
IBM Information Integration

Classic Federation Client Guide

Version 9.1

SC19-1124-00

���

IBM Information Integration

Classic Federation Client Guide

Version 9.1

SC19-1124-00

���

Note

Before using this information and the product that it supports, be sure to read the general information under “Notices and

trademarks” on page 39.

© CrossAccess Corporation 1993, 2003.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Configuring clients 1

JDBC client 1

Establishing connections from JDBC applications

to data servers 1

Batch operations, scrollable ResultSets, and SQL

warnings with JDBC 2

ODBC clients 3

Configuring ODBC data sources 4

Configuring the ODBC driver on Windows . . . 5

Configuring the ODBC driver on Linux and UNIX 5

CLI clients 7

CLI client for UNIX, Linux, and Windows . . . 7

CLI client for native z/OS 9

CLI client for USS 10

Chapter 2. Configuring

communications between data servers

and clients 13

Communication between data servers and client

applications 13

Configuring data servers to use Cross Memory to

communicate with local client applications 13

TCP/IP for communication between data servers

and client applications 14

Configuring data servers to use TCP/IP to

communicate with client applications 15

IBM WebSphere MQ for communication between

data servers and client applications 16

Configuring data servers to use WebSphere MQ to

communicate with client applications 19

Chapter 3. Programming reference for

the JDBC driver 21

ConnectionPool interface 21

DataSource interface 23

XADataSource interface 26

java.sql.properties 27

Chapter 4. Programming reference for

the ODBC/CLI driver 29

Similarities and differences between ODBC and CLI 29

Implemented and deprecated APIs for ODBC and

CLI 30

C and SQL data types for ODBC and CLI 32

Binding input and output parameters from CLI

applications 33

Logs for the ODBC/CLI driver 34

Code pages for the ODBC/CLI driver 34

Accessing information about IBM . . . 37

Contacting IBM 37

Accessible documentation 38

Providing comments on the documentation 38

Notices and trademarks 39

Notices 39

Trademarks 41

Index 43

© Copyright IBM Corp. 2003, 2006 iii

iv Classic Federation Client Guide

Chapter 1. Configuring clients

This section contains procedures for configuring the Classic federation clients:

JDBC, ODBC, and CLI.

JDBC client

The JDBC client provides access to the data server from Java™ and Java-based

tools.

The JDBC client is compliant with JDBC 2.1 and requires Java Virtual Machine,

Version 1.3 or later. The JDBC client is distributed as a JAR (Java archive) file.

The JDBC architecture consists of the following components:

v The JDBC application that performs processing and invokes JDBC methods to

submit SQL statements and retrieve results.

v A Type 4 JDBC driver that uses a proprietary protocol to communicate with the

server and process JDBC API calls. The JDBC driver processes JDBC method

invocations, submits data requests to a specific data source, and returns results

to the application.

Establishing connections from JDBC applications to data

servers

Your JDBC applications can connect to data servers with TCP/IP or WebSphere®

MQ.

Procedure

To establish a connection from a JDBC application to a data server:

1. Load the driver class, com.ibm.cac.jdbc.Driver.

The following fragment of Java code loads the driver and its supporting

classes:

Class.forName("com.ibm.cac.jdbc.Driver");

2. Connect to the data server by using either TCP/IP or WebSphere MQ as the

communication protocol in the URL.

The name of the data source can be a minimum of 1 character and a maximum

of 18 characters. The DATASOURCE name corresponds to the query processor

service name. The service name is defined in the configuration file for the data

server in field 2 of the service information entry for the CACQP task. You can

define one or more query processors in the configuration file. The

DATASOURCE name must correspond to the query processor that the client

connects to.

v For TCP/IP, complete the URL with the following information:

tcp/hostname or IP address/port number or name of service

hostname or IP address

The z/OS® system that hosts the data server. This value with the

port number or service name identifies the data server that the JDBC

© Copyright IBM Corp. 2003, 2006 1

client connects to. If the z/OS system is registered with your

network name server, you can use the host name. Otherwise, use the

IP_address.

port number or name of service

Supplies the host port number or service name of the data server.

This value with the host name or IP address identifies the data

server to which the JDBC client connects. If the data server is

registered with a network name server, you can use the data server

name. Otherwise, you must use the TCP port number, which is the

decimal value of the socket number.
v For WebSphere MQ, complete the URL with the following information:

mqi/source queue manager/source model queue/destination queue manager/

destination queuehost name of channel/channel

source queue manager

Required. The name of the queue manager where a model queue is

defined for use as a dynamic local queue, the local endpoint.

source model queue

Required. The name of the model queue which is defined under the

source queue manager, on which a dynamic queue is generated, at

the local endpoint.

destination queue manager

Required. The name of the queue manager that owns the queue on

which the data server is listening.

destination queue

Required. The name of the queue on which the data server is

listening.

host name of channel

Required for client applications on Sun Solaris. Optional on all other

operating systems. In conjunction with Channel name, establishes a

TCP/IP client connection to the source queue, rather than a

locally-bound connection.

channel

Required for client applications on Solaris. Cannot be used on z/OS.

Optional on all other operating systems. In conjunction with host

name of the channel, establishes a TCP/IP client connection to the

source queue.

The following fragment of Java code connects to a data server with the data source

name CACSAMP by using TCP/IP. The code returns a connection object that is

named CACConnection:

java.sql.Connection CACConnection =

 java.sql.DriverManager.getConnection(

 "jdbc:cac:CACSAMP:tcp/192.168.0.132/5000",

 "userid",

 "password");

Batch operations, scrollable ResultSets, and SQL warnings

with JDBC

The JDBC client includes support for batch operations, scrollable ResultSets, and

SQL warnings in the JDBC 2.1 specification.

Batch operations

2 Classic Federation Client Guide

v For java.sql.Statement objects, an executeUpdate, executeQuery, or

execute(sql) method with an UPDATE, DELETE, or INSERT statement

causes the update to be run even when batch operations are pending.

v For java.sql.PreparedStatement objects, an executeUpdate, executeQuery,

or execute() method with an UPDATE, DELETE, or INSERT statement

causes the update to be run even when the batch operations are

pending. The parameter markers are set before the first addBatch

operation on the statement.

v The executeBatch() method returns an array of integers that indicate the

number of rows that are affected. The method stops, if there is an error

in execution of any of the statements, and returns only the number of

integers that are successfully executed. If a statement returns a ResultSet

object, the executeBatch method treats the object as a failure and returns

the array of integers up to that point.

Updatable, scrollable ResultSets

v The ResultSet.deleteRow(), ResultSet.updateRow(), and

ResultSet.insertRow() methods are supported, and their changes are

visible. The changes made by other methods are not visible to the

application after the ResultSet object is created.

v The ResultSet.getXXX() methods work after the values are updated when

an insertRow method is created.

v In the case of the updateRow method, the ResultSet.getXXX() methods

return the new values for the updatedRow method after a

ResultSet.updateXXX() method. Otherwise, the ResultSet.getXXX()

methods return the old values.

The createStatement, prepareStatement, and prepareCall statements are

affected by the scrollable ResultSets feature. The types and concurrencies

supported are as follows:

TYPE_FORWARD_ONLY

TYPE_SCROLL_INSENSITIVE

CONCUR_READ_ONLY

CONCUR_UPDATABLE

By default, these statements create a statement that creates a result set that

is TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

SQL warnings

In Version 9, the JDBC driver support for the java.sql.SQLException class is

enhanced to support SQLWarnings. The SQLWarning objects are especially

useful when you use the JDBC driver to run DDL statements. The

following methods can return multiple SQLWarning objects:

v java.sql.Connection.getWarnings()

v java.sql.Statement.getWarnings()

v java.sql.ResultSet.getWarnings()

The SQLException class and methods return meaningful error messages,

with error substitution, that identify objects with errors more precisely.

ODBC clients

The Microsoft® Open Database Connectivity (ODBC) interface allows applications

to use Structured Query Language (SQL) to access data in database management

systems. The ODBC clients provide access to data on servers from Windows®,

UNIX®, and Linux®.

Chapter 1. Configuring clients 3

ODBC architecture consists of the following components:

v The ODBC-compliant application performs processing and calls the ODBC

functions to submit SQL statements and retrieve results.

v The driver manager loads drivers on behalf of an application.

v The driver processes ODBC function calls, submits SQL requests to a specific

data source, and returns results to the application.

The driver manager and the client appear to an application as one unit that

processes ODBC function calls.

Configuring ODBC data sources

ODBC data sources are registered and configured by using the Microsoft ODBC

Administrator. Configuration parameters that are unique to each data source are

maintained through this utility.

Before you begin

You must have the following information available when you add and configure

an ODBC data source:

v The data source name.

v TCP/IP information:

– The IP address or the host system where the server runs

– The port number that is assigned to the TCP/IP connection handler in the

service information entry parameter of the server

Before you configure the ODBC client, the Windows client must be set up for the

TCP/IP connection handler.

