Else ($1 + 100))

In the first case above, the expression

DSLink3.OrderCount + 1

would become:

(If (StageVar1 > 50000) Then DSLink3.OrderCount
Else (DSLink3.OrderCount + 100)) + 1

Defining Input Column Key Expressions
You can define key expressions for key fields of reference inputs. This

is similar to defining derivations for output columns.

In most cases a key expression will be an equijoin from a primary

input link column. You can specify an equijoin in two ways:

Use drag and drop to drag a primary input link column to the
appropriate key expression cell.

Use copy and paste to copy a primary input link column and paste
it on the appropriate key expression cell.

A relationship link is drawn between the primary input link column

and the key expression.

You can also use drag and drop or copy and paste to copy an existing

key expression to another input column, and you can drag or copy

multiple selections.

If you require a more complex expression than an equijoin, then you

can double-click the required key expression cell to open the

Expression Editor.

If a key expression is displayed in red (or the color defined in Tools ‰
Options), it means that the Transformer Editor considers it incorrect.

(In some cases this may simply mean that the key expression does

not meet the strict usage pattern rules of the DataStage engine, but

will actually function correctly.)

Initially, key expression cells occupy a very narrow column. In most

cases the relationship line gives sufficient information about the key

expression, but otherwise you can drag the left edge of the column to

expand it.
9-16 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Defining Multirow Lookup for Reference Inputs
Where a reference link originates from a UniVerse or ODBC stage, you

can look up multiple rows from the reference table. The rows are

selected by a foreign key rather than a primary key, as is the case for

normal reference links.

In order to use the multirow functionality, you must define which

column or columns are the foreign keys in the column meta data. Do

this by changing the Key attribute for the current primary key column

to No and then change the Key attribute for the required foreign key

column, or columns, to Yes. The foreign key expressions can then be

defined through the Expression Editor, as with normal primary key

expressions described in "Defining Input Column Key Expressions" on

page 9-16.

You also need to specify that the reference link uses the multirow

functionality.

Do this by opening the transformer Stage Properties dialog box, go

to the General tab of the Inputs page (making sure the reference

input link is selected) and select the reference link with multi row
result set check box.

Specifying Before-Stage and After-Stage Subroutines
Because the Transformer stage is an active stage type, you can specify

routines to be executed before or after the stage has processed the

data.

To specify a routine, click the stage properties button in the toolbar to

open the Stage Properties dialog box:
Server Job Developer’s Guide 9-17

Editing Transformer Stages Transformer Stages
The General tab contains the following fields:

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data.

Choose a routine from the drop-down list box. This list box contains

all the built routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.

If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Transformer stage dialog box.

If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the dialog box. You must install or import the “missing”

routine or choose an alternative one to use.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.

If you edit a job created using Release 1 of DataStage, the Before-
stage subroutine or After-stage subroutine field may contain the

name of a routine created at Release 1. When DataStage is upgraded,
9-18 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
these routines are identified and automatically renamed. For example,

if you used a before-stage subroutine called BeforeSubr, this appears

as BeforeSubr\<Rev1> in the Before-stage subroutine field. You can

continue to use these routines. However, because you could not

specify input values for routines at Release 1 of DataStage, the Input
Value field grays out when you use one of these “old” routines.

Defining Constraints and Handling Rejects
You can define limits for output data by specifying a constraint.

Constraints are BASIC expressions and you can specify a constraint

for each output link from a Transformer stage. You can also specify

that a particular link is to act as a reject link. Reject links output rows

that have not been written on any other output links from the

Transformer stage.

To define a constraint or specify a reject link, do one of the following:

Select an output link and click the constraints button.

Double-click the output link’s constraint entry field.

Choose Constraints from the background or header shortcut
menus.

A dialog box appears which allows you either to define constraints for

any of the Transformer output links or to define a link as a reject link.

Define a constraint by entering a BASIC expression in the Constraint

field for that link. Once you have done this, any constraints will appear

below the link’s title bar in the Transformer Editor. This constraint

expression will then be checked against the row data at runtime. If the

data does not satisfy the constraint, the row will not be written to that

link. It is also possible to define a link which can be used to catch these

rows which have been "rejected" from a previous link.

A reject link can be defined by choosing Yes in the Reject Row field

and setting the Constraint field as follows:

To catch rows which are rejected from a specific output link, set
the Constraint field to linkname.REJECTED. This will be set
whenever a row is rejected on the linkname link, whether because
the row fails to match a constraint on that output link, or because a
write operation on the target fails for that row. Note that such a
reject link should occur after the output link from which it is
defined to catch rejects.

To catch rows which caused a write failures on an output link, set
the Constraint field to linkname.REJECTEDCODE. The value of
linkname.REJECTEDCODE will be non-zero if the row was rejected
due to a write failure or 0 (DSE.NOERROR) if the row was rejected
due to the link constraint not being met. When editing the
Server Job Developer’s Guide 9-19

Editing Transformer Stages Transformer Stages
Constraint field, you can set return values for
linkname.REJECTEDCODE by selecting from the Expression Editor
Link Variables > Constants... menu options. These give a
range of errors, but note that most write errors return
DSE.WRITERROR.

In order to set a reject constraint which differentiates between a

write failure and a constraint not being met, a combination of the

linkname.REJECTEDCODE and linkname.REJECTED flags can be

used. For example:

– To catch rows which have failed to be written to an output link,
set the Constraint field to linkname.REJECTEDCODE

– To catch rows which do not meet a constraint on an output link,
set the Constraint field to linkname.REJECTEDCODE =
DSE.NOERROR AND linkname.REJECTED

– To catch rows which have been rejected due a a constraint or
write error, set the Constraint field to linkname.REJECTED

As a "catch all", the Constraint field can be left blank. This
indicates that this reject link will catch all rows which have not
been successfully written to any of the output links processed up
to this point. Therefore, the reject link should be the last link in the
defined processing order.

Any other Constraint can be defined. This will result in the
number of rows written to that link (i.e. rows which satisfy the
constraint) to be recorded in the job log as "rejected rows".

Note Due to the nature of the "catch all" case above, you should

only use one reject link whose Constraint field is blank. To

use multiple reject links, you should define them to use the

linkname.REJECTED flag detailed in the first case above.
9-20 Server Job Developer’s Guide

Transformer Stages Editing Transformer Stages
Specifying Link Order
You can specify the order in which both input and output links process

a row. For input links, you can order reference links (the primary link is

always processed first). For output links, you can order all the links.

The initial order of the links is the order in which they are added to the

stage.

To reorder the links:

1 Do one of the following:

– Click the input link execution order or output link
execution order button on the Transformer Editor toolbar.

– Choose input link reorder or output link reorder from the
background shortcut menu.

– Click the stage properties button in the Transformer toolbar
or choose stage properties from the background shortcut
menu and click on the stage page Link Ordering tab.

The Link Ordering tab appears:

2 Use the arrow buttons to rearrange the list of links in the execution
order required.

3 When you are happy with the order, click OK.

Note Although the link ordering facilities mean that you can use a

previous output column to derive a subsequent output

column, we do not encourage this practice, and you will

receive a warning if you do so.
Server Job Developer’s Guide 9-21

Editing Transformer Stages Transformer Stages
Defining Local Stage Variables
You can declare and use your own variables within a Transformer

stage. Such variables are accessible only from the Transformer stage

in which they are declared. They can be used as follows:

They can be assigned values by expressions.

They can be used in expressions which define an output column
derivation.

Expressions evaluating a variable can include other variables or
the variable being evaluated itself.

Any stage variables you declare are shown in a table in the right pane

of the links area. The table looks similar to an output link. You can

display or hide the table by clicking the Stage Variable button in the

Transformer toolbar or choosing Stage Variable from the

background shortcut menu.

Note Stage variables are not shown in the output link meta data

area at the bottom of the right pane.

The table lists the stage variables together with the expressions used

to derive their values. Link lines join the stage variables with input

columns used in the expressions. Links from the right side of the table

link the variables to the output columns that use them.
9-22 Server Job Developer’s Guide

Transformer Stages The DataStage Expression Editor
To declare a stage variable:

1 Do one of the following:

– Click the stage properties button in the Transformer toolbar.

– Choose stage properties from the background shortcut
menu.

The Transformer Stage Properties dialog box appears.

2 Click the Variables tab on the General page. The Variables tab
contains a grid showing currently declared variables, their initial
values, and an optional description. Use the standard grid controls
to add new variables. Variable names must begin with an
alphabetic character (a–z, A–Z) and can only contain alphanumeric
characters (a–z, A–Z, 0–9). Ensure that the variable does not use
the name of any BASIC keywords

Variables entered in the Stage Properties dialog box appear in the

Stage Variable table in the links pane.

You perform most of the same operations on a stage variable as you

can on an output column (see page 9-10). A shortcut menu offers the

same commands. You cannot, however, paste a stage variable as a

new column, or a column as a new stage variable.

The DataStage Expression Editor
The DataStage Expression Editor helps you to enter correct

expressions when you edit Transformer stages. It also helps you to

define custom transforms within the DataStage Manager (see

"Defining Custom Transforms" on page 17-18). The Expression Editor

can:
Server Job Developer’s Guide 9-23

The DataStage Expression Editor Transformer Stages
Facilitate the entry of expression elements

Complete the names of frequently used variables

Validate variable names and the complete expression

The Expression Editor can be opened from:

Output link Derivation cells

Stage variable Derivation cells

Input link Key Expression cells

Constraint dialog box

Transform dialog box in the DataStage Manager

Expression Format
The format of an expression is as follows:

KEY:

something_like_this is a token
something_in_italics is a terminal, i.e. doesn't break down any

further
| is a choice between tokens
[is an optional part of the construction
"XXX" is a literal token (i.e., use XXX not

including the quotes)
===
expression ::= function_call |

variable_name |
other_name |
constant |
unary_expression |
binary_expression |
if_then_else_expression |
substring_expression |
"(" expression ")"

function_call ::= function_name "(" [argument_list] ")"
argument_list ::= expression | expression "," argument_list
function_name ::= name of a built-in function |

name of a user-defined_function
variable_name ::= job_parameter name |

stage_variable_name |
link_variable name

other_name ::= name of a built-in macro, system variable, etc.
constant ::= numeric_constant | string_constant
numeric_constant ::= ["+" | "-"] digits ["." [digits]] ["E" | "e" ["+" |
"-"] digits]
string_constant ::= "'" [characters] "'" |

""" [characters] """ |
"\" [characters] "\"

unary_expression ::= unary_operator expression
unary_operator ::= "+" | "-"
binary_expression ::= expression binary_operator expression
9-24 Server Job Developer’s Guide

Transformer Stages The DataStage Expression Editor
binary_operator ::= arithmetic_operator |
concatenation_operator |
matches_operator |
relational_operator |
logical_operator

arithmetic_operator ::= "+" | "-" | "*" | "/" | "^"
concatenation_operator ::= ":"
matches_operator ::= "MATCHES"
relational_operator ::= "=" |"EQ" |

"<>" | "#" | "NE" |
">" | "GT" |
">=" | "=>" | "GE" |
"<" | "LT" |
"<=" | "=<" | "LE"

logical_operator ::= "AND" | "OR"
if_then_else_expression ::= "IF" expression "THEN" expression "ELSE"
expression
substring_expression ::= expression "[" [expression ["," expression] "]"
field_expression ::= expression "[" expression ","

expression ","
expression "]"

/* That is, always 3 args

Note keywords like "AND" or "IF" or "EQ" may be in any case

Entering Expressions
Whenever the insertion point is in an expression box, you can use the

Expression Editor to suggest the next element in your expression. Do

this by right-clicking the box, or by clicking the Suggest button to the

right of the box. This opens the Suggest Operand or Suggest
Operator menu. Which menu appears depends on context, i.e.,

whether you should be entering an operand or an operator as the next

expression element.

You will be offered a different selection on the Suggest Operand

menu depending on whether you are defining key expressions,

derivations and constraints, or a custom transform. The Suggest
Operator menu is always the same.
Server Job Developer’s Guide 9-25

The DataStage Expression Editor Transformer Stages
Suggest Operand Menu - Transformer Stage:

Suggest Operand Menu - Defining Custom Transforms:

Suggest Operator Menu:

Completing Variable Names
The Expression Editor stores variable names. When you enter a

variable name you have used before, you can type the first few

characters, then press F5. The Expression Editor completes the

variable name for you.

If you enter the name of an input link followed by a period, for

example, DailySales., the Expression Editor displays a list of the

column names of that link. If you continue typing, the list selection

changes to match what you type. You can also select a column name

using the mouse. Enter a selected column name into the expression
9-26 Server Job Developer’s Guide

Transformer Stages Transformer Stage Properties
by pressing Tab or Enter. Press Esc to dismiss the list without

selecting a column name.

Validating the Expression
When you have entered an expression in the Transformer Editor,

press Enter to validate it. The Expression Editor checks that the

syntax is correct and that any variable names used are acceptable to

the compiler. When using the Expression Editor to define a custom

transform, click OK to validate the expression.

If there is an error, a message appears and the element causing the

error is highlighted in the expression box. You can either correct the

expression or close the Transformer Editor or Transform dialog box.

Within the Transformer Editor, the invalid expressions are shown in

red. (In some cases this may simply mean that the expression does

not meet the strict usage pattern rules of the DataStage engine, but

will actually function correctly.)

For more information about the syntax you can use in an expression,

see Chapter 18, "BASIC Programming."

Exiting the Expression Editor
You can exit the Expression Editor in the following ways:

Press Esc (which discards changes).

Press Return (which accepts changes).

Click outside the Expression Editor box (which accepts changes).

Configuring the Expression Editor
The Expression Editor is switched on by default. If you prefer not to

use it, you can switch it off or use selected features only. The

Expression Editor is configured by editing the Designer options. For

more information, see "Specifying Designer Options" in DataStage

Designer Guide.

Transformer Stage Properties
The Transformer stage has a Properties dialog box which allows you

to specify details about how the stage operates.

The Transform Stage dialog box has three pages:
Server Job Developer’s Guide 9-27

Transformer Stage Properties Transformer Stages
Stage page. This is used to specify general information about the
stage.

Inputs page. This is where you specify details about the data
input to the Transformer stage.

Outputs page. This is where you specify details about the output
links from the Transformer stage.

Stage Page
The Stage page has four tabs:

General. Allows you to enter an optional description of the stage
and specify a before-stage and/or after-stage subroutine.

Variables. Allows you to set up stage variables for use in the
stage.

Link Ordering. Allows you to specify the order in which the
output links will be processed.

The General tab is described in "Before-Stage and After-Stage

Routines" on page 9-6. The Variables tab is described in "Defining

Local Stage Variables" on page 9-22. The Link Ordering tab is

described in "Specifying Link Order" on page 9-21.

Inputs Page
The Inputs page allows you to specify details about data coming into

the Transformer stage. The Transformer stage can have only one input

link.

The General tab allows you to specify an optional description of the

input link.

Outputs Page
The Outputs Page has a General tab which allows you to enter an

optional description for each of the output links on the Transformer

stage.
9-28 Server Job Developer’s Guide

10
Aggregator Stages

Aggregator stages classify data rows from a single input link into

groups and compute totals or other aggregate functions for each

group. The summed totals for each group are output from the stage

via an output link.

Using an Aggregator Stage
If you want to aggregate the input data in a number of different ways,

you can have several output links, each specifying a different set of

properties to define how the input data is grouped and summarized.

When you edit an Aggregator stage, the Aggregator Stage dialog

box appears:
Server Job Developer’s Guide 10-1

Before-Stage and After-Stage Subroutines Aggregator Stages
This dialog box has three pages:

Stage. Displays the name of the stage you are editing. This page
has a General tab which contains an optional description of the
stage and names of before- and after-stage routines. For more
details about these routines, see "Before-Stage and After-Stage
Subroutines" on page 10-2.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

Before-Stage and After-Stage Subroutines
The General tab on the Stage page contains optional fields that

allow you to define routines to use which are executed before or after

the stage has processed the data.

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data. For example, you can specify a routine that
prepares the data before processing starts.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data. For example, you can specify a routine that
sends an electronic message when the stage has finished.

Choose a routine from the drop-down list box. This list box contains

all the routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.

If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Aggregator Stage dialog box.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.

If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the Aggregator Stage dialog box. You must install or

import the “missing” routine or choose an alternative one to use.
10-2 Server Job Developer’s Guide

Aggregator Stages Defining Aggregator Input Data
Defining Aggregator Input Data
Data to be aggregated is passed from a previous stage in the job

design and into the Aggregator stage via a single input link. The

properties of this link and the column definitions of the data are

defined on the Inputs page in the Aggregator Stage dialog box.

Note The Aggregator stage does not preserve the order of input

rows, even when the incoming data is already sorted.

The Inputs page has the following field and two tabs:

Input name. The name of the input link to the Aggregator stage.

General. Displayed by default. Contains an optional description of
the link.

Columns. Contains a grid displaying the column definitions for
the data being written to the stage, and an optional sort order.

– Column name. The name of the column.

– Sort. Displays the sort key position of the column, if sorting is
enabled. For more information, see "Defining the Input Column
Sort Order" on page 10-4.

– Sort Order. Specifies the sort order. This field is blank by
default, that is, there is no sort order. Choose Ascending for
ascending order, Descending for descending order, or Ignore
if you do not want the order to be checked.

– Key. Indicates whether the column is part of the primary key.

– SQL type. The SQL data type.
Server Job Developer’s Guide 10-3

Defining Aggregator Input Data Aggregator Stages
– Length. The data precision. This is the length for CHAR data
and the maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null
values.

– Display. The maximum number of characters required to
display the column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

Defining the Input Column Sort Order
When the Aggregator stage collates input data for aggregating, it is

stored in memory. If one or more group columns in the input data are

sorted, this can greatly improve the way in which the Aggregator

stage handles the data.

Sorted input data can be output from an ODBC or UniVerse stage

(using an ORDER BY clause in the SQL statement) or a Sequential File

stage.

To use sorted input data, you can use the additional column properties

in the Input Column dialog box.

Enter a number in the Sort column specifying the position that

column has in the sort key. For example, if the input data was sorted

on a date then on a product code, the sort key position for the date

column would 1 and the sort key position for the product code column

would be 2. A value of 1 always indicates the most significant key. If

you do not specify a value in this field, the column is added to the end

of the sort key sequence. Once you click OK, all the columns are

sorted in sequence from the most significant column upward.

Choose the order in which the data is sorted from the Sort Order

column. The default setting is none:

Ascending. Choose this option if the input data in the specified
column is sorted in ascending order. If you choose this option, the
DataStage server checks the order at run time.

Descending. Choose this option if the input data in the specified
column is sorted in descending order. If you choose this option,
the DataStage server checks the order at run time.

Ignore. Do not check order. Choose this option if the sort order
used by the input data is not simply ascending or descending
order, but uses a more complex sort order. You must take care
when choosing this option. At run time the DataStage server does
10-4 Server Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
not check the sort order of the data, which may cause erroneous
errors. If you choose this option, a warning message appears
when you click OK. You must acknowledge this message before
you can edit other input columns.

Defining Aggregator Output Data
When you output data from an Aggregator stage, the properties of

output links and the column definitions of the data are defined on the

Outputs page in the Aggregator Stage dialog box.

The Outputs page has the following field and two tabs:

Output name. The name of the output link. Choose the link to
edit from the Output name drop-down list box. This list box
displays all the output links from the stage.

General. Displayed by default. Contains an optional description of
the link.

Columns. Contains a grid displaying the column definitions for
the data being output from the stage. The grid has the following
columns:

– Column name. The name of the column.

– Group. Specifies whether to group by the data in the column.

– Derivation. Contains an expression specifying how the data is
aggregated. This is a complex cell, requiring more than one
piece of information. Double-clicking the cell opens the
Derivation dialog box. For more information, see
"Aggregating Data" on page 10-6.
Server Job Developer’s Guide 10-5

Defining Aggregator Output Data Aggregator Stages
– Key. Indicates whether the column is part of the primary key.

– SQL type. The SQL data type.

– Length. The data precision. This is the length for CHAR data
and the maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null
values.

– Display. The maximum number of characters required to
display the column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

For a description of how to enter and edit column definitions, see

the DataStage Designer Guide.

Aggregating Data
The data sources you are extracting data from can contain many

thousands of rows of data. For example, the data in a sales database

can contain information about each transaction or sale. You could

pass all this data into your data warehouse. However, this would

mean you would have to search through large volumes of data in the

data warehouse before you get the results you need.

If you only want summary information, for example, the total of

product A sold since 01/01/96, you can aggregate your data and only

pass the summed total to the data warehouse. This reduces the

amount of data you store in the data warehouse, speeds up the time

taken to find the data you want, and ensures the data warehouse

stores data in a format you need.

The Aggregator stage allows you to group by or summarize any

columns on any of the output links.

Note Every column output from an Aggregator stage must be

either grouped by or summarized.

A group of input data is a set of input rows that share the same values

for all the grouped by columns. For example, if your sales database

contained information about three different products A, B, and C, you

could group by the Product column. All the information about

product A would be grouped together, as would all the information for

products B and C.
10-6 Server Job Developer’s Guide

Aggregator Stages Defining Aggregator Output Data
By summarizing data, you can perform basic calculations on the

values in a particular column. The actions you can perform depend on

the SQL data type of the selected column.

For numeric SQL data types you can perform the following actions:

Minimum. Returns the lowest value in the column.

Maximum. Returns the highest value in the column.

Count. Counts the number of values in the column.

Sum. Totals the values in the column.

Average. Averages the values in the column.

First. Returns the first value in the column.

Last. Returns the last value in the column.

Standard Deviation. Returns the standard deviation of the values
in the column.

In calculating Standard Deviation, DataStage uses the formula:

standarddeviation = sqrt [(sum(Xi2) - N avg(Xi)2) / N]

Some other packages, such as Microsoft Excel, use the formula:

standarddeviation = sqrt [(sum(Xi2) - N avg(Xi)2) / (N-1)]

For any other SQL data types you can perform the following actions:

Minimum. Returns the lowest value in the column.

Maximum. Returns the highest value in the column.

Count. Counts the number of values in the column.

First. Returns the first value in the column.

Last. Returns the last value in the column.

For example, if you want to know the total number of product A sold,

you would sum the values in the QtySold column.

To group by or summarize a column, you must edit the Derivation

column in the Output Column dialog box. Do this by double-clicking

the cell to open the Derivation dialog box.

The Derivation dialog box contains the following fields and option:
Server Job Developer’s Guide 10-7

Defining Aggregator Output Data Aggregator Stages
Source column. Contains the name of the column you want to
group by or summarize, in the format linkname.columnname. You
can choose any of the input columns from the drop-down list box.

Aggregate function. Contains the aggregation function to
perform. Choose the function you want from the drop-down list
box. The default option is Sum.

Group by this column. Specifies whether the column will be
grouped. This check box is cleared by default.

If you want to group by the column, select the Group by this
column check box. The aggregate function is automatically set to

(grouped), and you cannot select an aggregate function from the

drop-down list box.

To use an aggregate function, clear the Group by this column check

box and select the function you want to use from the Aggregate
function drop-down list box.

Click OK to save the settings for the column.
10-8 Server Job Developer’s Guide

11
Folder Stages

Folder stages are used to read or write data as files in a directory

located on the DataStage server.

Using Folder Stages
The folder stages can read multiple files from a single directory and

can deliver the files to the job as rows on an output link. The folder

stage can also write rows of data as files to a directory. The rows

arrive at the stage on an input link.

Note The behavior of the Folder stage when reading folders that

contain other folders is undefined.

In an NLS environment, the user running the job must have write

permission on the folder so that the NLS map information can be set

up correctly.
Server Job Developer’s Guide 11-1

Using Folder Stages Folder Stages
When you edit a Folder stage, the Folder Stage dialog box appears.

The dialog box has up to three pages:

Stage. The General tab displays the name of the stage you are
editing, the stage type and a description. The Properties tab
contains properties which define the operation of the stage.

Inputs. The Columns tab displays the column definitions for data
arriving on the input link. The directory to which the stage writes
the files is defined in the Folder pathname property on the Stage
Properties tab.
11-2 Server Job Developer’s Guide

Folder Stages Using Folder Stages
Outputs. The Columns tab displays the column definitions for
data leaving on the output link. The Properties tab controls the
operation of the link. The directory from which the stage reads the
files are defined in the Folder pathname property on the Stage
Properties tab.
Server Job Developer’s Guide 11-3

Defining Character Set Maps Folder Stages
Defining Character Set Maps
You can define a character set map for a Folder stage using the NLS

tab of the Folder Stage dialog box.

The default character set map (defined for the project or the job) can

be changed by selecting a map name from the list. The tab also has

the following fields:

Show all maps. Lists all the maps supplied with DataStage.
Maps cannot be used unless they have been loaded using the
DataStage Administrator.

Loaded maps only. Displays the maps that are loaded and ready
for use.

Use Job Parameter… . Allows you to specify a character set map
as a parameter to the job containing the stage. If the parameter
has not yet been defined, you are prompted to define it from the
Job Properties dialog box.

Folder Stage Input Data
The Folder stage only has input data when it is being used to write

files to a directory. In this case the directory being written to is defined

on the Properties tab of the Stage page.
11-4 Server Job Developer’s Guide

Folder Stages Defining Character Set Maps
The Inputs page Properties tab defines properties for the input link.

The properties are as follows:

Preserve CRLF. When Preserve CRLF is set to Yes field marks
are not converted to newlines on write. It is set to Yes by default.

The Columns tab defines the data arriving on the link to be written in

files to the directory. The first column on the Columns tab must be

defined as a key, and gives the name of the file. The remaining

columns are written to the named file, each column separated by a
Server Job Developer’s Guide 11-5

Defining Character Set Maps Folder Stages
newline. Data to be written to a directory would normally be delivered

in a single column.

Folder Stage Output Data
The behavior of the output link is controlled by the output properties

on the Outputs Properties tab.

The properties are as follows:
11-6 Server Job Developer’s Guide

Folder Stages Defining Character Set Maps
Sort order. Choose from Ascending, Descending, or None. This
specifies the order in which the files are read from the directory.

Wildcard. This allows for simple wildcarding of the names of the
files found in the directory. Any occurrence of * (asterisk) or …
(three periods) is treated as an instruction to match any or no
characters.

Preserve CRLF. When Preserve CRLF is set to Yes newlines are
not converted to field marks on read. It is set to Yes by default.

Fully qualified. Set this to yes to have the full path name of each
file written in the key column instead of just the file name.

The Columns tab defines a maximum of two columns. The first

column must be marked as the Key and receives the file name. The

second column, if present, receives the contents of the file.
Server Job Developer’s Guide 11-7

Defining Character Set Maps Folder Stages
11-8 Server Job Developer’s Guide

12
Inter-Process Stages

An inter-process (IPC) stage is a passive stage which provides a

communication channel between DataStage processes running

simultaneously in the same job. It allows you to design jobs that run

on SMP systems with great performance benefits. To understand the

benefits of using IPC stages, you need to know a bit about how

DataStage jobs actually run as processes, see "DataStage Jobs and

Processes" on page 2-1 for information.

The output link connecting IPC stage to the stage reading data can be

opened as soon as the input link connected to the stage writing data

has been opened.

You can use Inter-process stages to join passive stages together. For

example you could use them to speed up data transfer between two

data sources:

In this example the job will run as two processes, one handling the

communication from sequential file stage to IPC stage, and one

handling communication from IPC stage to ODBC stage. As soon as

the Sequential File stage has opened its output link, the IPC stage can

start passing data to the ODBC stage. If the job is running on a multi-
Server Job Developer’s Guide 12-1

Inter-Process Stages
processor system, the two processor can run simultaneously so the

transfer will be much faster.

You can also use the IPC stage to explicitly specify that connected

active stages should run as separate processes. This is advantageous

for performance on multi-processor systems. You can also specify this

behavior implicitly by turning inter process row buffering on, either

for the whole project via DataStage Administrator, or individually for a

job in its Job Properties dialog box.
12-2 Server Job Developer’s Guide

Inter-Process Stages Using the IPC Stage
Using the IPC Stage
When you edit an IPC stage, the InterProcess Stage dialog box

appears.

This dialog box has three pages:

Stage. The Stage page has two tabs, General and Properties.
The General page allows you to specify an optional description of
the page. The Properties tab allows you to specify stage
properties.

Inputs. The IPC stage can only have one input link. the Inputs
page displays information about that link.

Outputs. The IPC stage can only have one output link. the
Outputs page displays information about that link.

Defining IPC Stage Properties
The Properties tab allows you to specify two properties for the IPC

stage:

Buffer Size. Defaults to 128 Kb. The IPC stage uses two blocks of
memory; one block can be written to while the other is read from.
This property defines the size of each block, so that by default 256
Kb is allocated in total.
Server Job Developer’s Guide 12-3

Defining IPC Stage Input Data Inter-Process Stages
Timeout. Defaults to 10 seconds. This gives time limit for how
long the stage will wait for a process to connect to it before timing
out. This normally will not need changing, but may be important
where you are prototyping multi-processor jobs on single
processor platforms and there are likely to be delays.

Defining IPC Stage Input Data
The IPC stage can have one input link. This is where the process that is

writing connects.

The Inputs page has two tabs: General and Columns.

General. The General tab allows you to specify an optional
description of the stage.

Columns. The Columns tab contains the column definitions for
the data on the input link. This is normally populated by the meta
data of the stage connecting on the input side. You can also Load
a column definition from the Repository, or type one in yourself
(and Save it to the Repository if required). Note that the meta data
on the input link must be identical to the meta data on the output
link.

Defining IPC Stage Output Data
The IPC stage can have one output link. This is where the process that

is reading connects.

The Outputs page has two tabs: General and Columns.

General. The General tab allows you to specify an optional
description of the stage.

Columns. The Columns tab contains the column definitions for
the data on the input link. This is normally populated by the meta
data of the stage connecting on the input side. You can also Load
a column definition from the Repository, or type one in yourself
(and Save it to the Repository if required). Note that the meta data
on the output link must be identical to the meta data on the input
link.
12-4 Server Job Developer’s Guide

13
Link Partitioner Stages

This chapter describes how to use a Link Partitioner stage in your job

design.

The Link Partitioner stage is an active stage which takes one input and

allows you to distribute partitioned rows to up to 64 output links. The

stage expects the output links to use the same meta data as the input

link.

Partitioning your data enables you to take advantage of a multi-

processor system and have the data processed in parallel. It can be

used in conjunction with the Link Collector stage to partition data,

process it in parallel, then collect it together again before writing it to

a single target. To really understand the benefits you need to know a

bit about how DataStage jobs are run as processes, see "DataStage

Jobs and Processes" on page 2-1.

The following diagram illustrates how the Link Partitioner stage can

be used in a job in this way.
Server Job Developer’s Guide 13-1

Using a Link Partitioner Stage Link Partitioner Stages
In order for this job to compile and run as intended on a multi-

processor system you must have inter-process buffering turned on,

either at project level using the DataStage Administrator, or at job

level from the Job Properties dialog box.

Using a Link Partitioner Stage
When you edit a Link Partitioner stage, the Link Partitioner Stage

dialog box appears:

This dialog box has three pages:

Stage. Displays the name of the stage you are editing. This page
has a General tab which contains an optional description of the
stage and names of before- and after-stage routines. For more
details about these routines, see "Before-Stage and After-Stage
Subroutines" on page 13-3. It also has a Properties tab that allows
you to specify properties which affect the way the stage behaves,
see "Defining Link Partitioner Stage Properties" on page 13-3.

Inputs. Specifies the column definitions for the data input link.

Outputs. Specifies the column definitions for the data output
links.

Click OK to close this dialog box. Changes are saved when you save

the job.
13-2 Server Job Developer’s Guide

Link Partitioner Stages Before-Stage and After-Stage Subroutines
Before-Stage and After-Stage Subroutines
The General tab on the Stage page contains optional fields that

allow you to define routines to use which are executed before or after

the stage has processed the data.

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data. For example, you can specify a routine that
prepares the data before processing starts.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data. For example, you can specify a routine that
sends an electronic message when the stage has finished.

Choose a routine from the drop-down list box. This list box contains

all the routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.

If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Link Partitioner Stage dialog box.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.

If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the Link Partitioner Stage dialog box. You must install or

import the “missing” routine or choose an alternative one to use.

Defining Link Partitioner Stage Properties
The Properties tab allows you to specify two properties for the Link

Partitioner stage:

Partitioning Algorithm. Use this property to specify the method
the stage uses to partition data. Choose from:

– Round-Robin. This is the default method. Using the round-
robin method the stage will write each incoming row to one of
its output links in turn.

– Random. Using this method the stage will use a random
number generator to distribute incoming rows evenly across
all output links.
Server Job Developer’s Guide 13-3

Defining Link Partitioner Stage Input Data Link Partitioner Stages
– Hash. Using this method the stage applies a hash function to
one or more input column values to determine which output
link the row is passed to.

– Modulus. Using this method the stage applies a modulus
function to an integer input column value to determine which
output link the row is passed to.

Partitioning Key. This property is only significant where you
have chosen a partitioning algorithm of Hash or Modulus. For the
Hash algorithm, specify one or more column names separated by
commas. These keys are concatenated and a hash function
applied to determine the destination output link. For the Modulus
algorithm, specify a single column name which identifies an
integer numeric column. The value of this column value
determines the destination output link.

Defining Link Partitioner Stage Input Data
The Link Partitioner stage can have one input link. This is where the

data to be partitioned arrives.

The Inputs page has two tabs: General and Columns.

General. The General tab allows you to specify an optional
description of the stage.

Columns. The Columns tab contains the column definitions for
the data on the input link. This is normally populated by the meta
data of the stage connecting on the input side. You can also Load
a column definition from the Repository, or type one in yourself
(and Save it to the Repository if required). Note that the meta data
on the input link must be identical to the meta data on the output
links.

Defining Link Partitioner Stage Output Data
The Link Partitioner stage can have up to 64 output links. Partitioned

data flows along these links. The Output Name drop-down list on the

Outputs pages allows you to select which of the 64 links you are

looking at.

The Outputs page has two tabs: General and Columns.

General. The General tab allows you to specify an optional
description of the stage.
13-4 Server Job Developer’s Guide

Link Partitioner Stages Defining Link Partitioner Stage Output Data
Columns. The Columns tab contains the column definitions for
the data on the input link. You can Load a column definition from
the Repository, or type one in yourself (and Save it to the
Repository if required). Note that the meta data on the output link
must be identical to the meta data on the input link. So the meta
data is identical for all the output links.
Server Job Developer’s Guide 13-5

Defining Link Partitioner Stage Output Data Link Partitioner Stages
13-6 Server Job Developer’s Guide

14
Link Collector Stages

This chapter describes how to use a Link Collector stage in your job

design.

The Link Collector stage is an active stage which takes up to 64 inputs

and allows you to collect data from this links and route it along a

single output link. The stage expects the output link to use the same

meta data as the input links.

The Link Collector stage can be used in conjunction with a Link

Partitioner stage to enable you to take advantage of a multi-processor

system and have data processed in parallel. The Link Partitioner stage

partitions data, it is processed in parallel, then the Link Collector stage

collects it together again before writing it to a single target. To really

understand the benefits you need to know a bit about how DataStage

jobs are run as processes, see "DataStage Jobs and Processes" on

page 2-1.
Server Job Developer’s Guide 14-1

Using a Link Collector Stage Link Collector Stages
The following diagram illustrates how the Link Collector stage can be

used in a job in this way.

In order for this job to compile and run as intended on a multi-

processor system you must have inter-process buffering turned on,

either at project level using the DataStage Administrator, or at job

level from the Job Properties dialog box.

Using a Link Collector Stage
When you edit a Link Collector stage, the Link Collector Stage

dialog box appears:
14-2 Server Job Developer’s Guide

Link Collector Stages Before-Stage and After-Stage Subroutines
This dialog box has three pages:

Stage. Displays the name of the stage you are editing. This page
has a General tab which contains an optional description of the
stage and names of before- and after-stage routines. For more
details about these routines, see "Before-Stage and After-Stage
Subroutines" on page 14-3. It also has a Properties tab that allows
you to specified properties which affect the way the stage
behaves, see "Defining Link Collector Stage Properties" on
page 14-4.

Inputs. Specifies the column definitions for the data input links.

Outputs. Specifies the column definitions for the data output link.

Click OK to close this dialog box. Changes are saved when you save

the job.

Before-Stage and After-Stage Subroutines
The General tab on the Stage page contains optional fields that

allow you to define routines to use which are executed before or after

the stage has processed the data.

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data. For example, you can specify a routine that
prepares the data before processing starts.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data. For example, you can specify a routine that
sends an electronic message when the stage has finished.

Choose a routine from the drop-down list box. This list box contains

all the routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.

If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Link Collector Stage dialog box.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.

If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the Link Collector Stage dialog box. You must install or

import the “missing” routine or choose an alternative one to use.
Server Job Developer’s Guide 14-3

Defining Link Collector Stage Properties Link Collector Stages
Defining Link Collector Stage Properties
The Properties tab allows you to specify two properties for the Link

Collector stage:

Collection Algorithm. Use this property to specify the method
the stage uses to collect data. Choose from:

– Round-Robin. This is the default method. Using the round-
robin method the stage will read a row from each input link in
turn.

– Sort/Merge. Using the sort/merge method the stage reads
multiple sorted inputs and writes one sorted output.

Sort Key. This property is only significant where you have chosen
a collecting algorithm of Sort/Merge. It defines how each of the
partitioned data sets are known to be sorted and how the merged
output will be sorted. The key has the following format:

Columnname {sortorder] [,Columnname [sortorder]]...

Columnname specifies one (or more) columns to sort on.

sortorder defines the sort order as follows:

In an NLS environment, the collate convention of the locale may

affect the sort order. The default collate convention is set in the

DataStage Administrator, but can be set for individual jobs in the

Job Properties dialog box.

For example:

FIRSTNAME d, SURNAME D

Ascending Order Descending Order

a d

asc dsc

ascending descending

A D

ASC DSC

ASCENDING DESCENDING
14-4 Server Job Developer’s Guide

Link Collector Stages Defining Link Collector Stage Input Data
Specifies that rows are sorted according to FIRSTNAME column

and SURNAME column in descending order.

Defining Link Collector Stage Input Data
The Link Collector stage can have up to 64 input links. This is where

the data to be collected arrives. The Input Name drop-down list on

the Inputs page allows you to select which of the 64 links you are

looking at.

The Inputs page has two tabs: General and Columns.

General. The General tab allows you to specify an optional
description of the stage.

Columns. The Columns tab contains the column definitions for
the data on the input links. This is normally populated by the meta
data of the stages connecting on the input side. You can also Load
a column definition from the Repository, or type one in yourself
(and Save it to the Repository if required). Note that the meta data
on all input links must be identical, and this in turn must be
identical to the meta data on the output link.

Defining Link Collector Stage Output Data
The Link Collector stage can have a single output link.

The Outputs page has two tabs: General and Columns.
Server Job Developer’s Guide 14-5

Defining Link Collector Stage Output Data Link Collector Stages
General. The General tab allows you to specify an optional
description of the stage.

Columns. The Columns tab contains the column definitions for
the data on the input link. You can Load a column definition from
the Repository, or type one in yourself (and Save it to the
Repository if required). Note that the meta data on the output link
must be identical to the meta data on the input links.
14-6 Server Job Developer’s Guide

15
Plug-Ins and Plug-In Stages

This chapter describes how to use a plug-in stage in your job design.

You may find that the built-in stage types do not meet all your

requirements for data extraction and transformation. If this is the

case, you need to obtain a plug-in, which can then be used in a plug-in

stage in your job design.

Plug-Ins
Plug-ins are written to perform specific tasks that the built-in stages

do not support, for example:

Custom aggregations

Control of external devices (for example, tape drives)

Access to external programs

Two plug-ins are automatically installed with DataStage:

BCPLoad. The BCPLoad plug-in bulk loads data into a single table
in a Microsoft SQL Server (Release 6 or 6.5) or Sybase (System 10
or 11) database. For more information about this plug-in, see
"BCPLoad Stages" on page 15-13.

Orabulk. The Orabulk plug-in generates control and data files for
bulk loading into a single table on an Oracle target database. The
files are suitable for loading into the target database using the
Oracle command sqlldr. For more information about this plug-in,
see "Orabulk Stages" on page 15-23.

Other plug-ins are supplied with DataStage, but must be explicitly

installed. You can install plug-ins when you install DataStage. Some

plug-ins have a custom GUI, which can be installed at the same time.
Server Job Developer’s Guide 15-1

Plug-Ins Plug-Ins and Plug-In Stages
You can choose which plug-ins to install during the DataStage Server

install. You install the corresponding custom GUIs during the

DataStage client install. See the DataStage Install and Upgrade Guide

for more details.

You can subsequently install extra plug-ins either from the CD-ROM or

by downloading them from the Web. These are then installed using

the Package Installer as described in the DataStage Administrator

Guide.

If the plug-in you require is not listed, contact Ascential to see if one is

likely to become available. Alternatively, you can write your own plug-

in.

A plug-in consists of a set of routines that access external databases

and/or perform complex programming. You must have a thorough

knowledge of C to design and develop a plug-in.

To write your own plug-in:

1 Assess the purpose of the plug-in. You need to determine what the
plug-in must do in terms of data extraction or data conversion.
Check that Ascential does not already have an available plug-in for
this purpose.

2 Develop the routines using the DataStage C plug-in Stage
Interface. These routines are used to extract, aggregate, or
transform data when the job is run. If you need help writing the
plug-in routines required to process your data, contact your local
Ascential Customer Support Center.

3 Register the plug-in with the DataStage Manager. It is
recommended that your plug-in dynamically registers itself.
Alternatively, you can register the plug-in manually.

DataStage has a generic Stage dialog box that can be used by plug-

ins, but it is also possible to define your own GUI for a plug-in and

install that in DataStage.

Manually Registering a Plug-In Definition
To register a plug-in manually in the DataStage Manager:
15-2 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Plug-Ins
1 From the DataStage Manager, choose Tools ➤ Register Plug-
In… . The Register plug-in dialog box appears:

2 Enter the path and name of the plug-in DLL in the Path of plug-in
field.

3 Specify where the plug-in will be stored in the Repository by
entering the category name in the Category field.

4 Click OK to register the plug-in definition and close the dialog box.

Viewing Plug-In Definition Details
Once a plug-in has been registered with the Manager, you can view its

details in the Stage Type dialog box. To do this, click the Plug-in icon

in the Manager display area and do one of the following:

Choose File ‰ Properties… .

Choose Properties… from the shortcut menu.

Double-click the plug-in in the display area.

Click the Properties button on the toolbar.
Server Job Developer’s Guide 15-3

Plug-Ins Plug-Ins and Plug-In Stages
The plug-in definition is read-only; you cannot change any of the

details. The only exception to this is a plug-in that you added under an

earlier version of DataStage.

This dialog box has up to five pages:

General. Contains the name and type of the plug-in and optional
short and long descriptions. This page also contains the name and
path of the plug-in DLL, and specifies whether the plug-in
supports Metadata import, Data Browsing and/or Transaction
Grouping.

Creator. Displays information about the creator and the version
of the plug-in.

Properties. Specifies properties for the stage and the input and
output links.

Dependencies. Specifies the dependent DLLs.

NLS. Indicates how character set mapping is carried out by the
plug-in. This page is read-only as Character Set Mapping is
specified when the plug-in is created.
15-4 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Plug-Ins
Specifying Character Set Mapping

If you want your plug-in to use data in character sets other than ASCII,

you must specify how the plug-in handles character set mapping from

the NLS page.

Click Works with external character set to specify that the data

requires mapping:

If the plug-in performs its own mapping, you must also select
Handles its own mapping.

If the plug-in does not perform the character set mapping, you
must specify the map to be used from the plug-in stage dialog box
when you use the plug-in in a job design.

If the plug-in does not require any character set mapping, select

Works with internal character set.

Removing a Registered Plug-In
To remove a plug-in that you have previously registered:

1 Select the plug-in from the DataStage Manager display area.

2 Choose Tools ➤ Unregister Plug-In. The plug-in is removed.

Packaging a Plug-In
If you have written a plug-in that you want to distribute to users on

other DataStage systems, you need to package it. For details on how

to package a plug-in for deployment, see "Plug-In Stages" in

DataStage Manager Guide.
Server Job Developer’s Guide 15-5

Plug-In Stages Plug-Ins and Plug-In Stages
Using a Plug-In
You can use a plug-in by inserting a plug-in stage in your job design.

Plug-in stages are used the same way as built-in stages.

The plug-in you choose determines the function and properties of the

plug-in stage. When you have chosen a plug-in, you can edit the stage

to define the data flowing into, through, or from it.

Plug-In Stages
A plug-in stage is the way in which you use plug-ins in a job. The plug-

in chosen when you insert a plug-in stage determines the behavior of

the stage, how it handles data, and the number of input or output

links.

All plug-in stages that use the generic DataStage Stage dialog box

are edited in the same way. When you edit a plug-in stage, the Stage

dialog box appears. The title of the Stage dialog box includes the

stage name.

Note Plug-ins with custom GUIs can still use the Custom Stage

Editor by selecting Grid Editor from the shortcut menu.

The interfaces for plug-ins with custom GUIs are described

in the technical bulletin that accompanies the plug-in.

The Stage dialog box can have up to three pages (depending on

whether there are inputs to and outputs from the stage):

Stage. Displays the name of the stage and contains up to three
tabs:
15-6 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Plug-In Stages
– General. Displayed by default. Specifies the plug-in to use and
contains an optional description of the stage. Also contains the
names of cataloged routines, if you are editing an active stage.
For more details about these routines, see "Before-Stage and
After-Stage Subroutines" on page 15-7.

– Properties. Displays the stage properties. See "Editing
Properties" on page 15-11 for information on how to edit
property values.

– NLS. If NLS is enabled, allows you to specify a character set
map for the stage. See "Defining Character Set Maps" on
page 15-13.

Inputs. Contains information about the column definitions for
each data input link and specifies the input link properties. For
more information, see "Defining Plug-In Input Data" on page 15-8.

Outputs. Contains information about the column definitions for
each data output link and specifies the output link properties. For
more information, see "Defining Plug-In Output Data" on
page 15-10.

Before-Stage and After-Stage Subroutines
If you are editing an active type of plug-in stage, the General tab on

the Stage page contains additional fields. These optional fields allow

you to define routines to use which are executed before or after the

stage has processed the data:

Before-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed before the stage starts
to process any data. For example, you can specify a routine that
prepares the data before processing starts.

After-stage subroutine and Input Value. Contain the name
(and value) of a subroutine that is executed after the stage has
processed the data. For example, you can specify a routine that
sends an electronic message when the stage has finished.

Choose a routine from the drop-down list box. This list box contains

all the built routines defined as a Before/After Subroutine under the

Routines branch in the Repository. Enter an appropriate value for the

routine’s input argument in the Input Value field.

If you choose a routine that is defined in the Repository, but which was

edited but not compiled, a warning message reminds you to compile

the routine when you close the Stage dialog box.

A return code of 0 from the routine indicates success, any other code

indicates failure and causes a fatal error when the job is run.
Server Job Developer’s Guide 15-7

Plug-In Stages Plug-Ins and Plug-In Stages
If you installed or imported a job, the Before-stage subroutine or

After-stage subroutine field may reference a routine that does not

exist on your system. In this case, a warning message appears when

you close the Stage dialog box. You must install or import the

“missing” routine or choose an alternative one to use.

Defining Plug-In Input Data
When a plug-in stage accepts data from another stage in the job

design, the stage has an input link. The properties of this link and the

column definitions of the data are defined on the Inputs page in the

Stage dialog box.

The Inputs page contains the following field and up to three tabs:

Input name. The name of the input link. Choose the link you want
to edit from the Input name drop-down list box. This list box
displays all the input links to the plug-in stage.

General. Displayed by default. Contains an optional description of
the link.

Properties. Displays the input link properties. This tab is only
displayed if input properties have been defined for the chosen
plug-in. See "Editing Properties" on page 15-11 for information on
how to change the property values.

Columns. Contains the column definitions for the data being
written to the stage. For a description of how to enter and edit
column definitions, see the DataStage Designer Guide.

Transaction group. This tab is displayed if the plug-in has
transaction control capability. It allows you to view the transaction
handling features of the stage as it writes to the data source. You
15-8 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Plug-In Stages
can choose an isolation level, specify the number of rows written
before each commit, and the number of rows written in each
operation. A grid shows details of the transaction group to which
the currently selected input link belongs.

Specifying Transaction Control Information

Input links writing to a data source may be associated together as a

transaction group. The following rules govern the grouping of links:

All the input links in a transaction group must originate from a
single Transformer stage.

The ordering of the links within the transaction group is
determined in the preceding Transformer stage.

If a transaction group contains multiple links, then the stage
cannot use an Isolation level of Auto-commit, or a Rows per
transaction or Parameter array size other than 1.

You should be aware of the following facts about transaction groups:

Each transaction group is controlled by the first link in the group,
which is responsible for starting the transaction. If there is already
a transaction in process, then the controlling link will perform a
rollback first.

If there are other input links in the transaction group, these are
processed in the order laid down in the Transformer stage.
Individual links may be skipped if constraints laid down in the
preceding Transformer stage so dictate. You should avoid having
constraints on the first link, as this controls the group and should
never be skipped.

Each link in the transaction group can specify whether to commit
on success and/or rollback on failure, depending on the Rows per
Transaction setting.

Each link will return without processing the current row if there is
no transaction currently in progress.

The row counter for each link will be incremented only if the SQL
associated with the link executes successfully and the transaction
is successfully committed.

The transaction ends when a link performs a rollback. Any links
following this will do nothing.

To specify transaction control information for a transaction group:

1 Click the Transaction Group tab.

2 In the Transaction Group tab, choose an appropriate transaction
isolation level to use from the Isolation level drop-down list box.
If you select Auto-commit, you are specifying that every
Server Job Developer’s Guide 15-9

Plug-In Stages Plug-Ins and Plug-In Stages
statement will effectively be executed in a separate transaction. In
these circumstances, the Rows per transaction field is set to 1
and Continue and Rollback are set in the On OK and On Fail
columns for each link.

3 Enter a suitable value in the Rows per transaction field. This is
the number of rows written before the data is committed to the
data table. The default value is 0, that is, all the rows are written
before being committed to the data table. If the transaction group
contains multiple links, Rows per transaction is automatically
set to 1 and you cannot alter it. If the transaction group comprises
a single link, the transaction size can be in the range 0 to n.

4 Enter a suitable value in the Parameter array size field. This is
the number of rows written at a time. The default is 1, that is, each
row is written in a separate operation. If the transaction group
contains multiple links or the preceding stage is anything other
than a Transformer stage, then this is set to 1 and you cannot alter
it. In this case the Parameter array size field is not displayed. If
the transaction group comprises a single link, and the preceding
stage is a Transformer stage, then the array size can be in the
range 1 to n.

5 Supply necessary details about the transaction group in the grid.
The grid has a line for every link in the transaction group. The links
are shown in transaction processing order, which is set in the
preceding Transformer stage. Each line contains the following
information:

– Input name. The name of the input link. You cannot change
this.

– On OK. This is used to specify whether or not to commit on
successful completion of the SQL statement. Choose
Continue, or Rollback from the drop-down list.

– On Fail. This is used to specify whether or not to rollback on
failure of the SQL statement. Choose Continue, or Rollback
from the drop-down list.

– SQL. Shows the SQL statement associated with the input link.
You cannot change this, but clicking the cell will display the
entire statement.

Defining Plug-In Output Data
If the plug-in stage represents a data source you are extracting data

from, the stage has an output link. The properties of the output link

and the column definitions of the data are defined on the Outputs

page in the Stage dialog box.
15-10 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Plug-In Stages
The Outputs page has the following field and up to three tabs:

Output name. The name of the output link. Choose the link to
edit from the Output name drop-down list box. This list box
displays all the output links from the stage.

General. Displayed by default. Contains an optional description of
the link.

Properties. Displays the output link properties. This tab is only
displayed if output properties have been defined for the chosen
plug-in. See "Editing Properties" on page 15-11 for information on
how to change the property values.

Columns. Contains the column definitions for the data being
output from the stage. For a description of how to enter and edit
column definitions, see the DataStage Designer Guide.

Editing Properties
When a plug-in is created, properties are defined for the stage and the

input and output links. The name and meaning of each property is

defined by the creator of the plug-in. For details on how to define

plug-ins, see "Manually Registering a Plug-In Definition" on page 15-2.

Each property has a default value and optional help text. These

properties and default values are automatically assigned to a plug-in

stage when you specify the plug-in to use.

You can view the properties and enter more appropriate values using

the Properties tab on the Stage, Inputs, or Outputs page. The

Properties tab contains the same fields and columns.

The following screen shows the Properties tab on the Stage page:
Server Job Developer’s Guide 15-11

Plug-In Stages Plug-Ins and Plug-In Stages
The properties are displayed in a grid which has the following

columns:

Name. Displays the caption text used to describe the property.

Value. Displays the current setting for the property value. If the
property has not been edited, this is the default value for the
property.

There are four buttons on this tab:

Insert Job Parameter… . Allows you to insert a job parameter
as the value for a chosen property. When you click this button, a
list appears displaying the currently defined job parameters.
Choose one from the list. If you cannot see the job parameter you
want, click (New…) to define a new one. The Job Parameters
dialog box appears. For more information about this dialog box
and how to define a job parameter, see the DataStage Designer
Guide. You can also insert a job parameter using the F9 key.

Set to Default. Sets the value for the chosen property to the
default value. This button is only active when you choose a
property to edit.

All to Default. Sets the values for all properties to the default
values.

Property Help. Displays the help text supplied by the creator of
the plug-in, if there is any. This button is only active when you
choose a property to edit.

You can edit the value for any properties listed in the grid. Click OK to

save the settings and close the Stage dialog box.
15-12 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages BCPLoad Stages
Defining Character Set Maps
You can define a character set map for a plug-in stage using the NLS

tab of the plug-in stage dialog box.

The default character set map (defined for the project or the job) can

be changed by selecting a map name from the list.

BCPLoad Stages
The BCPLoad stage is a passive plug-in stage supplied by Ascential.

The BCPLoad plug-in is installed automatically when you install

DataStage.

A BCPLoad plug-in stage bulk loads data into a single table in a

Microsoft SQL Server (Release 6.0 or 6.5) or Sybase (System 10 or 11)

database. The files are loaded into the target database using the bulk

copy API.

By default, the BCPLoad stage is configured to bulk load data into a

Microsoft SQL Server. You can configure the BCPLoad stage

properties to bulk load data into a Sybase SQL Server table using the

Sybase DBLIB or CTLIB client libraries.

Note The client libraries used by the BCPLoad stage are not

supplied as part of DataStage. You must obtain these

libraries from your DBMS vendor and ensure they are

installed and configured on your system before attempting

to use the BCPLoad stage.

There is one input link to this stage which provides a sequence of

rows to load into the SQL Server or Sybase database table. The meta
Server Job Developer’s Guide 15-13

BCPLoad Stages Plug-Ins and Plug-In Stages
data for each input column determines how it is loaded. There are no

output links from this stage type.

Overview of the BCPLoad Plug-In
Microsoft SQL Server and Sybase have a utility called BCP (Bulk Copy

Program). This command line utility copies SQL Server data to or

from an operating system file in a user-specified format. BCP uses the

bulk copy API in the SQL Server client libraries.

By using BCP, you can load large volumes of data into a table without

recording each insert in a log file. You can run BCP manually from a

command line using command line options (switches). A format (.fmt)

file is created which is used to load the data into the database.

The BCPLoad stage uses the same API that BCP does, but loads data

directly without the need for a format file. The command line switches

are set using stage properties.

Because this version of the BCPLoad stage supports both Microsoft

SQL Server and Sybase, only BCP switches common to both servers

have been included as stage properties. The following command line

switches are not supported for Microsoft SQL Server:

–T, trusted connection

–q, quote identifiers

The following command line switches are not supported for Sybase:

–I, interface file

–J, the client character set

–q, the data character set

For more information about the BCP switches that can be set, see

"Stage Properties" on page 15-16.

The BCPLoad stage does not support the loading of native data files.

Before You Start
Before you can use the BCPLoad stage you must:

Install and configure the SQL Server or Sybase client software.
The BCPLoad stage uses the BCP API in the DBLIB/CTLIB and
NetLIB client libraries. You must ensure that these components
are installed on the DataStage server which is acting as a client to
the SQL Server DBMS. See the documentation supplied with your
DBMS for more details.
15-14 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages BCPLoad Stages
Use one of the client tools (for example, ISQLW in the case of
Microsoft SQL Server or WISQL32 for Sybase) to ensure that the
connectivity between the DataStage server and the SQL Server
host is operational.

Create the table in the database on the SQL Server.

Configure your database to use the fast copy (bulk load) option.
By using this option, the data is loaded without each insert being
recorded in a log file. If you do not specify this setting, all
transactions are logged, slowing down the rate at which data is
loaded. The fast copy option can be switched on by a stored
procedure. For more information about using stored procedures,
see "Using Stored Procedures" on page 15-20.

Table Definitions
You can import the table definition from the table in your database on

the SQL Server by using the meta data import option in the DataStage

Manager. The table definition is imported via an ODBC connection to

the Server. You can then load this table definition into the stage

connected to the BCPLoad stage.

For more information about importing meta data, see the DataStage

Designer Guide.

SQL Data Types
The following SQL Server data types are supported by the BCPLoad

stage:

Bit

Char

DateTime

Decimal

Float

Integer

Money

Numeric

Real

SmallDateTime

SmallInt

SmallMoney
Server Job Developer’s Guide 15-15

BCPLoad Stages Plug-Ins and Plug-In Stages
TinyInt

VarChar

When you import meta data from your database table, these data

types are mapped to appropriate SQL data types by the ODBC driver.

You can view the data types used in the table definition with the

DataStage Manager, or when you edit a stage in your job design.

The following SQL Server data types are not supported by the

BCPLoad stage:

Binary

VarBinary

Image

Text (large text which is a binary type)

The BCPLoad Plug-In Definition
When the BCPLoad plug-in is installed, it is stored under Stage Types
‰ Built-in ‰ Server n the Repository. You can view the definition of

this plug-in using the DataStage Manager, but you cannot edit it.

When you choose to view the definition, the Stage Type dialog box

appears. This dialog box has up to five pages.

General. Specifies where the BCPLoad plug-in is installed and
contains a description of the stage.

Creator. Contains information about the creator of this stage.

Properties. Contains the stage properties for the BCPLoad stage
with suitable default settings. For a list of the properties, see
"Stage Properties" on page 15-16.

Dependencies. Contains the name of any DLLs used by the plug-
in.

NLS. Specifies how character set mapping is carried out for the
stage.

Stage Properties

The following properties are defined for the BCPLoad stage. You can

view them on the Properties tab in the Stage Type dialog box and

change them when you edit the stage instance.

SQL-Server Name. The name of the SQL Server to connect to.
This property corresponds to the BCP –S switch. This property is
optional and has no default value. If you leave this property blank
in the stage instance, the stage assumes the SQL Server resides
on the same machine as the DataStage Server.
15-16 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages BCPLoad Stages
User ID. The logon name of the SQL user. This property
corresponds to the BCP –U option. There is no default value for
this property. You must enter the name of the user when you edit
the stage instance.

Password. The password of the SQL user. This property
corresponds to the BCP –P option. There is no default value for
this property. You must enter a password when you edit the stage
instance.

Database Name. The name of the database to use on the SQL
Server. This property has no default value. You must enter the
name of the database when you edit the stage instance.

Table Name. The name of the table to load data into. This
property has no default value. You must enter the name of the
table to use when you edit the stage instance.

Before Load Stored Procedure. The name of a stored
procedure that is executed before the database table is loaded.
This property is optional and has no default value. For more
information about using a before-load stored procedure, see
"Using Stored Procedures" on page 15-20.

After Load Stored Procedure. The name of a stored procedure
that is executed after the database table is loaded. This property is
optional and has no default value. For more information about
using an after-load stored procedure, see "Using Stored
Procedures" on page 15-20.

Batch Size. The number of rows to include in the BCP batch. This
property corresponds to the BCP –b option. The default setting for
this property is 0, that is, all the data rows are treated in one batch.
If an error occurs, all rows are rolled back.

Packet Size. The number of bytes per network packet sent to and
from the server. The default value is 4096. When you edit the
stage instance, you can enter any number from 512 through
65535.

Use Source Identity Data. This property corresponds to the
BCP /E switch. Setting this property tells the SQL Server to use the
identity values that are passed to it by the BCPLoad stage, to
populate the corresponding identity column in the SQL Server
table.

Date Format. This property provides a workround to the problem
that Microsoft SQL Server has with dates in YMD format. If your
target table has a date column and your data has dates in YMD
format, a conversion is required for the date to load successfully.
By setting this property to ymd, dates are automatically converted
during loading to a format that Microsoft SQL Server accepts.
Server Job Developer’s Guide 15-17

BCPLoad Stages Plug-Ins and Plug-In Stages
Client Library. The type of client library to use. The default
setting is MSDBLIB (the Microsoft DBLibrary). Other valid settings
are SYBDBLIB for the Sybase DBLibrary and SYBCTLIB for the
Sybase CTLibrary. There are some restrictions on UNIX servers
about which libraries you can use, see "BCPLoad Plug-In" in
DataStage Install and Upgrade Guide for details,

Using the BCPLoad Stage
The BCPLoad plug-in is preinstalled and can be used immediately. To

use this plug-in, you must insert a plug-in stage in your job design:

1 Start the DataStage Designer and open your job design.

2 Click the BCPLoad Stage button on the tool palette.

3 Click in the Diagram window where you want to position the
stage.

Link an output from a relevant stage in the job design to the input of

the BCPLoad stage.

There are some special points to note about SQL Server. If the

following error is returned when using the BCPLoad stage with data in

YMD format, and the Date Format has been set:

Attempt to convert data stopped by syntax error in source field. If your
table contains date fields in ymd format make sure the Date Format
property is set

then deselect the Use International Settings checkbox in the DB-
Library option page of the SQL Server Client Network Utility.

If your job uses data in the upper 128 characters of the character set

and the data is not appearing correctly on the database then deselect

the Automatic ANSI to OEM conversion checkbox in the DB-
Library option page of the SQL Server Client Network Utility.

Editing the BCPLoad Stage
The BCPLoad stage is edited in the same way as any other DataStage

stage. When you edit this stage, the BCPLoad Stage dialog box

appears. This dialog box has two pages:

Stage. Contains the name of the stage you are editing. This page
has up to three tabs:

– General. Contains an optional description of the stage and the
stage type (BCPLoad).
15-18 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages BCPLoad Stages
– Properties. Contains the stage properties and their current
values. You can edit the settings for the stage properties or
specify job parameters. For more information about using job
parameters on this tab, see "Using Job Parameters" on
page 15-19.

– NLS. If NLS is enabled and you do not want to use the project
default character set map, you can select an alternative
character set map from this tab.

Inputs. Contains the name of the input link. This page has two
tabs:

– General. Contains an optional description of the link.

– Columns. Contains the column definitions for the data you are
loading into your database table. The column definitions on
this tab are specified by the meta data defined on the output
link of the connected stage. For more details see the DataStage
Designer Guide.

Using Job Parameters

You can use job parameters for any of the stage properties in the

BCPLoad stage. For a description of each of these properties, see

"Stage Properties" on page 15-16.

When you validate or run the job, you are prompted to enter suitable

values for the properties.

To use a job parameter:

1 Define the job parameter. For more details about defining job
parameters, see the DataStage Designer Guide.

2 Click the Properties tab on the Stage page in the BCPLoad
Stage dialog box. The Properties tab appears at the front of the
Stage page.

3 Click the Value cell for the property you want to edit.

4 Click Insert Job Parameter… or press F9. A list appears
displaying the currently defined job parameters. Choose one from
the list, or choose New to open the Job Properties dialog box to
define a new parameter.

5 Click OK to close the BCPLoad Stage dialog box. Any changes
are saved when you save your job design.

Defining Character Set Maps

You can define a character set map for the stage instance using the

NLS tab of the Stage Type dialog box. You can choose a specific
Server Job Developer’s Guide 15-19

BCPLoad Stages Plug-Ins and Plug-In Stages
character set map from the list or accept the default setting for the

whole project.

Note The list contains all the character set maps that are loaded

and ready for use. You can view other maps that are

supplied with DataStage by clicking Show all maps, but

these maps cannot be used unless they are loaded using

the DataStage Administrator. For more information, see the

DataStage Administrator Guide.

Using Stored Procedures

You can enter the name of a stored procedure to execute before or

after loading the database. Before-load stored procedures can be used

to perform tasks such as dropping indexes and turning on the

database bulk copy option. After-load stored procedures can be used

to turn off the bulk copy option and recreate any indexes. For a

detailed description of how to write a stored procedure, see the SQL

Server documentation.

The stored procedure name is entered as the value for the Before
Load Stored Procedure or After Load Stored Procedure stage

property. As well as entering the name of a stored procedure you can

also include parameter values. To enter parameters for the stored

procedure, use the following format in the Value field on the

Properties tab on the Stage page:

procedurename P1, P2, P3, …, Pn

procedurename is the name of the stored procedure. P1…Pn are

parameter values, in the order expected by the stored procedure. Note

that string values must be quoted.

If you want to return messages from a stored procedure and write

them to the job log file, you can use the output parameters DSSeverity

and DSMessage. These parameters return messages to the job log file

with an appropriate severity. The type of message written to the job

log file depends on the value returned by the DSSeverity parameter:

Return value of 0. Nothing is written.

Return value of 1. An informational message is written.

Return value of 2. A warning message is written.

Return value of 3. A fatal message is written. The DataStage job
aborts and any return values from the stored procedure other than
the DataStage expected output parameters, are ignored.

For more information about the job log file, see "The Job Log File" in

DataStage Director Guide.
15-20 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages BCPLoad Stages
The following example of a before-load stored procedure is supplied

as part of the BCPLoad demo SQL script, BCPDemo.sql. For more

information about the BCPLoad demo, see "Orabulk Stages" on

page 15-23.

This stored procedure demonstrates the use of the output parameters

DSSeverity and DSMessage:

create proc DemoBeforeSP
@lReplace bit,
@DSSeverity int output,
@DSMessage varchar(255) = "" output

as
/* Remove the following three lines if running on Sybase */
declare @sSetDBOption varchar(255)
select @sSetDBOption = 'sp_dboption' + DB_NAME() + ", 'select
➥ into/bulkcopy', TRUE"
exec (@sSetDBOption)
if @lReplace = 1

begin
truncate table BCPLoadSample

end
if @@ERROR = 0

begin
select @DSMessage = "Before SP completed: "
if @lReplace = 1

begin
select @DSMessage = @DSMessage + "replacing existing data"
end

else
begin
select @DSMessage = @DSMessage + "appending data"

end
select @DSSeverity = 1 /* INFO */

end
else

begin
select @DSMessage = "Before SP failed"
select @DSSeverity = 2 /* WARNING */

end
GO

To use this stored procedure, enter DemoBeforeSP
1,DSSeverity,DSMessage as the value for the Before Load Stored
Procedure property when you edit the stage instance:
Server Job Developer’s Guide 15-21

BCPLoad Stages Plug-Ins and Plug-In Stages
To use existing stored procedures, enter the name of the stored

procedure and appropriate parameter values as the value for the

Before Load Stored Procedure or After Load Stored Procedure

property.

For example, say your stored procedure includes the following:

create proc sp_TrustyDebuggedProcedure
@strTableName char(30),
@strSurname char(30),
@iRowCount int = 0 output

as
...
...

If you want to use this procedure as a before-load procedure, you

would enter sp_TrustyDebuggedProcedure "Table1","Smith" in the

Value field for the Before Load Stored Procedure property.

“Table1” and “Smith” are passed in as strTableName and

strSurname respectively.

If you want to modify an existing stored procedure to return a severity

warning and an error message, the create procedure needs to be

modified to include the two output parameters DSSeverity and

DSMessage. In the earlier example, the create procedure would

become:

create proc sp_TrustyDebuggedProcedure
@strTableName char(30),
@strSurname char(30),
@iRowCount int = 0 output,
@DSSeverity int output,
@DSMessage varchar(255) = "" output

as
...
.../* Somewhere in the procedure set appropriate values for DSSeverity and
DSMessage*/
15-22 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Orabulk Stages
In this case, you would enter the following in the Value field for the

Before Load Stored Procedure:

sp_TrustyDebuggedProcedure "Table1","Smith",0,DSSeverity,DSMessage

You can include job parameters to represent the value of a stored

procedure parameter. To use job parameters in the earlier example,

you would enter the following in the Value field for the Before Load
Stored Procedure:

sp_TrustyDebuggedProcedure #Table#,#Name#,0,DSSeverity,DSMessage

Table and Name are the names of two defined job parameters.

Orabulk Stages
The Orabulk stage is a plug-in stage supplied by Ascential. The

Orabulk plug-in is installed automatically when you install DataStage.

An Orabulk stage generates control and data files for bulk loading into

a single table on an Oracle target database. The files are suitable for

loading into the target database using the Oracle command sqlldr.

One input link provides a sequence of rows to load into an Oracle

table. The meta data for each input column determines how it is

loaded. One optional output link provides a copy of all input rows to

allow easy combination of this stage with other stages.

Using the Orabulk Stage
The Orabulk plug-in is preinstalled and can be used immediately. To

use this plug-in, you must insert a plug-in stage in your job design:

1 Start the DataStage Designer and open your job design.

2 Click the Orabulk button on the tool palette.

3 Click in the Diagram window where you want to position the
stage.

Link an output from the relevant stage to the input of the Orabulk

stage. The output should deliver a sequence of rows. To store these

rows or to process them further, link the output of this stage to an

input of another stage. Otherwise, leave the output of this stage

unconnected.

Renaming Columns and Converting Values

You cannot rename columns or convert values during an Orabulk

stage. You must do this in an earlier stage. The column names of the

input rows must match the column names in the target Oracle table.
Server Job Developer’s Guide 15-23

Orabulk Stages Plug-Ins and Plug-In Stages
See the description of the Column name characters to map stage

property in "Specifying the Stage Properties" on page 15-24 for a way

to map characters in a column name. The data types of the columns

should also correspond.

Integrity Constraints

Values for columns should satisfy any integrity constraints that will be

active in the Oracle database when the data is loaded, for example,

values that must be nonnull, or unique, or must already exist in other

tables. Otherwise, some rows may be rejected when the sqlldr

command is run.

Cleaning and Validating Data

The Orabulk stage does not validate data values, but it does clean up

some data values to match the length, precision, or scale of the data

type. For example, CHAR and VARCHAR values are truncated on the

right. DECIMAL and NUMERIC values are rounded to their specified

scale. If you want to clean data to ensure that it matches the integrity

constraints of the target table, you must do so in an earlier stage.

Specifying the Stage Properties
You can specify the following properties in addition to the standard

stage properties:

Property Description

Control file name A local pathname for the Oracle sqlldr control file.

If no value is specified, the control information is
output at the start of the data file. If there is more than
one data file, each data file gets a copy of the same
control information.

If a pathname is specified, a single control file is
generated which can be used with any of the data files
generated. If the pathname has no suffix, sqlldr adds
the suffix .ctl to the pathname.

If a control file already exists, it is truncated before
processing; if a control file does not exist, it is created.
15-24 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Orabulk Stages
Data file name A local pathname for the Oracle sqlldr data file. If the
pathname has no suffix, sqlldr adds the suffix .dat to the
pathname. If there is more than one data file, the files are
sequentially numbered, for example, datafile1, datafile2,
and so on. You can specify a position for the numbering by
including a % character in the file name. For example, the
value data%file produces files named data1file, data2file,
and so on. If a data file already exists, it is truncated before
processing; if a data file does not exist, it is created.

Oracle table name The name of the target table that the files are loaded into
on the Oracle database. This value must be identical to the
target table name.

Loading mode One of the following values:

INSERT Inserts the rows into the table. It can be
used only if the target table is empty.

APPEND Appends new rows to the table if they do
not conflict with existing tables.

REPLACE Deletes existing rows in the table, using an
SQL DELETE statement, before inserting the
new rows.

TRUNCATE Deletes all existing rows in the table with an
SQL TRUNCATE TABLE statement (Oracle
Release 7.1 or later only).

Number of files to
generate

The number of data, or combined control and data files to
be generated. A value greater than 1 generates multiple
distinct files that must be loaded using sqlldr with the
DIRECT and PARALLEL keywords only. The default value is
1.

Size of row chunks in
each data file

If the value of NUMFILES is greater than 1, this value
determines how many rows are output to each of the
distinct data files in turn. The default value is 1000.

Column name
characters to map

A string of character pairs to map column names from their
internal DataStage names to the column names used by
the Oracle bulk loader. The format of this string is as
follows: character 1 is mapped to character 2, character 3 is
mapped to character 4, and so on. For example, the string
._ (period underscore), causes all periods in column names
to be mapped to underscores. The string aAbBcCdDeE and
so on maps lowercase characters to uppercase characters.

Data file field
separator

The character used to separate data fields. It should be a
character which cannot appear in the fields, and is ,
(comma) by default.

Data file quote
character

The character used to delimit character strings in the data
file.

Property Description
Server Job Developer’s Guide 15-25

Orabulk Stages Plug-Ins and Plug-In Stages
Any property value can contain a reference to a job parameter as

#param#. This causes the current value of job parameter param to be

substituted. This lets you specify different control and data file names

for different runs of a DataStage job.

The BEFORE and AFTER subroutines can be used for a variety of

purposes, such as notifying an operator that the files are available, or

copying the files to the Oracle database and running sqlldr.

Defining Character Set Maps
You can define a character set map for a particular Orabulk stage

using the NLS tab of the Stage dialog box. You can select a specific

character set map from the list or accept the default setting for the

whole project.

Note The list contains all character set maps that are loaded and

ready for use. You can view other maps that are supplied

with DataStage by clicking Show all maps, but these maps

cannot be used unless they are loaded using the DataStage

Administrator. For more information, see the Administrator

Guide.

Loading the Files into Oracle
Once the control and data files have been completed, you can transfer

them to the target Oracle database using the Oracle sqlldr command.

Before you run sqlldr, check that the following environment variables

are set correctly:

Running sqlldr
This section includes examples of syntax used for the sqlldr command

running under UNIX. For more information see the Oracle manual

ORACLE_HOME This must be set to the Oracle installation directory.

ORACLE_SID This must be set to the name of your Oracle database
instance.

PATH This must include the Oracle bin subdirectory.
15-26 Server Job Developer’s Guide

Plug-Ins and Plug-In Stages Orabulk Stages
Oracle Server Utilities. Every command line includes these syntax

elements:

To load a single combined control and data file, use this command:

sqlldr userid=username/password control=datafile log=logfile bad=badfile

To load separate single control and data files, use this command:

sqlldr userid=username/password control=ctlfile data=datafile log=logfile
bad=badfile

To load a single combined control and data file in Oracle DIRECT

mode, add the DIRECT keyword as follows:

sqlldr userid=username/password control=datafile log=logfile bad=badfile
direct=true

Note DIRECT loading may require some administrator actions

before and after loading to preserve database integrity. For

more information, see Oracle Server Utilities.

To load multiple data files in parallel, run several sqlldr commands,

each in its own UNIX process; for example, to load two data files in

parallel, run the following two commands:

sqlldr userid=username/password control=ctlfile data=datafile1
log=logfile1 bad=badfile1 direct=true parallel=true &

sqlldr userid=username/password control=ctlfile data=datafile2
log=logfile2 bad=badfile2 direct=true parallel=true &

These could be generated with a shell script. Each command uses the

same control file, but separate data files, log files, and bad files.

Errors and Bad Rows

Any errors that occur during processing are reported in the DataStage

log files. Possible errors include running out of disk space to write a

control or data file, or insufficient operating system permissions to

username/
password

The Oracle user name and password, separated by a slash (/),
to be used to log on to the database. username must have
appropriate privileges for the database and the table to be
loaded. Use UNIX shell quoting or escaping conventions to
include white space or shell characters in the password.

datafile Pathname of the sqlldr data file, or the combined control and
data file.

ctlfile Pathname of the sqlldr control file.

logfile Pathname of a file for the sqlldr log.

badfile Pathname into which sqlldr writes rows that could not be
loaded. The rows are written in sqlldr format suitable for
loading again when any problem has been resolved.
Server Job Developer’s Guide 15-27

Orabulk Stages Plug-Ins and Plug-In Stages
create and write these files. Errors that occur as the files are loaded

into Oracle are recorded in the sqlldr log file.

Rejected rows are written to the bad file. The main reason for rejected

rows is an integrity constraint in the target table; for example, null

values in NOT NULL columns, nonunique values in UNIQUE columns,

and so on. The bad file is in the same format as the input data file.

You can edit the file to correct errors and then resubmit it using the

same control file. If the MODE property was not APPEND, you should

edit the control file to change the REPLACE, TRUNCATE, or INSERT

keyword to APPEND. This ensures that a subsequent sqlldr run does

not delete rows you have already loaded. Each run of sqlldr appends

new rejected rows to the bad file. You should manually truncate or

delete the bad file after processing it so that rejected records from

previous runs do not show up again.

Empty and Null Values

Both empty and null values in input columns are loaded into Oracle as

null values. If you examine the data file produced, you may find that

some rows of values have fewer comma-delimited fields. These

indicate trailing null values for columns not shown. If a target column

is fixed-width, Oracle pads nonempty values on the right with blanks.
15-28 Server Job Developer’s Guide

16
Debugging, Compiling, and Releasing

a Job

This chapter describes how to create and release an executable job.

When you have edited all the stages in a job design, you can create an

executable job by compiling your job design. The debugger helps you

to iron out any problems in your design. The job can then be validated

and run using the DataStage Director.

If you want to ship the executable job to another DataStage system,

you must release the job before packaging it for deployment. For

more information about packaging a job, see "Importing, Exporting,

and Packaging Jobs" in DataStage Manager Guide.

The DataStage Debugger
The DataStage debugger provides basic facilities for testing and

debugging your job designs. The debugger is run from the DataStage

Designer. It can be used from a number of places within the Designer:

Debug menu (Debug)

Debugger toolbar

Shortcut menu (some commands).

The debugger enables you to set breakpoints on the links in your job.

When you run the job in debug mode, the job will stop when it

reaches a breakpoint. You can then step to the next action (reading or

writing) on that link, or step to the processing of the next row of data

(which may be on the same link or another link).
Server Job Developer’s Guide 16-1

The DataStage Debugger Debugging, Compiling, and Releasing a Job
Any breakpoints you have set remain if the job is closed and

reopened. Breakpoints are validated when the job is compiled, and

remain valid if the link to which it belongs is moved, or has either end

moved, or is renamed. If, however, a link is deleted and another of the

same name created, the new link does not inherit the breakpoint.

Breakpoints are not inherited when a job is saved under a different

name, exported, or upgraded.

Note You should be careful when debugging jobs that do parallel

processing (using IPC stages or inter-process active-to-

active links). You cannot set breakpoints on more than one

process at a time. To ensure this doesn’t happen, you

should only set one breakpoint at a time in such jobs.

To add a breakpoint:

1 Select the required link.

2 Choose Toggle Breakpoint from the Debugger menu or the
Debugger toolbar. The breakpoint can subsequently be removed
by choosing Toggle Breakpoint again.

A circle appears on the link to indicate that a breakpoint has been

added. Choose Edit Breakpoints from the Debugger menu, or click

the Edit Breakpoints button in the Debugger toolbar to open the

Edit Breakpoints dialog box and set up the breakpoint.

Note You cannot place a breakpoint on a link which has a

container as its source stage. Instead, you should place the

breakpoint on the same link as represented within the

container view itself. The link will only be shown as having

a breakpoint in the container view. For more information

see "Debugging Shared Containers" on page 16-5.
16-2 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job The DataStage Debugger
The Debug Window allows you to view variables in the watch list and

any in-context variables when you stop at a breakpoint.

The Debug Window is visible whenever Debug ‰ Debug Window is

selected. It always appears on the top of the DataStage Designer

window. Right-clicking in the Debug Window displays a shortcut

menu containing the same items as the Debug menu. The Debug

Window has two display panes. You can drag the splitter bar between

the two panes to resize them relative to one another. The window also

gives information about the status of the job and debugger.

