
IBM Information Integration

Classic Federation Guide and Reference

Version 9.1

SC19-1122-00

���

IBM Information Integration

Classic Federation Guide and Reference

Version 9.1

SC19-1122-00

���

Note

Before using this information and the product that it supports, be sure to read the general information under “Notices and

trademarks” on page 299.

© CrossAccess Corporation 1993, 2003.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Overview of IBM WebSphere

Classic Federation Server for z/OS . . . 1

Data server 1

Region controller 2

Connection handlers 2

Query processors 2

Initialization services 3

System exits 4

Logger 5

Data connectors 5

Classic Data Architect 5

Metadata catalog 6

Clients 6

Chapter 2. Configuring federation 9

Configuring Classic federation 9

Overview of configuring Classic federation . . . 9

Basic configurations for Classic federation for all

data sources 10

Configurations for Classic federation for specific

data sources 12

Configuring access to Classic federation data

sources 13

Setting up access to Adabas 13

Setting up access to CA-Datacom 13

Setting up access to CA-IDMS 17

Setting up access to DB2 for z/OS 21

Setting up access to IMS 22

Setting up access to sequential files 29

Setting up access to VSAM 29

Configuration considerations for development and

production environments 31

Creating data servers 31

Starting data servers 32

Mapping your data 32

Mapping verification 33

Creating sample queries 33

Completing the development process 34

Configuring logging for data servers 34

Using the CACLOG DD for storing log messages 34

Defining log streams for storing log messages . . 35

Defining logger services 39

Configuring TCP/IP connection handlers 40

Mapping tables for Classic federation 41

Configuring Classic Data Architect 42

Mapping data for Classic federation 48

Viewing and modifying objects for Classic

federation 68

Populating metadata catalogs 80

Chapter 3. Administering federation . . 83

Administering data servers for Classic federation . . 83

Starting data servers 83

Starting services for Classic federation 84

Stopping services for Classic federation 84

Displaying information about data servers in

Classic federation 85

Displaying users 88

Disconnecting users and user sessions for Classic

federation 89

Displaying queries 89

Canceling queries for Classic federation 91

Displaying the values of single configuration

parameters 91

Modifying configurations while data servers are

running 92

Saving changes to configuration files 93

Stopping data servers 93

Displaying log messages that are written to

SYSTERM DD 93

Viewing log messages with the log print utility

(CACPRTLG) 94

System exits 97

Security: SAF exit 97

Accounting: SMF exit 103

CPU resource governor 109

Workload Manager exit 114

DB2 thread management exit 122

Record processing exit 127

SQL updates to application data 130

Transaction processing 130

SQL update statements 131

SQL updates and mapped tables 132

Adabas updates 134

DB2 for z/OS updates 134

CA-Datacom updates 135

CA-IDMS updates 135

IMS updates 137

VSAM updates 138

Two-phase commit 139

Recoverable Resource Manager Services (RRS)