About this task

You can define many data sources on a single system. For example, a single IMS™

system can have a data source called MARKETING_INFO and a data source called

CUSTOMER_INFO. Each data source name needs to provide a unique description

of the data.

Procedure

To configure a data source:

1. Open the ODBC Data Source Administrator notebook.

a. Select Start > Settings > Control Panel.

b. Double-click Administrative Tools.

c. Double-click Data Sources (ODBC).
2. On the User DSN page, click Add.

3. Select IBM® WebSphere Classic ODBC Driver from the list.

4. Click Finish.

5. Select either TCP/IP or WebSphere MQ to use with the data source that you

are configuring.

The WebSphere Information Integrator z/OS ODBC Driver Setup notebook

displays. In the setup notebook, you can enter the values for the TCP/IP

parameters needed for communication with the data source. These parameters

must match the values specified in the configuration of the data source.

4 Classic Federation Client Guide

a. Optional: On the Code Pages page, enable client and server code pages. If

you select a bidirectional server and client code page, bidirectional layout

transformation is enabled. Set the configuration parameters for bidirectional

language support:

v SHAPING

v SYMMETRIC SWAPPING

v TEXT ORIENTATION

v TEXT PRESENTATION

If required, override the global converter settings at the data source level.

To override converter settings and bidirectional language options, use the

Advanced tab.

Configuring the ODBC driver on Windows

You can configure the ODBC driver by using the ODBC Administrator by selecting

Start > Programs > WebSphere Classic Tools V9.1 > WebSphere Classic ODBC

Administrator.

Configuring the ODBC driver on Linux and UNIX

You must use a configuration file to define ODBC data sources on Linux and

UNIX systems.

About this task

The configuration file resides in the installation directory /opt/IBM/WSClassic91/
cli/lib/cac.ini or, for the 64-bit version, in the 64-bit lib subdirectories.

Procedure

To configure the UNIX and Linux client:

The following configuration example uses the Data Direct driver manager to access

a data source defined as CACSAMP on the host.

1. Open the cac.ini file as shown in the following example.

* Sample configuration file *

* messages and codes catalog

NL CAT = /opt/IBM/WSClassic91/cli/lib

NL = US English

* user id/pwd needed for catalog security

USERID = CACUSER

USERPASSWORD = CACPWD

* default datasource location

DEFLOC = CACSAMP

DATASOURCE = CACSAMP tcp/111.111.111.111/nnnn

* performance and memory parameters

FETCH BUFFER SIZE = 32000

MESSAGE POOL SIZE = 1000000

2. Edit the DATASOURCE configuration parameter. If the application

communicates with multiple data servers or with multiple data sources within

a data server, you must define a DATASOURCE configuration parameter for

each data server or data source that you want to access.

Optional: You can enable a DATASOURCE override by specifying the

following parameters:

Chapter 1. Configuring clients 5

DATASOURCE = <data source name> <communication protocol>/<ip address>/

<port number>/<server codepage>/<client codepage>/<text presentation value>/

<text orientation value>/<symmetric swapping value>/<shaping value>/

For example:

DATASOURCE = CACSAMPB tcp/111.111.111.112/1112 IBM-420/IBM-1256/VISUAL/RTL/ON/ON

3. Change the communication string for the DATASOURCE parameter to specify

the method to communicate with the data server. You can use TCP/IP from the

client to access the data server. For example, specify the following

DATASOURCE definition for TCP/IP communication:

DATASOURCE = sourcename tcp/hostname/portnumber

4. Optional: Define code page information with the CLIENT CODEPAGE and

SERVER CODEPAGE parameters. If you have data sources for which you want

to use different code pages, you can define the data sources in separate

configuration files. If you select a bidirectional server and client code page,

bidirectional layout transformation is enabled. For bidirectional client and

server code pages, you can set the configuration parameters for bidirectional

language support:

v SHAPING

v SYMMETRIC SWAPPING

v TEXT ORIENTATION

v TEXT PRESENTATION
5. Create an environment variable CAC_CONFIG and set it to point to the cac.ini

configuration file.

6. Create a library environment variable that includes the directories where the

shared libraries are installed. Specify one of the following library environment

variables:

v For AIX®: LIBPATH

v For HP-UX: SHLIB_PATH

v For Linux: LD_LIBRARY_PATH

v For Solaris: LD_LIBRARY_PATH

7. Run the CLI application in this environment. For example, in AIX, run the

following export statement:

export CAC_CONFIG=/opt/IBM/WSClassic91/cli/lib/cac.ini

export LIBPATH=/lib:/opt/IBM/WSClassic91/cli/lib

program1

8. Edit the odbc.ini file to add a new data source for the UNIX, Linux and USS

client. The odbc.ini file is located in the CLI software directory for the

application where the driver manager resides. The data source name must

correspond to a query processor name defined on the data server and a

DATASOURCE name defined in the client configuration. For example:

[ODBC data sources]

CACSAMP=WebSphere Classic Federation client

.

.

.

[CACSAMP]

client=/opt/IBM/WSClassic91/cli/cacsqlcli.so

You can specify one of the following clients:

v AIX: cacsqlcli

v HP-UX: libcacsqlcli.sl

v Linux: libcacsqlcli.so

v Solaris: libcacsqlcli.so

6 Classic Federation Client Guide

You must add a data source definition for each data source that you want to

access.

CLI clients

IBM WebSphere Classic Federation Server for z/OS supports Call Level Interface

(CLI) clients for UNIX and Linux, native z/OS, and USS.

You can develop 32-bit and 64-bit CLI client applications. In Version 9, 64-bit CLI

drivers are available on AIX, Solaris, and HP-UX. The sample application clisamp

on Windows, UNIX and Linux is provided for testing connectivity and SQL calls.

The CLI clients communicate by using a connection handler to access the Classic

federation data sources configured in the network. Each CLI instance can service

multiple client applications and client tools concurrently.

The CLI architecture consists of the following components:

v The CLI-compliant application, which performs processing and calls the CLI

functions to submit SQL statements and retrieve results.

v CLI function calls, that submit SQL requests to a specific data source and return

results to the application.

You define a data source to identify the data that you want to access. The data

source name is equivalent to the DATASOURCE (service information entry, field 1)

in the system configuration file. Defining a data source consists of defining the

service name and communication parameters (TCP/IP) to determine the data

server with which the client is communicating.

You can also configure ODBC driver managers on the UNIX and Linux operating

systems to load the ODBC driver.

CLI client for UNIX, Linux, and Windows

With the CLI clients for UNIX, Linux, and Windows, applications use SQL to

access data in both relational and nonrelational database management systems.

These CLI clients provide access from a UNIX, Linux, or Windows client

application or tool to data servers.

Configuring the UNIX, Linux, and Windows CLI client

To configure the UNIX, Linux, and Windows CLI clients, you edit and customize

client configuration parameters.

About this task

The configuration file resides in the installation directory /opt/IBM/WSClassic91/
cli/lib/cac.ini. For the 64-bit version on AIX, Solaris, and HP-UX, the

configuration file resides in the 64-bit lib subdirectories.

Procedure

To configure the UNIX, Linux, and Windows clients:

1. Open the cac.ini file as shown in the following example.

* Sample configuration file *

Chapter 1. Configuring clients 7

* messages and codes catalog

NL CAT = /opt/IBM/WSClassic91/cli/lib

NL = US English

* user id/pwd needed for catalog security

USERID = CACUSER

USERPASSWORD = CACPWD

* default datasource location

DEFLOC = CACSAMP

DATASOURCE = CACSAMP tcp/111.111.111.111/nnnn

* performance and memory parameters

FETCH BUFFER SIZE = 32000

MESSAGE POOL SIZE = 1000000

2. Edit the DATASOURCE configuration parameter. If the application

communicates with multiple data servers or with multiple data sources within

a data server, you must define a DATASOURCE configuration parameter for

each data server or data source that you want to access.

Optional: You can enable a DATASOURCE override by specifying the

following parameters:

DATASOURCE = <data source name> <communication protocol>/<ip address>/

<port number>/<server codepage>/<client codepage>/<text presentation value>/

<text orientation value>/<symmetric swapping value>/<shaping value>/

For example:

DATASOURCE = CACSAMPB tcp/111.111.111.112/1112 IBM-420/IBM-1256/VISUAL/RTL/ON/ON

3. Change the communication string for the DATASOURCE parameter to specify

the method to communicate with the data server. You can use TCP/IP from the

client to access the data server. For example, specify the following

DATASOURCE definition for TCP/IP communication:

DATASOURCE = sourcename tcp/hostname/portnumber

4. Optional: Define code page information with the CLIENT CODEPAGE and

SERVER CODEPAGE parameters. If you have data sources for which you want

to use different code pages, you can define the data sources in separate

configuration files. If you select a bidirectional server and client code page,

bidirectional layout transformation is enabled. For bidirectional client and

server code pages, you can set the configuration parameters for bidirectional

language support:

v SHAPING

v SYMMETRIC SWAPPING

v TEXT ORIENTATION

v TEXT PRESENTATION
5. Create an environment variable CAC_CONFIG and set it to point to the cac.ini

configuration file.