The upper pane shows local variables. Before debugging starts, all the

columns on all the links in the job are displayed, and all are marked

“Out of context”. During debugging, the pane shows only the variables

that are in context when the job is stopped at a breakpoint. It displays

the names and values of any variables currently in context and you

can add any of these variables to the watch list, which maintains a

record of selected variables for as long as required.

The lower pane displays variables in the watch list. When variables

are in context, their values are displayed and updated at every

breakpoint. When variables are out of context, they are marked “Out

of context”. The watch list is saved between sessions.

To add a variable to the watch list:

1 Select the variable name in the upper pane of the Debug Window.

2 Click Add Watch. The variable will be added to the watch list and
will appear in the lower pane.

To delete variables from the watch list, select the variables and click

Remove Watch.
Server Job Developer’s Guide 16-3

The DataStage Debugger Debugging, Compiling, and Releasing a Job
The following commands are available from the Debug menu or

Debug toolbar:

Target Job. Selects the job to debug. Only one job can be
debugged at any one time.

Note After a job has been debugged, the job in the Target Job

drop-down list will not be available.

Go. Runs the current job in debug mode, compiling it first if
necessary. In debug mode the job will run until a breakpoint is
encountered. It then stops in break mode, allowing you to interact
with the job. The first time that Go is used after a job is compiled
or loaded, the Job Run Options dialog box appears and collects
any required parameter values or run-time limits.

Step to Next Link. This causes the job to run until the next
action occurs on any link (reading or writing), when it stops in
break mode.

Step to Next Row. This causes the job to run until the next row
is processed or until another link with a breakpoint is
encountered, whichever comes first. The job then stops in break
mode. If the job is not currently stopped at a breakpoint on a link
(for example, if it hasn’t started debugging yet, or is stopped at a
warning), then this will perform as Step to Next Link.

Stop Job. Only available in break mode. Stops the job and exits
break mode.

Job Parameters… . Allows you to specify job parameters for
when the job is run in debug mode. Selecting this invokes the Job
Run Options dialog box, allowing you to specify any required
parameters or run-time limits for the job. The item is disabled
once the job is started in debug mode.

Edit Breakpoints… . Allows you to edit existing breakpoints or
add new ones.

Target Job List

Step to
Next Link

Stop Job

Edit
Breakpoints

Clear All
Breakpoints

Debug
Window

Go

Step to
Next Row

Job
Parameters

Toggle
Breakpoint

View Job
Log
16-4 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job The DataStage Debugger
Toggle Breakpoint. Allows you to set or clear a breakpoint from
the selected link. If a link has a breakpoint set (indicated by a dark
circle at the link source), then Toggle Breakpoint clears that
breakpoint. If the link has no breakpoint, then one is added,
specifying a stop at every row processed.

Clear All Breakpoints. Deletes all breakpoints defined for all
links.

View Job Log. Select this to open the DataStage Director with
the current job open in the job log view (the job must have been
saved in the Designer at some point for this to work)

Debug Window. Select this to display the Debug Window.
Deselect it to hide the Debug Window.

Debugging Shared Containers
The process for debugging Shared Containers is the same as that for

other jobs, but breakpoints are handled differently:

You cannot place a breakpoint on a link which has a container as
its source stage.
Server Job Developer’s Guide 16-5

The DataStage Debugger Debugging, Compiling, and Releasing a Job
Instead, you should place the breakpoint on the same link as

represented within the container view. The link will only be shown

as having a breakpoint in the container view.

If a breakpoint is set on a link inside a Shared Container, it will
only become active (and visible) for the target job as shown on the
debug bar.

Note The debug bar only shows open Server Jobs because a

Shared Container cannot be run outside the context of a

job.

If a different job uses the same shared container that is being
debugged, then the breakpoint will not be visible or be hit in the
other job. The example below shows a job called ‘Ex2’ which uses
the same shared container as the previous example called
‘Exercise 4’. The breakpoint will only be set for the target job
which is Exercise 4.
16-6 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job Compiling a Job
Compiling a Job
Jobs are compiled using the DataStage Designer. To compile a job,

open the job in the Designer and do one of the following:

Choose File ➤ Compile.

Click the Compile button on the toolbar.

If the job has unsaved changes, you are prompted to save the job by

clicking OK. The Compile Job window appears. This window contains

a display area for compilation messages and has the following

buttons:

Re-Compile. Recompiles the job if you have made any changes.

Show Error. Highlights the stage that generated a compilation
error. This button is only active if an error is generated during
compilation.

More. Displays the output that does not fit in the display area.
Some errors produced by the compiler include detailed BASIC
output.

Close. Closes the Compile Job window.

Help. Invokes the Help system.

The job is compiled as soon as this window appears. You must check

the display area for any compilation messages or errors that are

generated.

If there have been breakpoints set for links that no longer exist, a

message appears during compilation warning you of this. The

breakpoints are then automatically removed.

Compilation Checks
During compilation, the following criteria in the job design are

checked:
Server Job Developer’s Guide 16-7

Graphical Performance Monitor Debugging, Compiling, and Releasing a Job
Primary Input. If you have more than one input link to a
Transformer stage, the compiler checks that one is defined as the
primary input link.

Reference Input. If you have reference inputs defined in a
Transformer stage, the compiler checks that these are not from
sequential files.

Key Expressions. If you have key fields specified in your column
definitions, the compiler checks that there are key expressions
joining the data tables.

Transforms. If you have specified a transform, the compiler
checks that this is a suitable transform for the data type.

Successful Compilation
If the Compile Job window displays the message Job successfully
compiled with no errors you can:

Validate the job

Run or schedule the job

Release the job

Package the job for deployment on other DataStage systems

Jobs are validated and run using the DataStage Director. See the

DataStage Director Guide for more information.

Troubleshooting
If the Compile Job window displays an error, you can use the Show
Error button to troubleshoot your job design. When you click the

Show Error button, the stage that contains the first error in the

design is highlighted. You must edit the stage to change any incorrect

settings and recompile.

The process of troubleshooting compilation errors is an iterative

process. You must refine each “problem” stage until the job compiles

successfully.

Graphical Performance Monitor
Server jobs The Performance monitor is a useful diagnostic aid when designing

DataStage server jobs. When you turn it on and compile a job it

displays information against each link in the job. When you run the

job, either through the DataStage Director or the debugger, the link

information is populated with statistics to show the number of rows
16-8 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job Graphical Performance Monitor
processed on the link and the speed at which they were processed.

The links change color as the job runs to show the progress of the job.

To use the performance monitor:

1 With the job open and compiled in the Designer choose
Diagram➤ Show performance statistics. Performance
information appears against the links. If the job has not yet been
run, the figures will be empty.
Server Job Developer’s Guide 16-9

Graphical Performance Monitor Debugging, Compiling, and Releasing a Job
2 Run the job (either from the Director or by choosing Debug ➤
Go). Watch the links change color as the job runs and the statistics
are populated with number of rows and rows/sec.

If you alter anything on the job design you will lose the statistical

information until the next time you compile the job.

The colors that the performance monitor uses are set via the Options

dialog box. Chose Tools ➤ Options and select the Graphical
Performance Monitor branch to view the default colors and change
16-10 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job Releasing a Job
them if required. You can also set the refresh interval at which the

monitor updates the information while the job is running.

Releasing a Job
If you are developing a job for users on another DataStage system,

you must label the job as ready for deployment before you can

package it. For more information about packaging a job, see "Using

the Packager Wizard" in DataStage Manager Guide.

To label a job for deployment, you must release it. A job can be

released when it has been compiled and validated successfully at

least once in its life.

Jobs are released using the DataStage Manager. To release a job:

1 From the DataStage Manager, browse to the required category in
the Jobs branch in the project tree.

2 Select the job you want to release in the display area.

3 Choose Tools ➤ Release Job. The Job Release dialog box
appears, which shows a tree-type hierarchy of the job and any
associated dependent jobs.

4 Select the job that you want to release.

5 Click Release Job to release the selected job, or Release All to
release all the jobs in the tree.

A physical copy of the chosen job is made (along with all the routines

and code required to run the job) and it is recompiled. The Releasing
Job dialog box appears and shows the progress of the releasing

process.
Server Job Developer’s Guide 16-11

Releasing a Job Debugging, Compiling, and Releasing a Job
The released job is automatically assigned a name and version

number using the format jobname%reln.n.n. jobname is the name of

the job you chose to release and n.n.n is the version number. When

you refer to a job by its released name, this is known as a “fixed job

release,” which always equates to that particular version of the job.

You can use the Designer to view the design of a released job.

However, if you edit the job design you cannot save the changes. The

meta data and settings displayed in the job design are stored as part

of the released job and these may not match the information currently

held in the Repository. This is especially true if you developed the

table definitions, transforms, routines, or job design after the job was

released.

If you want to develop and enhance a job design, you must edit the

original job. To use the changes you have made, you must release the

job again.

Note Released jobs cannot be copied or renamed using the

Manager.

The Job Release dialog box is shown below:

This dialog box contains a tree-type hierarchy showing the job

dependencies of the job you are releasing. It displays the status of the

selected job as follows:

Not Compiled. The job exists, but has not yet been compiled
(this means you will not be able to release it).

Not Released. The job has been compiled, but not yet released.

Job Not Found. The job cannot be found.

Released. The job has previously been released.

Release Exists. The selected job is a fixed version (i.e., has a
particular release number) and that version of the job exists.
16-12 Server Job Developer’s Guide

Debugging, Compiling, and Releasing a Job Releasing a Job
The dialog box also displays the highest released version of the

selected job. When the selected job is a fixed version job (i.e., has a

particular release number), then it displays Fixed Job Release.

If a dependent job appears in more than one branch of the hierarchy,

then only the one at the highest level is displayed.
Server Job Developer’s Guide 16-13

Releasing a Job Debugging, Compiling, and Releasing a Job
16-14 Server Job Developer’s Guide

17
Programming in DataStage

This chapter describes the programming tasks that you can perform in

DataStage server jobs. Most of these use the BASIC language, which

provides you with a powerful procedural programming tool.

There are several areas within a server job where you may want to

enter some code:

Defining custom routines to use as building blocks within other
programming tasks. For example, you may define a routine which
will then be reused by several custom transforms. You can view,
edit, and create your own BASIC routines using the DataStage
Manager.

Defining custom transforms. The function specified in a transform
definition converts the data in a chosen column.

Defining derivations, key expressions, and constraints while
editing a Transformer stage.

Defining before-stage and after-stage subroutines. These
subroutines perform an action before or after a stage has
processed data. These subroutines can be specified for
Aggregator, Transformer, and some plug-in stages.

Defining before-job and after-job subroutines. These subroutines
perform an action before or after a job is run and are set as job
properties.

Defining job control routines. These subroutines can be used to
control other jobs from within the current job.
Server Job Developer’s Guide 17-1

Programming Components Programming in DataStage
Programming Components
There are different types of programming components used within

server jobs. They fall within three broad categories:

Built-in. DataStage comes with several built-in programming
components that you can reuse within your server jobs as
required. Some of the built-in components are accessible using
the DataStage Manager, and you can copy code from these.
Others are only accessible from the Expression Editor, and the
underlying code is not visible.

Custom. You can also define your own programming
components using the DataStage Manager, specifically routines
(see page 17-5) and custom transforms (see page 17-18). These
are stored in the DataStage Repository and can be reused for
other jobs and by other DataStage users.

External. You can use certain types of external component from
within DataStage. If you have a large investment in custom
UniVerse functions or ActiveX (OLE) functions, then it is possible
to call these from within DataStage. This is done by defining a
wrapper routine which in turn calls the external functions. Note
that the mechanism for including custom UniVerse functions is
different from including ActiveX (OLE) functions.

The following sections discuss programming terms you will come

across when programming server jobs.

Routines
Routines are stored in the Routines branch of the DataStage

Repository, where you can create, view or edit them using the

Routine dialog box. The following program components are

classified as routines:

Transform functions. These are functions that you can use
when defining custom transforms. DataStage has a number of
built-in transform functions which are located in the Routines ➤
Examples ➤ Functions branch of the Repository. You can also
define your own transform functions in the Routine dialog box.

Before/After subroutines. When designing a job, you can
specify a subroutine to run before or after the job, or before or
after an active stage. DataStage has a number of built-in before/
after subroutines, which are located in the Routines ➤ Built-in ➤
Before/After branch in the Repository. You can also define your
own before/after subroutines using the Routine dialog box.
17-2 Server Job Developer’s Guide

Programming in DataStage Programming Components
Custom UniVerse functions. These are specialized BASIC
functions that have been defined outside DataStage. Using the
Routine dialog box, you can get DataStage to create a wrapper
that enables you to call these functions from within DataStage.
These functions are stored under the Routines branch in the
Repository. You specify the category when you create the routine.
If NLS is enabled, you should be aware of any mapping
requirements when using custom UniVerse functions. If a function
uses data in a particular character set, it is your responsibility to
map the data to and from Unicode.

ActiveX (OLE) functions. You can use ActiveX (OLE) functions
as programming components within DataStage. Such functions
are made accessible to DataStage by importing them. This creates
a wrapper that enables you to call the functions. After import, you
can view and edit the BASIC wrapper using the Routine dialog
box. By default, such functions are located in the Routines ➤
Class name branch in the Repository, but you can specify your
own category when importing the functions.

When using the Expression Editor, all of these components appear

under the DS Routines… command on the Suggest Operand
menu.

A special case of routine is the job control routine. Such a routine is

used to set up a DataStage job that controls other DataStage jobs. Job

control routines are specified in the Job control page on the Job
Properties dialog box. Job control routines are not stored under the

Routines branch in the Repository.

Transforms
Transforms are stored in the Transforms branch of the DataStage

Repository, where you can create, view or edit them using the

Transform dialog box. Transforms specify the type of data

transformed, the type it is transformed into and the expression that

performs the transformation.

DataStage is supplied with a number of built-in transforms (which you

cannot edit). You can also define your own custom transforms, which

are stored in the Repository and can be used by other DataStage jobs.

When using the Expression Editor, the transforms appear under the

DS Transform… command on the Suggest Operand menu.

Functions
Functions take arguments and return a value. The word “function” is

applied to many components in DataStage:
Server Job Developer’s Guide 17-3

Programming Components Programming in DataStage
BASIC functions. These are one of the fundamental building
blocks of the BASIC language. When using the Expression Editor,
you can access the BASIC functions via the Function… command
on the Suggest Operand menu.

DataStage BASIC functions. These are special BASIC functions
that are specific to DataStage. These are mostly used in job
control routines. DataStage functions begin with DS to distinguish
them from general BASIC functions. When using the Expression
Editor, you can access the DataStage BASIC functions via the DS
Functions… command on the Suggest Operand menu.

The following items, although called “functions,” are classified as

routines and are described under "Routines" on page 17-2. When

using the Expression Editor, they all appear under the DS Routines…

command on the Suggest Operand menu.

Transform functions

Custom UniVerse functions

ActiveX (OLE) functions

Expressions
An expression is an element of code that defines a value. The word

“expression” is used both as a specific part of BASIC syntax, and to

describe portions of code that you can enter when defining a job.

Areas of DataStage where you can use such expressions are:

Defining breakpoints in the debugger

Defining column derivations, key expressions, and constraints in
Transformer stages

Defining a custom transform

In each of these cases the DataStage Expression Editor guides you as

to what programming elements you can insert into the expression.

Subroutines
A subroutine is a set of instructions that perform a specific task.

Subroutines do not return a value. The word “subroutine” is used

both as a specific part of BASIC syntax, but also to refer particularly to

before/after subroutines which carry out tasks either before or after a

job or an active stage. DataStage has many built-in before/after

subroutines, or you can define your own.

Before/after subroutines are included under the general routine

classification as they are accessible under the Routines branch in the

Repository.
17-4 Server Job Developer’s Guide

Programming in DataStage Working with Routines
Macros
DataStage has a number of built-in macros. These can be used in

expressions, job control routines, and before/after subroutines. The

available macros are concerned with ascertaining job status.

When using the Expression Editor, they all appear under the DS
Macro… command on the Suggest Operand menu.

Precedence Rules
The following precedence rules are applied if there are name conflicts

between different operands when working with DataStage

programming components:

1 Built-in functions declared in the DSParams file

2 DataStage macros

3 DataStage constants

4 DataStage functions

5 DataStage transforms

6 DataStage routines

These rules ignore the number of arguments involved. For example, if

there is a transform with three arguments and a routine of the same

name with two arguments, an error is generated if you call the routine

because the transform will be found first and the transform expects

three arguments.

Working with Routines
When you create, view, or edit a routine under the Routines branch in

the DataStage Manager, the Server Routine dialog box appears. This

dialog box has five pages: General, Creator, Arguments, Code,

and Dependencies.

There are five buttons in the Server Routine dialog box. Their

availability depends on the action you are performing and the type of

routine you are editing.

Close. Closes the Routine dialog box. If you have any unsaved
changes, you are prompted to save them.

Save. Saves the routine.

Compile… . Compiles a saved routine. This button is available
only when there are no outstanding (unsaved) changes.
Server Job Developer’s Guide 17-5

Working with Routines Programming in DataStage
Test… . Tests a routine. This button is available only for routines
of type Transform Function and Custom UniVerse Function.
This is because you cannot test before-subroutines and after-
subroutines in isolation. This button is active only when the
routine has compiled or referenced successfully.

Help. Invokes the Help system.

The Server Routine Dialog Box

General Page

The General page is displayed by default. It contains general

information about the routine, including:

Routine name. The name of the function or subroutine.

Type. The type of routine. There are three types of routine:
Transform Function, Before/After Subroutine, or Custom
UniVerse Function.

Category. The branch the routine is stored under in the
Repository.

External Catalog Name. This is only available if you have
chosen Custom UniVerse Function from the Type box. Enter
the cataloged name of the external routine.

Short description. An optional brief description of the routine.
The text entered in this field is displayed when you choose View
➤ Details from the DataStage Manager window or print a report.
17-6 Server Job Developer’s Guide

Programming in DataStage Working with Routines
Long description. An optional detailed description of the
routine.

Creator Page

The Creator page contains information about the creator and version

number of the routine, including:

Vendor. The company who created the routine.

Author. The creator of the routine.

Version. The version number of the routine, which is used when
the routine is imported. The Version field contains a three-part
version number, for example, 3.1.1. The first part of this number is
an internal number used to check compatibility between the
routine and the DataStage system. The second part of this number
represents the release number. This number should be
incremented when major changes are made to the routine
definition or the underlying code. The new release of the routine
supersedes any previous release. Any jobs using the routine use
the new release. The last part of this number marks intermediate
releases when a minor change or fix has taken place.

If you are creating a routine definition, the first part of the version

number is set according to the version of DataStage you are

using. You can edit the rest of the number to specify the release

level. Click the part of the number you want to change and enter a

number directly, or use the arrow button to increase the value.

Copyright. Copyright information.
Server Job Developer’s Guide 17-7

Working with Routines Programming in DataStage
Arguments Page

The default argument names and whether you can add or delete

arguments depends on the type of routine you are editing:

Before/After subroutines. The argument names are InputArg
and Error Code. You can edit the argument names and
descriptions but you cannot delete or add arguments.

Transform Functions and Custom UniVerse Functions. By
default these have one argument called Arg1. You can edit
argument names and descriptions and add and delete arguments.
There must be at least one argument, but no more than 255.
17-8 Server Job Developer’s Guide

Programming in DataStage Working with Routines
Code Page

The Code page is used to view or write the code for the routine. The

toolbar contains buttons for cutting, copying, pasting, and formatting

code, and for activating Find (and Replace). The main part of this

page consists of a multiline text box with scroll bars. For more

information on how to use this page, see "Entering Code" on

page 17-12.

Note This page is not available if you selected Custom
UniVerse Function on the General page.
Server Job Developer’s Guide 17-9

Working with Routines Programming in DataStage
Dependencies Page

The Dependencies page allows you to enter any locally or globally

cataloged functions or routines that are used in the routine you are

defining. This is to ensure that, when you package any jobs using this

routine for deployment on another system, all the dependencies will

be included in the package. The information required is as follows:

Type. The type of item upon which the routine depends. Choose
from the following:

LocalLocally cataloged DataStage BASIC functions and

subroutines.

GlobalGlobally cataloged DataStage BASIC functions and

subroutines.

FileA standard file.

ActiveXAn ActiveX (OLE) object (not available on UNIX-

based systems).

Name. The name of the function or routine. The name required
varies according to the type of dependency:

Local The catalog name.

Global The catalog name.

File The file name.
17-10 Server Job Developer’s Guide

Programming in DataStage Working with Routines
ActiveX The Name entry is actually irrelevant for ActiveX

objects. Enter something meaningful to you (ActiveX objects are

identified by the Location field).

Location. The location of the dependency. A browse dialog box is
available to help with this. This location can be an absolute path,
but it is recommended you specify a relative path using the
following environment variables:

Note The browse dialog is not available for local cataloged

items.

%SERVERENGINE% – DataStage Engine account directory

(normally C:\Ascential\DataStage\ServerEngine).

%PROJECT% – Current project directory.

%SYSTEM% – System directory on Windows or /usr/lib on UNIX.

The Browse Files dialog box is shown below. You cannot navigate to

the parent directory of an environment variable.

When browsing for the location of a file on a UNIX server, there is an

entry called Root in the Base Locations drop-down list.

Creating a Routine
To create a new routine, select the Routines branch in the DataStage

Manager window and do one of the following:

Choose File ➤ New Server Routine… .

Choose New Server Routine… from the shortcut menu.

Click the New button on the toolbar.

The Server Routine dialog box appears. On the General page:
Server Job Developer’s Guide 17-11

Working with Routines Programming in DataStage
1 Enter the name of the function or subroutine in the Routine
name field. This should not be the same as any BASIC function
name.

2 Choose the type of routine you want to create from the Type drop-
down list box. There are three options:

– Transform Function. Choose this if you want to create a
routine for a Transform definition.

– Before/After Subroutine. Choose this if you want to create a
routine for a before-stage or after-stage subroutine or a before-
job or after-job subroutine.

– Custom UniVerse Function. Choose this if you want to refer
to an external routine, rather than define one in this dialog box.
If you choose this, the Code page will not be available.

3 Enter or browse for a category name in the Category field. This
name is used to create a branch under the main Routines branch.
If you do not enter a name in this field, the routine is created
under the main Routines branch.

4 Optionally enter a brief description of the routine in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window.

5 Optionally enter a more detailed description of the routine in the
Long description field.

Once this page is complete, you can enter creator information on the

Creator page, argument information on the Arguments page, and

details of any dependencies on the Dependencies page. You must

then enter your code on the Code page.

Entering Code

You can enter or edit code for a routine on the Code page in the

Server Routine dialog box.

The first field on this page displays the routine name and the

argument names. If you want to change these properties, you must

edit the fields on the General and Arguments pages.

The main part of this page contains a multiline text entry box, in which

you must enter your code. To enter code, click in the box and start

typing. You can use the following standard Windows edit functions in

this text box:

Delete using the Del key

Cut using Ctrl-X

Copy using Ctrl-C
17-12 Server Job Developer’s Guide

Programming in DataStage Working with Routines
Paste using Ctrl-V

Go to the end of the line using the End key

Go to the beginning of the line using the Home key

Select text by clicking and dragging or double-clicking

Some of these edit functions are included in a shortcut menu which

you can display by clicking the right mouse button. You can also cut,

copy, and paste code using the buttons in the toolbar.

Your code must only contain BASIC functions and statements

supported by DataStage. If you are unsure of the supported functions

and statements, or the correct syntax to use, see Chapter 18, "BASIC

Programming." for a complete list of supported DataStage BASIC

functions.

If NLS is enabled, you can use non-English characters in the following

circumstances:

In comments

In string data (that is, strings contained in quotation marks)

The use of non-English characters elsewhere causes compilation

errors.

If you want to format your code, click the Format button on the

toolbar.

The last field on this page displays the return statement for the

function or subroutine. You cannot edit this field.

Saving Code

When you have finished entering or editing your code, the routine

must be saved. A routine cannot be compiled or tested if it has not

been saved. To save a routine, click Save in the Server Routine

dialog box. The routine properties (its name, description, number of

arguments, and creator information) and the associated code are

saved in the Repository.

Compiling Code

When you have saved your routine, you must compile it. To compile a

routine, click Compile… in the Server Routine dialog box. If the

routine compiles successfully, a message box appears. Click OK to

acknowledge the message. The routine is marked as “built” in the

Repository and is available for use. If the routine is a Transform
Function, it is displayed in the list of available functions when you

edit a transform. If the routine is a Before/After Subroutine, it is

displayed in the drop-down list box of available subroutines when you
Server Job Developer’s Guide 17-13

Working with Routines Programming in DataStage
edit an Aggregator, Transformer, or plug-in stage, or define job

properties. If the routine failed to compile, the errors generated are

displayed:

Before you start to investigate the source of the error, you may find it

useful to move the Compilation Output window alongside or below

the Server Routine dialog box, as you need to see both windows to

troubleshoot the error.

To troubleshoot the error, double-click the error in the Compilation

Output window. DataStage attempts to find the corresponding line of

code that caused the error and highlights it in the Server Routine

dialog box. You must edit the code to remove any incorrect

statements or to correct any syntax errors.

If NLS is enabled, watch for multiple question marks in the

Compilation Output window. This generally indicates that a character

set mapping error has occurred.

When you have modified your code, click Save then Compile… . If

necessary, continue to troubleshoot any errors, until the routine

compiles successfully.

Once the routine is compiled, you can use it in other areas of

DataStage or test it. For more information, see "Testing a Routine" on

page 17-14.

Testing a Routine

Before using a compiled routine, you can test it using the Test…

button in the Server Routine dialog box. The Test… button is

activated when the routine has been successfully compiled.

Note The Test… button is not available for a Before/After
Subroutine. Routines of this type cannot be tested in

isolation and must be executed as part of a running job.

When you click Test…, the Test Routine dialog box appears:
17-14 Server Job Developer’s Guide

Programming in DataStage Working with Routines
This dialog box contains a grid and buttons. The grid has a column for

each argument and one for the test result.

You can add and edit rows in the grid to specify the values for

different test cases. For more information about using and editing a

grid, see "Editing Grids" in DataStage Designer Guide.

To run a test with a chosen set of values, click anywhere in the row

you want to use and click Run. If you want to run tests using all the

test values, click Run All. The Result… column is populated as each

test is completed.

To see more details for a particular test, double-click the Result… cell

for the test you are interested in. The Test Output window appears,

displaying the full test results:

Click Close to close this window.

If you want to delete a set of test values, click anywhere in the row you

want to remove and press the Delete key or choose Delete row from

the shortcut menu.

When you have finished testing the routine, click Close to close the

Test Routine dialog box. Any test values you entered are saved when

you close the dialog box.

Using Find and Replace

If you want to search the code for specific text, or replace text, you can

use Find and Replace. To start Find, click the Find button on the

Code page toolbar. The Find dialog box appears:
Server Job Developer’s Guide 17-15

Working with Routines Programming in DataStage
This dialog box has the following fields, options, and buttons:

Find what. Contains the text to search for. Enter appropriate text
in this field. If text was highlighted in the code before you chose
Find, this field displays the highlighted text.

Match case. Specifies whether to do a case-sensitive search. By
default this check box is cleared. Select this check box to do a case-
sensitive search.

Up and Down. Specifies the direction of search. The default
setting is Down. Click Up to search in the opposite direction.

Find Next. Starts the search. This button is unavailable until you
specify text to search for. Continue to click Find Next until all
occurrences of the text have been found.

Cancel. Closes the Find dialog box.

Replace… . Displays the Replace dialog box. For more
information, see "Replacing Text" on page 17-16.

Help. Invokes the Help system.

Replacing Text

If you want to replace text in your code with an alternative text string,

click the Replace… button in the Find dialog box. When you click this

button, the Find dialog box changes to the Replace dialog box:

This dialog box has the following fields, options, and buttons:

Find what. Contains the text to search for and replace.

Replace with. Contains the text you want to use in place of the
search text.

Match case. Specifies whether to do a case-sensitive search. By
default this check box is cleared. Select this check box to do a case-
sensitive search.

Up and Down. Specifies the direction of search and replace. The
default setting is Down. Click Up to search in the opposite
direction.
17-16 Server Job Developer’s Guide

Programming in DataStage Working with Routines
Find Next. Starts the search and replace. This button is
unavailable until you specify text to search for. Continue to click
Find Next until all occurrences of the text have been found.

Cancel. Closes the Replace dialog box.

Replace. Replaces the search text with the alternative text.

Replace All. Performs a global replace of all instances of the
search text.

Help. Invokes the Help system.

Viewing and Editing a Routine
You can view and edit any user-written functions and subroutines in

your project. To view or modify a function or subroutine, select the

function or subroutine in the display area and do one of the following:

Choose File ➤ Properties… .

Choose Properties… from the shortcut menu.

Click the Properties button on the toolbar.

Double-click the function or subroutine in the display area.

The Routine dialog box appears. You can edit any of the fields and

options on any of the pages. If you make any changes, you must save,

compile, and test the code before closing the Server Routine dialog

box. See "Saving Code" on page 17-13 for more information.

Copying a Routine
You can copy an existing routine using the DataStage Manager. To

copy a routine, select it in the display area and do one of the

following:

Choose File ➤ Copy.

Choose Copy from the shortcut menu.

Click the Copy button on the toolbar.

The routine is copied and a new routine is created under the same

branch in the project tree. By default, the name of the copy is called

CopyOfXXX, where XXX is the name of the chosen routine. An edit

box appears allowing you to rename the copy immediately. The new

routine must be compiled before it can be used.
Server Job Developer’s Guide 17-17

Defining Custom Transforms Programming in DataStage
Renaming a Routine
You can rename any of the existing routines using the DataStage

Manager. To rename an item, select it in the display area and do one

of the following:

Click the routine again. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose File ➤ Rename. An edit box appears and you can enter a
different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Choose Rename from the shortcut menu. An edit box appears
and you can enter a different name or edit the existing one. Save
the new name by pressing Enter or by clicking outside the edit
box.

Double-click the routine. The Server Routine dialog box appears
and you can edit the Routine name field. Click Save, then Close.

Defining Custom Transforms
Transforms are used in the Transformer stage to convert your data to

a format you want to use in the final data mart. Each transform

specifies the BASIC function used to convert the data from one type to

another. There are a number of built-in transforms supplied with

DataStage, which are described in Chapter 19, "DataStage

Development Kit (Job Control Interfaces)."

If the built-in transforms are not suitable or you want a specific

transform to act on a specific data element, you can create custom

transforms in the DataStage Manager. The advantage of creating a

custom transform over just entering the required expression in the

Transformer Editor is that, once defined, the transform is available for

use from anywhere within the project. It can also be easily exported to

other DataStage projects.

To provide even greater flexibility, you can also define your own

custom routines and functions from which to build custom

transforms. There are three ways of doing this:

Entering the code within DataStage (using BASIC functions). See
"Creating a Routine" on page 17-11.

Creating a reference to an externally cataloged routine. See
"Creating a Routine" on page 17-11.
17-18 Server Job Developer’s Guide

Programming in DataStage Defining Custom Transforms
Importing external ActiveX (OLE) functions. See "Importing
External ActiveX (OLE) Functions" on page 17-22.

To create a custom transform:

1 From the DataStage Manager, select the Transforms branch in
the project tree and do one of the following:

– Choose File ➤ New Transform… .

– Choose New Transform… from the shortcut menu.

– Click the New button on the toolbar.

The Transform dialog box appears:

This dialog box has two pages:

– General. Displayed by default. Contains general information
about the transform.

– Details. Allows you to specify source and target data
elements, the function, and arguments to use.

2 Enter the name of the transform in the Transform name field.
This name is used to create a leaf under the category branch. The
name entered here must be unique; as no two transforms can
have the same name. Also note that the transform should not
have the same name as an existing BASIC function; if it does, the
function will be called instead of the transform when you run the
job. See "Precedence Rules" on page 17-5 for considerations about
components names.

3 Enter a category name in the Category field. This name is used to
create a branch under the main Transforms branch. If you do not
enter a name in this field, the transform is created under the main
Transforms branch.

You can create more than one branch level for the category by

including \ in the name. For example, if you enter Custom\User,

the following branches are created:
Server Job Developer’s Guide 17-19

Defining Custom Transforms Programming in DataStage
Transforms ➤ Custom ➤ User

In this example, the new transform is created as a leaf under the

User branch.

4 Optionally enter a brief description of the transform in the Short
description field. The text entered here is displayed when you
choose View ➤ Details from the DataStage Manager window.

5 Optionally enter a detailed description of the transform in the
Long description field. Once this page is complete, you can
specify how the data is converted.

6 Click the Details tab. The Details page appears at the front of the
Transform dialog box:

7 Optionally choose the data element you want as the target data
element from the Target data element drop-down list box.
(Using a target and a source data element allows you to apply a
stricter data typing to your transform. See "Managing Data
Elements" in DataStage Manager Guide for a description of data
elements.)

8 Specify the source arguments for the transform in the Source
Arguments grid. Enter the name of the argument and optionally
choose the corresponding data element from the drop-down list.

9 Use the Expression Editor in the Definition field to enter an
expression which defines how the transform behaves. The
Expression Editor is described in"The DataStage Expression
Editor" on page 9-23. The Suggest Operand menu is slightly
17-20 Server Job Developer’s Guide

Programming in DataStage External ActiveX (OLE) Functions
different when you use the Expression Editor to define custom
transforms and offers commands that are useful when defining
transforms.

10 Click OK to save the transform and close the Transform dialog
box. The new transform appears in the project tree under the
specified branch.

You can then use the new transform from within the Transformer

Editor.

Note If NLS is enabled, avoid using the built-in Iconv and Oconv

functions to map data unless you fully understand the

consequences of your actions.

External ActiveX (OLE) Functions
DataStage provides you with the ability to call external ActiveX (OLE)

functions which have been installed on the DataStage server. These

functions can then be used when you define custom transforms.

To use this facility, you need an automation server that exposes

functions via the IDispatch interface and which has an associated type

library. This can be achieved via a number of development tools,

including Visual Basic.

The first step in using external functions is importing them into the

DataStage Repository. The action of importing an external function

creates a DataStage routine containing code which calls the external

function. The code uses a DataStage BASIC function that accepts only

certain data types. These data types are defined in the DSOLETYPES.H

file in the dsinclude directory for each project and are listed in

DataStage Developer’s Help.

Once imported, you can then call the functions when you define a

custom transform.

Note This facility is available only on Windows servers.

Suggest Operand Menu

Defining Custom Transforms
Server Job Developer’s Guide 17-21

External ActiveX (OLE) Functions Programming in DataStage
Importing External ActiveX (OLE) Functions
To import ActiveX (OLE) functions:

1 From the DataStage Manager, choose Import ➤ External
Function Definitions… . The Import Transform Functions
Definitions wizard appears and prompts you to supply the
pathname of the file containing the transforms to be imported.
This is normally a DLL file which must have already been installed
on the server machine.

2 Enter or browse for the pathname, then click Next. The wizard
queries the specified DLL file to establish what automation classes
it contains and presents these in a drop-down list.

3 Select an automation class and click Next. The wizard interrogates
the automation class to obtain details of the suitable functions it
supports. It then displays these.

4 Select the functions that you want to import and specify the
Repository category under which the functions will appear (the
default is Routines ➤ class name). Click Next. The wizard
displays the details of the proposed import.

5 If you are happy with the details, click Import. DataStage starts to
generate the required routines and displays a progress bar. On
completion a summary screen appears.

6 Click Finish to exit the wizard.
17-22 Server Job Developer’s Guide

18
BASIC Programming

This chapter provides a programmer’s reference guide for the

DataStage BASIC programming language.

The DataStage BASIC described here is the subset of BASIC

commands most commonly used in DataStage. You are not limited to

the functionality described here, however, you can use the full range

of DataStage BASIC commands as described in the DataStage BASIC

Guide, including dynamic arrays. But some areas need care. The main

points to watch are as follows:

Do not use any command, function, statement, or subroutine that
requires any user input.

To stop a running job, use the DSLogFatal subroutine. If you use
a Stop or Abort statement, the job may be left in an irrecoverable
condition.

Avoid using the Print statement. Use a call to DSLogInfo to write
to the job log file instead.

Avoid using the Execute statement to execute DataStage Engine
commands. Use a call to DSExecute instead.

The full DataStage BASIC Guide is provided in PDF format with

DataStage.
Server Job Developer’s Guide 18-1

Syntax Conventions BASIC Programming
Syntax Conventions
The syntax descriptions use the following conventions:

The BASIC Language
This section gives an overview of the fundamental components of the

DataStage BASIC language. It describes constants, variables, types of

data, and how data is combined with arithmetic, strings, relational,

and logical operators to form expressions.

Constants
A constant is a value that is fixed during the execution of a program,

and may be reused in different contexts. A constant can be:

A character string

An empty string

A numeric string in either floating-point or integer format

Convention Usage

Bold Bold type indicates functions, statements, subroutines,
options, parenthesis, commas, and so on, that must be input
exactly as shown.

Italic Italic indicates variable information that you supply, for
example an expression, input string, variable name or list of
statements.

[] Brackets enclose optional items. Do not enter these brackets.

[] Brackets in bold italic typeface must be entered as part of the
syntax.

{ Then | Else } Two keywords or clauses separated by vertical bars and
enclosed in braces indicate that you can choose only one
option. Do not enter the braces or the vertical bar.

... Three periods indicate that the last item of the syntax can be
repeated if required.

@FM Field mark.

@IM Item mark.

@SM Subvalue mark.

@TM Text mark.

@VM Value mark.
18-2 Server Job Developer’s Guide

BASIC Programming The BASIC Language
ASCII characters 0 and 10, and characters 251 to 255 inclusive cannot

be embedded in string constants on non-NLS systems (these

characters cannot be used in comments either).

Variables
Variables are used for storing values in memory temporarily. You can

then use the values in a series of operations.

You can assign an explicit value to a variable, or assign a value that is

the result of operations performed by the program during execution.

Variables can change in value during program execution. At the start

of program execution, all variables are unassigned. Any attempt to

use an unassigned variable produces an error message.

The value of a variable can be:

Unassigned

A string

An integer or floating-point number

The null value

A dimensioned array

A file variable

DataStage provides a set of read-only system variables that store

system data such as the current date, time, pathname, and so on.

These can be accessed from a routine or transform.

Dimensioned Arrays

An array is a multivalued variable accessed from a single name. Each

value is an element of the array. DataStage uses two types of

dimensioned array:

One-dimensional arrays, or vectors

Two-dimensional arrays, or matrices

Vectors have elements stored in memory in a single row. Each

element is indexed; that is, it has a sequential number assigned to it.

The index of the first element is 1. To specify an element of the vector,

use the variable name followed by the index of the element enclosed

in parentheses. The index can be a constant or an expression, for

example:

A(1) ;*specifies the first element of variable A
Cost(n + 1) ;* specifies an expression to calculate the index

Matrices have elements stored in several rows. To specify an element

of a matrix, you must supply two indices: the row number and the
Server Job Developer’s Guide 18-3

The BASIC Language BASIC Programming
column number. For example, in a matrix with four columns and three

rows, the elements are specified using these indices:

1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4

The full specification uses the variable name followed by the indices

in parentheses. For example:

Obj(3,1)
Widget(7,17)

Vectors are treated as matrices with a second dimension of 1.

COST(35) and COST(35,1) mean the same.

You define the dimensions of an array with the Dimension statement.

You can also redimension an array using Dimension.

Expressions
An expression defines a value. The value is evaluated at run time. The

result can be used as input to a function or be assigned to a variable,

and so on. A simple expression can comprise:

A string or numeric constant, for example, "percent" or "42"

A variable name

A function

A user-defined function

A complex expression can contain a combination of constants,

variables, operators, functions, and other expressions.

Functions
A function performs mathematical or string manipulations on the

arguments supplied to it, and returns a value. Some functions have no

arguments; most have one or more. Arguments are always in

parentheses, separated by commas, as shown in this general syntax:

FunctionName (argument, argument)

An expression can contain a function. An argument to a function can

be an expression that includes a function. Functions can perform

tasks:

On numeric strings, such as calculating the sine of an angle
passed as an argument (Sin function)

On character strings, such as deleting surplus blank spaces and
tabs (Trim function)
18-4 Server Job Developer’s Guide

BASIC Programming The BASIC Language
Transform functions in DataStage must have at least one argument

that contains the input value to be transformed. Subsequent, optional,

arguments can be used by a transform definition to select a particular

path through the transform function, if required. This means that a

single function can encapsulate the logic for several related

transforms. The transform function must return the transformed value

using a Return (value) statement.

Statements
Statements are used for:

Changing program control. Statements are executed in the order
in which they are entered, unless a control statement changes the
order by, for example, calling a subroutine, or defining a loop.

Assigning a value to a variable.

Specifying the value of a constant.

Adding comments to programs.

Statement Labels

A statement label is a unique identifier for a line of code. A statement

label consists of a string of up to 64 characters followed by a colon.

The string can contain alphanumeric characters, periods, dollar signs,

and percent signs. Statement labels are case-sensitive. A statement

label can be put either in front of a statement or on its own line.

Subroutines
A subroutine is a self-contained set of instructions that perform a

specific task. A subroutine can take two forms:

An embedded subroutine is contained within the program and is
accessed with a GoSub statement.

An external subroutine is stored in a separate file and is accessed
with a Call statement.

In general terms, use an embedded subroutine for code that you want

to call many times from the same program; use an external

subroutine for code that you want to call from many different

programs.

There are a number of BASIC subroutines that are specific to

DataStage. Their names begin with DS and they are described in

"Special DataStage BASIC Subroutines" on page 18-6.
Server Job Developer’s Guide 18-5

The BASIC Language BASIC Programming
DataStage is also supplied with a number of before/after subroutines,

for running before or after a job or an active stage. You can define

your own before/after subroutines using the DataStage Manager.

Before/after subroutines must have two arguments. The first contains

the value a user enters when the subroutine is called from a job or

stage; the second is the subroutine’s reply code. The reply code is 0 if

there was no error. Any other value indicates the job was stopped.

Special DataStage BASIC Subroutines

DataStage provides some special DataStage subroutines for use in a

before/after subroutines or custom transforms. You can:

Log events in the job’s log file using DSLogInfo, DSLogWarn,
DSLogFatal, and DSTransformError

Execute DOS or DataStage Engine commands using DSExecute

All the subroutines are called using the Call statement.

Operators
An operator performs an operation on one or more expressions (the

operands). Operators are divided into these categories:

Arithmetic operators

String operators for:

– Concatenating strings with Cats or :

– Extracting substrings with []

Relational operators

Pattern matching operators

If operator

Logical operators

Assignment operators

Arithmetic Operators

Arithmetic operators combine operands by adding, subtracting, and

so on. The resulting expressions can be further combined with other

expressions. Operands must be numeric expressions. Nonnumeric

expressions are treated as 0 and generate a run-time warning. A

character string variable containing only numeric characters counts as

a numeric expression. For example, the following expression results

in the value 66:

"22" + 44
18-6 Server Job Developer’s Guide

BASIC Programming The BASIC Language
This table lists the arithmetic operators in order of evaluation:

You can change the order of evaluation using parentheses.

Expressions enclosed in parentheses are evaluated before those

outside parentheses.

For example, this expression is evaluated as 112 + 6 + 2, or 120:

(14 * 8) + 12 / 2 + 2

This expression is evaluated as 14 * 20 / 4, or 280 / 4, or 70:

14 * (8 + 12) / (2 + 2)

The result of any arithmetic operation involving the null value is a null

value.

Concatenating Strings

The concatenation operator, : or Cats, links string expressions to

form compound string expressions. For example, if x has a value of

Tarzan, this expression:

"Hello. " : "My Name is " : X : ". What’s yours?"

evaluates to:

"Hello. My name is Tarzan. What’s yours?"

Multiple concatenation operations are normally performed from left

to right. You can change the order of evaluation using parentheses.

Parenthetical expressions are evaluated before operations outside the

parentheses.

Numeric operands in concatenated expressions are considered to be

string values. Arithmetic operators have higher precedence than the

concatenation operator. For example:

"There are " : "2" + "2" : "3" : " windows."

has the value:

"There are 43 windows."

Operator Operation Example

– Negation –x

^ Exponentiation x ^ y

* Multiplication x * y

/ Division x / y

+ Addition x + y

– Subtraction x – y
Server Job Developer’s Guide 18-7

The BASIC Language BASIC Programming
The result of any string operation involving the null value is a null

value. But if the null value is referenced as a character string

containing only the null value (that is, as the string CHAR(128)), it is

treated as character string data. For example, this expression

evaluates to null:

"A" : @NULL ;*concatenate A with @NULL system variable

But this expression:

"A" : @NULL.STR ;*concatenate A with @NULLSTR system variable

evaluates to "A<CHAR128>".

Extracting Substrings

A substring is a string within a string. For example, tab and able are

both substrings of table. You can use the [] operator to specify a

substring using this syntax:

string [[start,] length]

string is the string containing the substring.

start is a number specifying where the substring starts. The first

character of string counts as 1. If start is 0 or a negative number, the

starting position is assumed to be 1. If start is omitted, the starting

position is calculated according to the following formula:

string.length - substring.length + 1

Trailing Substrings. You can specify a trailing substring by
omitting start from the syntax. For example, this specification:

"1234567890" [5]

returns the substring:

67890

Delimited Substrings. You can extract a delimited substring
using this syntax:

string [delimiter, instance, fields]

– string is the string containing the substring.

– delimiter specifies the character that delimits the substring.

– instance specifies the instance of delimiter where the
extraction is to start.

– fields specifies the number of fields to extract.

The delimiters that mark the start and end of the extraction are not

returned, but if you extract more than one string, any interim

delimiters are returned. This syntax works the same way as the

Field function.
18-8 Server Job Developer’s Guide

BASIC Programming The BASIC Language
Assigning a Substring to a Variable. All substring syntaxes
can be used with the = operator to replace the value normally
returned by the [] operator with the value assigned to the
variable. For example:

A="12345"
A[3]=1212

returns the result 121212.

This syntax works the same way as the FieldStore function.

Relational Operators

Relational operators compare strings or other data. The result of the

comparison is either true (1) or false (0). This table shows the

relational operators you can use:

Arithmetic operations are performed before any relational operators

in an expression. For example, the expression:

X + Y < (T – 1) / Z

is true if the value of X plus Y is less than the value of T minus 1

divided by Z.

Strings are compared character by character. The string with the

higher character code is considered to be greater. If all the character

codes are the same, the strings are considered equal.

A space is evaluated as less than 0. A string with leading or trailing

blanks is considered greater than the same string without the blanks.

An empty string is always compared as a character string. It does not

equal numeric 0.

If two strings contain numeric characters they are compared

numerically. For example:

"22" < "44" '

returns true.

Operator Relation Example

Eq or = Equality X = Y

Ne or # or >< or <> Inequality X # Y, X <> Y

Lt or < Less than X < Y

Gt or > Greater than X > Y

Le or <= or =< or #> Less than or equal to X <= Y

Ge or >= or => or #< Greater than or equal to X >= Y
Server Job Developer’s Guide 18-9

The BASIC Language BASIC Programming
Take care if you use exponentiation notation. For example:

"23" > "2E1"

returns true.

Here are some examples of true comparisons in ASCII 7-bit with

standard collating conventions:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/14/99" ;* where B$ = "8/14/99"

You cannot use relational operators to test for a null value. Use the

IsNull function instead.

Pattern Matching Operators

Pattern matching operators compare a string with a format pattern. If

NLS is enabled, the result of a match operation depends on the

current locale setting of the Ctype and Numeric conventions. Pattern

matching operators have the following syntax:

string Match pattern

string is the string to be compared. If string is a null value, the match

is false and 0 is returned.

pattern is the format pattern, and can be one of the following codes:

You can specify a negative match by preceding the code with ~ (tilde).

For example, ~ 4A matches a string that does not contain four

alphabetic characters. If n is longer than nine digits, it is used as a

literal string.

This code… Matches this type of string…

… Zero or more characters of any type.

0X Zero or more characters of any type.

nX n characters of any type.

0A Zero or more alphabetic characters.

nA n alphabetic characters.

0N Zero or more numeric characters.

nN n numeric characters.

'string' Exact text enclosed in double or single quotation marks.
18-10 Server Job Developer’s Guide

BASIC Programming The BASIC Language
If string matches pattern, the comparison returns 1, otherwise it

returns 0.

You can specify multiple patterns by separating them with value

marks. For example, the following expression is true if the address is

either 16 alphabetic characters or 4 numeric characters followed by 12

alphabetic characters; otherwise, it is false:

address Matches "16A": CHAR(253): "4N12A"

An empty string matches the following patterns: "0A", "0X", "0N", "…",

"", '', or \\.

If Operators

An If operator assigns a value that meets the specified conditions. It

has the following syntax:

variable = If condition Then expression Else expression

variable is the variable to assign.

If condition defines the condition that determines which value to

assign.

Then expression defines the value to assign if condition is true.

Else expression defines the value to assign if condition is false.

The If operator is the only form of If…Then…Else construction that

can be used in an expression.

Note that the Else clause is required in the following examples:

* Return A or B depending on value in Column1:
If Column1 > 100 Then "A" Else "B"
* Add 1 or 2 to value in Column2 depending on what's in
* Column3, and return it:
Column2 + (If Column3 Matches "A..." Then 1 Else 2)

Logical Operators

Numeric data, string data, and the null value can function as logical

data:

The numeric value 0, is false; all other numeric values are true.

An empty string is false; all other character strings are true.

The SQL null value is neither true nor false. It has the logical value
of null.

Logical operators test for these conditions. The logical operators

available are:

And (or the equivalent &)

Or (or the equivalent !)
Server Job Developer’s Guide 18-11

The BASIC Language BASIC Programming
Not (inverts a logical value)

This table shows the results of logical operations using And:

This table shows the result of logical operations using Or:

This table shows the result of logical operations using Not:

These are the factors that determine operator precedence in logical

operations:

Arithmetic and relational operations take precedence over logical
operations.

Logical operations are evaluated from left to right.

And statements and Or statements have equal precedence.

In If…Then…Else clauses, the logical value null takes the false
action.

Assignment Operators

Assignment operators assign values to variables. This table shows the

assignment operators and their uses:

And true null false

true true null false

null null null false

false false false false

Or true null false

true true true true

null true null null

false true null false

Not

true false

null null

false true

Operator Syntax Description

= variable = expression Assigns the value of expression to
variable.
18-12 Server Job Developer’s Guide

BASIC Programming The BASIC Language
This example shows a sequence of operations on the same variable.

The first statement assigns the value 5 to the variable X.

X = 5

The next statement adds 5 to the value of X, and is equivalent to X = X

+ 5. The value of X is now 10.

X += 5

The final statement subtracts 3 from the value of X, and is equivalent

to X = X - 3. The value of X is now 7.

X -= 3

This example concatenates a string with the variable and is equivalent

to X = X:Y. If the value of X is ‘con', and the value of Y is ‘catenate’:

X := Y

the new value of X is ‘concatenate’.

Data Types in BASIC Functions and Statements
You do not need to specify data types in functions and statements. All

data is stored internally as character strings, and data types are

determined at run time, according to their context. There are four

main types of data:

Character strings. These can represent alphabetic, numeric, or
alphanumeric data such as an address. String length is limited
only by available memory.

Numeric data. This is stored as either floating-point numbers, or

as integers. On most systems the range is 10-307 through 10+307
with 15 decimal digits of precision.

The null value. This represents data whose value is unknown, as
defined by SQL.

File variables. These are assigned by the OpenSeq statement,
and cannot be manipulated or formatted in any way.

+= variable += expression Adds the value of expression to the value
of variable and reassigns the result to
variable.

–= variable – = expression Subtracts the value of expression from the
value of variable and reassigns the result
to variable.

:= variable := expression Concatenates the value of variable and the
value of expression and reassigns the
result to variable.

Operator Syntax Description
Server Job Developer’s Guide 18-13

The BASIC Language BASIC Programming
Empty BASIC Strings and Null Values
An empty string is a character string of zero length. It represents

known data that has no value. Specify an empty string with two

adjacent double quotation marks, single quotation marks, or

backslashes. For example:

‘ ‘ or " " or \\

The null value represents data whose value is unknown, as defined by

SQL.

The null value is represented externally, as required, by a character

string consisting of the single byte Char(128). At run time it is

assigned a data type of null. Programs can reference the null value

using the system variable @NULL. To test if a value is the null value,

use the IsNull function.

If you input a null value to a function or other operation, a null value is

always returned. For example, if you concatenate a string value with

an empty string, the string value is returned, but if you concatenate a

string value with the null value, null is returned:

A = @NULL
B = ""
C = "JONES"
X = C:B
Y = C:A

The resulting value of X is “JONES”, but Y is a null value.

Fields
In DataStage functions such as Field or FieldStore, you can define

fields by specifying delimited substrings. What constitutes a field is

determined as follows:

Any substring followed by a delimiter is a field.

If a string starts with a delimiter, DataStage assumes there is a
field containing an empty string in front of the delimiter.

If a trailing substring does not end with a delimiter, DataStage
assumes there is one.

For example, using the string ABC with a colon as a delimiter, we can

generate either three or four fields, as follows:

Example Number of Fields Explanation

A : B : C : 3 Each field ends with a delimiter.

A : B : C 3 DataStage assumes the final delimiter.
18-14 Server Job Developer’s Guide

BASIC Programming The BASIC Language
Reserved Words
These words are reserved and should not be used as variable names

in a transform or routine:

And

Cat

Else

End

Eq

Ge

Get

Go

GoSub

GoTo

Gt

If

Include

Le

Locked

Lt

Match

Matches

Ne

Next

Or

Rem

: A : B : C : 4 DataStage assumes a field containing
an empty string before the first
delimiter.

: A : B : C 4 DataStage assumes a field containing
an empty string before the first
delimiter, and assumes a final
delimiter.

Example Number of Fields Explanation
Server Job Developer’s Guide 18-15

The BASIC Language BASIC Programming
Remove

Repeat

Then

Until

While

Source Code and Object Code
Source code is the original input form of the routine the programmer

writes.

Object code is the compiled output that DataStage calls as a

subroutine or a function.

A source line has the following syntax:

[label:] statement [; statement] …<Return>

A source line can begin with a statement label. It always ends with a

Return.

Special Characters
The following characters have a special meaning in transforms and

routines. Their use is restricted in numeric and string constants. Also

note that ASCII characters 0 through 10 and 251 through 255 should

not be embedded in string constants.

Character Permitted Use

Space Used in string constants, or for formatting source code.

Tab Used in string constants, or for formatting source code.

= Used to indicate the equality or assignment operators.

+ Plus. Used to indicate the addition operator or unary plus.

– Minus. Used to indicate the subtraction operator or unary minus.

* Asterisk. Used to indicate the multiplication operator or a
comment in source code.

\ Backslash. Used for quoting strings.

/ Slash. Used to indicate the division operator.

^ Up-arrow. Used to indicate the exponentiation operator.

() Parentheses. Used to enclose arguments in functions or matrix
dimensions.

Hash. Used to indicate the not equal operator.
18-16 Server Job Developer’s Guide

BASIC Programming System Variables
System Variables
DataStage provides a set of variables containing useful system

information that you can access from a transform or routine. System

variables are read-only.

$ Dollar sign. Allowed in variable names and statement labels,
but not allowed in numeric constants.

[] Brackets. Used to indicate the substring extraction operator, and
to enclose certain expressions.

, Comma. Used to separate arguments in functions and
subroutines or matrix dimensions. Not permitted in numeric
constants.

. Period. Used to indicate a decimal point in numeric constants.

"" Double quotation marks. Used to quote strings.

'' Single quotation marks. Used to quote strings.

: Colon: Used to indicate the concatenation operator, or the end of
a statement label.

; Semicolon. Used to indicate the end of a statement if you want to
include a comment on the same line.

& Ampersand. Used to indicate the And relational operator.

< Left angle bracket. Used to indicate the less than operator.

> Right angle bracket. Used to indicate the greater than operator.

@ At sign. Reserved for use in system variables.

Character Permitted Use

Name Description

@DATE The internal date when the program started. See the Date
function.

@DAY The day of the month extracted from the value in @DATE.

@FALSE The compiler replaces the value with 0.

@FM A field mark, Char(254).

@IM An item mark, Char(255).

@INROWNUM Input row counter. For use in constraints and derivations in
Transformer stages.
Server Job Developer’s Guide 18-17

BASIC Functions and Statements BASIC Programming
BASIC Functions and Statements

Compiler Directives
Compiler directives are statements that determine how a routine or

transform is compiled.

@OUTROWNUM Output row counter (per link). For use in derivations in
Transformer stages.

@LOGNAME The user login name.

@MONTH The current extracted from the value in @DATE.

@NULL The null value.

@NULL.STR The internal representation of the null value, Char(128).

@PATH The pathname of the current DataStage project.

@SCHEMA The schema name of the current DataStage project.

@SM A subvalue mark, Char(252).

@SYSTEM.
RETURN.CODE

Status codes returned by system processes or commands.

@TIME The internal time when the program started. See the Time
function.

@TM A text mark, Char(251).

@TRUE The compiler replaces the value with 1.

@USERNO The user number.

@VM A value mark, Char(253).

@WHO The name of the current DataStage project directory.

@YEAR The current year extracted from @DATE.

Name Description

To do this… Use this…

Add or replace an identifier $Define Statement

Remove an identifier $Undefine Statement

Specify conditional compilation $IfDef and $IfNDef Statements

Include another program $Include Statement
18-18 Server Job Developer’s Guide

BASIC Programming BASIC Functions and Statements
Declaration
These statements declare arrays, functions, and subroutines for use in

routines.

Job Control
These functions can be used in a job control routine, which is defined

as part of a job’s properties and allows other jobs to be run and

controlled from the first job. Some of the functions can also be used

for getting status information on the current job; these are useful in

active stage expressions and before- and after-stage subroutines.

To do this… Use this…

Define a storage area in memory Common Statement

Define a user-written function Deffun Statement

Declare the name and dimensions of an
array variable

Dimension Statement

Identify an internal subroutine Subroutine Statement

To do this… Use this…

Specify the job you want to control DSAttachJob

Set parameters for the job you want to
control

DSSetParam

Set limits for the job you want to control DSSetJobLimit

Request that a job is run DSRunJob

Wait for a called job to finish DSWaitForJob

Get information about the current
project

DSGetProjectInfo

Get information about the controlled job
or current job

DSGetJobInfo

Get information about a stage in the
controlled job or current job

DSGetStageInfo

Get information about a link in a
controlled job or current job

DSGetLinkInfo

Get information about a controlled job’s
parameters

DSGetParamInfo

Get the log event from the job log DSGetLogEntry

Get a number of log events on the
specified subject from the job log

DSGetLogSummary
Server Job Developer’s Guide 18-19

BASIC Functions and Statements BASIC Programming
Get the newest log event, of a specified
type, from the job log

DSGetNewestLogId

Log an event to the job log of a different
job

DSLogEvent

Log a fatal error message in a job's log
file and aborts the job.

DSLogFatal

Log an information message in a job's
log file.

DSLogInfo

Put an info message in the job log of a
job controlling current job.

DSLogToController

Log a warning message in a job's log
file.

DSLogWarn

Generate a string describing the
complete status of a valid attached job.

DSMakeJobReport

Insert arguments into the message
template.

DSMakeMsg

Ensure a job is in the correct state to be
run or validated.

DSPrepareJob

Interface to system send mail facility. DSSendMail

Log a warning message to a job log file. DSTransformError

Convert a job control status or error code
into an explanatory text message.

DSTranslateCode

Suspend a job until a named file either
exists or does not exist.

DSWaitForFile

Checks if a BASIC routine is cataloged,
either in VOC as a callable item, or in the
catalog space

DSCheckRoutine

Execute a DOS or DataStage Engine
command from a befor/after subroutine

DSExecute

Stop a controlled job DSStopJob

Return a job handle previously obtained
from DSAttachJob

DSDetachJob

Set a status message for a job to return
as a termination message when it
finishes

DSSetUserStatus

Specifies whether a job should generate
operational meta data as it runs. This
overrides the default setting for the
project.

DSSetGenerateOpMetaData

To do this… Use this…
18-20 Server Job Developer’s Guide

BASIC Programming BASIC Functions and Statements
Program Control
These statements control program flow by direct program execution

through loops, subroutines, and so on.

Sequential File Processing
These statements and functions are used to open, read, and close files

for sequential processing.

To do this… Use this…

Start a set of Case statements Begin Case (see Case Statement)

Specify conditions for program flow Case (see Case Statement)

End a set of Case statements End Case (see Case Statement)

End a program or block of statements End Statement

Call an external subroutine Call Statement

Call an internal subroutine GoSub Statement

Specify a condition to call an internal
subroutine

On…GoSub Statements

Return from an internal or external
subroutine

Return Statement

Define the start of a For…Next loop For (see For…Next Statements)

Define the end of a For…Next loop Next (see For…Next Statements)

Go to the next iteration of a loop Continue (see For…Next Statements)

Create a loop Loop…Repeat Statements

Define conditions for a loop to stop While, Until (see For…Next Statements)

Exit a loop Exit (see For…Next Statements)

Branch to a statement unconditionally GoTo Statement

Branch to a statement conditionally On…GoTo Statement

Specify conditions for program flow If…Then…Else Operator

To do this… Use this…

Open a file for sequential processing OpenSeq Statement

Read a line from a file opened with
OpenSeq

ReadSeq

Write a line to a file opened with
OpenSeq

WriteSeq Function
Server Job Developer’s Guide 18-21

BASIC Functions and Statements BASIC Programming
String Verification and Formatting
These functions carry out string formatting tasks.

Write a line to a file opened with
OpenSeq saved to disk

WriteSeqF Function

Truncate a file opened with OpenSeq WEOFSeq Function

Close a file opened with OpenSeq CloseSeq Statement

Find the status of a file opened with
OpenSeq

Status Function

To do this… Use this…

To do this… Use this…

Check if a string is alphabetic Alpha Function

Verify with a 16-bit checksum Checksum Function

Verify with a 32-bit cyclic redundancy
check code

CRC32 Function

Enclose a string in double quotation
marks

DQuote Function

Enclose a string in single quotation
marks

SQuote Function

Analyze a string phonetically Soundex Function

Convert a string to uppercase UpCase Function

Convert a string to lowercase DownCase Function

Replace specified characters in a
variable

Convert Function

Replace specified characters in a string Convert Statement

Replace or delete characters in a string Exchange Function

Compare two strings for equality Compare Function

Calculate the number of characters in a
string

Len Function

Calculate the length of a string in display
positions

LenDP Function

Trim surplus white space from a string Trim Function TrimB Function TrimF
Function

Make a string consisting of spaces only Space Function
18-22 Server Job Developer’s Guide

BASIC Programming BASIC Functions and Statements
Substring Extraction and Formatting
You can extract and manipulate substrings and fields using these

functions.

Data Conversion
These functions perform numeric and character conversions.

To do this… Use this…

Find the starting column of a substring Index Function

Replace one or more instances of a
substring

Change Function

Return the column position before or after
a substring

Col1 Function
Col2 Function,

Count the number of times a substring
occurs in a string

Count Function

Count delimited substrings in a string DCount Function

Replace one or more instances of a
substring

Ereplace Function

Return a delimited substring Field Function

Replace, delete, or insert substrings in a
string

FieldStore Function

Fold strings to create substrings Fold Function

Fold strings to create substrings using
character display positions

FoldDP Function

Extract the first n characters of a string Left Function

Extract the last n characters of a string Right Function

Find a substring that matches a pattern MatchField Function

Repeat a string to create a new string Str Function

Searches a dynamic array for an
expression

LOCATE statement

To do this… Use this…

Convert ASCII code values to their EBCDIC
equivalents

Ebcdic Function

Convert EBCDIC code values to their ASCII
equivalents

Ascii Function
Server Job Developer’s Guide 18-23

BASIC Functions and Statements BASIC Programming
Data Formatting
These functions can be used to format data into times, dates,

monetary amounts, and so on.

Locale Functions
These functions are used to set or identify the current locale.

$Define

Convert an ASCII code value to its
character equivalent

Char Function

Convert an ASCII character to its code
value

Seq Function

Convert hexadecimal values to decimal Xtd Function

Convert decimal values to hexadecimal Dtx Function

Convert numeric value to floating point
with specified precision

FIX Function

Convert numeric to floating point without
loss of accuracy

REAL Function

Generate a single character in Unicode
format

UniChar Function

Converts a Unicode character to its
equivalent decimal value

UniSeq Function

To do this… Use this…

To do this… Use this…

Convert data for output Oconv Function

Convert data on input Iconv Function

Format data for output Fmt Function

Format data by display position FoldDP Function

To do this… Use this…

Set a locale SetLocale

Get a locale GetLocale Function
18-24 Server Job Developer’s Guide

BASIC Programming $Define Statement
$Define Statement
Defines identifiers that control program compilation or supplies

replacement text for an identifier. Not available in expressions.

Syntax
$Define identifier [replacement.text]

identifier is the symbol to be defined. It can be any valid identifier.

replacement.text is a string of characters that the compiler uses to

replace identifier everywhere it appears in the program containing the
$Define statement.

Remarks
Enter one blank to separate identifier from replacement.text. Any

further blanks are taken as part of replacement.text. End

replacement.text with a newline. Do not include comments after

replacement.text or they are included as part of the replacement text.

Examples
This example shows how $Define can be used at compile time to

determine whether a routine operates in a debugging mode, and how

$IfDef and $IfNDef are used to control program flow accordingly:

* Set next line to $UnDefine to switch off debugging code
$Define DebugMode
...
$IfDef DebugMode
* In debugging mode, log each time through this routine.
Call DSLogInfo("Transform entered,arg1 = ":Arg1, "Test")
$EndIf

This example shows how $Define can be used to replace program

text with a symbolic identifier:

* Give a symbolic name to the last 3 characters of the
* transform routine's incoming argument.
$Define NameSuffix Arg1[3]

...
If NameSuffix = "X27" Then
* Action is based on particular value in last 3 characters.
...End

$IfDef
Server Job Developer’s Guide 18-25

$IfDef and $IfNDef Statements BASIC Programming
$IfDef and $IfNDef Statements
Tests an identifier to see if it is defined or not defined. Not available in

expressions.

Syntax
{$IfDef | IfNDef} identifier

[statements]
$Else

[statements]
$EndIf

identifier is the identifier to test for.

$Else specifies alternative statements to execute.

$EndIf ends the conditional compilation block.

Remarks
With $IfDef, if identifier is defined by a prior $Define statement, all

the program source lines appearing between the $IfDef statement

and the closing $EndIf statement are compiled. With $IfNDef, the

lines are compiled if the identifier is not defined. $IfDef and $IfNDef
statements can be nested up to 10 deep.

Example
This example shows how $Define can be used at compile time to

determine whether a routine operates in a debugging mode, and how

$IfDef and $IfNDef are used to control program flow accordingly:

* Set next line to $UnDefine to switch off debugging code
$Define DebugMode
...
$IfDef DebugMode
* In debugging mode, log each time through this routine.
Call DSLogInfo("Transform entered,arg1 = ":Arg1, "Test")
$EndIf

$Include
18-26 Server Job Developer’s Guide

BASIC Programming $Include Statement
$Include Statement
Inserts source code contained in a separate file and compiles it along

with the main program. Not available in expressions.

Syntax
$Include program

Remarks
The included file must be in the project subdirectory DSU_BP. You can

nest $Include statements.

$Undefine
Server Job Developer’s Guide 18-27

$Undefine Statement BASIC Programming
$Undefine Statement
Removes an identifier that was set using the $Define statement. If no

identifier is set, $Undefine has no effect. Not available in

expressions.

Syntax
$Undefine identifier

Extracts a substring from a character string. The second syntax acts

like the Field function. The square brackets of the [] operator are

shown in bold italics in the syntax and must be entered.
18-28 Server Job Developer’s Guide

BASIC Programming [] Operator
[] Operator

Syntax
string [[start,] length]

string [delimiter, instance, repeats]

string is the character string. If string is a null value, the extracted

value is also null.

start is a number that defines the starting position of the first character

in the substring. A value of 0 or a negative number is assumed to be 1.

If you specify a starting position after the end of string, an empty

string is returned.

length is the number of characters in the substring. If you specify 0 or

a negative number, an empty string is returned. If you specify more

characters than there are left between start and the end of string, the

value returned contains only the number of characters left in string.

delimiter is a character that delimits the start and end of the substring.

If delimiter is not found in string, an empty string is returned unless

instance is 1, in which case string is returned.

instance specifies which instance of the delimiter marks the end of the

substring. A value of less than 1 is assumed to be 1.

repeat specifies the number of times the extraction is repeated on the

string. A value of less than 1 is assumed to be 1. The delimiter is

returned along with the successive substrings.

Remarks
You can specify a substring consisting of the last n characters of a

string by using the first syntax and omitting start.

Examples
In the following example (using the second syntax) the fourth # is the

terminator of the substring to be extracted, and one field is extracted:

A = "###DHHH#KK"
B = A["#",4,1]

The result is B equals DHHH.

The following syntaxes specify substrings that start at character

position 1:

expression [0, length]
expression [–1, length]
Server Job Developer’s Guide 18-29

[] Operator BASIC Programming
The following example specifies a substring of the last five characters:

"1234567890" [5]

The result is 67890.

All substring syntaxes can be used in conjunction with the assignment

operator (=). The new value assigned to the variable replaces the

substring specified by the [] operator. This usage is not available in

expressions. For example:

A = '12345'
A[3] = 1212

The result is A equals 121212.

Because no length argument was specified, A[3] replaces the last

three characters of A, (345) with the newly assigned value for that

substring (1212).
18-30 Server Job Developer’s Guide

BASIC Programming * Statement
* Statement
Inserts a comment in a program.

Syntax
* [comment.text]

Remarks
A comment can appear anywhere in a program, except in

replacement text for an identifier (see the $Define statement). Each

full comment line must start with an asterisk (*). If you put a comment

at the end of a line containing an executable statement, you must put

a semicolon (;) before the asterisk.

Example
This example contains both an in-line comment and a whole-line

comment:

MyVar = @Null ;* sets variable to null value
If IsNull(MyVar * 10) Then
* Will be true since any arithmetic involving a null value
* just results in a null value.
End
Server Job Developer’s Guide 18-31

Abs Function BASIC Programming
Abs Function
Returns the absolute (unsigned) value of a number.

Syntax
Abs (number)

number is the number or expression you want to evaluate.

Remarks
A useful way to remove plus or minus signs from a string. For

example, if number is either –6 or +6, Abs returns 6. If number is a

null value, a null value is returned.

Example
This example uses the Abs function to compute the absolute value of

a number:

AbsValue = Abs(12.34);* returns 12.34
AbsValue = Abs(-12.34);* returns 12.34
18-32 Server Job Developer’s Guide

BASIC Programming Alpha Function
Alpha Function
Checks if a string is alphabetic. If NLS is enabled, the result of this

function is dependent on the current locale setting of the Ctype

convention.

Syntax
Alpha (string)

string is the string or expression you want to evaluate.

Remarks
Alphabetic strings contain only the characters a through z or A

through Z. Alpha returns 1 if the string is alphabetic, a null value if the

string is a null value, and 0 otherwise.

Examples
These examples show how to check that a string contains only

alphabetic characters:

Column1 = "ABcdEF%"
* the "%" character is non-alpha
Column2 = (If Alpha(Column1) Then "A" Else "B")
* Column2 set to "B"
Column1 = ""
* note that the empty string is non-alpha
Column2 = (If Alpha(Column1) Then "A" Else "B")
* Column2 set to "B"
Server Job Developer’s Guide 18-33

Ascii Function BASIC Programming
Ascii Function
Converts the values of characters in a string from EBCDIC to ASCII

format.

Syntax
Ascii (string)

string is the string or expression that you want to convert. If string is a

null value, a null value is returned.

Remarks
The Ascii and Ebcdic functions perform complementary operations.

Warning If NLS is enabled, this function may return data that is

not recognized by the current character set map.

Example
This example shows the Ascii function being used to compare a

string of EBCDIC bytes:

EbcdicStr = Char(193):Char(241) ;* letter A digit 1 in EBCDIC
AsciiStr = Ascii(EbcdicStr);* convert EBCDIC to ASCII
If AsciiStr = "A1" Then;* compare with ASCII constant
... ;* ... this branch is taken
EndIf
18-34 Server Job Developer’s Guide

BASIC Programming Assignment Statement
Assignment Statement
The assignment statements are =, +=, –=, and :=. They assign values to

variables. Not available in expressions.

s

Syntax
variable = value

variable += value

variable –= value

variable := value

value is the value you want to assign. It can be any constant or

expression, including a null value.

Remarks
= assigns value to variable.

+= adds value to variable.

–= subtracts value from variable.

:= concatenates value to the end of variable.

To assign a null value to a variable, use this syntax:

variable = @NULL

To assign a character string containing only the character used to

represent the null value to a variable, use this syntax:

variable = @NULL.STR
Server Job Developer’s Guide 18-35

Bit functions BASIC Programming
Bit functions
The Bit functions are BitAnd, BitOr, BitNot, BitSet, BitReset,

BitTest, and BitXOr. They perform bitwise operations on integers.

Syntax
BitAnd | BitOr | BitXOr (integer1, integer2)

BitSet | BitReset | BitTest (integer, bit.number)

BitNot (integer [,bit.number])

integer1 and integer2 are integers to be compared. If either integer is

a null value, a null value is returned. Decimal places are truncated

before the evaluation.

integer is the integer to be evaluated. If integer is a null value, a null

value is returned. Decimal places are truncated before the evaluation.

bit.number is the number of the bit to act on. Bits are counted from

right to left starting with 0. If bit.number is a null value, the program

fails with a run-time error.

Remarks
The Bit functions operate on a 32-bit twos-complement word. Do not

use these functions if you want your code to be portable, as the top bit

setting may differ on other hardware.

BitAnd compares two integers bit by bit. For each bit, it returns bit 1 if

both bits are 1; otherwise it returns bit 0.

BitOr compares two integers bit by bit. For each bit, it returns bit 1, if

either or both bits is 1; otherwise it returns bit 0.

BitXOr compares two integers bit by bit. For each bit, it returns bit 1 if

only one of the two bits is 1; otherwise it returns bit 0.

BitTest tests if the specified bit is set. It returns 1 if the bit is set; 0 if it

is not.

BitNot inverts the bits in an integer, that is, changes bit 1 to bit 0, and

vice versa. If bit.number is specified, that bit is inverted; otherwise all

bits are inverted.

BitSet sets the specified bit to 1. If it is already 1, it is not changed.

BitReset resets the specified bit to 0. If it is already 0, it is not

changed.
18-36 Server Job Developer’s Guide

BASIC Programming Bit functions
Examples
BitAnd

Result = BitAnd(6, 12) ;* Result is 4
* (bin) (dec) BitAnd (bin) (dec) gives (bin) (dec)
* 110 6 1100 12 100 4

BitNot

Result = BitNot(6) ;* Result is -7
Result = BitNot(15, 0) ;* Result is 14
Result = BitNot(15, 1) ;* Result is 13
Result = BitNot(15, 2) ;* Result is 11
* (bin) (dec) BitNot bit# gives (bin) (dec)
* 110 6 (all) 1...1001 7
* 1111 15 0 1110 14
* 1111 15 1 1101 13
* 1111 15 2 1011 11

BitOr

Result = BitOr(6, 12) ;* Result is 14
* (bin) (dec) BitOr (bin) (dec) gives (bin) (dec)
* 110 6 1100 12 1110 14

BitReset

Result = BitReset(29, 0);* Result is 28
Result = BitReset(29, 3);* Result is 21
Result = BitReset(2, 1);* Result is 0
Result = BitReset(2, 0) ;* Result is 2
* (bin) (dec) BitReset bit# gives (bin) (dec)
* 11101 29 0 11100 28
* 11101 29 3 10101 21
* 10 2 1 00 0
* 10 2 0 10 2

BitSet

Result = BitSet(20, 0);* Result is 21
Result = BitSet(20, 3);* Result is 28
Result = BitSet(2, 0);* Result is 3
Result = BitSet(2, 1);* Result is 2
* (bin) (dec) BitReset bit# gives (bin) (dec)
* 10100 20 0 10101 21
* 10100 20 2 11100 28
* 10 2 0 11 3
* 10 2 1 10 2

BitTest

Result = BitTest(11, 0) ;* Result is 1
Result = BitTest(11, 1) ;* Result is 1
Result = BitTest(11, 2) ;* Result is 0
Result = BitTest(11, 3) ;* Result is 1
* (bin) (dec) BitTest bit# is:
* 1011 11 0 1
* 1011 11 1 1
Server Job Developer’s Guide 18-37

Bit functions BASIC Programming
* 1011 11 2 0
* 1011 11 3 1

BitXOr

Result = BitXor(6, 12) ;* Result is 10
* (bin) (dec) BitXOr (bin) (dec) gives (bin) (dec)
* 110 6 1100 12 1010 10
18-38 Server Job Developer’s Guide

BASIC Programming Byte-Oriented Functions
Byte-Oriented Functions
DataStage provides four functions that can be used to manipulate

internal strings at the byte level.

Byte lets you build a string byte by byte.

ByteLen returns the length of a string in bytes.

ByteType determines the internal function of a particular byte.

ByteVal determines the value of a particular byte in a string.

Warning Use these functions with care: if you create an invalid

string, it could produce unexpected results when

processed by another function.
Server Job Developer’s Guide 18-39

Byte Function BASIC Programming
Byte Function
Returns a byte from an input numerical value.

Syntax
Byte (expression)

expression is a character value in the range 0 through 255.

Remarks
The Byte function can be used to build a string byte by byte, rather

than character by character. If NLS is not enabled, the Byte function

works like the Char function.
18-40 Server Job Developer’s Guide

BASIC Programming ByteLen Functionen
ByteLen Functionen

Returns the length of an internal string in bytes, rather than

characters.

Syntax
ByteLen (expression)

expression is the string to be evaluated.

Remarks
If expression is an empty string, the result is 0. If expression is an SQL

null, the result is a null.
Server Job Developer’s Guide 18-41

ByteType Function BASIC Programming
ByteType Function
Returns the function of a particular byte within an internal character

code.

Syntax
ByteType (value)

value is a byte value, 0 through 255, whose function is to be

determined. If value is an SQL null, a null is returned.

Remarks
The result is returned as one of the following values:

Value Meaning

0 The trailing byte of a multibyte character

1 A single-byte character

2 The lead byte of a two-byte character

3 The lead byte of a three-byte character

4 Reserved (lead byte of a four-byte character

5 A system delimiter

-1 The input value is not in the range 0 through 255
18-42 Server Job Developer’s Guide

BASIC Programming ByteVal Function
ByteVal Function
Returns the internal value for a specified byte in a string.

ByteVal

Syntax
ByteVal (string [, byte_number])

string contains the byte to evaluate. An empty string or null value

returns –1. A string that has fewer bytes than specified in

byte_number returns –1.

byte_number is the number of the byte in string to evaluate. If omitted

or less than 1, 1 is used.

Remarks
The result is returned as a value for the byte in the range 0 through

255.
Server Job Developer’s Guide 18-43

Call Statement BASIC Programming
Call Statement
Calls a subroutine. Not available in expressions.

Syntax
Call subroutine [(argument [, argument] …)]

argument is a variable, expression, or constant that you want to pass

to the subroutine. Multiple arguments must be separated by commas.

Remarks
Call transfers program control from the main program to a compiled

external subroutine. Use a Return statement to return control to the

main program.

The number of arguments specified in a Call statement must match

the number of arguments specified in the Subroutine statement that

identifies the subroutine.

Constants are passed by value; variables are passed by reference. If

you want to pass variables by value, enclose them in parentheses.

Note If you pass variables by value, any change to the variable in

the subroutine does not affect the value of the variable in

the main program. If you pass variables by reference, any

change to the variable in the subroutine also affects the

main program.