6. Create a library environment variable that includes the directories where the

shared libraries are installed. Specify one of the following library environment

variables:

v For AIX: LIBPATH

v For HP-UX: SHLIB_PATH

v For Linux: LD_LIBRARY_PATH

v For Solaris: LD_LIBRARY_PATH

v For Windows: PATH

7. Run the CLI application in this environment. For example, in AIX, run the

following export statement:

export CAC_CONFIG=/opt/IBM/WSClassic91/cli/lib/cac.ini

export LIBPATH=/lib:/opt/IBM/WSClassic91/cli/lib

program1

8 Classic Federation Client Guide

CLI client for native z/OS

With the CLI client for native z/OS, you can build client applications by using the

IBM C runtime environment and link client applications to the SAS/C runtime

environment.

Building native z/OS CLI applications

For native z/OS, you need to build and link CLI applications for both the SAS/C

runtime environment and the IBM C runtime environment.

Compiling and linking with SAS/C

The sample JCL file CACBLDS is provided for compiling and linking a CLI

application on native z/OS in the SAS/C runtime environment. The CACBLDS

sample is located in the SCACSAMP data set. The CLI application is named

MYCLIAPP in the following example:

//**

//* SAS/C - COMPILE AND LINK A SAMPLE APPLICATION MYCLIAPP which

//* USES STANDARD SAS/C LC370C AND LC370LRG JCL PROCEDURES

//* NOTE: THE CLI/ODBC HEADER FILE CACCLI WILL BE INCLUDED FROM

//* CAC.V9R1M00.SCACSAMP DURING COMPILATION

//**

//*

//CCSAS EXEC LC370C,

// PARM.C=’RENT,DEF(SASC)’

//*

//C.SYSLIB DD DISP=SHR,DSN=CAC.V9R1M00.SCACSAMP

// DD DISP=SHR,DSN=&MACLIB;

//C.SYSIN DD DISP=SHR,DSN=your.source.library(MYCLIAPP)

//C.SYSLIN DD DISP=MOD,DSN=your.object.library(MYCLIAPP)

//*

//LLSAS EXEC LC370LRG,PARM.LKED=’LIST,MAP,RENT’,

// PARM.GO=’PROGRAM PARAMETERS’

//*

//LKED.SYSLMOD DD DISP=MOD,DSN=your.prog.load(MYCLIAPP)

//LKED.SYSLIB DD DISP=SHR,DSN=CAC.V9R1M00.SCACLOAD

// DD DDNAME=AR#&ALLRES;

// DD DISP=SHR,DSN=SASC.&ENV.OBJ;

// DD DISP=SHR,DSN=&SYSLIB;

// DD DISP=SHR,DSN=&CALLLIB;

//LKED.SYSIN DD DISP=SHR,DSN=*.CCSAS.C.SYSLIN

//

 INCLUDE SYSLIB(CACCLI)

 ENTRY MAIN

Compiling and linking with IBM C

The sample JCL CACBLDI is provided for compiling and linking a CLI application

on native z/OS in the IBM C runtime environment. The CACBLDI sample is

located in the SCACSAMP data set. The CLI application is named MYCLIAPP in

the following example:

//**

//* IBM C/370 - COMPILE AND LINK A SAMPLE APPLICATION MYCLIAPP WHICH

//* USES STANDARD EDCCPLG JCL PROCEDURE

//* NOTE: THE CLI/ODBC HEADER FILE CACCLI WILL BE INCLUDED FROM

//* CAC.V9R1M00.SCACSAMP DURING COMPILATION

//**

//*

//CCIBM EXEC EDCCPLG,

// INFILE=’your.source.library(MYCLIAPP)

// CPARM=’RENT,DEF(IBMC)’,

// GPARM=’PROGRAM PARAMETERS’

//*

Chapter 1. Configuring clients 9

//COMPILE.SYSLIB DD DISP=SHR,DSN=CAC.V9R1M00.SCACSAMP

//COMPILE.SYSIN DD DISP=SHR,DSN=your.source.library(MYCLIAPP)

//COMPILE.SYSLIN DD DISP=MOD,DSN=your.object.library(MYCLIAPP)

//*

//PLKED.SYSLMOD DD DISP=MOD,DSN=your.prog.load(MYCLIAPP)

//PLKED.SYSLIB DD DISP=SHR,DSN=CAC.V9R1M00.SCACLOAD

// DD DISP=SHR,DSN=CAC.V9R1M00.SCACSAMP

//PLKED.SYSIN DD DISP=SHR,DSN=*.COMPILE.SYSLIN

// DD *

 INCLUDE SYSLIB(CACSTUB)

 INCLUDE SYSLIB(CACCLIU)

 ENTRY MAIN

Configuring native z/OS CLI clients

You need to create JCL and create a configuration file to configure the native z/OS

CLI client.

Procedure

To configure the CLI client on native z/OS:

1. Create JCL that specifies the following DD names:

STEPLIB

Point to the data set where the load modules reside.

ENGCAT

Point to the catalog.

VHSCONFIG

Point to a data set that contains the CLI configuration parameters. It

contains task the common task parameters to set up the logger thread.
2. Use the sample configuration file CACINIZ. The CACINIZ sample is located in

the SCACCONF data set. The following example shows a configuration file that

the VHSCONFIG DD name refers to:

NL CAT = DD:ENGCAT

NL = US English

* user id/pwd needed for catalog security

USERID = cacuser

USERPASSWORD = cacpwd

* default datasource location

DEFLOC = CACSAMP

DATASOURCE = CACSAMP tcp/9.30.136.90/8095

DATASOURCE = SFCOMMON XM1/JOE/MARY

* performance and memory parameters

FETCH BUFFER SIZE = 32000

MESSAGE POOL SIZE = 4000000

TRACE LEVEL = 4

* Logger thread:

SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 1 5M 5M DISPLAY

CLI client for USS

With the CLI client for USS, you can build client applications by using the IBM C

runtime environment.

Building USS CLI applications

The sample file CACMAKEU is provided for compiling and linking a USS CLI

client application. The CACMAKEU sample is located in the SCACSAMP data set.

Example: The application is named mycliapp in this example:

10 Classic Federation Client Guide

PASSCC = cc

CC = $(PASSCC) $(CFLAGS) -I../include

CFLAGS = -W l,dll=no -DMVS -DUNIX -DBIGENDIAN

MAKEFILE = mycliapp.cuu

CLISAMPLIB = mycliapp.c CACSTUB

default: mycliapp

myclisapp: $(CLISAMPLIB:.c=.o)

 cc -o $@ $(CLISAMPLIB:.c=.o) //CAC.V9R1M00.SCACLOAD(CACCLIU)

$(CLISAMPLIB:.c=.o):

 $(CC) -W l,dll=no -c $*.c

You also need to include the header file provided in member CACCLI. Copy the

file contents into a corresponding header file and rename the file caccli.h. In the

example above, the header file is placed in the relative path ../include.

Configuring the USS CLI client

You need to create JCL and create a configuration file to configure the native USS

CLI client. In addition, you can use the cacprtlg utility to format the log file.

Before you begin

The authorization ID needs search authority for the directory that contains the

configuration file and read permissions.

Procedure

To configure and run the CLI client on USS:

1. Define the following environments variables:

CAC_CONFIG

Point to the configuration file. For example, the following export

statement refers to the file /usr/test/cac.ini in HFS:

export CAC_CONFIG=hfs:/usr/test/cac.ini

STEPLIB

Specify the load library where the load modules are located. For

example:

export STEPLIB=CAC.V9R1M00.SCACLOAD

CTRANS

Specify the SAS/C transient libraries. For example:

export ddn_CTRANS=CAC.V9R1M00.SASC.C650.LINKLIB

2. Define configuration parameters for the CLI client on USS. Use the sample USS

configuration file CACINIU to create the configuration file. The CACINIU

sample is located in the SCACSAMP data set.

NL CAT = //dsn:CAC.V9R1M00.ENGCAT

NL = US English

* user id/pwd needed for catalog security

USERID = cacuser

USERPASSWORD = cacpwd

* default datasource location

DEFLOC = CACSAMP

DATASOURCE = CACSAMP tcp/9.30.136.90/8095

DATASOURCE = SFCOMMON XM1/JOE/MARY

* performance and memory parameters

Chapter 1. Configuring clients 11

FETCH BUFFER SIZE = 32000

MESSAGE POOL SIZE = 4000000

TRACE LEVEL = 4

TASK PARAMETERS = CACLOG=hfs:/u/test/clisamp/caclog

In this example:

v The NL CAT configuration parameter points to the ENGCAT file and use the

prefix: //dsn:.

v When the TRACE LEVEL configuration parameter is set, the CLI driver starts

the logger task. The CACLOG parameter indicates the file to where the

logger should write the log messages.

Running the cacprtlg utility:

The logger generates a binary log file. You can use the cacprtlg utility to format the

binary log file. The cacprtlg utility is a SAS/C utility that writes formatted log

records to standard output.

 Before you begin

The authorization ID needs execute permissions to run the cacprtlg utility.

Procedure

To run the cacprtlg utility:

1. Define the following environments variables:

ddn_VHSCONF

Set this variable to point to the cac.ini configuration file as shown in

the following example:

export ddn_VHSCONF=hfs:/usr/lpp/cac/cac.ini

ddn_CACLOG

Set this variable to point to the logger output as shown in the following

example:

export ddn_CACLOG=hfs:/usr/lpp/cac/caclog

2. Create a file in the path named cacprtlg in the HFS file system. Creating this

file informs the run-time loader to look for cacprtlog in the STEPLIB variable.

Use the following commands to create the file:

touch cacprtlog

chmod 755 cacprtlog

chmod +t cacprtlog

Recommendation: Redirect the cacprtlg output to a file. Then download and

view the file on a different operating system.

12 Classic Federation Client Guide

Chapter 2. Configuring communications between data servers

and clients

This section describes the communication configuration options and data server

configuration options that are required for Cross Memory, IBM WebSphere MQ,

and TCP/IP communications.

Communication between data servers and client applications

A data server can accept connections from both local and remote client

applications. Configuration parameters on the data server and on the client

provide for the connections.

The following parameters are required to configure a connection between a client

application and a data server:

v DATASOURCE configuration parameter

This parameter specifies two subparameters:

– Data source name: Identifies which query processor in the data server handles

requests for all client applications connecting to the query processor by means

of the information in the second subparameter. The data server master

configuration file must include a service information entry for the query

processor. The service name specified for the query processor must match the

data source name.

– Communications compound address: Establishes a communications path to

the data server that contains the query processor to which the client connects.

The data server master configuration file must include a service information

entry for a connection handler. This service information entry must specify

this compound address in field 10. A data server configured in this way

listens for connections on that address. A client application then connects to

that address and a communication session results.
v Service information entry for the data server that defines a query processor

(CACQP).

v Service information entry for the data server that defines connection handler

service (CACINIT).

Configuring data servers to use Cross Memory to communicate with

local client applications

If a client application is to access a data server locally, the client application and

the data server can communicate by means of Cross Memory.

Before you begin

You need to know the service names of the query processors that will handle the

queries issued by the client applications. The service name for a query processor is

in field 2 of the query processor service information entry.

A client application and a data server can also communicate by means of TCP/IP.

Procedure

© Copyright IBM Corp. 2003, 2006 13

To configure Cross Memory for communications between data servers and local

client applications:

1. Open the master configuration member (SCACCONF member CACDSCF) for

the data server in an editor.

2. Uncomment the service information entry for the Cross Memory connection

handler service.

You can identify the service information entry by the comments in the master

configuration member.

3. In field 10 of the service information entry, which is the communications

compound address field, specify these three values:

v The Cross Memory protocol identifier, which is XM1.

v The name of the data space to use, which can have up to four characters.

Each data space can support up to 400 concurrent client applications,

although in practice this number might be lower due to resource limitations.

To support a larger number of client applications on a data server, configure

multiple connection handler services, each with a different data space name.

v The name of the queue to use, which can have up to four characters.

Specify the values in the following format:

XM1/data space/queue

4. For the DATASOURCE configuration parameter, provide the following values:

v The service name of the query processor that will handle queries issued by

client applications that connect to the data server by means of the address in

the next value.

v The Cross Memory data space and queue for connecting to the data server

by client applications that will be serviced by the query processor.

Specify the values in the following format:

XM1/data space/queue

These values must match the values in the service information entry for a

connection handler that is configured to use Cross Memory. If you have

multiple connection handlers, you must have a DATASOURCE configuration

parameter for each of them.
5. Save the master configuration member

6. Activate the connection by using one of the following methods:

v Stop and restart the data server.

v Start the Cross Memory connection handler service.

TCP/IP for communication between data servers and client

applications

TCP/IP communication requires that you define the IP address of the TCP/IP

communications stack that the data server is running on and specify a listen port

number, in addition to the TCP/IP protocol identifier TCP.

Multiple sessions are created on the specified port. The number of sessions carried

over the port is the number of concurrent users to be supported plus one for the

listen session that the connection handler uses to accept connections from remote

clients. If the TCP/IP implementation that you are using requires the specification

of the number of sessions that can be carried over a single port, you must ensure

that the proper number of sessions are defined. If you do not define the correct

number of sessions, client applications will not be able to connect to the data

14 Classic Federation Client Guide

server after the defined number of connections are active. A single TCP/IP

connection handler service can accept connections from 2048 concurrent users.

You specify the IP address and port number in the service information field of the

service information entry for the connection handler service. You can specify the IP

address with dot-decimal notation, such as 011.022.033.044, or with a hostname.

You can specify the port number with a four-digit value, such as 9999, or with a

service name.

If you specify an incorrect IP address, the connection handler service fails during

initialization. If you specify a port number that is assigned to another application,

unpredictable results occur for both the data server and the application that is

using the port.

In the following example, TCP is the first value of field 10 of the service

information entry for the connection handler service. The remaining two values

represent the IP address of the machine that the data server is running on, and the

port number that is assigned to this server as a listen port. The IP address could be

specified as a hostname, and the port number specified as a service name.

SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M \

 TCP/111.111.111.111/5000

Configuring data servers to use TCP/IP to communicate with client

applications

You can configure the data server to support TCP/IP for communications with

local z/OS client applications or a remote client applications.

Before you begin

You need to know the service names of the query processors that will handle the

queries issued by the client applications. The service name for a query processor is

in field 2 of the query processor’s service information entry.

Restrictions

The port number or service name must not be in use by any other application, and

should be greater than 1024. The sample configuration members use port number

5001. If this port is assigned to another application, you need to change the sample

configuration members to reference the port number that your network

administrator assigned for Classic federation.

If your z/OS TCP/IP system is using off-load gateways ensure that the IP address

that is specified reflects the IP address of the z/OS TCP/IP stack, not the address

of an off-load gateway device’s IP stack.

The sample configuration members use the 0.0.0.0 IP address notation that informs

TCP/IP to resolve this address to the local host IP address where the data server is

running.

Procedure

To configure TCP/IP for access to data servers by remote client applications:

1. Open the master configuration member (SCACCONF member CACDSCF) for

the data server in an editor.

Chapter 2. Configuring communications between data servers and clients 15

2. Identify the service information entry by the comments in the master

configuration member.

3. In field 10 of the service information entry, which is the communications

compound address field, specify a TCP/IP connection string with these three

values:

v The TCP/IP protocol identifier, which is TCP.

v The IP address or hostname for the z/OS image on which the data server is

running.

v The port number or name of the service used for accepting connections from

client applications. If you specify a port number, the number can have up to

four digits. If you specify a service name, use the name in field 2 of the

service information entry. Multiple sessions are created on the specified port

number. The number of sessions carried over the port is the number of

concurrent users to be supported plus one for the listen session the

connection handler uses to accept connections from remote clients. If the

TCP/IP implementation you are using requires the specification of the

number of sessions that can be carried over a single port, you must ensure

that the proper number of sessions have been defined. Failure to do so will

result in a connection failure when a client application attempts to connect to

the data server.

Specify the values in the following format:

TCP/IP address or hostname/port or name of service

A single TCP/IP connection handler service can service up to 2048 concurrent

connections. If you need to support more concurrent connections, you can

create more TCP/IP connection handlers. The service information entry for

each TCP/IP connection handler must have a unique TCP/IP connection string.

4. Save the master configuration member.

5. Activate the connection by using one of the following methods:

v Stop and restart the data server.

v Start the TCP/IP connection handler service.

IBM WebSphere MQ for communication between data servers and

client applications

Classic federation and Classic event publishing for z/OS support IBM WebSphere

MQ messaging middleware as a means for data servers to communicate with JDBC

client applications and client applications on z/OS.

WebSphere MQ is referred to as a transport layer because Classic federation and

Classic event publishing do not use any advanced WebSphere MQ facilities, such

as message persistence or two-phase commit protocols. For Windows clients, using

WebSphere MQ as a transport mechanism still uses TCP/IP as the underlying

transport mechanism between the client and data server.