Example
This example shows how to call a before/after routine named

MyRoutineB from within another routine called MyRoutineA:

Subroutine MyRoutineA(InputArg, ErrorCode)
ErrorCode = 0 ;* set local error code
* When calling a user-written routine that is held in the
* DataStage Repository, you must add a "DSU." Prefix.
* Be careful to supply another variable for the called
* routine's 2nd argument so as to keep separate from our
* own.
Call DSU.MyRoutineB("First argument", ErrorCodeB)
If ErrorCodeB <> 0 Then

... ;* called routine failed - take action
Endif

Return
18-44 Server Job Developer’s Guide

BASIC Programming Case Statement
Case Statement
Alters the sequence of execution in the program according to the

value of an expression. Not available in expressions.

Syntax
Begin Case

Case expression
statements

[Case expression
statements] …

End Case

expression is a value used to test the case. If expression is a null

value, it is assumed to be false.

statements are the statements to execute if expression is true.

Remarks
Case statements can be repeated. If expression in the first Case

statement is true, the following statements are executed. If expression

is false, the program moves to the next Case statement. The process

is repeated until an End Case statement is reached.

If more than one expression is true, only the first one is acted on. If no

expression is true, none of the statements are executed.

To test if a variable contains a null value, use this syntax:

Case IsNull (expression)

To specify a default case to execute if all other expressions are false,

use an expression containing the constant value 1.

Example
This example uses Case statements on the incoming argument to

select the type of processing to perform within a routine:

Function MyTransform(Arg1)
Begin Case
Case Arg1 = 1

Reply = "A"
Case Arg1 = 2

Reply = "B"

Case Arg1 > 2 And Arg1 < 11
Reply = "C"

Case @True ;* all other values
Call DSTransformError("Bad arg":Arg1, "MyTransform"
Server Job Developer’s Guide 18-45

Case Statement BASIC Programming
Reply = ""
End Case

Return(Reply)
18-46 Server Job Developer’s Guide

BASIC Programming Cats Statement
Cats Statement
Concatenates two strings.

Syntax
Cats (string1, string2)

string1, string2 are the strings to be concatenated. If either string is a

null value, a null value is returned.

Example
String1 = "ABC"
String2 = "1234"
Result = Cats(String1, String2)
* Result contains "ABC1234"
Server Job Developer’s Guide 18-47

Change Function BASIC Programming
Change Function
Replaces one or more instances of a substring.

Syntax
Change (string, substring, replacement [,number [,start]])

string is the string or expression in which you want to change

substrings. If string evaluates to a null value, null is returned.

substring is the substring you want to replace. If it is empty, the value

of string is returned (this is the only difference between Change and

Ereplace).

replacement is the replacement substring. If replacement is an empty

string, all occurrences of substring are removed.

number specifies the number of instances of substring to replace. To

change all instances, use a value less than 1.

start specifies the first instance to replace. A value less than 1 defaults

to 1.

Remarks
A null value for string returns a null value. If you use a null value for

any other variable, a run-time error occurs.

Examples
The following example replaces all occurrences of one substring with

another:

MyString = "AABBCCBBDDBB"NewString = Change(MyString, "BB",
➥ "xxx") * The result is "AAxxxCCxxxDDxxx"

The following example replaces only the first two occurrences.

MyString = "AABBCCBBDDBB"NewString = Change (MyString, "BB",
➥ "xxx", 2, 1)* The result is "AAxxxCCxxxDDBB"

The following example removes all occurrences of the substring:

MyString = "AABBCCBBDDBB"NewString = Change (MyString, "BB",
➥ "")* The result is "AACCDD"
18-48 Server Job Developer’s Guide

BASIC Programming Char Function
Char Function
Generates an ASCII character from its numeric code value.

Syntax
Char (code)

code is the ASCII code value of the character or an expression

evaluating to the code.

Remarks
Be careful with null values. If code is a null value, null is returned. If

code is 128, the returned value is CHAR(128), that is, the system

variable @NULL.STR.

The Char function is the inverse of the Seq function.

Warning If NLS is enabled, values for code in the range 129

through 247 return Unicode values in the range x0081

through x00F7. These are multibyte characters

equivalent to the same values in the ISO 8859 (Latin 1)

character set. To generate the specific bytes with the

values 129 through 247, use the Byte function.

Example
This example uses the Char function to return the character

associated with the specified character code:

MyChar = Char(65) ;* returns "A"
MyChar = Char(97) ;* returns "a"
MyChar = Char(32) ;* returns a space
MyChar = Char(544)
* returns a space (544 = 32 modulus 256)
Server Job Developer’s Guide 18-49

Checksum Function BASIC Programming
Checksum Function
Returns a checksum value for a string.

Syntax
Checksum (string)

string is the string you want to add the checksum to. If string is a null

value, null is returned.

Example
This example uses the Checksum function to return a number that is

a cyclic redundancy code for the specified string:

MyString = "This is any arbitrary string value"
CheckValue = Checksum(MyString) ;* returns 36235
18-50 Server Job Developer’s Guide

BASIC Programming CloseSeq Statement
CloseSeq Statement
Closes a file after sequential processing.

Syntax
CloseSeq file.variable [On Error statements]

file.variable specifies a file previously opened with an OpenSeq

statement.

On Error statements specifies statements to execute if a fatal error

occurs during processing of the CloseSeq statement.

Remarks
Each sequential file reference in a routine must be preceded by a

separate OpenSeq statement for that file. OpenSeq sets an update

record lock on the file. This prevents any other program from

changing the file while you are processing it. CloseSeq resets this

lock after processing the file. Multiple OpenSeq operations on the

same file only generate one update record lock so you need only

include one CloseSeq statement per file.

If a fatal error occurs, and no On Error clause was specified:

An error message appears.

Any uncommitted transactions begun within the current execution
environment roll back.

The current program terminates.

If the On Error clause is taken, the value returned by the Status

function is the error number.
Server Job Developer’s Guide 18-51

Col1 Function BASIC Programming
Col1 Function
Returns the character position preceding the substring specified in the

most recently executed Field function.

Syntax
Col1 ()

Remarks
The character position is returned as a number. The returned value is

local to the routine executing the Field function. The value of Col1 in

the routine is initialized as 0.

Col1 returns a value of 0 if:

No Field function was executed.

The delimiter expression of the Field function is an empty string
or the null value.

The string is not found.

Examples
The Field function in the following example returns substring “CCC”.

Col1 () returns 8, the position of the delimiter (/) that precedes CCC.

* Extract third "/"-delimited field.
SubString = Field("AAA/BBB/CCC", "/" ,3)
Position = Col1() ;* get position of delimiter

In the following example, the Field function returns a substring of two

fields with the delimiter (.) that separates them: 4.5. Col1 () returns 6,

the position of the delimiter that precedes 4.

* Get fourth and fifth "."-delimited fields.
SubString = Field("1.2.3.4.5.6", ".", 4, 2)
Position = Col1() ;* get position of delimiter
18-52 Server Job Developer’s Guide

BASIC Programming Col2 Function
Col2 Function
Returns the character position following the substring specified in the

most recently executed Field function.

Syntax
Col2 ()

Remarks
The character position is returned as a number. The returned value is

local to the routine executing the Field function. The value of Col2 in

the routine is initialized as 0. When control is returned to the calling

program, the saved value of Col2 is restored.

Col2 returns a value of 0 if:

No Field function was executed.

The delimiter expression of the Field function is an empty string
or the null value.

The string is not found.

Examples
The Field function in the following example returns substring “CCC”.

Col2 () returns 12, the position that the delimiter (/) would have

occupied following CCC if the end of the string had not been

encountered.

* Extract third "/"-delimited field.
SubString = Field("AAA/BBB/CCC", "/" ,3)
Position = Col2() ;* returns end of string in fact

In the following example, the Field function returns a substring of two

fields with the delimiter (.) that separates them: 4.5. Col2 () returns

10, the position of the delimiter that follows 5.

* Get fourth and fifth "."-delimited fields.
SubString = Field("1.2.3.4.5.6", ".", 4, 2)
Position = Col2() ;* get position of delimiter

In the next example, Field returns the whole string, because the

delimiter (.) is not found. Col2 () returns 6, the position after the last

character of the string.

* Attempts to first get first "."-delimited field,
* but fails.
SubString = Field("9*8*7", ".", 1)
Position = Col2() ;* returns length of string + 1
Server Job Developer’s Guide 18-53

Col2 Function BASIC Programming
In the next example, Field returns an empty string, because there is

no tenth occurrence of the substring in the string. Col2 () returns 0

because the substring was not found.

* Attempts to first get tenth "."-delimited
* field, but fails.
SubString = Field("9*8*7*6*5*4", "*", 10)
Position = Col2 ;* returns 0
18-54 Server Job Developer’s Guide

BASIC Programming Common Statement
Common Statement
Defines a common storage area for variables. Not available in

expressions.

Syntax
Common /name / variable [,variable] …

/name/ is the name identifying the common area and is significant to

31 characters.

variable is the name of a variable to store in the common area.

Remarks
Variables in the common area are accessible to all routines that have

the /name/ common declared. (Use the $Include statement to define

the common area in each routine.) Corresponding variables can have

different names in different routines, but they must be defined in the

same order. The Common statement must precede any reference to

the variables it names.

Arrays can be dimensioned and named with a Common statement.

They can be redimensioned later with a Dimension statement, but

the Common statement must appear before the Dimension

statement.

Example
This example shows two routines communicating via a common area

named MyCommon, defined in a separate file in the DSU_BP

subdirectory whose name is declared by a $Include statement:

The file DSU_BP \ MyCommon.H contains:

Common /MyCommon/ComVar1,;* single variable
ComVar2(10);* array of 10 variables

The routines are defined as before/afters, as follows:

Subroutine MyRoutineA(InputArg, ErrorCode)
$Include MyCommon.H

ErrorCode = 0
* Distribute fields of incoming argument into common * array:

For n = 1 To 10
ComVar2(n) = Field(InputArg, ",", n)
If ComVar2(n) <> "" Then

ComVar1 = n ;* indicate highest one used
End

Next n
Server Job Developer’s Guide 18-55

Common Statement BASIC Programming
Call DSU.MyRoutineB("another arg", ErrorCodeB)
* Etc.
...
Return
Subroutine MyRoutineB(InputArg, ErrorCode)
$Include MyCommon.H

ErrorCode = 0
* Read the values out of the common array:

For n = 1 To ComVar1
MyVar = ComVar2(n)
* Do something with it...
...

Next n
Return
18-56 Server Job Developer’s Guide

BASIC Programming Compare Function
Compare Function
Compares two strings. If NLS is enabled, the result of this function

depends on the current locale setting of the Collate convention.

Syntax
Compare (string1, string2 [, justification])

string1, string2 are the strings to be compared.

justification is either L for left-justified comparison or R for right-

justified comparison. If you do not specify L or R, L is the default. Any

other value causes a run-time warning, and 0 is returned.

Remarks
The result of the comparison is returned as one of the following

values:

–1string1 is less than string2.

0string1 equals string2 or the justification expression is not

valid.

1string1 is greater than string2.

Use a right-justified comparison for numeric strings; use a left-

justified comparison for text strings. For mixed strings, take care. For

example, a right-justified comparison of the strings AB100 and AB99

indicates that AB100 is greater than AB99 since 100 is greater than 99.

But a right-justified comparison of the strings AC99 and AB100

indicates that AC99 is greater since C is greater than B.

Example
In the following example, the strings AB99 and AB100 are compared

with the right-justified option, in which "AB100" is greater than

"AB99":

On Compare("AB99", "AB100", "R") + 2 GoSubLessThan,
EqualTo

GreaterThan
Server Job Developer’s Guide 18-57

Convert Function BASIC Programming
Convert Function
Replaces every instance of specified characters in a string with

substitute characters.

Syntax
Convert (list, new.list, string)

list is a list of characters to replace. If list is a null value it generates a

run-time error.

new.list is a corresponding list of substitute characters. If new.list is a

null value, it generates a run-time error.

string is an expression that evaluates to the string, or a variable

containing the string. If string is a null value, null is returned.

Remarks
The two lists of characters correspond. The first character of new.list

replaces all instances of the first character of list, the second replaces

the second, and so on. If the two lists do not contain the same number

of characters:

Any characters in list with no corresponding characters in new.list
are deleted from the result.

Any surplus characters in new.list are ignored.

Example
This is an example of Convert used as a function:

MyString ="NOW IS THE TIME"
ConvStr = Convert("TI", "XY", MyString)
* all T => X, I => Y
* At this point ConvStr is: NOW YS XHE XYME
ConvStr = Convert("XY", "Z", ConvStr)
* all X => Z, Y => ""
* At this point ConvStr is: NOW S ZHE ZME
18-58 Server Job Developer’s Guide

BASIC Programming Convert Statement
Convert Statement
Replaces every instance of specified characters in a string with

substitute characters. Not available in expressions.

Syntax
Convert list To new.list In string

list is a list of characters to replace. If list is a null value, it generates a

run-time error.

new.list is a corresponding list of substitute characters. If new.list is a

null value, it generates a run-time error.

string is an expression that evaluates to the string, or a variable

containing the string. If string is a null value, null is returned.

Remarks
The two lists of characters correspond. The first character of new.list

replaces all instances of the first character of list, the second replaces

the second, and so on. If the two lists do not contain the same number

of characters:

Any characters in list with no corresponding characters in new.list
are deleted from the result.

Any surplus characters in new.list are ignored.

Example
This example shows Convert used as a statement, converting the

string in place:

MyString ="NOW IS THE TIME"
Convert "TI" To "XY" In MyString
* all T => X, I => Y
* At this point MyString is: NOW YS XHE XYME
Convert "XY" To "Z" In MyString
* all X => Z, Y => ""
* At this point MyString is: NOW S ZHE ZME
Server Job Developer’s Guide 18-59

Count Function BASIC Programming
Count Function
Counts the number of times a substring occurs in a string.

Syntax
Count (string, substring)

string is the string you want to search. If string is a null value, null is

returned.

substring is the substring you want to count. It can be a character

string, a constant, or a variable. If substring does not appear in string,

0 is returned. If substring is an empty string, the number of characters

in string is returned. If substring is a null value, a run-time error

results.

Remarks
When one complete substring is counted, Count moves on to the

next character and starts again. For example, the following statement

counts only two instances of substring tt and returns 2 to variable c:

c = Count ('tttt', 'tt')

Example
* The next line returns the number of "A"s
* in the string (3).
MyCount = Count("ABCAGHDALL", "A")
* The next line returns 2 since overlapping substrings
* are not counted.
MyCount = Count ("TTTT", "TT")
18-60 Server Job Developer’s Guide

BASIC Programming CRC32 Function
CRC32 Function
Returns a 32-bit cyclic redundancy check value for a string.

Syntax
CRC32 (string)

string is the string you want to add the CRC value to. If string is a null

value, null is returned.

Example
This example uses the CRC function to return a number that is a

cyclic redundancy code for the specified string:

MyString = "This is any arbitrary string value"
CheckValue = CRC32(MyString) ;* returns 36235
Server Job Developer’s Guide 18-61

Date Function BASIC Programming
Date Function
Returns a date in its internal system format.

Syntax
Date ()

Remarks
DataStage stores dates as the number of days before or after day 0,

using 31 December 1967 as day 0. For example:

Use the internal date whenever you need to perform output

conversions.

Example
This example shows how to turn the current date in internal form into

a string representing the next day:

Tomorrow = Oconv(Date() + 1, "D4/YMD") ;* "1997/5/24"

This date… Is stored as…

December 10, 1967 –21

November 15, 1967 –46

December 31, 1967 0

February 15, 1968 46

January 1, 1985 6575
18-62 Server Job Developer’s Guide

BASIC Programming DCount Function
DCount Function
Counts delimited fields in a string.

Syntax
DCount (string, delimiter)

string is the string to be searched. If string is an empty string, 0 is

returned. If string is a null value, null is returned.

delimiter is one or more characters delimiting the fields to be counted.

If delimiter is an empty string, the number of characters in string + 1 is

returned. If delimiter is a null value, a run-time error occurs. Two

consecutive delimiters in string are counted as one field.

Remarks
DCount differs from Count in that it returns the number of values

separated by delimiters rather than the number of occurrences of a

character string.

Example
* The next line returns the number of substrings
* delimited by "A"s in the string (4)
MyCount = DCount("ABCAGHDALL", "A")
* The next line returns 3 since overlapping substrings
* are not counted.
MyCount = DCount ("TTTT", "TT")
Server Job Developer’s Guide 18-63

Deffun Statement BASIC Programming
Deffun Statement
Defines a user-written function.

Syntax
Deffun function [([Mat] argument [, [Mat] argument …])]
[Calling call.name]

function is the name of the function to be defined.

argument is an argument to pass to the function. You can supply up to

254 arguments. To pass an array, precede the array name with Mat.

Calling call.name specifies the name used to call the function. If you

do not specify a name, the function is called using function.

Remarks
You must declare a user-written function before you can use it in a

program. You can define a user-written function only once in a

program. Defining the function twice causes a fatal error.

Example
This example shows how to define a transform function named

MyFunctionB so that it can be called from within another transform

function named MyFunctionA:

Function MyFunctionA(Arg1)
* When referencing a user-written function that is held in the
* DataStage Repository, you must declare it as a function with
* the correct number of arguments, and add a "DSU." prefix.
Deffun MyFunctionB(A) Calling "DSU.MyFunctionB"
18-64 Server Job Developer’s Guide

BASIC Programming Dimension Statement
Dimension Statement
Defines the dimensions of one or more arrays. Not available in

expressions.

Syntax
Dimension matrix (rows, columns) [,matrix (rows, columns)] …

Dimension vector (max) [, vector (max)] …

matrix is a two-dimensional array to be dimensioned.

rows is the maximum number of rows in the array.

columns is the maximum number of columns in the array.

vector is a one-dimensional array to be dimensioned.

max is the maximum number of elements in the array.

Remarks
Arrays can be redimensioned at run time. You can change an array

from one-dimensional to two-dimensional and vice versa.

The values of array elements are affected by redimensioning as

follows:

Common elements with the same row/column address in both
arrays are preserved.

New elements that had no row/column address in the original
array are initialized as unassigned.

Redundant elements that can no longer be referenced in the new
array are lost, and the memory space is returned to the operating
system.

If there is not enough memory for the array, the Dimension

statement fails and a following InMat function returns 1.

To assign values to the elements of the array, use the Mat statement

and assignment statements.

Example
This example illustrates how a matrix can be dimensioned

dynamically at run time based on incoming argument values:

Subroutine MyRoutine(InputArg, ErrorCode)
ErrorCode = 0

* InputArg is 2 comma-separated fields, being the dimensions.
Rows = Field(InputArg, ",", 1)
Cols = Field(InputArg ",", 2)
Server Job Developer’s Guide 18-65

Dimension Statement BASIC Programming
Dimension MyMatrix(Rows, Cols)
If InMat = 1 Then
* Failed to get space for matrix - exit with error status.

Call DSLogWarn("Could not dimension matrix","MyRoutine")
ErrorCode = -1

Else
* Carry on.

...
End
18-66 Server Job Developer’s Guide

BASIC Programming Div Function
Div Function
Divides one number by another.

Syntax
Div (dividend, divisor)

dividend is the number to be divided. If dividend is a null value, null is

returned.

divisor is the number to divide by. divisor cannot be 0. If divisor is a

null value, null is returned.

Remarks
Use the Mod function to determine any remainder.

Examples
The following examples show use of the Div function:

Quotient = Div(100, 25);* result is 4
Quotient = Div(100, 30);* result is 3
Server Job Developer’s Guide 18-67

DownCase Function BASIC Programming
DownCase Function
Converts uppercase letters in a string to lowercase. If NLS is enabled,

the result of this function depends on the current locale setting of the

Ctype convention.

Syntax
DownCase (string)

string is a string or expression to change to lowercase. If string is a

null value, null is returned.

Example
This is an example of the DownCase function:

MixedCase = "ABC123abc"
LowerCase = DownCase(MyString) ;* result is "abc123abc"
18-68 Server Job Developer’s Guide

BASIC Programming DQuote Function
DQuote Function
Encloses a string in double quotation marks.

Syntax
DQuote (string)

string is the string to be quoted. If string is a null value, null is

returned.

Remarks
To enclose a string in single quotation marks, use the SQuote

function.

Example
This is an example of the DQuote function adding double quotation

marks (“) to the start and end of a string:

ProductNo = 12345
QuotedStr = DQuote(ProductNo : "A")
* result is "12345A"
Server Job Developer’s Guide 18-69

DSAttachJob BASIC Programming
DSAttachJob
Attaches to a job in order to run it in job control sequence. A handle is

returned which is used for addressing the job. There can only be one

handle open for a particular job at any one time.

Syntax
JobHandle = DSAttachJob (JobName, ErrorMode)

JobHandle is the name of a variable to hold the return value which is

subsequently used by any other function or routine when referring to

the job. Do not assume that this value is an integer.

JobName is a string giving the name of the job to be attached to.

ErrorMode is a value specifying how other routines using the handle

should report errors. It is one of:

DSJ.ERRFATAL Log a fatal message and abort the controlling job
(default).

DSJ.ERRWARNINGLog a warning message but carry on.

DSJ.ERRNONENo message logged - caller takes full
responsibility (failure of DSAttachJob itself will be logged,
however).

Remarks
A job cannot attach to itself.

The JobName parameter can specify either an exact version of the job

in the form job%Reln.n.n, or the latest version of the job in the form

job. If a controlling job is itself released, you will get the latest

released version of job. If the controlling job is a development

version, you will get the latest development version of job.

Example
This is an example of attaching to Release 11 of the job Qsales:

Qsales_handle = DSAttachJob ("Qsales%Rel1",
➥ DSJ.ERRWARN)
18-70 Server Job Developer’s Guide

BASIC Programming DSCheckRoutine
DSCheckRoutine
Checks if a BASIC routine is cataloged, either in the VOC as a callable

item, or in the catalog space.

Syntax
Found = DSCheckRoutine(RoutineName)

RoutineName is the name of BASIC routine to check.

Found Boolean. @False if RoutineName not findable, else @True.

Example
rtn$ok = DSCheckRoutine(“DSU.DSSendMail”)
If(NOT(rtn$ok)) Then

* error handling here
End.
Server Job Developer’s Guide 18-71

DSDetachJob BASIC Programming
DSDetachJob
Gives back a JobHandle acquired by DSAttachJob if no further

control of a job is required (allowing another job to become its

controller). It is not necessary to call this function, otherwise any

attached jobs will always be detached automatically when the

controlling job finishes.

Syntax
ErrCode = DSDetachJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

The only possible error is an attempt to close DSJ.ME. Otherwise, the

call always succeeds.

Example
The following command detaches the handle for the job qsales:

Deterr = DSDetachJob (qsales_handle)
18-72 Server Job Developer’s Guide

BASIC Programming DSExecute
DSExecute
Executes a DOS or DataStage Engine command from a before/after

subroutine.

Syntax
Call DSExecute (ShellType, Command, Output, SystemReturnCode)

ShellType (input) specifies the type of command you want to execute

and is either NT or UV (for DataStage Engine).

Command (input) is the command to execute. Command should not

prompt for input when it is executed.

Output (output) is any output from the command. Each line of output

is separated by a field mark, @FM. Output is added to the job log file

as an information message.

SystemReturnCode (output) is a code indicating the success of the

command. A value of 0 means the command executed successfully. A

value of 1 (for a DOS command) indicates that the command was not

found. Any other value is a specific exit code from the command.

Remarks
Do not use DSExecute from a transform; the overhead of running a

command for each row processed by a stage will degrade

performance of the job.
Server Job Developer’s Guide 18-73

DSGetCustInfo BASIC Programming
DSGetCustInfo
Obtains information reported at the end of execution of certain

parallel stages. The information collected, and available to be

interrogated, is specified at design time. For example, transformer

stage information is specified in the Triggers tab of the Transformer

stage Properties dialog box.

Syntax
Result = DSGetCustInfo (JobHandle, StageName, CustInfoName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.CUSTINFOVALUE

DSJ.CUSTINFODESC

Result depends on the specified InfoType, as follows:

DSJ.CUSTINFOVALUE String - the value of the specified
custinfo item.

DSJ.CUSTINFODESC String - description of the specified
custinfo item.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.

DSJE.BADCUSTINFOCustInfoName does not refer to a known
custinfo item.
18-74 Server Job Developer’s Guide

BASIC Programming DSIPCPageProps
DSIPCPageProps
Returns the size (in KB) of the Send/Recieve buffer of an IPC (or Web

Service) stage.

Syntax
Result = DSGetIPCStageProps (JobName, StageName)
or
Call DSGetIPCStageProps (Result, JobName, StageName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

StageName is the name of an IPC stage in the specified job for which

information is required. If StageName does not exist, or is not an IPC

stage within JobName, Result will be set to an empty string.

Result is an array containing the following fields:

the size (in kilobytes) of the Send/Receive buffer of the IPC (or Web
Service) stage StageName within JobName.

the seconds timeout value of the IPC (or Web Service) stage
StageName within JobName.

Example
The following returns the size and timeout of the stage “IPC1” in the

job “testjob”:

buffersize = DSGetIPCStageProps (testjob, IPC1)
Server Job Developer’s Guide 18-75

DSGetJobInfo BASIC Programming
DSGetJobInfo
Provides a method of obtaining information about a job, which can be

used generally as well as for job control. It can refer to the current job

or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetJobInfo (JobHandle, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

InfoType specifies the information required and can be one of:

DSJ.JOBSTATUS

DSJ.JOBNAME

DSJ.JOBCONTROLLER

DSJ.JOBSTARTTIMESTAMP

DSJ.JOBWAVENO

DSJ.PARAMLIST

DSJ.STAGELIST

DSJ.USERSTATUS

DSJ.JOBCONTROL

DSJ.JOBPID

DSJ.JPBLASTTIMESTAMP

DSJ.JOBINVOCATIONS

DSJ.JOBINTERIMSTATUS

DSJ.JOBINVOCATIONID

DSJ.JOBDESC

DSJ.JOBFULLDESC

DSJ.STAGELIST2

DSJ.JOBELAPSED

DSJ.JOBEOTCOUNT

DSJ.JOBEOTTIMESTAMP

DSJ.JOBRTISERVICE

DSJ.JOBMULTIINVOKABLE

DSJ.JOBFULLSTAGELIST
18-76 Server Job Developer’s Guide

BASIC Programming DSGetJobInfo
Result depends on the specified InfoType, as follows:

DSJ.JOBSTATUS Integer. Current status of job overall. Possible
statuses that can be returned are currently divided into two
categories:

Firstly, a job that is in progress is identified by:

DSJS.RESETJob finished a reset run.

DSJS.RUNFAILEDJob finished a normal run with a fatal

error.

DSJS.RUNNINGJob running - this is the only status that

 means the job is actually running.

Secondly, jobs that are not running may have the following

statuses:

DSJS.RUNOKJob finished a normal run with no

warnings.

DSJS.RUNWARNJob finished a normal run with

warnings.

DSJS.STOPPEDJob was stopped by operator

intervention (can't tell run type).

DSJS.VALFAILEDJob failed a validation run.

DSJS.VALOKJob finished a validation run with no

warnings.

DSJS.VALWARNJob finished a validation run with

warnings.

DSJ.JOBNAME String. Actual name of the job referenced by the
job handle.

DSJ.JOBCONTROLLER String. Name of the job controlling the
job referenced by the job handle. Note that this may be several job
names separated by periods if the job is controlled by a job which
is itself controlled, etc.

DSJ.JOBSTARTTIMESTAMP String. Date and time when the job
started on the server in the form YYYY-MM-
DD HH:NN:SShh:nn:ss.

DSJ.JOBWAVENO Integer. Wave number of last or current run.

DSJ.PARAMLIST. Returns a comma-separated list of parameter
names.

DSJ.STAGELIST. Returns a comma-separated list of active stage
names.
Server Job Developer’s Guide 18-77

DSGetJobInfo BASIC Programming
DSJ.USERSTATUS String. Whatever the job's last call of
DSSetUserStatus last recorded, else the empty string.

DSJ.JOBCONTROL Integer. Current job control status, i.e.,
whether a stop request has been issued for the job.

DSJ. JOBPID Integer. Job process id.

DSJ.JOBLASTTIMESTAMP String. Date and time when the job
last finished a run on the server in the form YYYY-MM-
DD HH:NN:SS.

DSJ.JOBINVOCATIONS. Returns a comma-separated list of
Invocation IDs.

DSJ.JOBINTERIMSTATUS. Returns the status of a job after it
has run all stages and controlled jobs, but before it has attempted
to run an after-job subroutine. (Designed to be used by an after-job
subroutine to get the status of the current job).

DSJ.JOBINVOCATIONID. Returns the invocation ID of the
specified job (used in the DSJobInvocationId macro in a job
design to access the invocation ID by which the job is invoked).

DSJ.STAGELIST2. Returns a comma-separated list of passive
stage names.

DSJ.JOBELAPSED String. The elapsed time of the job in
seconds.

DSJ.JOBDESC string. The Job Description specified in the Job
Properties dialog box.

DSJ.JOBFULLDESSC string. The Full Description specified in
the Job Properties dialog box.

DSJ.JOBRTISERVICE integer. Set to true if this is a web service
job.

DSJ.JOBMULTIINVOKABLE integer. Set to true if this job
supports multiple invocations

DSJ.JOBEOTCOUNT integer. Count of EndOfTransmission
blocks processed by this job so far.

DSJ.JOBEOTTIMESTAMP timestamp. Date/time of the last
EndOfTransmission block processed by this job.

DSJ.FULLSTAGELIST. Returns a comma-separated list of all
stage names.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.
18-78 Server Job Developer’s Guide

BASIC Programming DSGetJobInfo
Remarks
When referring to a controlled job, DSGetJobInfo can be used either

before or after a DSRunJob has been issued. Any status returned

following a successful call to DSRunJob is guaranteed to relate to

that run of the job.

Examples
The following command requests the job status of the job qsales:

q_status = DSGetJobInfo(qsales_handle, DSJ.JOBSTATUS)

The following command requests the actual name of the current job:

whatname = DSGetJobInfo (DSJ.ME, DSJ.JOBNAME)
Server Job Developer’s Guide 18-79

DSGetJobMetaBag BASIC Programming
DSGetJobMetaBag
Returns a dynamic array containing the MetaBag properties

associated with the named job.

Syntax
Result = DSGetJobMetaBag(JobName, Owner)
or
Call DSGetJobMetaBag(Result, JobName, Owner)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project Result will be set to an empty string.

Owner is an owner name whose metabag properties are to be

returned. If Owner is not a valid owner within the current job, Result

will be set to an empty string. If Owner is an empty string, a field

mark delimited string of metabag property owners within the current

job will be returned in Result.

Result returns a dynamic array of metabag property sets, as follows:

RESULT<1> = MetaPropertyName01 @VM MetaPropertyValue01

RESULT<..> = MetaPropertyName.. @VM MetaPropertyValue..

RESULT<N>= MetaPropertyNameN @VM MetaPropertyValueN

Example
The following returns the metabag properties for owner mbowner in

the job “testjob”:

linksmdata = DSGetJobMetaBag (testjob, mbowner)
18-80 Server Job Developer’s Guide

BASIC Programming DSGetLinkInfo
DSGetLinkInfo
Provides a method of obtaining information about a link on an active

stage, which can be used generally as well as for job control. This

routine may reference either a controlled job or the current job,

depending on the value of JobHandle.

Syntax
Result = DSGetLinkInfo (JobHandle, StageName, LinkName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it can be DSJ.ME to refer to the current job.

StageName is the name of the active stage to be interrogated. May

also be DSJ.ME to refer to the current stage if necessary.

LinkName is the name of a link (input or output) attached to the stage.

May also be DSJ.ME to refer to current link (e.g. when used in a

Transformer expression or transform function called from link code).

InfoType specifies the information required and can be one of:

DSJ.LINKLASTERR

DSJ.LINKNAME

DSJ.LINKROWCOUNT

DSJ.LINKSQLSTATE

DSJ.LINKDBMSCODE

DSJ.LINKDESC

DSJ.LINKSTAGE

DSJ.INSTROWCOUNT

DSJ.LINKEOTROWCOUNT

Result depends on the specified InfoType, as follows:

DSJ.LINKLASTERR String – last error message (if any) reported
from the link in question.

DSJ.LINKNAME String – returns the name of the link, most
useful when used with JobHandle = DSJ.ME and StageName =
DSJ.ME and LinkName = DSJ.ME to discover your own name.

DSJ.LINKROWCOUNT Integer – number of rows that have
passed down a link so far.

DSJ.LINKSQLSTATE – the SQL state for the last error occurring
on this link.

DSJ.LINKDBMSCODE – the DBMS code for the last error
occurring on this link.
Server Job Developer’s Guide 18-81

DSGetLinkInfo BASIC Programming
DSJ.LINKDESC – description of the link.

DSJ.LINKSTAGE – name of the stage at the other end of the link.

DSJ.INSTROWCOUNT – comma-separated list of rowcounts,
one per instance (parallel jobs)

DSJ.LINKEOTROWCOUNT – row count since last
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.BADSTAGE StageName does not refer to a known stage
in the job.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADLINK LinkName does not refer to a known link
for the stage in question.

Remarks
When referring to a controlled job, DSGetLinkInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the number of rows that have

passed down the order_feed link in the loader stage of the job qsales:

link_status = DSGetLinkInfo(qsales_handle, "loader",
➥ "order_feed", DSJ.LINKROWCOUNT)
18-82 Server Job Developer’s Guide

BASIC Programming DSGetLinkMetaData
DSGetLinkMetaData
Returns a dynamic array containing the column metadata of the

specified stage.

Syntax
Result = DSGetLinkMetaData(JobName, LinkName)

or
Call DSGetLinkMetaData(Result, JobName, LinkName)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

LinkName is the name of the link in the specified job for which

information is required. If the LinkName does not exist in the specified

job then the function will return an empty string.

Result returns a dynamic array of nine fields, each field will contain N

values where N is the number of columns on the link.

Result<1,1…N> is the column name

Result<2,1…N> is 1 for primary key columns otherwise 0

Result<3,1…N> is the column sql type. See ODBC.H.

Result<4,1…N> is the column precision

Result<5,1…N> is the column scale

Result<6,1…N> is the column desiplay width

Result<7,1…N> is 1 for nullable columns otherwise 0

Result<8,1…N> is the column descriptions

Result<9,1…N> is the column derivation

Example
The following returns the meta data of the link ilink1 in the job

“testjob”:

linksmdata = DSGetLinkMetaData (testjob, ilink1)
Server Job Developer’s Guide 18-83

DSGetLogEntry BASIC Programming
DSGetLogEntry
Reads the full event details given in EventId.

Syntax
EventDetail = DSGetLogEntry (JobHandle, EventId)

JobHandle is the handle for the job as derived from DSAttachJob.

EventId is an integer that identifies the specific log event for which

details are required. This is obtained using the DSGetNewestLogId
function.

EventDetail is a string containing substrings separated by \. The

substrings are as follows:

Substring1Timestamp in form YYYY-MM-DD HH:NN:SS

Substring2User information

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADVALUE Error accessing EventId.

Example
The following commands first get the EventID for the required log

event and then reads full event details of the log event identified by

LatestLogid into the string LatestEventString:

latestlogid =
➥ DSGetNewestLogId(qsales_handle,DSJ.LOGANY)
LatestEventString =
➥ DSGetLogEntry(qsales_handle,latestlogid)
18-84 Server Job Developer’s Guide

BASIC Programming DSGetLogSummary
DSGetLogSummary
Returns a list of short log event details. The details returned are

determined by the setting of some filters. (Care should be taken with

the setting of the filters, otherwise a large amount of information can

be returned.)

Syntax
SummaryArray = DSGetLogSummary (JobHandle, EventType, StartTime,
EndTime, MaxNumber)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

StartTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-

MM-DD.

EndTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-MM-

DD.

MaxNumber is an integer that restricts the number of events to return.

0 means no restriction. Use this setting with caution.

SummaryArray is a dynamic array of fields separated by @FM. Each

field comprises a number of substrings separated by \, where each

field represents a separate event, with the substrings as follows:

Substring1EventId as per DSGetLogEntry

Substring2Timestamp in form YYYY-MM-DD

HH:NN:SS

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.
Server Job Developer’s Guide 18-85

DSGetLogSummary BASIC Programming
DSJE.BADTIME Invalid StartTime or EndTime.

DSJE.BADVALUE Invalid MaxNumber.

Example
The following command produces an array of reject link active events

recorded for the qsales job between 18th August 1998, and 18th

September 1998, up to a maximum of MAXREJ entries:

RejEntries = DSGetLogSummary (qsales_handle,
➥ DSJ.LOGREJECT, "1998-08-18 00:00:00", "1998-09-18
➥ 00:00:00", MAXREJ)
18-86 Server Job Developer’s Guide

BASIC Programming DSGetNewestLogId
DSGetNewestLogId
Gets the ID of the most recent log event in a particular category, or in

any category.

Syntax
EventId = DSGetNewestLogId (JobHandle, EventType)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

EventId is an integer that identifies the specific log event. EventId can

also be returned as an integer, in which case it contains an error code

as follows:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.

Example
The following command obtains an ID for the most recent warning

message in the log for the qsales job:

Warnid = DSGetNewestLogId (qsales_handle,
➥ DSJ.LOGWARNING)
Server Job Developer’s Guide 18-87

DSGetParamInfo BASIC Programming
DSGetParamInfo
Provides a method of obtaining information about a parameter, which

can be used generally as well as for job control. This routine may

reference either a controlled job or the current job, depending on the

value of JobHandle.

Syntax
Result = DSGetParamInfo (JobHandle, ParamName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

ParamName is the name of the parameter to be interrogated.

InfoType specifies the information required and may be one of:

DSJ.PARAMDEFAULT

DSJ.PARAMHELPTEXT

DSJ.PARAMPROMPT

DSJ.PARAMTYPE

DSJ.PARAMVALUE

DSJ.PARAMDES.DEFAULT

DSJ.PARAMLISTVALUES

DSJ.PARAMDES.LISTVALUES

DSJ.PARAMPROMPT.AT.RUN

Result depends on the specified InfoType, as follows:

DSJ.PARAMDEFAULT String – Current default value for the
parameter in question. See also DSJ.PARAMDES.DEFAULT.

DSJ.PARAMHELPTEXT String – Help text (if any) for the
parameter in question.

DSJ.PARAMPROMPT String – Prompt (if any) for the parameter
in question.

DSJ.PARAMTYPE Integer – Describes the type of validation test
that should be performed on any value being set for this
parameter. Is one of:

DSJ.PARAMTYPE.STRING

DSJ.PARAMTYPE.ENCRYPTED

DSJ.PARAMTYPE.INTEGER
18-88 Server Job Developer’s Guide

BASIC Programming DSGetParamInfo
DSJ.PARAMTYPE.FLOAT (the parameter may contain periods

and E)

DSJ.PARAMTYPE.PATHNAME

DSJ.PARAMTYPE.LIST (should be a string of Tab-separated

strings)

DSJ.PARAMTYPE.DATE (should be a string in form YYYY-MM-

DD)

DSJ.PARAMTYPE.TIME (should be a string in form HH:MM)

DSJ.PARAMVALUE String – Current value of the parameter for
the running job or the last job run if the job is finished.

DSJ.PARAMDES.DEFAULT String – Original default value of the
parameter - may differ from DSJ.PARAMDEFAULT if the latter
has been changed by an administrator since the job was installed.

DSJ.PARAMLISTVALUES String – Tab-separated list of allowed
values for the parameter. See also
DSJ.PARAMDES.LISTVALUES.

DSJ.PARAMDES.LISTVALUES String – Original Tab-separated
list of allowed values for the parameter – may differ from
DSJ.PARAMLISTVALUES if the latter has been changed by an
administrator since the job was installed.

DSJ.PROMPT.AT.RUN String – 1 means the parameter is to be
prompted for when the job is run; anything else means it is not
(DSJ.PARAMDEFAULT String to be used directly).

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADPARAM ParamName is not a parameter name in the
job.

DSJE.BADTYPE InfoType was unrecognized.

Remarks
When referring to a controlled job, DSGetParamInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the default value of the quarter

parameter for the qsales job:
Server Job Developer’s Guide 18-89

DSGetParamInfo BASIC Programming
Qs_quarter = DSGetparamInfo(qsales_handle, "quarter",
➥ DSJ.PARAMDEFAULT)
18-90 Server Job Developer’s Guide

BASIC Programming DSGetProjectInfo
DSGetProjectInfo
Provides a method of obtaining information about the current project.

Syntax
Result = DSGetProjectInfo (InfoType)

InfoType specifies the information required and can be one of:

DSJ.JOBLIST

DSJ.PROJECTNAME

DSJ.HOSTNAME

Result depends on the specified InfoType, as follows:

DSJ.JOBLIST String - comma-separated list of names of all jobs
known to the project (whether the jobs are currently attached or
not).

DSJ.PROJECTNAME String - name of the current project.

DSJ.HOSTNAME String - the host name of the server holding
the current project.

Result may also return an error condition as follows:

– DSJE.BADTYPE InfoType was unrecognized.
Server Job Developer’s Guide 18-91

DSGetStageInfo BASIC Programming
DSGetStageInfo
Provides a method of obtaining information about a stage, which can

be used generally as well as for job control. It can refer to the current

job, or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetStageInfo (JobHandle, StageName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

InfoType specifies the information required and may be one of:

DSJ.LINKLIST

DSJ.STAGELASTERR

DSJ.STAGENAME

DSJ.STAGETYPE

DSJ.STAGEINROWNUM

DSJ.VARLIST

DSJ.STAGESTARTTIMESTAMP

DSJ.STAGEENDTIMESTAMP

DSJ.STAGEDESC

DSJ.STAGEINST

DSJ.STAGECPU

DSJ.LINKTYPES

DSJ.STAGEELAPSED

DSJ.STAGEPID

DSJ.STAGESTATUS

DSJ.STAGEEOTCOUNT

DSJ.STAGEEOTTIMESTAMP

DSJ.CUSTINFOLIST

DSJ.STAGEEOTSTART

Result depends on the specified InfoType, as follows:

DSJ.LINKLIST – comma-separated list of link names in the stage.
18-92 Server Job Developer’s Guide

BASIC Programming DSGetStageInfo
DSJ.STAGELASTERR String – last error message (if any)
reported from any link of the stage in question.

DSJ.STAGENAME String – most useful when used with
JobHandle = DSJ.ME and StageName = DSJ.ME to discover
your own name.

DSJ.STAGETYPE String – the stage type name (e.g.
"Transformer", "BeforeJob").

DSJ. STAGEINROWNUM Integer – the primary link's input row
number.

DSJ.VARLIST – comma-separated list of stage variable names.

DSJ.STAGESTARTTIMESTAMP – date/time that stage started
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEENDTIMESTAMP – date/time that stage finished
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEDESC – stage description.

DSJ.STAGEINST – comma-separated list of instance ids (parallel
jobs).

DSJ.STAGECPU – list of CPU times in seconds.

DSJ.LINKTYPES – comma-separated list of link types.

DSJ.STAGEELAPSED – elapsed time in seconds.

DSJ.STAGEPID – comma-separated list of process ids.

DSJ.STAGESTATUS – stage status.

DSJ.STAGEEOTCOUNT – Count of EndOfTransmission blocks
processed by this stage so far.

DSJ.STAGEEOTTIMESTAMP – Data/time of last
EndOfTransmission block received by this stage.

DSJ.CUSTINFOLIST – custom information generated by stages
(parallel jobs).

DSJ.STAGEEOTSTART – row count at start of current
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEI nfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
Server Job Developer’s Guide 18-93

DSGetStageInfo BASIC Programming
Remarks
When referring to a controlled job, DSGetStageInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the last error message for the

loader stage of the job qsales:

stage_status = DSGetStageInfo(qsales_handle, "loader",
➥ DSJ.STAGELASTERR)
18-94 Server Job Developer’s Guide

BASIC Programming DSGetStageLinks
DSGetStageLinks
Returns a field mark delimited list containing the names of all of the

input/output links of the specified stage.

Syntax
Result = DSGetStageLinks(JobName, StageName, Key)

or
Call DSGetStageLinks(Result, JobName, StageName, Key)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project, then the function will return an empty string.

StageName is the name of the stage in the specified job for which

information is required. If the StageName does not exist in the

specified job then the function will return an empty string.

Key depending on the value of Key the returned list will contain all of

the stages links (Key=0), only the stage’s input links (Key=1) or only

the stage’s output links (Key=2).

Result returns a field mark delimited list containing the names of the

links.

Example
The following returns a list of all the input links on the stage called

“join1” in the job “testjob”:

linkslist = DSGetStageLinks (testjob, join1, 1)
Server Job Developer’s Guide 18-95

DSGetStagesOfType BASIC Programming
DSGetStagesOfType
Returns a field mark delimited list containing the names of all of the

stages of the specified type in a named job..

Syntax
Result = DSGetStagesOfType (JobName, StageType)
or
Call DSGetStagesOfType (Result, JobName, StageType)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

StageType is the name of the stage type, as shown by the Manager

stage type properties form eg CTransformerStage or ORAOCI8. If the

StageType does not exist in the current project or there are no stages

of that type in the specifed job, then the function will return an empty

string.

Result returns a field mark delimited list containing the names of all of

the stages of the specified type in a named job.

Example
The following returns a list of all the aggregator stages in the parallel

job “testjob”:

stagelist = DSGetStagesOfType (testjob, PxAggregator)
18-96 Server Job Developer’s Guide

BASIC Programming DSGetStagesTypes
DSGetStagesTypes
Returns a field mark delimited string of all active and passive stage

types that exist within a named job..

Syntax
Result = DSGetStageTypes(JobName)
or
Call DSGetStageTypes(Result, JobName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

Result is a sorted, field mark delimited string of stage types within

JobName.

Example
The following returns a list of all the types of stage in the job

“testjob”:

stagetypelist = DSGetStagesOfType (testjob)
Server Job Developer’s Guide 18-97

DSGetProjectInfo BASIC Programming
DSGetProjectInfo
Provides a method of obtaining information about variables used in

transformer stages.

Syntax
Result = DSGetVarInfo (JobHandle, StageName, VarName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.VARVALUE

DSJ.VARDESCRIPTION

Result depends on the specified InfoType, as follows:

DSJ.VARVALUE String - the value of the specified variable.

DSJ.VARDESCRIPTION String - description of the specified
variable.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was not recognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADVAR VarName was not recognized.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
18-98 Server Job Developer’s Guide

BASIC Programming DSLogEvent
DSLogEvent
Logs an event message to a job other than the current one. (Use

DSLogInfo, DSLogFatal, or DSLogWarn to log an event to the

current job.)

Syntax
ErrCode = DSLogEvent (JobHandle, EventType, EventMsg)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

EventMsg is a string containing the event message.

ErrCode is 0 if there is no error. Otherwise it contains one of the

following errors:

DSJE.BADHANDLEInvalid JobHandle.

DSJE.BADTYPEInvalid EventType (particularly note that you
cannot place a fatal message in another job’s log).

Example
The following command, when included in the msales job, adds the

message “monthly sales complete” to the log for the qsales job:

Logerror = DsLogEvent (qsales_handle, DSJ.LOGINFO,
➥ "monthly sales complete")
Server Job Developer’s Guide 18-99

DSLogFatal BASIC Programming
DSLogFatal
Logs a fatal error message in a job's log file and aborts the job.

Syntax
Call DSLogFatal (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogFatal subroutine.

Remarks
DSLogFatal writes the fatal error message to the job log file and

aborts the job. DSLogFatal never returns to the calling before/after

subroutine, so it should be used with caution. If a job stops with a fatal

error, it must be reset using the DataStage Director before it can be

rerun.

In a before/after subroutine, it is better to log a warning message

(using DSLogWarn) and exit with a nonzero error code, which allows

DataStage to stop the job cleanly.

DSLogFatal should not be used in a transform. Use

DSTransformError instead.

Example
Call DSLogFatal("Cannot open file", "MyRoutine")
18-100 Server Job Developer’s Guide

BASIC Programming DSLogInfo
DSLogInfo
Logs an information message in a job's log file.

Syntax
Call DSLogInfo (Message, CallingProgName)

Message (input) is the information message you want to log. Message

is automatically prefixed with the name of the current stage and the

calling program.

CallingProgName (input) is the name of the transform or before/after

subroutine that calls the DSLogInfo subroutine.

Remarks
DSLogInfo writes the message text to the job log file as an

information message and returns to the calling routine or transform. If

DSLogInfo is called during the test phase for a newly created routine

in the DataStage Manager, the two arguments are displayed in the

results window.

Unlimited information messages can be written to the job log file.

However, if a lot of messages are produced the job may run slowly

and the DataStage Director may take some time to display the job log

file.

Example
Call DSLogInfo("Transforming: ":Arg1, "MyTransform")
Server Job Developer’s Guide 18-101

DSLogToController BASIC Programming
DSLogToController
This routine may be used to put an info message in the log file of the

job controlling this job, if any. If there isn't one, the call is just ignored.

Syntax
Call DSLogToController(MsgString)

MsgString is the text to be logged. The log event is of type

Information.

Remarks
If the current job is not under control, a silent exit is performed.

Example
Call DSLogToController(“This is logged to parent”)
18-102 Server Job Developer’s Guide

BASIC Programming DSLogWarn
DSLogWarn
Logs a warning message in a job's log file.

Syntax
Call DSLogWarn (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogWarn subroutine.

Remarks
DSLogWarn writes the message to the job log file as a warning and

returns to the calling before/after subroutine. If the job has a warning

limit defined for it, when the number of warnings reaches that limit,

the call does not return and the job is aborted.

DSLogWarn should not be used in a transform. Use

DSTransformError instead.

Example
If InputArg > 100 Then

Call DSLogWarn("Input must be =< 100; received
":InputArg,"MyRoutine")

End Else
* Carry on processing unless the job aborts

End
Server Job Developer’s Guide 18-103

DSMakeJobReport BASIC Programming
DSMakeJobReport
Generates a report describing the complete status of a valid attached

job.

Syntax
ReportText = DSMakeJobReport(JobHandle, ReportLevel, LineSeparator)

JobHandle is the string as returned from DSAttachJob.

ReportLevel specifies the type of report and is one of the following:

0 – basic report. Text string containing start/end time, time elapsed
and status of job.

1 – stage/link detail. As basic report, but also contains information
about individual stages and links within the job.

2 – text string containing full XML report.

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

LineSeparator is the string used to separate lines of the report. Special

values recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows, else LF.

Remarks
If a bad job handle is given, or any other error is encountered,

information is added to the ReportText.

Example
h$ = DSAttachJob(“MyJob”, DSJ.ERRNONE)
rpt$ = DSMakeJobReport(h$,0,”CRLF”)
18-104 Server Job Developer’s Guide

BASIC Programming DSMakeMsg
DSMakeMsg
Insert arguments into a message template. Optionally, it will look up a

template ID in the standard DataStage messages file, and use any

returned message template instead of that given to the routine.

DSMakeMsg

Syntax
FullText = DSMakeMsg(Template, ArgList)

FullText is the message with parameters substituted

Template is the message template, in which %1, %2 etc. are to be

substituted with values from the equivalent position in ArgList. If the

template string starts with a number followed by "\", that is assumed

to be part of a message id to be looked up in the DataStage message

file.

Note: If an argument token is followed by "[E]", the value of that

argument is assumed to be a job control error code, and an

explanation of it will be inserted in place of "[E]". (See the

DSTranslateCode function.)

ArgList is the dynamic array, one field per argument to be substituted.

Remarks
This routine is called from job control code created by the

JobSequence Generator. It is basically an interlude to call

DSRMessage which hides any runtime includes.

It will also perform local job parameter substitution in the message

text. That is, if called from within a job, it looks for substrings such as

"#xyz#" and replaces them with the value of the job parameter named

"xyz".

Example
t$ = DSMakeMsg(“Error calling DSAttachJob(%1)<L>%2”,
➥jb$:@FM:DSGetLastErrorMsg())
Server Job Developer’s Guide 18-105

DSPrepareJob BASIC Programming
DSPrepareJob
Used to ensure that a compiled job is in the correct state to be run or

validated.

Syntax
JobHandle = DSPrepareJob(JobHandle)

JobHandle is the handle, as returned from DSAttachJob(), of the job

to be prepared.

JobHandle is either the original handle or a new one. If returned as 0,

an error occurred and a message is logged.

Example
h$ = DSPrepareJob(h$)
18-106 Server Job Developer’s Guide

BASIC Programming DSRunJob
DSRunJob
Starts a job running. Note that this call is asynchronous; the request is

passed to the run-time engine, but you are not informed of its

progress.

Syntax
ErrCode = DSRunJob (JobHandle, RunMode)

JobHandle is the handle for the job as derived from DSAttachJob.

RunMode is the name of the mode the job is to be run in and is one of:

DSJ.RUNNORMAL (Default) Standard job run.

DSJ.RUNRESET Job is to be reset.

DSJ.RUNVALIDATE Job is to be validated only.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPE RunMode is not a known mode.

Remarks
If the controlling job is running in validate mode, then any calls of

DSRunJob will act as if RunMode was DSJ.RUNVALIDATE,

regardless of the actual setting.

A job in validate mode will run its JobControl routine (if any) rather

than just check for its existence, as is the case for before/after routines.

This allows you to examine the log of what jobs it started up in

validate mode.

After a call of DSRunJob, the controlled job’s handle is unloaded. If

you require to run the same job again, you must use DSDetachJob

and DSAttachJob to set a new handle. Note that you will also need

to use DSWaitForJob, as you cannot attach to a job while it is

running.

Example
The following command starts the job qsales in standard mode:

RunErr = DSRunJob(qsales_handle, DSJ.RUNNORMAL)
Server Job Developer’s Guide 18-107

DSSendMail BASIC Programming
DSSendMail
This routine is an interface to a sendmail program that is assumed to

exist somewhere in the search path of the current user (on the server).

It hides the different call interfaces to various sendmail programs, and

provides a simple interface for sending text. For example:

Syntax
Reply = DSSendMail(Parameters)

Parameters is a set of name:value parameters, separated by either a

mark character or "\n".

Currently recognized names (case-insensitive) are:

"From"Mail address of sender, e.g. Me@SomeWhere.com

Can only be left blank if the local template file does not contain a

"%from%" token.

"To" Mail address of recipient, e.g. You@ElseWhere.com

Can only be left blank if the local template file does not contain a

"%to%" token.

"Subject" Something to put in the subject line of the message.

Refers to the "%subject%" token. If left as "", a standard subject

line will be created, along the lines of "From DataStage job:

jobname"

"Server" Name of host through which the mail should be sent.

May be omitted on systems (such as Unix) where the SMTP host

name can be and is set up externally, in which case the local

template file presumably will not contain a "%server%" token.

"Body" Message body.

Can be omitted. An empty message will be sent. If used, it must be

the last parameter, to allow for getting multiple lines into the

message, using "\n" for line breaks. Refers to the "%body%" token.

Note The text of the body may contain the tokens "%report% or

%fullreport% anywhere within it, which will cause a report

on the current job status to be inserted at that point. A full

report contains stage and link information as well as job

status.

Reply. Possible replies are:

DSJE.NOERROR (0) OK
18-108 Server Job Developer’s Guide

BASIC Programming DSSendMail
DSJE.NOPARAM Parameter name missing - field does not look
like 'name:value'

DSJE.NOTEMPLATE Cannot find template file

DSJE.BADTEMPLATE Error in template file

Remarks
The routine looks for a local file, in the current project directory, with a

well-known name. That is, a template to describe exactly how to run

the local sendmail command.

Example
code = DSSendMail("From:me@here\nTo:You@there\nSubject:Hi
ya\nBody:Line1\nLine2")
Server Job Developer’s Guide 18-109

DSSetGenerateOpMetaData BASIC Programming
DSSetGenerateOpMetaData
Use this to specify whether the job generates operational meta data or

not. This overrides the default setting for the project. In order to

generate operational meta data the Process MetaBroker must be

installed on your DataStage machine.

Syntax
ErrCode = DSSetGenerateOpMetaData (JobHandle, value)

JobHandle is the handle for the job as derived from DSAttachJob.

value is TRUE to generate operational meta data, FALSE to not

generate operational meta data.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE value is wrong.

Example
The following command causes the job qsales to generate operational

meta data whatever the project default specifies:

GenErr = DSSetGenerateOpMetaData(qsales_handle, TRUE)
18-110 Server Job Developer’s Guide

BASIC Programming DSSetJobLimit
DSSetJobLimit
By default a controlled job inherits any row or warning limits from the

controlling job. These can, however, be overridden using the

DSSetJobLimit function.

Syntax
ErrCode = DSSetJobLimit (JobHandle, LimitType, LimitValue)

JobHandle is the handle for the job as derived from DSAttachJob.

LimitType is the name of the limit to be applied to the running job and

is one of:

DSJ.LIMITWARN Job to be stopped after LimitValue warning
events.

DSJ.LIMITROWS Stages to be limited to LimitValue rows.

LimitValue is an integer specifying the value to set the limit to. Set this

to 0 to specify unlimited warnings.

ErrCode is 0 if DSSetJobLimit is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPELimitType is not a known limiting condition.

DSJE.BADVALUELimitValue is not appropriate for the limiting
condition type.

Example
The following command sets a limit of 10 warnings on the qsales job

before it is stopped:

LimitErr = DSSetJobLimit(qsales_handle,
➥ DSJ.LIMITWARN, 10)
Server Job Developer’s Guide 18-111

DSSetParam BASIC Programming
DSSetParam
Specifies job parameter values before running a job. Any parameter

not set will be defaulted.

Syntax
ErrCode = DSSetParam (JobHandle, ParamName, ParamValue)

JobHandle is the handle for the job as derived from DSAttachJob.

ParamName is a string giving the name of the parameter.

ParamValue is a string giving the value for the parameter.

ErrCode is 0 if DSSetParam is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADPARAMParamName is not a known parameter of the
job.

DSJE.BADVALUEParamValue is not appropriate for that
parameter type.

Example
The following commands set the quarter parameter to 1 and the

startdate parameter to 1/1/97 for the qsales job:

paramerr = DSSetParam (qsales_handle, "quarter", "1")
paramerr = DSSetParam (qsales_handle, "startdate",
➥ "1997-01-01")
18-112 Server Job Developer’s Guide

BASIC Programming DSSetUserStatus
DSSetUserStatus
Applies only to the current job, and does not take a JobHandle

parameter. It can be used by any job in either a JobControl or After

routine to set a termination code for interrogation by another job. In

fact, the code may be set at any point in the job, and the last setting is

the one that will be picked up at any time. So to be certain of getting

the actual termination code for a job the caller should use

DSWaitForJob and DSGetJobInfo first, checking for a successful

finishing status.

This routine is defined as a subroutine not a function because there

are no possible errors.

Syntax
Call DSSetUserStatus (UserStatus)

UserStatus String is any user-defined termination message. The string

will be logged as part of a suitable "Control" event in the calling job’s

log, and stored for retrieval by DSGetJobInfo, overwriting any

previous stored string.

This string should not be a negative integer, otherwise it may be

indistinguishable from an internal error in DSGetJobInfo calls.

Example
The following command sets a termination code of “sales job done”:

Call DSSetUserStatus("sales job done")
Server Job Developer’s Guide 18-113

DSStopJob BASIC Programming
DSStopJob
This routine should only be used after a DSRunJob has been issued.

It immediately sends a stop request to the run-time engine. The call is

asynchronous. If you need to know that the job has actually stopped,

you must call DSWaitForJob or use the Sleep statement and poll for

DSGetJobStatus. Note that the stop request gets sent regardless of

the job's current status.

Syntax
ErrCode = DSStopJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

Example
The following command requests that the qsales job is stopped:

stoperr = DSStopJob(qsales_handle)
18-114 Server Job Developer’s Guide

BASIC Programming DSTransformError
DSTransformError
Logs a warning message to a job log file. This function is called from

transforms only.

Syntax
Call DSTransformError (Message, TransformName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling transform.

TransformName (input) is the name of the transform that calls the

DSTransformError subroutine.

Remarks
DSTransformError writes the message (and other information) to

the job log file as a warning and returns to the transform. If the job has

a warning limit defined for it, when the number of warnings reaches

that limit, the call does not return and the job is aborted.

In addition to the warning message, DSTransformError logs the

values of all columns in the current rows for all input and output links

connected to the current stage.

Example
Function MySqrt(Arg1)
If Arg1 < 0 Then

Call DSTransformError("Negative value:"Arg1, "MySqrt")
Return("0") ;*transform produces 0 in this case

End
Result = Sqrt(Arg1) ;* else return the square root

Return(Result)
Server Job Developer’s Guide 18-115

DSTranslateCode BASIC Programming
DSTranslateCode
Converts a job control status or error code into an explanatory text

message.

Syntax
Ans = DSTranslateCode(Code)

Code is:

If Code > 0, it's assumed to be a job status.

If Code < 0, it's assumed to be an error code.

(0 should never be passed in, and will return "no error")

Ans is the message associated with the code.

Remarks
If Code is not recognized, then Ans will report it.

Example
code$ = DSGetLastErrorMsg()
ans$ = DSTranslateCode(code$)
18-116 Server Job Developer’s Guide

BASIC Programming DSWaitForFile
DSWaitForFile
Suspend a job until a named file either exists or does not exist.

Syntax
Reply = DSWaitForFile(Parameters)

Parameters is the full path of file to wait on. No check is made as to

whether this is a reasonable path (for example, whether all directories

in the path exist). A path name starting with "-", indicates a flag to

check the non-existence of the path. It is not part of the path name.

Parameters may also end in the form " timeout:NNNN" (or

"timeout=NNNN") This indicates a non-default time to wait before

giving up. There are several possible formats, case-insensitive:

nnn number of seconds to wait (from now)

nnnS ditto

nnnM number of minutes to wait (from now)

nnnH number of hours to wait (from now)

nn:nn:nn wait until this time in 24HH:NN:SS. If this or nn:nn time
has passed, will wait till next day.

The default timeout is the same as "12H".

The format may optionally terminate "/nn", indicating a poll delay

time in seconds. If omitted, a default poll time is used.

Reply may be:

DSJE.NOERROR (0) OK - file now exists or does not exist,
depending on flag.

DSJE.BADTIME Unrecognized Timeout format

DSJE.NOFILEPATH File path missing

DSJE.TIMEOUT Waited too long

Examples
Reply = DSWaitForFile("C:\ftp\incoming.txt timeout:2H")

(wait 7200 seconds for file on C: to exist before it gives up.)
Reply = DSWaitForFile("-incoming.txt timeout=15:00")

(wait until 3 pm for file in local directory to NOT exist.)
Reply = DSWaitForFile("incoming.txt timeout:3600/60")

(wait 1 hour for a local file to exist, looking once a minute.)
Server Job Developer’s Guide 18-117

DSWaitForJob BASIC Programming
DSWaitForJob
This function is only valid if the current job has issued a DSRunJob

on the given JobHandle(s). It returns if the/a job has started since the

last DSRunJob has since finished.

Syntax
ErrCode = DSWaitForJob (JobHandle)

JobHandle is the string returned from DSAttachJob. If commas are

contained, it's a comma-delimited set of job handles, representing a

list of jobs that are all to be waited for.

ErrCode is 0 if no error, else possible error values (<0) are:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.WRONGJOB Job for this JobHandle was not run from
within this job.

ErrCode is >0 => handle of the job that finished from a multi-job wait.

Remarks
DSWaitForJob will wait for either a single job or multiple jobs.

Example
To wait for the return of the qsales job:

WaitErr = DSWaitForJob(qsales_handle)
18-118 Server Job Developer’s Guide

BASIC Programming Dtx Function
Dtx Function
Converts a decimal integer to hexadecimal.

Syntax
Dtx (number [,size])

number is the decimal number to be converted. If number is a null

value, null is returned.

size is the minimum number of characters in the hexadecimal value.

The returned value is padded with leading zeros as required. If size is

a null value, a run-time error occurs.

Example
This is an example of the Dtx function used to convert a decimal

number to a hexadecimal string representation:

MyNumber = 47
MyHex = Dtx(MyNumber);* returns "2F"
MyHex = Dtx(MyNumber, 4);* returns "002F"
Server Job Developer’s Guide 18-119

Ebcdic Function BASIC Programming
Ebcdic Function
Converts the values of characters in a string from ASCII to EBCDIC

format.

Syntax
Ebcdic (string)

string is the string or expression that you want to convert. If string is a

null value, a run-time error occurs.

Remarks
The Ebcdic and Ascii functions perform complementary operations.

Warning If NLS is enabled, this function may return data that is

not recognized by the current character set map.

Example
This example shows the Ebcdic function being used to convert a

string of ASCII bytes:

AsciiStr = "A1"
EbcdicStr = Ebcdic(AsciiStr);* convert all bytes to EBCDIC
* (Letter A is decimal 193, digit 1 is decimal 241 in EBCDIC)
If EbcdicStr = Char(193):Char(241) Then
... ;* ... so this branch is taken
EndIf
18-120 Server Job Developer’s Guide

BASIC Programming End Statement
End Statement
Indicates the end of a program, a subroutine, or a block of statements.

Syntax
End
End Case

Remarks
Use an End statement in the middle of a program to end a section of

an If statement or other conditional statements.

Use End Case to end a set of Case statements.

Examples
This example illustrates the use of an End statement with various

forms of If…Then construction in a routine:

Function MyTransform(Arg1, Arg2, Arg3)
* Then and Else clauses occupying a single line each:

If Arg1 Matches "A..."
Then Reply = 1
Else Reply = 2

* Multi-line clauses:
If Len(arg1) > 10 Then
Reply += 1
Reply = Arg2 * Reply
End Else

Reply += 2
Reply = (Arg2 - 1) * Reply

End
* Another style of multiline clauses:

If Len(Arg1) > 20
Then

Reply += 2
Reply = Arg3 * Reply

End
Else

Reply += 4
Reply = (Arg3 - 1) * Reply

End
Return(Reply)

This example uses an End Case statement with a Case statement:

Function MyTransform(Arg1)
Begin Case
Case Arg1 = 1

Reply = "A"
Case Arg1 = 2

Reply = "B"
Case Arg1 > 2 And Arg1 < 11
Server Job Developer’s Guide 18-121

End Statement BASIC Programming
Reply = "C"
Case @True ;* all other values

Call DSTransformError("Bad arg":Arg1, "MyTransform"
Reply = ""

End Case
Return(Reply)
18-122 Server Job Developer’s Guide

BASIC Programming Equate Statement
Equate Statement
Equates a value to a symbol or a literal string during compilation. Not

available in expressions.

Syntax
Equate symbol To value [,symbol To value] …

Equate symbol Literally value [,symbol Literally value] …

symbol is the equate name you want to give to a value in your

program. symbol must not be a number.

value is the value you want to identify by symbol. value must be

quoted.

To specifies that value is any type of expression.

Literally (or Lit) specifies that value is a literal string.

Remarks
You can equate symbol only once, otherwise you get a compiler error.

Example
The following example illustrates the use of both Equate…To and

Equate…Literally to set symbols in code:

Function MyFunction(Arg1, Arg2)
Equate Option1 To "O1"
Equate Option2 To "O2"
Equate TestOption Literally "If Arg1 = "
TestOption Option1 Then ;* code becomes: If Arg1 = "1 Then

Ans = ...
End
TestOption Option2 Then ;* code becomes: If Arg1 = "O2" Then

Ans = ...
End
Return(Ans)
Server Job Developer’s Guide 18-123

Ereplace Function BASIC Programming
Ereplace Function
Replaces one or more instances of a substring.

Syntax
Ereplace (string, substring, replacement [,number [,start]])

string is the string or expression.

substring is the substring you want to replace. If substring is an empty

string, the value of string is returned.

replacement is the replacement substring. If replacement is an empty

string, all occurrences of substring are removed.

number specifies the number of instances of substring to replace. To

change all instances, use a value less than 1.

start specifies the first instance to replace. A value less than 1 defaults

to 1.

Remarks
A null value for string returns a null value. If you use a null value for

any other variable, a run-time error occurs.

Examples
The following example replaces all occurrences of one substring with

another:

MyString = "AABBCCBBDDBB"
NewString = Ereplace(MyString, "BB", "xxx")
* The result is "AAxxxCCxxxDDxxx"

The following example replaces only the first two occurrences:

MyString = "AABBCCBBDDBB"
NewString = Ereplace(MyString, "BB", "xxx", 2, 1)
* The result is "AAxxxCCxxxDDBB"

The following example removes all occurrences of the substring:

MyString = "AABBCCBBDDBB"
NewString = Ereplace(MyString, "BB", "")
* The result is "AACCDD"
18-124 Server Job Developer’s Guide

BASIC Programming Exchange Function
Exchange Function
Replaces a character in a string.

Syntax
Exchange (string, find.character, replace.character)

string is the string or expression containing the character to replace. A

null string returns a null.

find.character is the hexadecimal value of the character to find. If

find.character is a null value, Exchange fails and generates a run-time

error.

replace.character is the hexadecimal value of the replacement

character. If the value of replacement.character is FF, find.character is

deleted from the string. If replace.character is a null value, Exchange

fails and generates a run-time error.

Remarks
Exchange replaces all occurrences of the specified character.

If NLS is enabled, Exchange uses the first two bytes of find.character

and replace.character. Characters are evaluated as follows:

Bytes…Evaluated as…

00 through FF00 through FF

00 through FAUnicode characters 0000 through FA

FB through FESystem delimiters

Example
In the following example, 41 is the hexadecimal value for the

character "A" and 2E is the hexadecimal value for the character:

MyString = Exchange("ABABC", "41", "2E")
* result is ".B.BC"
* The above line is functionally equivalent to:
* MyString = Convert("A", ".", "ABABC")
Server Job Developer’s Guide 18-125

Exp Function BASIC Programming
Exp Function
Returns the value of "e" raised to the specified power.

Syntax
Exp (power)

power is a number or numeric expression specifying the power. A null

value returns a null value. If power is too large or too small, a warning

message is generated and 0 is returned.

Remarks
The value of "e" is approximately 2.71828. The formula used to

perform the calculation is:

Exp function value = 2.71828**(power)

Example
This example uses the Exp function to return "e" raised to a power:

* Define angle in radians.
MyAngle = 1.3
* Calculate hyperbolic secant.
MyHSec = 2 / (Exp(MyAngle) + Exp(-MyAngle))
18-126 Server Job Developer’s Guide

BASIC Programming Field Function
Field Function
Returns delimited substrings in a string.

Syntax
Field (string, delimiter, instance [,number])

string is the string containing the substring. If string is a null value,

null is returned.

delimiter is the character that delimits the substring. If delimiter is an

empty string, string is returned. If string does not contain delimiter, an

empty string is returned unless instance is 1, in which case string is

returned. If delimiter is a null value, a run-time error occurs. If more

than one substring is returned, delimiters are returned with the

substrings.

instance specifies which instance of delimiter terminates the

substring. If instance is less than 1, 1 is assumed. If string does not

contain instance, an empty string is returned. If instance is a null

value, a run-time error occurs.

number specifies the number of delimited substrings to return. If

number is an empty string or less than 1, 1 is assumed. If number is a

null value, a run-time error occurs.

Examples
In the following example the variable MyString is set to the data

between the third and fourth occurrences of the delimiter "#":

MyString = Field("###DHHH#KK","#", 4) ;* returns "DHHH"

In the following example SubString is set to "" since the delimiter "/"

does not appear in the string:

MyString = "London+0171+NW2+AZ"
SubString = Field(Mystring, "/", 1) ;* returns ""

In the following example SubString is set to "0171+NW2" since two

fields were requested using the delimiter "+" (the second and third

fields):

MyString = "London+0171+NW2+AZ"
SubString = Field(Mystring, "+", 2, 2)
* returns "0171+NW2"
Server Job Developer’s Guide 18-127

FieldStore Function BASIC Programming
FieldStore Function
Modifies character strings by inserting, deleting, or replacing fields

separated by specified delimiters.

Syntax
FieldStore (string, delimiter, start, number, new.fields)

string is the string to be modified. If string is a null value, null is

returned.

delimiter delimits the fields and can be any single ASCII character. If

delimiter is null, there is a run-time error.

start is the number of the field to start the modification.

If start is greater than the number of fields in string, the string is
padded with empty fields before processing begins.

If start is null, there is a run-time error.

number is the number of fields of new.fields to insert in string.

If number is positive, number fields in string are replaced with the
first number fields of new.fields.

If number is negative, number fields in string are replaced with all
the fields in new.fields.

If number is 0, all the fields in new.fields are inserted in string
before the field specified by start.

If number is null, there is a run-time error.

new.fields is a string or expression containing the new fields to use. If

new.fields is null, there is a run-time error.

Example
The following examples show several different ways of replacing

substrings within a string:

MyString = "1#2#3#4#5"
String = Fieldstore(MyString, "#", 2, 2, "A#B")
* Above results in: "1#A#B#4#5"
String2 = Fieldstore(MyString, "#", 2, -2, "A#B")
* Above results in: "1#A#B#4#5"
String3 = Fieldstore(MyString, "#", 2, 0, "A#B")
* Above results in: "1#A#B#2#3#4#5"
String4 = Fieldstore(MyString, "#", 1, 4, "A#B#C#D")
* Above results in: "A#B#C#D#5"
String5 = Fieldstore(MyString, "#", 7, 3, "A#B#C#D")
* Above results in: "1#2#3#4#5##A#B#"
18-128 Server Job Developer’s Guide

BASIC Programming FIX Function
FIX Function
Use the FIX function to convert a numeric value to a floating-point

number with a specified precision. FIX lets you control the accuracy of

computation by eliminating excess or unreliable data from numeric

results. For example, a bank application that computes the interest

accrual for customer accounts does not need to deal with credits

expressed in fractions of cents. An engineering application needs to

throw away digits that are beyond the accepted reliability of

computations.

Syntax
FIX (number [,precision [,mode]])

number is an expression that evaluates to the numeric value to be

converted. If number evaluates to the null value, null is returned.

precision is an expression that evaluates to the number of digits of

precision in the floating-point number. The default precision is 4.

mode is a flag that specifies how excess digits are handled. If mode is

either 0 or not specified, excess digits are rounded off. If mode is

anything other than 0, excess digits are truncated.

Examples
The following example calculates a value to the default precision of 4:

REAL.VALUE = 37.73629273
PRINT FIX (REAL.VALUE)

This is the program output:

37.7363

The next example calculates the same value to two digits of precision.

The first result is rounded off, the second is truncated:

PRINT FIX (REAL.VALUE, 2)
PRINT FIX (REAL.VALUE, 2, 1)

This is the program output:

37.74
37.73
Server Job Developer’s Guide 18-129

Fmt Function BASIC Programming
Fmt Function
Formats data for output.

Syntax
Fmt (string, format)

string is the string to be formatted. If string is a null value, null is

returned.

format is an expression that defines how the string is to be formatted.

If format is null, the Fmt function fails. For detailed syntax, see

Format expression on page 18-131.

Remarks
The format expression provides a pattern for formatting the string.

You can specify:

The length of the output field

A fill character to pad the field

Whether the field is right-justified or left-justified

A numerical, monetary, or date format

A mask to act as a template for the field
18-130 Server Job Developer’s Guide

BASIC Programming Format Expression
Format Expression
Defines how the string is to be formatted.

Syntax
[length] [fill] justification [edit] [mask]

Output Length
You specify the number of character positions in the output field using

the length parameter. You must specify length unless you specify

mask. (You can specify length and mask.)

If string is smaller than length, it is padded with fill characters.

If string is larger than length, the string is divided into fields by a
text mark, CHAR(251), inserted every length characters. Each field
is padded with fill characters to length.

Fill Character
You specify the fill parameter to define the fill character used to pad

the output field to the size specified by length. The default fill

character is a space. If you want to use a numeric character or the

letters L, R, T, or Q as a fill character, you must enclose it in single

quotation marks.

Justification
You specify the justification of the output using the justification

parameter, which must be one of the following codes:

L Left justify and break at end of field.

R Right justify and break at end of field.

T Left justify and break on space (suitable for text fields).

U Left justify and break on field length.
Server Job Developer’s Guide 18-131

Format Expression BASIC Programming
Monetary and Numeric Formatting
The edit parameter lets you specify codes that format a string as

numeric or monetary output:

The E, M, C, D and N options define numeric representations for

monetary use, using prefixes or suffixes. If NLS is enabled, these

options override the numeric and monetary conventions set for the

current locale.

Masked Output
You can specify a format template for the output using the mask

parameter. For example, a format pattern of 10L##-##-#### formats

Code Description

n[m] n is a number, 0 through 9, that specifies the number of decimal places
to display. If you specify 0 for n, the value is rounded to the nearest
integer. The output is padded with zeros or rounded to the nth decimal
place, if required.

m specifies how to descale the value:

A value of 0 descales the value by the current precision.

A value of 1 through 9 descales the value by m minus the current
precision.

If you do not specify m, the default value is 0. The default precision is
4.

$ Prefixes a dollar sign to numeric output.

F Prefixes a franc sign to numeric output.

, Inserts a comma to separate thousands.

Z Suppresses leading zeros. It returns an empty string if the value is 0.

E Surrounds negative numbers with angle brackets.

C Appends cr to negative numbers.

D Appends db to positive numbers.

B Appends db to negative numbers.

M Appends a minus sign to negative numbers.

N Suppresses a minus sign on negative numbers.

T Truncates a number rather than rounding it.

Y If NLS is enabled, prefixes the yen/yuan character to the value.
18-132 Server Job Developer’s Guide

BASIC Programming Format Expression
the string 31121999 to 31-12-1999. A mask can include any characters,

but these characters have special meaning:

Any other characters followed by n inserts those characters in the

output n times.

If you want to use numbers or special characters as literals, you must

escape the character with a backslash (\).

mask can be enclosed in parentheses for clarity, in which case you

must also parenthesize the whole mask. For example:

((###) ###-####)

The Status function returns the result of edit as follows:

Formatting Exponential Numbers

These codes are available for formatting exponential expressions:

#n Specifies that the data is displayed in a field of n fill characters. If the
format expression does not specify a fill character, a space is used.

%n Specifies that the data is displayed in a field of n zeros.

*n Specifies that the data is displayed in a field of n asterisks.

0 The edit code is successful.

1 The string or expression is invalid.

2 The edit code is invalid.

Q or QR Right justify an exponential expression and break on field length.

QL Left justify an exponential expression and break on field length.

nEm Used with Q, QR, or QL justification, n is the number of fractional
digits, and m specifies the exponent. Each can be a number from 0
through 9.

n.m Used with Q, QR, or QL justification, n is the number of digits
preceding the decimal point, and m is the number of fractional digits.
Each can be a number from 0 through 9.

Z When used with the Q format, only the trailing fractional zeros are
suppressed, and a 0 exponent is suppressed.
Server Job Developer’s Guide 18-133

Format Expression BASIC Programming
Examples

The following examples show the effect of various Fmt codes. In each

case the result is shown as a string so that all significant spaces are

visible.

Format Expression Formatted Value

X = Fmt("1234567", "14R2") X = "1234567.00"

X = Fmt("1234567", "14R2$," X = " $1,234,567.00"

X = Fmt("12345", "14*R2$," X = "****$12,345.00"

X = Fmt("1234567", "14L2" X = "1234567.00"

X = Fmt("0012345", "14R") X = "0012345"

X = Fmt("0012345", "14RZ") X = "12345"

X = Fmt("00000", "14RZ") X = " "

X = Fmt("12345", "14'0'R") X = "00000000012345"

X = Fmt("ONE TWO THREE", "10T") X = "ONE TWO ":T:"THREE"

X = Fmt("ONE TWO THREE", "10R") X = "ONE TWO TH":T:"REE "

X = Fmt("AUSTRALIANS", "5T") X = "AUSTR":T:"ALIAN":T:"S "

X = Fmt("89", "R#####") X = " 89"

X = Fmt("6179328323", "L###-#######") X = "617-9328323"

X = Fmt("123456789", "L#3-#3-#3") X = "123-456-789"

X = Fmt("123456789", "R#5") X = "56789"

X = Fmt("67890", "R#10") X = " 67890"

X = Fmt("123456789", "L#5") X = "12345"

X = Fmt("12345", "L#10") X = "12345 "

X = Fmt("123456", "R##-##-##") X = "12-34-56"

X = Fmt("555666898", "20*R2$,") X = "*****$555,666,898.00"

X = Fmt("DAVID", "10.L") X = "DAVID....."

X = Fmt("24500", "10R2$Z") X = " $24500.00"

X = Fmt("0.12345678E1", "9*Q") X = "*1.2346E0"

X = Fmt("233779", "R") X = "233779"

X = Fmt("233779", "R0") X = "233779"

X = Fmt("233779", "R00") X = "2337790000"

X = Fmt("233779", "R2") X = "233779.00"
18-134 Server Job Developer’s Guide

BASIC Programming Format Expression
X = Fmt("233779", "R20") X = "2337790000.00"

X = Fmt("233779", "R24") X = "233779.00"

X = Fmt("2337.79", "R") X = "2337.79"

X = Fmt("2337.79", "R0" X = "2338"

X = Fmt("2337.79", "R00") X = "23377900"

X = Fmt("2337.79", "R2") X = "2337.79"

X = Fmt("2337.79", "R20") X = "23377900.00"

X = Fmt("2337.79", "R24") X = "2337.79"

X = Fmt("2337.79", "R26") X = "23.38"

Format Expression Formatted Value
Server Job Developer’s Guide 18-135

FmtDP Function BASIC Programming
FmtDP Function
In NLS mode, formats data in display positions rather than by

character length.

Syntax
FmtDP (string, format [, mapname])

string is the string to be formatted. If string is a null value, null is

returned. Any unmappable characters in the string are assumed to

have a display length of 1.

format is an expression that defines how the string is to be formatted.

If format is null, FmtDP fails. For detailed syntax, see Format
expression on page 18-131.

mapname is the name of a character set map to use for the formatting.

If mapname is not specified, the current default for the project or job is

used.

Remarks
FmtDP is suitable for use with multibyte character sets. If NLS is not

enabled, the FmtDP function works like an equivalent Fmt function.
18-136 Server Job Developer’s Guide

BASIC Programming Fold Function
Fold Function
Folds strings to create substrings.

Syntax
Fold (string, length)

string is the string to be folded.

length is the length of the substrings in characters.

Remarks
Use the Fold function to divide a string into a number of substrings

separated by field marks.

string is separated into substrings of length less than or equal to

length. string is separated on blanks, if possible, otherwise it is

separated into substrings of the specified length.

If string evaluates to the null value, null is returned. If length is less

than 1, an empty string is returned. If length is the null value, Fold

fails and the program terminates with a run-time error message.

Example
A=Fold("This is a folded string", 5)

Sets A to:

ThisFis a FfoldeFdFstrinFg

Where F is the field mark.
Server Job Developer’s Guide 18-137

FoldDP Function BASIC Programming
FoldDP Function
In NLS mode, folds strings to create substrings using character

display positions.

Syntax
FoldDP (string, length [, mapname])

string is the string to be folded.

length is the length of the substrings in display positions.

mapname is the name of a character set map to use for the formatting.

If mapname is not specified, the current default for the project or job is

used.

Remarks
The FoldDP function is suitable for use with multibyte character sets.

If NLS is not enabled, the FoldDP function works like an equivalent

Fold function.
18-138 Server Job Developer’s Guide

BASIC Programming For…Next Statements
For…Next Statements
Create a For…Next program loop. Not available in expressions.

Syntax
For variable = start To end [Step increment]

[loop.statements]
[Continue|Exit]

[{While | Until} condition]
[loop.statements]
[Continue]

Next [variable]

For variable identifies the start of the loop.

start To end specifies the start and end value of the counter that

defines how many times the program is to loop.

Step increment specifies the amount the counter is increased when a

Next statement is reached.

loop.statements are the statements that are executed in the loop.

Continue starts the next iteration of the loop from a point within the

loop.

Exit exits the loop from a point within the loop.

While…Continue is an inner loop. If condition evaluates to true, the

inner loop continues to execute. When condition evaluates to false,

the inner loop ends. Program execution continues with the statement

following the Next statement. If condition evaluates to a null value,

the condition is false.

Until…Continue is an inner loop. If condition evaluates to false, the

inner loop continues to execute. When condition evaluates to true, the

loop ends and program execution continues with the statement

following the Next statement.

condition defines the condition for executing a While or Until loop.

condition can be any statement that takes a Then…Else clause, but

you do not include a Then…Else clause. Instead, when the

conditional statement would have executed the Else clause, condition

evaluates to false; when the conditional statement would have

executed the Then clause, condition evaluates to true. The Locked

clause is not supported in this context.

Next variable specifies the end of the loop. variable is the variable

used to define the loop with the For statement. Its use is optional, but

is recommended to improve the readability of the program,

particularly if you use nested loops.
Server Job Developer’s Guide 18-139

For…Next Statements BASIC Programming
Remarks
You can use multiple While and Until clauses in a For…Next loop. If

you nest For…Next loops, each loop must have a unique variable

name as its counter. If a Next statement has no corresponding For

statement, it generates a compiler error.

Example
This example uses For…Next statements to create a string that

contains three instances of the numbers 5 through 1, each string

separated from the other by a hyphen. The outer loop uses a loop

counter variable that is decremented by 1 each time through the loop.

String = "" ;* starting value must be set up
For Outer = 5 To 1 Step -1 ;* outer 5 repetitions

For Inner = 1 To 3 ;* inner 5 repetitions
String = String : Outer

Next Inner
String = String : "-" ;* append a hyphen
Next Outer
* String will now look like: 555-444-333-222-111-.
18-140 Server Job Developer’s Guide

BASIC Programming Function Statement
Function Statement
Identifies a user-written function and specifies the number and names

of the arguments to be passed to it. Not available in expressions.

Syntax
Function [name] [argument1 [, argument2] …]

name is the name of the user-written function and can be any valid

variable name.

argument1 and argument2 are the formal names of arguments to be

passed to the function. The formal names reference the actual names

of the parameters that are used in the calling program (see the

examples). You can specify up to 254 arguments. The calling function

in the main program must specify the same number of arguments as

the Function statement.

Remarks
A user-written function can contain only one Function statement,

which must be the first noncomment line.

An extra argument is hidden so that the user-written function can use

it to return a value. An extra argument is retained by the user-written

function so that a value is returned by the Return statement. If you

use the Return statement in a user-written function and you do not

specify a value to return, an empty string is returned.

Calling the User-Written Function
The calling program must contain a Deffun statement that defines

the user-written function before it is called. The user-written function

must be cataloged in either a local catalog or the system catalog, or it

must be a record in the same object file as the calling program.

If the user-defined function calls itself recursively, you must include a

Deffun statement preceding the recursive call. For example:

Function Cut(expression, character)
Deffun Cut (A1,A2)
If character # ‘’ Then
...

Return (Cut (expression, character [2,999999]))
End Else

Return (expression)
End
End
Server Job Developer’s Guide 18-141

Function Statement BASIC Programming
Examples
In this example, a user-defined function called Short compares the

length of two arguments and returns the shorter:

Function Short(A,B)
AL = Len(A)
BL = Len(B)
If AL < BL Then Result = A Else Result = B
Return(Result)

In this example, a function called MyFunc is defined with the

argument names A, B, and C. It is followed by an example of the

DefFun statement declaring and using the MyFunc function. The

values held in X, Y, and Z are referenced by the argument names A, B,

and C so that the value assigned to T can be calculated.

Function MyFunc(A, B, C)
Z = ...
Return (Z)

...
End

DefFun MyFunc(X, Y, Z)
T = MyFunc(X, Y, Z)
End

This example shows how to call a transform function named

MyFunctionB from within another transform function named

MyFunctionA:

Function MyFunctionA(Arg1)
* When referencing a user-written function that is held in the
* DataStage Repository, you must declare it as a function with
* the correct number of arguments, and add a "DSU." prefix.
Deffun MyFunctionB(A) Calling "DSU.MyFunctionB"

Ans = MyFunctionB(Arg1)
* Add own transformation to the value in Ans...
...
18-142 Server Job Developer’s Guide

BASIC Programming GetLocale Function
GetLocale Function
In NLS mode, retrieves the current locale setting for a specified

category.

Syntax
$Include UNIVERSE.INCLUDE UVNLSLOC.H
name = GetLocale (category)

category is one of the following include tokens:

Remarks
GetLocale returns one of the following error tokens if it cannot

retrieve the locale setting:

Token Meaning

UVLC$TIME Time and date

UVLC$NUMERIC Numeric

UVLC$MONETARY Currency

UVLC$CTYPE Character type

UVLC$COLLATE Sorting sequence

Error Meaning

LCE$NOLOCALES NLS is not enabled for DataStage.

LCE$BAD.CATEGORY The specified category is not recognized.
Server Job Developer’s Guide 18-143

GoSub Statement BASIC Programming
GoSub Statement
Transfers program control to an internal subroutine. Not available in

expressions.

Syntax
GoSub statement.label [:]

statement.label defines where the subroutine starts, and can be any

valid label defined in the program.

: identifies the preceding text as a statement label to make the

program more readable.

Remarks
You transfer control back to the main program using either a Return

or Return To statement:

Return transfers program control to the statement following the
GoSub statement.

Return To label transfers program control to a location in the
program specified by label.

A program can call a subroutine any number of times. You can nest

subroutines up to 256 deep.

Example
This example uses GoSub to call an internal subroutine within a

DataStage transform function. The Return statement causes

execution to resume at the statement immediately following the

GoSub statement. It is necessary to use GoTo as shown to prevent

control from accidentally flowing into the subroutine.

Function MyTransform(Arg1)
* Only use subroutine if input is a positive number:

If Arg1 > 0 Then GoSub MyRoutine
Reply = Arg1
GoTo ExitFunction ;* use GoTo to prevent an error

MyRoutine:
Arg1 = SQRT(Arg1) ;* take the square root
Return ;* return control to statement

ExitFunction:
Return(Reply)
18-144 Server Job Developer’s Guide

BASIC Programming GoTo Statement
GoTo Statement
Transfers program control to the specified statement. Not available in

expressions.

Syntax
GoTo statement.label [:]

statement.label specifies the statement to go to.

: identifies the preceding text as a statement label to make the

program more readable.

Remarks
If the referenced statement is executable, it is executed and the

program continues. If it is not executable, the program goes on to the

first executable statement after the referenced one.

Example
This example uses the GoTo statement to branch to line labels within

a routine. Note that this sort of processing is often clearer using a

Begin Case construct.

Function MyTransform(Arg1)
* Evaluate argument and branch to appropriate label.

If Arg1 = 1 Then GoTo Label1 Else GoTo Label2
Label1:

Reply = "A"
GoTo LastLabel

Label2:
Reply = "B"

LastLabel:
Return(Reply)
Server Job Developer’s Guide 18-145

Iconv Function BASIC Programming
Iconv Function
Converts a string to an internal storage format.

Syntax
Iconv (string, code [@VM code] …)

string evaluates to the string to be converted. If string is a null value,

null is returned.

code is a conversion code and must be quoted. Multiple conversion

codes must be separated by value marks. Multiple codes are applied

from left to right. The second code converts the output of the first, and

so on. If code is a null value, it generates a run-time error.

Remarks
The Status function returns the result of the conversion as follows:

Examples

ASCII Conversions

The following examples show the effect of some MY (ASCII)

conversion codes:

0 The conversion was successful.

1 The string was invalid. An empty string was returned, unless string was a
null value when null was returned.

2 The conversion was invalid.

3 Successful conversion but the input data may be invalid, for example, a
nonexistent date, such as 31 September.

Conversion Expression Internal Value

X = Iconv("ABCD", "MY") X = 41424344

X = Iconv("0123", "MY") X = 30313233
18-146 Server Job Developer’s Guide

BASIC Programming Iconv Function
Date Conversions

The following examples show the effect of various D (Date)

conversion codes:

Group Conversions

The following examples show the effect of some G (Group)

conversion codes:

Length Conversions

The following examples show the effect of some L (Length)

conversion codes:

Conversion Expression Internal Value

X = Iconv("31 DEC 1967", "D") X = 0

X = Iconv("27 MAY 97", "D2") X = 10740

X = Iconv("05/27/97", "D2/") X = 10740

X = Iconv("27/05/1997", "D/E") X = 10740

X = Iconv("1997 5 27", "D YMD") X = 10740

X = Iconv("27 MAY 97", "D DMY") X = 10740

X = Iconv("5/27/97", "D/MDY") X = 10740

X = Iconv("27 MAY 1997", "D DMY") X = 10740

X = Iconv("97 05 27", "DYMD") X = 10740

Conversion Expression Internal Value

X = Iconv("27.05.1997", "G1.2") X = "05.1997"

X = Iconv("27.05.1997", "G.2") X = "27.05"

Conversion Expression Internal Value

X = Iconv("QWERTYUIOP", "L0") X = 10

X = Iconv("QWERTYUIOP", "L7") X = ""

X = Iconv("QWERTYU", "L7") X = "QWERTYU"

X = Iconv("QWERTYUOP", "L3,5") X = ""

X = Iconv("QWER", "L3,5") X = "QWER"
Server Job Developer’s Guide 18-147

Iconv Function BASIC Programming
Masked Character Conversions

The following examples show the effect of some masked character

conversion codes (MCA, MC/A, MCD, MCL, MCN, MC/N, MCP,

MCT, MCU, and MCX):

Masked Decimal Conversions

The following examples show the effect of some MD (Masked

Decimal) conversion codes:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MCA") X = "JohnSmith"

X = Iconv("John Smith 1-234","MC/A") X = " 1-234"

X = Iconv("4D2", "MCD") X = "1234"

X = Iconv("4D2", "MCDX") X = "1234"

X = Iconv("John Smith 1-234", "MCL") X = "john smith 1-234"

X = Iconv("John Smith 1-234", "MCN") X = "1234"

X = Iconv("John Smith 1-234", "MC/N") X = "John Smith -"

X = Iconv("John^CSmith^X1-234", "MCP") X = "John.Smith.1-234"

X = Iconv("john SMITH 1-234", "MCT") X = "John Smith 1-234"

X = Iconv("john smith 1-234", "MCU") X = "JOHN SMITH 1-234"

X = Iconv("1234", "MCX") X = "4D2"

X = Iconv("1234", "MCXD") X = "4D2"

Conversion Expression Internal Value

X = Iconv("9876.54", "MD2") X = 987654

X = Iconv("987654", "MD0") X = 987654

X = Iconv("$1,234,567.89", "MD2$,") X = 123456789

X = Iconv("123456.789", "MD33") X = 123456789

X = Iconv("12345678.9", "MD32") X = 1234567890

X = Iconv("F1234567.89", "MD2F") X = 123456789

X = Iconv("1234567.89cr", "MD2C") X = -123456789

X = Iconv("1234567.89 ", "MD2D") X = 123456789

X = Iconv("1,234,567.89 ", "MD2,D") X = 123456789

X = Iconv("9876.54", "MD2-Z") X = 987654
18-148 Server Job Developer’s Guide

BASIC Programming Iconv Function
Masked Left and Right Conversions

The following examples show the effect of some ML and MR (Masked

Left and Right) conversion codes:

Numeral Conversions

The following examples show the effect of some NR (Roman numeral)

conversion codes:

Pattern Matching Conversions

The following examples show the effect of some P (Pattern matching)

conversion codes:

X = Iconv("$####1234.56", "MD2$12#") X = 123456

X = Iconv("$987.654 ", "MD3,$CPZ") X = 987654

X = Iconv("####9,876.54", "MD2,ZP12#") X = 987654

Conversion Expression Internal Value

X = Iconv("$1,234,567.89", "ML2$,") X = 123456789

X = Iconv(".123", "ML3Z") X = 123

X = Iconv("123456.789", "ML33") X = 123456789

X = Iconv("12345678.9", "ML32") X = 1234567890

X = Iconv("1234567.89cr", "ML2C") X = -123456789

X = Iconv("1234567.89db", "ML2D") X = 123456789

X = Iconv("1234567.89-", "ML2M") X = -123456789

X = Iconv("<1234567.89>", "ML2E") X = -123456789

X = Iconv("1234567.89**", "ML2(*12)") X = 123456789

X = Iconv("**1234567.89", "MR2(*12)") X = 123456789

Conversion Expression Internal Value

X = Iconv("mcmxcvii", "NR") X = 1997

X = Iconv("MCMXCVmm", "NR") X = 1997000

Conversion Expression Internal Value

X = Iconv("123456789", "P(3N-3A-3X);(9N)") X = "123456789"

Conversion Expression Internal Value
Server Job Developer’s Guide 18-149

Iconv Function BASIC Programming
Radix Conversions

The following examples show the effect of some MX, MO, and MB

(Radix) conversion codes:

Range Check Conversions

The following example shows the effect of the R (Range check)

conversion code:

Soundex Conversions

The following examples show the effect of some S (Soundex)

conversion codes:

X = Iconv("123-ABC-A7G", "P(3N-3A-3X);(9N)") X = "123-ABC-A7G"

X = Iconv("123-45-6789", "P(3N-2N-4N)") X = "123-45-6789"

Conversion Expression Internal Value

X = Iconv("400", "MX") X = 1024

X = Iconv("434445", "MX0C") X = "CDE"

X = Iconv("2000", "MO") X = 1024

X = Iconv("103104105", "MO0C") X = "CDE"

X = Iconv("10000000000", "MB") X = 1024

X = Iconv("010000110100010001000101", "MB0C") X = "CDE"

Conversion Expression Internal Value

X = Iconv("123", "R100,200") X = 123

Conversion Expression Internal Value

X = Iconv("GREEN", "S") X = "G650"

X = Iconv("greene", "S") X = "G650"

X = Iconv("GREENWOOD", "S") X = "G653"

X = Iconv("GREENBAUM", "S") X = "G651"

Conversion Expression Internal Value
18-150 Server Job Developer’s Guide

BASIC Programming Iconv Function
Time Conversions

The following examples show the effect of some MT (Time)

conversion codes:

Conversion Expression Internal Value

X = Iconv("02:46", "MT") X = 9960

X = Iconv("02:46:40am", "MTHS") X = 10000

X = Iconv("02:46am", "MTH") X = 9960

X = Iconv("02.46", "MT.") X = 9960

X = Iconv("02:46:40", "MTS") X = 10000
Server Job Developer’s Guide 18-151

If…Else Statements BASIC Programming
If…Else Statements
Execute one or more statements conditionally. You can use a single-

line syntax or multiple lines in a block. Not available in expressions.

Syntax
If condition Else statement

If condition
Else

statements
End

condition is a numeric value or comparison whose value determines

the program flow. If condition is false, the statements are executed.

statements are the statements to be executed when condition is false.

Remarks
If you want to execute more than one statement when condition is

false, use the multiline syntax.

Example
Function MyTransform(Arg1, Arg2, Arg3)
* Else clause occupying a single line only:

Reply = 0 ;* default
If Arg1 Matches "A..."
Else Reply = 2

* Multi-line Else clause:
If Len(arg1) > 10 Else

Reply += 2
Reply = (Arg2 - 1) * Reply

End
* Another style of multiline Else clause:

If Len(Arg1) > 20
Else

Reply += 4
Reply = (Arg3 - 1) * Reply

End
Return(Reply)
18-152 Server Job Developer’s Guide

BASIC Programming If…Then…Else Statements
If…Then…Else Statements
Define several blocks of statements and the conditions that determine

which block is executed. You can use a single-line syntax or multiple

lines in a block. Not available in expressions.

Syntax
If condition Then statements [Else statements]

If condition
Then statements

End
[Else statements

End]

condition is a numeric value or comparison whose value determines

the program flow. If condition is true, the Then clause is taken. If

condition is false, the Else clause is taken. If condition is a null value,

it evaluates to false.

statements are the statements to be executed depending on the value

of condition.

Remarks
You can nest If…Then…Else statements. If the Then or Else

statements are written on more than one line, you must use an End

statement as the last statement.

Example
Function MyTransform(Arg1, Arg2, Arg3)
* Then and Else clauses occupying a single line each:

If Arg1 Matches "A..."
Then Reply = 1

Else Reply = 2
* Multi-line clauses:

If Len(arg1) > 10 Then
Reply += 1
Reply = Arg2 * Reply

End Else
Reply += 2
Reply = (Arg2 - 1) * Reply

End
* Another style of multiline clauses:

If Len(Arg1) > 20
Then

Reply += 2
Reply = Arg3 * Reply

End
Else
Server Job Developer’s Guide 18-153

If…Then…Else Statements BASIC Programming
Reply += 4
Reply = (Arg3 - 1) * Reply

End
Return(Reply)
18-154 Server Job Developer’s Guide

BASIC Programming If…Then Statements
If…Then Statements
Execute one or more statements conditionally. You can use a single-

line syntax or multiple lines in a block. Not available in expressions.

Syntax
If condition Then statement

If condition
Then

statements
End

condition is a numeric value or comparison whose value determines

the program flow. If condition is true, the statements are executed.

statements are the statements to be executed when condition is true.

Remarks
If you want to execute more than one statement when condition is

true, use the multiline syntax.

Example
This example illustrates various forms of If…Then construction that

can be used in a routine:

Function MyTransform(Arg1, Arg2, Arg3)
* Then clause occupying a single line only:

Reply = 0 ;* default
If Arg1 Matches "A..."

Then Reply = 1
* Multi-line Then clause:

If Len(arg1) > 10 Then
Reply += 1
Reply = Arg2 * Reply

End

* Another style of multiline Then clause:
If Len(Arg1) > 20
Then

Reply += 2
Reply = Arg3 * Reply

End
Return(Reply)
Server Job Developer’s Guide 18-155

If…Then…Else Operator BASIC Programming
If…Then…Else Operator
Assign a value that meets the specified conditions.

If…Then…Else Operator

Syntax
variable = If condition Then expression Else expression

variable is the variable to assign.

If condition defines the condition that determines which value to

assign.

Then expression defines the value to assign if condition is true.

Else expression defines the value to assign if condition is false.

Remarks
The If operator is the only form of If…Then…Else construction that

can be used in an expression.

Example
Note that the Else clause is required.

* Return A or B depending on value in Column1:
If Column1 > 100 Then "A" Else "B"
* Add 1 or 2 to value in Column2 depending on what's in
* Column3, and return it:
Column2 + (If Column3 Matches "A..." Then 1 Else 2)
18-156 Server Job Developer’s Guide

BASIC Programming Index Function
Index Function
Returns the starting position of a substring.

Syntax
Index (string, substring, instance)

string is the string or expression containing the substring. If string is a

null value, 0 is returned.

substring is the substring to be found. If substring is an empty string,

1 is returned. If substring is a null value, 0 is returned.

instance specifies which instance of substring is to be located. If

instance is not found, 0 is returned. If instance is a null value, it

generates a run-time error.

Examples
The following examples show several ways of finding the position of a

substring within a string:

MyString = "P1234XXOO1299XX00P1"
Position = Index(MyString, 1, 2)
* The above returns the index of the second "1" character (10).
Position = Index(MyString, "XX", 2)
* The above returns the start index of the second "XX"
* substring (14).
Position = Index(MyString, "xx", 2)
* The above returns 0 since the substring "xx" does not occur.
Position = Index(MyString, "XX", 3)
* The above returns 0 since the third occurrence of
* substring "XX" * cannot be found.
Server Job Developer’s Guide 18-157

InMat Function BASIC Programming
InMat Function
Retrieves the dimensions of an array, or determines if a Dimension

statement failed due to insufficient memory. Not available in

expressions.

Syntax
InMat [(array)]

array is the name of the array whose dimensions you want to retrieve.

Remarks
If you specify array, InMat returns the dimensions of the array. If you

do not specify array, InMat returns 1 if the preceding Dimension

statement failed due to lack of available memory.

Example
This example shows how to test whether a Dimension statement

successfully allocated enough memory:

Dim MyArray(2000)
If InMat() = 1 Then

 Call DSLogFatal("Could not allocate array",
➥ "MyRoutine")
End
18-158 Server Job Developer’s Guide

BASIC Programming Int Function
Int Function
Returns the integer portion of a numeric expression.

Syntax
Int (expression)

expression is a numeric expression. After evaluation, the fractional

portion of the value is truncated and the integer portion is returned. If

expression is a null value, null is returned.

Example
This example shows the integer portion of an expression being

returned by the Int function:

MyValue = 2.3
IntValue = Int(MyValue) ;* answer is 2
IntValue = Int(-MyValue) ;* answer is -2
IntValue = Int(MyValue / 10) ;* answer is 0
Server Job Developer’s Guide 18-159

IsNull Function BASIC Programming
IsNull Function
Tests if a variable contains a null value.

Syntax
IsNull (variable)

variable is the variable to test. If variable contains a null value, 1 is

returned, otherwise 0 is returned.

Remarks
This is the only way to test for a null value because the null value is

not equal to any value, including itself.

Example
This example shows how to test for an expression being set to the

null value:

MyVar = @Null ;* sets variable to null value
If IsNull(MyVar * 10) Then
* Will be true since any arithmetic involving a null value
* results in a null value.
End
18-160 Server Job Developer’s Guide

BASIC Programming Left Function
Left Function
Extracts a substring from the start of a string.

Syntax
Left (string, n)

string is the string containing the substring. If string is a null value,

null is returned.

n is the number of characters to extract from the start of the string. If n

is a null value, it generates a run-time error.

Examples
These examples extract the leftmost three characters of a string:

MyString = "ABCDEF"
MySubStr = Left(MyString, 3) ;* answer is "ABC"
MySubStr = Left("AB", 3) ;* answer is "AB"
Server Job Developer’s Guide 18-161

Len Function BASIC Programming
Len Function
Returns the number of characters in a string.

Syntax
Len (string)

string is the string whose characters are counted. All characters are

counted, including spaces and trailing blanks. If string is a null value, 0

is returned.

Examples
These examples find the length of a string, or a number when

expressed as a string:

MyStr = "PORTLAND, OREGON"
StrLen = Len(MyStr) ;* answer is 16
NumLen = Len(12345.67) ;* answer is 8 (note

;* decimal point)
18-162 Server Job Developer’s Guide

BASIC Programming LenDP Function
LenDP Function
In NLS mode, returns the length of a string in display positions.

Syntax
LenDP (string [, mapname])

string is the string to be measured. Any unmappable characters in

string are assumed to have a display length of 1.

mapname is the name of the map that defines the character set used

in string. If mapname is omitted, the default character set map for the

project or job is used.

Remarks
If NLS is not enabled, this function works like the Len function and

returns the number of characters in the string.
Server Job Developer’s Guide 18-163

Ln Function BASIC Programming
Ln Function
Calculates the natural logarithm of the value of an expression, using

base "e".

Syntax
Ln (expression)

expression is the numeric expression to evaluate. If expression is 0 or

negative, 0 is returned and a warning is issued. If expression is a null

value, null is returned.

Remarks
The value of "e" is approximately 2.71828.

Example
This example shows how to write a transform to convert a number to

its base 10 logarithm using the Ln function:

Function Log10(Arg1)
If Not(Num(Arg1)) Then

Call DSTransformError("Non-numeric ":Arg1, "Log10")
Ans = 0 ;* or some suitable default

End Else
Ans = Ln(Arg1) / Ln(10)

End
Return(Ans)
18-164 Server Job Developer’s Guide

BASIC Programming LOCATE statement
LOCATE statement
Use a LOCATE statement to search dynamic.array for expression and

to return a value indicating one of the following:

Where expression was found in dynamic.array

Where expression should be inserted in dynamic.array if it was
not found

The search can start anywhere in dynamic.array.

Syntax
LOCATE expression IN dynamic.array [< field# [,value#] >] [,start]
[BY seq] SETTING variable
 {THEN statements [ELSE statements] | ELSE statements}

expression evaluates to the string to be searched for in dynamic.array.

If expression or dynamic.array evaluate to the null value, variable is

set to 0 and the ELSE statements are executed. If expression and

dynamic.array both evaluate to empty strings, variable is set to 1 and

the THEN statements are executed.

field#, value#, and subvalue# are delimiter expressions, specifying:

Where the search is to start in dynamic.array

What kind of element is being searched for

start evaluates to a number specifying the field, value, or subvalue

from which to start the search.

The delimiter expressions specify the level of the search, and start

specifies the starting position of the search.

If any delimiter expression or start evaluates to the null value, the

LOCATE statement fails and the program terminates with a run-time

error message.

variable stores the index of expression. variable returns a field

number, value number, or a subvalue number, depending on the

delimiter expressions used. variable is set to a number representing

one of the following:

The index of the element containing expression, if such an
element is found

An index that can be used in an INSERT function to create a new
element with the value specified by expression
Server Job Developer’s Guide 18-165

LOCATE statement BASIC Programming
Remarks
During the search, fields are processed as single-valued fields even if

they contain value or subvalue marks. Values are processed as single

values, even if they contain subvalue marks.

The search stops when one of the following conditions is met:

A field containing expression is found.

The end of the dynamic array is reached.

A field that is higher or lower, as specified by seq, is found.

If the elements to be searched are sorted in one of the ascending or

descending ASCII sequences listed below, you can use the BY seq

expression to end the search. The search ends at the place where

expression should be inserted to maintain the ASCII sequence, rather

than at the end of the list of specified elements.

Use the following values for seq to describe the ASCII sequence being

searched:

seq does not reorder the elements in dynamic.array; it specifies the

terminating conditions for the search. If a seq expression is used and

the elements are not in the sequence indicated by seq, an element

with the value of expression may not be found. If seq evaluates to the

null value, the statement fails and the program terminates.

The ELSE statements are executed if expression is not found. The

format of the ELSE statement is the same as that used in the IF…THEN

statement.

If NLS is enabled, the LOCATE statement with a BY seq expression

uses the Collate convention as specified by the current locale.

Examples
A field mark is shown by F, a value mark is shown by V, and a subvalue

mark is shown by S.

Q='X':@SM:"$":@SM:'Y':@VM:'Z':@SM:4:@SM:2:@VM:'B':@VM
PRINT "Q= ":Q
LOCATE "$" IN Q <1> SETTING WHERE ELSE PRINT 'ERROR'
PRINT "WHERE= ",WHERE

“AL” or “A” Ascending, left-justified (standard alphanumeric sort)

“AR” Ascending, right-justified

“DL” or “D” Descending, left-justified (standard alphanumeric sort)

“DR” Descending, right-justified
18-166 Server Job Developer’s Guide

BASIC Programming LOCATE statement
LOCATE "$" IN Q <1,1> SETTING HERE ELSE PRINT 'ERROR'
PRINT "HERE= ", HERE
NUMBERS=122:@FM:123:@FM:126:@FM:130:@FM
PRINT "BEFORE INSERT, NUMBERS= ",NUMBERS
NUM= 128
LOCATE NUM IN NUMBERS <2> BY "AR" SETTING X ELSE
NUMBERS = INSERT(NUMBERS,X,0,0,NUM)
PRINT "AFTER INSERT, NUMBERS= ",NUMBERS
END

This is the program output:

Q= XS$SYVZS4S2VBV
ERROR
WHERE= 5
HERE= 2
BEFORE INSERT, NUMBERS= 122F123F126F130F
AFTER INSERT, NUMBERS= 122F128F123F126F130F
Server Job Developer’s Guide 18-167

Loop…Repeat Statements BASIC Programming
Loop…Repeat Statements
Define a program loop. Not available in expressions.

Syntax
Loop

[statements]
[Continue | Exit]

[While | Until condition Do]
[statements]
[Continue | Exit]

Repeat

Loop defines the start of the program loop.

statements are the statements that are executed in the loop.

Continue specifies that the current loop breaks and restarts at this

point.

Exit specifies that the program quits from the current loop.

While condition Do specifies that the loop repeats as long as

condition is true. When condition is false, the loop stops and program

execution continues with the statement following the Repeat

statement. If condition is a null value, it is considered false.

Until condition Do specifies that the loop repeats as long as

condition is false. When condition is true, the loop stops and program

execution continues with the statement following the Repeat

statement. If condition is a null value, it is considered false.

Repeat defines the end of the loop.

Remarks
You can use multiple While and Until clauses in a Loop…Repeat
loop. You can nest Loop…Repeat loops. If a Repeat statement does

not have a corresponding Loop statement, it generates a compiler

error.

Example
This example shows how Loop…Repeat statements can be used.

The inner Loop…Repeat statement loops 10 times, sets the value of

the flag to false, and exits prematurely using the Exit statement. The

outer loop exits immediately upon checking the value of the flag.
18-168 Server Job Developer’s Guide

BASIC Programming Loop…Repeat Statements
Check = @True
Counter = 0 ;* initialize variables
Loop ;* outer loop

Loop While Counter < 20 ;* inner loop
Counter += 1 ;* increment Counter
If Counter = 10 Then ;* if condition is True...

Check = @False ;* set value of flag to False...
Exit ;* and exit from inner loop.

End
Repeat

Until Not(Check) ;* exit outer loop when Check set False
Repeat
Server Job Developer’s Guide 18-169

Mat Statement BASIC Programming
Mat Statement
Assigns values to the elements of an array. Not available in

expressions.

Syntax
Mat array = expression

array is a named and dimensioned array that you want to assign

values to.

expression is either a single value, or the name of a dimensioned

array. If expression is a single value, that value is assigned to all the

elements of array. If it is an array, values are assigned, element by

element, to array regardless of whether the dimensions of the two

arrays match. Surplus values are discarded; surplus elements remain

unassigned.

Remarks
You cannot use the Mat statement to assign values to specific

elements of an array.

Examples
This example shows how to assign the same value to all elements of

an array:

Dim MyArray(10)
Mat MyArray = "Empty"

This example shows how to assign the elements of one array to those

of another array:

Dim Array1(4)
Dim Array2(2,2)
For n = 1 To 4

Array1(n) = n ;* Array1(1) = 1, Array1(2) = 2, etc.
Next n
Mat Array2 = Mat Array1
* Results are: Array2(1,1) = 1, Array2(1,2) = 2
* Array2(2,1) = 3, Array2(2,2) = 4
18-170 Server Job Developer’s Guide

BASIC Programming MatchField Function
MatchField Function
Searches a string and returns the part of it that matches a pattern

element.

Syntax
MatchField (string, pattern, element)

string is the string to be searched. If string does not match pattern or

is a null value, an empty string is returned.

pattern is one or more pattern elements describing string, and can be

any of the pattern codes used by the Match operator. If pattern is a

null value, an empty string is returned.

element is a number, n, specifying that the portion of string that

matches the nth element of pattern is returned. If element is a null

value, it generates a run-time error.

Remarks
pattern must contain elements that describe all the characters in

string. For example, the following statement returns an empty string

because pattern does not cover the substring “AB” at the end of

string:

MatchField ("XYZ123AB", "3X3N", 1)

The following statement describes the whole string and returns a

value of "XYZ", which is 3X, the substring that matches the first

element of the pattern:

MatchField ("XYZ123AB", "3X3N...", 1)

Examples
Q evaluates to BBB:

Q = MatchField("AA123BBB9","2A0N3A0N",3)

zip evaluates to 01234:

addr = '20 GREEN ST. NATICK, MA.,01234'
zip = MatchField(ADDR,"0N0X5N",3)

col evaluates to BLUE:

inv = 'PART12345 BLUE AU'
col = MatchField(INV,"10X4A3X",2)

In the following examples the string does not match the pattern and

an empty string is returned:

XYZ=MatchField('ABCDE1234',"2N3A4N",1)
XYZ=
Server Job Developer’s Guide 18-171

MatchField Function BASIC Programming
ABC=MatchField('1234AB',"4N1A",2)
ABC=
18-172 Server Job Developer’s Guide

BASIC Programming Mod Function
Mod Function
Returns the remainder after a division operation.

Syntax
Mod (dividend, divisor)

dividend is the number to be divided. If dividend is a null value, null is

returned.

divisor is the number to divide by. divisor cannot be 0. If divisor is a

null value, null is returned.

Remarks
The Mod function calculates the remainder using the formula:

Mod (X, Y) = X - (Int (X / Y) * Y)

Use the Div function to return the result of a division operation.

Examples
The following examples show use of the Mod function:

Remainder = Mod(100, 25) ;* result is 0
Remainder = Mod(100, 30) ;* result is 10
Server Job Developer’s Guide 18-173

Nap Statement BASIC Programming
Nap Statement
Pauses a program for the specified number of milliseconds. Not

available in expressions.

Syntax
Nap [milliseconds]

milliseconds specifies the number of milliseconds to pause. The

default value is 1. If milliseconds is a null value, the Nap statement is

ignored.

Remarks
Do not use the Nap statement in a transform as it will slow down the

DataStage job run.

Example
This example shows Nap being called from within a DataStage

before/after routine to poll for the existence of a resource, waiting for

a short while between polls:

If NumTimesWaited < RepeatCount Then
NumTimesWaited += 1
Nap 500 ;* wait 500 millisecs = 1/2 a second

End
18-174 Server Job Developer’s Guide

BASIC Programming Neg Function
Neg Function
Returns the inverse of a number.

Syntax
Neg (number)

number is the number you want to invert.

Example
The following example shows a use of the Neg function, equivalent to

unary minus:

MyNum = 10
* Next line may be clearer than the equivalent
* construction which is: -(MyNum + 75) / 100
MyExpr = Neg(MyNum + 75) / 100
Server Job Developer’s Guide 18-175

Not Function BASIC Programming
Not Function
Inverts the logical result of an expression.

Syntax
Not (expression)

expression is the expression whose result is inverted. If expression is

true, 0 is returned if false, 1 is returned. If expression is a null value,

null is returned.

Remarks
expression is false if it evaluates to 0 or is an empty string. Any other

value (except null) is true.

Examples
Here are some examples of the use of the Not function to invert the

truth value of expressions:

Value1 = 5
Value2 = 5
Boolean = Not(Value1 - Value2);* Boolean = 1, i.e. True
Boolean = Not(Value1 + Value2);* Boolean = 0, i.e. False
Boolean = Not(Value1 = Value2);* Boolean = 0, i.e. False
18-176 Server Job Developer’s Guide

BASIC Programming Null Statement
Null Statement
Performs no action and generates no object code.

Syntax
Null

Remarks
The Null statement acts as a dead end in a program. For example, you

can use it with an Else clause if you do not want any operation to be

performed when the Else clause is executed.

Example
The following example shows the use of the Null statement to make

clear that a particular branch of a Case statement takes no action:

Begin Case
Case Arg1 = 'A'
* ... do something for first case.
Case Arg1 = 'B'
* ... do something for second case.
Case @True
* ... in all other cases, do nothing.

Null
End Case
Server Job Developer’s Guide 18-177

Num Function BASIC Programming
Num Function
Determines whether a string is numeric. If NLS is enabled, the result

of this function depends on the current locale setting of the Numeric

convention.

Syntax
Num (expression)

expression is the expression to test. If expression is a number, a

numeric string, or an empty string, a value of 1 is returned. If it is a

null value, null is returned; otherwise 0 is returned.

Remarks
Strings that contain periods used as decimal points are considered

numeric. But strings containing other characters used in formatting

monetary or numeric amounts, for example, commas, dollar signs,

and so on, are not considered numeric.

Examples
The following examples show the Num function being used to

determine if a variable contains a number:

Arg1 = "123.45
Boolean = Num(Arg1) ;* returns 1, i.e. True
Arg2 = "Section 4"
Boolean = Num(Arg2) ;* returns 0, i.e. False
Arg3 = " "
Boolean = Num(Arg3) ;* False (space is not numeric)
Arg4 = ""
Boolean = Num(Arg4) ;* True (empty string is numeric)
18-178 Server Job Developer’s Guide

BASIC Programming Oconv Function
Oconv Function
Converts an expression to an output format.

Syntax
Oconv (expression, conversion [@VM conversion] …)

expression is a string stored in internal format that you want to

convert to an output format. If expression is a null value, null is

returned.

conversion is one or more conversion codes specifying how the string

is to be formatted. Separate multiple codes with a value mark. If

conversion is a null value, it generates a run-time error.

Remarks
If you specify multiple codes, they are applied from left to right. The

first code is applied to expression, then the next code is applied to the

result of the first conversion, and so on.

The Status function uses the following values to indicate the result of

an Oconv function:

Examples

ASCII Conversions

The following examples show the effect of some MY (ASCII)

conversion codes.

0 The conversion was successful.

1 An invalid string was passed to the Oconv function. Either, the original
string was returned, or if the string was a null value, null was returned.

2 The conversion was invalid.

Conversion Expression External Value

X = Oconv("41424344", "MY") X = "ABCD"

X = Oconv("30313233", "MY") X = "0123"
Server Job Developer’s Guide 18-179

Oconv Function BASIC Programming
Date Conversions

The following examples show the effect of various D (Date)

conversion codes:

Group Conversions

The following examples show the effect of some G (Group)

conversion codes:

Conversion Expression External Value

X = Oconv(0, "D") X = "31 DEC 1967"

X = Oconv(10740, "D2") X = "27 MAY 97"

X = Oconv(10740, "D2/") X = "05/27/97"

X = Oconv(10740, "D/E") X = "27/05/1997"

X = Oconv(10740, "D-YJ") X = "1997-147"

X = Oconv(10740, "D2*JY") X = "147*97"

X = Oconv(10740, "D YMD") X = "1997 5 27"

X = Oconv(10740, "D MY[A,2]") X = "MAY 97"

X = Oconv(10740, "D DMY[,A3,2]") X = "27 MAY 97"

X = Oconv(10740, "D/MDY[Z,Z,2]") X = "5/27/97"

X = Oconv(10740, "D DMY[,A,]") X = "27 MAY 1997"

X = Oconv(10740, "DYMD[2,2,2]") X = "97 05 27"

X = Oconv(10740, "DQ") X = "2"

X = Oconv(10740, "DMA") X = "MAY"

X = Oconv(10740, "DW") X = "2"

X = Oconv(10740, "DWA") X = "TUESDAY"

Conversion Expression External Value

X = Oconv("27.05.1997", "G1.2") X = "05.1997"

X = Oconv("27.05.1997", "G.2") X = "27.05"
18-180 Server Job Developer’s Guide

BASIC Programming Oconv Function
Length Conversions

The following examples show the effect of some L (Length)

conversion codes:

Masked Character Conversions

The following examples show the effect of some masked character

conversion codes (MCA, MC/A, MCD, MCL, MCN, MC/N, MCP,

MCT, MCU, and MCX):

Conversion Expression External Value

X = Oconv("QWERTYUIOP", "L0") X = 10

X = Oconv("QWERTYUIOP", "L7") X = ""

X = Oconv("QWERTYU", "L7") X = "QWERTYU"

X = Oconv("QWERTYUOP", "L3,5") X = ""

X = Oconv("QWER", "L3,5") X = "QWER"

Conversion Expression External Value

X = Oconv("John Smith 1-234", "MCA") X = "JohnSmith"

X = Oconv("John Smith 1-234", "MC/A") X = " 1-234"

X = Oconv("1234", "MCD") X = "4D2"

X = Oconv("1234", "MCDX") X = "4D2"

X = Oconv("John Smith 1-234", "MCL") X = "john smith 1-234"

X = Oconv("John Smith 1-234", "MCN") X = "1234"

X = Oconv("John Smith 1-234", "MC/N") X = "John Smith -"

X = Oconv("John^CSmith^X1-234", "MCP") X = "John.Smith.1-234"

X = Oconv("john SMITH 1-234", "MCT") X = "John Smith 1-234"

X = Oconv("john smith 1-234", "MCU") X = "JOHN SMITH 1-234"

X = Oconv("4D2", "MCX") X = "1234"

X = Oconv("4D2", "MCXD") X = "1234"
Server Job Developer’s Guide 18-181

Oconv Function BASIC Programming
Masked Decimal Conversions

The following examples show the effect of some MD (Masked

Decimal) conversion codes:

Masked Left and Right Conversions

The following examples show the effect of some ML and MR (Masked

Left and Right) conversion codes:

Conversion Expression External Value

X = Oconv(987654, "MD2") X = "9876.54"

X = Oconv(987654, "MD0") X = "987654"

X = Oconv(123456789, "MD2$,") X = "$1,234,567.89"

X = Oconv(987654, "MD24$") X = "$98.77"

X = Oconv(123456789, "MD2['f','.',',']") X = "f1.234.567,89"

X = Oconv(123456789, "MD2,['','','','SEK']") X = "1,234,567.89SEK"

X = Oconv(-123456789, "MD2<['#','.',',']") X = "#<1.234.567,89>"

X = Oconv(123456789, "MD33") X = "123456.789"

X = Oconv(1234567890, "MD32") X = "12345678.9"

X = Oconv(123456789, "MD2F") X = "F1234567.89"

X = Oconv(-123456789, "MD2C") X = "1234567.89cr"

X = Oconv(123456789, "MD2D") X = "1234567.89 "

X = Oconv(123456789, "MD2,D") X = "1,234,567.89 "

X = Oconv(1234567.89, "MD2P") X = "1234567.89"

X = Oconv(123, "MD3Z") X = ".123"

X = Oconv(987654, "MD2-Z") X = "9876.54"

X = Oconv(12345.678, "MD20T") X = "12345.67"

X = Oconv(123456, "MD2$12#") X = "$####1234.56"

X = Oconv(987654, "MD3,$CPZ") X = "$987.654 "

X = Oconv(987654, "MD2,ZP12#") X = "####9,876.54"

Conversion Expression External Value

X = Oconv(123456789, "ML2$,") X = "$1,234,567.89"

X = Oconv(123, "ML3Z") X = ".123"

X = Oconv(123456789, "ML33") X = "123456.789"
18-182 Server Job Developer’s Guide

BASIC Programming Oconv Function
Numeral Conversions

The following examples show the effect of some NR (Roman numeral)

conversion codes:

Pattern Matching Conversions

The following examples show the effect of some P (Pattern matching)

conversion codes:

Radix Conversions

The following examples show the effect of some MX, MO and MB

(Radix) conversion codes:

X = Oconv(1234567890, "ML32") X = "12345678.9"

X = Oconv(-123456789, "ML2C") X = "1234567.89cr"

X = Oconv(123456789, "ML2D") X = "1234567.89db"

X = Oconv(-123456789, "ML2M") X = "1234567.89-"

X = Oconv(-123456789, "ML2E") X = "<1234567.89>"

X = Oconv(123456789, "ML2(*12)") X = "1234567.89**"

X = Oconv(123456789, "MR2(*12)") X = "**1234567.89"

Conversion Expression External Value

X = Oconv(1997, "NR") X = "mcmxcvii"

X = Oconv(1997000, "NR") X = "MCMXCVmm"

Conversion Expression External Value

X = Oconv("123456789", "P(3N-3A-3X);(9N)") X = "123456789"

X = Oconv("123-ABC-A7G", "P(3N-3A-3X);(9N)") X = "123-ABC-A7G"

X = Oconv("ABC-123-A7G", "P(3N-3A-3X);(9N)") X = ""

X = Oconv("123-45-6789", "P(3N-2N-4N)") X = "123-45-6789"

X = Oconv("123-456-789", "P(3N-2N-4N)") X = ""

X = Oconv("123-45-678A", "P(3N-2N-4N)") X = ""

Conversion Expression External Value

X = Oconv("1024", "MX") X = "400"

Conversion Expression External Value
Server Job Developer’s Guide 18-183

Oconv Function BASIC Programming
Range Check Conversions

The following examples show the effect of the R (Range Check)

conversion code:

Time Conversions

The following examples show the effect of some MT (Time)

conversion codes:

X = Oconv("CDE", "MX0C") X = "434445"

X = Oconv("1024", "MO") X = "2000"

X = Oconv("CDE", "MO0C") X = "103104105"

X = Oconv("1024", "MB") X = "10000000000"

X = Oconv("CDE", "MB0C") X = "010000110100010001000101"

Conversion Expression External Value

X = Oconv(123, "R100,200") X = 123

X = Oconv(223, "R100,200") X = ""

X = Oconv(3.1E2, "R100,200;300,400") X = 3.1E2

Conversion Expression External Value

X = Oconv(10000, "MT") X = "02:46"

X = Oconv(10000, "MTHS") X = "02:46:40am"

X = Oconv(10000, "MTH") X = "02:46am"

X = Oconv(10000, "MT.") X = "02.46"

X = Oconv(10000, "MTS") X = "02:46:40"

Conversion Expression External Value
18-184 Server Job Developer’s Guide

BASIC Programming On…GoSub Statements
On…GoSub Statements
Transfer program control to an internal subroutine. Not available in

expressions.

Syntax
On index GoSub statement.label1 [, statement.label2] …

On index specifies an expression that acts as an index to the list of

statement labels. The value of index determines which statement

label program control moves to. During execution, index is evaluated

and rounded to an integer. If the value is 1 or less, the subroutine

defined by statement.label1 is executed. If the value is 2, the

subroutine defined by statement.label2 is executed; and so on. If the

value is greater than the number of subroutines defined, the last

subroutine is executed. A null value generates a run-time error.

GoSub statement.label1, statement.label2 specifies a list of

statement labels that program control can move to. If a statement

label does not exist, it generates a compiler error.

Remarks
Use a Return statement in the subroutine to return program control

to the statement following the On…GoSub statements.

The On…GoSub statements can be written on several lines. End each

line except the last one with a comma.

Example
This example uses On…GoSub to call one of a set of internal

subroutines within a DataStage transform function depending on an

incoming argument. The Return statement causes the execution to

resume at the statement immediately following the GoSub

statement. It is necessary to use a GoTo as shown to prevent control

from accidentally flowing into the internal subroutines.

Function MyTransform(Arg1, Arg2)
Reply = "" ;* default reply

* Use particular subroutine depending on value of argument:
On Arg2 GoSub BadValue, GoodValue1, GoodValue2, BadValue
GoTo ExitFunction ;* use GOTO to prevent an error

BadValue:
Call DSTransformError("Invalid arg2 ":Arg2, MyTransform")
Return ;* return control following On...GoSub

GoodValue1:
Reply = Arg1 * 99
Return ;* return control following On...GoSub

GoodValue2:
Server Job Developer’s Guide 18-185

On…GoSub Statements BASIC Programming
Reply = Arg1 / 27
Return ;* return control following On...GoSub

ExitFunction:
Return(Reply)
18-186 Server Job Developer’s Guide

BASIC Programming On…GoTo Statement
On…GoTo Statement
Move program control to the specified label. Not available in

expressions.

Syntax
On index GoTo statement.label1 [, statement.label2] …

On index specifies an expression that acts as an index to the list of

statement labels. The value of index determines which statement

label program control moves to. During execution, index is evaluated

and rounded to an integer. If the value is 1 or less, the statement

defined by statement.label1 is executed. If the value is 2, the

statement defined by statement.label2 is executed; and so on. If the

value is greater than the number of statements defined, the last

statement is executed. A null value generates a run-time error.

GoTo statement.label1, statement.label2 specifies a list of statement

labels that program control can move to. If a statement label does not

exist, it generates a compiler error.

Remarks
The On…GoTo statements can be written on several lines. End each

line except the last one with a comma.

Example
This example uses On…GoTo to branch to one of a set of labels

within a DataStage transform function depending on an incoming

argument:

Function MyTransform(Arg1, Arg2)
Reply = "" ;* default reply

* GoTo particular label depending on value of argument:
On Arg2 GoTo BadValue, GoodValue1, GoodValue2, BadValue

* Note that control never returns to the next line.
BadValue:

Call DSTransformError("Invalid arg2 ":Arg2, MyTransform")
GoTo ExitFunction

GoodValue1:
Reply = Arg1 * 99
GoTo ExitFunction

GoodValue2:
Reply = Arg1 / 27

* Drop through to end of function:
ExitFunction:
Return(Reply)
Server Job Developer’s Guide 18-187

OpenSeq Statement BASIC Programming
OpenSeq Statement
Opens a file for sequential processing. Not available in expressions.

OpenSeq

Syntax
OpenSeq pathname To file.variable

[On Error statements]
[Locked statements]
[Then statements [Else statements]]
[Else statements]

pathname is the pathname of the file to be opened. If the file does not

exist, the OpenSeq statement fails. If pathname is a null value, it

generates a run-time error.

To file.variable assigns the file to file.variable. All statements used to

process the file must refer to it using file.variable. If file.variable is a

null value, it generates a fatal error.

On Error statements specifies statements to execute if there is a fatal

error while the file is being processed. A fatal error occurs if the file

cannot be opened or if file.variable is a null value.

Locked statements specifies statements to execute if the file is locked

by another user. If you do not specify a Locked clause, and a

conflicting lock exists, the program waits until the lock is released.

Then statements specifies the statements to execute once the file is

open.

Else statements specifies the statements to execute if the file cannot

be accessed or does not exist.

Remarks
Each sequential file reference in a BASIC program must be preceded

by a separate OpenSeq statement for that file. OpenSeq sets an

update record lock on the file. This prevents any other program from

changing the file while you are processing it. Reset this lock using a

CloseSeq statement after processing the file. Multiple OpenSeq

operations on the same file only generate one update record lock so

you need only include one CloseSeq statement per file.

If a fatal error occurs, and no On Error clause was specified:

An error message appears.

Any uncommitted transactions begun within the current execution
environment roll back.
18-188 Server Job Developer’s Guide

BASIC Programming OpenSeq Statement
The current program terminates.

If the On Error clause is taken, the value returned by the Status

function is the error number.

Example
This is an example of opening a sequential file to check its existence:

OpenSeq ".\ControlFiles\File1" To PathFvar Locked
FilePresent = @True
End Then

FilePresent = @True
End Else
FilePresent = @False

End
Server Job Developer’s Guide 18-189

Pattern Matching Operators BASIC Programming
Pattern Matching Operators
Compares a string with a format pattern. If NLS is enabled, the result

of a match operation depends on the current locale setting of the

Ctype and Numeric conventions.

Syntax
string Match[es] pattern

string is the string to be compared. If string is a null value, the match

is false and 0 is returned.

pattern is the format pattern, and can be one of the following codes:

Remarks
You can specify a negative match by preceding the code with ~ (tilde).

For example, ~ 4A matches a string that does not contain four

alphabetic characters. If n is longer than nine digits, it is used as a

literal string.

If string matches pattern, the comparison returns 1, otherwise it

returns 0.

You can specify multiple patterns by separating them with value

marks. For example, the following expression is true if the address is

either 16 alphabetic characters or 4 numeric characters followed by 12

alphabetic characters; otherwise, it is false:

address Matches "16A": CHAR(253): "4N12A"

An empty string matches the following patterns: "0A", "0X", "0N", "…",

"", '', or \\.

This code… Matches this type of string…

… Zero or more characters of any type.

0X Zero or more characters of any type.

nX n characters of any type.

0A Zero or more alphabetic characters.

nA n alphabetic characters.

0N Zero or more numeric characters.

nN n numeric characters.

'string' Exact text enclosed in double or single quotation marks.
18-190 Server Job Developer’s Guide

BASIC Programming Pwr Function
Pwr Function
Raises the value of a number to the specified power.

Syntax
Pwr (number, power)

number is an expression evaluating to the number to be raised to

power. If number is a null value, null is returned.

power specifies the power to raise number to. If power is a null value,

null is returned. If power is not an integer, number must not be

negative.

Remarks
On overflow or underflow, a warning is printed and 0 is returned.

Example
This is an example of the use of the Pwr function:

OppSide = Sqrt(Pwr(Side1, 2) + Pwr(Side2, 2))
Server Job Developer’s Guide 18-191

Randomize Statement BASIC Programming
Randomize Statement
Generates a repeatable sequence of random numbers in a specified

range. Not available in expressions.

Syntax
Randomize (expression)

expression evaluates to a number, n. The range that the random

number is selected from is 0 through (n –1). For example, if n is 100,

the random number is in the range 0 through 99. If no expression is

supplied, or if expression is a null value, the internal time of day is

used, and the sequence is different each time the program is run.

Remarks
Use the Rnd function instead of Randomize if you want to generate

an unrepeatable random number sequence.

Example
This is an example of how a routine might use the Randomize

statement to set the start seed for the Rnd function to generate a

specific set of random numbers:

Randomize 1
For n = 1 To NumRecords
* Produce strings like "ID00", "ID01", "ID57", etc.
RandomId = "ID" : Fmt(Rnd(100), "R%2")
* ... do something with the generated Ids.
Next n
18-192 Server Job Developer’s Guide

BASIC Programming ReadSeq
ReadSeq
Reads a line of data from a file opened for sequential processing. Not

available in expressions.

Syntax
ReadSeq variable From file.variable
[On Error statements]
{[Then statements [Else statements] | [Else statements]}

ReadSeq variable reads data from the current position in the file up to

a newline and assigns it to variable.

From file.variable identifies the file to read. file.variable must have

been assigned in a previous OpenSeq statement. If file.variable is a

null value, or the file is not found, or the file is not open, it generates a

run-time error.

On Error statements specifies statements to execute if there is a fatal

error while the file is being processed. A fatal error occurs if the file

cannot be opened or if file.variable is a null value.

Then statements specifies the statements to execute once the line is

read from the file.

Else statements specifies the statements to execute if the file is not

readable, or an end-of-file is encountered.

Remarks
The OpenSeq statement sets a pointer to the first line of the file.

ReadSeq then:

1 Reads data from the current position in the file up to a newline.

d Assigns the data to variable.

e Resets the pointer to the position following the newline.

f Discards the newline.

If the connection to the server times out, ReadSeq returns no bytes

from the buffer, and the operation must be retried.

The Status function returns these values after a ReadSeq operation:

0 The read was successful.

1 An end-of-file was encountered.

2 The connection timed out.

–1 The file was not open.
Server Job Developer’s Guide 18-193

ReadSeq BASIC Programming
Any other value is an error number indicating that the On Error
clause was taken. If a fatal error occurs, and the On Error clause was

not specified:

An error message appears.

Any uncommitted transactions begun within the current execution
environment roll back.

The current program terminates.

Example
The following example shows ReadSeq used to process each line of a

sequential file:

OpenSeq PathName To FileVar Else
Call DSLogWarn("Cannot open ":PathName, MyRoutine)
GoTo ErrorExit

End
Loop

ReadSeq FileLine From FileVar
On Error

Call DSLogWarn("Error from ":PathName:
➥" status=":Status(),"MyRoutine")
GoTo ErrorExit

End
Then

* ... process the line we just read
End Else

Exit ;* at end-of-file
End

Repeat
CloseSeq FileVar
18-194 Server Job Developer’s Guide

BASIC Programming REAL Function
REAL Function
Use the REAL function to convert number into a floating-point number

without loss of accuracy. If number evaluates to the null value, null is

returned.

Syntax
REAL (number)
Server Job Developer’s Guide 18-195

Return Statement BASIC Programming
Return Statement
Ends a subroutine and returns control to the calling program or

statement. Not available in expressions.

Syntax
Return [To statement.label]

To statement.label is used with an internal subroutine initiated with

GoSub to specify that program control returns to the specified

statement label. If there is no To clause, control returns to the

statement after the GoSub statement. If statement.label does not

exist, it generates a compiler error.

Remarks
When a Return statement ends an external subroutine called with a

Call statement, all files opened by the subroutine are closed, except

files that are open to common variables.
18-196 Server Job Developer’s Guide

BASIC Programming Return (value) Statement
Return (value) Statement
Returns a value from a user-written function. Not available in

expressions.

Syntax
Return (expression)

expression evaluates to the value you want the user-written function

to return. If you do not specify expression, an empty string is

returned.

Remarks
You can use the Return (value) statement only in user-written

functions. If you use one in a program or subroutine, it generates an

error.

Example
This example shows the use of the Return (value) statement, where

the Function and Deffun statements are used to call a transform

function named "MyFunctionB" from within another transform

function named "MyFunctionA":

Function MyFunctionA(Arg1)
* When referencing a user-written function that is held in the
* DataStage Repository, you must declare it as a function with
* the correct number of arguments, and add a "DSU." prefix.
Deffun MyFunctionB(A) Calling "DSU.MyFunctionB"

Ans = MyFunctionB(Arg1)
* Add own transformation to the value in Ans...
...
Return(Ans)
Server Job Developer’s Guide 18-197

Right Function BASIC Programming
Right Function
Extracts a substring from the end of a string.

Syntax
Right (string, n)

string is the string containing the substring. If string is a null value,

null is returned.

n is the number of characters to extract from the end of the string. If n

is a null value, it generates a run-time error.

Examples
These examples extract the rightmost three characters of a string:

MyString = "ABCDEF"
MySubStr = Right(MyString, 3) ;* answer is "DEF"
MySubStr = Right("AB", 3) ;* answer is "AB"
18-198 Server Job Developer’s Guide

BASIC Programming Rnd Function
Rnd Function
Generates a random number. Not available in expressions.

Syntax
Rnd (expression)

expression evaluates to a number, n. The range that the random

number is selected from is 0 through (n –1). For example, if n is 100,

the random number is in the range 0 through 99. If expression is a

negative number, a random negative number is generated. If

expression is 0, 0 is returned. If expression is a null value, it causes a

run-time error.

Remarks
To generate repeatable sequences of random numbers, use the

Randomize statement instead of Rnd.

Example
This is an example of how a routine might use the Randomize

statement to set the start seed for the Rnd function to generate a

specific set of random numbers:

Randomize 1
For n = 1 To NumRecords
* Produce strings like "ID00", "ID01", "ID57", etc.
RandomId = "ID" : Fmt(Rnd(100), "R%2")
* ... do something with the generated Ids.
Next n
Server Job Developer’s Guide 18-199

Seq Function BASIC Programming
Seq Function
Converts an ASCII character to its numeric code value.

Syntax
Seq (character)

character is the ASCII character to be converted. If character is a null

value, null is returned.

Remarks
The Seq function is the inverse of the Char function.

Example
This example uses the Seq function to return the number associated

with the first character in a string:

MyVal = Seq("A") ;* returns 65
MyVal = Seq("a") ;* returns 97
MyVal = Seq(" 12") ;* returns 32 - first char is a space
MyVal = Seq("12") ;* returns 49 - first char is digit "1"
18-200 Server Job Developer’s Guide

BASIC Programming SetLocale
SetLocale
In NLS mode, sets a locale for a specified category.

Syntax
$Include UNIVERSE.INCLUDE UVNLSLOC.H
name = SetLocale (category, value)

category is one of the following include tokens:

value is a locale name.

Remarks
The success of the SetLocale function should be tested with the

Status function, which returns one of the following values:

Example
* Switch local time convention to Japanese
SetLocale (UVLC$TIME, "JP-JAPANESE")
If Status() <> 0 Then

...
End

Token Meaning

UVLC$TIME Time and date

UVLC$NUMERIC Numeric

UVLC$MONETARY Currency

UVLC$CTYPE Character type

UVLC$COLLATE Sorting sequence

Value Meaning

0 The call is successful.

LCE$NOLOCALES NLS is not enabled for DataStage.

LCE$BAD.LOCALE value is not a valid locale name.

LCE$BAD.CATEGORY The specified category is not recognized
Server Job Developer’s Guide 18-201

Sleep Statement BASIC Programming
Sleep Statement
Pauses a program for the specified number of seconds. Not available

in expressions.

Syntax
Sleep [seconds]

seconds is the number of seconds to pause. If seconds is not specified

or is a null value, a value of 1 is used.

Remarks
Do not use the Sleep statement in a transform as it will slow down

the DataStage job run.

Example
This example shows the Sleep routine being called from a DataStage

before/after routine to poll for the existence of a resource, waiting for

a short while between polls:

If NumTimesWaited < RepeatCount Then
NumTimesWaited += 1
Sleep 60 ;* 60 seconds = 1 minute

End
18-202 Server Job Developer’s Guide

BASIC Programming Soundex Function
Soundex Function
Generates codes that can be used to compare character strings based

on how they sound.

Syntax
Soundex (string)

string is the string to be analyzed. Only the alphabetic characters in

string are considered. If string is a null value, null is returned.

Remarks
The Soundex function returns a phonetic code consisting of the first

letter of the string followed by a number. Words that sound similar, for

example fare and fair, generate the same phonetic code.

Example
The following examples show the Soundex values for various

strings:

MySnd = Soundex("Greenwood") ;* returns "G653"
MySnd = Soundex("Greenwod") ;* returns "G653"
MySnd = Soundex("Green") ;* returns "G650"
MySnd = Soundex("") ;* returns ""
Server Job Developer’s Guide 18-203

Space Function BASIC Programming
Space Function
Returns a string containing the specified number of blank spaces.

Syntax
Space (spaces)

spaces specifies the number of spaces in the string. If spaces is a null

value, it generates a run-time error.

Example
This is an example of the Space function used to generate a string

with a variable number of spaces:

MyStr = Space(20 - Len(Arg1)):Arg1
* pad with spaces on left
18-204 Server Job Developer’s Guide

BASIC Programming Sqrt Function
Sqrt Function
Returns the square root of a number.

Syntax
Sqrt (number)

number is 0 or a positive number. A negative number generates a run-

time error. If number is a null value, null is returned.

Example
This is an example of the use of the Sqrt function:

OppSide = Sqrt(Side1 ^ 2 + Side2 ^ 2)
Server Job Developer’s Guide 18-205

SQuote Function BASIC Programming
SQuote Function
Encloses a string in single quotation marks.

Syntax
SQuote (string)

string is the string to be quoted. If string is a null value, an unquoted

null is returned.

Example
This is an example of the SQuote function adding single quotation

characters (') to the beginning and end of a string:

ProductNo = 12345
QuotedStr = SQuote(ProductNo : "A")
* result is "12345A"
18-206 Server Job Developer’s Guide

BASIC Programming Status Function
Status Function
Returns a code that provides information about how a preceding

function was executed.

Syntax
Status ()

Remarks
The value returned by Status varies according to the function it is

reporting. Lists of possible values are in the descriptions of the

functions concerned. You can use Status after the following

functions:

Fmt

Iconv

Oconv

OpenSeq

ReadSeq

WriteSeq

WriteSeqf

Examples
Here is an example of the Status function being used to check the

correct operation of an Iconv function call:

InDate = Iconv(ExtDate, "D2") ;* convert date to internal form
ConvStatus = Status()
Begin Case
Case ConvStatus = 0
* ...conversion succeeded
Case ConvStatus = 1
* ...conversion failed - ExtDate not parsable as a date
Case ConvStatus = 2
* ...conversion failed - conversion "D2" invalid (unlikely!)
Case ConvStatus = 3
* ...conversion succeeded, but ExtDate might have been
* invalid, for example, if it contained the string "31/02/97"
End Case

Here is an example of the Status function being used to check the

correct operation of a Fmt function call:

FormattedNum = Fmt(IntNum, "R2$") ;* format a number
FmtStatus = Status()
Begin Case
Server Job Developer’s Guide 18-207

Status Function BASIC Programming
Case FmtStatus = 0
* ...formatting succeeded
Case FmtStatus = 1
* ... formatting failed - IntNum not convertable to a number
Case FmtStatus = 2
* ... formatting failed - format "R2$" invalid (unlikely!)
End Case
18-208 Server Job Developer’s Guide

BASIC Programming Str Function
Str Function
Composes a string by repeating the input string the specified number

of times.

Syntax
Str (string, repeat)

string is the string to be repeated. If string is a null value, null is

returned.

repeat is the number of times to repeat string. If repeat is a negative

number, an empty string is returned. If repeat is a null value, it causes

a run-time error.

Example
This is an example of the Str function being used to generate a string

with a variable number of spaces:

MyStr = Str("A", 20 - Len(Arg1)):Arg1
* pad with "A"s on left
Server Job Developer’s Guide 18-209

Subroutine Statement BASIC Programming
Subroutine Statement
Marks the start of an external subroutine. Not available in

expressions.

Syntax
Subroutine [name] (argument1[,argument2]…)

name is a name that identifies the subroutine in any way that is

helpful to make the program easy to read.

argument1 and argument2 are the names of variables used to pass

arguments between the calling program and the subroutine. A

subroutine used in a transform must have one or more arguments; a

before subroutine or an after subroutine must contain two arguments.

Remarks
The Subroutine statement must be the first noncomment line in the

subroutine. Each subroutine can contain only one Subroutine

statement. The Call statement that calls the subroutine must specify

the same number of arguments as the Subroutine statement.

Example
This example shows how a before/after routine must be declared as a

subroutine at DataStage Release 2. The DataStage Manager will

automatically ensure this when you create a new before/after routine.

Subroutine MyRoutine(InputArg, ErrorCode)
* Users can enter any string value they like when using
* MyRoutine from within the Job Designer. It will appear
* in the variable named InputArg.
* The routine controls the progress of the job by setting
* the value of ErrorCode, which is an Output argument.
* Anything non-zero will stop the stage or job.
ErrorCode = 0 ;* default reply
* Do some processing...
...
Return
18-210 Server Job Developer’s Guide

BASIC Programming Time Function
Time Function
Returns the internal system time.

Syntax
Time ()

Remarks
The internal time is taken from the server, and is returned as the

number of seconds since midnight to the nearest thousandth of a

second.

Example
This is an example of the current system wall clock time being

assigned to a variable:

TimeInSecs = Int(Time()) ;* remove any fractional part
Server Job Developer’s Guide 18-211

TimeDate Function BASIC Programming
TimeDate Function
Returns the system time and date. If NLS is enabled, the result of this

function depends on the current locale setting of the Time convention.

Syntax
TimeDate ()

Remarks
The time and date are returned in the following format:

hh:mm:ss dd mmm yyyy

hh is the hours (based on a 24-hour clock).

mm is the minutes.

ss is the seconds.

dd is the day.

mmm is a three-letter abbreviation for the month.

yyyy is the year.

Example
This is an example of how a human-readable form of the current

system date and time can be assigned to a variable and manipulated:

NowStr = TimeDate() ;* e.g. "09:59:51 03 JUN 1997"
* extract time only
NowTimeStr = Field(NowStr, " ", 1, 1)
* extract rest as date
NowDateStr = Field(NowStr, " ", 2, 3)
18-212 Server Job Developer’s Guide

BASIC Programming Trigomentric Functions
Trigomentric Functions
The trigonometric functions return the trigonometric value specified

by the function. They all have similar syntax.

General Syntax
TrigFunc (number)

TrigFunc is one of the trigonometric functions: Cos, Sin, Tan, ACos,

ASin, ATan, CosH, TanH, or SinH.

number is the number or expression you want to evaluate. If number

is a null value, a null value is returned. If number is an angle, values

outside the range 0 through 360 are interpreted as modulo 360. Values

greater than 1E17 produce a warning message and 0 is returned.

Remarks
Cos returns the cosine of an angle. number is the number of degrees

in the angle. Cos is the inverse of ACos.

Sin returns the sine of an angle. number is the number of degrees in

the angle. Sin is the inverse of ASin.

Tan returns the tangent of an angle. number is the number of degrees

in the angle. Tan is the inverse of ATan.

ACos returns the arc-cosine of number in degrees. ACos is the

inverse of Cos.

ASin returns the arc-sine of number in degrees. ASin is the inverse of

Sin.

ATan returns the arc-tangent of number in degrees. ATan is the

inverse of Tan.

CosH returns the hyperbolic cosine of an angle. number is the

number of degrees in the angle.

SinH returns the hyperbolic sine of an angle. number is the number of

degrees in the angle.

TanH returns the hyperbolic tangent of an angle. number is the

number of degrees in the angle.

Examples
This example shows that the ACos function is the inverse of the Cos

function:
Server Job Developer’s Guide 18-213

Trigomentric Functions BASIC Programming
Angle = 45
NewAngle = Acos(Cos(Angle)) ;* NewAngle should be 45 too

This example shows that the ASin function is the inverse of the Sin

function:

Angle = 45
NewAngle = Asin(Sin(Angle)) ;* NewAngle should be 45 too

This example shows that the ATan function is the inverse of the Tan

function:

Angle = 45
NewAngle = Atan(Tan(Angle)) ;* NewAngle should be 45 too

This example uses the Cos function to calculate the secant of an

angle:

Angle = 45 ;* define angle in degrees
Secant = 1 / Cos(Angle) ;* calculate secant

This example uses the CosH function to calculate the hyperbolic

secant of an angle:

Angle = 45 ;* define angle in degrees
HSecant = 1 / Cosh(Angle) ;* calculate hyperbolic secant

This example uses the Sin function to calculate the cosecant of an

angle:

Angle = 45 ;* define angle in degrees
CoSecant = 1 / Sin(Angle) ;* calculate cosecant

This example uses the SinH function to calculate the hyperbolic

cosecant of an angle:

Angle = 45 ;* define angle in degrees
HCoSecant = 1 / Sinh(Angle)
* calculate hyperbolic cosecant

This example uses the Tan function to calculate the cotangent of an

angle:

Angle = 45 ;* define angle in degrees
CoTangent = 1 / Tan(Angle) ;* calculate cotangent

This example uses the TanH function to calculate the hyperbolic

cotangent of an angle:

Angle = 45 ;* define angle in degrees
HCoTangent = 1 / Tanh(Angle)
* calculate hyperbolic cotangent
18-214 Server Job Developer’s Guide

BASIC Programming Trim Function
Trim Function
Trims unwanted characters from a string.

Syntax
Trim (string)

Trim (string, character [,option])

string is a string containing unwanted characters. If string is a null

value, null is returned.

character specifies a character to be trimmed (other than a space or

tab). If character is a null value, it causes a run-time error.

option specifies the type of trim operation and can be one of the

following:

L Removes leading occurrences of character.

T Removes trailing occurrences of character.

B Removes leading and trailing occurrences of character.

R Removes leading and trailing occurrences of character, and

reduces multiple occurrences to a single occurrence.

A Removes all occurrences of character.

F Removes leading spaces and tabs.

E Removes trailing spaces and tabs.

D Removes leading and trailing spaces and tabs, and reduces

multiple spaces and tabs to single ones.

If option is not specified or is a null value, R is assumed.

Remarks
In the first syntax, multiple occurrences of spaces and tabs are

reduced to single ones, and all leading and trailing spaces and tabs

are removed.

Examples
Here are some examples of the various forms of the Trim function:

MyStr = Trim(" String with whitespace ")
* ...returns "String with whitespace"
MyStr = Trim("..Remove..redundant..dots....", ".")
* ...returns "Remove.redundant.dots"
MyStr = Trim("Remove..all..dots....", ".", "A")
Server Job Developer’s Guide 18-215

Trim Function BASIC Programming
* ...returns "Removealldots"
MyStr = Trim("Remove..trailing..dots....", ".", "T")
* ...returns "Remove..trailing..dots"
18-216 Server Job Developer’s Guide

BASIC Programming TrimB Function
TrimB Function
Trims trailing spaces from a string.

Syntax
TrimB (string)

string is the string that contains the trailing spaces. If string is a null

value, null is returned.

Example
MyStr = TrimB(" String with whitespace ")
* ...returns "(" String with whitespace"
Server Job Developer’s Guide 18-217

TrimF Function BASIC Programming
TrimF Function
Trims leading spaces and tabs from a string.

Syntax
TrimF (string)

string is the string that contains the leading spaces. If string is a null

value, null is returned.

Example
MyStr = TrimF(" String with whitespace ")
* ...returns "String with whitespace "
18-218 Server Job Developer’s Guide

BASIC Programming UniChar Function
UniChar Function
In NLS mode, generates a single character in Unicode format.

Syntax
UniChar (expression)

expression is the decimal value of a Unicode character, in the range 0

to 65535.

Remarks
If expression has a value outside the specified range, UniChar returns

an empty string. If expression is an SQL null, an SQL null is returned.
Server Job Developer’s Guide 18-219

UniSeq Function BASIC Programming
UniSeq Function
In NLS mode, converts a Unicode character to its equivalent decimal

value.

Syntax
UniSeq (expression)

expression is a Unicode character that is to be converted to its decimal

value.

Remarks
Compare to the Seq function which converts ASCII characters to their

decimal equivalents.
18-220 Server Job Developer’s Guide

BASIC Programming UpCase Function
UpCase Function
Changes lowercase letters in a string to uppercase. If NLS is enabled,

the result of this function depends on the current locale setting of the

Ctype convention.

Syntax
UpCase (string)

string is a string whose letters you want to change to uppercase.

Example
This is an example of the UpCase function:

MixedCase = "ABC123abc"
UpperCase = UpCase(MyString) ;* result is "ABC123ABC"
Server Job Developer’s Guide 18-221

WEOFSeq Function BASIC Programming
WEOFSeq Function
Writes an end-of-file mark in an open sequential file.

Syntax
WEOFSeq file.variable [On Error statements]

file.variable specifies the sequential file. file.variable is the variable

name assigned to the file by the preceding OpenSeq statement.

On Error statements specify the action to take if there is a fatal error.

A fatal error occurs if the file is not open, or file.variable is a null value.

If you do not specify an On Error clause, the job aborts and an error is

written to the job log file.

Remarks
The end-of-file mark truncates the file at the current pointer position.

Any subsequent ReadSeq statement takes the Else clause.

Example
The following example opens a sequential file and truncates it by

writing an end-of-file marker immediately:

OpenSeq PathName To FileVar Then
WeofSeq FileVar

End Else
Call DSLogFatal("Cannot open file ":Pathname,"Routine1")
GoTo ErrorExit

End
18-222 Server Job Developer’s Guide

BASIC Programming WriteSeq Function
WriteSeq Function
Writes a new line to a file that is open for sequential processing and

advances a pointer to the next position in the file.

Syntax
WriteSeq line To file.variable
[On Error statements]
{[Then statements [Else statements] | [Else statements]}

line is the line to write to the sequential file. WriteSeq writes a

newline at the end of the line.

To file.variable specifies the sequential file. file.variable is the variable

name assigned to the file by the preceding OpenSeq statement.

On Error statements specify the action to take if there is a fatal error.

A fatal error occurs if the file is not open, or file.variable is a null value.

If you do not specify an On Error clause, the job aborts and an error

message is written to the job log file.

Then statements specify the action the program takes after the line is

written to the file. If you do not specify a Then clause, you must

specify an Else clause.

Else statements specify the action the program takes if the line cannot

be written to the file, for example, if the file does not exist. If you do

not specify an Else clause, you must specify a Then clause.

Remarks
The line is written at the current position in the file and then the

pointer is advanced to the next position after the newline. Any

existing data in the file is overwritten, unless the pointer is at the end

of the file.

You can use the Status function after WriteSeq to determine the

success of the operation. Status returns 0, if the file was locked, –2 if

the file was not locked, and an error code if the On Error clause was

taken.

Example
The following example writes a single line to a sequential file by

truncating and then writing to it immediately after it is opened:

OpenSeq PathName To FileVar Then
WeofSeq FileVar ;* write end-of-file mark immediately
WriteSeq "First line" To FileVar Else
On Error
Server Job Developer’s Guide 18-223

WriteSeq Function BASIC Programming
Call DSLogWarn("Error from ":PathName:"
➥ status=":Status(), "MyRoutine")
GoTo ErrorExit

End
Call DSLogFatal("Cannot write to ":Pathname,
➥ "MyRoutine")
GoTo ErrorExit

End
End Else

Call DSLogFatal("Cannot open file ":Pathname, "MyRoutine")
GoTo ErrorExit

End
18-224 Server Job Developer’s Guide

BASIC Programming WriteSeqF Function
WriteSeqF Function
Writes a new line to a file that is open for sequential processing,

advances a pointer to the next position in the file, and saves the file to

disk.

Syntax
WriteSeqF line To file.variable
[On Error statements]
{[Then statements [Else statements]] | [Else statements]}

line is the line to write to the sequential file. WriteSeqF writes a

newline at the end of the line.

To file.variable specifies the sequential file. file.variable is the variable

name assigned to the file by the preceding OpenSeq statement.

On Error statements specify the action to take if there is a fatal error.

A fatal error occurs if the file is not open, or file.variable is a null value.

If you do not specify an On Error clause, the job aborts and an error

message is written to the job log file.

Then statements specify the action the program takes after the line is

written to the file. If you do not specify a Then clause, you must

specify an Else clause.

Else statements specify the action the program takes if the line cannot

be written to the file, for example, if the file does not exist. If you do

not specify an Else clause, you must specify a Then clause.

Remarks
WriteSeqF works in the same way as WriteSeq, except that each line

is written directly to disk instead of being buffered and then being

written in batches. A WriteSeqF statement after several WriteSeq

statements writes all buffered lines to disk.

Note Use the WriteSeqF statement for logging operations only

as the increased disk I/O slows down program performance.