The advantage of using WebSphere MQ as a transport mechanism is that you use

WebSphere MQ to configure connectivity between the client and server in the same

manner that you configure other applications that use WebSphere MQ.

Additionally, WebSphere MQ provides protocol independence between client and

server. For example, you can use TCP/IP for communications between a client

applications and a WebSphere MQ server on Windows. You can also multi-hop

over multiple WebSphere MQ servers on z/OS. In all instances, Classic federation

and Classic event publishing are not aware of the underlying protocols being used.

16 Classic Federation Client Guide

To use WebSphere MQ as a transport layer, at a minimum two queue definitions

are required. One of these queue definitions is a local queue that the data server

listens on for requests from clients. The other queue is a temporary dynamic model

queue that is used by clients. The client connects to the local queue definition and

sends messages to that queue for processing by the data server. The data server

puts response messages on the instance of the temporary dynamic queue (that is

created when the client opens the temporary dynamic model queue) which the

client subsequently retrieves and processes. The following figure shows how clients

and servers communicate using WebSphere MQ.

Windows z/OS

Client Application

WebSphere MQ
Transport Module

WebSphere MQ
Transport Module

WebSphere MQ
Client

WebSphere MQ
Server

Data Server

SQL Responses

Local Queue

CAC.CLIENT

Model Queue

CAC.SERVER

SQL Requests

The figure above shows the basic WebSphere MQ architecture that is required for a

local z/OS client or remote Windows client (either ODBC or JDBC) to

communicate with a data server using WebSphere MQ. The diagram shows that

two queues are defined to the z/OS WebSphere MQ queue manager. The queue

named CAC.SERVER is the local queue definition that the CAC WebSphere MQ

transport module accesses to receive SQL requests from z/OS or Windows clients.

In the diagram, the CAC.CLIENT queue is the temporary dynamic model queue

that the data server places messages on in response to SQL requests from a client

application. During initialization processing, the client application opens the

Chapter 2. Configuring communications between data servers and clients 17

CAC.CLIENT temporary dynamic queue that causes WebSphere MQ to create a

unique queue name for use by the client application. When the client application

sends a message to the CAC.SERVER local queue, the MQ message header

contains the name of the reply-to queue, which in this case is the unique name of

the CAC.CLIENT queue assigned to the client application by WebSphere MQ. After

the data server has finished processing a client application SQL request, the z/OS

WebSphere MQ transport module sends a message to the reply-to queue name

identified in the originating message from the client application.

Note: You can use any name that you like for the local and temporary dynamic

queue names. The use of CAC.CLIENT and CAC.SERVER are for illustrative

purposes only.

The figure above shows WebSphere MQ clients directly connecting to the

WebSphere MQ queue manager on z/OS. The figure below shows another

common implementation where an intermediate queue manager is used.

Windows

Client Application

WebSphere MQ
Transport Module

WebSphere MQ
Transport Module

WebSphere MQ
Client

SQL Requests

Remote Queue

CAC.REMOTE

WebSphere MQ
Server

Model Queue

CAC.CLIENT

Local Queue

SQL Responses

CAC.SERVER

WebSphere MQ
Server

Data Server

z/OS

The figure above shows an implementation that uses an intermediate WebSphere

MQ queue manager on Windows. In this diagram, the WebSphere MQ client

would connect to the WebSphere MQ queue manager on Windows using TCP/IP

or a LAN-based protocol like NetBIOS or SPX. As can be seen in this diagram,

there are three queue definitions that are required. Additionally, the temporary

dynamic model queue is now defined to the WebSphere MQ queue manager on

Windows. In this implementation, a remote queue definition is also required at the

WebSphere MQ queue manager on Windows that references the CAC.SERVER

local queue that is defined on z/OS.

18 Classic Federation Client Guide

Communications between the client application and data server is similar to that

shown in the first figure. In this scenario the client application is configured to

open and send messages to the CAC.REMOTE queue. This causes messages to be

sent to the CAC.SERVER queue on z/OS where the data server can pick these

messages up for processing. The data server sends replies to the SQL requests sent

by the client application. Using standard WebSphere MQ routing protocols, the

SQL responses are sent to the instance of the temporary dynamic model queue that

was created on Windows when the WebSphere MQ client opened the

CAC.CLIENT queue.

Note: As in the previous diagram, the queue names CAC.CLIENT, CAC.LOCAL

and CAC.REMOTE are for illustrative purposes only. You can assign any

name to these queue definitions.

Configuring data servers to use WebSphere MQ to communicate with

client applications

You can configure a data server to support IBM WebSphere MQ for

communications with local z/OS client applications or a remote client applications.

Before you begin

v A queue manager for IBM WebSphere MQ for z/OS is installed and configured

for communications between any other queue managers that Classic federation

and Classic event publishing use and the WebSphere MQ clients that connect to

the queue manager.

v Two queues defined on the z/OS WebSphere MQ server used by the data server:

– One local queue, for which this is an example command-line definition:

DEFINE QLOCAL(CAC.SERVER) DEFSOPT(SHARED) SHARE

– One model queue, for which this is an example command-line definition:

DEFINE QMODEL(CAC.CLIENT)

The names of these queues are not restricted.

v An WebSphere MQ client or a WebSphere MQ server is installed on the

Windows workstation where the client is located.

v Obtain the name of the local message queue that the data server will use to

accept connections from local and remote client applications. Contact your

WebSphere MQ administrator for the name. Each WebSphere MQ connection

handler requires a different local queue.

v You have successfully tested connectivity between all WebSphere MQ

components.

Procedure

To configure WebSphere MQ for access to data servers by remote client

applications:

1. Optional: If the following WebSphere MQ libraries are not globally available,

concatenate those libraries into the STEPLIB DD statement for the first step in

the data server JCL (EXEC PGM=CACCNTL).

v thlqual.SCSQANLx

v thlqual.SCSQAUTH

Replace thlqual with the high-level qualifier for your WebSphere MQ

installation and x with the language letter to be used.

Chapter 2. Configuring communications between data servers and clients 19

2. Open the master configuration member (SCACCONF member CACDSCF) for

the data server in an editor.

3. Uncomment the service information entry for the WebSphere MQ connection

handler service.

You can identify the service information entry by the comments in the master

configuration member.

4. In field 10 of the service information entry, which is the communications

compound address field, specify a WebSphere MQ connection string with these

three values:

v The WebSphere protocol identifier, which is MQI.

v The name of the WebSphere MQ queue manager that the connection handler

will connect to.

v The name of the WebSphere MQ message queue that the connection handler

is listening on for connection requests.

Specify the values in the following format:

MQI/name of queue manager/name of message queue

5. For the DATASOURCE configuration parameter, provide the following values:

v The service name of the query processor that will handle queries issued by

client applications that connect to the data server by means of the WebSphere

MQ connection string in the next value.

v The WebSphere MQ connection string for connecting to the data server by

client applications that will be serviced by the query processor.

Specify the values in the following format:

MQI/name of queue manager/name of message queue

These values must match the values in the service information entry for a

connection handler that is configured to use WebSphere MQ. If you have

multiple connection handlers, you must have a DATASOURCE configuration

parameter for each of them.
6. Save the master configuration member.

7. Activate the connection by using one of the following methods:

v Stop and restart the data server.

v Start the WebSphere MQ connection handler service.

20 Classic Federation Client Guide

Chapter 3. Programming reference for the JDBC driver

With the JDBC driver, you can use interfaces to manage connection pooling and an

interface for distributed transactions. You define configuration parameters in the

java.sql.properties file.

ConnectionPool interface

Use the ConnectionPoolDataSource class when you want Classic federation to

manage connection pooling for you.

If you want to manage connection pooling by some other means or do not want to

use connection pooling, and client applications do not perform distributed

transactions, use a DataSource object instead. If you want Classic federation to

manage connection pooling for you and client applications perform distributed

transactions, use a XADataSource object instead.

Methods

getDatabaseName

Input parameters: None

 Return type: java.lang.String

 Description: Returns the name of the database. Returns null if the database

name is not set.