You can use the Status function after WriteSeqF to determine the

success of the operation. Status returns 0, if the file was locked, –2 if

the file was not locked, and an error code if the On Error clause was

taken.

Example
The following example appends to a sequential file by reading to the

end of it, then force-writing a further line:
Server Job Developer’s Guide 18-225

WriteSeqF Function BASIC Programming
OpenSeq PathName To FileVar Then
Loop

ReadSeq Dummy From FileVar Else Exit ;* at end-of-file
Repeat
WriteSeqF "Extra line" To FileVar Else
On Error

Call DSLogWarn("Error from ":PathName:"
➥ status=":Status(),"MyRoutine")
GoTo ErrorExit

End
Call DSLogFatal("Cannot write to ":Pathname, "MyRoutine")

GoTo ErrorExit
End

End Else
Call DSLogFatal("Cannot open file ":Pathname, "MyRoutine")
GoTo ErrorExit

End
18-226 Server Job Developer’s Guide

BASIC Programming Xtd Function
Xtd Function
Converts a hexadecimal string to decimal.

Syntax
Xtd (string)

string is the numeric string you want to convert.

Example
This is an example of the Xtd function used to convert a decimal

number to a hexadecimal string representation:

MyHex = "2F"
MyNumber = Xtd(MyHex) ;* returns 47
Server Job Developer’s Guide 18-227

Conversion Codes BASIC Programming
Conversion Codes
Conversion codes specify how data is formatted for output or internal

storage. They are specified in an Iconv or Oconv function. Here is a

list of the codes you can use.

Extracting characters from fields:

G Extracting field values

MCA Extracting alphabetic characters from a field

MC/A Extracting nonalphabetic characters from a field

MCN Extracting numeric characters from a field

MC/N Extracting nonnumeric characters from a field

MCM Extracting NLS multibyte characters from a field

MC/M Extracting NLS single-byte characters from a field

P Extracting data that matches a pattern

R Extracting a numeric value that falls within a range

Preprocessing data:

L Limiting the length of returned data

S Generating codes to compare words by how they sound

Processing text:

MCU Converting lowercase letters to uppercase

MCL Converting uppercase letters to lowercase

MCT Converting words in the field to initial capitals

MCP Converting unprintable characters to a period

NLS Converting strings between internal and external format

using a character set map

Formatting numbers, dates, times, and currency:

MD Formatting numbers as monetary or numeric amounts

ML Left-justifying and formatting numbers

MR Right-justifying and formatting numbers

MP Packing decimal numbers two-per-byte for storage

D Converting dates

MT Converting times

TI Converting times in internal format to default local

convention

NR Converting Roman numerals into Arabic numerals

NL Converting locale-dependent alternative characters to Arabic

numerals

MM Formatting currency data
18-228 Server Job Developer’s Guide

BASIC Programming Conversion Codes
Radix conversions:

MX Converting hexadecimal numbers to decimal

MCD Converting decimal numbers to hexadecimal

MCX Converting hexadecimal numbers to decimal

MO Converting octal numbers to decimal

MB Converting binary numbers to decimal

MY Converting hexadecimal numbers to their ASCII

equivalents

MUOC Converting hexadecimal numbers to Unicode character

values

The conversion codes are described in more detail in the following

reference pages. The conversion codes appear in alphabetical order.
Server Job Developer’s Guide 18-229

D BASIC Programming
D
Converts dates to storage format and vice versa. When NLS is

enabled, the locale default date format overrides any default date

format set in the msg.text file.

Syntax
D [years.digits] [delimiter skip] [separator] [format.options
[modifiers]] [E] [L]

years.digits indicates the number of digits of the year to output. The

default is 4. On input years.digits is ignored. If the input date has no

year, the year is taken from the system date.

delimiter is any single nonnumeric character used as a field delimiter

in the case where conversion must first do a group extraction to

obtain the internal date. It cannot be the system delimiter.

skip must accompany the use of delimiter and is the number of

delimited fields to skip in order to extract the date.

separator is the character used to separate the day, month, and year

on output. If you do not specify separator, the date is converted in the

form 01 DEC 1999. On input separator is ignored. If NLS is enabled

and you do not specify years.digits or separator, the default date form

is 01 DEC 1999.

format.options is up to six options that define how the date is output

(they are ignored on input). Each format option can have an

associated modifier, described below. Format options can only be

used in certain combinations as described below. The options are as

follows:

Y [n] outputs the year number as n digits.

YA outputs the name of the Chinese calendar year only. If NLS is
enabled, uses the YEARS field in the Time/Date locale.

M outputs the month only as a number from 1 through 12.

MA outputs only the month’s name. If NLS is enabled, uses the
MONS field in the Time/Date locale. You can use any combination
of upper- and lowercase letters for the month; DataStage checks
the combination against the ABMONS field, otherwise the MONS
field.

MB outputs the abbreviated month name. If NLS is enabled, uses
the ABMONS field in the Time/Date locale; otherwise, uses the
first three characters of the month name.

MR outputs the month number in Roman numerals.
18-230 Server Job Developer’s Guide

BASIC Programming D
D outputs the day of the month as a number from 1 through 31.

W outputs the day of the week as a number from 1 through 7,
where Monday is 1. If NLS is enabled, uses the DAYS field in the
Time/Date locale, where Sunday is 1.

WA outputs the day by name. If NLS is enabled, uses the DAYS
field in the Time/Date locale, unless modified by the format
modifiers, f1, f2, and so forth.

WB outputs the abbreviated day name. If NLS is enabled, uses the
ABDAYS field in the Time/Date locale.

Q outputs the quarter of the year as a number from 1 through 4.

J outputs the day of the year as a number, 1 through 366.

N outputs the year number within the current era. If NLS is
enabled, uses the ERA STARTS field in the Time/Date locale.

NA outputs the era name corresponding to the current year. If
NLS is enabled, uses the ERA NAMES or ERA STARTS fields in the
Time/Date locale.

Z outputs the time zone name.

The following shows which format options can be used together:

Use this option… With these options…

Y M, MA, D, J, [modifiers]

YA M, MA, D, [modifiers]

M Y, YA, D, [modifiers]

MA Y, YA, D, [modifiers]

MB Y, YA, D, [modifiers]

D Y, M, [modifiers]

N Y, M, MA, MB, D, WA, [modifiers]

NA Y, M, MA, MB, D, WA, [modifiers]

W Y, YA, M, MA, D

WA Y, YA, M, MA, D

WB Y, YA, M, MA, D

Q

J Y, [modifiers]

Z [modifiers]
Server Job Developer’s Guide 18-231

D BASIC Programming
[modifiers] modify the output formats for the data specified by

format.options. You can specify up to six modifiers, separated by

commas. The commas indicate which format.option each modifier is

associated with, therefore you must include all the commas, even if

you wish to specify only one modifier (see examples). They can be

any of the following values:

n displays n characters. It is used with the D, M, Y, W, Q and J
numeric options. It is used with MA, MB, WA, WB, YA, N, “text”
text options.

A[n] displays the month as n alphabetic characters. It is used with
the Y, M, W, and N options.

Z[n] suppresses leading zeros and displays as n digits. It works as
n with numeric options.

E toggles day/month/year and month/day/year format for dates.

L displays month or day names as lowercase. The default is
uppercase.

Value Returned by the Status Function
If you input an invalid date to this code, it returns a valid internal date

but flags the anomaly by assigning a Status function value of 3. For

example, 02/29/99 is interpreted as 03/01/99, and 09/31/93 is

interpreted as 10/01/93. If the input date is a null value, Status is

assigned a value of 3 and no conversion occurs.

Examples
The following examples show the effect of various D conversion

codes with the Iconv function:

Conversion Expression Internal Value

X = Iconv("31 DEC 1967", "D") X = 0

X = Iconv("27 MAY 97", "D2") X = 10740

Iconv("05/27/97", "D2/") X = 10740

X = Iconv("27/05/1997", "D/E") X = 10740

X = Iconv("1997 5 27", "D YMD") X = 10740

X = Iconv("27 MAY 97", "D DMY[,A3,2]") X = 10740

X = Iconv("5/27/97", "D/MDY[Z,Z,2]") X = 10740

X = Iconv("27 MAY 1997", "D DMY[,A,]") X = 10740

X = Iconv("97 05 27", "DYMD[2,2,2]") X = 10740
18-232 Server Job Developer’s Guide

BASIC Programming D
The following examples show the effect of various D conversion

codes with the Oconv function:

Conversion Expression External Value

X = Oconv(0, "D") X = "31 DEC 1967"

X = Oconv(10740, "D2") X = "27 MAY 97"

X = Oconv(10740, "D2/") X = "05/27/97"

X = Oconv(10740, "D/E") X = "27/05/1997"

X = Oconv(10740, "D-YJ") X = "1997-147"

X = Oconv(10740, "D2*JY") X = "147*97"

X = Oconv(10740, "D YMD") X = "1997 5 27"

X = Oconv(10740, "D MY[A,2]") X = "MAY 97"

X = Oconv(10740, "D DMY[,A3,2]") X = "27 MAY 97"

X = Oconv(10740, "D/MDY[Z,Z,2]") X = "5/27/97"

X = Oconv(10740, "D DMY[,A,]") X = "27 MAY 1997"

X = Oconv(10740, "DYMD[2,2,2]") X = "97 05 27"

X = Oconv(10740, "DQ") X = "2"

X = Oconv(10740, "DMA") X = "MAY"

X = Oconv(10740, "DW") X = "2"

X = Oconv(10740, "DWA") X = "TUESDAY"
Server Job Developer’s Guide 18-233

G BASIC Programming

G
Extracts one or more delimited values from a field.

G

Syntax
G [skip] delimiter fields

skip specifies the number of fields to skip; if it is not specified, 0 is

assumed and no fields are skipped.

delimiter is a nonnumeric character used as the field separator. You

must not use the system variables @IM, @FM, @VM, @ SM, and

@TM as delimiters.

fields is the number of contiguous values to extract.

Examples
The following examples show the effect of some G conversion codes

with the Iconv function:

The following examples show the effect of some G conversion codes

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("27.05.1997", "G1.2") X = "05.1997"

X = Iconv("27.05.1997", "G.2") X = "27.05"

Conversion Expression External Value

X = Oconv("27.05.1997", "G1.2") X = "05.1997"

X = Oconv("27.05.1997", "G.2") X = "27.05"
18-234 Server Job Developer’s Guide

BASIC Programming L
L
Extracts data that meets length criteria.

Syntax
L [n [,m]]

n on its own is the maximum number of characters that the data must

contain in order to be returned. If it contains more than n characters,

an empty string is returned. If you do not specify n, or if n is 0, the

length of the data is returned.

n, m specifies a range. If the data contains n through m characters it is

returned, otherwise an empty string is returned.

Examples
The following examples show the effect of some L conversion codes

with the Iconv function:

The following examples show the effect of some L conversion codes

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("QWERTYUIOP", "L0") X = 10

X = Iconv("QWERTYUIOP", "L7") X = ""

X = Iconv("QWERTYU", "L7") X = "QWERTYU"

X = Iconv("QWERTYUOP", "L3,5") X = ""

X = Iconv("QWER", "L3,5") X = "QWER"

Conversion Expression External Value

X = Oconv("QWERTYUIOP", "L0") X = 10

X = Oconv("QWERTYUIOP", "L7") X = ""

X = Oconv("QWERTYU", "L7") X = "QWERTYU"

X = Oconv("QWERTYUOP", "L3,5") X = ""

X = Oconv("QWER", "L3,5") X = "QWER"
Server Job Developer’s Guide 18-235

MB BASIC Programming
MB
Converts binary numbers to decimal or an ASCII value, for storage, or

vice versa, for output.

MB

Syntax
MB [0C]

0C converts the octal number to its equivalent ASCII character on

input, and vice versa on output.

Remarks
Characters other than 0 and 1 cause an error.

Examples
The following examples show the effect of some MB conversion

codes with the Iconv function:

The following examples show the effect of some MB conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("10000000000", "MB") X = 1024

X = Iconv("010000110100010001000101", "MB0C") X = "CDE"

Conversion Expression External Value

X = Oconv("1024", "MB") X = "10000000000"

X = Oconv("CDE", "MB0C") X = "010000110100010001000101"
18-236 Server Job Developer’s Guide

BASIC Programming MCA
MCA
Extracts all alphabetic characters in a field.

Syntax
MCA

Examples
The following example shows the effect of an MCA conversion code

with the Iconv function:

The following example shows the effect of an MCA conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MCA") X = "JohnSmith"

Conversion Expression External Value

X = Iconv("John Smith 1-234", "MCA") X = "JohnSmith"
Server Job Developer’s Guide 18-237

MC/A BASIC Programming
MC/A
Extracts all nonalphabetic characters in a field.

MC/A

Syntax

Examples
The following example shows the effect of an MC/A conversion code

with the Iconv function:

The following example shows the effect of an MC/A conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MC/A") X = " 1-234"

Conversion Expression External Value

X = Oconv("John Smith 1-234", "MC/A") X = " 1-234"
18-238 Server Job Developer’s Guide

BASIC Programming MCD
MCD
Converts decimal numbers to hexadecimal.

Syntax
MCD

Examples
The following example shows the effect of an MCD conversion code

with the Iconv function:

The following example shows the effect of an MCD conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("4D2", "MCD") X = "1234"

Conversion Expression External Value

X = Oconv("1234", "MCD") X = "4D2"
Server Job Developer’s Guide 18-239

MCL BASIC Programming
MCL
Converts all uppercase letters to lowercase.

MCL

Syntax
MCL

Examples
The following example shows the effect of an MCL conversion code

with the Iconv function:

The following example shows the effect of an MCL conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MCL") X = "john smith 1-234"

Conversion Expression External Value

X = Oconv("John Smith 1-234", "MCL") X = "john smith 1-234"
18-240 Server Job Developer’s Guide

BASIC Programming MCM
MCM
For use if NLS is enabled. Extracts all NLS multibyte characters in the

field. If NLS mode is disabled, the code returns a value of 2, which

indicates an invalid conversion code.

MCM

Syntax
MCM

Example
The following example shows the effect of an MCM conversion code

with the Iconv function:

IF SYSTEM(NL$ON)
THEN

Multibyte.Characters = ICONV(Input.String, "MCM")
END

Oconv behaves the same way as Iconv.
Server Job Developer’s Guide 18-241

MC/M BASIC Programming
MC/M
For use if NLS is enabled. Extracts all single-byte characters in the

field. If NLS mode is disabled, the code returns a value of 2, which

indicates an invalid conversion code.

MC/M

Syntax
MC/M

Example
The following example shows the effect of an MC/M conversion code

with the Iconv function:

IF SYSTEM(NL$ON)
THEN

Singlebyte.Characters = ICONV(Input.String, "MC/M")
END

Oconv behaves the same way as Iconv.
18-242 Server Job Developer’s Guide

BASIC Programming MCN
MCN
Extracts all numeric characters in a field.

MCN

Syntax
MCN

Examples
The following example shows the effect of an MCN conversion code

with the Iconv function:

The following example shows the effect of an MCN conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MCN") X = "1234"

Conversion Expression External Value

X = Oconv("John Smith 1-234", "MCN") X = "1234"
Server Job Developer’s Guide 18-243

MC/N BASIC Programming
MC/N
Extracts all nonnumeric characters in a field.

MC/N

Syntax
MC/N

Examples
The following example shows the effect of an MC/N conversion code

with the Iconv function:

The following example shows the effect of an MC/N conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John Smith 1-234", "MC/N") X = "John Smith -"

Conversion Expression External Value

X = Iconv("John Smith 1-234", "MC/N") X = "John Smith -"
18-244 Server Job Developer’s Guide

BASIC Programming MCP
MCP
Converts unprintable characters to a period.

Syntax
MCP

Examples
The following example shows the effect of an MCP conversion code

with the Iconv function:

The following example shows the effect of an MCP conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("John^CSmith^X1-234", "MCP") X = "John.Smith.1-234"

Conversion Expression External Value

X = Oconv("John^CSmith^X1-234", "MCP") X = "John.Smith.1-234"
Server Job Developer’s Guide 18-245

MCT BASIC Programming
MCT
Converts words in a string to initial capitals.

Syntax
MCT

Examples
The following example shows the effect of an MCT conversion code

with the Iconv function:

The following example shows the effect of an MCT conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("john SMITH 1-234", "MCT") X = "John Smith 1-234"

Conversion Expression External Value

X = Oconv("john SMITH 1-234", "MCT") X = "John Smith 1-234"
18-246 Server Job Developer’s Guide

BASIC Programming MCU
MCU
Converts all lowercase letters to uppercase.

Syntax
MCU

Examples
The following example shows the effect of an MCU conversion code

with the Iconv function:

The following example shows the effect of an MCU conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("john smith 1-234", "MCU") X = "JOHN SMITH 1-234"

Conversion Expression External Value

X = Oconv("john smith 1-234", "MCU") X = "JOHN SMITH 1-234"
Server Job Developer’s Guide 18-247

MCX BASIC Programming
MCX
Converts hexadecimal numbers to decimal.

MCX

Syntax
MCX

Examples
The following example shows the effect of an MCX conversion code

with the Iconv function:

The following example shows the effect of an MCX conversion code

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("1234", "MCX") X = "4D2"

Conversion Expression External Value

X = Oconv("4D2", "MCX") X = "1234"
18-248 Server Job Developer’s Guide

BASIC Programming MD
MD
Formats numbers as monetary or numeric amounts, or converts

formatted numbers to internal storage format. If the $, F, I, or Y

options are included, the conversion is monetary.

If NLS is enabled and the conversion is monetary, the thousands

separator and decimal separator are taken from the locale

MONETARY convention. If the conversion is numeric, they are taken

from the NUMERIC convention. The <, -, C, and D options define

numbers intended for monetary use, and override settings in the

MONETARY convention.

Syntax
MD n [m] [options]

n is a number, 0 through 9, that indicates the number of decimal

places used in the output. If n is 0, the output contains no decimal

point.

m specifies the scaling factor. On input, the decimal point is moved m

places to the right before storing. On output, the decimal point is

moved m places to the left. For example, if m is 2 in an input

conversion and the input data is 123, it would be stored as 12300. If m

is 2 in an output conversion and the stored data is 123, it would be

output as 1.23. If m is not specified, it is assumed to be the same as n.

Numbers are rounded or padded with zeros as required.

options are any of the following:

, specifies a comma as the thousands delimiter. To specify a
different character as the thousands delimiter, use the convention
expression.

$ prefixes a local currency sign to the number. If NLS is enabled,
the sign is derived from the locale MONETARY convention.

F prefixes a franc sign to the number.

I is used with Oconv, specifies that the international monetary
symbol for the locale is used. Used with Iconv, specifies that it is
removed.

Y is used with Oconv. The yen/yuan character is used.

– specifies a minus sign as a suffix for negative amounts; positive
amounts are suffixed with a blank space.

< specifies that negative amounts are enclosed in angle brackets
for output; positive amounts are prefixed and suffixed with a
blank space.
Server Job Developer’s Guide 18-249

MD BASIC Programming
C adds the suffix CR to negative amounts; positive amounts are
suffixed with two blank spaces.

D adds the suffix DB to negative amounts; positive amounts are
suffixed with two blank spaces.

P specifies no scaling if input data already contains a decimal
point.

Z outputs 0 as an empty string.

T truncates, rather than rounds, the data.

fx adds a format mask on output and removes it on input. f is a
number, 1 through 99 indicating the maximum number of mask
characters to remove or add. x is the character used as the format
mask. If you do not use the fx option and the data contains a
format mask, an empty string results. Format masks are described
on page 18-131.

intl is an expression used to specify a convention for monetary or
numeric formatting.

convention is an expression used to specify a convention for
monetary or numeric formatting.

The convention expression has the following syntax:

[prefix, thousands, decimal, suffix]

Note Each element of the convention expression is optional,

but you must specify the brackets and the commas in

the right position. For example, to specify thousands

only, enter [,thousands,,].

– prefix specifies a prefix for the number. If prefix contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

– thousands specifies the thousands delimiter.

– decimal specifies the decimal delimiter.

– suffix specifies a suffix for the number. If suffix contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

Examples
The following examples show the effect of some MD (masked

decimal) conversion codes with the Iconv function:

Conversion Expression Internal Value

X = Iconv("9876.54", "MD2") X = 987654
18-250 Server Job Developer’s Guide

BASIC Programming MD
The following examples show the effect of some MD (Masked

Decimal) conversion codes with the Oconv function:

X = Iconv("987654", "MD0") X = 987654

X = Iconv("$1,234,567.89", "MD2$,") X = 123456789

X = Iconv("123456.789", "MD33") X = 123456789

X = Iconv("12345678.9", "MD32") X = 1234567890

X = Iconv("F1234567.89", "MD2F") X = 123456789

X = Iconv("1234567.89cr", "MD2C") X = -123456789

X = Iconv("1234567.89 ", "MD2D") X = 123456789

X = Iconv("1,234,567.89 ", "MD2,D") X = 123456789

X = Iconv("9876.54", "MD2-Z") X = 987654

X = Iconv("$####1234.56", "MD2$12#") X = 123456

X = Iconv("$987.654 ", "MD3,$CPZ") X = 987654

X = Iconv("####9,876.54", "MD2,ZP12#") X = 987654

Conversion Expression External Value

X = Oconv(987654, "MD2") X = "9876.54"

X = Oconv(987654, "MD0") X = "987654"

X = Oconv(123456789, "MD2$,") X = "$1,234,567.89"

X = Oconv(987654, "MD24$") X = "$98.77"

X = Oconv(123456789, "MD2['f','.',',']") X = "f1.234.567,89"

X = Oconv(123456789, "MD2,['','','','SEK']” X ="1,234,567.89SEK"

X = Oconv(-123456789, "MD2<['#','.',',']") X = #<1.234.567,89>"

X = Oconv(123456789, "MD33") X = "123456.789"

X = Oconv(1234567890, "MD32") X = "12345678.9"

X = Oconv(123456789, "MD2F") X = "F1234567.89"

X = Oconv(-123456789, "MD2C") X = "1234567.89cr"

X = Oconv(123456789, "MD2D") X = "1234567.89 "

X = Oconv(123456789, "MD2,D") X = "1,234,567.89 "

X = Oconv(1234567.89, "MD2P") X = "1234567.89"

X = Oconv(123, "MD3Z") X = ".123"

Conversion Expression Internal Value
Server Job Developer’s Guide 18-251

MD BASIC Programming
X = Oconv(987654, "MD2-Z") X = "9876.54"

X = Oconv(12345.678, "MD20T") X = "12345.67"

X = Oconv(123456, "MD2$12#") X = "$####1234.56"

X = Oconv(987654, "MD3,$CPZ") X = "$987.654 "

X = Oconv(987654, "MD2,ZP12#") X = "####9,876.54"

Conversion Expression External Value
18-252 Server Job Developer’s Guide

BASIC Programming ML & MR
ML & MR
Justifies and formats monetary or numeric amounts. ML specifies left

justification, MR specifies right justification. If the F or $ options are

included, the conversion is monetary.

If NLS is enabled and the conversion is monetary, the thousands

separator and decimal separator are taken from the locale

MONETARY convention. If the conversion is numeric, they are taken

from the NUMERIC convention. The <, –, C and D options define

numbers intended for monetary use, and override settings in the

MONETARY convention.

ML and MR

Syntax
ML | MR [n [m] options [(fx)]

n is a number, 0 through 9, that indicates the number of decimal

places used in the output. If n is 0, the output contains no decimal

point.

m specifies the scaling factor. On input, the decimal point is moved m

places to the right before storing. On output, the decimal point is

moved m places to the left. For example, if m is 2 in an input

conversion and the input data is 123, it would be stored as 12300. If m

is 2 in an output conversion and the stored data is 123, it would be

output as 1.23. If m is not specified, it is assumed to be the same as n.

Numbers are rounded or padded with zeros as required.

options are any of the following:

, specifies a comma as the thousands delimiter. To specify a
different character as the thousands delimiter, use the convention
expression.

C adds the suffix CR to negative amounts; positive amounts are
suffixed with two blank spaces.

D adds the suffix DB to negative amounts; positive amounts are
suffixed with two blank spaces.

Z outputs 0 as an empty string.

M specifies a minus sign as a suffix for negative amounts. Positive
amounts are suffixed with a blank space.

E specifies that negative amounts are enclosed in angle brackets
for output; positive amounts are prefixed and suffixed with a
blank space.

N suppresses the minus sign on negative numbers.
Server Job Developer’s Guide 18-253

ML & MR BASIC Programming
$ prefixes a local currency sign to the number before justification.
If NLS is enabled, the sign is derived from the locale MONETARY
convention. To prefix a different monetary symbol, use the intl
expression.

F prefixes a franc sign to the number.

(fx) adds a format mask on output and removes it on input. x is a
number, 1 through 99 indicating the maximum number of mask
characters to remove or add. f is a code specifying the character
used as the format mask, and is one of the following:

– # specifies a mask of blanks.

– * specifies a mask of asterisks.

– % specifies a mask of zeros.

intl is an expression used to customize output according to
different international conventions, allowing multibyte characters.

The intl expression has the following syntax:

[prefix , thousands , decimal , suffix]

Note: Each element of the convention expression is optional, but you must specify
the brackets and the commas in the right position. For example, to specify
thousands only, enter [,thousands,,].

– prefix specifies a prefix for the number. If prefix contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

– thousands specifies the thousands delimiter. If thousands
contains spaces, commas, or right square brackets, enclose it
in quotation marks.

– decimal specifies the decimal delimiter. If decimal contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

– suffix specifies a suffix for the number. If suffix contains
spaces, commas, or right square brackets, enclose it in
quotation marks.

Literal strings can also be enclosed in parenthesis. Format masks are

described on page 18-131.

Examples
The following examples show the effect of some ML and MR

conversion codes with the Iconv convention:
18-254 Server Job Developer’s Guide

BASIC Programming ML & MR
The following examples show the effect of some ML and MR

conversion codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("$1,234,567.89", "ML2$,") X = 123456789

X = Iconv(".123", "ML3Z") X = 123

X = Iconv("123456.789", "ML33") X = 123456789

X = Iconv("12345678.9", "ML32") X = 1234567890

X = Iconv("1234567.89cr", "ML2C") X = -123456789

X = Iconv("1234567.89db", "ML2D") X = 123456789

X = Iconv("1234567.89-", "ML2M") X = -123456789

X = Iconv("<1234567.89>", "ML2E") X = -123456789

X = Iconv("1234567.89**", "ML2(*12)") X = 123456789

X = Iconv("**1234567.89", "MR2(*12)") X = 123456789

Conversion Expression External Value

X = Oconv(123456789, "ML2$,") X = "$1,234,567.89"

X = Oconv(123, "ML3Z") X = ".123"

X = Oconv(123456789, "ML33") X = "123456.789"

X = Oconv(1234567890, "ML32") X = "12345678.9"

X = Oconv(-123456789, "ML2C") X = 1234567.89cr"

X = Oconv(123456789, "ML2D") X = ""1234567.89db"

X = Oconv(-123456789, "ML2M") X = "1234567.89-"

X = Oconv(-123456789, "ML2E") X = "<1234567.89>"

X = Oconv(123456789, "ML2(*12)") X = "1234567.89**"

X = Oconv(123456789, "MR2(*12)") X = "**1234567.89"
Server Job Developer’s Guide 18-255

MM BASIC Programming
MM
In NLS mode, formats currency data using the current MONETARY

convention.

MM

Syntax
MM [n] [I [L]]

n is the number of decimal places to be output or stored.

I formats the data using the three-character international currency

symbol specified in the MONETARY convention for the current locale,

a period for the decimal separator, and a comma for the thousands

separator.

Adding L formats the data using the thousands separator and decimal

separator in the MONETARY convention of the current locale. Both I
and L are ignored for input conversions using Iconv.

Remarks
If you specify MM with no arguments, the conversion uses the

decimal and thousands separators and the currency symbol specified

in the MONETARY convention of the current locale.
18-256 Server Job Developer’s Guide

BASIC Programming MO
MO
Converts octal numbers to decimal, or an ASCII value for storage, or

vice versa, for output.

Syntax
MO [0C]

0C converts the octal number to its equivalent ASCII character on

input, and vice versa on output.

Remarks
Characters outside of the range 0 through 7 cause an error.

Examples
The following examples show the effect of some M0 conversion

codes with the Iconv function:

The following examples show the effect of some M0 conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("2000", "MO") X = 1024

X = Iconv("103104105", "MO0C") X = "CDE"

Conversion Expression External Value

X = Oconv("1024", "MO") X = "2000"

X = Oconv("CDE", "MO0C") X = "103104105"
Server Job Developer’s Guide 18-257

MP BASIC Programming
MP
Packs decimal numbers two per byte for storage and unpacks them for

output.

Syntax
MP

Remarks
Leading + signs are ignored. Leading – signs cause a hexadecimal D to

be stored in the lower half of the last internal digit. If there is an odd

number of packed halves, four leading bits of 0 are added. The range

of the data bytes in internal format expressed in hexadecimal is 00

through 99 and 0D through 9D.

This conversion only accepts decimal digits, 0 through 9, and plus and

minus signs as input, otherwise the conversion fails.

Packed decimal numbers must be unpacked for output or they cannot

be displayed.
18-258 Server Job Developer’s Guide

BASIC Programming MT
MT
Converts data to and from time format.

MT

Syntax
MT [H] [S] [separator]

MT with no options specifies that time is in 24-hour format, omitting

seconds, with a colon used to separate hours and minutes, for

example: 23:59.

H specifies an output format in 12-hour format with the suffix AM or

PM.

S includes seconds in the output time.

separator is a nonnumeric character that specifies the separator used

between hours, minutes, and seconds in the output.

Remarks
On output, MT defines the external output format for the time.

On input, MT specifies only that the data is a time, and the H and S

options are ignored. If the input date has no minutes or seconds, they

are assumed to be 0. For 12-hour formats, use a suffix of AM, A, PM,

or P to specify morning or afternoon. If an hour larger than 12 is

entered, a 24-hour clock is assumed. 12:00 AM counts as midnight and

12:00 PM counts as noon. The time is stored as the number of

seconds since midnight. The value of midnight is 0.

Examples
The following examples show the effect of some MT conversion

codes with the Iconv function:

Conversion Expression Internal Value

X = Iconv("02:46", "MT") X = 9960

X = Iconv("02:46:40am", "MTHS") X = 10000

X = Iconv("02:46am", "MTH") X = 9960

X = Iconv("02.46", "MT.") X = 9960

X = Iconv("02:46:40", "MTS") X = 10000
Server Job Developer’s Guide 18-259

MT BASIC Programming
The following examples show the effect of some MT conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Oconv("02:46", "MT") X = "02:46"

X = Oconv("02:46:40am", "MTHS") X = "02:46:40am"

X = Oconv("02:46am", "MTH") X = "02:46am"

X = Oconv("02.46", "MT.") X = "02.46"

X = Oconv("02:46:40", "MTS") X = "02:46:40"
18-260 Server Job Developer’s Guide

BASIC Programming MUOC
MUOC
Returns the internal storage value of a string as four-digit hexadecimal

strings.

Syntax
MUOC

Remarks
On output, using Oconv, the supplied string is returned with each

character converted to its four-digit hexadecimal internal storage

value.

On input, using Iconv, the supplied string is treated as groups of four

hexadecimal digits and the internal storage value is returned. Any

group that comprises fewer than four digits is padded with zeros on

the left.

Example
X = UniChar(222):UniChar(240):@FM
XInt = Oconv(X, 'MX0C')
Y = Oconv(X, 'NLSISO8859-1')
YExt = Oconv(Y, 'MX0C')
Yint = OCONV(X, 'MU0C')

The variables contain:

Xint (Internal form in hex bytes): C39EC3B0FE
Yext (External form in hex bytes): DEF03F
Yint (Internal form in UNICODE): 00DE00F0F8FE
Server Job Developer’s Guide 18-261

MX BASIC Programming
MX
Converts hexadecimal numbers to decimal, or an ASCII value for

storage, or vice versa, for output.

Syntax
MX [0C]

0C converts the hexadecimal number to its equivalent ASCII character

on input, and vice versa on output.

Remarks
Characters outside of the ranges 0 through 9, A through F, or a

through f, cause an error.

Examples
The following examples show the effect of some MX conversion

codes with the Iconv function:

The following examples show the effect of some MX conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("400", "MX") X = 1024

X = Iconv("434445", "MX0C") X = "CDE"

Conversion Expression External Value

X = Oconv("1024", "MX") X = "400"

X = Oconv("CDE", "MX0C") X = "434445"
18-262 Server Job Developer’s Guide

BASIC Programming MY
MY
Converts ASCII characters to hexadecimal values on input, and vice

versa on output.

Syntax
MY

Remarks
Characters outside of the ranges 0 through 9, A through F, or a

through f, cause an error.

Examples
The following examples show the effect of some MY conversion

codes with the Iconv function:

The following examples show the effect of some MY conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("ABCD", "MY") X = 41424344

X = Iconv("0123", "MY") X = 30313233

Conversion Expression External Value

X = Oconv("41424344", "MY") X = “ABCD”

X = Oconv("30313233", "MY") X = "0123"
Server Job Developer’s Guide 18-263

NL BASIC Programming
NL
In NLS mode, converts numbers in a local character set to Arabic

numerals.

Syntax
NL

Example
The following example shows the effect of the NL conversion code

with the Oconv and Iconv functions.

Convert for display purposes:

Internal.Number = 1275
External.Number = OCONV(Internal.Number, "NL")

Convert for arithmetic:

Internal.Number = ICONV(External.Number, "NL")
18-264 Server Job Developer’s Guide

BASIC Programming NLS
NLS
In NLS mode, converts between the internal character set and the

external character set.

Syntax
NLS mapname

mapname is the name of the character set map to use for the

conversion.

Remarks
On output using the Oconv function, the NLS conversion code maps

a string from the internal character set to the external character set

specified in mapname.

On input using the Iconv function, the NLS conversion code assumes

that the supplied string is in the character set specified by mapname,

and maps it to the internal character set. If mapname is set to

Unicode, the supplied string is assumed to comprise 2-byte Unicode

characters. If there is an odd number of bytes in the string, the last

byte is replaced with the Unicode replacement character and the value

returned by the Status function is set to 3.
Server Job Developer’s Guide 18-265

NR BASIC Programming
NR
Converts Arabic numerals to Roman numerals on output, and vice

versa on input.

Syntax
NR

Remarks
These are the equivalent values of Roman and Arabic numerals:

Roman Arabic

i 1

v 5

x 10

l 50

c 100

d 500

m 1000

V 5000

X 10,000

L 50,000

C 100,000

D 500,000

M 1,000,000

Examples
The following examples show the effect of some NR conversion

codes with the Iconv function:

The following examples show the effect of some NR conversion

codes with the Oconv function:

Conversion Expression Internal Value

X = Iconv("mcmxcvii", "NR") X = 1997

X = Iconv("MCMXCVmm", "NR") X = 1997000

Conversion Expression External Value

X = Oconv(1997, "NR") X = "mcmxcvii"

X = Oconv(1997000, "NR") X = "MCMXCVmm"
18-266 Server Job Developer’s Guide

BASIC Programming P
P
Extracts data that matches a pattern.

Syntax
P (pattern) [; (pattern) …]

pattern specifies the pattern to match the data to and must be

enclosed in parenthesis. It can be one or more of the following codes:

nN matches n numeric characters. If n is 0, any number of numeric
characters match.

nA matches n alphabetic characters. If n is 0, any number of
alphabetic characters match.

nX matches n alphanumeric characters. If n is 0, any number of
alphanumeric characters match.

literal is a literal string that the data must match.

; separates a series of patterns.

Remarks
If the data does not match any of the patterns, an empty string is

returned.

Examples
The following examples show the effect of some P conversion codes

with the Iconv function:

The following examples show the effect of some P conversion codes

with the Oconv function:

Conversion Expression Internal Value

X = Iconv("123456789", "P(3N-3A-3X);(9N)") X = "123456789"

X = Iconv("123-ABC-A7G", "P(3N-3A-3X);(9N)") X = "123-ABC-A7G"

X = Iconv("123-45-6789", "P(3N-2N-4N)") X = "123-45-6789"

Conversion Expression External Value

X = Iconv("123456789", "P(3N-3A-3X);(9N)") X = "123456789"

X = Iconv("123-ABC-A7G", "P(3N-3A-3X);(9N)") X = "123-ABC-A7G"

X = Oconv("ABC-123-A7G", "P(3N-3A-3X);(9N)") X = ""
Server Job Developer’s Guide 18-267

P BASIC Programming
X = Oconv("123-45-6789", "P(3N-2N-4N)") X = "123-45-6789"

X = Oconv("123-456-789", "P(3N-2N-4N)") X = ""

X = Oconv("123-45-678A", "P(3N-2N-4N)") X = ""

Conversion Expression External Value
18-268 Server Job Developer’s Guide

BASIC Programming R
R
Retrieves data within a range.

Syntax
Rn,m [; n,m …]

n specifies the lower limit of the range.

m specifies the upper limit of the range.

; separates multiple ranges.

Remarks
If the data does not meet the range specifications, an empty string is

returned.

Examples
The following example shows the effect of the R (Range Check)

conversion code with the Iconv function.

The following example shows the effect of the R (Range Check)

conversion code with the Oconv function.

Conversion Expression Internal Value

X = Iconv("123", "R100,200") X = 123

Conversion Expression External Value

X = Oconv(123, "R100,200") X = 123

X = Oconv(223, "R100,200") X = ""

X = Oconv(3.1E2, "R100,200;300,400") X = 3.1E2
Server Job Developer’s Guide 18-269

S BASIC Programming
S
Generates phonetic codes that can be used to compare words based

on how they sound.

Syntax
S

Remarks
The phonetic code consists of the first letter of the word followed by a

number. Words that sound similar, for example fare and fair, generate

the same phonetic code.

Examples
The following examples show the effect of some S conversion codes

with the Iconv function:

Conversion Expression Internal Value

X = Iconv("GREEN", "S") X = "G650

X = Iconv("greene", "S") X = "G650"

X = Iconv("GREENWOOD", "S" X = "G653"

X = Iconv("GREENBAUM", "S") X = "G651"
18-270 Server Job Developer’s Guide

BASIC Programming TI
TI
In NLS mode, converts times in internal format to the default locale

convention format.

TI

Syntax
TI

Example
The following example shows the effect of the TI conversion code

with the Oconv function:

Internal.Time = TIME()International.Time = OCONV(Internal.Time,
➥ "TI")
Server Job Developer’s Guide 18-271

TI BASIC Programming
18-272 Server Job Developer’s Guide

19
DataStage Development Kit (Job

Control Interfaces)

DataStage provides a range of methods that enable you to run

DataStage server or parallel jobs directly on the server, without using

the DataStage Director. The methods are:

C/C++ API (the DataStage development kit)

DataStage BASIC calls

Command line Interface commands (CLI)

DataStage macros

These methods can be used in different situations as follows:

API. Using the API you can build a self-contained program that can
run anywhere on your system, provided that it can connect to a
DataStage server across the network.

BASIC. Programs built using the DataStage BASIC interface can be
run from any DataStage server on the network. You can use this
interface to define jobs that run and control other jobs. The
controlling job can be run from the Director client like any other
job, or directly on the server machine from the TCL prompt. (Job
sequences provide another way of producing control jobs – see
DataStage Designer Guide for details.)

CLI. The CLI can be used from the command line of any DataStage
server on the network. Using this method, you can run jobs on
other servers too.

Macros. A set of macros can be used in job designs or in BASIC
programs. These are mostly used to retrieve information about
other jobs.
Server Job Developer’s Guide 19-1

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
DataStage Development Kit
The DataStage Development Kit provides the DataStage API, a C or

C++ application programming interface.

This section gives general information about using the DataStage API.

Specific information about API functions is in "API Functions" on

page 19-4.

A listing for an example program which uses the API is in Appendix A.

The dsapi.h Header File
DataStage API provides a header file that should be included with all

API programs. The header file includes prototypes for all DataStage

API functions. It is located in the directory $DSHOME/include Their

format depends on which tokens you have defined:

If the _STDC_ or WIN32 tokens are defined, the prototypes are in
ANSI C style.

If the _cplusplus token is defined, the prototypes are in C++
format with the declarations surrounded by:

extern "C" {…}

Otherwise the prototypes are in Kernighan and Ritchie format.

Data Structures, Result Data, and Threads
DataStage API functions return information about objects as pointers

to data items. This is either done directly, or indirectly by setting

pointers in the elements of a data structure that is provided by the

caller.

Each thread within a calling application is allocated a separate storage

area. Each call to a DataStage API routine overwrites any existing

contents of this data area with the results of the call, and returns a

pointer into the area for the requested data.

For example, the DSGetProjectList function obtains a list of

DataStage projects, and the DSGetProjectInfo function obtains a list

of jobs within a project. When the DSGetProjectList function is

called it retrieves the list of projects, stores it in the thread’s data area,

and returns a pointer to this area. If the same thread then calls

DSGetProjectInfo, the job list is retrieved and stored in the thread’s

data area, overwriting the project list. The job list pointer in the

supplied data structure references the thread data area.

This means that if the results of a DataStage API function need to be

reused later, the application should make its own copy of the data
19-2 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage Development Kit
before making a new DataStage API call. Alternatively, the calls can be

used in multiple threads.

DataStage API stores errors for each thread: a call to the

DSGetLastError function returns the last error generated within the

calling thread.

Writing DataStage API Programs
Your application should use the DataStage API functions in a logical

order to ensure that connections are opened and closed correctly, and

jobs are run effectively. The following procedure suggests an outline

for the program logic to follow, and which functions to use at each

step:

1 If required, set the server name, user name, and password to use
for connecting to DataStage (DSSetServerParams).

2 Obtain the list of valid projects (DSGetProjectList).

3 Open a project (DSOpenProject).

4 Obtain a list of jobs (DSGetProjectInfo).

5 Open one or more jobs (DSOpenJob).

6 List the job parameters (DSGetParamInfo).

7 Lock the job (DSLockJob).

8 Set the job’s parameters and limits (DSSetJobLimit,
DSSetParam).

9 Start the job running (DSRunJob).

10 Poll for the job or wait for job completion (DSWaitForJob,
DSStopJob, DSGetJobInfo).

11 Unlock the job (DSUnlockJob).

12 Display a summary of the job’s log entries
(DSFindFirstLogEntry, DSFindNextLogEntry).

13 Display details of specific log events (DSGetNewestLogId,
DSGetLogEntry).

14 Examine and display details of job stages (DSGetJobInfo – stage
list, DSGetStageInfo).

15 Examine and display details of links within active stages
(DSGetStageInfo – link list, DSGetLinkInfo).

16 Close all open jobs (DSCloseJob).

17 Detach from the project (DSCloseProject).
Server Job Developer’s Guide 19-3

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
Building a DataStage API Application
Everything you need to create an application that uses the DataStage

API is in a subdirectory called dsdk (DataStage Development Kit) in

the Ascential\DataStage installation directory on the server machine.

To build an application that uses the DataStage API:

1 Write the program, including the dsapi.h header file in all source
modules that uses the DataStage API.

2 Compile the code. Ensure that the WIN32 token is defined. (This
happens automatically in the Microsoft Visual C/C++ compiler
environment.)

3 Link the application, including vmdsapi.lib, in the list of libraries to
be included.

Redistributing Applications
If you intend to run your DataStage API application on a computer

where DataStage Server is installed, you do not need to include

DataStage API DLLs or libraries as these are installed as part of

DataStage Server.

If you want to run the application from a computer used as a

DataStage client, you should redistribute the following library with

your application:

vmdsapi.dll

If you intend to run the program from a computer that has neither

DataStage Server nor any DataStage client installed, in addition to the

library mentioned above, you should also redistribute the following:

dsclnt32.dll

dsrpc32.dll

You should locate these files where they will be in the search path of

any user who uses the application, for example, in the

%SystemRoot%\System32 directory.

API Functions
This section details the functions provided in the DataStage API.

These functions are described in alphabetical order. The following

table briefly describes the functions categorized by usage:

Usage Function Description

Accessing
projects

DSCloseProject Closes a project that was opened with
DSOpenProject.
19-4 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage Development Kit
DSGetProjectList Retrieves a list of all projects on the
server.

DSGetProjectList Retrieves a list of jobs in a project.

DSOpenProject Opens a project.

DSSetServerParams Sets the server name, user name, and
password to use for a job.

Accessing jobs DSCloseJob Closes a job that was opened with
DSOpenJob.

DSGetJobInfo Retrieves information about a job, such
as the date and time of the last run,
parameter names, and so on.

DSLockJob Locks a job prior to setting job
parameters or starting a job run.

DSOpenJob Opens a job.

DSRunJob Runs a job.

DSStopJob Aborts a running job.

DSUnlockJob Unlocks a job, enabling other processes
to use it.

DSWaitForJob Waits until a job has completed.

Accessing job
parameters

DSGetParamInfo Retrieves information about a job
parameter.

DSSetJobLimit Sets row processing and warning limits
for a job.

DSSetParam Sets job parameter values.

Accessing
stages

DSGetStageInfo Retrieves information about a stage
within a job.

Accessing links DSGetLinkInfo Retrieves information about a link of an
active stage within a job.

Accessing log
entries

DSFindFirstLogEntry Retrieves entries in a log that meet the
specified criteria.

DSFindNextLogEntry Finds the next log entry that meets the
criteria specified in
DSFindFirstLogEntry.

DSGetLogEntry Retrieves the specified log entry.

DSGetNewestLogId Retrieves the newest entry in the log.

DSLogEvent Adds a new entry to the log.

Usage Function Description
Server Job Developer’s Guide 19-5

DataStage Development Kit DataStage Development Kit (Job Control Interfaces)
Administering
Projects and
jobs

DSAddEnvVar Adds a new environment variable.

DSAddProject Add a project.

DSDeleteEnvVar Delete an environment variable.

DSDeleteProject Delete a project.

DSListEnvVars List environment variables.

DSListProjectProperties List the properties of a project.

DSSetEnvVar Set an environment variable.

DSSetProjectProperty Set property for a project.

Handling
errors

DSGetLastError Retrieves the last error code value
generated by the calling thread.

DSGetLastErrorMsg Retrieves the text of the last reported
error.

Usage Function Description
19-6 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSAddEnvVar
DSAddEnvVar
Add an environment variable to the specified project. It is added to the

User Defined category.

Syntax
int DSAddEnvVar(

DSPROJECT hProject,
char *EnvVarName,
char *Type,
char *PromptText,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject

EnvVarName is the name of the environment variable

Type is DSA_ENVVAR_TYPE_STRING for string type environment

variables or DSA_ENVVAR_TYPE_ENCRYPTED for encrypted

environment variables.

PromptText is the user-visible text describing the environment

variable.

Value is value to set the environment variable to or “”.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_BADENVVARNAME invalid environment variable name

DSJE_BADENVVARTYPE invalid type

DSJE_BADENVVARPROMPT no prompt supplied

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_WRITEENVVARDEFNS failed to write environment variable
definitions

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_DUPENVVARNAME environment variable already exists
Server Job Developer’s Guide 19-7

DSAddEnvVar DataStage Development Kit (Job Control Interfaces)
DSJE_ENCODEFAILED failed to encode an encrypted value

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.
19-8 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSAddProject
DSAddProject
Creates a new project. The user who runs the code containing this

function must be a DataStage Administrator.

Syntax
int DSAddProject(

char *ProjectName,
char *ProjectLocation

);

Parameters
ProjectName is the name of the project to create.

ProjectLocation is the pathname of the directory to create the project

in. To create a project in the default project directory (server install

path/Projects/projectName), this argument should be set to “”.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is
an administrator

DSJE_BADPROJNAME invalid project name supplied

DSJE_GETDEFAULTPATHFAILED failed to determine default
project directory

DSJE_BADPROJLOCATION invalid pathname supplied

DSJE_INVALIDPROJECTLOCATION invalid pathname supplied

DSJE_OPENFAILED failed to open UV.ACCOUNT file

DSJE_READUFAILED failed to lock project create lock
record

DSJE_ADDPROJECTBLOCKED another user is adding a project

DSJE_ADDPROJECTFAILED failed to add project

DSJE_LICENSEPROJECTFAILED failed to license project

DSJE_RELEASEFAILED failed to release project create lock
record
Server Job Developer’s Guide 19-9

DSCloseJob DataStage Development Kit (Job Control Interfaces)
DSCloseJob
Closes a job that was opened using DSOpenJob.

Syntax
int DSCloseJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLEInvalid JobHandle.

Remarks
If the job is locked when DSCloseJob is called, it is unlocked.

If the job is running when DSCloseJob is called, the job is allowed to

finish, and the function returns a value of DSJE_NOERROR

immediately.
19-10 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSCloseProject
DSCloseProject
Closes a project that was opened using the DSOpenProject function.

Syntax
int DSCloseProject(

DSPROJECT ProjectHandle
);

Parameter
ProjectHandle is the value returned from DSOpenProject.

Return Value
This function always returns a value of DSJE_NOERROR.

Remarks
Any open jobs in the project are closed, running jobs are allowed to

finish, and the function returns immediately.
Server Job Developer’s Guide 19-11

DSDeleteEnvVar DataStage Development Kit (Job Control Interfaces)
DSDeleteEnvVar
Delete a user-defined environment variable in a specified project.

Syntax
int DSDeleteEnvVar(

DSPROJECT hProject,
char *EnvVar

);

Parameters
hProject is the value returned from DSOpenProject

EnvVarName is the name of the environment variable

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_BADENVVAR environment variable does not exist

DSJE_WRITEENVVARDEFNS failed to write environment variable
definitions

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_NOTUSERDEFINED environment variable is not user-
defined and therefore cannot be deleted

If the function fails, then the return value is one of the following:
19-12 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSDeleteProject
DSDeleteProject
Deletes a project. The user who runs the code containing this function

must be a DataStage Administrator. Note that any jobs scheduled to

be run that are included in this project will also be deleted.

Syntax
int DSDeleteProject(

char *ProjectName
);

Parameter
ProjectName is the name of the project to delete.

Return Value
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is an
administrator

DSJE_OPENFAILED failed to open UV.ACCOUNT file

DSJE_READUFAILED failed to lock project record

DSJE_RELEASEFAILED failed to release project record

DSJE_LISTSCHEDULEFAILED failed to get list of scheduled jobs
for project

DSJE_CLEARSCHEDULEFAILED failed to clear scheduled jobs for
project

DSJE_DELETEPROJECTBLOCKED project locked by another user

DSJE_NOTAPROJECT failed to log to project

DSJE_ACCOUNTPATHFAILED failed to get account path

DSJE_LOGTOFAILED failed to log to UV account

DSJE_DELPROJFAILED failed to delete project definition

DSJE_DELPROJFILESFAILED failed to delete project files
Server Job Developer’s Guide 19-13

DSFindFirstLogEntry DataStage Development Kit (Job Control Interfaces)
DSFindFirstLogEntry
Retrieves all the log entries that meet the specified criteria, and writes

the first entry to a data structure. Subsequent log entries can then be

read using the DSFindNextLogEntry function.

Syntax
int DSFindFirstLogEntry(

DSJOB JobHandle,
int EventType,
time_t StartTime,
time_t EndTime,
int MaxNumber,
DSLOGEVENT *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is one of the following keys:

StartTime limits the returned log events to those that occurred on or

after the specified date and time. Set this value to 0 to return the

earliest event.

EndTime limits the returned log events to those that occurred before

the specified date and time. Set this value to 0 to return all entries up

to the most recent.

MaxNumber specifies the maximum number of log entries to retrieve,

starting from the latest.

This key… Retrieves this type of message…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER All other log types

DSJ_LOGANY Any type of event
19-14 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSFindFirstLogEntry
Event is a pointer to a data structure to use to hold the first retrieved

log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR, and

summary details of the first log entry are written to Event.

If the function fails, the return value is one of the following:

Remarks
The retrieved log entries are cached for retrieval by subsequent calls

to DSFindNextLogEntry. Any cached log entries that are not

processed by a call to DSFindNextLogEntry are discarded at the

next DSFindFirstLogEntry call (for any job), or when the project is

closed.

Note The log entries are cached by project handle. Multiple

threads using the same open project handle must

coordinate access to DSFindFirstLogEntry and

DSFindNextLogEntry.

Token Description

DSJE_NOMORE There are no events matching the filter criteria.

DSJE_NO_MEMORY Failed to allocate memory for results from server.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid EventType value.

DSJE_BADTIME Invalid StartTime or EndTime value.

DSJE_BADVALUE Invalid MaxNumber value.
Server Job Developer’s Guide 19-15

DSFindNextLogEntry DataStage Development Kit (Job Control Interfaces)
DSFindNextLogEntry
Retrieves the next log entry from the cache.

Syntax
int DSFindNextLogEntry(

DSJOB JobHandle,
DSLOGEVENT *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

Event is a pointer to a data structure to use to hold the next log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR and

summary details of the next available log entry are written to Event.

If the function fails, the return value is one of the following:

Remarks
This function retrieves the next log entry from the cache of entries

produced by a call to DSFindFirstLogEntry.

Note The log entries are cached by project handle. Multiple

threads using the same open project handle must

coordinate access to DSFindFirstLogEntry and

DSFindNextLogEntry.

Token Description

DSJE_NOMORE All events matching the filter criteria have been
returned.

DSJE_SERVER_ERROR Internal error. The DataStage Server returned invalid
data.
19-16 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectList
DSGetProjectList
Obtains information reported at the end of execution of certain

parallel stages. The information collected, and available to be

interrogated, is specified at design time. For example, transformer

stage information is specified in the Triggers tab of the Transformer

stage Properties dialog box.

Syntax
int DSGetCustInfo(

DSJOB JobHandle,
char *StageName,
char *CustinfoName
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

CustinfoName is a pointer to a null-terminated string specifiying the

name of the variable to be interrogated (as set up on the Triggers

tab).

InfoType is one of the following keys:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

This key… Returns this information…

DSJ_CUSTINFOVALUE The value of the specified variable.

DSJ_CUSTINFODESC Description of the variable.

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.
Server Job Developer’s Guide 19-17

DSGetProjectList DataStage Development Kit (Job Control Interfaces)
DSJE_BADCUSTINFO CustinfoName does not refer to a known custinfo item.

DSJE_BADTYPE Invalid InfoType.

Token Description
19-18 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
DSGetJobInfo
Retrieves information about the status of a job.

Syntax
int DSGetJobInfo(

DSJOB JobHandle,
int InfoType,
DSJOBINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

InfoType is a key indicating the information to be returned and can

have any of the following values:

This key… Returns this information…

DSJ_JOBSTATUS The current status of the job.

DSJ_JOBNAME The name of the job referenced by
JobHandle.

DSJ_JOBCONTROLLER The name of the job controlling the job
referenced by JobHandle.

DSJ_JOBSTARTTIMESTAMP The date and time when the job started.

DSJ_JOBWAVENO The wave number of last or current run.

DSJ_JOBDESC The Job Description specified in the Job
Properties dialog box.

DSJ_JOBFULLDESSC The Full Description specified in the Job
Properties dialog box.

DSJ_JOBDMISERVICE Set to true if this is a web service job.

DSJ_JOBMULTIINVOKABLE Set to true if this job supports multiple
invocations.

DSJ_PARAMLIST A list of job parameter names. Separated
by nulls.

DSJ_STAGELIST A list of active stages in the job. Separated
by nulls.

DSJ_USERSTATUS The value, if any, set as the user status by
the job.

DSJ_JOBCONTROL Whether a stop request has been issued
for the job referenced by JobHandle.
Server Job Developer’s Guide 19-19

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
ReturnInfo is a pointer to a DSJOBINFO data structure where the

requested information is stored. The DSJOBINFO data structure

contains a union with an element for each of the possible return

values from the call to DSGetJobInfo. For more information, see

"Data Structures" on page 19-61.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
For controlled jobs, this function can be used either before or after a

call to DSRunJob.

DSJ_JOBPID Process id of DSD.RUN process.

DSJ_JOBLASTTIMESTAMP The date and time when the job last
finished.

DSJ_JOBINVOCATIONS List of job invocation ids. The ids are
separated by nulls.

DSJ_JOBINTERIMSTATUS The status of a job after it has run all
stages and controlled jobs, but before it
has attempted to run an after-job
subroutine. (Designed to be used by an
after-job subroutine to get the status of the
current job.)

DSJ_JOBINVOCATIONID Invocation name of the job referenced by
JobHandle.

DSJ_JOBDESC A description of the job.

DSJ_STAGELIST2 A list of passive stages in the job.
Separated by nulls.

DSJ_JOBELAPSED The elapsed time of the job in seconds.

This key… Returns this information…

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the job.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid InfoType.
19-20 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLastError
DSGetLastError
Returns the calling thread’s last error code value.

Syntax
int DSGetLastError(void);

Return Values
The return value is the last error code value. The "Return Values"
section of each reference page notes the conditions under which the

function sets the last error code.

Remarks
Use DSGetLastError immediately after any function whose return

value on failure might contain useful data, otherwise a later,

successful function might reset the value back to 0 (DSJE_NOERROR).

Note Multiple threads do not overwrite each other’s error codes.
Server Job Developer’s Guide 19-21

DSGetLastErrorMsg DataStage Development Kit (Job Control Interfaces)
DSGetLastErrorMsg
Retrieves the text of the last reported error from the DataStage server.

Syntax
char *DSGetLastErrorMsg(

DSPROJECT ProjectHandle
);

Parameter
ProjectHandle is either the value returned from DSOpenProject or

NULL.

Return Values
The return value is a pointer to a series of null-terminated strings, one

for each line of the error message associated with the last error

generated by the DataStage Server in response to a DataStage API

function call. Use DSGetLastError to determine what the error

number is.

The following example shows the buffer contents with <null>

representing the terminating NULL character:

line1<null>line2<null>line3<null><null>

The DSGetLastErrorMsg function returns NULL if there is no error

message.

Rermarks
If ProjectHandle is NULL, this function retrieves the error message

associated with the last call to DSOpenProject or

DSGetProjectList, otherwise it returns the last message associated

with the specified project.

The error text is cleared following a call to DSGetLastErrorMsg.

Note The text retrieved by a call to DSGetLastErrorMsg relates

to the last error generated by the server and not necessarily

the last error reported back to a thread using DataStage API.

Multiple threads using DataStage API must cooperate in

order to obtain the correct error message text.
19-22 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLinkInfo
DSGetLinkInfo
Retrieves information relating to a specific link of the specified active

stage of a job.

Syntax
int DSGetLinkInfo(

DSJOB JobHandle,
char *StageName,
char *LinkName,
int InfoType,
DSLINKINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated character string

specifying the name of the active stage to be interrogated.

LinkName is a pointer to a null-terminated character string specifying

the name of a link (input or output) attached to the stage.

InfoType is a key indicating the information to be returned and is one

of the following values:

ReturnInfo is a pointer to a DSJOBINFO data structure where the

requested information is stored. The DSJOBINFO data structure

contains a union with an element for each of the possible return

values from the call to DSGetLinkInfo. For more information, see

"Data Structures" on page 19-61.

Value Description

DSJ_LINKLASTERR Last error message reported by the link.

DSJ_LINKNAME Name of the link.

DSJ_LINKROWCOUNT Number of rows that have passed down the link.

DSJ_LINKSQLSTATE SQLSTATE value from last error message.

DSJ_LINKDBMSCODE DBMSCODE value from last error message.

DSJ_LINKDESC Description of the link.

DSJ_LINKSTAGE Name of the stage at the other end of the link.

DSJ_INSTROWCOUNT Null-separated list of rowcounts, one per instance for
parallel jobs.
Server Job Developer’s Guide 19-23

DSGetLinkInfo DataStage Development Kit (Job Control Interfaces)
Return Value
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function can be used either before or after a call to DSRunJob.

Token Description

DSJE_NOT_AVAILABLE There is no instance of the requested information
available.

DSJE_BADHANDLE JobHandle was invalid.

DSJE_BADTYPE InfoType was unrecognized.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADLINK LinkName does not refer to a known link for the stage in
question.
19-24 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLogEntry
DSGetLogEntry
Retrieves detailed information about a specific entry in a job log.

Syntax
int DSGetLogEntry(

DSJOB JobHandle,
int EventId,
DSLOGDETAIL *Event

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventId is the identifier for the event to be retrieved, see "Remarks"

Event is a pointer to a data structure to hold details of the log entry.

Return Values
If the function succeeds, the return value is DSJE_NOERROR and the

event structure contains the details of the requested event.

If the function fails, the return value is one of the following:

Remarks
Entries in the log file are numbered sequentially starting from 0. The

latest event ID can be obtained through a call to

DSGetNewestLogId. When a log is cleared, there always remains a

single entry saying when the log was cleared.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_SERVER_ERROR Internal error. DataStage server returned invalid data.

DSJE_BADEVENTID Invalid event if for a specified job.
Server Job Developer’s Guide 19-25

DSGetNewestLogId DataStage Development Kit (Job Control Interfaces)
DSGetNewestLogId
Obtains the identifier of the newest entry in the jobs log.

Syntax
int DSGetNewestLogId(

DSJOB JobHandle,
int EventType

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is a key specifying the type of log entry whose identifier

you want to retrieve and can be one of the following:

Return Values
If the function succeeds, the return value is the positive identifier of

the most recent entry of the requested type in the job log file.

If the function fails, the return value is –1. Use DSGetLastError to

retrieve one of the following error codes:

This key… Retrieves this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGOTHER Any other log event type

DSJ_LOGBATCH Batch control

DSJ_LOGANY Any type of event

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE Invalid EventType value.
19-26 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetNewestLogId
Remarks
Use this function to determine the ID of the latest entry in a log file

before starting a job run. Once the job has started or finished, it is then

possible to determine which entries have been added by the job run.
Server Job Developer’s Guide 19-27

DSGetParamInfo DataStage Development Kit (Job Control Interfaces)
DSGetParamInfo
Retrieves information about a particular parameter within a job.

Syntax
int DSGetParamInfo(

DSJOB JobHandle,
char *ParamName,
DSPARAMINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

ParamName is a pointer to a null-terminated string specifying the

name of the parameter to be interrogated.

ReturnInfo is a pointer to a DSPARAMINFO data structure where the

requested information is stored. For more information, see "Data

Structures" on page 19-61.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Unlike the other information retrieval functions, DSGetParamInfo

returns all the information relating to the specified item in a single

call. The DSPARAMINFO data structure contains all the information

required to request a new parameter value from a user and partially

validate it. See "Data Structures" on page 19-61.

This function can be used either before or after a DSRunJob call has

been issued:

If called after a successful call to DSRunJob, the information
retrieved refers to that run of the job.

Token Description

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.

DSJE_BADHANDLE Invalid JobHandle.
19-28 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetParamInfo
If called before a call to DSRunJob, the information retrieved
refers to any previous run of the job, and not to any call to
DSSetParam that may have been issued.
Server Job Developer’s Guide 19-29

DSGetProjectInfo DataStage Development Kit (Job Control Interfaces)
DSGetProjectInfo
Obtains a list of jobs in a project.

Syntax
int DSGetProjectInfo(

DSPROJECT ProjectHandle,
int InfoType,
DSPROJECTINFO *ReturnInfo

);

Parameters
ProjectHandle is the value returned from DSOpenProject.

InfoType is a key indicating the information to be returned.

ReturnInfo is a pointer to a DSPROJECTINFO data structure where

the requested information is stored.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The DSPROJECTINFO data structure contains a union with an

element for each of the possible return values from a call to

DSGetProjectInfo.

Note The returned list contains the names of all jobs known to

the project, whether they can be opened or not.

.

This key… Retrieves this type of log entry…

DSJ_JOBLIST Lists all jobs within the project.

DSJ_PROJECTNAME Name of current project.

DSJ_HOSTNAME Host name of the server.

Token Description

DSJE_NOT_AVAILABLE There are no compiled jobs defined within the project.

DSJE_BADTYPE Invalid InfoType.
19-30 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectList
DSGetProjectList
Obtains a list of all projects on the host system

Syntax
char* DSGetProjectList(void);

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each project on the host system,

ending with a second null character. The following example shows the

buffer contents with <null> representing the terminating null

character:

project1<null>project2<null><null>

If the function fails, the return value is NULL. And the DSGetLast-
Error function retrieves the following error code:

DSJE_SERVER_ERRORUnexpected/unknown server error occurred.

Remarks
This function can be called before any other DataStage API function.

Note DSGetProjectList opens, uses, and closes its own

communications link with the server, so it may take some

time to retrieve the project list.
Server Job Developer’s Guide 19-31

DSGetReposInfo DataStage Development Kit (Job Control Interfaces)
DSGetReposInfo
Provides searching capabilities for design-time objects.

Syntax
int DSGetReposInfo (

DSPROJECT hProject,
int ObjectType,
int InfoType,
const char *SearchCriteria,
const char *StartingCategory,
int Subcategories,
DSREPOSINFO *ReturnInfo

);

Parameters
hProject is the value returned from DSOpenProject for the project

whose jobs you want to search.

ObjectType must currently be set to DSS_JOBS to indicate that you

want to search for jobs.

InfoType is one or more of the following keys:

SearchCriteria is the name to match against. Partial name matching

can be used, with multiple * characters used as wild cards anywhere

in the search string.

StartingCategory is the category to start the search in. If no category

name is supplied, or a NULL or empty string, then the root category is

assumed.

SearchSubcategories can have one of two values: 1 (TRUE) and 0

(FALSE). These define whether the search is to include subcategories.

ReturnInfo is a pointer to a structure containing the required return

information (see "DSREPOSINFO" on page 19-74).

This key… Returns this information…

DSS_JOB_ALL Lists all jobs

DSS_JOB_SERVER Lists all server jobs

DSS_JOB_PARALLEL Lists all parallel jobs

DSS_JOB_MAINFRAME Lists all mainframe jobs

DSS_JOB_SEQUENCE Lists all job sequences
19-32 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetReposInfo
Return Value
On success, DSGetReposInfo returns the number of objects that

have been found.

On failure an error code is returned as follows:

DSJE_BADTYPE ObjectType or InfoType values was not
recognised

DSJE_REPERROR An error occurred while trying to access the
reposotory. Call DSGetLastErrorMsg to get the error message
associated with the error code

DSJE_NO_DATASTAGE The attached project does not appear to
be a valid DataStage project
Server Job Developer’s Guide 19-33

DSGetReposUsage DataStage Development Kit (Job Control Interfaces)
DSGetReposUsage
Returns a list of objects based on the required relationship.

Syntax
int DSGetReposUsage(

DSPROJECT hProject,
int RelationshipType,
const char *ObjectName,
int Recursive,
DSREPOSUSAGE *ReturnInfo

);

Parameters
hProject is the value returned from DSOpenProject for the project
whose jobs you want to search.

RelationshipType is one of the following keys:

ObjectName specifies the job or table, and varies according to which

RelationshipType is specified:

for DSS_JOB_USES_JOB and DSS_JOB_USEDBY_JOB
relationships, the job name (without category qualification)
should be given.

for remaining relationships, the fully qualified table name should
be given.

For the DRS Stage table definition relationships, partial matching
of the table name using * characters as wild cards is allowed.
Multiple wildcard characters can be used

Recursive is used by the DSS_JOB_USES_JOB and

DSS_JOB_USEDBY_JOB relationships. It can have 2 values, 1 (TRUE)

and 0 (FALSE). If set to TRUE, then for each job found that uses the

This key… Returns this information…

DSS_JOB_USES_JOB Return a list of jobs that the specified job uses.

DSS_JOB_USEDBY_JOB Return a list of jobs the specified job is used by.

DSS_JOB_HASSOURCE_
DRSTABLE

Return a list of jobs that use the specified table in as a
source in a DRS Stage.

DSS_JOB_HASTARGET_
DRSTABLE

Return a list of jobs that use the specified table as a
target in a DRS Stage.

DSS_JOB_HASSOURCEO
RTARGET_DRSTABLE

Returns a list of jobs that use the specified table as a
source or target of a DRS Stage.
19-34 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetReposUsage
ObjectName, the jobs that that job is used in are found and so on. For

all other relationship types the parameter is ignored.

ReturnInfo is a pointer to a structure containing the returned values

(see"DSREPOSUSAGE" on page 19-75). The order in which jobs

appear in the ReturnInfo structure is defined by the RelationshipType.

For the DSS_JOB_USES_JOB RelationshipType, the jobs will apear in

the order in which they appear in the jobs dependency list. This list is

on the Dependencies tab on the Job Properties dialog.

Return Value
On success, DSGetReposUsage returns the number of objects that

have been found.

On failure an error code is returned as follows:

DSJE_REPERROR An error occurred while trying to access the
repository. Call nDSGetLastErrorMsg to get the error
message associated with the error code.

DSJE_NO_DATASTAGE The attached project does not appear
to be a valid DataStage project.

DSJE_UNKNOWN_JOBNAME When the RelationshipType is
DSS_JOB_USES_JOB or DSS_JOB_USEDBY_JOB the supplied job
name cannot be found in the project.
Server Job Developer’s Guide 19-35

DSGetStageInfo DataStage Development Kit (Job Control Interfaces)
DSGetStageInfo
Obtains information about a particular stage within a job.

Syntax
int DSGetStageInfo(

DSJOB JobHandle,
char *StageName,
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

InfoType is one of the following keys:

This key… Returns this information…

DSJ_LINKLIST Null-separated list of names of links in
stage.

DSJ_STAGELASTERR Last error message reported from any link
of the stage.

DSJ_STAGENAME Stage name.

DSJ_STAGETYPE Stage type name.

DSJ_STAGEINROWNUM Primary links input row number.

DSJ_VARLIST Null-separated list of stage variable
names in the stage.

DSJ_STAGESTARTTIMESTAMP Date and time when stage started.

DSJ_STAGEENDTIMESTAMP Date and time when stage finished.

DSJ_STAGEDESC Stage description (from stage properties)

DSJ_STAGEINST Null-separated list of instance ids (parallel
jobs).

DSJ_STAGECPU List of CPU time in seconds.

DSJ_LINKTYPES Null-separated list of link types.

DSJ_STAGEELAPSED Elapsed time in seconds.

DSJ_STAGEPID Null-separated list of process ids.

DSJ_STAGESTATUS Stage status.
19-36 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageInfo
ReturnInfo is a pointer to a DSSTAGEINFO data structure where the

requested information is stored. See "Data Structures" on page 19-61.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function can be used either before or after a DSRunJob function

has been issued.

The DSSTAGEINFO data structure contains a union with an element

for each of the possible return values from the call to

DSGetStageInfo.

DSJ_CUSTINFOLIST Null-separated list of custinfo items.

This key… Returns this information…

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADTYPE Invalid InfoType.
Server Job Developer’s Guide 19-37

DSGetProjectList DataStage Development Kit (Job Control Interfaces)
DSGetProjectList
Obtains information about variables used in transformer stages.

Syntax
int DSGetVarInfo(

DSJOB JobHandle,
char *StageName,
char *VarName
int InfoType,
DSSTAGEINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

StageName is a pointer to a null-terminated string specifying the

name of the stage to be interrogated.

VarName is a pointer to a null-terminated string specifiying the name

of the variable to be interrogated.

InfoType is one of the following keys:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

This key… Returns this information…

DSJ_VARVALUE The value of the specified variable.

DSJ_VARDESC Description of the variable.

Token Description

DSJE_NOT_AVAILABLE There are no instances of the requested information in
the stage.

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTAGE StageName does not refer to a known stage in the job.

DSJE_BADVAR VarName does not refer to a known variable in the job.

DSJE_BADTYPE Invalid InfoType.
19-38 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSListEnvVars
DSListEnvVars
Obtain a list of environment variables and their values in a specified

project.

Syntax
char *DSListEnvVars(

DSPROJECT hProject
);

Parameter
hProject is the value returned from DSOpenProject for the project

whose environment variables you want to list.

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each environment variable, ending

with a second null character. Each string is of the format

EnvVarName=EnvVarValue.

If the function fails, the return value is NULL and the DSGetLastError

function can be used to retrieve an error code as follows:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE.ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

Environment variables in the parallel category will only be listed if

Enterprise Edition is installed.
Server Job Developer’s Guide 19-39

DSListProjectProperties DataStage Development Kit (Job Control Interfaces)
DSListProjectProperties
Obtain a list of the values of project properties for specified project.

Properties supported are:

Whether generated OSH is visible in parallel jobs.

Whether runtime column propagation is enabled in parallel jobs.

The base directory name for parallel jobs.

Advanced runtime options for parallel jobs.

Custom deployment commands for parallel jobs.

Deployment job template directory.

Whether job administration is enabled in the DataStage Director
or not.

Syntax
char *DSListProjectProperties(

DSPROJECT hProject
);

Parameter
hProject is the value returned from DSOpenProject for the project
whose properties you want to list.

Return Values
If the function succeeds, the return value is a pointer to a series of

null-terminated strings, one for each variable, ending with a second

null character. Each string is of the format

PropertyName=PropertyValue where PropertyName will be one of the

following:

This key… Indicates this property…

DSA_OSHVISIBLEFLAG Generated OSH is visible in
parallel jobs. Enterprise Edition
only.

DSA_PRJ_RTCP_ENABLED Runtime column propagation is
enabled in parallel jobs. Enterprise
Edition only.

DSA_PRJ_PX_ADVANCED_RUNTIME_OPTS Specifies advanced runtime
properties for parallel jobs.
Enterprise Edition only.
19-40 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSListProjectProperties
These tokens are defined in dsapi.h (see "The dsapi.h Header File" on

page 19-2).

If the function fails, the return value is NULL and the DSGetLastError

function can be used to retrieve one of the following error code:

DSJE_READPROJPROPERTY failed to read property

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

DSJE_OSHVISIBLEFLAG failed to get value for OSHVisible

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

If Enterprise Edition is not installed, only the setting of the

DSA_PRJ_JOBADMIN_ENABLED will be returned.

DSListProjectProperties

DSA_PRJ_PX_BASEDIR Specifies the base directory for
parallel jobs. Enterprise Edition
only.

DSA_PRJ_PX_DEPLOY_JOBDIR_TEMPLATE Specifies the deployment directory
template for parallel jobs.
Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_CUSTOM_ACTION Specifies custom deployment
commands for parallel jobs. Value
is the commands. Enterprise
Edition only.

DSA_PRJ_JOBADMIN_ENABLED Job administration commands are
enabled in the DataStage Director
for jobs in this project.

DSA_PRJ_PX_DEPLOY_GENERATE_XML Generation of XML reports is
enabled for Parallel job
deployment packages.

This key… Indicates this property…
Server Job Developer’s Guide 19-41

DSLockJob DataStage Development Kit (Job Control Interfaces)
DSLockJob
Locks a job. This function must be called before setting a job’s run

parameters or starting a job run.

Syntax
int DSLockJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Locking a job prevents any other process from modifying the job

details or status. This function must be called before any call of

DSSetJobLimit, DSSetParam, or DSRunJob.

If you try to lock a job you already have locked, the call succeeds. If

you have the same job open on several DataStage API handles,

locking the job on one handle locks the job on all the handles.

Token Description

DSJE_BADHANDLE Invalid JobHandle.
19-42 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogEvent
DSLogEvent
Adds a new entry to a job log file.

Syntax
int DSLogEvent(

DSJOB JobHandle,
int EventType,
char *Reserved,
char *Message

);

Parameters
JobHandle is the value returned from DSOpenJob.

EventType is one of the following keys specifying the type of event to

be logged:

Reserved is reserved for future use, and should be specified as null.

Message points to a null-terminated character string specifying the

text of the message to be logged.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
Messages that contain more that one line of text should contain a

newline character (\n) to indicate the end of a line.

This key… Specifies this type of event…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.

DSJE_BADTYPE Invalid EventType value.
Server Job Developer’s Guide 19-43

DSMakeJobReport DataStage Development Kit (Job Control Interfaces)
DSMakeJobReport
Generates a report describing the complete status of a valid attached

job.

Syntax
int DSMakeJobReport(

DSJOB JobHandle,
int ReportType,
char *LineSeparator,
DSREPORTINFO *ReturnInfo

);

Parameters
JobHandle is the value returned from DSOpenJob.

ReportType is one of the following values specifying the type of report

to be generated:

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

LineSeparator points to a null-terminated character string specifying

the line separator in the report. Special values recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows, else LF.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

This value… Specifies this type of report…

0 Basic, text string containing start/end time, time elapsed and
status of job.

1 Stage/link detail. As basic report, but also contains information
about individual stages and links within the job.

2 Text string containing full XML report.
19-44 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSOpenJob
DSOpenJob
Opens a job. This function must be called before any other function

that manipulates the job.

Syntax
DSJOB DSOpenJob(

DSPROJECT ProjectHandle,
char *JobName

);

Parameters
ProjectHandle is the value returned from DSOpenProject.

JobName is a pointer to a null-terminated string that specifies the

name of the job that is to be opened. This may be in either of the

following formats:

Return Values
If the function succeeds, the return value is a handle to the job.

If the function fails, the return value is NULL. Use DSGetLastError to

retrieve one of the following:

Remarks
The DSOpenJob function must be used to return a job handle before

a job can be addressed by any of the DataStage API functions. You can

gain exclusive access to the job by locking it with DSLockJob.

The same job may be opened more than once and each call to

DSOpenJob will return a unique job handle. Each handle must be

separately closed.

job Finds the latest version of the job.

job%Reln.n.n Finds a particular release of the job on a

development system.

Token Description

DSJE_OPENFAIL Server failed to open job.

DSJE_NO_MEMORY Memory allocation failure.
Server Job Developer’s Guide 19-45

DSOpenProject DataStage Development Kit (Job Control Interfaces)
DSOpenProject
Opens a project. It must be called before any other DataStage API

function, except DSGetProjectList or DSGetLastError.

Syntax
DSPROJECT DSOpenProject(

char *ProjectName
);

Parameter
ProjectName is a pointer to a null-terminated string that specifies the

name of the project to open.

Return Values
If the function succeeds, the return value is a handle to the project.

If the function fails, the return value is NULL. Use DSGetLastError to

retrieve one of the following:

Remarks
The DSGetProjectList function can return the name of a project that

does not contain valid DataStage jobs, but this is detected when

DSOpenProject is called. A process can only have one project open

at a time.

Token Description

DSJE_BAD_VERSION The DataStage server is an older version than
the DataStage API.

DSJE_INCOMPATIBLE_SERVER The DataStage Server is either older or newer
than that supported by this version of
DataStage API.

DSJE_SERVER_ERROR Internal error. DataStage Server returned
invalid data.

DSJE_BADPROJECT Invalid project name.

DSJE_NO_DATASTAGE DataStage is not correctly installed on the
server system.
19-46 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSRunJob
DSRunJob
Starts a job run.

Syntax
int DSRunJob(

DSJOB JobHandle,
int RunMode

);

Parameters
JobHandle is a value returned from DSOpenJob.

RunMode is a key determining the run mode and should be one of the

following values:

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSRunJob function is called.

If no limits were set by calling DSSetJobLimit, the default limits are

used.

This key… Indicates this action…

DSJ_RUNNORMAL Start a job run.

DSJ_RUNRESET Reset the job.

DSJ_RUNVALIDATE Validate the job.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (must be compiled and
not running).

DSJE_BADTYPE RunMode is not recognized.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid
data.
Server Job Developer’s Guide 19-47

DSSetEnvVar DataStage Development Kit (Job Control Interfaces)
DSSetEnvVar
Set the value for an environment variable in a specified project.

Syntax
int DSSetEnvVar(

DSPROJECT hProject,
char *EnvVarName,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject.

EnvVarName is the name of the environment variable.

Value is the value to set the environment variable to.

Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_READENVVARDEFNS failed to read environment variable
definitions

DSJE_READENVVARVALUES failed to read environment variable
values

DSJE_BADENVVAR environment variable does not exist

DSJE_WRITEENVVARVALUES failed to write environment variable
values

DSJE_ENCODEFAILED failed to encode an encrypted value

DSJE_BADBOOLEANVALUE invalid value given for a boolean
environment variable

DSJE_BADNUMERICVALUE invalid value given for an integer
environment variable

DSJE_BADLISTVALUE invalid value given for an
environment variable with a fixed list of values

DSJE_PXNOTINSTALLED Environment variable is specific to
Enterprise Edition which is not installed

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed
19-48 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetEnvVar
Remarks
You can only set values for environment variables in the parallel

category if Enterprise Edition is installed.

If setting a list type environment variable (for example,

APT_EXECUTION _MODE) , then you should set it to one of the

permissable internal values, rather than one of the list members as

they are shown in the DataStage Administrator client. For example, if

you wanted to set APT_EXECUTION_MODE so that parallel jobs

executed in one process mode, you would set the environment

variable value to ‘ONE_PROCESS’, not ‘One process’ as offered in the

Administrator client. Internal values are given in "Environment

Variables," in the Parallel Job Advanced Developer’s Guide.

If you are setting a boolean type environment variable, set teh value

to 1 for TRUE and 0 for FALSE.
Server Job Developer’s Guide 19-49

DSSetGenerateOpMetaData DataStage Development Kit (Job Control Interfaces)
DSSetGenerateOpMetaData
Use this to specify whether the job generates operational meta data or

not. This overrides the default setting for the project. In order to

generate operational meta data the Process MetaBroker must be

installed on your DataStage machine.

Syntax
int DSSetGenerateOpMetaData (

JobHandle,
value

);

Parameters
JobHandle is a value returned from DSOpenJob.

value is TRUE (1) to generate operational meta data, FALSE (0) to not

generate operational meta data.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADTYPE value is not recognized.
19-50 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetJobLimit
DSSetJobLimit
Sets row or warning limits for a job.

Syntax
int DSSetJobLimit(

DSJOB JobHandle,
int LimitType,
int LimitValue

);

Parameters
JobHandle is a value returned from DSOpenJob.

LimitType is one of the following keys specifying the type of limit:

LimitValue is the value to set the limit to.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSSetJobLimit function is called.

This key… Specifies this type of limit…

DSJ_LIMITWARN Job to be stopped after LimitValue warning events.

DSJ_LIMITROWS Stages to be limited to LimitValue rows.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (compiled, not running).

DSJE_BADTYPE LimitType is not the name of a known limiting condition.

DSJE_BADVALUE LimitValue is not appropriate for the limiting condition
type.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.
Server Job Developer’s Guide 19-51

DSSetJobLimit DataStage Development Kit (Job Control Interfaces)
Any job limits that are not set explicitly before a run will use the

default values. Make two calls to DSSetJobLimit in order to set both

types of limit.

Set the value to 0 to indicate that there should be no limit for the job.
19-52 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetParam
DSSetParam
Sets job parameter values before running a job. Any parameter that is

not explicitly set uses the default value.

Syntax
int DSSetParam(

DSJOB JobHandle,
char *ParamName,
DSPARAM *Param

);

Parameters
JobHandle is the value returned from DSOpenJob.

ParamName is a pointer to a null-terminated string that specifies the

name of the parameter to set.

Param is a pointer to a structure that specifies the name, type, and

value of the parameter to set.

Note The type specified in Param need not match the type

specified for the parameter in the job definition, but it must

be possible to convert it. For example, if the job defines the

parameter as a string, it can be set by specifying it as an

integer. However, it will cause an error with unpredictable

results if the parameter is defined in the job as an integer

and a nonnumeric string is passed by DSSetParam.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_BADSTATE Job is not in the right state (compiled, not running).

DSJE_BADPARAM Param does not reference a known parameter of the job.

DSJE_BADTYPE Param does not specify a valid parameter type.

DSJE_BADVALUE Param does not specify a value that is appropriate for the
parameter type as specified in the job definition.

DSJE_SERVER_ERROR Internal error. DataStage Server returned invalid data.
Server Job Developer’s Guide 19-53

DSSetParam DataStage Development Kit (Job Control Interfaces)
Remarks
The job specified by JobHandle must be locked, using DSLockJob,

before the DSSetParam function is called.
19-54 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetProjectProperty
DSSetProjectProperty
Sets the value of a property in a specified project. The user who runs

the code containing this function must be a DataStage Administrator.

Syntax
int DSSetProjectProperty(

DSPROJECT hProject,
char *Property,
char *Value

);

Parameters
hProject is the value returned from DSOpenProject

Propertyis the name of the property to set. The following properties

are supported:

This key… Indicates this property…

DSA_OSHVISIBLEFLAG Generated OSH is visible in
parallel jobs, Value is 0 for false or
1 for true. Enterprise Edition only.

DSA_PRJ_RTCP_ENABLED Runtime column propagation is
enabled in parallel jobs, Value is 0
for false or 1 for true. Enterprise
Edition only.

DSA_PRJ_PX_ADVANCED_RUNTIME_OPTS Specifies advanced runtime
properties for parallel jobs, Value is
the advanced properties to set.
Enterprise Edition only.

DSA_PRJ_PX_BASEDIR Specifies the base directory for
parallel jobs. Value is the base
directory. Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_JOBDIR_TEMPLATE Specifies the deployment directory
template for parallel jobs. Value is
the deployment directory
template. Enterprise Edition only.

DSA_PRJ_PX_DEPLOY_CUSTOM_ACTION Specifies custom deployment
commands for parallel jobs. Value
is the commands. Enterprise
Edition only

DSA_PRJ_JOBADMIN_ENABLED Job administration commands are
enabled in the DataStage Director
for jobs in this project. Value is 0
for false or 1 for true.
Server Job Developer’s Guide 19-55

DSSetProjectProperty DataStage Development Kit (Job Control Interfaces)
Return Values
If the function succeeds, then the return value is DSJE_NOERROR

If the function fails, then the return value is one of the following:

DSJE_NOTADMINUSER user is not an administrator

DSJE_ISADMINFAILED failed to determine whether user is
an administrator

DSJE_READPROJPROPERTY failed to read property

DSJE_WRITEPROJPROPERTY failed to write property

DSJE_PROPNOTSUPPORTED property not supported

DSJE_BADPROPERTY unknown property name

DSJE_BADPROPVALUE invalid value for this property

DSJE_PXNOTINSTALLED Enterprise Edition not installed

DSJE_ISPARALLELLICENCED failed to determine if Enterprise
Edition installed

DSJE_OSHVISIBLEFLAG failed to set value for OSHVisible

Remarks
To use this method, the program needs to have previously attached to

a project using DSOpenProject. This returns a handle to the project,

hProject.

DSA_PRJ_PX_DEPLOY_GENERATE_XML Generation of XML reports is
enabled for Parallel job
deployment packages. Value is 0
for false or 1 for true.

This key… Indicates this property…
19-56 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetServerParams
DSSetServerParams
Sets the logon parameters to use for opening a project or retrieving a

project list.

Syntax
void DSSetServerParams(

char *ServerName,
char *UserName,
char *Password

);

Parameters
ServerName is a pointer to either a null-terminated character string

specifying the name of the server to connect to, or NULL.

UserName is a pointer to either a null-terminated character string

specifying the user name to use for the server session, or NULL.

Password is a pointer to either a null-terminated character string

specifying the password for the user specified in UserName, or NULL.

Return Values
This function has no return value.

Remarks
By default, DSOpenProject and DSGetProjectList attempt to

connect to a DataStage Server on the same computer as the client

process, then create a server process that runs with the same user

identification and access rights as the client process.

DSSetServerParams overrides this behavior and allows you to

specify a different server, user name, and password.

Calls to DSSetServerParams are not cumulative. All parameter

values, including NULL pointers, are used to set the parameters to be

used on the subsequent DSOpenProject or DSGetProjectList call.
Server Job Developer’s Guide 19-57

DSStopJob DataStage Development Kit (Job Control Interfaces)
DSStopJob
Aborts a running job.

Syntax
int DSStopJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLEInvalid JobHandle.

Remarks
The DSStopJob function should be used only after a DSRunJob
function has been issued. The stop request is sent regardless of the

job’s current status. To ascertain if the job has stopped, use the

DSWaitForJob function or the DSJobStatus macro.
19-58 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSUnlockJob
DSUnlockJob
Unlocks a job, preventing any further manipulation of the job’s run

state and freeing it for other processes to use.

Syntax
int DSUnlockJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJ_NOERROR.

If the function fails, the return value is:

DSJE_BADHANDLE Invalid JobHandle.

Remarks
The DSUnlockJob function returns immediately without waiting for

the job to finish. Attempting to unlock a job that is not locked does not

cause an error. If you have the same job open on several handles,

unlocking the job on one handle unlocks it on all handles.
Server Job Developer’s Guide 19-59

DSWaitForJob DataStage Development Kit (Job Control Interfaces)
DSWaitForJob
Waits to the completion of a job run.

Syntax
int DSWaitForJob(

DSJOB JobHandle
);

Parameter
JobHandle is the value returned from DSOpenJob.

Return Values
If the function succeeds, the return value is DSJE_NOERROR.

If the function fails, the return value is one of the following:

Remarks
This function is only valid if the current job has issued a DSRunJob

call on the given JobHandle. It returns if the job was started since the

last DSRunJob, and has since finished. The finishing status can be

found by calling DSGetJobInfo.

Token Description

DSJE_BADHANDLE Invalid JobHandle.

DSJE_WRONGJOB Job for this JobHandle was not started from a call to
DSRunJob by the current process.

DSJE_TIMEOUT Job appears not to have started after waiting for a
reasonable length of time. (About 30 minutes.)
19-60 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Data Structures
Data Structures
The DataStage API uses the data structures described in this section

to hold data passed to, or returned from, functions. (See"Data

Structures, Result Data, and Threads" on page 19-2). The data

structures are summarized below, with full descriptions in the

following sections:

This data
structure…

Holds this type of data… And is used by
this function…

DSCUSTINFO Custinfo items from certain types of
parallel stage

DSGetCustinfo

DSJOBINFO Information about a DataStage job DSGetJobInfo

DSLINKINFO Information about a link to or from an
active stage in a job, that is, a stage
that is not a data source or
destination

DSGetLinkInfo

DSLOGDETAIL Full details of an entry in a job log file DSGetLogEntry

DSLOGEVENT Details of an entry in a job log file DSLogEvent,
DSFindFirstLogEntry,
DSFindNextLogEntry

DSPARAM The type and value of a job parameter DSSetParam

DSPARAMINFO Further information about a job
parameter, such as its default value
and a description

DSGetParamInfo

DSPROJECTINFO A list of jobs in the project DSGetProjectInfo

DSREPOSINGFO A list of design time jobs DSGetReposInfo

DSREPOSUSGE A list of design time jobs satisfying a
relationship

DSGetReposUsage

DSSTAGEINFO Information about a stage in a job DSGetStageInfo

DSVARINFO Information about stage variables in
transformer stages

DSGetVarInfo
Server Job Developer’s Guide 19-61

DSCUSTINFO DataStage Development Kit (Job Control Interfaces)
DSCUSTINFO
The DSCUSTINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSCUSTINFO {
int infoType:/
union {

char *custinfoValue;
char *custinfoDesc;

} info;

} DSCUSTINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

This key… Indicates this information…

DSJ_CUSTINFOVALUE The value of the specified custinfo item.

DSJ_CUSTINFODESC The description of the specified custinfo item.
19-62 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSJOBINFO
DSJOBINFO
The DSJOBINFO structure represents information values about a

DataStage job.

Syntax
typedef struct _DSJOBINFO {

int infoType;
union {

int jobStatus;
char *jobController;
time_t jobStartTime;
int jobWaveNumber;
char *userStatus;
char *paramList;
char *stageList;
char *jobname;
int jobcontrol;
int jobPid;
time_t jobLastTime;
char *jobInvocations;
int jobInterimStatus;
char *jobInvocationid;
char *jobDesc;
char *stageList2;
char *jobElapsed;
char *jobFullDesc;
int jobDMIService;
int jobMultiInvokable;

} info;

} DSJOBINFO;

Members
infoType is one of the following keys indicating the type of

information:

This key… Indicates this information…

DSJ_JOBSTATUS The current status of the job.

DSJ_JOBNAME Name of job referenced by JobHandle

DSJ_JOBCONTROLLER The name of the controlling job.

DSJ_JOBSTARTTIMESTAMP The date and time when the job started.

DSJ_JOBWAVENO Wave number of the current (or last) job run.

DSJ_PARAMLIST A list of the names of the job’s parameters.
Separated by nulls.
Server Job Developer’s Guide 19-63

DSJOBINFO DataStage Development Kit (Job Control Interfaces)
jobStatus is returned when infoType is set to DSJ_JOBSTATUS. Its

value is one of the following keys:

DSJ_STAGELIST A list of active stages in the job. Separated by
nulls.

DSJ_USERSTATUS The status reported by the job itself as defined in
the job’s design.

DSJ_JOBCONTROL Whether a stop request has been issued for the
job.

DSJ_JOBPID Process id of DSD.RUN process.

DSJ_JOBLASTTIMESTAMP The date and time on the server when the job last
finished.

DSJ_JOBINVOCATIONS List of job invocation ids. Separated by nulls.

DSJ_JOBINTERIMSTATUS Current Interim status of the job.

DSJ_JOBINVOVATIONID Invocation name of the job referenced.

DSJ_JOBDESC A description of the job.

DSJ_STAGELIST2 A list of passive stages in the job. Separated by
nulls.

DSJ_JOBELAPSED The elapsed time of the job in seconds.

DSJ_JOBFULLDESSC The Full Description specified in the Job
Properties dialog box.

DSJ_JOBDMISERVICE Set to true if this is a web service job.

DSJ_JOBMULTIINVOKABLE Set to true if this job supports multiple
invocations.

This key… Indicates this status…

DSJS_RUNNING Job running.

DSJS_RUNOK Job finished a normal run with no warnings.

DSJS_RUNWARN Job finished a normal run with warnings.

DSJS_RUNFAILED Job finished a normal run with a fatal error.

DSJS_VALOK Job finished a validation run with no warnings.

DSJS_VALWARN Job finished a validation run with warnings.

DSJS_VALFAILED Job failed a validation run.

DSJS_RESET Job finished a reset run.

DSJS_CRASHED Job was stopped by some indeterminate action.

This key… Indicates this information…
19-64 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSJOBINFO
jobController is the name of the job controlling the job reference and

is returned when infoType is set to DSJ_JOBCONTROLLER. Note that

this may be several job names, separated by periods, if the job is

controlled by a job which is itself controlled, and so on.

jobStartTime is the date and time when the last or current job run

started and is returned when infoType is set to

DSJ_JOBSTARTTIMESTAMP.

jobWaveNumber is the wave number of the last or current job run and

is returned when infoType is set to DSJ_JOBWAVENO.

userStatus is the value, if any, set by the job as its user defined status,

and is returned when infoType is set to DSJ_USERSTATUS.

paramList is a pointer to a buffer that contains a series of null-

terminated strings, one for each job parameter name, that ends with a

second null character. It is returned when infoType is set to

DSJ_PARAMLIST. The following example shows the buffer contents

with <null> representing the terminating null character:

first<null>second<null><null>

stageList is a pointer to a buffer that contains a series of null-

terminated strings, one for each stage in the job, that ends with a

second null character. It is returned when infoType is set to

DSJ_STAGELIST. The following example shows the buffer contents

with <null> representing the terminating null character:

first<null>second<null><null>

DSJS_STOPPED Job was stopped by operator intervention (can’t tell
run type).

DSJS_NOTRUNNABLE Job has not been compiled.

DSJS_NOTRUNNING Any other status. Job was stopped by operator
intervention (can’t tell run type).

This key… Indicates this status…
Server Job Developer’s Guide 19-65

DSLINKINFO DataStage Development Kit (Job Control Interfaces)
DSLINKINFO
The DSLINKINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSLINKINFO {
int infoType:/
union {

DSLOGDETAIL lastError;
int rowCount;
char *linkName;
char *linkSQLState;
char *linkDBMSCode;
char *linkDesc;
char *linkedStage;
char *rowCountList;

} info;

} DSLINKINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

lastError is a data structure containing the error log entry for the last

error message reported from a link and is returned when infoType is

set to DSJ_LINKLASTERR.

rowCount is the number of rows that have been passed down a link so

far and is returned when infoType is set to DSJ_LINKROWCOUNT.

This key… Indicates this information…

DSJ_LINKLASTERR The last error message reported from a link.

DSJ_LINKNAME Actual name of link.

DSJ_LINKROWCOUNT The number of rows that have been passed down a link.

DSJ_LINKSQLSTATE SQLSTATE value from last error message.

DSJ_LINKDBMSCODE DBMSCODE value from last error message.

DSJ_LINKDESC Description of the link.

DSJ_LINKSTAGE Name of the stage at the other end of the link.

DSJ_INSTROWCOUNT Comma-separated list of rowcounts, one per

instance (parallel jobs)
19-66 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLOGDETAIL
DSLOGDETAIL
The DSLOGDETAIL structure represents detailed information for a

single entry from a job log file.

Syntax
typedef struct _DSLOGDETAIL {

int eventId;
time_t timestamp;
int type;
char *reserved;
char *fullMessage;

} DSLOGDETAIL;

Members
eventId is a a number, 0 or greater, that uniquely identifies the log

entry for the job.

timestamp is the date and time at which the entry was added to the

job log file.

type is a key indicting the type of the event, and is one of the following

values:

reserved is reserved for future use with a later release of DataStage.

fullMessage is the full description of the log entry.

This key… Indicates this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal error

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER Any other type of log entry
Server Job Developer’s Guide 19-67

DSLOGEVENT DataStage Development Kit (Job Control Interfaces)
DSLOGEVENT
The DSLOGEVENT structure represents the summary information

for a single entry from a job’s event log.

Syntax
typedef struct _DSLOGEVENT {

int eventId;
time_t timestamp;
int type;
char *message;

} DSLOGEVENT;

Members
eventId is a a number, 0 or greater, that uniquely identifies the log

entry for the job.

timestamp is the date and time at which the entry was added to the

job log file.

type is a key indicating the type of the event, and is one of the

following values:

message is the first line of the description of the log entry.

This key… Indicates this type of log entry…

DSJ_LOGINFO Information

DSJ_LOGWARNING Warning

DSJ_LOGFATAL Fatal error

DSJ_LOGREJECT Transformer row rejection

DSJ_LOGSTARTED Job started

DSJ_LOGRESET Job reset

DSJ_LOGBATCH Batch control

DSJ_LOGOTHER Any other type of log entry
19-68 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPARAM
DSPARAM
The DSPARAM structure represents information about the type and

value of a DataStage job parameter.

Syntax
typedef struct _DSPARAM {
int paramType;
union {

char *pString;
char *pEncrypt;
int pInt;
float pFloat;
char *pPath;
char *pListValue;
char *pDate;
char *pTime;

} paramValue;

} DSPARAM;

Members
paramType is a key specifying the type of the job parameter. Possible

values are as follows:

pString is a null-terminated character string that is returned when

paramType is set to DSJ_PARAMTYPE_STRING.

pEncrypt is a null-terminated character string that is returned when

paramType is set to DSJ_PARAMTYPE_ENCRYPTED. The string

should be in plain text form when passed to or from DataStage API

where it is encrypted. The application using the DataStage API should

This key… Indicates this type of parameter…

DSJ_PARAMTYPE_STRING A character string.

DSJ_PARAMTYPE_ENCRYPTED An encrypted character string (for example, a
password).

DSJ_PARAMTYPE_INTEGER An integer.

DSJ_PARAMTYPE_FLOAT A floating-point number.

DSJ_PARAMTYPE_PATHNAME A file system pathname.

DDSJ_PARAMTYPE_LIST A character string specifying one of the values
from an enumerated list.

DDSJ_PARAMTYPE_DATE A date in the format YYYY-MM-DD.

DSJ_PARAMTYPE_TIME A time in the format HH:MM:SS.
Server Job Developer’s Guide 19-69

DSPARAM DataStage Development Kit (Job Control Interfaces)
present this type of parameter in a suitable display format, for

example, an asterisk for each character of the string rather than the

character itself.

pInt is an integer and is returned when paramType is set to

DSJ_PARAMTYPE_INTEGER.

pFloat is a floating-point number and is returned when paramType is

set to DSJ_PARAMTYPE_FLOAT.

pPath is a null-terminated character string specifying a file system

pathname and is returned when paramType is set to

DSJ_PARAMTYPE_PATHNAME.

Note This parameter does not need to specify a valid pathname

on the server. Interpretation and validation of the pathname

is performed by the job.

pListValue is a null-terminated character string specifying one of the

possible values from an enumerated list and is returned when

paramType is set to DDSJ_PARAMTYPE_LIST.

pDate is a null-terminated character string specifying a date in the

format YYYY-MM-DD and is returned when paramType is set to

DSJ_PARAMTYPE_DATE.

pTime is a null-terminated character string specifying a time in the

format HH:MM:SS and is returned when paramType is set to

DSJ_PARAMTYPE_TIME.
19-70 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPARAMINFO
DSPARAMINFO
The DSPARAMINFO structure represents information values about a

parameter of a DataStage job.

Syntax
typedef struct _DSPARAMINFO {

DSPARAM defaultValue;
char *helpText;
char *paramPrompt;
int paramType;
DSPARAM desDefaultValue;
char *listValues;
char *desListValues;
int promptAtRun;

} DSPARAMINFO;

Members
defaultValue is the default value, if any, for the parameter.

helpText is a description, if any, for the parameter.

paramPrompt is the prompt, if any, for the parameter.

paramType is a key specifying the type of the job parameter. Possible

values are as follows:

desDefaultValue is the default value set for the parameter by the job’s

designer.

This key… Indicates this type of parameter…

DSJ_PARAMTYPE_STRING A character string.

DSJ_PARAMTYPE_ENCRYPTED An encrypted character string (for example, a
password).

DSJ_PARAMTYPE_INTEGER An integer.

DSJ_PARAMTYPE_FLOAT A floating-point number.

DSJ_PARAMTYPE_PATHNAME A file system pathname.

DDSJ_PARAMTYPE_LIST A character string specifying one of the values
from an enumerated list.

DDSJ_PARAMTYPE_DATE A date in the format YYYY-MM-DD.

DSJ_PARAMTYPE_TIME A time in the format HH:MM:SS.
Server Job Developer’s Guide 19-71

DSPARAMINFO DataStage Development Kit (Job Control Interfaces)
Note Default values can be changed by the DataStage

administrator, so a value may not be the current value for

the job.

listValues is a pointer to a buffer that receives a series of null-

terminated strings, one for each valid string that can be used as the

parameter value, ending with a second null character as shown in the

following example (<null> represents the terminating null character):

first<null>second<null><null>

desListValues is a pointer to a buffer containing the default list of

values set for the parameter by the job’s designer. The buffer contains

a series of null-terminated strings, one for each valid string that can be

used as the parameter value, that ends with a second null character.

The following example shows the buffer contents with <null>

representing the terminating null character:

first<null>second<null><null>

Note Default values can be changed by the DataStage

administrator, so a value may not be the current value for

the job.

promptAtRun is either 0 (False) or 1 (True). 1 indicates that the

operator is prompted for a value for this parameter whenever the job

is run; 0 indicates that there is no prompting.
19-72 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPROJECTINFO
DSPROJECTINFO
The DSPROJECTINFO structure represents information values for a

DataStage project.

Syntax
typedef struct _DSPROJECTINFO {

int infoType;
union {
char *jobList;
} info;

} DSPROJECTINFO;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobList is a pointer to a buffer that contains a series of null-terminated

strings, one for each job in the project, and ending with a second null

character, as shown in the following example (<null> represents the

terminating null character):

first<null>second<null><null>

This key… Indicates this information…

DSJ_JOBLIST List of jobs in project.

DSJ_PROJECTNAME Name of current project.

DSJ_HOSTNAME Host name of the server.
Server Job Developer’s Guide 19-73

DSREPOSINFO DataStage Development Kit (Job Control Interfaces)
DSREPOSINFO
The DSREPOSINFO structure gives information about design-time

objects that have been searched for.

Syntax
struct _DSREPOSJOBINFO;
typedef struct _DSREPOSJOBINFO DSREPOSJOBINFO;

struct _DSREPOSJOBINFO
{

char* jobname; /* Includes category */
int jobtype; /* InfoType constant */
DSREPOSJOBINFO* nextjob; /* ptr next job or NULL */

};

typedef struct _DSREPOSINFO
{

int infoType;
union
{

DSREPOSJOBINFO* jobs; /*linkedlist of found jobs */
} info;

} DSREPOSINFO;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobs is a pointer to a structure linked to another structure, or

terminated with a null. There is one structure for each job returned.

Each structure contains the job name (including category) and the job

type as follows:

This key… Indicates this information…

DSS_JOBS List of jobs.

This key… Returns this information…

DSS_JOB_SERVER Server job

DSS_JOB_PARALLEL Parallel job

DSS_JOB_MAINFRAME Mainframe job

DSS_JOB_SEQUENCE Job sequence
19-74 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSREPOSUSAGE
DSREPOSUSAGE
The DSREPOSUSAGE structure gives information about objects

meeting a specified relationship.

DSREPOSUSAGE

Syntax
struct _DSREPOSUSAGEJOB;
typedef struct _DSREPOSUSAGEJOB DSREPOSUSAGEJOB;

struct _DSREPOSUSAGEJOB
{

char *jobname; /* Job and cat name */
int jobtype; /* type of job */
DSREPOSUSAGEJOB *nextjob; /* next sibling job */
DSREPOSUSAGEJOB *childjob;

};

typedef struct _DSREPOSUSAGE
{

int infoType;
union
{

DSREPOSUSAGEJOB *jobs; /*linkedlist of jobs*/
} info

} DSREPOSUSAGE;

Members
infoType is a key value indicating the type of information to retrieve.

Possible values are as follows.

jobs is a pointer to a structure linked to another structure, or

terminated with a null. There is one structure for each job returned.

Each structure contains the job name (including category) and the job

type as follows:

This key… Indicates this information…

DSS_JOBS List of jobs.

This key… Returns this information…

DSS_JOB_SERVER Server job

DSS_JOB_PARALLEL Parallel job

DSS_JOB_MAINFRAME Mainframe job

DSS_JOB_SEQUENCE Job sequence
Server Job Developer’s Guide 19-75

DSSTAGEINFO DataStage Development Kit (Job Control Interfaces)
DSSTAGEINFO
The DSSTAGEINFO structure represents various information values

about an active stage within a DataStage job.

Syntax
typedef struct _DSSTAGEINFO {
int infoType;
union {

DSLOGDETAIL lastError;
char *typeName;
int inRowNum;
char *linkList;
char *stagename;
char *varlist;
char *stageStartTime;
char *stageEndTime;
char *linkTypes;
char *stageDesc;
char *instList;
char *cpuList;
time_t stageElapsed;
char *pidList;
int stageStatus;
char *custInfoList

} info;

} DSSTAGEINFO;

Members
infoType is a key indicating the information to be returned and is one

of the following:

This key… Indicates this information…

DSJ_LINKLIST Null-separated list of link names.

DSJ_STAGELASTERR The last error message generated from any
link in the stage.

DSJ_STAGENAME Name of stage.

DSJ_STAGETYPE The stage type name, for example,
Transformer or BeforeJob.

DSJ_STAGEINROWNUM The primary link’s input row number.

DSJ_VARLIST List of stage variable names.

DSJ_STAGESTARTTIME-STAMP Date and time when stage started.

DSJ_STAGEENDTIME-STAMP Date and time when stage finished.

DSJ_STAGEDESC Stage description (from stage properties)
19-76 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSTAGEINFO
lastError is a data structure containing the error message for the last

error (if any) reported from any link of the stage. It is returned when

infoType is set to DSJ_STAGELASTERR.

typeName is the stage type name and is returned when infoType is set

to DSJ_STAGETYPE.

inRowNum is the primary link’s input row number and is returned

when infoType is set to DSJ_STAGEINROWNUM.

linkList is a pointer to a buffer that contains a series of null-terminated

strings, one for each link in the stage, ending with a second null

character, as shown in the following example (<null> represents the

terminating null character):

first<null>second<null><null>

DSJ_STAGEINST Null-separated list of instance ids (parallel
jobs).

DSJ_STAGECPU Null-separated list of CPU time in seconds

DSJ_LINKTYPES Null-separated list of link types.

DSJ_STAGEELAPSED Elapsed time in seconds.

DSJ_STAGEPID Null-separated list of process ids.

DSJ_STAGESTATUS Stage status.

DSJ_CUSTINFOLIST Null-separated list of custinfo item names.

This key… Indicates this information…
Server Job Developer’s Guide 19-77

DSLINKINFO DataStage Development Kit (Job Control Interfaces)
DSLINKINFO
The DSLINKINFO structure represents various information values

about a link to or from an active stage within a DataStage job.

Syntax
typedef struct _DSVARINFO {
int infoType:/
union {

char *varValue;
char *varDesc;

} info;

} DSVARINFO;

Members
infoType is a key indicating the type of information and is one of the

following values:

This key… Indicates this information…

DSJ_VARVALUE The value of the specified variable.

DSJ_VARDESC The description of the specified
variable.
19-78 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
Error Codes
The following table lists DataStage API error codes in alphabetical

order:

Table 19-1 API Error Codes

Error Token Code Description

DSJE_ACCOUNTPATHFAILED -140 Failed to get account path.

DSJE_ADDPROJECTBLOCKED -134 Another user is adding a project.

DSJE_ADDPROJECTFAILED -135 Failed to add project.

DSJEBADBOOLEANVALUE -118 Invalid value given for a boolean
environment variable.

DSJE_BADENVVAR -116 Environment variable does not
exist.

DSJE_BADENVVARNAME -108 Invalid environment variable
name.

DSJE_BADENVVARTYPE -109 Invalid environment variable
type.

DSJE_BADENVVARPROMPT -110 No prompt supplied.

DSJE_BADHANDLE –1 Invalid JobHandle.

DSJE_BADLINK –9 LinkName does not refer to a
known link for the stage in
question.

DSJE_BADLISTVALUE -120 Invalid value given for a list
environment variable.

DSJE_BADNAME –12 Invalid project name.

DSJE_BADNUMERICVALUE -119 Invalid value given for an
integer environment variable.

DSJE_BADPARAM –3 ParamName is not a parameter
name in the job.

DSJE_BADPROJECT –1002 ProjectName is not a known
DataStage project.

DSJE_BADPROJLOCATION -130 Invalid pathname supplied.

DSJE_BADPROJNAME -128 Invalid project name supplied.

DSJE_BADPROPERTY -104 Unknown property name.

DSJE_BADPROPVALUE -106 Invalid value for this property.

DSJE_BADSTAGE –7 StageName does not refer to a
known stage in the job.
Server Job Developer’s Guide 19-79

Error Codes DataStage Development Kit (Job Control Interfaces)
DSJE_BADSTATE –2 Job is not in the right state
(compiled, not running).

DSJE_BADTIME –13 Invalid StartTime or EndTime
value.

DSJE_BADTYPE –5 Information or event type was
unrecognized.

DSJE_BAD_VERSION –1008 The DataStage server does not
support this version of the
DataStage API.

DSJE_BADVALUE –4 Invalid MaxNumber value.

DSJE_CLEARSCHEDULEFAILED -127 Failed to clear scheduled jobs for
project.

DSJE_DECRYPTERR –15 Failed to decrypt encrypted
values.

DSJE_DELETEPROJECTBLOCKED -138 Project locked by another user.

DSJE_DELPROJFAILED -124 Failed to delete project
definition.

DSJE_DELPROJFILESFAILED -125 Failed to delete project files.

DSJE_DUPENVVARNAME -115 Environment variable being
added already exists.

DSJE_ENCODEFAILED -123 Failed to encode an encrypted
value.

DSJE_GETDEFAULTPATHFAILED -129 Failed to determine default
project directory.

DSJE_INCOMPATIBLE_SERVER –1009 The server version is
incompatible with this version
of the DataStage API.

DSJE_ISADMINFAILED -101 Failed to determine whether
user is an administrator.

DSJE_ISPARALLELLICENCED -122 Failed to determine if Enterprise
Edition installed.

DSJE_INVALIDPROJECTLOCATION -131 Invalid pathname supplied.

DSJE_JOBDELETED –11 The job has been deleted.

DSJE_JOBLOCKED –10 The job is locked by another
process.

DSJE_LICENSEPROJECTFAILED -136 Failed to license project.

Table 19-1 API Error Codes

Error Token Code Description
19-80 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
DSJE_LISTSCEDULEFAILED -126 Failed to get list of scheduled
jobs for project.

DSJE_LOGTOFAILED -141 Failed to log to UV account.

DSJE_NOACCESS –16 Cannot get values, default
values or design default values
for any job except the current
job.

DSJE_NO_DATASTAGE –1003 DataStage is not installed on the
server system.

DSJE_NOERROR 0 No DataStage API error has
occurred.

DSJE_NO_MEMORY –1005 Failed to allocate dynamic
memory.

DSJE_NOMORE –1001 All events matching the filter
criteria have been returned.

DSJE_NOTADMINUSER -100 User is not an administrator.

DSJE_NOTAPROJECT -139 Failed to log to project.

DSJE_NOT_AVAILABLE –1007 The requested information was
not found.

DSJE_NOTINSTAGE –8 Internal server error.

DSJE_NOTUSERDEFINED -117 Environment variable is not
user-defined and therefore
cannot be deleted.

DSJE_OPENFAIL -1004 The attempt to open the job
failed – perhaps it has not been
compiled.

DSJE_OPENFAILED -132 Failed to open UV.ACCOUNT
file.

DSJE_OSHVISIBLEFLAG -107 Failed to get value for
OSHVisible.

DSJE_PROPNOTSUPPORTED -105 Unsupported property.

DSJE_PXNOTINSTALLED -121 Environment variable is specific
to Enterprise Edition which is
not installed.

DSJE_READENVVARDEFNS -111 Failed to read environment
variable definitions.

DSJE_READENVVARVALUES -112 Failed to read environment
variable values.

Table 19-1 API Error Codes

Error Token Code Description
Server Job Developer’s Guide 19-81

Error Codes DataStage Development Kit (Job Control Interfaces)
The following table lists DataStage API error codes in numerical order:

DSJE_READPROJPROPERTY -102 Failed to read property.

DSJE_READUFAILED -133 Failed to lock project create lock
record.

DSJE_RELEASEFAILED -137 Failed to release project create
lock record.

DSJE_REPERROR –99 General server error.

DSJE_SERVER_ERROR –1006 An unexpected or unknown
error occurred in the DataStage
server engine.

DSJE_TIMEOUT –14 The job appears not to have
started after waiting for a
reasonable length of time.
(About 30 minutes.)

DSJE_UNKNOWN_JOBNAME -201 The supplied jobname cannot be
found in the project.

DSJE_WRITEENVVARDEFNS -113 Failed to write environment
variable definitions.

DSJE_WRITEENVVARVALUES -114 Failed to write environment
variable values.

DSJE_WRITEPROJPROPERTY -103 Property not supported.

DSJE_WRONGJOB –6 Job for this JobHandle was not
started from a call to
DSRunJob by the current
process.

Code Error Token Description

0 DSJE_NOERROR No DataStage API error has
occurred.

–1 DSJE_BADHANDLE Invalid JobHandle.

–2 DSJE_BADSTATE Job is not in the right state
(compiled, not running).

–3 DSJE_BADPARAM ParamName is not a parameter
name in the job.

–4 DSJE_BADVALUE Invalid MaxNumber value.

–5 DSJE_BADTYPE Information or event type was
unrecognized.

Table 19-1 API Error Codes

Error Token Code Description
19-82 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
–6 DSJE_WRONGJOB Job for this JobHandle was not
started from a call to DSRunJob
by the current process.

–7 DSJE_BADSTAGE StageName does not refer to a
known stage in the job.

–8 DSJE_NOTINSTAGE Internal server error.

–9 DSJE_BADLINK LinkName does not refer to a
known link for the stage in
question.

–10 DSJE_JOBLOCKED The job is locked by another
process.

–11 DSJE_JOBDELETED The job has been deleted.

–12 DSJE_BADNAME Invalid project name.

–13 DSJE_BADTIME Invalid StartTime or EndTime
value.

–14 DSJE_TIMEOUT The job appears not to have started
after waiting for a reasonable
length of time. (About 30 minutes.)

–15 DSJE_DECRYPTERR Failed to decrypt encrypted values.

–16 DSJE_NOACCESS Cannot get values, default values or
design default values for any job
except the current job.

–99 DSJE_REPERROR General server error.

-100 DSJE_NOTADMINUSER User is not an administrator.

-101 DSJE_ISADMINFAILED Failed to determine whether user is
an administrator.

-102 DSJE_READPROJPROPERTY Failed to read property.

-103 DSJE_WRITEPROJPROPERTY Property not supported.

-104 DSJE_BADPROPERTY Unknown property name.

-105 DSJE_PROPNOTSUPPORTED Unsupported property.

-106 DSJE_BADPROPVALUE Invalid value for this property.

-107 DSJE_OSHVISIBLEFLAG Failed to get value for OSHVisible.

-108 DSJE_BADENVVARNAME Invalid environment variable name.

-109 DSJE_BADENVVARTYPE Invalid environment variable type.

-110 DSJE_BADENVVARPROMPT No prompt supplied.

Code Error Token Description
Server Job Developer’s Guide 19-83

Error Codes DataStage Development Kit (Job Control Interfaces)
-111 DSJE_READENVVARDEFNS Failed to read environment variable
definitions.

-112 DSJE_READENVVARVALUES Failed to read environment variable
values.

-113 DSJE_WRITEENVVARDEFNS Failed to write environment
variable definitions.

-114 DSJE_WRITEENVVARVALUES Failed to write environment
variable values.

-115 DSJE_DUPENVVARNAME Environment variable being added
already exists.

-116 DSJE_BADENVVAR Environment variable does not
exist.

-117 DSJE_NOTUSERDEFINED Environment variable is not user-
defined and therefore cannot be
deleted.

-118 DSJE_BADBOOLEANVALUE Invalid value given for a boolean
environment variable.

-119 DSJE_BADNUMERICVALUE Invalid value given for an integer
environment variable.

-120 DSJE_BADLISTVALUE Invalid value given for a list
environment variable.

-121 DSJE_PXNOTINSTALLED Environment variable is specific to
Enterprise Edition which is not
installed.

-122 DSJE_ISPARALLELLICENCED Failed to determine if Enterprise
Edition installed.

-123 DSJE_ENCODEFAILED Failed to encode an encrypted
value.

-124 DSJE_DELPROJFAILED Failed to delete project definition.

-125 DSJE_DELPROJFILESFAILED Failed to delete project files.

-126 DSJE_LISTSCHEDULEFAILED Failed to get list of scheduled jobs
for project.

-127 DSJE_CLEARSCHEDULEFAILED Failed to clear scheduled jobs for
project.

-128 DSJE_BADPROJNAME Invalid project name supplied.

-129 DSJE_GETDEFAULTPATHFAILED Failed to determine default project
directory.

-130 DSJE_BADPROJLOCATION Invalid pathname supplied.

-131 DSJE_INVALIDPROJECTLOCATION Invalid pathname supplied.

Code Error Token Description
19-84 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Error Codes
-132 DSJE_OPENFAILED Failed to open UV.ACCOUNT file.

-133 DSJE_READUFAILED Failed to lock project create lock
record.

-134 DSJE_ADDPROJECTBLOCKED Another user is adding a project.

-135 DSJE_ADDPROJECTFAILED Failed to add project.

-136 DSJE_LICENSEPROJECTFAILED Failed to license project.

-137 DSJE_RELEASEFAILED Failed to release project create lock
record.

-138 DSJE_DELETEPROJECTBLOCKED Project locked by another user.

-139 DSJE_NOTAPROJECT Failed to log to project.

-140 DSJE_ACCOUNTPATHFAILED Failed to get account path.

-141 DSJE_LOGTOFAILED Failed to log to UV account.

-201 DSJE_UNKNOWN_JOBNAME The supplied jobname cannot be
found in the project.

–1001 DSJE_NOMORE All events matching the filter
criteria have been returned.

–1002 DSJE_BADPROJECT ProjectName is not a known
DataStage project.

–1003 DSJE_NO_DATASTAGE DataStage is not installed on the
server system.

–1004 DSJE_OPENFAIL The attempt to open the job failed –
perhaps it has not been compiled.

–1005 DSJE_NO_MEMORY Failed to allocate dynamic memory.

–1006 DSJE_SERVER_ERROR An unexpected or unknown error
occurred in the DataStage server
engine.

–1007 DSJE_NOT_AVAILABLE The requested information was not
found.

–1008 DSJE_BAD_VERSION The DataStage server does not
support this version of the
DataStage API.

–1009 DSJE_INCOMPATIBLE_SERVER The server version is incompatible
with this version of the DataStage
API.

Code Error Token Description
Server Job Developer’s Guide 19-85

DataStage BASIC Interface DataStage Development Kit (Job Control Interfaces)
The following table lists some common errors that may be returned

from the lower-level communication layers:

DataStage BASIC Interface
These functions can be used in a job control routine, which is defined

as part of a job’s properties and allows other jobs to be run and be

controlled from the first job. Some of the functions can also be used

for getting status information on the current job; these are useful in

active stage expressions and before- and after-stage subroutines.

These functions are also described in Chapter 18,"BASIC

Programming,"

Table 19-2 API Communication Layer Error Codes

Error
Number

Description

39121 The DataStage server license has expired.

39134 The DataStage server user limit has been reached.

80011 Incorrect system name or invalid user name or password provided.

80019 Password has expired.

Table 19-3 BASIC Functions

To do this… Use this…

Specify the job you want to control DSAttachJob

Set parameters for the job you want to
control

DSSetParam

Set limits for the job you want to control DSSetJobLimit

Request that a job is run DSRunJob

Wait for a called job to finish DSWaitForJob

Get information from certain parallel
stages.

DSGetCustInfo

Get information about the current
project

DSGetProjectInfo

Get information about the controlled job
or current job

DSGetJobInfo

Get information about a stage in the
controlled job or current job

DSGetStageInfo
19-86 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DataStage BASIC Interface
Get information about a link in a
controlled job or current job

DSGetLinkInfo

Get information about a controlled job’s
parameters

DSGetParamInfo

Get the log event from the job log DSGetLogEntry

Get a number of log events on the
specified subject from the job log

DSGetLogSummary

Get the newest log event, of a specified
type, from the job log

DSGetNewestLogId

Log an event to the job log of a different
job

DSLogEvent

Stop a controlled job DSStopJob

Return a job handle previously obtained
from DSAttachJob

DSDetachJob

Log a fatal error message in a job's log
file and aborts the job.

DSLogFatal

Log an information message in a job's
log file.

DSLogInfo

Put an info message in the job log of a
job controlling current job.

DSLogToController

Log a warning message in a job's log
file.

DSLogWarn

Generate a string describing the
complete status of a valid attached job.

DSMakeJobReport

Insert arguments into the message
template.

DSMakeMsg

Ensure a job is in the correct state to be
run or validated.

DSPrepareJob

Interface to system send mail facility. DSSendMail

Log a warning message to a job log file. DSTransformError

Convert a job control status or error
code into an explanatory text message.

DSTranslateCode

Suspend a job until a named file either
exists or does not exist.

DSWaitForFile

Checks if a BASIC routine is cataloged,
either in VOC as a callable item, or in the
catalog space.

DSCheckRoutine

Table 19-3 BASIC Functions

To do this… Use this…
Server Job Developer’s Guide 19-87

DataStage BASIC Interface DataStage Development Kit (Job Control Interfaces)
Execute a DOS or DataStage Engine
command from a befor/after subroutine.

DSExecute

Set a status message for a job to return
as a termination message when it
finishes

DSSetUserStatus

Specifies whether a job should generate
operational meta data as it runs. This
overrides the default setting for the
project.

DSSetGenerateOpMetaData

Table 19-3 BASIC Functions

To do this… Use this…
19-88 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSAttachJob
DSAttachJob
Attaches to a job in order to run it in job control sequence. A handle is

returned which is used for addressing the job. There can only be one

handle open for a particular job at any one time.

Syntax
JobHandle = DSAttachJob (JobName, ErrorMode)

JobHandle is the name of a variable to hold the return value which is

subsequently used by any other function or routine when referring to

the job. Do not assume that this value is an integer.

JobName is a string giving the name of the job to be attached to.

ErrorMode is a value specifying how other routines using the handle

should report errors. It is one of:

DSJ.ERRFATAL Log a fatal message and abort the controlling job
(default).

DSJ.ERRWARNINGLog a warning message but carry on.

DSJ.ERRNONENo message logged - caller takes full
responsibility (failure of DSAttachJob itself will be logged,
however).

Remarks
A job cannot attach to itself.

The JobName parameter can specify either an exact version of the job

in the form job%Reln.n.n, or the latest version of the job in the form

job. If a controlling job is itself released, you will get the latest

released version of job. If the controlling job is a development

version, you will get the latest development version of job.

Example
This is an example of attaching to Release 11 of the job Qsales:

Qsales_handle = DSAttachJob ("Qsales%Rel1",
➥ DSJ.ERRWARN)
Server Job Developer’s Guide 19-89

DSCheckRoutine DataStage Development Kit (Job Control Interfaces)
DSCheckRoutine
Checks if a BASIC routine is cataloged, either in the VOC as a callable

item, or in the catalog space.

Syntax
Found = DSCheckRoutine(RoutineName)

RoutineName is the name of BASIC routine to check.

Found Boolean. @False if RoutineName not findable, else @True.

Example
rtn$ok = DSCheckRoutine(“DSU.DSSendMail”)
If(NOT(rtn$ok)) Then

* error handling here
End.
19-90 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSDetachJob
DSDetachJob
Gives back a JobHandle acquired by DSAttachJob if no further

control of a job is required (allowing another job to become its

controller). It is not necessary to call this function, otherwise any

attached jobs will always be detached automatically when the

controlling job finishes.

Syntax
ErrCode = DSDetachJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

The only possible error is an attempt to close DSJ.ME. Otherwise, the

call always succeeds.

Example
The following command detaches the handle for the job qsales:

Deterr = DSDetachJob (qsales_handle)
Server Job Developer’s Guide 19-91

DSExecute DataStage Development Kit (Job Control Interfaces)
DSExecute
Executes a DOS or DataStage Engine command from a before/after

subroutine.

Syntax
Call DSExecute (ShellType, Command, Output, SystemReturnCode)

ShellType (input) specifies the type of command you want to execute

and is either NT or UV (for DataStage Engine).

Command (input) is the command to execute. Command should not

prompt for input when it is executed.

Output (output) is any output from the command. Each line of output

is separated by a field mark, @FM. Output is added to the job log file

as an information message.

SystemReturnCode (output) is a code indicating the success of the

command. A value of 0 means the command executed successfully. A

value of 1 (for a DOS command) indicates that the command was not

found. Any other value is a specific exit code from the command.

Remarks
Do not use DSExecute from a transform; the overhead of running a

command for each row processed by a stage will degrade

performance of the job.
19-92 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetCustInfo
DSGetCustInfo
Obtains information reported at the end of execution of certain

parallel stages. The information collected, and available to be

interrogated, is specified at design time. For example, transformer

stage information is specified in the Triggers tab of the Transformer

stage Properties dialog box.

Syntax
Result = DSGetCustInfo (JobHandle, StageName, CustInfoName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.CUSTINFOVALUE

DSJ.CUSTINFODESC

Result depends on the specified InfoType, as follows:

DSJ.CUSTINFOVALUE String - the value of the specified
custinfo item.

DSJ.CUSTINFODESC String - description of the specified
custinfo item.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.

DSJE.BADCUSTINFOCustInfoName does not refer to a known
custinfo item.
Server Job Developer’s Guide 19-93

DSIPCPageProps DataStage Development Kit (Job Control Interfaces)
DSIPCPageProps
Returns the size (in KB) of the Send/Recieve buffer of an IPC (or Web

Service) stage.

Syntax
Result = DSGetIPCStageProps (JobName, StageName)
or
Call DSGetIPCStageProps (Result, JobName, StageName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

StageName is the name of an IPC stage in the specified job for which

information is required. If StageName does not exist, or is not an IPC

stage within JobName, Result will be set to an empty string.

Result is an array containing the following fields:

the size (in kilobytes) of the Send/Receive buffer of the IPC (or Web
Service) stage StageName within JobName.

the seconds timeout value of the IPC (or Web Service) stage
StageName within JobName.

Example
The following returns the size and timeout of the stage “IPC1” in the

job “testjob”:

buffersize = DSGetIPCStageProps (testjob, IPC1)
19-94 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
DSGetJobInfo
Provides a method of obtaining information about a job, which can be

used generally as well as for job control. It can refer to the current job

or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetJobInfo (JobHandle, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

InfoType specifies the information required and can be one of:

DSJ.JOBSTATUS

DSJ.JOBNAME

DSJ.JOBCONTROLLER

DSJ.JOBSTARTTIMESTAMP

DSJ.JOBWAVENO

DSJ.PARAMLIST

DSJ.STAGELIST

DSJ.USERSTATUS

DSJ.JOBCONTROL

DSJ.JOBPID

DSJ.JPBLASTTIMESTAMP

DSJ.JOBINVOCATIONS

DSJ.JOBINTERIMSTATUS

DSJ.JOBINVOCATIONID

DSJ.JOBDESC

DSJ.JOBFULLDESC

DSJ.STAGELIST2

DSJ.JOBELAPSED

DSJ.JOBEOTCOUNT

DSJ.JOBEOTTIMESTAMP

DSJ.JOBRTISERVICE

DSJ.JOBMULTIINVOKABLE

DSJ.JOBFULLSTAGELIST
Server Job Developer’s Guide 19-95

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
Result depends on the specified InfoType, as follows:

DSJ.JOBSTATUS Integer. Current status of job overall. Possible
statuses that can be returned are currently divided into two
categories:

Firstly, a job that is in progress is identified by:

DSJS.RESETJob finished a reset run.

DSJS.RUNFAILEDJob finished a normal run with a fatal

error.

DSJS.RUNNINGJob running - this is the only status that

 means the job is actually running.

Secondly, jobs that are not running may have the following

statuses:

DSJS.RUNOKJob finished a normal run with no

warnings.

DSJS.RUNWARNJob finished a normal run with

warnings.

DSJS.STOPPEDJob was stopped by operator

intervention (can't tell run type).

DSJS.VALFAILEDJob failed a validation run.

DSJS.VALOKJob finished a validation run with no

warnings.

DSJS.VALWARNJob finished a validation run with

warnings.

DSJ.JOBNAME String. Actual name of the job referenced by the
job handle.

DSJ.JOBCONTROLLER String. Name of the job controlling the
job referenced by the job handle. Note that this may be several job
names separated by periods if the job is controlled by a job which
is itself controlled, etc.

DSJ.JOBSTARTTIMESTAMP String. Date and time when the job
started on the server in the form YYYY-MM-
DD HH:NN:SShh:nn:ss.

DSJ.JOBWAVENO Integer. Wave number of last or current run.

DSJ.PARAMLIST. Returns a comma-separated list of parameter
names.

DSJ.STAGELIST. Returns a comma-separated list of active stage
names.
19-96 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobInfo
DSJ.USERSTATUS String. Whatever the job's last call of
DSSetUserStatus last recorded, else the empty string.

DSJ.JOBCONTROL Integer. Current job control status, i.e.,
whether a stop request has been issued for the job.

DSJ. JOBPID Integer. Job process id.

DSJ.JOBLASTTIMESTAMP String. Date and time when the job
last finished a run on the server in the form YYYY-MM-
DD HH:NN:SS.

DSJ.JOBINVOCATIONS. Returns a comma-separated list of
Invocation IDs.

DSJ.JOBINTERIMSTATUS. Returns the status of a job after it
has run all stages and controlled jobs, but before it has attempted
to run an after-job subroutine. (Designed to be used by an after-job
subroutine to get the status of the current job).

DSJ.JOBINVOCATIONID. Returns the invocation ID of the
specified job (used in the DSJobInvocationId macro in a job
design to access the invocation ID by which the job is invoked).

DSJ.STAGELIST2. Returns a comma-separated list of passive
stage names.

DSJ.JOBELAPSED String. The elapsed time of the job in
seconds.

DSJ.JOBDESC string. The Job Description specified in the Job
Properties dialog box.

DSJ.JOBFULLDESSC string. The Full Description specified in
the Job Properties dialog box.

DSJ.JOBRTISERVICE integer. Set to true if this is a web service
job.

DSJ.JOBMULTIINVOKABLE integer. Set to true if this job
supports multiple invocations

DSJ.JOBEOTCOUNT integer. Count of EndOfTransmission
blocks processed by this job so far.

DSJ.JOBEOTTIMESTAMP timestamp. Date/time of the last
EndOfTransmission block processed by this job.

DSJ.FULLSTAGELIST. Returns a comma-separated list of all
stage names.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEInfoType was unrecognized.
Server Job Developer’s Guide 19-97

DSGetJobInfo DataStage Development Kit (Job Control Interfaces)
Remarks
When referring to a controlled job, DSGetJobInfo can be used either

before or after a DSRunJob has been issued. Any status returned

following a successful call to DSRunJob is guaranteed to relate to

that run of the job.

Examples
The following command requests the job status of the job qsales:

q_status = DSGetJobInfo(qsales_handle, DSJ.JOBSTATUS)

The following command requests the actual name of the current job:

whatname = DSGetJobInfo (DSJ.ME, DSJ.JOBNAME)
19-98 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetJobMetaBag
DSGetJobMetaBag
Returns a dynamic array containing the MetaBag properties

associated with the named job.

Syntax
Result = DSGetJobMetaBag(JobName, Owner)
or
Call DSGetJobMetaBag(Result, JobName, Owner)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project Result will be set to an empty string.

Owner is an owner name whose metabag properties are to be

returned. If Owner is not a valid owner within the current job, Result

will be set to an empty string. If Owner is an empty string, a field

mark delimited string of metabag property owners within the current

job will be returned in Result.

Result returns a dynamic array of metabag property sets, as follows:

RESULT<1> = MetaPropertyName01 @VM MetaPropertyValue01

RESULT<..> = MetaPropertyName.. @VM MetaPropertyValue..

RESULT<N>= MetaPropertyNameN @VM MetaPropertyValueN

Example
The following returns the metabag properties for owner mbowner in

the job “testjob”:

linksmdata = DSGetJobMetaBag (testjob, mbowner)
Server Job Developer’s Guide 19-99

DSGetLinkInfo DataStage Development Kit (Job Control Interfaces)
DSGetLinkInfo
Provides a method of obtaining information about a link on an active

stage, which can be used generally as well as for job control. This

routine may reference either a controlled job or the current job,

depending on the value of JobHandle.

Syntax
Result = DSGetLinkInfo (JobHandle, StageName, LinkName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it can be DSJ.ME to refer to the current job.

StageName is the name of the active stage to be interrogated. May

also be DSJ.ME to refer to the current stage if necessary.

LinkName is the name of a link (input or output) attached to the stage.

May also be DSJ.ME to refer to current link (e.g. when used in a

Transformer expression or transform function called from link code).

InfoType specifies the information required and can be one of:

DSJ.LINKLASTERR

DSJ.LINKNAME

DSJ.LINKROWCOUNT

DSJ.LINKSQLSTATE

DSJ.LINKDBMSCODE

DSJ.LINKDESC

DSJ.LINKSTAGE

DSJ.INSTROWCOUNT

DSJ.LINKEOTROWCOUNT

Result depends on the specified InfoType, as follows:

DSJ.LINKLASTERR String – last error message (if any) reported
from the link in question.

DSJ.LINKNAME String – returns the name of the link, most
useful when used with JobHandle = DSJ.ME and StageName =
DSJ.ME and LinkName = DSJ.ME to discover your own name.

DSJ.LINKROWCOUNT Integer – number of rows that have
passed down a link so far.

DSJ.LINKSQLSTATE – the SQL state for the last error occurring
on this link.

DSJ.LINKDBMSCODE – the DBMS code for the last error
occurring on this link.
19-100 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLinkInfo
DSJ.LINKDESC – description of the link.

DSJ.LINKSTAGE – name of the stage at the other end of the link.

DSJ.INSTROWCOUNT – comma-separated list of rowcounts,
one per instance (parallel jobs)

DSJ.LINKEOTROWCOUNT – row count since last
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was unrecognized.

DSJE.BADSTAGE StageName does not refer to a known stage
in the job.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADLINK LinkName does not refer to a known link
for the stage in question.

Remarks
When referring to a controlled job, DSGetLinkInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the number of rows that have

passed down the order_feed link in the loader stage of the job qsales:

link_status = DSGetLinkInfo(qsales_handle, "loader",
➥ "order_feed", DSJ.LINKROWCOUNT)
Server Job Developer’s Guide 19-101

DSGetLinkMetaData DataStage Development Kit (Job Control Interfaces)
DSGetLinkMetaData
Returns a dynamic array containing the column metadata of the

specified stage.

Syntax
Result = DSGetLinkMetaData(JobName, LinkName)

or
Call DSGetLinkMetaData(Result, JobName, LinkName)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

LinkName is the name of the link in the specified job for which

information is required. If the LinkName does not exist in the specified

job then the function will return an empty string.

Result returns a dynamic array of nine fields, each field will contain N

values where N is the number of columns on the link.

Result<1,1…N> is the column name

Result<2,1…N> is 1 for primary key columns otherwise 0

Result<3,1…N> is the column sql type. See ODBC.H.

Result<4,1…N> is the column precision

Result<5,1…N> is the column scale

Result<6,1…N> is the column desiplay width

Result<7,1…N> is 1 for nullable columns otherwise 0

Result<8,1…N> is the column descriptions

Result<9,1…N> is the column derivation

Example
The following returns the meta data of the link ilink1 in the job

“testjob”:

linksmdata = DSGetLinkMetaData (testjob, ilink1)
19-102 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLogEntry
DSGetLogEntry
Reads the full event details given in EventId.

Syntax
EventDetail = DSGetLogEntry (JobHandle, EventId)

JobHandle is the handle for the job as derived from DSAttachJob.

EventId is an integer that identifies the specific log event for which

details are required. This is obtained using the DSGetNewestLogId
function.

EventDetail is a string containing substrings separated by \. The

substrings are as follows:

Substring1Timestamp in form YYYY-MM-DD HH:NN:SS

Substring2User information

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADVALUE Error accessing EventId.

Example
The following commands first get the EventID for the required log

event and then reads full event details of the log event identified by

LatestLogid into the string LatestEventString:

latestlogid =
➥ DSGetNewestLogId(qsales_handle,DSJ.LOGANY)
LatestEventString =
➥ DSGetLogEntry(qsales_handle,latestlogid)
Server Job Developer’s Guide 19-103

DSGetLogSummary DataStage Development Kit (Job Control Interfaces)
DSGetLogSummary
Returns a list of short log event details. The details returned are

determined by the setting of some filters. (Care should be taken with

the setting of the filters, otherwise a large amount of information can

be returned.)

Syntax
SummaryArray = DSGetLogSummary (JobHandle, EventType, StartTime,
EndTime, MaxNumber)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

StartTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-

MM-DD.

EndTime is a string in the form YYYY-MM-DD HH:NN:SS or YYYY-MM-

DD.

MaxNumber is an integer that restricts the number of events to return.

0 means no restriction. Use this setting with caution.

SummaryArray is a dynamic array of fields separated by @FM. Each

field comprises a number of substrings separated by \, where each

field represents a separate event, with the substrings as follows:

Substring1EventId as per DSGetLogEntry

Substring2Timestamp in form YYYY-MM-DD

HH:NN:SS

Substring3EventType – see DSGetNewestLogId

Substring4 – n Event message

If any of the following errors are found, they are reported via a fatal

log event:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.
19-104 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetLogSummary
DSJE.BADTIME Invalid StartTime or EndTime.

DSJE.BADVALUE Invalid MaxNumber.

Example
The following command produces an array of reject link active events

recorded for the qsales job between 18th August 1998, and 18th

September 1998, up to a maximum of MAXREJ entries:

RejEntries = DSGetLogSummary (qsales_handle,
➥ DSJ.LOGREJECT, "1998-08-18 00:00:00", "1998-09-18
➥ 00:00:00", MAXREJ)
Server Job Developer’s Guide 19-105

DSGetNewestLogId DataStage Development Kit (Job Control Interfaces)
DSGetNewestLogId
Gets the ID of the most recent log event in a particular category, or in

any category.

Syntax
EventId = DSGetNewestLogId (JobHandle, EventType)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

DSJ.LOGFATAL Fatal error

DSJ.LOGREJECT Reject link was active

DSJ.LOGSTARTED Job started

DSJ.LOGRESET Log was reset

DSJ.LOGANY Any category (the default)

EventId is an integer that identifies the specific log event. EventId can

also be returned as an integer, in which case it contains an error code

as follows:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE Invalid EventType.

Example
The following command obtains an ID for the most recent warning

message in the log for the qsales job:

Warnid = DSGetNewestLogId (qsales_handle,
➥ DSJ.LOGWARNING)
19-106 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetParamInfo
DSGetParamInfo
Provides a method of obtaining information about a parameter, which

can be used generally as well as for job control. This routine may

reference either a controlled job or the current job, depending on the

value of JobHandle.

Syntax
Result = DSGetParamInfo (JobHandle, ParamName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

ParamName is the name of the parameter to be interrogated.

InfoType specifies the information required and may be one of:

DSJ.PARAMDEFAULT

DSJ.PARAMHELPTEXT

DSJ.PARAMPROMPT

DSJ.PARAMTYPE

DSJ.PARAMVALUE

DSJ.PARAMDES.DEFAULT

DSJ.PARAMLISTVALUES

DSJ.PARAMDES.LISTVALUES

DSJ.PARAMPROMPT.AT.RUN

Result depends on the specified InfoType, as follows:

DSJ.PARAMDEFAULT String – Current default value for the
parameter in question. See also DSJ.PARAMDES.DEFAULT.

DSJ.PARAMHELPTEXT String – Help text (if any) for the
parameter in question.

DSJ.PARAMPROMPT String – Prompt (if any) for the parameter
in question.

DSJ.PARAMTYPE Integer – Describes the type of validation test
that should be performed on any value being set for this
parameter. Is one of:

DSJ.PARAMTYPE.STRING

DSJ.PARAMTYPE.ENCRYPTED

DSJ.PARAMTYPE.INTEGER
Server Job Developer’s Guide 19-107

DSGetParamInfo DataStage Development Kit (Job Control Interfaces)
DSJ.PARAMTYPE.FLOAT (the parameter may contain periods

and E)

DSJ.PARAMTYPE.PATHNAME

DSJ.PARAMTYPE.LIST (should be a string of Tab-separated

strings)

DSJ.PARAMTYPE.DATE (should be a string in form YYYY-MM-

DD)

DSJ.PARAMTYPE.TIME (should be a string in form HH:MM)

DSJ.PARAMVALUE String – Current value of the parameter for
the running job or the last job run if the job is finished.

DSJ.PARAMDES.DEFAULT String – Original default value of the
parameter - may differ from DSJ.PARAMDEFAULT if the latter
has been changed by an administrator since the job was installed.

DSJ.PARAMLISTVALUES String – Tab-separated list of allowed
values for the parameter. See also
DSJ.PARAMDES.LISTVALUES.

DSJ.PARAMDES.LISTVALUES String – Original Tab-separated
list of allowed values for the parameter – may differ from
DSJ.PARAMLISTVALUES if the latter has been changed by an
administrator since the job was installed.

DSJ.PROMPT.AT.RUN String – 1 means the parameter is to be
prompted for when the job is run; anything else means it is not
(DSJ.PARAMDEFAULT String to be used directly).

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADPARAM ParamName is not a parameter name in the
job.

DSJE.BADTYPE InfoType was unrecognized.

Remarks
When referring to a controlled job, DSGetParamInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the default value of the quarter

parameter for the qsales job:
19-108 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetParamInfo
Qs_quarter = DSGetparamInfo(qsales_handle, "quarter",
➥ DSJ.PARAMDEFAULT)
Server Job Developer’s Guide 19-109

DSGetProjectInfo DataStage Development Kit (Job Control Interfaces)
DSGetProjectInfo
Provides a method of obtaining information about the current project.

Syntax
Result = DSGetProjectInfo (InfoType)

InfoType specifies the information required and can be one of:

DSJ.JOBLIST

DSJ.PROJECTNAME

DSJ.HOSTNAME

Result depends on the specified InfoType, as follows:

DSJ.JOBLIST String - comma-separated list of names of all jobs
known to the project (whether the jobs are currently attached or
not).

DSJ.PROJECTNAME String - name of the current project.

DSJ.HOSTNAME String - the host name of the server holding
the current project.

Result may also return an error condition as follows:

– DSJE.BADTYPE InfoType was unrecognized.
19-110 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageInfo
DSGetStageInfo
Provides a method of obtaining information about a stage, which can

be used generally as well as for job control. It can refer to the current

job, or a controlled job, depending on the value of JobHandle.

Syntax
Result = DSGetStageInfo (JobHandle, StageName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

InfoType specifies the information required and may be one of:

DSJ.LINKLIST

DSJ.STAGELASTERR

DSJ.STAGENAME

DSJ.STAGETYPE

DSJ.STAGEINROWNUM

DSJ.VARLIST

DSJ.STAGESTARTTIMESTAMP

DSJ.STAGEENDTIMESTAMP

DSJ.STAGEDESC

DSJ.STAGEINST

DSJ.STAGECPU

DSJ.LINKTYPES

DSJ.STAGEELAPSED

DSJ.STAGEPID

DSJ.STAGESTATUS

DSJ.STAGEEOTCOUNT

DSJ.STAGEEOTTIMESTAMP

DSJ.CUSTINFOLIST

DSJ.STAGEEOTSTART

Result depends on the specified InfoType, as follows:

DSJ.LINKLIST – comma-separated list of link names in the stage.
Server Job Developer’s Guide 19-111

DSGetStageInfo DataStage Development Kit (Job Control Interfaces)
DSJ.STAGELASTERR String – last error message (if any)
reported from any link of the stage in question.

DSJ.STAGENAME String – most useful when used with
JobHandle = DSJ.ME and StageName = DSJ.ME to discover
your own name.

DSJ.STAGETYPE String – the stage type name (e.g.
"Transformer", "BeforeJob").

DSJ. STAGEINROWNUM Integer – the primary link's input row
number.

DSJ.VARLIST – comma-separated list of stage variable names.

DSJ.STAGESTARTTIMESTAMP – date/time that stage started
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEENDTIMESTAMP – date/time that stage finished
executing in the form YYY-MM-DD HH:NN:SS.

DSJ.STAGEDESC – stage description.

DSJ.STAGEINST – comma-separated list of instance ids (parallel
jobs).

DSJ.STAGECPU – list of CPU times in seconds.

DSJ.LINKTYPES – comma-separated list of link types.

DSJ.STAGEELAPSED – elapsed time in seconds.

DSJ.STAGEPID – comma-separated list of process ids.

DSJ.STAGESTATUS – stage status.

DSJ.STAGEEOTCOUNT – Count of EndOfTransmission blocks
processed by this stage so far.

DSJ.STAGEEOTTIMESTAMP – Data/time of last
EndOfTransmission block received by this stage.

DSJ.CUSTINFOLIST – custom information generated by stages
(parallel jobs).

DSJ.STAGEEOTSTART – row count at start of current
EndOfTransmission block.

Result may also return error conditions as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPEI nfoType was unrecognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
19-112 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStageInfo
Remarks
When referring to a controlled job, DSGetStageInfo can be used

either before or after a DSRunJob has been issued. Any status

returned following a successful call to DSRunJob is guaranteed to

relate to that run of the job.

Example
The following command requests the last error message for the

loader stage of the job qsales:

stage_status = DSGetStageInfo(qsales_handle, "loader",
➥ DSJ.STAGELASTERR)
Server Job Developer’s Guide 19-113

DSGetStageLinks DataStage Development Kit (Job Control Interfaces)
DSGetStageLinks
Returns a field mark delimited list containing the names of all of the

input/output links of the specified stage.

Syntax
Result = DSGetStageLinks(JobName, StageName, Key)

or
Call DSGetStageLinks(Result, JobName, StageName, Key)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project, then the function will return an empty string.

StageName is the name of the stage in the specified job for which

information is required. If the StageName does not exist in the

specified job then the function will return an empty string.

Key depending on the value of Key the returned list will contain all of

the stages links (Key=0), only the stage’s input links (Key=1) or only

the stage’s output links (Key=2).

Result returns a field mark delimited list containing the names of the

links.

Example
The following returns a list of all the input links on the stage called

“join1” in the job “testjob”:

linkslist = DSGetStageLinks (testjob, join1, 1)
19-114 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetStagesOfType
DSGetStagesOfType
Returns a field mark delimited list containing the names of all of the

stages of the specified type in a named job..

Syntax
Result = DSGetStagesOfType (JobName, StageType)
or
Call DSGetStagesOfType (Result, JobName, StageType)

JobName is the name of the job in the current project for which

information is required. If the JobName does not exist in the current

project then the function will return an empty string.

StageType is the name of the stage type, as shown by the Manager

stage type properties form eg CTransformerStage or ORAOCI8. If the

StageType does not exist in the current project or there are no stages

of that type in the specifed job, then the function will return an empty

string.

Result returns a field mark delimited list containing the names of all of

the stages of the specified type in a named job.

Example
The following returns a list of all the aggregator stages in the parallel

job “testjob”:

stagelist = DSGetStagesOfType (testjob, PxAggregator)
Server Job Developer’s Guide 19-115

DSGetStagesTypes DataStage Development Kit (Job Control Interfaces)
DSGetStagesTypes
Returns a field mark delimited string of all active and passive stage

types that exist within a named job..

Syntax
Result = DSGetStageTypes(JobName)
or
Call DSGetStageTypes(Result, JobName)

JobName is the name of the job in the current project for which

information is required. If JobName does not exist in the current

project, Result will be set to an empty string.

Result is a sorted, field mark delimited string of stage types within

JobName.

Example
The following returns a list of all the types of stage in the job

“testjob”:

stagetypelist = DSGetStagesOfType (testjob)
19-116 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSGetProjectInfo
DSGetProjectInfo
Provides a method of obtaining information about variables used in

transformer stages.

Syntax
Result = DSGetVarInfo (JobHandle, StageName, VarName, InfoType)

JobHandle is the handle for the job as derived from DSAttachJob, or

it may be DSJ.ME to refer to the current job.

StageName is the name of the stage to be interrogated. It may also be

DSJ.ME to refer to the current stage if necessary.

VarName is the name of the variable to be interrogated.

InfoType specifies the information required and can be one of:

DSJ.VARVALUE

DSJ.VARDESCRIPTION

Result depends on the specified InfoType, as follows:

DSJ.VARVALUE String - the value of the specified variable.

DSJ.VARDESCRIPTION String - description of the specified
variable.

Result may also return an error condition as follows:

DSJE.BADHANDLE JobHandle was invalid.

DSJE.BADTYPE InfoType was not recognized.

DSJE.NOTINSTAGE StageName was DSJ.ME and the caller is
not running within a stage.

DSJE.BADVAR VarName was not recognized.

DSJE.BADSTAGE StageName does not refer to a known stage in
the job.
Server Job Developer’s Guide 19-117

DSLogEvent DataStage Development Kit (Job Control Interfaces)
DSLogEvent
Logs an event message to a job other than the current one. (Use

DSLogInfo, DSLogFatal, or DSLogWarn to log an event to the

current job.)

Syntax
ErrCode = DSLogEvent (JobHandle, EventType, EventMsg)

JobHandle is the handle for the job as derived from DSAttachJob.

EventType is the type of event logged and is one of:

DSJ.LOGINFO Information message

DSJ.LOGWARNING Warning message

EventMsg is a string containing the event message.

ErrCode is 0 if there is no error. Otherwise it contains one of the

following errors:

DSJE.BADHANDLEInvalid JobHandle.

DSJE.BADTYPEInvalid EventType (particularly note that you
cannot place a fatal message in another job’s log).

Example
The following command, when included in the msales job, adds the

message “monthly sales complete” to the log for the qsales job:

Logerror = DsLogEvent (qsales_handle, DSJ.LOGINFO,
➥ "monthly sales complete")
19-118 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogFatal
DSLogFatal
Logs a fatal error message in a job's log file and aborts the job.

Syntax
Call DSLogFatal (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogFatal subroutine.

Remarks
DSLogFatal writes the fatal error message to the job log file and

aborts the job. DSLogFatal never returns to the calling before/after

subroutine, so it should be used with caution. If a job stops with a fatal

error, it must be reset using the DataStage Director before it can be

rerun.

In a before/after subroutine, it is better to log a warning message

(using DSLogWarn) and exit with a nonzero error code, which allows

DataStage to stop the job cleanly.

DSLogFatal should not be used in a transform. Use

DSTransformError instead.

Example
Call DSLogFatal("Cannot open file", "MyRoutine")
Server Job Developer’s Guide 19-119

DSLogInfo DataStage Development Kit (Job Control Interfaces)
DSLogInfo
Logs an information message in a job's log file.

Syntax
Call DSLogInfo (Message, CallingProgName)

Message (input) is the information message you want to log. Message

is automatically prefixed with the name of the current stage and the

calling program.

CallingProgName (input) is the name of the transform or before/after

subroutine that calls the DSLogInfo subroutine.

Remarks
DSLogInfo writes the message text to the job log file as an

information message and returns to the calling routine or transform. If

DSLogInfo is called during the test phase for a newly created routine

in the DataStage Manager, the two arguments are displayed in the

results window.

Unlimited information messages can be written to the job log file.

However, if a lot of messages are produced the job may run slowly

and the DataStage Director may take some time to display the job log

file.

Example
Call DSLogInfo("Transforming: ":Arg1, "MyTransform")
19-120 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSLogToController
DSLogToController
This routine may be used to put an info message in the log file of the

job controlling this job, if any. If there isn't one, the call is just ignored.

Syntax
Call DSLogToController(MsgString)

MsgString is the text to be logged. The log event is of type

Information.

Remarks
If the current job is not under control, a silent exit is performed.

Example
Call DSLogToController(“This is logged to parent”)
Server Job Developer’s Guide 19-121

DSLogWarn DataStage Development Kit (Job Control Interfaces)
DSLogWarn
Logs a warning message in a job's log file.

Syntax
Call DSLogWarn (Message, CallingProgName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling before/after subroutine.

CallingProgName (input) is the name of the before/after subroutine

that calls the DSLogWarn subroutine.

Remarks
DSLogWarn writes the message to the job log file as a warning and

returns to the calling before/after subroutine. If the job has a warning

limit defined for it, when the number of warnings reaches that limit,

the call does not return and the job is aborted.

DSLogWarn should not be used in a transform. Use

DSTransformError instead.

Example
If InputArg > 100 Then

Call DSLogWarn("Input must be =< 100; received
":InputArg,"MyRoutine")

End Else
* Carry on processing unless the job aborts

End
19-122 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSMakeJobReport
DSMakeJobReport
Generates a report describing the complete status of a valid attached

job.

Syntax
ReportText = DSMakeJobReport(JobHandle, ReportLevel, LineSeparator)

JobHandle is the string as returned from DSAttachJob.

ReportLevel specifies the type of report and is one of the following:

0 – basic report. Text string containing start/end time, time elapsed
and status of job.

1 – stage/link detail. As basic report, but also contains information
about individual stages and links within the job.

2 – text string containing full XML report.

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

LineSeparator is the string used to separate lines of the report. Special

values recognised are:

"CRLF" => CHAR(13):CHAR(10)

"LF" => CHAR(10)

"CR" => CHAR(13)

The default is CRLF if on Windows, else LF.

Remarks
If a bad job handle is given, or any other error is encountered,

information is added to the ReportText.

Example
h$ = DSAttachJob(“MyJob”, DSJ.ERRNONE)
rpt$ = DSMakeJobReport(h$,0,”CRLF”)
Server Job Developer’s Guide 19-123

DSMakeMsg DataStage Development Kit (Job Control Interfaces)
DSMakeMsg
Insert arguments into a message template. Optionally, it will look up a

template ID in the standard DataStage messages file, and use any

returned message template instead of that given to the routine.

DSMakeMsg

Syntax
FullText = DSMakeMsg(Template, ArgList)

FullText is the message with parameters substituted

Template is the message template, in which %1, %2 etc. are to be

substituted with values from the equivalent position in ArgList. If the

template string starts with a number followed by "\", that is assumed

to be part of a message id to be looked up in the DataStage message

file.

Note: If an argument token is followed by "[E]", the value of that

argument is assumed to be a job control error code, and an

explanation of it will be inserted in place of "[E]". (See the

DSTranslateCode function.)

ArgList is the dynamic array, one field per argument to be substituted.

Remarks
This routine is called from job control code created by the

JobSequence Generator. It is basically an interlude to call

DSRMessage which hides any runtime includes.

It will also perform local job parameter substitution in the message

text. That is, if called from within a job, it looks for substrings such as

"#xyz#" and replaces them with the value of the job parameter named

"xyz".

Example
t$ = DSMakeMsg(“Error calling DSAttachJob(%1)<L>%2”,
➥jb$:@FM:DSGetLastErrorMsg())
19-124 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSPrepareJob
DSPrepareJob
Used to ensure that a compiled job is in the correct state to be run or

validated.

Syntax
JobHandle = DSPrepareJob(JobHandle)

JobHandle is the handle, as returned from DSAttachJob(), of the job

to be prepared.

JobHandle is either the original handle or a new one. If returned as 0,

an error occurred and a message is logged.

Example
h$ = DSPrepareJob(h$)
Server Job Developer’s Guide 19-125

DSRunJob DataStage Development Kit (Job Control Interfaces)
DSRunJob
Starts a job running. Note that this call is asynchronous; the request is

passed to the run-time engine, but you are not informed of its

progress.

Syntax
ErrCode = DSRunJob (JobHandle, RunMode)

JobHandle is the handle for the job as derived from DSAttachJob.

RunMode is the name of the mode the job is to be run in and is one of:

DSJ.RUNNORMAL (Default) Standard job run.

DSJ.RUNRESET Job is to be reset.

DSJ.RUNVALIDATE Job is to be validated only.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPE RunMode is not a known mode.

Remarks
If the controlling job is running in validate mode, then any calls of

DSRunJob will act as if RunMode was DSJ.RUNVALIDATE,

regardless of the actual setting.

A job in validate mode will run its JobControl routine (if any) rather

than just check for its existence, as is the case for before/after routines.

This allows you to examine the log of what jobs it started up in

validate mode.

After a call of DSRunJob, the controlled job’s handle is unloaded. If

you require to run the same job again, you must use DSDetachJob

and DSAttachJob to set a new handle. Note that you will also need

to use DSWaitForJob, as you cannot attach to a job while it is

running.

Example
The following command starts the job qsales in standard mode:

RunErr = DSRunJob(qsales_handle, DSJ.RUNNORMAL)
19-126 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSendMail
DSSendMail
This routine is an interface to a sendmail program that is assumed to

exist somewhere in the search path of the current user (on the server).

It hides the different call interfaces to various sendmail programs, and

provides a simple interface for sending text. For example:

Syntax
Reply = DSSendMail(Parameters)

Parameters is a set of name:value parameters, separated by either a

mark character or "\n".

Currently recognized names (case-insensitive) are:

"From"Mail address of sender, e.g. Me@SomeWhere.com

Can only be left blank if the local template file does not contain a

"%from%" token.

"To" Mail address of recipient, e.g. You@ElseWhere.com

Can only be left blank if the local template file does not contain a

"%to%" token.

"Subject" Something to put in the subject line of the message.

Refers to the "%subject%" token. If left as "", a standard subject

line will be created, along the lines of "From DataStage job:

jobname"

"Server" Name of host through which the mail should be sent.

May be omitted on systems (such as Unix) where the SMTP host

name can be and is set up externally, in which case the local

template file presumably will not contain a "%server%" token.

"Body" Message body.

Can be omitted. An empty message will be sent. If used, it must be

the last parameter, to allow for getting multiple lines into the

message, using "\n" for line breaks. Refers to the "%body%" token.

Note The text of the body may contain the tokens "%report% or

%fullreport% anywhere within it, which will cause a report

on the current job status to be inserted at that point. A full

report contains stage and link information as well as job

status.