 The database name corresponds to the DATASOURCE name which is the

query processor service name. The service name is defined in the configuration

file for the data server in field 2 of the service information entry for the

CACQP task. You can define one or more query processors in the configuration

file. The DATASOURCE name should correspond to the query processor that

the client will to connect to.

getDescription

Input parameters: None

 Return type: java.lang.String

 Description: Returns the description that was set for the object. Returns null if

the description is not set.

getLoginTimeout

Input parameters: None

 Return type: integer

 Description: Returns the timeout value for logging into the database.

getLogWriter

Input parameters: None

 Return type: java.io.PrintWriter

 Description: Returns the PrintWriter that writes to the log. Returns null if the

log PrintWriter is not set.

getPassword

Input parameters: None

© Copyright IBM Corp. 2003, 2006 21

Return type: java.lang.String

 Description: Returns the specified password. Returns null if the password is

not specified.

getPooledConnection

Input parameters: None or two java.lang.String parameters

 Return type: javax.sql.PooledConnection

 Description: This method uses two signatures. The first one does not take any

input parameters, and returns a connection from the connection pool. The

second one takes two strings as input parameters. The first string specifies the

URL. The second string specifies the connection properties.

getPort

Input parameters: None

 Return type: java.lang.String

 Description: Returns the port for the object. Returns null if the port is not set.

getPortNumber

See getPort.

getReference

Input parameters: None

 Return type: javax.naming.Reference

 Description: Returns the object properties of the data source.

getServerName

Input parameters: None

 Return type: java.lang.String

 Description: Returns the name of the mainframe where the data server runs.

Returns null if the server name is not specified.

getURL

Input parameters: None

 Return type: java.lang.String

 Description: Returns the connection URL that provides the object with enough

information to make a connection.

getUser

Input parameters: None

 Return type: java.lang.String

 Description: Returns the user name. Returns null if the user name is not

specified.

setDatabaseName

Input parameters: java.lang.String

 Return type: None

 Description: Sets the database name equal to the input parameter.

setDescription

Input parameters: java.lang.String

 Return type: None

 Description: Sets the description equal to the input parameter.

22 Classic Federation Client Guide

setLoginTimeout

Input parameters: Integer

 Return type: None

 Description: Sets the login timeout equal to the input parameter.

setLogWriter

Input parameters: java.io.PrintWriter

 Return type: None

 Description: Sets the log writer equal to the input parameter.

setPassword

Input parameters: java.lang.String

 Return type: None

 Description: Sets the password equal to the input parameter.

setPort

Input parameters: java.lang.String

 Return type: None

 Description: Sets the port equal to the input parameter.

setPortNumber

See setPort.

setServerName

Input parameters: java.lang.String

 Return type: None

 Description: Sets the server name equal to the input parameter. The server

name is the name of the mainframe where the data server runs.

setURL

Input parameters: java.lang.String

 Return parameters: None

 Description: Sets the URL for the object. The URL provides all of the required

connection information for the object in a single location. For certain

ConnectionPool managers, you should use this method instead of the

individual setDatabaseName, setServerName, setPort, setPassword, and

setUser methods.

setUser

Input parameters: java.lang.String

 Return type: None

 Description: Sets the user name equal to the input parameter.

DataSource interface

Use a DataSource object when you manage connection pooling or do not want to

use connection pooling. If you want Classic federation to manage connection

pooling for you, use a ConnectionPoolDataSource object. If you want Classic

federation to manage connection pooling for you and client applications perform

distributed transactions, use a XADataSource object instead.

Chapter 3. Programming reference for the JDBC driver 23

Methods

getConnection

Input parameters: None or two java.lang.String parameters

 Return type: java.sql.Connection

 Description: Returns a connection to the specified database. This method uses

two signatures. The first signature takes no input parameters. The second

signature takes two input parameters. The first input parameter specifies the

URL. The second input parameter specifies the connection properties.

 If the DataSource object does not have enough information to initiate a

connection, it returns an SQL connect exception.

getDatabaseName

Input parameters: None

 Return type: java.lang.String

 Description: Returns the name of the database. Returns null if the database

name is not set.

getDataSourceName

Input parameters: None

 Return type: java.lang.String

 Description: Returns the name of the data source. Returns null if the data

source name is not set.

getDescription

Input parameters: None

 Return type: java.lang.String

 Description: Returns the description for the object. Returns null if the

description is not set.

getLoginTimeout

Input parameters: None

 Return type: integer

 Description: Returns the timeout value for logging into the database.

getLogWriter

Input parameters: None

 Return type: java.io.PrintWriter

 Description: Returns the PrintWriter that writes to the log. Returns null if the

log PrintWriter is not set.

getPassword

Input parameters: None

 Return type: java.lang.String

 Description: Returns the specified password. Returns null if the password is

not specified.

getPort

Input parameters: None

 Return type: java.lang.String

 Description: Returns the port for the object. Returns null if the port is not set.

24 Classic Federation Client Guide

getPortNumber

See getPort.

getReference

Input parameters: None

 Return type: javax.naming.Reference

 Description: Returns the object properties of the data source.

getServerName

Input parameters: None

 Return type: java.lang.String

 Description: Returns the name of the server. Returns null if the server name is

not specified.

getURL

Input parameters: None

 Return type: java.lang.String

 Description: Returns the connection URL that provides the object with enough

information to make a connection.

getUser

Input parameters: None

 Return type: java.lang.String

 Description: Returns the user name. Returns null if the user name is not

specified.

setDatabaseName

Input parameters: java.lang.String

 Return type: None

 Description: Sets the database name equal to the input parameter.

setDescription

Input parameters: java.lang.String

 Return type: None

 Description: Sets the description equal to the input parameter.

setLoginTimeout

Input parameters: Integer

 Return type: None

 Description: Sets the login timeout equal to the input parameter.

setLogWriter

Input parameters: java.io.PrintWriter

 Return type: None

 Description: Sets the log writer equal to the input parameter.

setPassword

Input parameters: java.lang.String

 Return type: None

 Description: Sets the password equal to the input parameter.

Chapter 3. Programming reference for the JDBC driver 25

setPort

Input parameters: java.lang.String

 Return type: None

 Description: Sets the port equal to the input parameter.

setPortNumber

See setPort.

setServerName

Input parameters: java.lang.String

 Return type: None

 Description: Sets the server name equal to the input parameter.

setURL

Input parameters: java.lang.String

 Return parameters: None

 Description: Sets the URL for the object. The URL provides all of the required

connection information for the object in a single location. For certain

ConnectionPool managers, you should use this method instead of the

individual setDatabaseName, setServerName, setPort, setPassword, and

setUser methods.

setUser

Input parameters: java.lang.String

 Return type: None

 Description: Sets the user name equal to the input parameter.

XADataSource interface

Use an XADataSource object for distributed transactions.

The XADataSource class extends the ConnectionPoolDataSource class. Only the

methods for the XADataSource class are included in this topic.

Methods

getXAConnection

Input parameters: Two java.lang.String objects

 Return type: javax.sql.XAConnection

 Description: Returns an XAConnection object that you use for distributed

transactions. This method takes two java.lang.String objects as input

parameters. The first string provides the URL. The second string provides the

connection parameters.

 If a connection cannot be established with the information that is provided for

the object, the method throws an SQL connect exception.

getXAConnection

Input parameters: None

 Return type: javax.sql.XAConnection

 Description: Returns an XAConnection object that you use for distributed

transactions. If a connection cannot be established with the information that is

provided for the object, the method throws an SQL connect exception.

26 Classic Federation Client Guide

java.sql.properties

You can use several properties objects with the JDBC clients.

Properties objects

CODEPAGE

Description: Optional parameter that specifies the code page that converts

characters between systems. Java provides code pages to convert characters

between various formats, such as EBCDIC to ASCII.

 Do not enter a code page if you use the English version of the Java Runtime

Environment. Code page converters are only supported by the international

version of the Java Runtime Environment.

 For USS support, the setting is as follows: CODEPAGE=USS.

 Restrictions:

v Use CODEPAGE=USS only when the environment is pure USS and the local

code page is EBCDIC

v If the JVM on USS uses ASCII, do not set CODEPAGE=USS.

FETCHBUFFERSIZE

Description: Optional parameter that specifies the size of the result set buffer

that is returned to a client application. You specify this parameter in the

configuration file for the client application.

 Regardless of the size of the fetch buffer specified, the data server always

returns a complete row of data in this buffer. If you set the fetch buffer size to

1, the data server returns single rows of data to the client application.

 An appropriate FETCHBUFFERSIZE depends upon the average size of the

result set rows that are sent to the client application and the optimum

communication packet size. For better performance, fit as many rows as

possible into a fetch buffer. The default FETCHBUFFERSIZE is adequate for

most queries.

 If the FETCHBUFFERSIZE is set smaller than a single result set row, the size of

the actual fetch buffer that is transmitted is based on the result set row size.

The size of a single result set row in the fetch buffer depends on the number of

columns in the result set and the size of the data that is returned for each

column.

 Use the following formula to determine the size of a result set row:

(number of data bytes returned) * (number of columns * 6)

There is also a fixed overhead in bytes for each fetch buffer. Use the following

formula to calculate the size of this overhead:

fetchbufferoverhead = 100 + (number of columns * 8)

If your applications routinely retrieve large result sets, contact your network

administrator to determine the optimum communication packet size, and set

the FETCHBUFFERSIZE to a size that takes this into account.