Reply. Possible replies are:

DSJE.NOERROR (0) OK
Server Job Developer’s Guide 19-127

DSSendMail DataStage Development Kit (Job Control Interfaces)
DSJE.NOPARAM Parameter name missing - field does not look
like 'name:value'

DSJE.NOTEMPLATE Cannot find template file

DSJE.BADTEMPLATE Error in template file

Remarks
The routine looks for a local file, in the current project directory, with a

well-known name. That is, a template to describe exactly how to run

the local sendmail command.

Example
code = DSSendMail("From:me@here\nTo:You@there\nSubject:Hi
ya\nBody:Line1\nLine2")
19-128 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetGenerateOpMetaData
DSSetGenerateOpMetaData
Use this to specify whether the job generates operational meta data or

not. This overrides the default setting for the project. In order to

generate operational meta data the Process MetaBroker must be

installed on your DataStage machine.

Syntax
ErrCode = DSSetGenerateOpMetaData (JobHandle, value)

JobHandle is the handle for the job as derived from DSAttachJob.

value is TRUE to generate operational meta data, FALSE to not

generate operational meta data.

ErrCode is 0 if DSRunJob is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADTYPE value is wrong.

Example
The following command causes the job qsales to generate operational

meta data whatever the project default specifies:

GenErr = DSSetGenerateOpMetaData(qsales_handle, TRUE)
Server Job Developer’s Guide 19-129

DSSetJobLimit DataStage Development Kit (Job Control Interfaces)
DSSetJobLimit
By default a controlled job inherits any row or warning limits from the

controlling job. These can, however, be overridden using the

DSSetJobLimit function.

Syntax
ErrCode = DSSetJobLimit (JobHandle, LimitType, LimitValue)

JobHandle is the handle for the job as derived from DSAttachJob.

LimitType is the name of the limit to be applied to the running job and

is one of:

DSJ.LIMITWARN Job to be stopped after LimitValue warning
events.

DSJ.LIMITROWS Stages to be limited to LimitValue rows.

LimitValue is an integer specifying the value to set the limit to. Set this

to 0 to specify unlimited warnings.

ErrCode is 0 if DSSetJobLimit is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADTYPELimitType is not a known limiting condition.

DSJE.BADVALUELimitValue is not appropriate for the limiting
condition type.

Example
The following command sets a limit of 10 warnings on the qsales job

before it is stopped:

LimitErr = DSSetJobLimit(qsales_handle,
➥ DSJ.LIMITWARN, 10)
19-130 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSSetParam
DSSetParam
Specifies job parameter values before running a job. Any parameter

not set will be defaulted.

Syntax
ErrCode = DSSetParam (JobHandle, ParamName, ParamValue)

JobHandle is the handle for the job as derived from DSAttachJob.

ParamName is a string giving the name of the parameter.

ParamValue is a string giving the value for the parameter.

ErrCode is 0 if DSSetParam is successful, otherwise it is one of the

following negative integers:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.BADSTATEJob is not in the right state (compiled, not
running).

DSJE.BADPARAMParamName is not a known parameter of the
job.

DSJE.BADVALUEParamValue is not appropriate for that
parameter type.

Example
The following commands set the quarter parameter to 1 and the

startdate parameter to 1/1/97 for the qsales job:

paramerr = DSSetParam (qsales_handle, "quarter", "1")
paramerr = DSSetParam (qsales_handle, "startdate",
➥ "1997-01-01")
Server Job Developer’s Guide 19-131

DSSetUserStatus DataStage Development Kit (Job Control Interfaces)
DSSetUserStatus
Applies only to the current job, and does not take a JobHandle

parameter. It can be used by any job in either a JobControl or After

routine to set a termination code for interrogation by another job. In

fact, the code may be set at any point in the job, and the last setting is

the one that will be picked up at any time. So to be certain of getting

the actual termination code for a job the caller should use

DSWaitForJob and DSGetJobInfo first, checking for a successful

finishing status.

This routine is defined as a subroutine not a function because there

are no possible errors.

Syntax
Call DSSetUserStatus (UserStatus)

UserStatus String is any user-defined termination message. The string

will be logged as part of a suitable "Control" event in the calling job’s

log, and stored for retrieval by DSGetJobInfo, overwriting any

previous stored string.

This string should not be a negative integer, otherwise it may be

indistinguishable from an internal error in DSGetJobInfo calls.

Example
The following command sets a termination code of “sales job done”:

Call DSSetUserStatus("sales job done")
19-132 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSStopJob
DSStopJob
This routine should only be used after a DSRunJob has been issued.

It immediately sends a stop request to the run-time engine. The call is

asynchronous. If you need to know that the job has actually stopped,

you must call DSWaitForJob or use the Sleep statement and poll for

DSGetJobStatus. Note that the stop request gets sent regardless of

the job's current status.

Syntax
ErrCode = DSStopJob (JobHandle)

JobHandle is the handle for the job as derived from DSAttachJob.

ErrCode is 0 if DSStopJob is successful, otherwise it may be the

following:

DSJE.BADHANDLE Invalid JobHandle.

Example
The following command requests that the qsales job is stopped:

stoperr = DSStopJob(qsales_handle)
Server Job Developer’s Guide 19-133

DSTransformError DataStage Development Kit (Job Control Interfaces)
DSTransformError
Logs a warning message to a job log file. This function is called from

transforms only.

Syntax
Call DSTransformError (Message, TransformName)

Message (input) is the warning message you want to log. Message is

automatically prefixed with the name of the current stage and the

calling transform.

TransformName (input) is the name of the transform that calls the

DSTransformError subroutine.

Remarks
DSTransformError writes the message (and other information) to

the job log file as a warning and returns to the transform. If the job has

a warning limit defined for it, when the number of warnings reaches

that limit, the call does not return and the job is aborted.

In addition to the warning message, DSTransformError logs the

values of all columns in the current rows for all input and output links

connected to the current stage.

Example
Function MySqrt(Arg1)
If Arg1 < 0 Then

Call DSTransformError("Negative value:"Arg1, "MySqrt")
Return("0") ;*transform produces 0 in this case

End
Result = Sqrt(Arg1) ;* else return the square root

Return(Result)
19-134 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSTranslateCode
DSTranslateCode
Converts a job control status or error code into an explanatory text

message.

Syntax
Ans = DSTranslateCode(Code)

Code is:

If Code > 0, it's assumed to be a job status.

If Code < 0, it's assumed to be an error code.

(0 should never be passed in, and will return "no error")

Ans is the message associated with the code.

Remarks
If Code is not recognized, then Ans will report it.

Example
code$ = DSGetLastErrorMsg()
ans$ = DSTranslateCode(code$)
Server Job Developer’s Guide 19-135

DSWaitForFile DataStage Development Kit (Job Control Interfaces)
DSWaitForFile
Suspend a job until a named file either exists or does not exist.

Syntax
Reply = DSWaitForFile(Parameters)

Parameters is the full path of file to wait on. No check is made as to

whether this is a reasonable path (for example, whether all directories

in the path exist). A path name starting with "-", indicates a flag to

check the non-existence of the path. It is not part of the path name.

Parameters may also end in the form " timeout:NNNN" (or

"timeout=NNNN") This indicates a non-default time to wait before

giving up. There are several possible formats, case-insensitive:

nnn number of seconds to wait (from now)

nnnS ditto

nnnM number of minutes to wait (from now)

nnnH number of hours to wait (from now)

nn:nn:nn wait until this time in 24HH:NN:SS. If this or nn:nn time
has passed, will wait till next day.

The default timeout is the same as "12H".

The format may optionally terminate "/nn", indicating a poll delay

time in seconds. If omitted, a default poll time is used.

Reply may be:

DSJE.NOERROR (0) OK - file now exists or does not exist,
depending on flag.

DSJE.BADTIME Unrecognized Timeout format

DSJE.NOFILEPATH File path missing

DSJE.TIMEOUT Waited too long

Examples
Reply = DSWaitForFile("C:\ftp\incoming.txt timeout:2H")

(wait 7200 seconds for file on C: to exist before it gives up.)
Reply = DSWaitForFile("-incoming.txt timeout=15:00")

(wait until 3 pm for file in local directory to NOT exist.)
Reply = DSWaitForFile("incoming.txt timeout:3600/60")

(wait 1 hour for a local file to exist, looking once a minute.)
19-136 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) DSWaitForJob
DSWaitForJob
This function is only valid if the current job has issued a DSRunJob

on the given JobHandle(s). It returns if the/a job has started since the

last DSRunJob has since finished.

Syntax
ErrCode = DSWaitForJob (JobHandle)

JobHandle is the string returned from DSAttachJob. If commas are

contained, it's a comma-delimited set of job handles, representing a

list of jobs that are all to be waited for.

ErrCode is 0 if no error, else possible error values (<0) are:

DSJE.BADHANDLE Invalid JobHandle.

DSJE.WRONGJOB Job for this JobHandle was not run from
within this job.

ErrCode is >0 => handle of the job that finished from a multi-job wait.

Remarks
DSWaitForJob will wait for either a single job or multiple jobs.

Example
To wait for the return of the qsales job:

WaitErr = DSWaitForJob(qsales_handle)
Server Job Developer’s Guide 19-137

Job Status Macros DataStage Development Kit (Job Control Interfaces)
Job Status Macros
A number of macros are provided in the JOBCONTROL.H file to

facilitate getting information about the current job, and links and

stages belonging to the current job. These macros provide the

functionality of using the DataStage BASIC DSGetProjectInfo,

DSGetJobInfo, DSGetStageInfo, and DSGetLinkInfo functions

with the DSJ.ME token as the JobHandle and can be used in all active

stages and before/after subroutines. The macros provide the

functionality for all the possible InfoType arguments for the

DSGet…Info functions.

The available macros are:

DSHostName

DSProjectName

DSJobStatus

DSJobName

DSJobController

DSJobStartDate

DSJobStartTime

DSJobWaveNo

DSJobInvocations

DSJobInvocationID

DSStageName

DSStageLastErr

DSStageType

DSStageInRowNum

DSStageVarList

DSLinkRowCount

DSLinkLastErr

DSLinkName

For example, to obtain the name of the current job:

MyName = DSJobName

To obtain the full current stage name:

MyName = DSJobName : "." : DSStageName

In addition, the following macros are provided to manipulate

Transformer stage variables:
19-138 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
DSGetVar(VarName) returns the current value of the named
stage variable. If the current stage does not have a stage variable
called VarName, then "" is returned and an error message is
logged. If the named stage variable is defined but has not been
initialized, the "" is returned and an error message is logged.

DSSetVar(VarName, VarValue) sets the value of the named stage
variable. If the current stage does not have a stage variable called
VarName, then an error message is logged.

Command Line Interface
The DataStage CLI comprises three groups of commands, those

concerned with running DataStage Jobs, those concerned with

administering DataStage projects, and those concerned with

searching jobs.

Commands for Controlling DataStage Jobs
These command options give you access to the same functionality as

the DataStage API functions described on page 19-4 or the BASIC

functions described on page 19-86. There is a single command, dsjob,

with a large range of options. These options are described in the

following topics:

The logon clause

Starting a job

Stopping a job

Listing projects, jobs, stages, links, and parameters

Setting an alias for a job

Retrieving information

Accessing log files

Importing job executables

Generating a report

All output from the dsjob command is in plain text without column

headings on lists, or any other sort of description. This enables the

command to be used in shell or batch scripts without extra

processing.

The DataStage CLI returns a completion code of 0 to the operating

system upon successful execution, or one of the DataStage API error

codes on failure. See "Error Codes" on page 19-79. The return code is
Server Job Developer’s Guide 19-139

Command Line Interface DataStage Development Kit (Job Control Interfaces)
also printed to the standard error stream in all cases. On UNIX

servers, a code of 255 is returned if the error code is negative or

greater than 254, to see the “real” return code in these cases, capture

and process the standard error stream.

The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dsjob command.

Starting a Job

You can start, stop, validate, and reset jobs using the –run option.

dsjob –run

[–mode [NORMAL | RESET | VALIDATE]]
[–param name=value]
[–warn n]
[–rows n]
[–wait]
[–stop]
[–jobstatus]
[–userstatus]
[–local]
[–opmetadata [TRUE | FALSE]]
[-disableprjhandler]
19-140 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
[-disablejobhandler]

[useid] project job|job_id

–mode specifies the type of job run. NORMAL starts a job run, RESET

resets the job and VALIDATE validates the job. If –mode is not

specified, a normal job run is started.

–param specifies a parameter value to pass to the job. The value is in

the format name=value, where name is the parameter name, and

value is the value to be set. If you use this to pass a value of an

environment variable for a job (as you may do for parallel jobs), you

need to quote the environment variable and its value, for example -
param '$APT_CONFIG_FILE=chris.apt' otherwise the current

value of the environment variable will be used.

–warn n sets warning limits to the value specified by n (equivalent to

the DSSetJobLimit function used with DSJ_LIMITWARN specified as

the LimitType parameter).

–rows n sets row limits to the value specified by n (equivalent to the

DSSetJobLimit function used with DSJ_LIMITROWS specified as the

LimitType parameter).

–wait waits for the job to complete (equivalent to the DSWaitForJob

function).

–stop terminates a running job (equivalent to the DSStopJob

function).

–jobstatus waits for the job to complete, then returns an exit code

derived from the job status.

–userstatus waits for the job to complete, then returns an exit code

derived from the user status if that status is defined. The user status is

a string, and it is converted to an integer exit code. The exit code 0

indicates that the job completed without an error, but that the user

status string could not be converted. If a job returns a negative user

status value, it is interpreted as an error.

-local use this when running a DataStage job from withing a

shellscript on a UNIX server. Provided the script is run in the project

directory, the job will pick up the settings for any environment

variables set in the script and any setting specific to the user

environment.

-opmetadata use this to have the job generate operational meta data

as it runs. If MetaStage, or the Process Meta Data MetaBroker, is not

installed on the machine, then the option has no effect. If you specify

TRUE, operational meta data is generated, whatever the default

setting for the project. If you specify FALSE, the job will not generate

operational meta data, whatever the default setting for the project.
Server Job Developer’s Guide 19-141

Command Line Interface DataStage Development Kit (Job Control Interfaces)
-disableprjhandler use this to disable any error message handler

that has been set on a project wide basis (see "Managing Message

Handlers," in DataStage Manager Guide for a description of message

handlers).

-disablejobhandler use this to disable any error message handler

that has been set for this job (see "Managing Message Handlers," in
DataStage Manager Guide for a description of message handlers).

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing the job.

job is the name of the job. To run a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

Stopping a Job

You can stop a job using the –stop option.

dsjob –stop [useid] project job|job_id

–stop terminates a running job (equivalent to the DSStopJob

function).

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing the job.

job is the name of the job. To stop a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144)

Listing Projects, Jobs, Stages, Links, and Parameters

You can list projects, jobs, stages, links, and job parameters using the

dsjob command. The different versions of the syntax are described in

the following sections.

Listing Projects

The following syntax displays a list of all known projects on the

server:

dsjob –lprojects

This syntax is equivalent to the DSGetProjectList function.
19-142 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
Listing Jobs

The following syntax displays a list of all jobs in the specified project:

dsjob –ljobs project

project is the name of the project containing the jobs to list.

This syntax is equivalent to the DSGetProjectInfo function.

Listing Stages

The following syntax displays a list of all stages in a job:

dsjob –lstages [useid] project job|job_id

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing the stages to list. To identify a

job invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144)

This syntax is equivalent to the DSGetJobInfo function with

DSJ_STAGELIST specified as the InfoType parameter.

Listing Links

The following syntax displays a list of all the links to or from a stage:

dsjob –llinks [useid] project job|job_id stage

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

stage is the name of the stage containing the links to list.

This syntax is equivalent to the DSGetStageInfo function with

DSJ_LINKLIST specified as the InfoType parameter.

Listing Parameters

The following syntax display a list of all the parameters in a job and

their values:

dsjob –lparams [useid] project job|job_id
Server Job Developer’s Guide 19-143

Command Line Interface DataStage Development Kit (Job Control Interfaces)
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job whose parameters are to be listed. To

identify a job invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

This syntax is equivalent to the DSGetJobInfo function with

DSJ_PARAMLIST specified as the InfoType parameter.

Listing Invocations

The following syntax displays a list of the invocations of a job:

dsjob -linvocations

Setting an Alias for a Job

The dsjob command can be used to specify your own ID for a

DataStage job. Other commands can then use that alias to refer to the

job.

dsjob –jobid [my_ID] project job

my_ID is the alias you want to set for the job. If you omit my_ID, the

command will return the current alias for the specified job. An alias

must be unique within the project, if the alias already exists an error

message is displayed

project is the name of the project containing job.

job is the name of the job. To identify a job invocation, use the format

job.invocation_id.

Retrieving Information

The dsjob command can be used to retrieve and display the available

information about specific projects, jobs, stages, or links. The different

versions of the syntax are described in the following sections.

Displaying Job Information

The following syntax displays the available information about a

specified job:

dsjob –jobinfo [useid] project job|job_id

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.
19-144 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
job is the name of the job. To identify a job invocation, use the format

job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

The following information is displayed:

The current status of the job

The name of any controlling job for the job

The date and time when the job started

The wave number of the last or current run (internal DataStage
reference number)

User status

This syntax is equivalent to the DSGetJobInfo function.

Displaying Stage Information

The following syntax displays all the available information about a

stage:

dsjob –stageinfo [useid] project job|job_id stage

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

stage is the name of the stage.

The following information is displayed:

The last error message reported from any link to or from the stage

The stage type name, for example, Transformer or Aggregator

The primary links input row number

This syntax is equivalent to the DSGetStageInfo function.

Displaying Link Information

The following syntax displays information about a specified link to or

from a stage:

dsjob –linkinfo [useid] project job|job_id stage link
Server Job Developer’s Guide 19-145

Command Line Interface DataStage Development Kit (Job Control Interfaces)
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing stage. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

stage is the name of the stage containing link.

link is the name of the stage.

The following information is displayed:

The last error message reported by the link

The number of rows that have passed down a link

This syntax is equivalent to the DSGetLinkInfo function.

Displaying Parameter Information

This syntax displays information about the specified parameter:

dsjob –paraminfo [useid] project job|job_id param

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job containing parameter. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

parameter is the name of the parameter.

The following information is displayed:

The parameter type

The parameter value

Help text for the parameter that was provided by the job’s
designer

Whether the value should be prompted for

The default value that was specified by the job’s designer

Any list of values

The list of values provided by the job’s designer

This syntax is equivalent to the DSGetParamInfo function.
19-146 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
Accessing Log Files

The dsjob command can be used to add entries to a job’s log file, or

retrieve and display specific log entries. The different versions of the

syntax are described in the following sections.

Adding a Log Entry

The following syntax adds an entry to the specified log file. The text

for the entry is taken from standard input to the terminal, ending with

Ctrl-D.

dsjob –log [–info | –warn] [useid] project job|job_id
–info specifies an information message. This is the default if no log

entry type is specified.

–warn specifies a warning message.

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the name of the project containing job.

job is the name of the job that the log entry refers to. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

This syntax is equivalent to the DSLogEvent function.

Displaying a Short Log Entry

The following syntax displays a summary of entries in a job log file:

dsjob –logsum [–type type] [–max n] [useid] project job|job_id
–type type specifies the type of log entry to retrieve. If –type type is

not specified, all the entries are retrieved. type can be one of the

following options:

This
option…

Retrieves this type of log entry…

INFO Information.

WARNING Warning.

FATAL Fatal error.

REJECT Rejected rows from a Transformer stage.

STARTED All control logs.

RESET Job reset.
Server Job Developer’s Guide 19-147

Command Line Interface DataStage Development Kit (Job Control Interfaces)
–max n limits the number of entries retrieved to n.

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

Displaying a Specific Log Entry

The following syntax displays the specified entry in a job log file:

dsjob –logdetail [useid] project job|job_id entry

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

entry is the event number assigned to the entry. The first entry in the

file is 0.

This syntax is equivalent to the DSGetLogEntry function.

Identifying the Newest Entry

The following syntax displays the ID of the newest log entry of the

specified type:

dsjob –lognewest [useid] project job|job_id type

useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job is the job whose log entries are to be retrieved. To identify a job

invocation, use the format job.invocation_id.

BATCH Batch control.

ANY All entries of any type. This is the default if type is not specified.

This
option…

Retrieves this type of log entry…
19-148 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

type can be one of the following options:

This syntax is equivalent to the DSGetNewestLogId function.

Importing Job Executables

The dsjob command can be used to import job executables from a

DSX file into a specified project. Note that this command is only

available on UNIX servers.

dsjob –import project DSXfilename [-OVERWRITE] [-JOB[S] jobname …] |
[-LIST]

project is the project to import into.

DSXfilename is the DSX file containing the job executables.

-OVERWRITE specifies that any existing jobs in the project with the

same name will be overwritten.

-JOB[S] jobname specifies that one or more named job executables

should be imported (otherwise all the executable in the DSX file are

imported).

-LIST causes DataStage to list the executables in a DSX file rather

than import them.

For details of how to export job executables to a DSX file see

DataStage Manager Guide.

Generating a Report

The dsjob command can be used to generate an XML format report

containing job, stage, and link information.

dsjob –report [useid] project job|jobid [report_type]

This option… Retrieves this type of log entry…

INFO Information

WARNING Warning

FATAL Fatal error

REJECT Rejected rows from a Transformer stage

STARTED Job started

RESET Job reset

BATCH Batch
Server Job Developer’s Guide 19-149

Command Line Interface DataStage Development Kit (Job Control Interfaces)
useid specify this if you intend to use a job alias (jobid) rather than a

job name (job) to identify the job.

project is the project containing job.

job specifies the job to be reported on by job name. To identify a job

invocation, use the format job.invocation_id.

job_id is an alias for the job that has been set using the dsjob -jobid

command (see page 19-144).

report_type is one of the following:

BASIC – Text string containing start/end time, time elapsed and
status of job.

DETAIL – As basic report, but also contains information about
individual stages and links within the job.

LIST – Text string containing full XML report.

By default the generated XML will not contain a <?xml-stylesheet?>

processing instruction. If a stylesheet is required, specify a

RetportLevel of 2 and append the name of the required stylesheet

URL, i.e., 2:styleSheetURL. This inserts a processing instruction into

the generated XML of the form:

<?xml-stylesheet type=text/xsl” href=”styleSheetURL”?>

The generated report is written to stdout.

This syntax is equivalent to the DSMakeJobReport
function.DETAIL – As basic report, but also contains information
about individual stages and links within the job.

LIST – Text string containing full XML report.

Commands for Administering DataStage
There is a single command, dsadmin, with a large range of options.

These options are described in the following topics:

The logon clause

Creating a project

Deleting a project

Enabling/Disabling the display of generated OSH in parallel jobs.

Enabling/Disabling runtime column propagation in parallel jobs.

Enabling/Disabling the availability of job administartion features
in the DataStage Director for a particular project.

Setting the advanced runtime options for parallel jobs.

Setting the base directory name for parallel jobs.
19-150 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
Setting the deployed job template directory for parallel jobs.

Setting custom deployment options for parallel jobs.

Creating a new environment variable.

Deleting an environment variable.

Setting the value of an environment variable

Listing projects on a server.

Listing project properties.

Listing environment variables.

The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dsadmin command.

Creating a Project

The dsadmin command can be used for creating projects. You need to

have DataStage administrator status in order to use this command:

dsadmin -createproject ProjectName [-location ProjectLocation]

ProjectName is the name of the project.

-location ProjectLocation is the location of the project in the form of a

pathname.
Server Job Developer’s Guide 19-151

Command Line Interface DataStage Development Kit (Job Control Interfaces)
If no location is specified, the project is created in the Projects

directory in the server install directory.

Deleting a Project

The dsadmin command can be used for deleting existing projects.

You need to have DataStage administrator status in order to use this

command:

dsadmin -deleteproject ProjectName

ProjectName is the project to be deleted.

Enabling/Disabling OSH Display

The dsadmin command can be used for enabling or disabling the

display of generated OSH in parallel jobs. You need to have DataStage

administrator status in order to use this command:

dsadmin -oshvisible TRUE | FALSE ProjectName

Note Although this command requires a project name, this

setting applies to ALL projects on the server

This command is only available for Enterprise Edition.

Enabling/Disabling Runtime Column Propagation

The dsadmin command can be used for enabling or disabling runtime

column propagation in parallel jobs in a particular project. You need to

have DataStage administrator status in order to use this command:

dsadmin -enablercp TRUE | FALSE ProjectName

ProjectName is the project whose parallel jobs are to have runtime

column propagation enabled or disabled.

This command is only available for Enterprise Edition.

Enabling/Disabling Job Administration from the
Director

The dsadmin command can be used for enabling or disabling the job

administration features in the DataStage Director for jobs in a

particular project. You need to have DataStage administrator status in

order to use this command:

dsadmin -enablejobadmin TRUE | FALSE ProjectName

ProjectName is the project for which job administration in the Director

will be enabled or disabled.
19-152 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
Enabling/Disabling Generation of XML Report

This option is only relevant for Parallel jobs being compiled into a

deployment package. The deployment package can include a job

report in XML format, and this command enables or disables the

generation of this report.

dsadmin -enablegeneratexml TRUE | FALSE ProjectName

ProjectName is the project whose parallel jobs are to have XML

reports enabled or disabled.

This command is only available for Enterprise Edition.

Enabling/Disabling Advanced Runtime Properties

The dsadmin command can be used for setting advanced runtime

properties for parallel jobs in a particular project. You need to have

DataStage administrator status in order to use this command:

dsadmin -advancedruntime "AdvancedRuntimeOptions" ProjectName

ProjectName is the project whose parallel jobs will have the specified

advanced runtime options set.

AdvancedRuntimeOptions is the value to set the property to and must

be quoted.

This command is only available for Enterprise Edition.

To unset the properties repeat the command with an empty string, for

example:

dsadmin -advancedruntime "“ myproject

Setting the Base Directory

The dsadmin command can be used for setting the base directory for

parallel jobs in a particular project. You need to have DataStage

administrator status in order to use this command:

dsadmin -basedirectory BaseDirectoryName ProjectName

ProjectName is the project whose parallel jobs the base directory is

being set for.

BaseDirectoryName is the value to set the property to.

This command is only available for Enterprise Edition.

Setting the Deployment Directory Template

The dsadmin command can be used for setting the deployment

directory template for parallel jobs in a particular project. You need to

have DataStage administrator status in order to use this command:
Server Job Developer’s Guide 19-153

Command Line Interface DataStage Development Kit (Job Control Interfaces)
dsadmin -deploymentdirectory DirectoryTemplate ProjectName

ProjectName is the project whose parallel jobs are having the

deployment directory template defined.

DirectoryTemplate is the value to set the property to.

This command is only available for Enterprise Edition.

Setting Custom Deployment Options

The dsadmin command can be used for setting the custom

deployment options for parallel jobs in a particular project. You need

to have DataStage administrator status in order to use this command:

dsadmin -customdeployment “Commands” ProjectName

ProjectName is the project whose parallel jobs the custom

deployment options are being set for.

Commands is the value to set the property to and must be quoted.

This command is only available for Enterprise Edition.

Adding an Environment Variable

The dsadmin command can be used for creating a new environment

variable in a particular project. The environment variable is added to

the “User Defined” category

dsadmin -envadd EnvVarName -type STRING | ENCRYPTED
-prompt "PromptText" [-value "Value"] ProjectName

EnvVarName is the name of the environment variable being created.

-type specified the type of the environment variable and should be set

to either STRING or ENCRYPTED.

-prompt PromptText is the prompt to be associated with this

environment value The PromptText must be quoted as it can contain

spaces

-value Value is the value for the new environment variable. Value

must be quoted. If this is not given, the value for the environment

variable will need to be set using the dsadmin –envset command.

ProjectName is the project to which the environment variable is being

added.

Deleting an Environment Variable

The dsadmin command can be used for deleting an environment

variable in a particular project. It is not possible to delete a built-in

environment variables.
19-154 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
dsadmin -envdelete EnvVarName ProjectName

EnvVarName is the environment variable being deleted.

ProjectName is the project the environment variable is being deleted

from.

Setting the Value of an Environment Variable

The dsadmin command can be used for setting the value of an

environment variable in a particular project. If setting a list type

environment variable (for example, APT_EXECUTION _MODE) , then

you should set it to one of the permissable internal values, rather than

one of the list members as they are shown in the DataStage

Administrator client. For example, if you wanted to set

APT_EXECUTION_MODE so that parallel jobs executed in one process

mode, you would set the environment variable value to

‘ONE_PROCESS’, not ‘One process’ as offered in the Administrator

client. Internal values are given in "Environment Variables," in the

Parallel Job Advanced Developer’s Guide.

If you are setting a boolean type environment variable, set the value

to 1 for TRUE and 0 for FALSE.

If you are using $ENV to set the value of an environment variable to its

current setting in the environment, then you should use single quotes

to ensure that it picks up the correct value (e.g., dsadmin -envset NEW3

-value '$ENV' dstage).

dsadmin -envset EnvVarName -value "Value" ProjectName

EnvVarName is the environment variable whose value is being set.

-value “Value” is the value for the environment variable and must be

quoted.

ProjectName is the project for which the environment variable is

being set.

Listing Projects

The dsadmin command can be used for listing the projects on a

server.

dsadmin -listprojects

Lists all the projects on the server.

Listing Properties

The dsadmin command can be used for listing the properties of a

project. The following properties are listed:
Server Job Developer’s Guide 19-155

Command Line Interface DataStage Development Kit (Job Control Interfaces)
Whether generated OSH is visible in parallel jobs.

Whether runtime column propagation is enabled in parallel jobs.

The base directory name for parallel jobs.

Advanced runtime options for parallel jobs.

Custom deployment commands for parallel jobs.

Deployed job directory template.

Whether job administration is enabled in the DataStage Director
or not.

The parallel job properties will only be listed if Enterprise Edition is

enabled.

dsadmin -listproperties ProjectName

ProjectName is the project for which the properties are to be listed.

Listing Environment Variables

The dsadmin command can be used for listing the environment

variables in a project.

dsadmin -listenv ProjectName

Commands for Searching Jobs
There is a single command, dssearch, that allows you to search for

jobs and usage information about jobs. The command has a number

of options described in the following sections:

The logon clause.

Search for jobs whose name match, or partially match, the
supplied text.

Search for jobs used by job sequences.

Search for job sequences that use the specified job.

Search for jobs that use the specified database table in a DRS
stage.

Note The dsjob command has an option for listing the jobs in a

project, but this is aimed at jobs that are compiled and

ready to run (or reset and run). The dssearch command

searchs design time information to allow you to search jobs

currently under development.
19-156 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
The Logon Clause

By default, the DataStage CLI connects to the DataStage server engine

on the local system using the user name and password of the user

invoking the command. You can specify a different server, user name,

or password using the logon clause, which is equivalent to the API

DSSetServerParams function. Its syntax is as follows:

[–server servername][–user username][–password password]
servername specifies a different server to log on to.

username specifies a different user name to use when logging on.

password specifies a different password to use when logging on.

You can also specify these details in a file using the following syntax:

[–file filename servername]
servername specifies the server for which the file contains login

details.

filename is the name of the file containing login details. The file

should contain the following information:

servername, username, password

You can use the logon clause with any dssearch command.

Search for Jobs by Name

The dssearch command can be used for searching for a job by name.

dssearch -ljobs -matches [-sub[categories]
[-c[ategory] CategoryName]
[-j[obtype] s[erver] |p[arallel] |
m[ainframe] | seq[uence]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName [JobName]

JobName is the full or partial name of the job to search for. For partial

job name matching, any number of * characters can be used for

missing parts using wildcard matching. If the job name is not

supplied, then all jobs will be returned.

ProjectName the project containing the job specified by JobName.

-ljobs indicates that jobs are to be searched.

-matches indicates that jobs are to be searched by name.

- sub[categories] optionally indicates that the the supplied starting

category and all subcategories will be searched. When no category is

specified and the subcategories option is specified, the whole project

is searched.
Server Job Developer’s Guide 19-157

Command Line Interface DataStage Development Kit (Job Control Interfaces)
- c[ategory] CategoryName optionally restricts the search to the

named category.

- j[obtype] s[erver] |p[arallel] |m[ainframe] | seq[uence] optionally

restricts the search by type of job. You can specify multiple jobtypes

by separating the types with a single space, e.g., -jobtype server

parallel.

- oc[ategory] specify this to have all the jobs found in the full

category path returned.

-oj[obtype] specify this to have the jobtype, as well as the job name,

reported.

For example:

dssearch –ljobs –matches –subcategories sub –oc –oj dstage Job*

returns all the jobs in the project called dstage project that start with

the text “Job”. The order of the returned jobs is based on category

order, and then job type within the category. An example result might

look like:

Job1,server job
Job2,sequence job
Category1\Job3,server job
Category1\Job4,server job
Category1\SubCategory1\Job5,sequence job
Category2\SubCategory2\Job6,server job

If –ocategory is defined, the job’s category appears on the line before

the job name. If –ojobtype is defined, the job type appears after the

job name with a comma separating it from the job name.

Search for Job Sequences that Use Specified Job

Use this option to search for job sequences which use the specified

job. In this context, a job sequence can also include a job with job

control code that runs other jobs, provided the other jobs have been

specified as dependencies (see "Job Control Routines" in DataStage

Designer Guide).

dssearch –ljobs –usedby [-r[ecursive]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName JobName

JobName is the full name of the job whose inclusion in job sequences

you are searching. Remember, job names are unique throughout the

whole project, so do not have to be qualified by category.

ProjectName the project containing the job specified by JobName.

-ljobs indicates that jobs are to be searched.
19-158 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) Command Line Interface
–usedby finds where the supplied job is used. In other words it finds

all jobs that have the supplied job in its dependency list.

-recursive takes each sequence job that the supplied job is in, and

recursively searches for sequence jobs that in turn contain them.

-ocategory specifies that, for each job found, the full category path

should be output.

-ojobtype specifies that, for each job found, its job type is output after

a comma.

Each sequence job found is output on a new line. When the –

recursive option is supplied, the tab character is used to show the

tree of jobs being used by other jobs. When the –ojobtype option is

supplied, the job type is output after each job name, separated from

the name by a comma.

For example:

dssearch –ljobs –usedby –r –oc –oj dstage JobE

An example output from this command-line shows that JobE is used

in JobD and JobH. JobD is used in JobB. JobB is used in

ContainingJob:

CategoryA\CategoryB\JobD,sequence job
CategoryA\JobB,sequence job

ContainingJob,sequence job
CategoryC\JobH,server job

Search for Jobs used in a Specified Job Sequence

Use this option to search for jobs which are used by a specified job

sequence. In this context, a job sequence can also include a job with

job control code that runs other jobs, provided the other jobs have

been specified as dependencies (see "Job Control Routines" in

DataStage Designer Guide).

dssearch –ljobs –uses [-r[ecursive]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName JobName

-ljobs indicates that jobs are to be searched.

JobName is the full name of the sequence job whose jobs our are

searching for. Partial job name matches are not allowed. Remember,

job names are unique throughout the whole project, so do not have to

be qualified by category.

ProjectName the project containing the sequence job specified by

JobName.

-recursive specifies that, if any of the jobs found are themselves

sequence job, these will be searched as well.
Server Job Developer’s Guide 19-159

Command Line Interface DataStage Development Kit (Job Control Interfaces)
-ocategory specifies that, for each job found, the full category path

will be output.

-ojobtype specifies that, for each job found, its job type should be

output.

Each job found is output on a new line. When the –recursive option is

supplied, the tab character is used to show the tree of jobs using other

jobs. When the –ojobtype option is supplied, the job type is output

after each job name, separated from the name by a comma.

For example:

dssearch –ljobs –uses -recursive –ocategory dstage ContainingJob

An example output from this command shows that JobA and JobB

jobs are used by the sequence ContainingJob. The jobs named JobC

and JobD are used by the job named JobB. JobE is a job that is used

by JobD.

CategoryA\JobA
CategoryA\JobB

CategoryA\CategoryB\JobC
CategoryA\CategoryB\JobD

CategoryA\JobE

Search for Job Using Specified Table Definition

Use this option to search for jobs that use the specified table

definition.

dssearch –ljobs –usesdrstable
[-s[ource] | -t[arget]]
[-oc[ategory]]
[-oj[obtype]]
ProjectName TableName

TableName is the full or partial name of the table to search for. For

partial table name matching, any number of * characters can be used

for missing parts using wildcard matching. All jobs containing a DRS

stage that accesses this table will be returned by the search.

ProjectName is the project containing the jobs being searched.

-ljobs indicates that jobs are to be searched.

-usesdrstable indicates that jobs are to be searched for DSR stages

containing the table.

-source specify this if you only want jobs returned that use the table

as a source

-target specify this if you only want jobs returned that use the table

as a target.

-ocategory specifies that, for each job found, the full category path

will be output.
19-160 Server Job Developer’s Guide

DataStage Development Kit (Job Control Interfaces) XML Schemas and Sample Stylesheets
-ojobtype specifies that, for each job found, its job type should be

output.

For example:

dssearch –ljobs –usesdrstable -source dstage customers

returns a list of jobs containing DRS stages that use the customers

table as a data source.

dssearch –ljobs –usesdrstable –s –oc –oj dstage *.Person

This command-line returns all the jobs, with category and job type,

containing DRS Stages with a source table whose name ends in

“.Person”. A possible result could be:

CategoryA\DRSJobA,server job
CategoryB\DRSJobB,server job

XML Schemas and Sample Stylesheets
You can generate an XML report giving information about a job using

the following methods:

DSMakeJobReport API function (see page 19-44)

DSMakeJobReport BASIC function (see page 19-123)

dsjob command (see page 19-149)

DataStage provides the following files to assist in the handling of

generated XML reports:

DSReportSchema.xsd. An XML schema document that fully
describes the structure of the XML job report documents.

DSmonitor.xsl. An example XSLT stylesheet that creates an html
web page similar to the Director Monitor view from the XML
report.

DSwaterfall.xsl. An example XSLT stylesheet that creates an
html web page showing a waterfall report describing how data
flowed between all the processes in the job from the XML report.

The files are all located in the DataStage client directory (\Program

Files\Ascential\DataStage).

You can embed a reference to a stylesheet when you create the report

using any of the commands listed above. Once the report is generated

you can view it in an Internet browser.

Alternatively you can use an xslt processor such as saxon or msxsl to

convert an already generated report. For example:

java - jar saxon.jar jobreport.xml DSMonitor.xsl > jobmonitor.htm
Server Job Developer’s Guide 19-161

XML Schemas and Sample Stylesheets DataStage Development Kit (Job Control Interfaces)
Would generate an html file called jobmonitor.htm from the report

jobreport.xml, while:

maxsl jobreport.xml DSwaterfall.xsl > jobwaterfall.htm

Would generate an html file called jobwaterfall.htm from the report

jobreport.xml.
19-162 Server Job Developer’s Guide

20
Built-In Transforms and Routines

This chapter describes the built-in transforms and routines supplied

with DataStage.

When you edit a Transformer stage, you can convert your data using

one of the built-in transforms supplied with DataStage. Alternatively,

you can convert your data using your own custom transforms.

Custom transforms can convert data using functions or routines.

For more information about editing a Transformer stage, see

Chapter 9, "Transformer Stages." For details on how to write a user-

written routine or a custom transform, see Chapter 16, "Debugging,

Compiling, and Releasing a Job." For a complete list of the supported

BASIC functions, see Chapter 18, "BASIC Programming."

Built-In Transforms
You can view the definitions of the built-in transforms using the

DataStage Manager.

Using DataStage in an NLS environment has implications for some of

the Data and Data Type transforms. If NLS is enabled, you should

check the descriptions of the transforms in the DataStage Manager

before you use them to ensure that they will operate as required.
Server Job Developer’s Guide 20-1

Built-In Transforms Built-In Transforms and Routines
String Transforms

Transform Input Type Output Type Category Description

CAPITALS String String Built-in/
String

Each word in the argument has
its first character replaced with
its uppercase equivalent if
appropriate. Any sequence of
characters between space
characters is taken as a word, for
example:

CAPITALS("monday feb 14th")
=> "Monday Feb 14th"

DIGITS String String Built-in/
String

Returns a string from which all
characters other than the digits 0
through 9 have been removed,
for example:

DIGITS("123abc456") =>
"123456"

LETTERS String String Built-in/
String

Returns a string from which all
characters except letters have
been removed, for example:

LETTERS("123abc456") => "abc"

StringDecode see
description

String sdk/
String

Loads an array for lookup
purposes. The array contains
name=value pairs. On the first
call the array is saved, on all calls
the supplied name is searched
for in the array, and the
corresponding value is returned.
Takes a lookup key and an array
as arguments, returns a string.

StringIsSpace String String sdk/
String

Returns a 1 if the string consists
solely of one or more spaces.

StringLeftJust String String sdk/
String

Removes leading spaces from
the input, and returns a string of
the same length as the input. It
does not reduce spaces between
non-blank characters.

StringRightJust String String sdk/
String

Removes trailing spaces from
the input, and returns a string of
the same length as the input. It
does not reduce spaces between
non-blank characters.

StringUpperFirst String String sdk/
String

Returns the input string with
initial caps in every word.
20-2 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
Date Transforms

Transform Input Type Output Type Category Description

MONTH.FIRST MONTH.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the
first day of a month given in
MONTH.TAG format (YYYY-
MM), for example:

MONTH.FIRST("1993-02") =>
9164

where 9164 is the internal
representation of February 1,
1993.

MONTH.LAST MONTH.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the last
day of a month given in
MONTH.TAG format (YYYY-
MM), for example:

MONTH.LAST("1993-02") =>
9191

where 9191 is the internal
representation of February
28, 1993.

QUARTER.FIRST QUARTER.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the
first day of a quarter given in
QUARTER.TAG format
(YYYYQn), for example:

QUARTER.FIRST("1993Q2") =>
9133

where 9133 is the internal
representation of January 1,
1993.

QUARTER.LAST QUARTER.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the last
day of a quarter given in
QUARTER.TAG format (YYYY-
MM), for example:

QUARTER.LAST("1993-02") =>
9222

where 9222 is the internal
representation of March 31,
1993.
Server Job Developer’s Guide 20-3

Built-In Transforms Built-In Transforms and Routines
TIMESTAMP.
TO.DATE

Timestamp Date Built-in/
Dates

Converts Timestamp format
(YYYY-MM-DD HH:MM:SS) to
Internal Date format, for
example:

TIMESTAMP.TO.DATE("1996-
12-05 13:46:21") =>
"10567"

TAG.TO.DATE DATE.TAG Date Built-in/
Dates

Converts a string in format
YYYY-MM-DD to a numeric
internal date, for example:

TAG.TO.DATE("1993-02-14")
=> 9177

WEEK.FIRST WEEK.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the
first day (Monday) of a week
given in WEEK.TAG format
(YYYYWnn), for example:

WEEK.FIRST("1993W06") =>
9171

where 9171 is the internal
representation of February 8,
1993.

WEEK.LAST WEEK.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the last
day (Sunday) of a week given
in WEEK.TAG format
(YYYYWnn), for example:

WEEK.LAST("1993W06") =>
9177

where 9177 is the internal
representation of February
14, 1993.

YEAR.FIRST YEAR.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the
first day of a year given in
YEAR.TAG format (YYYY), for
example:

YEAR.FIRST("1993") => 9133

where 9133 is the internal
representation of January 1,
1993.

Transform Input Type Output Type Category Description
20-4 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
YEAR.LAST YEAR.TAG Date Built-in/
Dates

Returns a numeric internal
date corresponding to the last
day of a year given in
YEAR.TAG format (YYYY), for
example:

YEAR.LAST("1993") => 9497

where 9497 is the internal
representation of December
31, 1993.

TIMESTAMP.
TO.TIME

Timestamp Time Built-in/
Dates

Converts TIMESTAMP format
(YYYY-MM-DD) to internal
time format. For example:

TIMESTAMP.TO.TIME("1996-
12-05 13:46:21") =>
"49581"

where 49581 is the internal
representation of December 5
1996, 1.46 p.m. and 21
seconds.

TIMESTAMP Date Time
stamp

Built-in/
Dates

Converts internal date format
to TIME-STAMP format
(YYYY-MM-DD HH:MM:SS).
For example:

TIMESTAMP("10567") =>
"1996-12-05 00:00:00"

where 10567 is the internal
representation of December 5
1996.

DATE.TAG Date DATE.TAG Built-in/
Dates

Converts a numeric internal
date to a string in DATE.TAG
format (YYYY-MM-DD), for
example:

DATE.TAG(9177) => "1993-
02-14"

TAG.TO.WEEK DATE.TAG WEEK.TAG Built-in/
Dates

Converts a string in
DATE.TAG format (YYYY-MM-
DD) to WEEK.TAG format
(YYYYWnn), for example:

TAG.TO.WEEK("1993-02-14")
=> "1993W06"

WEEK.TAG Date WEEK.TAG Built-in/
Dates

Converts a date in internal
date format to a WEEK.TAG
string (YYYYWnn), for
example:

WEEK.TAG(9177) =>
"1993W06"

Transform Input Type Output Type Category Description
Server Job Developer’s Guide 20-5

Built-In Transforms Built-In Transforms and Routines
MONTH.
TAG

Date MONTH.TAG Built-in/
Dates

Converts a numeric internal
date to a string in
MONTH.TAG format (YYYY-
MM), for example:

MONTH.TAG(9177) => "1993-
02"

TAG.TO.MONTH DATE.
TAG

MONTH.TAG Built-in/
Dates

Converts a string in
DATE.TAG format (YYYY-MM-
DD) to MONTH.TAG format
(YYYY-MM), for example:

TAG.TO.MONTH("1993-02014")
=> "1993-02"

QUARTER.TAG Date QUARTER.TAG Built-in/
Dates

Converts a numeric internal
date to a string in
QUARTER.TAG format
(YYYYQn), for example:

QUARTER.TAG(9177) =>
"1993Q2"

TAG.TO.
QUARTER

DATE.TAG QUARTER.TAG Built-in/
Dates

Converts a string in
DATE.TAG format (YYYY-MM-
DD) to QUARTER.TAG format
(YYYYQn), for example:

TAG.TO.QUARTER("1993-02-
14") => "1993Q2"

MONTH.TO.
QUARTER

MONTH.TAG QUARTER.TAG Built-in/
Dates

Converts a string in
MONTH.TAG format (YYYY-
MM) to QUARTER.TAG
format (YYYYQn), for
example:

MONTH.TO.QUARTER("1993-
02") => "1993Q1"

YEAR.TAG Date YEAR.TAG Built-in/
Dates

Converts a date in internal
Date format to YEAR.TAG
format (YYYY), for example:

YEAR.TAG(9177) => "1993"

TAG.TO.YEAR DATE.TAG YEAR.TAG Built-in/
Dates

Converts a string in
DATE.TAG format (YYYY-MM-
DD) to YEAR.TAG format
(YYYY), for example:

TAG.TO.YEAR("1993-02-14")
=> "1993"

Transform Input Type Output Type Category Description
20-6 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
MONTH.TO.
YEAR

MONTH.TAG YEAR.TAG Built-in/
Dates

Converts a string in
MONTH.TAG format (YYYY-
MM) to YEAR.TAG format
(YYYY), for example:

MONTH.TO.YEAR("1993-02")
=> "1993"

QUARTER.TO.
YEAR

QUARTER.TAG YEAR.TAG Built-in/
Dates

Converts a string in
QUARTER.TAG format
(YYYYQn) to YEAR.TAG
format (YYYY), for example:

QUARTER.TO.YEAR("1993Q2")
=> "1993"

DateCurrent
DateTime

- String sdk/date Returns the current date/time
in YYYY-MM-DD
HH:MM:SS.SSS format.

DateCurrent
GMTTime

- String sdk/date Returns the current GMT
date/time in YYYY-MM-DD
HH:MM:SS.SSS format.

DateCurrent
SwatchTime

- Number sdk/date Returns the current Swatch or
Internet time.

DateDaysSince
1900To
TimeStamp

- String sdk/date Converts days since 1900 into
YYYYMMDD HH:MM:SS:SSS
format.

DateDaysSince
1970To
TimeStamp

- String sdk/date Converts days since 1970 into
YYYYMMDD HH:MM:SS:SSS
format.

The following transforms accept input date strings in any of the following formats:

Any delimited date giving Date Month Year (e.g., 4/19/1999, 4.19.1999, 4/19/99, 4.19.99)

Alpha month dates (e.g., Apr 08 1999, Apr 08 99)

Nondelimited dates in Year Month Date (e.g., 19990419, 990419)

Julian year dates (e.g., 99126, 1999126)

DateGeneric
GetDay

String String sdk/date/
generic

Returns the Day value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
GetMonth

String String sdk/date/
generic

Returns the Month value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
GetTime

String String sdk/date/
generic

Returns the Time value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

Transform Input Type Output Type Category Description
Server Job Developer’s Guide 20-7

Built-In Transforms Built-In Transforms and Routines
DateGeneric
GetTimeHour

String String sdk/date/
generic

Returns the Hour value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
GetTime
Minute

String String sdk/date/
generic

Returns the Minute value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
GetTime
Second

String String sdk/date/
generic

Returns the Second value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
GetYear

String String sdk/date/
generic

Returns the Year value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
ToInfCLI

String String sdk/date/
generic

Returns the input date
suitable for loading using
Informix CLI.

DateGeneric
ToInfCLIWith
Time

String String sdk/date/
generic

Returns the input date
formatted as suitable for
loading using Informix CLI
with HH:MM:SS:SSS at the
end.

DateGeneric
ToInternal

String Date sdk/date/
generic

Returns the input date
formatted in DataStage
internal format.

DateGeneric
ToInternal
WithTime

String Date sdk/date/
generic

Returns the input date
formatted in DataStage
internal format with
HH:MM:SS.SSS at the end.

DateGeneric
ToODBC

String String sdk/date/
generic

Returns the input date in a
format suitable for loading
using ODBC stage.

DateGeneric
ToODBC
WithTime

String String sdk/date/
generic

Returns the input date
formatted for loading using
ODBC stage with
HH:MM:SS.SSS at the end.

DateGeneric
ToOraOCI

String String sdk/date/
generic

Returns the input date
formatted for loading using
Oracle OCI.

DateGeneric
ToOraOCI
WithTime

String String sdk/date/
generic

Returns the input date
formatted for loading using
Oracle OCI with HH:MM:SS at
the end.

Transform Input Type Output Type Category Description
20-8 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
DateGeneric
ToSybaseOC

String String sdk/date/
generic

Returns the input date in a
format suitable for loading
using Sybase Open Client.

DateGeneric
ToSybaseOC
WithTime

String String sdk/date/
generic

Returns the input date in a
format suitable for loading
using Sybase Open Client
with HH:MM:SS.SSS at the
end.

DataGeneric
ToTimeStamp

String String sdk/date/
generic

Returns the input date
formatted in YYYYMMDD
HH:MM:SS:SSS format.

DateGeneric
DateDiff

String, String String sdk/date/
generic

Compares two dates and
returns the number of days
difference.

DateGeneric
DaysSince1900

String String sdk/date/
generic

Compares the input date with
1899-12-31 midnight and
returns the number of days
difference.

DateGeneric
DaysSince1970

String String sdk/date/
generic

Compares the input date with
1969-12-31 midnight and
returns the number of days
difference.

DateGeneric
DaysSince
Today

String String sdk/date/
generic

Compares the input date with
today midnight and returns
the number of days
difference.

DateGeneric
IsDate

String String sdk/date/
generic

Returns 1 if input is valid
date, or 0 otherwise.

The following transforms accept delimited input date strings in the format [YY]YY MM DD using any
delimiter. The strings can also contain a time entry in the format HH:MM:SS:SSS, HH:MM:SS or
HH:MM.

DateYearFirst
GetDay

String String sdk/date/
YearFirst

Returns the Day value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
GetMonth

String String sdk/date/
YearFirst

Returns the Month value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
GetTime

String String sdk/date/
YearFirst

Returns the Time value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
GetTimeHour

String String sdk/date/
YearFirst

Returns the Hour value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

Transform Input Type Output Type Category Description
Server Job Developer’s Guide 20-9

Built-In Transforms Built-In Transforms and Routines
DateYearFirst
GetTime
Minute

String String sdk/date/
YearFirst

Returns the Minute value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
GetTime
Second

String String sdk/date/
YearFirst

Returns the Second value of
the given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
GetYear

String String sdk/date/
YearFirst

Returns the Year value of the
given date in YYYYMMDD
HH:MM:SS:SSS format.

DateYearFirst
ToInfCLI

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using Informix CLI.

DateYearFirst
ToInfCLIWith
Time

String String sdk/date/
YearFirst

Returns the input date
formatted as suitable for
loading using Informix CLI
with HH:MM:SS.SSS at the
end.

DateYearFirst
ToInternal

String Date sdk/date/
YearFirst

Returns the input date
formatted in DataStage
internal format.

DateYearFirst
ToInternal
WithTime

String Date sdk/date/
YearFirst

Returns the input date
formatted in DataStage
internal format with
HH:MM:SS.SSS at the end.

DateYearFirst
ToODBC

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using ODBC stage.

DateYearFirst
ToODBC
WithTime

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using ODBC stage with
HH:MM:SS.SSS at the end.

DateYearFirst
ToOraOCI

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using Oracle OCI.

DateYearFirst
ToOraOCI
WithTime

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using Oracle OCI with
HH:MM:SS at the end.

DateYearFirst
ToSybaseOC

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using Sybase Open Client.

Transform Input Type Output Type Category Description
20-10 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
DateYearFirst
ToSybaseOC
WithTime

String String sdk/date/
YearFirst

Returns the input date in a
format suitable for loading
using Sybase Open Client
with HH:MM:SS.SSS at the
end.

DataYearFirst
ToTimeStamp

String String sdk/date/
YearFirst

Returns the input date
formatted in YYYYMMDD
HH:MM.SS:SSS format.

DateYear
FirstDiff

String, String String sdk/date/
YearFirst

Compares two dates and
returns the number of days
difference.

DateYearFirst
DaysSince1900

String String sdk/date/
YearFirst

Compares the input date with
1899-12-31 midnight and
returns the number of days
difference.

DateYearFirst
DaysSince1970

String String sdk/date/
YearFirst

Compares the input date with
1969-12-31 midnight and
returns the number of days
difference.

DateYearFirst
DaysSince
Today

String String sdk/date/
YearFirst

Compares the input date with
today midnight and returns
the number of days
difference.

DateYear
FirstIsDate

String String sdk/date/
YearFirst

Returns 1 if input is valid
date, or 0 otherwise.

Transform Input Type Output Type Category Description
Server Job Developer’s Guide 20-11

Built-In Transforms Built-In Transforms and Routines

l

l

Data Type Transforms

Transform Input Type Output Type Category Description

DataTypeAsciiPic9 String Number sdk/Data
Type

Converts ASCII PIC 9(n) into
an integer.

DataTypeAsciiPic9V9 String Number sdk/Data
Type

Converts ASCII PIC 9(n) with
one assumed decimal place
into a number with one actua
decimal place.

DataTypeAsciiPic9V99 String Number sdk/Data
Type

Converts ASCII PIC 9(n) with
two assumed decimal places
into a number with two actua
decimal places.

DataTypeAsciiPic9V999 String Number sdk/Data
Type

Converts ASCII PIC 9(n) with
three assumed decimal
places into a number with
three actual decimal places.

DataTypeAsciiPic9V9999 String Number sdk/Data
Type

Converts ASCII PIC 9(n) with
four assumed decimal places
into a number with four
actual decimal places.

DataTypeAsciitoEbcdic String String sdk/Data
Type

Converts ASCII string to
EBCDIC.

DataTypeEbcdicPic9 String Number sdk/Data
Type

Converts EBCDIC PIC 9(n) into
an integer.

DataTypeEbcdicPic9V9 String Number sdk/Data
Type

Converts EBCDIC PIC 9(n)
with one assumed decimal
place into a number with one
actual decimal place.

DataType
EbcdicPic9V99

String Number sdk/Data
Type

Converts EBCDIC PIC 9(n)
with two assumed decimal
places into a number with
two actual decimal places.

DataType
EbcdicPic9V999

String Number sdk/Data
Type

Converts EBCDIC PIC 9(n)
with three assumed decimal
places into a number with
three actual decimal places.

DataType
EbcdicPic9
V9999

String Number sdk/Data
Type

Converts EBCDIC PIC 9(n)
with four assumed decimal
places into a number with
four actual decimal places.

DataType
Ebcdic
toAscii

String String sdk/Data
Type

Converts EBCDIC string to
ASCII.
20-12 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms

l
DataTypePic9 String Number sdk/Data
Type

Converts ASCII or EBCDIC PIC
9(n) into an integer.

DataTypePic9V9 String Number sdk/Data
Type

Converts ASCII or EBCDIC PIC
9(n) with one assumed
decimal place into a number
with one actual decimal
place.

DataTypePic9V99 String Number sdk/Data
Type

Converts ASCII or EBCDIC PIC
9(n) with two assumed
decimal places into a number
with two actual decimal
places.

DataTypePic9V999 String Number sdk/Data
Type

Converts ASCII or EBCDIC PIC
9(n) with three assumed
decimal places into a number
with three actual decimal
places.

DataTypePic9V9999 String Number sdk/Data
Type

Converts ASCII or EBCDIC PIC
9(n) with four assumed
decimal places into a number
with four actual decimal
places.

DataTypePicComp String Number sdk/Data
Type

Converts COBOL PIC COMP
into an integer.

DataTypePicComp1 String Number sdk/Data
Type

Converts COBOL PIC COMP-1
into a real number.

DataTypePicComp2 String Number sdk/Data
Type

Converts COBOL PIC COMP-2
into a real number.

DataTypePicComp3 String Number sdk/Data
Type

Converts COBOL PIC COMP-3
signed packed decimal into
an integer.

DataTypePicComp3
Unsigned

String Number sdk/Data
Type

Converts COBOL PIC COMP-3
unsigned packed decimal into
an integer.

DataTypePicComp3
UnsignedFast

String Number sdk/Data
Type

Converts COBOL PIC COMP-3
unsigned packed decimal into
an integer.

DataTypePicComp3V9 String Number sdk/Data
Type

Converts COBOL PIC COMP-3
signed packed decimal with
one assumed decimal place
into a number with one actua
decimal place.

Transform Input Type Output Type Category Description
Server Job Developer’s Guide 20-13

Built-In Transforms Built-In Transforms and Routines

l

DataTypePicComp3V99 String Number sdk/Data
Type

Converts COBOL PIC COMP-3
signed packed decimal with
two assumed decimal places
into a number with two actua
decimal places.

DataTypePicComp3V999 String Number sdk/Data
Type

Converts COBOL PIC COMP-3
signed packed decimal with
three assumed decimal
places into a number with
three actual decimal places.

DataTypePicComp3
V9999

String Number sdk/Data
Type

Converts COBOL PIC COMP-3
signed packed decimal with
four assumed decimal places
into a number with four
actual decimal places.

DataTypePicComp
Unsigned

String Number sdk/Data
Type

Converts unsigned binary
into an integer.

DataTypePicS9 String Number sdk/Data
Type

Converts zoned right decimal
COBOL PIC S9(n) Data type in
ASCII or EBCDIC into an
integer.

Transform Input Type Output Type Category Description
20-14 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
Key Management Transforms

Measurement Transforms – Area

Transform Input Type Output Type Category Description

KeyMgtGetMaxKey String,

String,

String,

String

String sdk/
KeyMgt

Takes a column, table, ODBC
stage, and a number from 1 to
99 as a unique (within the job)
handle. Returns the maximum
value from the specified
column. Typically used for key
management.

KeyMgtGetNextValue Literal string String sdk/
KeyMgt

Generates sequential
numbers.

KeyMgtGetNextValue
Concurrent

Literal string String sdk/
KeyMgt

Generates sequential
numbers in a concurrent
environment.

Transform Input
Type

Output
Type

Category Description

MeasureAreaAcresToSqFeet String String sdk/
Measure/
Area

Converts acres to square feet.

MeasureAreaAcresToSqMeter String String sdk/
Measure/
Area

Converts acres to square
meters.

MeasureAreaSqFeetToAcres String String sdk/
Measure/
Area

Converts square feet to acres.

MeasureAreaSqFeetTo
SqInches

String String sdk/
Measure/
Area

Converts square feet to square
inches.

MeasureAreaSqFeet
ToSqMeters

String String sdk/
Measure/
Area

Converts square feet to square
meters.

MeasureAreaSqFeetToSqMiles String String sdk/
Measure/
Area

Converts square feet to square
miles.

MeasureAreaSqFeetToSqYards String String sdk/
Measure/
Area

Converts square feet to square
yards.

MeasureAreaSqInchesToSqFeet String String sdk/
Measure/
Area

Converts square inches to
square feet.
Server Job Developer’s Guide 20-15

Built-In Transforms Built-In Transforms and Routines
MeasureAreaSqInchesToSqMeter String String sdk/
Measure/
Area

Converts square inches to
square meters.

MeasureAreaSqMeterToAcres String String sdk/
Measure/
Area

Converts square metres to
acres.

MeasureAreaSqMetersToSqFeet String String sdk/
Measure/
Area

Converts square metres to
square feet.

MeasureAreaSqMetersToSqInches String String sdk/
Measure/
Area

Converts square metres to
square inches.

MeasureAreaSqMetersToSqMiles String String sdk/
Measure/
Area

Converts square metres to
square miles.

MeasureAreaSqMetersToSqYards String String sdk/
Measure/
Area

Converts square metres to
square yards.

MeasureAreaSqMilesToSqFeet String String sdk/
Measure/
Area

Converts square miles to
square feet.

MeasureAreaSqMilesToSqMeters String String sdk/
Measure/
Area

Converts square miles to
square meters.

MeasureAreaSqYardsToSqFeet String String sdk/
Measure/
Area

Converts square yards to
square feet.

MeasureAreaSqYardsToSqMeters String String sdk/
Measure/
Area

Converts square yards to
square meters.

Transform Input
Type

Output
Type

Category Description
20-16 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
Measurement Transforms – Distance

Transform Input
Type

Output
Type

Category Description

MeasureDistance
FeetToInches

String String sdk/
Measure/
Distance

Converts feet to inches.

MeasureDistance
FeetToMeters

String String sdk/
Measure/
Distance

Converts feet to meters.

MeasureDistance
FeetToMiles

String String sdk/
Measure/
Distance

Converts feet to miles.

MeasureDistance
FeetToYards

String String sdk/
Measure/
Distance

Converts feet to yards.

MeasureDistance
InchesToFeet

String String sdk/
Measure/
Distance

Converts inches to feet.

MeasureDistance
InchesToMeters

String String sdk/
Measure/
Distance

Converts inches to meters.

MeasureDistance
InchesToMiles

String String sdk/
Measure/
Distance

Converts inches to miles.

MeasureDistance
InchesToYards

String String sdk/
Measure/
Distance

Converts inches to yards.

MeasureDistance
MetersToFeet

String String sdk/
Measure/
Distance

Converts meters to feet.

MeasureDistance
MetersToInches

String String sdk/
Measure/
Distance

Converts meters to inches.

MeasureDistance
MetersToMile

String String sdk/
Measure/
Distance

Converts meters to miles.

MeasureDistance
MetersToYard

String String sdk/
Measure/
Distance

Converts meters to yards.

MeasureDistance
MilesToFeet

String String sdk/
Measure/
Distance

Converts miles to feet.
Server Job Developer’s Guide 20-17

Built-In Transforms Built-In Transforms and Routines
Measurement Transforms – Temperature

Measurement Transforms – Time

MeasureDistance
MilesToInches

String String sdk/
Measure/
Distance

Converts miles to inches.

MeasureDistance
MilesToMeters

String String sdk/
Measure/
Distance

Converts miles to meters.

MeasureDistance
MilesToYards

String String sdk/
Measure/
Distance

Converts miles to yards.

MeasureDistance
YardsToFeet

String String sdk/
Measure/
Distance

Converts yards to feet.

MeasureDistance
YardsToInches

String String sdk/
Measure/
Distance

Converts yards to inches.

MeasureDistance
YardsToMeters

String String sdk/
Measure/
Distance

Converts yards to meters.

MeasureDistance
YardsToMiles

String String sdk/
Measure/
Distance

Converts yards to miles.

Transform Input
Type

Output
Type

Category Description

MeasureTempCelsiusTo
Fahrenheit

String String sdk/
Measure/
Temp

Converts Celsius to Fahrenheit.

MeasureTempFahrenheitTo
Celsius

String String sdk/
Measure/
Temp

Converts Fahrenheit to Celsius.

Transform Input
Type

Output
Type

Category Description

MeasureTime
DaysToSeconds

String String sdk/
Measure/
Time

Converts days to seconds.

Transform Input
Type

Output
Type

Category Description
20-18 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
MeasureTime
HoursToSeconds

String String sdk/
Measure/
Time

Converts hours to seconds.

MeasureTime
IsLeapYear

String String sdk/
Measure/
Time

Returns 1 if the 4-digit year input
is a leap year, or 0 otherwise.

MeasureTime
MinutesTo
Seconds

String String sdk/
Measure/
Time

Converts minutes to seconds.

MeasureTime
SecondsToDays

String String sdk/
Measure/
Time

Converts seconds to days.

MeasureTime
SecondsToHours

String String sdk/
Measure/
Time

Converts seconds to hours.

MeasureTime
Seconds
ToMinutes

String String sdk/
Measure/
Time

Converts seconds to minutes.

MeasureTime
SecondsToWeeks

String String sdk/
Measure/
Time

Converts seconds to weeks.

MeasureTime
SecondsToYears

String String sdk/
Measure/
Time

Converts seconds to years.

MeasureTime
WeeksToSeconds

String String sdk/
Measure/
Time

Converts weeks to seconds.

MeasureTime
YearsToSeconds

String String sdk/
Measure/
Time

Converts standard years to
seconds.

Transform Input
Type

Output
Type

Category Description
Server Job Developer’s Guide 20-19

Built-In Transforms Built-In Transforms and Routines
Measurement Transforms – Volume

Transform Input
Type

Output
Type

Category Description

MeasureVolume
BarrelsLiquid
ToCubicFeet

String String sdk/
Measure/
Volume

Converts US barrels (liquid) to cubic
feet.

MeasureVolume
BarrelsLiquid
ToGallons

String String sdk/
Measure/
Volume

Converts US barrels (liquid) to US
gallons.

MeasureVolume
BarrelsLiquid
ToLiters

String String sdk/
Measure/
Volume

Converts US barrels (liquid) to liters.

MeasureVolume
BarrelsPetrol
ToCubicFeet

String String sdk/
Measure/
Volume

Converts US barrels (petroleum) to
cubic feet.

MeasureVolume
BarrelsPetrol
ToGallons

String String sdk/
Measure/
Volume

Converts US barrels (petroleum) to US
gallons.

MeasureVolume
BarrelsPetrol
ToLiters

String String sdk/
Measure/
Volume

Converts US barrels (petroleum) to
liters.

MeasureVolume
BarrelsPetrol
ToCubicFeet

String String sdk/
Measure/
Volume

Converts US barrels (petroleum) to
cubic feet.

MeasureVolume
CubicFeet
ToBarrelsLiquid

String String sdk/
Measure/
Volume

Converts cubic feet to US barrels
(liquid).

MeasureVolume
CubicFeet
ToBarrelsPetrol

String String sdk/
Measure/
Volume

Converts cubic feet to US barrels
(petroleum).

MeasureVolume
CubicFeet
ToGallons

String String sdk/
Measure/
Volume

Converts cubic feet to US gallons.

MeasureVolume
CubicFeet
ToLiters

String String sdk/
Measure/
Volume

Converts cubic feet to liters.

MeasureVolume
CubicFeet
ToImpGallons

String String sdk/
Measure/
Volume

Converts cubic feet to imperial gallons.

MeasureVolume
Gallons
ToBarrelsLiquid

String String sdk/
Measure/
Volume

Converts US gallons to US barrels
(liquid).
20-20 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
MeasureVolume
Gallons
ToBarrelsPetrol

String String sdk/
Measure/
Volume

Converts US gallons to US barrels
(petroleum).

MeasureVolume
Gallons
ToCubicFeet

String String sdk/
Measure/
Volume

Converts US gallons to cubic feet.

MeasureVolume
Gallons
ToLiters

String String sdk/
Measure/
Volume

Converts US gallons to liters.

MeasureVolume
Liters
ToBarrelsLiquid

String String sdk/
Measure/
Volume

Converts liters to US barrels (liquid).

MeasureVolume
Liters
ToBarrelsPetrol

String String sdk/
Measure/
Volume

Converts liters to US barrels
(petroleum).

MeasureVolume
Liters
ToCubicFeet

String String sdk/
Measure/
Volume

Converts liters to cubic feet.

MeasureVolume
Liters
ToGallons

String String sdk/
Measure/
Volume

Converts liters to US gallons.

MeasureVolume
Liters
ToGallons

String String sdk/
Measure/
Volume

Converts liters to imperial gallons.

MeasureVolume
ImpGallons
ToCubicFeet

String String sdk/
Measure/
Volume

Converts imperial gallons to cubic feet.

MeasureVolume
ImpGallons
ToLiters

String String sdk/
Measure/
Volume

Converts imperial gallons to liters.

Transform Input
Type

Output
Type

Category Description
Server Job Developer’s Guide 20-21

Built-In Transforms Built-In Transforms and Routines
Measurement Transforms – Weight

Transform Input
Type

Output
Type

Category Description

MeasureWeight
GrainsToGrams

String String sdk/
Measure/
Weight

Converts grains to grams.

MeasureWeight
GramsToGrains

String String sdk/
Measure/
Weight

Converts grams to grains.

MeasureWeightKilogramsTo
LongTons

String String sdk/
Measure/
Weight

Converts kilograms to long tons.

MeasureWeight
GramsToOunces

String String sdk/
Measure/
Weight

Converts grams to ounces.

MeasureWeightGramsTo
PennyWeight

String String sdk/
Measure/
Weight

Converts grams to penny
weights.

MeasureWeight
GramsToPounds

String String sdk/
Measure/
Weight

Converts grams to pounds.

MeasureWeightKilogramsTo
ShortTons

String String sdk/
Measure/
Weight

Converts kilograms to short
tons.

MeasureWeightLongTons
ToKilograms

String String sdk/
Measure/
Weight

Converts long tons to kilograms.

MeasureWeightLongTons
ToPounds

String String sdk/
Measure/
Weight

Converts long tons to pounds.

MeasureWeightOunceToGrams String String sdk/
Measure/
Weight

Converts ounces to grams.

MeasureWeightPennyWeight
ToGrams

String String sdk/
Measure/
Weight

Converts penny weights to
grams.

MeasureWeightPoundsTo
LongTons

String String sdk/
Measure/
Weight

Converts pounds to long tons.

MeasureWeightPoundsTo
ShortTons

String String sdk/
Measure/
Weight

Converts pounds to short tons.
20-22 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Transforms
Numeric Transforms

Row Processor Transforms

MeasureWeightPoundsToGrams String String sdk/
Measure/
Weight

Converts pounds to grams.

MeasureWeightShortTons
ToKilograms

String String sdk/
Measure/
Weight

Converts short tons to
kilograms.

MeasureWeightShortTons
ToPounds

String String sdk/
Measure/
Weight

Converts short tons to pounds.

Transform Input
Type

Output
Type

Category Description

NumericIsSigned String String sdk/
Numeric

Returns 0 if the input is nonnumeric
or zero, 1 for positive numbers, and -
1 for negative numbers.

NumericRound0 String String sdk/
Numeric

Returns the nearest whole number to
the input number.

NumericRound1 String String sdk/
Numeric

Returns the input number to the
nearest 1 decimal place.

NumericRound2 String String sdk/
Numeric

Returns the input number to the
nearest 2 decimal places.

NumericRound3 String String sdk/
Numeric

Returns the input number to the
nearest 3 decimal places.

NumericRound4 String String sdk/
Numeric

Returns the input number to the
nearest 4 decimal places.

Transform Input
Type

Output
Type

Category Description

RowProcCompareWith
PreviousValue

String String sdk/
RowProc

Compares the current value with the
previous value. Returns 1 if they are
equal, or 0 otherwise. Can only be used
in one place in a job.

RowProcGetPrevious
Value

String String sdk/
RowProc

Returns the previous value passed into
this transform, preserves the current
input for the next reference. Can only
be used in one place in a job.

Transform Input
Type

Output
Type

Category Description
Server Job Developer’s Guide 20-23

Built-In Transforms Built-In Transforms and Routines
Utility Transforms

RowProcRunningTotal String String sdk/
RowProc

Returns the running sum of the input.
Can only be used in one place in a job.

Transform Input Type Output
Type

Category Description

UtilityAbortToLog String - sdk/Utility Cause the job to abort and
writes the supplied message
to the Director critical error
log. This is intended for
development use only.

UtilityRunJob String,

delimited string,

number,

number

Array sdk/Utility Runs the specified job and
returns statistics from the job
run. The job is specified by job
name, list of parameters
delimited by | characters, a
row limit, and a warning limit.
The statistics are returned in
an array.

UtilityGetRunJobInfo Output from
Utility
RunJob,
String,

String

String sdk/Utility Extracts information from
UtilityRunJob output. Takes
the output from UtilityRunJob,
an action, and (optionally) a
link name as arguments.
Possible actions are:

LinkCount

JobName

JobCompletionStatus

StartTime

EndTime

UtilityMessage
ToLog

String sdk/Utility Writes the user supplied
message to the DataStage
Director log.

UtilityPrintColumnValue
ToLog

String sdk/Utility Writes a column value to the
DataStage Director log.

UtilityPrintHex
ValueToLog

String sdk/Utility Converts the supplied value
and processes it as a string.
Converts each character in the
string to its ASCII hexadecimal
equivalent and writes it to the
DataStage Director log.

Transform Input
Type

Output
Type

Category Description
20-24 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Routines
Built-In Routines
There are three types of routines supplied with DataStage:

Built-in before/after subroutines. These routines are stored under
the Routines ➤ Built-In ➤ Before/After branch in the
Repository. They are compiled and ready for use as a before-stage
or after-stage subroutine or as a before-job or after-job routine.

Examples of transform functions. These routines are stored under
the Routines ➤ Examples ➤ Functions branch in the
Repository and are used by the built-in transforms supplied with
DataStage. You can copy these routines and use them as a basis
for your own user-written transform functions.

Transform functions used by the SDK transforms. These are the
routines used by the SDK transforms of the same name. They are
stored under Routines ➤ SDK. These routines are not offered by
the Expression Editor and you should use the transform in
preference to the routine (as described in "Built-In Transforms" on
page 20-1).

You can view the definitions of these routines using the DataStage

Manager, but you cannot edit them. You can copy and rename them, if

required, and edit the copies for your own purposes.

Built-In Before/After Subroutines
There are a number of built-in before/after subroutines supplied with

DataStage:

DSSendMail. This routine is an interlude to the local send mail
program.

DSWaitForFile. This routine is called to suspend a job until a
named job either exists, or does not exist.

UtilityWarning
ToLog

String Writes the supplied message
as a warning to the DataStage
Director log.

UtilityHash
Lookup

String,

String,

String

String sdk/Utility Execute lookup against a hash
table. Takes hash table name,
hash key value, and column
position as arguments.
returns the record.

Transform Input Type Output
Type

Category Description
Server Job Developer’s Guide 20-25

Built-In Routines Built-In Transforms and Routines
DSJobReport. This routine can be called at the end of a job to
write a job report to a file. The routine takes an argument
comprising two or three elements separated by semi-colons as
follows:

– Report type. 0, 1, or 2 to specify report detail. Type 0 produces
a text string containing start/end time, time elapsed and status
of job. Type 1 is as a basic report but also contains information
about individual stages and links within the job. Type 2
produces a text string containing a full XML report.

– Directory. Specifies the directory in which the report will be
written.

– XSL stylesheet. Optionally specifies an XSL style sheet to
format an XML report.

If the job had an alias ID then the report is written to

JobName_alias.txt or JobName_alias.xml, depending on report

type. If the job does not have an alias, the report is written to

JobName_YYYYMMDD_HHMMSS.txt or

JobName_YYYYMMDD_HHMMSS.xml, depending on report type.

ExecDOS. This routine executes a command via an MS-DOS
shell. The command executed is specified in the routine’s input
argument.

ExecDOSSilent. As ExecDOS, but does not write the command
line to the job log.

ExecTCL. This routine executes a command via a DataStage
Engine shell. The command executed is specified in the routine’s
input argument.

ExecSH. This routine executes a command via a UNIX Korn shell.

ExecSHSilent. As ExecSH, but does not write the command line
to the job log.

These routines appear in the drop-down list box of available built-in

routines when you edit the Before-stage subroutine or After-stage
subroutine fields in an Aggregator, Transformer, or active plug-in

stage, or the Before-job subroutine or After-job subroutine fields

in the Job Properties dialog box.

You can also copy these routines and use the code as a basis for your

own before/after subroutines.

If NLS is enabled, you should be aware of any mapping requirements

when using ExecDOS and ExecSH (or ExecDOSSilent and

ExecSHSilent) routines. If these routines use data in particular

character sets, then it is your responsibility to map the data to or from

Unicode.
20-26 Server Job Developer’s Guide

Built-In Transforms and Routines Built-In Routines
Example Transform Functions
These are the example transform functions supplied with DataStage:

ConvertMonth. Transforms a MONTH.TAG input. The result
depends on the value for the second argument:

– F (the first day of the month) produces a DATE.TAG.

– L (the last day of the month) produces a DATE.TAG.

– Q (the quarter containing the month) produces a
QUARTER.TAG.

– Y (the year containing the month) produces a YEAR.TAG.

ConvertQuarter. Transforms a QUARTER.TAG input. The result
depends on the value for the second argument:

– F (the first day of the month) produces a DATE.TAG.

– L (the last day of the month) produces a DATE.TAG.

– Y (the year containing the month) produces a YEAR.TAG.

ConvertTag. Transforms a DATE.TAG input. The result depends
on the value for the second argument:

– I (internal day number) produces a Date.

– W (the week containing the date) produces a WEEK.TAG.

– M (the month containing the date) produces a MONTH.TAG.

– Q (the quarter containing the date) produces a QUARTER.TAG.

– Y (the year containing the date) produces a YEAR.TAG.

ConvertWeek. Transforms a WEEK.TAG input to an internal date
corresponding to a specific day of the week. The result depends
on the value of the second argument:

– 0 produces a Monday.

– 1 produces a Tuesday.

– 2 produces a Wednesday.

– 3 produces a Thursday.

– 4 produces a Friday.

– 5 produces a Saturday.

– 6 produces a Sunday.

If the input does not appear to be a valid WEEK.TAG, an error is

logged and 0 is returned.

ConvertYear. Transforms a YEAR.TAG input. The result depends
on the value of the second argument:
Server Job Developer’s Guide 20-27

Built-In Routines Built-In Transforms and Routines
– F (the first day of the year) produces a DATE.TAG.

– L (the last day of year) produces a DATE.TAG.

QuarterTag. Transforms a Date input into a QUARTER.TAG string
(YYYYQn).

Timestamp. Transforms a timestamp (a string in the format
YYYY-MM-DD HH:MM:SS) or Date input. The result depends on
the value for the second argument:

– TIMESTAMP produces a timestamp with time equal to 00:00:00
from a date.

– DATE produces an internal date from a timestamp (time part
ignored).

– TIME produces an internal time from a timestamp (date part
ignored).

WeekTag. Transforms a Date input into a WEEK.TAG string
(YYYYWnn).
20-28 Server Job Developer’s Guide

A
Development Kit

Program Example

This appendix contains the source code for a version of the dsjob

command, which uses the functions and data structures described in

Chapter 18. This is intended purely as an example, although you may

reuse short sections of the code in your own programs.

Ascential Software Corporation reserves all rights as stated in the

program’s copyright notice.

/**
*
* DataStage Server Command Line Interface
*
* Module: dsjob.c
*
* (c) Copyright 1997-1998 Ascential Software Corporation. - All Rights Reserved
* This is proprietary source code of Ascential Software Inc.
* The copyright notice above does not evidence any actual or intended
* publication of such source code.
*
**/
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>
#include <dsapi.h>
#ifndef BOOL
#define BOOL int
#endif
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define DSJE_DSJOB_ERROR -9999
/***/
/*
 * Print out the given string list one string per line, prefixing each
 * string by the specified number of tabs.
Server Job Developer’s Guide A-1

Development Kit Program Example
 */
static void printStrList(
 int indent, /* Number of tabs to indent */
 char *str /* String list to print */
)
{
 int i;
 while(*str != '\0')
 {
 for (i = 0; i < indent; i++)
 putchar('\t');
 printf("%s\n", str);
 str += (strlen(str) + 1);
 }
}
/*
 * Print out the details of a job log entry. Each line we print is prefixed
 * by the requested number of tabs.
 */
static void printLogDetail(
 int indent, /* Number of tabs to indent by */
 DSLOGDETAIL *logDetail /* The log entry to print */
)
{
 char prefix[5] = "\t\t\t\t\t";
 prefix[indent] = '\0';
 printf("%sEvent Id: ", prefix);
 if (logDetail->eventId < 0)
 printf("unknown");
 else
 printf("%d", logDetail->eventId);
 printf("\n");
 printf("%sTime\t: %s", prefix, ctime(&(logDetail->timestamp)));
 printf("%sType\t: ", prefix);
 switch(logDetail->type)
 {
 case DSJ_LOGINFO:
 printf("INFO");
 break;
 case DSJ_LOGWARNING:
 printf("WARNING");
 break;
 case DSJ_LOGFATAL:
 printf("FATAL");
 break;
 case DSJ_LOGREJECT:
 printf("REJECT");
 break;
 case DSJ_LOGSTARTED:
 printf("STARTED");
 break;
 case DSJ_LOGRESET:
 printf("RESET");
 break;
 case DSJ_LOGBATCH:
 printf("BATCH");
 break;
 case DSJ_LOGOTHER:
 printf("OTHER");
 break;
 default:
 printf("????");
 break;
 }
 printf("\n");
 printf("%sMessage\t:\n", prefix);
 printStrList(indent+1, logDetail->fullMessage);
}
/***/
#define MAX_PARAMS 10 /* Arbitrary value */
/*
 * Set a jobs parameter at the server end based on the "name=value" string
A-2 Server Job Developer’s Guide

Development Kit Program Example
 * that we are given. This involves asking the server what the type of
 * the parameter is, converting the value part to that type and constructing
 * a DSPARAM value, and then calling DSSetParam to register the parameter and
 * its value.
 */
static int setParam(
 DSJOB hJob, /* Job parameter belongs to */
 char *param /* param=value string */
)
{
 char *value;
 int status;
 DSPARAMINFO paramInfo;
 DSPARAM paramData;
 /* Get the parameter name and its value string */
 value = strchr(param, '=');
 *value++ = '\0';
 /* Get the parameter information which tells us what type it is */
 status = DSGetParamInfo(hJob, param, ¶mInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting information for parameter '%s'\n",
 status, param);
 else
 {
 /*
 * Construct the value structure to pass to the server. We could
 * attempt to validate some of these parameters rather than
 * simply copying them... but for simplicity we don't!
 */
 paramData.paramType = paramInfo.paramType;
 switch(paramInfo.paramType)
 {
 case DSJ_PARAMTYPE_STRING:
 paramData.paramValue.pString = value;
 break;
 case DSJ_PARAMTYPE_ENCRYPTED:
 paramData.paramValue.pEncrypt = value;
 break;
 case DSJ_PARAMTYPE_INTEGER:
 paramData.paramValue.pInt = atoi(value);
 break;
 case DSJ_PARAMTYPE_FLOAT:
 paramData.paramValue.pFloat = (float) atof(value);
 break;
 case DSJ_PARAMTYPE_PATHNAME:
 paramData.paramValue.pPath = value;
 break;
 case DSJ_PARAMTYPE_LIST:
 paramData.paramValue.pListValue = value;
 break;
 case DSJ_PARAMTYPE_DATE:
 paramData.paramValue.pDate = value;
 break;
 case DSJ_PARAMTYPE_TIME:
 paramData.paramValue.pTime = value;
 break;
 default: /* try string!!!! */
 paramData.paramType = DSJ_PARAMTYPE_STRING;
 paramData.paramValue.pString = value;
 break;
 }
 /* Try setting the parameter */
 status = DSSetParam(hJob, param, ¶mData);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error setting value of parameter '%s'\n", param);
 }
 return status;
}
/***/
/*
 * Handle the -run sub-command
 */
Server Job Developer’s Guide A-3

Development Kit Program Example
static int jobRun(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 int i;
 char *project;
 char *job;
 int mode = DSJ_RUNNORMAL;
 int warningLimit = -1;
 int rowLimit = 0;
 BOOL badOptions = FALSE;
 char *param[MAX_PARAMS];
 int nParams = 0;
 BOOL waitForJob = FALSE;
 /* Validate arguments and extract optional arguments */
 for (i = 0; (i < argc) && !badOptions && (
 (argv[i][0] == '-') || (argv[i][0] == '/')); i++)
 {
 char *opt = &(argv[i][1]);
 if (strcmp(opt, "wait") == 0)
 waitForJob = TRUE;
 else
 {
 char *arg = argv[i+1];
 if (++i >= argc)
 badOptions = TRUE;
 else if (strcmp(opt, "mode") == 0)
 {
 if (strcmp(arg, "NORMAL") == 0)
 mode = DSJ_RUNNORMAL;
 else if (strcmp(arg, "RESET") == 0)
 mode = DSJ_RUNRESET;
 else if (strcmp(arg, "VALIDATE") == 0)
 mode = DSJ_RUNVALIDATE;
 else
 badOptions = TRUE;
 }
 else if (strcmp(opt, "param") == 0)
 {
 if (strchr(arg, '=') == NULL)
 badOptions = TRUE;
 else
 param[nParams++] = arg;
 }
 else if (strcmp(opt, "warn") == 0)
 warningLimit = atoi(arg);
 else if (strcmp(opt, "rows") == 0)
 rowLimit = atoi(arg);
 else
 badOptions = TRUE;
 }
 }
 /* Must be two parameters left... project and job */
 if ((i+2) == argc)
 {
 project = argv[i];
 job = argv[i+1];
 }
 else
 badOptions = TRUE;
 /* Report validation problems and exit */
 if (badOptions)
 {
 fprintf(stderr, "Invalid arguments: dsjob -run\n");
 fprintf(stderr, "\t\t\t[-mode <NORMAL | RESET | VALIDATE>]\n");
 fprintf(stderr, "\t\t\t[-param <name>=<value>]\n");
 fprintf(stderr, "\t\t\t[-warn <n>]\n");
 fprintf(stderr, "\t\t\t[-rows <n>]\n");
 fprintf(stderr, "\t\t\t[-wait]\n");
 fprintf(stderr, "\t\t\t<project> <job>\n");
 return DSJE_DSJOB_ERROR;
A-4 Server Job Developer’s Guide

Development Kit Program Example
 }
 /* Attempt to open the project, open the job and lock it */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 if ((status = DSLockJob(hJob)) != DSJE_NOERROR)
 fprintf(stderr, "ERROR: Failed to lock job\n");
 else
 {
 /* Now set any job attributes and try running the job */
 if (warningLimit >= 0)
 {
 status = DSSetJobLimit(hJob, DSJ_LIMITWARN, warningLimit);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error setting warning limit\n");
 }
 if ((rowLimit != 0) && (status == DSJE_NOERROR))
 {
 status = DSSetJobLimit(hJob, DSJ_LIMITROWS, rowLimit);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error setting row limit\n");
 }
 for (i = 0; (status == DSJE_NOERROR) && (i < nParams); i++)
 status = setParam(hJob, param[i]);
 if (status == DSJE_NOERROR)
 {
 status = DSRunJob(hJob, mode);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error running job\n");
 }
 /* Now wait for the job to finish*/
 if ((status == DSJE_NOERROR) && waitForJob)
 {
 printf("Waiting for job...\n");
 status = DSWaitForJob(hJob);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error waiting for job\n");
 }
 (void) DSUnlockJob(hJob);
 }
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -stop sub-command
 */
static int jobStop(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 /* Validate arguments and extract optional arguments */
 /* Must be two parameters left... project and job */
 if (argc != 2)
 {
Server Job Developer’s Guide A-5

Development Kit Program Example
 fprintf(stderr, "Invalid arguments: dsjob -stop <project> <job>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Now stop the job */
 status = DSStopJob(hJob);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error stopping job\n");
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -lprojects sub-command
 */
static int jobLProjects(int argc, char *argv[])
{
 int result = DSJE_NOERROR;
 char *list;
 /* Validate arguments */
 if (argc != 0)
 {
 fprintf(stderr, "Invalid arguments: dsjob -lproject\n");
 return DSJE_DSJOB_ERROR;
 }
 /* Action request */
 list = DSGetProjectList();
 if (list == NULL)
 result = DSGetLastError();
 else
 printStrList(0, list);
 return result;
}
/***/
/*
 * Handle the -ljobs sub-command
 */
static int jobLJobs(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSPROJECTINFO pInfo;
 int status;
 /* Validate arguments */
 if (argc != 1)
 {
 fprintf(stderr, "Invalid arguments: dsjob -ljobs <project>\n");
 return DSJE_DSJOB_ERROR;
 }
 /* Action request */
 hProject = DSOpenProject(argv[0]);
 if (hProject == NULL)
 status = DSGetLastError();
 else
A-6 Server Job Developer’s Guide

Development Kit Program Example
 {
 status = DSGetProjectInfo(hProject, DSJ_JOBLIST, &pInfo);
 if (status == DSJE_NOT_AVAILABLE)
 {
 printf("<none>\n");
 status = DSJE_NOERROR;
 }
 else if (status == DSJE_NOERROR)
 printStrList(0, pInfo.info.jobList);
 DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -lstages sub-command
 */
static int jobLStages(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 DSJOBINFO jobInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be two parameters left... project and job */
 if (argc != 2)
 {
 fprintf(stderr, "Invalid arguments: dsjob -lstages <project> <job>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Get the list of stages */
 status = DSGetJobInfo(hJob, DSJ_STAGELIST, &jobInfo);
 if (status == DSJE_NOT_AVAILABLE)
 {
 printf("<none>\n");
 status = DSJE_NOERROR;
 }
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting stage list\n", status);
 else
 printStrList(0, jobInfo.info.stageList);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -llinks sub-command
 */
static int jobLLinks(int argc, char *argv[])
{

Server Job Developer’s Guide A-7

Development Kit Program Example
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 char *stage;
 DSSTAGEINFO stageInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be three parameters left... project, job and stage */
 if (argc != 3)
 {
 fprintf(stderr, "Invalid arguments: dsjob -llinks <project> <job> <stage>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 stage = argv[2];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Get the list of stages */
 status = DSGetStageInfo(hJob, stage, DSJ_LINKLIST, &stageInfo);
 if (status == DSJE_NOT_AVAILABLE)
 {
 printf("<none>\n");
 status = DSJE_NOERROR;
 }
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting link list\n", status);
 else
 printStrList(0, stageInfo.info.linkList);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -jobinfo sub-command
 */
static int jobJobInfo(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 DSJOBINFO jobInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be two parameters left... project and job */
 if (argc != 2)
 {
 fprintf(stderr, "Invalid arguments: dsjob -jobinfo <project> <job>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
A-8 Server Job Developer’s Guide

Development Kit Program Example
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /*
 * Try getting all the job info (except the stage and
 * parameter lists which we deal with elsewhere)
 */
 status = DSGetJobInfo(hJob, DSJ_JOBSTATUS, &jobInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting job status\n", status);
 else
 {
 printf("Job Status\t: ");
 switch(jobInfo.info.jobStatus)
 {
 case DSJS_RUNNING:
 printf("RUNNING");
 break;
 case DSJS_RUNOK:
 printf("RUN OK");
 break;
 case DSJS_RUNWARN:
 printf("RUN with WARNINGS");
 break;
 case DSJS_RUNFAILED:
 printf("RUN FAILED");
 break;
 case DSJS_VALOK:
 printf("VALIDATED OK");
 break;
 case DSJS_VALWARN:
 printf("VALIDATE with WARNINGS");
 break;
 case DSJS_VALFAILED:
 printf("VALIDATION FILED");
 break;
 case DSJS_RESET:
 printf("RESET");
 break;
 case DSJS_STOPPED:
 printf("STOPPED");
 break;
 case DSJS_NOTRUNNABLE:
 printf("NOT COMPILED");
 break;
 case DSJS_NOTRUNNING:
 printf("NOT RUNNING");
 break;
 default:
 printf("UNKNOWN");
 break;
 }
 printf(" (%d)\n", jobInfo.info.jobStatus);
 }
 status = DSGetJobInfo(hJob, DSJ_JOBCONTROLLER, &jobInfo);
 if (status == DSJE_NOT_AVAILABLE)
 printf("Job Controller\t: not available\n");
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting job controller\n", status);
 else
 printf("Job Controller\t: %s\n", jobInfo.info.jobController);
 status = DSGetJobInfo(hJob, DSJ_JOBSTARTTIMESTAMP, &jobInfo);
Server Job Developer’s Guide A-9

Development Kit Program Example
 if (status == DSJE_NOT_AVAILABLE)
 printf("Job Start Time\t: not available\n");
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting job start time\n", status);
 else
 printf("Job Start Time\t: %s", ctime(&(jobInfo.info.jobStartTime)));
 status = DSGetJobInfo(hJob, DSJ_JOBWAVENO, &jobInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting job wave number\n", status);
 else
 printf("Job Wave Number\t: %d\n", jobInfo.info.jobWaveNumber);
 status = DSGetJobInfo(hJob, DSJ_USERSTATUS, &jobInfo);
 if (status == DSJE_NOT_AVAILABLE)
 printf("User Status\t: not available\n");
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting job user status\n", status);
 else
 printf("User Status\t: %s\n", jobInfo.info.userStatus);
 if (status == DSJE_NOT_AVAILABLE)
 status = DSJE_NOERROR;
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -stageinfo sub-command
 */
static int jobStageInfo(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 char *stage;
 DSSTAGEINFO stageInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be three parameters left... project, job and stage */
 if (argc != 3)
 {
 fprintf(stderr, "Invalid arguments: dsjob -stageinfo <project> <job> <stage>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 stage = argv[2];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /*
 * Try getting all the stage info (except the link
 * lists which we deal with elsewhere)
 */
 status = DSGetStageInfo(hJob, stage, DSJ_STAGETYPE, &stageInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting stage type\n", status);
 else
A-10 Server Job Developer’s Guide

Development Kit Program Example
 printf("Stage Type\t: %s\n", stageInfo.info.typeName);
 status = DSGetStageInfo(hJob, stage, DSJ_STAGEINROWNUM, &stageInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting stage row number\n", status);
 else
 printf("In Row Number\t: %d\n", stageInfo.info.inRowNum);
 status = DSGetStageInfo(hJob, stage, DSJ_STAGELASTERR, &stageInfo);
 if (status == DSJE_NOT_AVAILABLE)
 printf("Stage Last Error: <none>\n");
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting stage last error\n", status);
 else
 {
 printf("Stage Last Error:\n");
 printLogDetail(1, &(stageInfo.info.lastError));
 }
 if (status == DSJE_NOT_AVAILABLE)
 status = DSJE_NOERROR;
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -linkinfo sub-command
 */
static int jobLinkInfo(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 char *stage;
 char *link;
 DSLINKINFO linkInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be four parameters left... project, job, stage and link names */
 if (argc != 4)
 {
 fprintf(stderr, "Invalid arguments: dsjob -linkinfo <project> <job> <stage>
<link>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 stage = argv[2];
 link = argv[3];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Try getting all the link info */
 status = DSGetLinkInfo(hJob, stage, link, DSJ_LINKROWCOUNT, &linkInfo);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting link row count\n", status);
 else
 printf("Link Row Count\t: %d\n", linkInfo.info.rowCount);
 status = DSGetLinkInfo(hJob, stage, link, DSJ_LINKLASTERR, &linkInfo);
Server Job Developer’s Guide A-11

Development Kit Program Example
 if (status == DSJE_NOT_AVAILABLE)
 {
 printf("Link Last Error\t: <none>\n");
 status = DSJE_NOERROR;
 }
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting link last error\n", status);
 else
 {
 printf("Link Last Error\t:\n");
 printLogDetail(1, &(linkInfo.info.lastError));
 }
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -lparams sub-command
 */
static int jobLParams(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 DSJOBINFO jobInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be two parameters left... project and job names */
 if (argc != 2)
 {
 fprintf(stderr, "Invalid arguments: dsjob -lparams <project> <job>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Get the list of parameter names */
 status = DSGetJobInfo(hJob, DSJ_PARAMLIST, &jobInfo);
 if (status == DSJE_NOT_AVAILABLE)
 {
 printf("<none>\n");
 status = DSJE_NOERROR;
 }
 else if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting parameter list\n", status);
 else
 printStrList(0, jobInfo.info.paramList);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
A-12 Server Job Developer’s Guide

Development Kit Program Example
/*
 * Handle the -paraminfo sub-command
 */
static void printValue(
 DSPARAM *param
)
{
 switch(param->paramType)
 {
 case DSJ_PARAMTYPE_STRING:
 printf("%s", param->paramValue.pString);
 break;
 case DSJ_PARAMTYPE_ENCRYPTED:
 printf("%s", param->paramValue.pEncrypt);
 break;
 case DSJ_PARAMTYPE_INTEGER:
 printf("%d", param->paramValue.pInt);
 break;
 case DSJ_PARAMTYPE_FLOAT:
 printf("%G", param->paramValue.pFloat);
 break;
 case DSJ_PARAMTYPE_PATHNAME:
 printf("%s", param->paramValue.pPath);
 break;
 case DSJ_PARAMTYPE_LIST:
 printf("%s", param->paramValue.pListValue);
 break;
 case DSJ_PARAMTYPE_DATE:
 printf("%s", param->paramValue.pDate);
 break;
 case DSJ_PARAMTYPE_TIME:
 printf("%s", param->paramValue.pTime);
 break;
 }
}
static int jobParamInfo(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 char *param;
 DSPARAMINFO paramInfo;
 /* Validate arguments and extract optional arguments */
 /* Must be three parameters left... project, job and parameter names */
 if (argc != 3)
 {
 fprintf(stderr, "Invalid arguments: dsjob -paraminfo <project> <job> <param>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 param = argv[2];
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Get the parameter information */
 status = DSGetParamInfo(hJob, param, ¶mInfo);
 if (status != DSJE_NOERROR)
Server Job Developer’s Guide A-13

Development Kit Program Example
 fprintf(stderr, "Error %d getting info for parameter\n", status);
 else
 {
 printf("Type\t\t: ");
 switch(paramInfo.paramType)
 {
 case DSJ_PARAMTYPE_STRING:
 printf("String");
 break;
 case DSJ_PARAMTYPE_ENCRYPTED:
 printf("Encrypted");
 break;
 case DSJ_PARAMTYPE_INTEGER:
 printf("Integer");
 break;
 case DSJ_PARAMTYPE_FLOAT:
 printf("Float");
 break;

 case DSJ_PARAMTYPE_PATHNAME:
 printf("Pathname");
 break;
 case DSJ_PARAMTYPE_LIST:
 printf("list");
 break;
 case DSJ_PARAMTYPE_DATE:
 printf("Date");
 break;
 case DSJ_PARAMTYPE_TIME:
 printf("Time");
 break;
 default:
 printf("*** ERROR - UNKNOWN TYPE ***");
 break;
 }
 printf(" (%d)\n", paramInfo.paramType);

 printf("Help Text\t: %s\n", paramInfo.helpText);
 printf("Prompt\t\t: %s\n", paramInfo.paramPrompt);
 printf("Prompt At Run\t: %d\n", paramInfo.promptAtRun);
 printf("Default Value\t: ");
 printValue(&(paramInfo.defaultValue));
 printf("\n");
 printf("Original Default: ");
 printValue(&(paramInfo.desDefaultValue));
 printf("\n");
 if (paramInfo.paramType == DSJ_PARAMTYPE_LIST)
 {
 printf("List Values\t:\n");
 printStrList(2, paramInfo.listValues);
 printf("Original List\t:\n");
 printStrList(2, paramInfo.desListValues);
 }
 printf("\n");
 }
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -log sub-command
 */
static int jobLog(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 int i;
 char *project;
A-14 Server Job Developer’s Guide

Development Kit Program Example
 char *job;
 int type = DSJ_LOGINFO;
 BOOL badOptions = FALSE;
 /* Validate arguments and extract optional arguments */
 for (i = 0; (i < argc) && !badOptions && (
 (argv[i][0] == '-') || (argv[i][0] == '/')); i++)
 {
 char *opt = &(argv[i][1]);
 /* Note: not mutually exclusive check on info or warn */
 if (strcmp(opt, "info") == 0)
 type = DSJ_LOGINFO;
 else if (strcmp(opt, "warn") == 0)
 type = DSJ_LOGWARNING;
 else
 badOptions = TRUE;
 }
 /* Must be two parameters left... project and job */
 if ((i+2) == argc)
 {
 project = argv[i];
 job = argv[i+1];
 }
 else
 badOptions = TRUE;
 /* Report validation problems and exit */
 if (badOptions)
 {
 fprintf(stderr, "Invalid arguments: dsjob -log\n");
 fprintf(stderr, "\t\t\t[-info | -warn]\n");
 fprintf(stderr, "\t\t\t<project> <job>\n");
 fprintf(stderr, "\nLog message is read from stdin.\n");
 return DSJE_DSJOB_ERROR;
 }
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 #define MAX_MSG_LEN 4096
 char message[MAX_MSG_LEN + 4];
 int n = 0;
 /* Read the message from stdin */
 printf("Enter message text, terminating with Ctrl-d\n");
 while (n < MAX_MSG_LEN)
 {
 int ch;
 ch = getchar();
 if ((ch == EOF)
#ifdef WIN32
 || (ch == 4) /* Ctrl-d */
#endif
)
 break;
 if ((ch == '\n') || isprint(ch))
 message[n++] = ch;
 }
 printf("\nMessage read.\n");
 message[n] = '\0';
 /* Add message to the log */
 status = DSLogEvent(hJob, type, NULL, message);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error adding log entry\n");
Server Job Developer’s Guide A-15

Development Kit Program Example

 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -logsum sub-command
 */
static int jobLogSum(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 int i;
 char *project;
 char *job;
 int type = DSJ_LOGANY;
 time_t startTime = 0;
 time_t endTime = 0;
 int maxNumber = 0;
 BOOL badOptions = FALSE;
 /* Validate arguments and extract optional arguments */
 for (i = 0; (i < argc) && !badOptions && (
 (argv[i][0] == '-') || (argv[i][0] == '/')); i++)
 {
 char *opt = &(argv[i][1]);
 char *arg = argv[i+1];
 if (++i >= argc)
 badOptions = TRUE;
 else if (strcmp(opt, "type") == 0)
 {
 if (strcmp(arg, "INFO") == 0)
 type = DSJ_LOGINFO;
 else if (strcmp(arg, "WARNING") == 0)
 type = DSJ_LOGWARNING;
 else if (strcmp(arg, "FATAL") == 0)
 type = DSJ_LOGFATAL;
 else if (strcmp(arg, "REJECT") == 0)
 type = DSJ_LOGREJECT;
 else if (strcmp(arg, "STARTED") == 0)
 type = DSJ_LOGSTARTED;
 else if (strcmp(arg, "RESET") == 0)
 type = DSJ_LOGRESET;
 else if (strcmp(arg, "BATCH") == 0)
 type = DSJ_LOGBATCH;
 else if (strcmp(arg, "OTHER") == 0)
 type = DSJ_LOGOTHER;
 else
 badOptions = TRUE;
 }
 else if (strcmp(opt, "max") == 0)
 maxNumber = atoi(arg);
 else
 badOptions = TRUE;
 }
 /* Must be two parameters left... project and job */
 if ((i+2) == argc)
 {
 project = argv[i];
 job = argv[i+1];
 }
 else
 badOptions = TRUE;
 /* Report validation problems and exit */
 if (badOptions)
 {
 fprintf(stderr, "Invalid arguments: dsjob -logsum\n");
 fprintf(stderr, "\t\t\t[-type <INFO | WARNING | FATAL | REJECT | STARTED | RESET |
BATCH>]\n");
A-16 Server Job Developer’s Guide

Development Kit Program Example
 fprintf(stderr, "\t\t\t[-max <n>]\n");
 fprintf(stderr, "\t\t\t<project> <job>\n");
 return DSJE_DSJOB_ERROR;
 }
 /* Attempt to open the project, open the job and lock it */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 DSLOGEVENT event;
 /* Make the first call to establish the log info */
 status = DSFindFirstLogEntry(hJob, type, startTime,
 endTime, maxNumber, &event);
 while(status == DSJE_NOERROR)
 {
 printf("%d\t", event.eventId);
 switch(event.type)
 {
 case DSJ_LOGINFO:
 printf("INFO");
 break;
 case DSJ_LOGWARNING:
 printf("WARNING");
 break;
 case DSJ_LOGFATAL:
 printf("FATAL");
 break;
 case DSJ_LOGREJECT:
 printf("REJECT");
 break;
 case DSJ_LOGSTARTED:
 printf("STARTED");
 break;
 case DSJ_LOGRESET:
 printf("RESET");
 break;
 case DSJ_LOGBATCH:
 printf("BATCH");
 break;
 case DSJ_LOGOTHER:
 printf("OTHER");
 break;
 default:
 printf("????");
 break;
 }
 printf("\t%s", ctime(&(event.timestamp))); /* ctime has \n at end */
 printf("\t%s\n", event.message);
 /* Go on to next entry */
 status = DSFindNextLogEntry(hJob, &event);
 }
 if (status == DSJE_NOMORE)
 status = DSJE_NOERROR;
 else
 fprintf(stderr, "Error %d getting log summary\n", status);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
Server Job Developer’s Guide A-17

Development Kit Program Example
/*
 * Handle the -logdetail sub-command
 */
static int jobLogDetail(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status;
 char *project;
 char *job;
 int eventId;
 DSLOGDETAIL logDetail;
 /* Validate arguments and extract optional arguments */
 /* Must be three parameters left... project, job and event id */
 if (argc != 3)
 {
 fprintf(stderr, "Invalid arguments: dsjob -logdetail <project> <job> <event id>\n");
 return DSJE_DSJOB_ERROR;
 }
 project = argv[0];
 job = argv[1];
 eventId = atoi(argv[2]);
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Try getting all the log info */
 status = DSGetLogEntry(hJob, eventId, &logDetail);
 if (status != DSJE_NOERROR)
 fprintf(stderr, "Error %d getting event details\n", status);
 else
 printLogDetail(0, &logDetail);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * Handle the -lognewest sub-command
 */
static int jobLogNewest(int argc, char *argv[])
{
 DSPROJECT hProject;
 DSJOB hJob;
 int status = DSJE_NOERROR;
 char *project;
 char *job;
 int type = DSJ_LOGANY;
 BOOL badOptions = FALSE;
 int id;
 /* Validate arguments and extract optional arguments */
 /* Must be at least two parameters left... project, job. Type is optional */
 if ((argc < 2) || (argc > 3))
 badOptions = TRUE;
 else
 {
 project = argv[0];
 job = argv[1];
 if (argc == 3)
A-18 Server Job Developer’s Guide

Development Kit Program Example
 {
 char *arg = argv[2];
 if (strcmp(arg, "INFO") == 0)
 type = DSJ_LOGINFO;
 else if (strcmp(arg, "WARNING") == 0)
 type = DSJ_LOGWARNING;
 else if (strcmp(arg, "FATAL") == 0)
 type = DSJ_LOGFATAL;
 else if (strcmp(arg, "REJECT") == 0)
 type = DSJ_LOGREJECT;
 else if (strcmp(arg, "STARTED") == 0)
 type = DSJ_LOGSTARTED;
 else if (strcmp(arg, "RESET") == 0)
 type = DSJ_LOGRESET;
 else if (strcmp(arg, "BATCH") == 0)
 type = DSJ_LOGBATCH;
 else if (strcmp(arg, "OTHER") == 0)
 type = DSJ_LOGOTHER;
 else
 badOptions = TRUE;
 }
 }
 if (badOptions)
 {
 fprintf(stderr, "Invalid arguments: dsjob -lognewest <project> <job> [<event
type>]\n");
 fprintf(stderr, "\t event type = INFO | WARNING | FATAL | REJECT | STARTED | RESET |
BATCH\n");
 return DSJE_DSJOB_ERROR;
 }
 /* Attempt to open the project and the job */
 if ((hProject = DSOpenProject(project)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open project\n");
 }
 else
 {
 if ((hJob = DSOpenJob(hProject, job)) == NULL)
 {
 status = DSGetLastError();
 fprintf(stderr, "ERROR: Failed to open job\n");
 }
 else
 {
 /* Get the newest it */
 id = DSGetNewestLogId(hJob, type);
 if (id < 0)
 {
 status = DSGetLastError();
 fprintf(stderr, "Error %d getting event details\n", status);
 }
 else
 printf("Newsest id = %d\n", id);
 (void) DSCloseJob(hJob);
 }
 (void) DSCloseProject(hProject);
 }
 return status;
}
/***/
/*
 * The following array defines all the allowed/known primary command options
 * and the routines that are used to process them.
 */
static struct MAJOROPTION
{
 char *name;
 int (*optionHandler) (int, char **);
} MajorOption[] =
{
 "run", jobRun,
Server Job Developer’s Guide A-19

Development Kit Program Example
 "stop", jobStop,
 "lprojects", jobLProjects,
 "ljobs", jobLJobs,
 "lstages", jobLStages,
 "llinks", jobLLinks,
 "jobinfo", jobJobInfo,
 "stageinfo", jobStageInfo,
 "linkinfo", jobLinkInfo,
 "lparams", jobLParams,
 "paraminfo", jobParamInfo,
 "log", jobLog,
 "logsum", jobLogSum,
 "logdetail", jobLogDetail,
 "lognewest", jobLogNewest
};
#define N_MAJOR_OPTIONS (sizeof(MajorOption) / sizeof(struct MAJOROPTION))
/*
 * Main routine... simple!
 *
 * See if we have one of the optional server/user/password arguments. Then
 * Check that we have a primary command option and call the handler for that
 * option
 */
int main(
 int argc, /* Argument count */
 char *argv[] /* Argument strings */
)
{
 int i;
 int argPos;
 char *server = NULL;
 char *user = NULL;
 char *password = NULL;
 int result = DSJE_NOERROR;
 /* Must have at least one argument */
 if (argc < 2)
 goto reportError;
 argc--; /* Remove command name */
 /* Check for the optional paramaters... not that they are positional */
 argPos = 1;
 /* Server name */
 if (strcmp(argv[argPos], "-server") == 0)
 {
 if (argc < 3)
 goto reportError;
 server = argv[argPos + 1];
 argPos += 2;
 argc -= 2;
 }
 /* User name */
 if (strcmp(argv[argPos], "-user") == 0)
 {
 if (argc < 3)
 goto reportError;
 user = argv[argPos + 1];
 argPos += 2;
 argc -= 2;
 }
 /* Password */
 if (strcmp(argv[argPos], "-password") == 0)
 {
 if (argc < 3)
 goto reportError;
 password = argv[argPos + 1];
 argPos += 2;
 argc -= 2;
 }
 /* Must be at least one command argument remaining... */
 if (argc < 1)
 goto reportError;
 /* ... that must start with a '-' (or '/' on NT)... */
 if ((argv[argPos][0] != '-')
A-20 Server Job Developer’s Guide

Development Kit Program Example
#ifdef WIN32
 && (argv[argPos][0] != '/')
#endif
)
 goto reportError;
 /* ... and it must be one of the primary commands... */
 for (i = 0; i < N_MAJOR_OPTIONS; i++)
 if (strcmp(&(argv[argPos][1]), MajorOption[i].name) == 0)
 {
 char *errText;
 DSSetServerParams(server, user, password);
 result = MajorOption[i].optionHandler(argc - 1, &(argv[argPos + 1]));
 if (result != DSJE_NOERROR)
 fprintf(stderr, "\nStatus code = %d\n", result);
 errText = DSGetLastErrorMsg(NULL);
 if (errText != NULL)
 {
 fflush(stdout);
 fprintf(stderr, "\nLast recorded error message =\n");
 printStrList(0, errText);
 fflush(stdout);
 fprintf(stderr, "\n");
 }
 goto exitProgram;
 }
 /* We only get here if we failed to find a valid command */
 fprintf(stderr, "Invalid/unknown primary command switch.\n");
reportError:
 fprintf(stderr, "Command syntax:\n");
 fprintf(stderr, "\tdsjob [-server <server>][-user <user>][-password <password>]\n");
 fprintf(stderr, "\t\t\t<primary command> [<arguments>]\n");
 fprintf(stderr, "\nValid primary command options are:\n");
 for (i = 0; i < N_MAJOR_OPTIONS; i++)
 fprintf(stderr, "\t-%s\n", MajorOption[i].name);
 result = DSJE_DSJOB_ERROR;
exitProgram:
 /* gcc requires an exit call rather than 'return' ! */
 exit(result);
 /* To keep MSVC happy... */

 return result;
}
/* End of module */
Server Job Developer’s Guide A-21

Development Kit Program Example
A-22 Server Job Developer’s Guide

Index
Symbols
$Define statement 18–25

$IfDef and $IfNDef statements 18–26

$Include statement 18–27

$Undefine statement 18–28

* statement 18–31

. 18–59

Symbols
_cplusplus token 19–2

STDC token 19–2

A
account name

Hashed File stage 6–2

UniData 6 stage 5–5

UniData stage 7–2

UniVerse stage 4–3

ACos function 18–213

ActiveX (OLE) functions

importing 17–22

programming functions 17–3, 17–10

administration

C API functions 19–6

after-load stored procedures 15–17, 15–20

after-stage subroutines

for Aggregator stages 10–2, 13–3, 14–3

for plug-in stages 15–7

for Transformer stages 9–6, 9–18

aggregating data

using a UniVerse stage 4–17

using an Aggregator stage 10–6

using an ODBC stage 3–20

using COUNT function 3–20, 4–18

using SUM function 3–20, 4–18

Aggregator stages

editing 10–1
Book Title
input data to 10–3

Inputs page 10–3

output data from 10–5

Outputs page 10–5

sorting input data 10–4

specifying after-stage subroutines 10–2,
13–3, 14–3

specifying before-stage subroutines 10–2,
13–3, 14–3

Stage page 10–2, 13–2, 14–3

Alpha function 18–33

API 19–2

Ascii function 18–34

ASin function 18–213

assignment statements 18–35

ATan function 18–213

B
bad rows 15–28

BASIC routines

before/after subroutines 17–12

copying 17–17

creating 17–11

editing 17–17

entering code 17–12

name 17–6

renaming 17–18

saving code 17–13

testing 17–14

transform functions 17–12

type 17–6

version number 17–7

viewing 17–17

writing 17–1

batch log entries 19–148

BCP utility 15–14

running from command line 15–14
Index-1

Index
switches 15–14

unsupported switches 15–14

BCPLoad plug-in

definition 15–16

stage properties 15–16

BCPLoad stages 15–13

defining maps 15–19

editing 15–18

overview 15–14

specifying job parameters 15–19

stored procedures 15–20

supported SQL data types 15–15

table definitions 15–15

using 15–18

before/after-subroutines

built-in 20–25

creating 17–12

before-load stored procedures 15–17, 15–20

before-stage subroutines

for Aggregator stages 10–2, 13–3, 14–3

for plug-in stages 15–7

for Transformer stages 9–6, 9–18

Bit functions 18–36

BitAnd function 18–36

BitNot function 18–36

BitOr function 18–36

BitReset function 18–36

BitSet function 18–36

BitTest function 18–36

BitXOr function 18–36

breakpoints 16–1

built-in

before/after-subroutines 20–25

routines 20–15

bulk copy API 15–14

bulk copy program 15–14

Byte function 18–40

ByteLen function 18–41

Byte-oriented functions 18–39

ByteType function 18–42

ByteVal function 18–43

C
Call statement 18–44

Case statement 18–45

Cats function 18–47

Char function 18–49

character set maps

and ODBC stages 3–2, 3–3, 11–4

and plug-in stages 15–4, 15–13

and Sequential File stages 8–3
Index-2
and UniData stages 7–3

defining 3–3, 7–3, 8–3, 11–4, 15–5, 15–19,
15–26

Checksum function 18–50, 18–61

cleaning data values 15–24

CloseSeq statement 18–51

Col1 function 18–52

Col2 function 18–53

column auto-match facility 9–12

column definitions

column name 10–3, 10–5

data element 10–4, 10–6

key 10–3

key fields 10–6

length 10–4, 10–6

scale factor 10–4, 10–6

Columns 3–8, 4–5, 5–6

columns

renaming by mapping 15–25

renaming during Orabulk stage 15–23

command line interface 19–139

commands

dsadmin 19–150

dsjob 19–139

sqlldr 15–23, 15–26

Common statement 18–55

Compare function 18–57

compiling

code in BASIC routines 17–13

jobs 16–1

connection type 3–2, 4–2, 5–3

UniData 6 5–4

UniVerse 4–2, 5–3

Convert function 18–58

converting values 15–23

copying BASIC routine definitions 17–17

Cos function 18–213

CosH function 18–213

Count function 18–60

creating

BASIC routines 17–11

executable jobs 16–1

CTLIB client library, installing 15–14

D
Data Browser 3–9, 4–6, 5–6, 6–5, 7–5, 8–7

data structures

description 19–63

how used 19–2

summary of usage 19–61

data types, SQL Server 15–15
Book Title

Index
data values

cleaning 15–24

validating 15–24

DataStage API

building applications that use 19–4

header file 19–2

programming logic example 19–3

redistributing programs 19–4

DataStage CLI

completion codes 19–139

logon clause 19–140, 19–151, 19–157

overview 19–139

using to run jobs 19–140

DataStage Development Kit 19–2

API functions 19–4

command line interface 19–139

data structures 19–61

dsjob command 19–140

error codes 19–79

job status macros 19–139

program example A–1

writing DataStage API programs 19–3

DataStage server engine 19–140, 19–151,
19–157

DataStage, programming in 17–1

Date function 18–62

DBLIB client library, installing 15–14

DCount function 18–63

Debug Window 16–3

debugger 16–1

toolbar 16–7

Deffun statement 18–64

defining

character set maps 3–3, 7–3, 8–3, 11–4,
15–5, 15–19, 15–26

local stage variables 9–22

Dimension statement 18–65

directory path

Hashed File stage 6–2

Div function 18–67

DLLs 19–4

documentation conventions v—vi
DownCase function 18–68

DQuote function 18–69

dsadmin command

description 19–150

dsapi.h header file

description 19–2

including 19–4

DSCloseJob function 19–10

DSCloseProject function 19–11
Book Title
DSCUSTINFO data structure 19–62

DSDetachJob function 18–72, 19–91

dsdk directory 19–4

DSExecute subroutione 18–73, 19–92

DSFindFirstLogEntry function 19–14

DSFindNextLogEntry function 19–14, 19–16

DSGetCustInfo function 18–74, 19–93

DSGetIPCPageProps function 18–75, 19–94

DSGetJobInfo function 18–76, 19–19, 19–95

and controlled jobs 19–20

DSGetJobMetaBag function 18–80, 19–99

DSGetLastError function 19–21

DSGetLastErrorMsg function 19–22

DSGetLinkInfo function 18–81, 19–23, 19–100

DSGetLinkMetaData function 18–83, 19–102

DSGetLogEntry function 18–84, 19–25, 19–103

DSGetLogSummary function 18–85, 19–104

DSGetNewestLogId function 18–87, 19–26,
19–106

DSGetParamInfo function 18–88, 19–28, 19–107

DSGetProjectInfo function 18–91, 19–29, 19–110

DSGetProjectList function 19–31

DSGetStageInfo function 18–92, 19–36, 19–111

DSGetStageLinks function 18–95, 19–114

DSGetStagesOfType function 18–96, 19–115

DSGetStageTypes function 18–97, 19–116

DSGetVarInfo function 18–98, 19–17, 19–38,
19–117

DSHostName macro 19–138

dsjob command

description 19–139

source code A–1

DSJobController macro 19–138

DSJOBINFO data structure 19–63

and DSGetJobInfo 19–20

and DSGetLinkInfo 19–23

DSJobInvocationID macro 19–138

DSJobInvocations macro 19–138

DSJobName macro 19–138

DSJobStartDate macro 19–138

DSJobStartTime macro 19–138

DSJobStatus macro 19–138

DSJobWaveNo macro 19–138

DSLINKINFO data structure 19–66

DSLinkLastErr macro 19–138

DSLinkName macro 19–138

DSLinkRowCount macro 19–138

DSLockJob function 19–42

DSLOGDETAIL data structure 19–67

DSLOGEVENT data structure 19–68

DSLogEvent function 18–99, 19–43, 19–118
Index-3

Index
DSLogFatal function 18–100, 19–119

DSLogInfo function 18–101, 19–120

DSLogWarn function 18–103, 19–122

DSMakeJobReport function 19–44

DSOpenJob function 19–45

DSOpenProject function 19–46

DSPARAM data structure 19–69

DSPARAMINFO data structure 19–71

and DSGetParamInfo 19–28

DSPROJECTINFO data structure 19–73

and DSGetProjectInfo 19–30

DSProjectName macro 19–138

DSREPOSINFO data structure 19–74

DSREPOSUSAGE data structure 19–75

DSRunJob function 19–47

DSSetGenerateOpMetaData function 18–110,
19–49, 19–129

DSSetJobLimit function 18–110, 19–49, 19–51,
19–129

DSSetParam function 18–112, 19–53, 19–131

DSSetServerParams function 19–57

DSSetUserStatus subroutine 18–113, 19–132

DSSTAGEINFO data structure 19–76

and DSGetStageInfo 19–37

DSStageInRowNum macro 19–138

DSStageLastErr macro 19–138

DSStageName macro 19–138

DSStageType macro 19–138

DSStageVarList macro 19–138

DSStopJob function 18–114, 19–58, 19–133

DSTransformError function 18–115, 19–134

DSUnlockJob function 19–59

DSVARINFO data structure 19–78

DSWaitForJob function 19–60

Dtx function 18–119

E
Ebcdic function 18–120

Edit DDL 4–6

editing

Aggregator stages 10–1

BASIC routine definitions 17–17

BCPLoad stage 15–18

ODBC stages 3–1

plug-in stage properties 15–11

Transformer stages 9–7

UniVerse stages 4–1, 5–1

empty values 15–28

End statement 18–121

entering

code in BASIC routines 17–12
Index-4
SQL statements 3–8, 3–16, 4–5, 4–13

environment variables 15–26

Equate statement 18–123

equijoins 9–5

Ereplace function 18–124

Error Codes 3–16

error codes 19–79

errors

and BCPLoad stage 15–20

and DataStage API 19–79

and Orabulk stage 15–27

compilation 16–8

functions used for handling 19–6

retrieving message text 19–22

retrieving values for 19–21

Event Type parameter 19–14

examples

Development Kit program A–1

of routines 20–25

of transform functions 20–25

Exchange function 18–125

Exp function 18–126

Expression Editor 9–23

F
fatal error log entries 19–147

Field function 18–127

FieldStore function 18–128

file formats for Sequential File stages 8–5, 8–8

file names

in Hashed File stage 6–4, 6–8

in Sequential File stage 8–4, 8–8

in UniData stage 7–4, 7–6

files

job log 15–20

loading into Oracle 15–26

log 15–27

Find and Replace dialog box 9–8

Find dialog box 17–15

FIX function 18–129

Fmt function 18–130

FmtDP function 18–136

Fold function 18–137

FoldDP function 18–138, 18–139

Folder stage

Inputs page 11–4

Outputs page 11–6

Folder stages 11–1, 12–1

For...Next statements 18–139

Format expression 18–131

FROM clause 3–17, 4–15, 5–9
Book Title

Index
Function statement 18–141

functions, table of 19–4

G
generated queries

for ODBC input data 3–11, 4–9, 5–7

for ODBC output data 3–16

for UniVerse output data 4–14, 5–9

GetLocale function 18–143

GoSub statement 18–144

GROUP BY clause 3–17, 4–15

using 3–20, 4–18

H
Hashed File stages

account name for 6–2

input data to 6–3

Inputs page 6–4

output data from 6–7

Outputs page 6–7

specifying a file name for 6–4, 6–8

specifying the directory path 6–2

Stage page 6–2

update action 6–4

HAVING clause 3–17, 4–15

using 3–19, 4–16

I
Iconv function 18–146

If...Else statements 18–152

If...Then statements 18–155

If...Then...Else operator 18–156

If...Then...Else statements 18–153

importing

external ActiveX (OLE) functions 17–22

meta data

from a Sybase database table 15–15

from an SQL Server database

table 15–15

Index function 18–157

information log entries 19–147

InMat function 18–158

input data

to Aggregator stages 10–3

to Hashed File stages 6–3

to ODBC stages 3–6

to plug-in stages 15–8

to Sequential File stages 8–4

to UniData stages 7–4

to UniVerse stages 4–4, 5–5
Book Title
input links 9–5

INSERT function

and LOCATE statement 18–165

installing

CTLIB client library 15–14

DBLIB client library 15–14

NetLIB client library 15–14

SQL Server client software 15–14

Int function 18–159

integrity constraints 15–24

Inter-process stage 12–1

IPC stage 12–1

J
job control interface 19–1

job handle 19–45

job parameters

BCPLoad stages 15–19

displaying information about 19–146

functions used for accessing 19–5

listing 19–143

retrieving information about 19–28

setting 19–53

job status macros 19–139

jobs

closing 19–10

compiling 16–1

displaying information about 19–144

functions used for accessing 19–5

listing 19–29, 19–142

locking 19–42

opening 19–45

resetting 19–47, 19–140

retrieving status of 19–19

running 19–47, 19–140

stopping 19–58, 19–142

unlocking 19–59

validating 19–47, 19–140

waiting for completion 19–60

K
key field 3–16, 4–14, 5–9, 10–6

L
Left function 18–161

Len function 18–162

LenDP function 18–163

library files 19–4

limits 19–51

line terminators 8–2
Index-5

Index
Link Collector stage 2–6, 14–1

Link Partitioner stage 2–6, 13–1

links

displaying information about 19–145

functions used for accessing 19–5

input 9–5

listing 19–142

output 9–5

reject 9–5

retrieving information about 19–23

specifying order 9–21

Ln function 18–164

loading files into Oracle 15–26

LOCATE statement 18–165

log entries

adding 19–43, 19–147

batch control 19–148

fatal error 19–147

finding newest 19–26, 19–148

functions used for accessing 19–5

job reset 19–147

job started 19–147

new lines in 19–43

rejected rows 19–147

retrieving 19–14, 19–16

retrieving specific 19–25, 19–148

types of 19–14

warning 19–147

log file 15–27

logon clause 19–140, 19–151, 19–157

lookup, multirow 9–17

Loop...Repeat statements 18–168

M
macros, job status 19–139

Mat statement 18–170

MatchField function 18–171

meta data

importing for a BCPLoad stage 15–15

importing from a Sybase database

table 15–15

importing from an SQL Server database

table 15–16

Microsoft SQL Server 15–13

Mod function 18–173

multirow lookup 9–17

N
named pipes 8–2

Nap statement 18–174

Neg function 18–175
Index-6
NetLIB client library

configuring 15–14

installing 15–14

new lines in log entries 19–43

NLS page

of the ODBC Stage dialog box 3–2

of the Stage Type dialog box 15–4

Not function 18–176

Null statement 18–177

null values 10–4, 10–6, 15–28

Num function 18–178

O
Oconv function 18–179

ODBC stages

connection type for 3–2

defining maps 3–3, 11–4

editing 3–1

entering SQL statements in 3–8

input data to 3–6

using a generated query 3–11, 4–9, 5–7

using a stored procedure 3–13

using a user-defined SQL

statement 3–12

Inputs page 3–2, 3–6

output data from 3–14

using a generated query 3–16

using a stored procedure 3–22

using a user-defined SQL

statement 3–21

Outputs page 3–2, 3–14

procedure name for 3–7

Stage page 3–2

stored procedure parameters 3–16

table name for 3–7, 3–14

transaction control information 3–9, 4–6,
15–9

update action for 3–7

viewing SQL statements in 3–8, 3–15

On...GoSub statements 18–185

On...GoTo statements 18–187

OpenSeq statement 18–188

operator 18–28

optimizing performance 2–1

Orabulk stages

defining maps 15–26

environment variables 15–26

errors 15–27

properties 15–24

Oracle

bin subdirectory 15–26
Book Title

Index
loading files into 15–26

sqlldr command 15–23

ORDER BY clause 3–17, 4–15, 5–10

using 3–19, 4–17, 5–11

output data

from Aggregator stages 10–5

from Hashed File stages 6–7

from ODBC stages 3–14

from plug-in stages 15–10

from Sequential File stages 8–7

from UniData stages 7–5

output links 9–5

overview

of BCPLoad stage 15–14

of Transformer stage 9–1

P
packaging plug-ins 15–5

Parameters page, ODBC stages 3–16

parameters, see job parameters

passwords, setting 19–57

pattern matching operators 18–190

performance monitor 16–8

plug-in stages

BCPLoad 15–13

defining maps 15–13

editing properties 15–11

Inputs page 15–8

Orabulk 15–23

output data 15–10

output link properties for 15–11

Outputs page 15–10

properties for 15–7

specifying after-stage subroutines 15–7

specifying before-stage subroutines 15–7

specifying input data 15–8

specifying input properties for 15–8

Stage page 15–6

plug-ins 15–1

BCPLoad 15–1

defining maps 15–5

installing 15–1

Orabulk 15–1

packaging 15–5

registering 15–2

using 15–6

precedence rules 17–5

procedure name 3–7

programming in DataStage 17–1

projects

closing 19–11
Book Title
functions used for accessing 19–4

listing 19–31, 19–142

opening 19–46

properties

editing in plug-in stages 15–11

plug-in 15–7

plug-in stages 15–8, 15–11

Pwr function 18–191

R
Randomize statement 18–192

ReadSeq statement 18–193

REAL function 18–195

redistributable files 19–4

registering plug-in definitions 15–2

reject links 9–5

rejected rows 19–147

releasing a job 16–11

renaming

BASIC routines 17–18

columns 15–23, 15–25

replacing text in routine code 17–16

result data

reusing 19–2

storing 19–2

Return (value) statement 18–197

Return statement 18–196

Right function 18–198

Rnd function 18–199

Routine dialog box

Code page 17–9

Creator page 17–7

Dependencies page 17–10

General page 17–6

using Find 17–15

using Replace 17–15

routine name 17–6

routines

built-in before/after-subroutines 20–25

examples 20–25

writing 17–1

row limits 19–51, 19–141

rows, bad 15–28

S
saving code in BASIC routines 17–13

SELECT clause 3–17, 4–15, 5–9

Seq function 18–200

Sequential File stages

defining maps 8–3

file formats for 8–5, 8–8
Index-7

Index
input data 8–4

Inputs page 8–4

output data 8–7

Outputs page 8–7

specifying a file name for 8–4, 8–8

specifying line terminators 8–2

Stage page 8–2

server names, setting 19–57

SetLocale function 18–201

setting file formats 8–5, 8–8

shortcut menus in Transformer Editor 9–3

Sin function 18–213

SinH function 18–213

Sleep statement 18–202

Soundex function 18–203

Space function 18–204

SQL

data precision 10–4, 10–6

data scale factor 10–4, 10–6

data type 10–3, 10–6

display characters 10–4, 10–6

SQL Server

supported data types 15–15

unsupported BCP switches 15–14

unsupported data types 15–16

SQL statements

entering 3–8, 4–5

syntax 3–16, 4–14, 5–9

viewing 3–8, 3–15, 4–5, 4–13, 5–6, 5–9

sqlldr command

log file 15–27

running under UNIX 15–26

specifying the control file 15–24

specifying the data file 15–25

Sqrt function 18–205

SQuote function 18–206

stage properties

BCPLoad 15–16

Orabulk 15–24

Stage Type dialog box

and BCPLoad plug-ins 15–16

and plug-ins 15–6

stages

displaying information about 19–145

editing

Aggregator 10–1

BCPLoad 15–18

Hashed File 6–2

ODBC 3–1

Orabulk 15–23

plug-in 15–6
Index-8
Sequential File 8–1

Transformer 9–1

UniData 7–1

UniVerse 4–1, 5–1

functions used for accessing 19–5

listing 19–142

Orabulk 15–23

retrieving information about 19–36

Status function 18–207

stored procedures

for ODBC input data 3–13

for ODBC output data 3–22

input parameters 3–16

using in a BCPLoad stage 15–20

Str function 18–209

Subroutine statement 18–210

supported BCP switches 15–16

supported data types

SQL Server 15–15

Sybase Server 15–15

Sybase Server 15–13

supported data types 15–15

unsupported BCP switches 15–14

unsupported data types 15–16

T
table definitions from a BCPLoad stage 15–15

table name 3–7, 4–4, 5–6

Tan function 18–213

TanH function 18–213

testing BASIC routines 17–14

threads

and DSFindFirstLogEntry 19–16

and DSFindNextLogEntry 19–16

and DSGetLastErrorMsg 19–22

and error storage 19–3

and errors 19–21

and log entries 19–15

and result data 19–2

using multiple 19–3

Time function 18–211

TimeDate function 18–212

tokens

_cplusplus 19–2

STDC 19–2

WIN32 19–2

toolbars

debugger 16–7

Transformer Editor 9–2

transaction control information 3–9, 4–6, 15–9

Transaction Handling 3–16, 4–14
Book Title

Index
transform functions

creating 17–12

examples 20–25

Transformer Editor 9–2

link area 9–3

meta data area 9–3

shortcut menus 9–3

toolbar 9–2

Transformer stages 9–1

basic concepts 9–4

editing 9–7

Expression Editor 9–23

specifying after-stage subroutines 9–18

specifying before-stage subroutines 9–18

trigonometric functions 18–212, 18–213

Trim function 18–215

TrimB function 18–217

TrimF function 18–218

troubleshooting compilation errors 16–8

U
UniChar function 18–219

UniData 6 stages

account name for 5–5

and UniData 6 connection 5–4

UniData stages

account name for 7–2

defining maps 7–3

Inputs page 7–4

output data from 7–5

Outputs page 7–6

specifying a file name for 7–4, 7–6

Stage page 7–2

update action 7–4

UniSeq function 18–220

UniVerse stages 4–1, 5–1

account name for 4–3

and UniVerse connection 4–2, 5–3

connection type for 4–2, 5–3

editing 4–1, 5–1

entering SQL statements in 4–5

input data to 4–4, 5–5

using a user-defined SQL

statement 4–10

output data from

using a generated query 4–14, 5–9

using a user-defined SQL

statement 4–18

Stage page 4–2, 5–2

table name for 4–4, 4–13, 5–6, 5–8

update action for 4–5
Book Title
viewing SQL statements in 4–5, 4–13, 5–6,
5–9

UNIX line terminators 8–2

unsupported BCP switches

SQL Server 15–14

Sybase Server 15–14

unsupported data types

SQL Server 15–16

Sybase Server 15–16

UpCase function 18–221

update action

in Hashed File stages 6–4

in ODBC stages 3–7

in UniData stages 7–4

in UniVerse stages 4–5

user names, setting 19–57

user-defined SQL queries 3–16, 4–13

user-defined SQL statements

for ODBC input data 3–12

for ODBC output data 3–21

for UniVerse input data 4–10

for UniVerse output data 4–18

using

BCPLoad stage 15–18

COUNT function 3–20, 4–18

generated queries

for ODBC input data 3–11, 4–9, 5–7

for ODBC output data 3–16

for UniVerse output data 4–14, 5–9

GROUP BY clauses 3–20, 4–18

HAVING clauses 3–19, 4–16

plug-ins 15–6

stored procedures

for ODBC input data 3–13

for ODBC output data 3–22

in BCPLoad stages 15–20

SUM function 3–20, 4–18

user-defined SQL statements

for ODBC input data 3–12

for ODBC output data 3–21

for UniVerse input data 4–10

for UniVerse output data 4–18

WHERE clauses 3–18, 4–16, 5–10

V
validating data values 15–24

values

converting 15–23

empty 15–28

null 15–28

version number for a BASIC routine 17–7
Index-9

Index
viewing

BASIC routine definitions 17–17

BCPLoad plug-in definitions 15–16

plug-in definitions 15–3

SQL statements 3–8, 3–15, 4–5, 4–13, 5–6,
5–9

vmdsapi.dll 19–4

vmdsapi.lib library 19–4

W
warning limits 19–51, 19–141

warnings 19–147

WEOFSeq statement 18–222

WHERE clause 3–17, 4–15, 5–9

using 3–18, 4–16, 5–10

WIN32 token 19–2

Windows line terminators 8–2

WriteSeq statement 18–223

WriteSeqF statement 18–225

writing

BASIC routines 17–1

DataStage API programs 19–3

X
Xtd function 18–227
Index-10
 Book Title

	Server Job Developer’s Guide
	How to Use this Guide
	Organization of This Manual
	Documentation Conventions
	User Interface Conventions

	DataStage Documentation

	Contents
	Introduction
	DataStage Server Jobs
	Plug-in Stages
	DataStage Packs

	Custom Resources
	After Development

	Optimizing Performance in Server Jobs
	DataStage Jobs and Processes
	Single Processor and Multi-Processor Systems
	Partitioning and Collecting

	Diagnosing Job Limitations
	Interpreting Performance Statistics

	Improving Performance
	CPU Limited Jobs - Single Processor Systems
	CPU Limited Jobs - Multi-processor Systems
	I/O Limited Jobs
	Hash File Design

	ODBC Stages
	Using ODBC Stages
	Defining the Connection
	ODBC Connection Parameters

	Defining Character Set Maps
	Handling SQL Server Data Types
	GUID Type
	Timestamp type
	SmallDateTime

	Defining ODBC Input Data
	Specifying Transaction Control Information
	Using a Generated Query
	Using a User-Defined SQL Statement
	Using a Stored Procedure

	Defining ODBC Output Data
	Key Fields
	Using a Generated Query
	Using a User-Defined SQL Statement
	Using a Stored Procedure

	UniVerse Stages
	Using UniVerse Stages
	Defining the Connection
	UniVerse Connection Parameters

	Defining UniVerse Input Data
	Specifying Transaction Control Information
	Using a Generated Query
	Using a User-Defined SQL Statement
	Create Table Options

	Defining UniVerse Output Data
	Key Fields
	Using a Generated Query
	Using a User-Defined SQL Statement

	UniData 6 Stages
	Using UniData 6 Stages
	Connecting to UniData 6
	UniData 6 Account
	DataStage DSN for UniData 6 Server
	UniData 6 Connection Parameters

	Defining UniData 6 Input Data
	Using a Generated Query

	Defining UniData 6 Output Data
	Key Fields
	Using a Generated Query

	Hashed File Stages
	Using a Hashed File Stage
	Defining Hashed File Input Data
	Create File Options

	Defining Hashed File Output Data
	Using the Euro Symbol on Non-NLS systems

	UniData Stages
	Using a UniData Stage
	Defining Character Set Maps
	Defining UniData Input Data
	Defining UniData Output Data

	Sequential File Stages
	Using a Sequential File Stage
	Defining Character Set Maps
	Defining Sequential File Input Data
	Defining Sequential File Output Data
	How the Sequential Stage Behaves

	Transformer Stages
	Using a Transformer Stage
	Transformer Editor Components
	Toolbar
	Link Area
	Meta Data Area
	Shortcut Menus

	Transformer Stage Basic Concepts
	Input Links
	Output Links
	Before-Stage and After-Stage Routines

	Editing Transformer Stages
	Using Drag and Drop
	Find and Replace Facilities
	Select Facilities
	Specifying the Primary Input Link
	Creating and Deleting Columns
	Moving Columns Within a Link
	Editing Column Meta Data
	Defining Output Column Derivations
	Editing Multiple Derivations
	Defining Input Column Key Expressions
	Defining Multirow Lookup for Reference Inputs
	Specifying Before-Stage and After-Stage Subroutines
	Defining Constraints and Handling Rejects
	Specifying Link Order
	Defining Local Stage Variables

	The DataStage Expression Editor
	Expression Format
	Entering Expressions
	Completing Variable Names
	Validating the Expression
	Exiting the Expression Editor
	Configuring the Expression Editor

	Transformer Stage Properties
	Stage Page
	Inputs Page
	Outputs Page

	Aggregator Stages
	Using an Aggregator Stage
	Before-Stage and After-Stage Subroutines
	Defining Aggregator Input Data
	Defining the Input Column Sort Order

	Defining Aggregator Output Data
	Aggregating Data

	Folder Stages
	Using Folder Stages
	Defining Character Set Maps
	Folder Stage Input Data
	Folder Stage Output Data

	Inter-Process Stages
	Using the IPC Stage
	Defining IPC Stage Properties
	Defining IPC Stage Input Data
	Defining IPC Stage Output Data

	Link Partitioner Stages
	Using a Link Partitioner Stage
	Before-Stage and After-Stage Subroutines
	Defining Link Partitioner Stage Properties
	Defining Link Partitioner Stage Input Data
	Defining Link Partitioner Stage Output Data

	Link Collector Stages
	Using a Link Collector Stage
	Before-Stage and After-Stage Subroutines
	Defining Link Collector Stage Properties
	Defining Link Collector Stage Input Data
	Defining Link Collector Stage Output Data

	Plug-Ins and Plug-In Stages
	Plug-Ins
	Manually Registering a Plug-In Definition
	Viewing Plug-In Definition Details
	Removing a Registered Plug-In
	Packaging a Plug-In
	Using a Plug-In

	Plug-In Stages
	Before-Stage and After-Stage Subroutines
	Defining Plug-In Input Data
	Defining Plug-In Output Data
	Editing Properties
	Defining Character Set Maps

	BCPLoad Stages
	Overview of the BCPLoad Plug-In
	Before You Start
	Table Definitions
	SQL Data Types
	The BCPLoad Plug-In Definition
	Using the BCPLoad Stage
	Editing the BCPLoad Stage

	Orabulk Stages
	Using the Orabulk Stage
	Specifying the Stage Properties
	Defining Character Set Maps
	Loading the Files into Oracle

	Debugging, Compiling, and Releasing a Job
	The DataStage Debugger
	Debugging Shared Containers

	Compiling a Job
	Compilation Checks
	Successful Compilation
	Troubleshooting

	Graphical Performance Monitor
	Releasing a Job

	Programming in DataStage
	Programming Components
	Routines
	Transforms
	Functions
	Expressions
	Subroutines
	Macros
	Precedence Rules

	Working with Routines
	The Server Routine Dialog Box
	Creating a Routine
	Viewing and Editing a Routine
	Copying a Routine
	Renaming a Routine

	Defining Custom Transforms
	External ActiveX (OLE) Functions
	Importing External ActiveX (OLE) Functions

	BASIC Programming
	Syntax Conventions
	The BASIC Language
	Constants
	Variables
	Dimensioned Arrays

	Expressions
	Functions
	Statements
	Statement Labels

	Subroutines
	Special DataStage BASIC Subroutines

	Operators
	Arithmetic Operators
	Concatenating Strings
	Extracting Substrings
	Relational Operators
	Pattern Matching Operators
	If Operators
	Logical Operators
	Assignment Operators

	Data Types in BASIC Functions and Statements
	Empty BASIC Strings and Null Values
	Fields
	Reserved Words
	Source Code and Object Code
	Special Characters

	System Variables
	BASIC Functions and Statements
	Compiler Directives
	Declaration
	Job Control
	Program Control
	Sequential File Processing
	String Verification and Formatting
	Substring Extraction and Formatting
	Data Conversion
	Data Formatting
	Locale Functions

	$Define Statement
	Syntax
	Remarks
	Examples

	$IfDef and $IfNDef Statements
	Syntax
	Remarks
	Example

	$Include Statement
	Syntax
	Remarks

	$Undefine Statement
	Syntax

	[] Operator
	Syntax
	Remarks
	Examples

	* Statement
	Syntax
	Remarks
	Example

	Abs Function
	Syntax
	Remarks
	Example

	Alpha Function
	Syntax
	Remarks
	Examples

	Ascii Function
	Syntax
	Remarks
	Example

	Assignment Statement
	Syntax
	Remarks

	Bit functions
	Syntax
	Remarks
	Examples

	Byte-Oriented Functions
	Byte Function
	Syntax
	Remarks

	ByteLen Functionen
	Syntax
	Remarks

	ByteType Function
	Syntax
	Remarks

	ByteVal Function
	Syntax
	Remarks

	Call Statement
	Syntax
	Remarks
	Example

	Case Statement
	Syntax
	Remarks
	Example

	Cats Statement
	Syntax
	Example

	Change Function
	Syntax
	Remarks
	Examples

	Char Function
	Syntax
	Remarks
	Example

	Checksum Function
	Syntax
	Example

	CloseSeq Statement
	Syntax
	Remarks

	Col1 Function
	Syntax
	Remarks
	Examples

	Col2 Function
	Syntax
	Remarks
	Examples

	Common Statement
	Syntax
	Remarks
	Example

	Compare Function
	Syntax
	Remarks
	Example

	Convert Function
	Syntax
	Remarks
	Example

	Convert Statement
	Syntax
	Remarks
	Example

	Count Function
	Syntax
	Remarks
	Example

	CRC32 Function
	Syntax
	Example

	Date Function
	Syntax
	Remarks
	Example

	DCount Function
	Syntax
	Remarks
	Example

	Deffun Statement
	Syntax
	Remarks
	Example

	Dimension Statement
	Syntax
	Remarks
	Example

	Div Function
	Syntax
	Remarks
	Examples

	DownCase Function
	Syntax
	Example

	DQuote Function
	Syntax
	Remarks
	Example

	DSAttachJob
	Syntax
	Remarks
	Example

	DSCheckRoutine
	Syntax
	Example

	DSDetachJob
	Syntax
	Example

	DSExecute
	Syntax
	Remarks

	DSGetCustInfo
	Syntax

	DSIPCPageProps
	Syntax
	Example

	DSGetJobInfo
	Syntax
	Remarks
	Examples

	DSGetJobMetaBag
	Syntax
	Example

	DSGetLinkInfo
	Syntax
	Remarks
	Example

	DSGetLinkMetaData
	Syntax
	Example

	DSGetLogEntry
	Syntax
	Example

	DSGetLogSummary
	Syntax
	Example

	DSGetNewestLogId
	Syntax
	Example

	DSGetParamInfo
	Syntax
	Remarks
	Example

	DSGetProjectInfo
	Syntax

	DSGetStageInfo
	Syntax
	Remarks
	Example

	DSGetStageLinks
	Syntax
	Example

	DSGetStagesOfType
	Syntax
	Example

	DSGetStagesTypes
	Syntax
	Example

	DSGetProjectInfo
	Syntax

	DSLogEvent
	Syntax
	Example

	DSLogFatal
	Syntax
	Remarks
	Example

	DSLogInfo
	Syntax
	Remarks
	Example

	DSLogToController
	Syntax
	Remarks
	Example

	DSLogWarn
	Syntax
	Remarks
	Example

	DSMakeJobReport
	Syntax
	Remarks
	Example

	DSMakeMsg
	Syntax
	Remarks
	Example

	DSPrepareJob
	Syntax
	Example

	DSRunJob
	Syntax
	Remarks
	Example

	DSSendMail
	Syntax
	Remarks
	Example

	DSSetGenerateOpMetaData
	Syntax
	Example

	DSSetJobLimit
	Syntax
	Example

	DSSetParam
	Syntax
	Example

	DSSetUserStatus
	Syntax
	Example

	DSStopJob
	Syntax
	Example

	DSTransformError
	Syntax
	Remarks
	Example

	DSTranslateCode
	Syntax
	Remarks
	Example

	DSWaitForFile
	Syntax
	Examples

	DSWaitForJob
	Syntax
	Remarks
	Example

	Dtx Function
	Syntax
	Example

	Ebcdic Function
	Syntax
	Remarks
	Example

	End Statement
	Syntax
	Remarks
	Examples

	Equate Statement
	Syntax
	Remarks
	Example

	Ereplace Function
	Syntax
	Remarks
	Examples

	Exchange Function
	Syntax
	Remarks
	Example

	Exp Function
	Syntax
	Remarks
	Example

	Field Function
	Syntax
	Examples

	FieldStore Function
	Syntax
	Example

	FIX Function
	Syntax
	Examples

	Fmt Function
	Syntax
	Remarks

	Format Expression
	Syntax
	Output Length
	Fill Character
	Justification
	Monetary and Numeric Formatting
	Masked Output
	Formatting Exponential Numbers
	Examples

	FmtDP Function
	Syntax
	Remarks

	Fold Function
	Syntax
	Remarks
	Example

	FoldDP Function
	Syntax
	Remarks

	For…Next Statements
	Syntax
	Remarks
	Example

	Function Statement
	Syntax
	Remarks
	Calling the User-Written Function
	Examples

	GetLocale Function
	Syntax
	Remarks

	GoSub Statement
	Syntax
	Remarks
	Example

	GoTo Statement
	Syntax
	Remarks
	Example

	Iconv Function
	Syntax
	Remarks
	Examples
	ASCII Conversions
	Date Conversions
	Group Conversions
	Length Conversions
	Masked Character Conversions
	Masked Decimal Conversions
	Masked Left and Right Conversions
	Numeral Conversions
	Pattern Matching Conversions
	Radix Conversions
	Range Check Conversions
	Soundex Conversions
	Time Conversions

	If…Else Statements
	Syntax
	Remarks
	Example

	If…Then…Else Statements
	Syntax
	Remarks
	Example

	If…Then Statements
	Syntax
	Remarks
	Example

	If…Then…Else Operator
	Syntax
	Remarks
	Example

	Index Function
	Syntax
	Examples

	InMat Function
	Syntax
	Remarks
	Example

	Int Function
	Syntax
	Example

	IsNull Function
	Syntax
	Remarks
	Example

	Left Function
	Syntax
	Examples

	Len Function
	Syntax
	Examples

	LenDP Function
	Syntax
	Remarks

	Ln Function
	Syntax
	Remarks
	Example

	LOCATE statement
	Syntax
	Remarks
	Examples

	Loop…Repeat Statements
	Syntax
	Remarks
	Example

	Mat Statement
	Syntax
	Remarks
	Examples

	MatchField Function
	Syntax
	Remarks
	Examples

	Mod Function
	Syntax
	Remarks
	Examples

	Nap Statement
	Syntax
	Remarks
	Example

	Neg Function
	Syntax
	Example

	Not Function
	Syntax
	Remarks
	Examples

	Null Statement
	Syntax
	Remarks
	Example

	Num Function
	Syntax
	Remarks
	Examples

	Oconv Function
	Syntax
	Remarks
	Examples
	ASCII Conversions
	Date Conversions
	Group Conversions
	Length Conversions
	Masked Character Conversions
	Masked Decimal Conversions
	Masked Left and Right Conversions
	Numeral Conversions
	Pattern Matching Conversions
	Radix Conversions
	Range Check Conversions
	Time Conversions

	On…GoSub Statements
	Syntax
	Remarks
	Example

	On…GoTo Statement
	Syntax
	Remarks
	Example

	OpenSeq Statement
	Syntax
	Remarks
	Example

	Pattern Matching Operators
	Syntax
	Remarks

	Pwr Function
	Syntax
	Remarks
	Example

	Randomize Statement
	Syntax
	Remarks
	Example

	ReadSeq
	Syntax
	Remarks
	Example

	REAL Function
	Syntax

	Return Statement
	Syntax
	Remarks

	Return (value) Statement
	Syntax
	Remarks
	Example

	Right Function
	Syntax
	Examples

	Rnd Function
	Syntax
	Remarks
	Example

	Seq Function
	Syntax
	Remarks
	Example

	SetLocale
	Syntax
	Remarks
	Example

	Sleep Statement
	Syntax
	Remarks
	Example

	Soundex Function
	Syntax
	Remarks
	Example

	Space Function
	Syntax
	Example

	Sqrt Function
	Syntax
	Example

	SQuote Function
	Syntax
	Example

	Status Function
	Syntax
	Remarks
	Examples

	Str Function
	Syntax
	Example

	Subroutine Statement
	Syntax
	Remarks
	Example

	Time Function
	Syntax
	Remarks
	Example

	TimeDate Function
	Syntax
	Remarks
	Example

	Trigomentric Functions
	General Syntax
	Remarks
	Examples

	Trim Function
	Syntax
	Remarks
	Examples

	TrimB Function
	Syntax
	Example

	TrimF Function
	Syntax
	Example

	UniChar Function
	Syntax
	Remarks

	UniSeq Function
	Syntax
	Remarks

	UpCase Function
	Syntax
	Example

	WEOFSeq Function
	Syntax
	Remarks
	Example

	WriteSeq Function
	Syntax
	Remarks
	Example

	WriteSeqF Function
	Syntax
	Remarks
	Example

	Xtd Function
	Syntax
	Example

	Conversion Codes
	Extracting characters from fields:
	Preprocessing data:
	Formatting numbers, dates, times, and currency:
	Radix conversions:

	D
	Syntax
	Value Returned by the Status Function
	Examples

	G
	Syntax
	Examples

	L
	Syntax
	Examples

	MB
	Syntax
	Remarks
	Examples

	MCA
	Syntax
	Examples

	MC/A
	Syntax
	Examples

	MCD
	Syntax
	Examples

	MCL
	Syntax
	Examples

	MCM
	Syntax
	Example

	MC/M
	Syntax
	Example

	MCN
	Syntax
	Examples

	MC/N
	Syntax
	Examples

	MCP
	Syntax
	Examples

	MCT
	Syntax
	Examples

	MCU
	Syntax
	Examples

	MCX
	Syntax
	Examples

	MD
	Syntax
	Examples

	ML & MR
	Syntax
	Examples

	MM
	Syntax
	Remarks

	MO
	Syntax
	Remarks
	Examples

	MP
	Syntax
	Remarks

	MT
	Syntax
	Remarks
	Examples

	MUOC
	Syntax
	Remarks
	Example

	MX
	Syntax
	Remarks
	Examples

	MY
	Syntax
	Remarks
	Examples

	NL
	Syntax
	Example

	NLS
	Syntax
	Remarks

	NR
	Syntax
	Remarks
	Examples

	P
	Syntax
	Remarks
	Examples

	R
	Syntax
	Remarks
	Examples

	S
	Syntax
	Remarks
	Examples

	TI
	Syntax
	Example

	DataStage Development Kit (Job Control Interfaces)
	DataStage Development Kit
	The dsapi.h Header File
	Data Structures, Result Data, and Threads
	Writing DataStage API Programs
	Building a DataStage API Application
	Redistributing Applications
	API Functions

	DSAddEnvVar
	Syntax
	Parameters
	Return Values
	Remarks

	DSAddProject
	Syntax
	Parameters
	Return Values

	DSCloseJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSCloseProject
	Syntax
	Parameter
	Return Value
	Remarks

	DSDeleteEnvVar
	Syntax
	Parameters
	Return Values

	DSDeleteProject
	Syntax
	Parameter
	Return Value

	DSFindFirstLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSFindNextLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Parameters
	Return Values

	DSGetJobInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetLastError
	Syntax
	Return Values
	Remarks

	DSGetLastErrorMsg
	Syntax
	Parameter
	Return Values
	Rermarks

	DSGetLinkInfo
	Syntax
	Parameters
	Return Value
	Remarks

	DSGetLogEntry
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetNewestLogId
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetParamInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Return Values
	Remarks

	DSGetReposInfo
	Syntax
	Parameters
	Return Value

	DSGetReposUsage
	Syntax
	Parameters
	Return Value

	DSGetStageInfo
	Syntax
	Parameters
	Return Values
	Remarks

	DSGetProjectList
	Syntax
	Parameters
	Return Values

	DSListEnvVars
	Syntax
	Parameter
	Return Values
	Remarks

	DSListProjectProperties
	Syntax
	Parameter
	Return Values
	Remarks

	DSLockJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSLogEvent
	Syntax
	Parameters
	Return Values
	Remarks

	DSMakeJobReport
	Syntax
	Parameters
	Return Values

	DSOpenJob
	Syntax
	Parameters
	Return Values
	Remarks

	DSOpenProject
	Syntax
	Parameter
	Return Values
	Remarks

	DSRunJob
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetEnvVar
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetGenerateOpMetaData
	Syntax
	Parameters
	Return Values

	DSSetJobLimit
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetParam
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetProjectProperty
	Syntax
	Parameters
	Return Values
	Remarks

	DSSetServerParams
	Syntax
	Parameters
	Return Values
	Remarks

	DSStopJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSUnlockJob
	Syntax
	Parameter
	Return Values
	Remarks

	DSWaitForJob
	Syntax
	Parameter
	Return Values
	Remarks

	Data Structures
	DSCUSTINFO
	Syntax
	Members

	DSJOBINFO
	Syntax
	Members

	DSLINKINFO
	Syntax
	Members

	DSLOGDETAIL
	Syntax
	Members

	DSLOGEVENT
	Syntax
	Members

	DSPARAM
	Syntax
	Members

	DSPARAMINFO
	Syntax
	Members

	DSPROJECTINFO
	Syntax
	Members

	DSREPOSINFO
	Syntax
	Members

	DSREPOSUSAGE
	Syntax
	Members

	DSSTAGEINFO
	Syntax
	Members

	DSLINKINFO
	Syntax
	Members

	Error Codes
	DataStage BASIC Interface
	DSAttachJob
	Syntax
	Remarks
	Example

	DSCheckRoutine
	Syntax
	Example

	DSDetachJob
	Syntax
	Example

	DSExecute
	Syntax
	Remarks

	DSGetCustInfo
	Syntax

	DSIPCPageProps
	Syntax
	Example

	DSGetJobInfo
	Syntax
	Remarks
	Examples

	DSGetJobMetaBag
	Syntax
	Example

	DSGetLinkInfo
	Syntax
	Remarks
	Example

	DSGetLinkMetaData
	Syntax
	Example

	DSGetLogEntry
	Syntax
	Example

	DSGetLogSummary
	Syntax
	Example

	DSGetNewestLogId
	Syntax
	Example

	DSGetParamInfo
	Syntax
	Remarks
	Example

	DSGetProjectInfo
	Syntax

	DSGetStageInfo
	Syntax
	Remarks
	Example

	DSGetStageLinks
	Syntax
	Example

	DSGetStagesOfType
	Syntax
	Example

	DSGetStagesTypes
	Syntax
	Example

	DSGetProjectInfo
	Syntax

	DSLogEvent
	Syntax
	Example

	DSLogFatal
	Syntax
	Remarks
	Example

	DSLogInfo
	Syntax
	Remarks
	Example

	DSLogToController
	Syntax
	Remarks
	Example

	DSLogWarn
	Syntax
	Remarks
	Example

	DSMakeJobReport
	Syntax
	Remarks
	Example

	DSMakeMsg
	Syntax
	Remarks
	Example

	DSPrepareJob
	Syntax
	Example

	DSRunJob
	Syntax
	Remarks
	Example

	DSSendMail
	Syntax
	Remarks
	Example

	DSSetGenerateOpMetaData
	Syntax
	Example

	DSSetJobLimit
	Syntax
	Example

	DSSetParam
	Syntax
	Example

	DSSetUserStatus
	Syntax
	Example

	DSStopJob
	Syntax
	Example

	DSTransformError
	Syntax
	Remarks
	Example

	DSTranslateCode
	Syntax
	Remarks
	Example

	DSWaitForFile
	Syntax
	Examples

	DSWaitForJob
	Syntax
	Remarks
	Example

	Job Status Macros
	Command Line Interface
	Commands for Controlling DataStage Jobs
	Commands for Administering DataStage
	Commands for Searching Jobs

	XML Schemas and Sample Stylesheets

	Built-In Transforms and Routines
	Built-In Transforms
	String Transforms
	Date Transforms
	Data Type Transforms
	Key Management Transforms
	Measurement Transforms - Area
	Measurement Transforms - Distance
	Measurement Transforms - Temperature
	Measurement Transforms - Time
	Measurement Transforms - Volume
	Measurement Transforms - Weight
	Numeric Transforms
	Row Processor Transforms
	Utility Transforms

	Built-In Routines
	Built-In Before/After Subroutines
	Example Transform Functions

	Development Kit Program Example
	Index