 Maximum value: 64000

 Minimum value: 1

 Default: 64000

Chapter 3. Programming reference for the JDBC driver 27

NL CAT

Description: Required parameter that specifies the full path name of the

language catalog. The language catalog contains system messages in a specified

language. A file contained within the configuration files points to the language

catalog. System messages include errors that are generated in the data server

and created on the client side.

 The default catalog is engcat, or English Catalog, the only supported catalog in

this version of JDBC.

RESPONSETIMEOUT

Description: Optional parameter that specifies the response time-out. This

value specifies the maximum amount of time in milliseconds that this service

waits for an expected response before a connection terminates. The default is 0,

wait forever (do not time out). All other values ultimately cause a timeout

error and request an end to query processing.

 Type of allowed value: Numeric with alpha modifier, which can be as follows:

v MS: Milliseconds

v S: Seconds

v M: Minutes

Representation: Decimal

 Maximum value: 1000MS, 60S, and 60M respectively

 Minimum value: 0MS

 Default: 0M

 TRACELEVEL

Description: Optional parameter that regulates the amount of information that

is placed in the trace log by data server tasks. Any non-zero number activates

the diagnostic tracing. Trace information is recorded by JDBC in the JDBC

system log. Tracing can be resource intensive. Do not use it unless you need to

debug system problems.

 Maximum value: 1

 Minimum value: 0

 Valid values and results:

1 Generates tracing information

0 Does not generate tracing information

 Default: 0

28 Classic Federation Client Guide

Chapter 4. Programming reference for the ODBC/CLI driver

The ODBC/CLI driver includes all of the necessary APIs and functionality to

conform to the core specification of Microsoft ODBC 3.51.

In addition to running as an ODBC driver in Win32 environments, the base APIs

can be called directly by ISO/IEC and X/Open CAE Call Level Interface (CLI)

applications in non-Windows environments such as Solaris, AIX, and HP-UX.

ODBC and CLI applications can use a single set of APIs. A CLI application header

file, caccli.h, is provided for CLI applications that run in non-Win32

environments. This header file replaces the Microsoft ODBC header files sql.h and

sqlext.h. The prototypes in caccli.h include only the CLI subset of the ODBC

API function prototypes.

You can find ODBC 3.51 documentation about the APIs and descriptions of error

states at the following location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/
dasdkodbcoverview.asp

Similarities and differences between ODBC and CLI

The differences between ODBC and CLI can affect applications.

Similarities between ODBC and CLI

In addition to core functionality, ODBC and CLI support the following ODBC

Level 1 and Level 2 features:

ODBC Level 1

v Schema names in object qualification with two-part naming

v Stored procedures, including metadata queries about stored procedures

with SQLProcedures and SQLProcedureColumns

v Transaction support, including SQLEndTran for issuing commit and

rollback requests

ODBC Level 2

v OUTPUT and INOUT parameters in stored procedure calls

v Queries for metadata information about table privileges by using

SQLTablePrivileges

v Timeouts of login requests and SQL queries

Differences between ODBC and CLI

Some differences exist between the specifications:

v You bind parameters by using SQLBindParameter in ODBC applications and

SQLBindParam in CLI applications.

v CLI applications cannot use these ODBC-only APIs:

– SQLBindParameter

– SQLDriverConnect

© Copyright IBM Corp. 2003, 2006 29

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp

– SQLMoreResults

– SQLNativeSQL

– SQLNumParams

– SQLProcedureColumns

– SQLProcedures

– SQLTablePrivileges
v ODBC applications are, by default, auto-commit enabled. Commits are

automatically issued when an SQLExecute is called for a non-SELECT statement.

CLI applications do not have the ability to set the auto-commit feature.

v ODBC applications can use ODBC escape sequences in SQL statement text. By

default, all SQL that is passed by ODBC applications is scanned for escape

sequences. CLI applications have no scanning capability, and all SQL is passed

on to the server as-is.

Implemented and deprecated APIs for ODBC and CLI

ODBC includes several APIs that are not part of the CLI specification. This topic

lists the APIs that are available for developing CLI applications and the deprecated

APIs.

Implemented APIs

The following APIs are implemented in the ODBC/CLI 3.51 driver. These APIs are

available to both ODBC and CLI applications unless otherwise specified.

 Table 1. Implemented APIs

ODBC API name Comments

SQLAllocConnect

SQLAllocEnv

SQLAllocHandle

SQLAllocStmt

SQLBindCol

SQLBindParam CLI only.

This API is the same as the ODBC

SQLBindParameter API, with the omission

of the parameter type and buffer length

arguments (arguments 3 and 9). The

SQLBindParameter description for the

parameters other than InputOutputType

and BufferLength in the ODBC

documentation can be used as reference

material for SQLBindParam. All parameters

bound with SQLBindParam are assumed to

be INPUT.

SQLBindParameter ODBC only.

SQLCancel For SQLCancel to succeed, the server

INTERLEAVE INTERVAL parameter must

be set to a non-0 value to successfully

cancel statements. Interleaving permits

checking for additional messages (such as

cancel) from clients while SQL request

processes.

30 Classic Federation Client Guide

Table 1. Implemented APIs (continued)

ODBC API name Comments

SQLColAttribute

SQLColumns

SQLConnect

SQLCopyDesc

SQLCloseCursor

SQLDataSources

SQLDescribeCol

SQLDescribeParam

SQLDisconnect

SQLDriverConnect ODBC only.

SQLEndTran

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFetchScroll Support for scrollable result sets is limited

to SQLFetchScroll support with a fetch

orientation of SQL_FETCH_NEXT.

SQLFreeConnect

SQLFreeEnv

SQLFreeHandle

SQLFreeStmt

SQLGetData

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetConnectAttr

SQLGetCursorName

SQLGetEnvAttr

SQLGetFunctions

SQLGetStmtAttr

SQLGetInfo

SQLGetTypeInfo

SQLMoreResults ODBC only.

SQLNativeSql ODBC only.

SQLNumResultCols

SQLNumParams ODBC only.

SQLParamData

SQLPrepare

Chapter 4. Programming reference for the ODBC/CLI driver 31

Table 1. Implemented APIs (continued)

ODBC API name Comments

SQLProcedureColumns ODBC only.

SQLProcedures ODBC only.

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges ODBC only.

SQLTables

SQLTransact

Deprecated APIs

The following APIs that were deprecated in the ODBC 3.x specification are not

supported in the ODBC/CLI driver. These APIs can still be used under the

Windows ODBC 3.x driver manager, as they are automatically remapped by the

driver manager to their newer replacements:

 Table 2. List of deprecated APIs

Deprecated API ODBC 3.x replacement

SQLColAttributes SQLColAttribute

SQLGetConnectOption SQLGetConnectAttr

SQLGetStmtOption SQLGetStmtAttr

SQLParamOptions SQLSetStmtAttr

SQLSetConnectOption SQLSetConnectAttr

SQLSetParam SQLBindParameter

SQLSetScrollOption SQLSetStmtAttr

SQLSetStmtOption SQLSetStmtAttr

C and SQL data types for ODBC and CLI

This topic lists the C and SQL data types for ODBC and CLI applications.

C data types for ODBC applications

You can pass the following C data types when you bind result set columns and

parameters from ODBC applications.

32 Classic Federation Client Guide

SQL_C_DEFAULT

SQL_C_CHAR

SQL_C_LONG

SQL_C_SLONG

SQL_C_ULONG

SQL_C_SHORT

SQL_C_SSHORT

SQL_C_USHORT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_BINARY

SQL_C_NUMERIC

C data types for CLI applications

You can pass the following data type values when you bind result set columns and

parameters from CLI applications.

SQL_DEFAULT

SQL_CHAR

SQL_INTEGER

SQL_SMALLINT

SQL_FLOAT

SQL_REAL

SQL_DOUBLE

SQL data types for ODBC and CLI applications

You can pass the following SQL data type values when you bind result set

columns and parameters from ODBC and CLI applications.

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_INTEGER

SQL_SMALLINT

SQL_FLOAT

SQL_REAL

SQL_DECIMAL

In the Win32 environment, the ODBC 3.x driver manager is required to use the

ODBC 3.51 driver. This version of the driver manager automatically supports both

3.x applications and older, pre-3.x applications. Calls to deprecated APIs by older

applications are automatically re-mapped to the 3.x APIs.

Binding input and output parameters from CLI applications

CLI applications must bind parameters for stored procedure calls by using the

SQLBindParam API call.

Unlike the ODBC SQLBindParameter function with which you can pass the

parameter type, SQLBindParam assumes that all parameters are input type

parameters for the stored procedure call.

To bind output and input parameters from a CLI application, programs must

retrieve the implementation parameter descriptor after calling SQLBindParam and

modify the descriptors parameter mode field by using SQLSetDescField.

Descriptors make bound parameter or column information available to ODBC and

CLI applications.

Example: To bind an input parameter for a stored procedure call, the application

program might issue the following API calls:

Chapter 4. Programming reference for the ODBC/CLI driver 33

/* Bind an 8 byte character parameter. CLI assumes the parameter */

/* is INPUT, mode must be changed to INOUT after the bind */

sqlrc = SQLBindParam(hStmt, 1, SQL_CHAR, SQL_CHAR,

 8, 0, DataPtr, IndPtr);

/* Retrieve the implementation parameter descriptor */

if (sqlrc == SQL_SUCCESS)

 sqlrc = SQLGetStmtAttr(hStmt, SQL_ATTR_IMP_PARAM_DESC,

 &hIPD, sizeof(hIPD), NULL);

/* Change the parameter’s mode from the INPUT default to OUTIN */

if (sqlrc == SQL_SUCCESS)

 sqlrc = SQLSetDescField(hIPD, 1, SQL_DESC_PARAMETER_MODE,

 (SQLPOINTER) SQL_PARAM_MODE_INOUT,

 sizeof(SQLPOINTER));

Logs for the ODBC/CLI driver

The ODBC/CLI driver automatically logs errors and debugging traces when the

configuration trace level is set to a value less than 8.

The amount of tracing varies with the trace level value. The trace value 0 produces

the maximum amount of tracing, and 7 log errors only. In general, set tracing to 8

unless IBM Software Support requests diagnostic information.

In Windows 32-bit and UNIX environments, the log file is named CACLOG and is

placed in the same directory as the ODBC/CLI driver itself. You can set the

CACLOG environment variable to point to a different directory and file name. This

file is overwritten each time the ODBC/CLI driver runs.

On UNIX, the driver managers also support logging. Typically, the tracing that the

driver manager provides is sufficient to debug problems that you might encounter.

If additional tracing is required, you can set the ODBC/CLI trace levels and obtain

the ODBC/CLI traces.

The ODBC/CLI software logs the following categories of information:

v Diagnostic messages. If an API call results in the creation of a diagnostic record

that is due to an ERROR or INFO situation, the message is logged. If the

message is an error message, then logging takes place if the TRACE LEVEL

parameter is less than 8. If the message is an INFO message, then logging takes

place if the TRACE LEVEL parameter is less than 3.

v API call entry and exit with return code. With few exceptions, API calls start

with the validation of a passed handle and end with unlocking the passed

handle. The API called and the return code are logged if trace level is set to 1. In

cases where any nonvalid handle is passed or an SQL_ERROR is returned, the

logging takes place if the TRACE LEVEL parameter is set to any value less than

8.

Recommendation: Do not use logging for ODBC applications. The log file cannot

be shared by multiple application processes, and ODBC has its own tracing facility.

The log file is binary. You can use the cacprtlog utility to format and display the

log messages. On Windows, you can also view log messages in the Application log

of the System Event Viewer.

Code pages for the ODBC/CLI driver

Classic federation supports databases that are enabled for SBCS and DBCS data.

34 Classic Federation Client Guide

Those databases include DB2®, IMS, VSAM, sequential, and CA-IDMS. The Classic

federation Windows ODBC driver translates SBCS and DBCS data by using ICU4C

to perform code page conversions

The form of character data that Classic federation supports is mixed-mode data.

Mixed-mode character data can be strictly SBCS data or can include DBCS data.

ODBC driver support includes conversion of graphic data types and bidirectional

languages.

v In Windows, you can use the ODBC Data Source Administrator interface to

define client and server code pages when you configure the ODBC data source.

v In Linux and UNIX, you define the client and server code pages in your

configuration file for your CLI driver. If you have data sources for which you

want to use different code pages, you can define the data sources in separate

configuration files.

Restrictions for bidirectional layout transformation

Bidirectional layout transformation is restricted in the following situations:

v Problems can occur in visual to logical text transformations when converting

complex multidirectional text and when numbers are involved in the conversion.

For better results, you can insert bidirectional control characters (LRM

<left-to-right mark> and RLM <right-to-left mark>). However, these control

characters are not defined in all client code pages. For the code pages that do

not include bidirectional control characters, the ICU conversion replaces them by

substitution characters. As a result, text might not display correctly.

v The column size definitions on the data server must be large enough to allow

space for expansion. Otherwise, layout transformation fails with a decoding

error. The length of a string might increase when layout transformation occurs

from the server to the client code pages in the following situations:

– With Arabic text and when the SHAPING option is set.

– When converting from visual to logical text presentations for Arabic and

Hebrew text due to the insertion of bidirectional control characters.
v Bidirectional options are not available for the Japanese versions of the ODBC

Administrator and the Microsoft ODBC Data Source Administrator.

Chapter 4. Programming reference for the ODBC/CLI driver 35

36 Classic Federation Client Guide

Accessing information about IBM

IBM has several methods for you to learn about products and services.

You can find the latest information on the Web at www.ibm.com/software/data/
sw-bycategory/subcategory/SWB50.html

v Product documentation in PDF and online information centers

v Product downloads and fix packs

v Release notes and other support documentation

v Web resources, such as white papers and IBM Redbooks™

v Newsgroups and user groups

v Book orders

To access product documentation, go to this site:

publib.boulder.ibm.com/infocenter/iisclzos/v9r1/

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Contacting IBM

You can contact IBM by telephone for customer support, software services, and

general information.

Customer support

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

Software services

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

General information

To find general information in the United States, call 1-800-IBM-CALL

(1-800-426-2255).

Go to www.ibm.com for a list of numbers outside of the United States.

© Copyright IBM Corp. 2003, 2006 37

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/
http://www.ibm.com/planetwide
http://www.ibm.com

Accessible documentation

Documentation is provided in XHTML format, which is viewable in most Web

browsers.

XHTML allows you to view documentation according to the display preferences

that you set in your browser. It also allows you to use screen readers and other

assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen reader.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

38 Classic Federation Client Guide

http://www.ibm.com/software/awdtools/rcf/

Notices and trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 39

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

40 Classic Federation Client Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. (C) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names might be trademarks or service marks of

others.

Notices and trademarks 41

http://www.ibm.com/legal/copytrade.shtml

42 Classic Federation Client Guide

Index

A
accessibility 38

APIs
deprecated

automatic remapping 32

automatic remapping
deprecated APIs 32

C
CLI

supported C data types 32

supported SQL data types 32

comments on documentation 38

contacting IBM 37

D
data types

ODBC and CLI
C 32

SQL 32

deprecated APIs
automatic remapping 32

documentation
accessible 38

ordering 37

Web site 37

L
legal notices 39

O
ODBC

automatic remapping of deprecated

API calls 32

supported SQL data types 32

R
readers’ comment form 38

S
screen readers 38

SQL updates
JDBC 2

T
trademarks 41

U
UPDATE

see SQL updates 2

© Copyright IBM Corp. 2003, 2006 43

44 Classic Federation Client Guide

����

Printed in USA

SC19-1124-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

at
io

n
In

te
gr

at
io

n
Ve

rs
io

n
9.

1
Cl

as
si

c
Fe

de
ra

tio
n

Cl
ie

nt

Gu

id
e

�
�

�

	Contents
	Chapter 1. Configuring clients
	JDBC client
	Establishing connections from JDBC applications to data servers
	Batch operations, scrollable ResultSets, and SQL warnings with JDBC

	ODBC clients
	Configuring ODBC data sources
	Configuring the ODBC driver on Windows
	Configuring the ODBC driver on Linux and UNIX

	CLI clients
	CLI client for UNIX, Linux, and Windows
	Configuring the UNIX, Linux, and Windows CLI client

	CLI client for native z/OS
	Building native z/OS CLI applications
	Configuring native z/OS CLI clients

	CLI client for USS
	Building USS CLI applications
	Configuring the USS CLI client

	Chapter 2. Configuring communications between data servers and clients
	Communication between data servers and client applications
	Configuring data servers to use Cross Memory to communicate with local client applications
	TCP/IP for communication between data servers and client applications
	Configuring data servers to use TCP/IP to communicate with client applications
	IBM WebSphere MQ for communication between data servers and client applications
	Configuring data servers to use WebSphere MQ to communicate with client applications

	Chapter 3. Programming reference for the JDBC driver
	ConnectionPool interface
	DataSource interface
	XADataSource interface
	java.sql.properties

	Chapter 4. Programming reference for the ODBC/CLI driver
	Similarities and differences between ODBC and CLI
	Implemented and deprecated APIs for ODBC and CLI
	C and SQL data types for ODBC and CLI
	Binding input and output parameters from CLI applications
	Logs for the ODBC/CLI driver
	Code pages for the ODBC/CLI driver

	Accessing information about IBM
	Contacting IBM
	Accessible documentation
	Providing comments on the documentation

	Notices and trademarks
	Notices
	Trademarks

	Index