support 140

RRS-enabled query processors 140

DB2 for z/OS two-phase commit considerations 141

IMS two-phase commit considerations 142

CA-Datacom two-phase commit considerations 143

VSAM DFSMStvs two-phase commit

considerations 144

Stored procedures 144

Overview of stored procedure processing . . . 144

Defining stored procedures 151

Writing stored procedures 155

Invoking stored procedures 161

Creating result sets in stored procedures . . . 164

Support routines for stored procedures 170

CICS interface for stored procedures 172

CA-Datacom interface for stored procedures . . 184

IMS interface for stored procedures 194

Chapter 4. Tuning Classic federation 205

© Copyright IBM Corp. 2003, 2006 iii

Query optimization techniques 205

Keys to optimize queries 205

Join operations to optimize queries 206

Query processor optimization 207

Connectors and query processor interaction . . 207

Configuration parameters for optimization . . 208

IMS access optimization 210

Keyed access techniques, SSA, and IMS

optimization 210

IMS optimization for HIDAM, HDAM, and

DEBD 212

PCB selection options for IMS optimization . . 214

PSB scheduling for IMS optimization 215

VSAM access optimization 217

Keyed access techniques for VSAM optimization 217

Configuration parameters for VSAM

optimization 218

VSAM service for optimization 218

Data server optimization 219

Dispatching priority for query optimization . . 219

WLM exit for query optimization 219

Chapter 5. Reference for Classic

federation 221

Configuration parameters for data server, query

processor, and clients 221

Configuration parameter format 222

BTREE BUFFERS 223

CLIENT CODEPAGE 223

CPU GOVERNOR 224

DATASOURCE 224

DATA CONVERSION ERROR ACTION . . . 225

DECODE BUFFER SIZE 226

DEFLOC 226

FETCH BUFFER SIZE 227

INTERLEAVE INTERVAL 228

JOIN MAX TABLES ANALYZED 228

LD TEMP SPACE 229

MAX ROWS EXAMINED 230

MAX ROWS EXCEEDED ACTION 231

MAX ROWS RETURNED 231

MESSAGE POOL SIZE 232

NL 232

NL CAT 232

PDQ 235

RESPONSE TIME OUT 236

SAF EXIT 236

SERVER CODEPAGE 236

SERVICE INFO ENTRY 237

SHAPING 241

SMF EXIT 242

STATEMENT RETENTION 242

STATIC CATALOGS 242

SYMMETRIC SWAPPING 243

TASK PARAMETERS 243

TEXT ORIENTATION 244

TEXT PRESENTATION 245

TRACE LEVEL 245

USER CONFIG 246

USERID 246

USERPASSWORD 247

VSAM AMPARMS 247

WLM UOW 248

National language support 249

SBCS, DBCS, and database objects 250

Code page conversion for ODBC and CLI . . . 250

Code page converters 251

Sample VTAM and CICS definitions for stored

procedures 258

VTAM resource definitions 259

CICS resource definitions 260

Field procedures 267

Field procedure setup 267

Field procedures and data transformations . . 268

Control blocks for field procedures 268

Field-encoding (function code 0) 271

Field-decoding (function code 4) 272

Sample field procedures 273

The catalog initialization and maintenance utility

(CACCATUT) 274

Creating and initializing sequential metadata

catalogs 274

Creating and initializing linear metadata

catalogs 275

Upgrading metadata catalogs 276

Copying metadata catalogs 276

Reorganizing metadata catalogs 277

Generating reports about metadata catalogs . . 278

The metadata utility 285

Running the metadata utility 285

CONNECT statements for the metadata utility 290

IMPORT DB2 statements for the metadata

utility in Classic federation 292

Encrypting passwords for connecting to data

servers when the SAF exit is active 296

Accessing information about IBM . . 297

Contacting IBM 297

Accessible documentation 298

Providing comments on the documentation . . . 298

Notices and trademarks 299

Notices 299

Trademarks 301

Index 303

iv Classic Federation Guide and Reference

Chapter 1. Overview of IBM WebSphere Classic Federation

Server for z/OS

IBM® WebSphere® Classic Federation Server for z/OS® is a complete,

high-powered solution that provides SQL access to mainframe databases and files

without mainframe programming.

Using the key product features, you can:

v Read from and write to mainframe data sources using SQL.

v Map logical relational table structures to existing physical mainframe databases

and files.

v Use the Classic Data Architect graphical user interface (GUI) to issue standard

SQL commands to the logical tables.

v Use standards-based access with ODBC, JDBC, or CLI interfaces.

v Take advantage of multi-threading with native drivers for scalable performance.

The architecture of WebSphere Classic Federation Server for z/OS consists of the

following major components:

v Data server

v Data connectors

v Classic Data Architect

v Metadata catalog

v Clients (ODBC, JDBC, and CLI)

Data server

Data servers perform all data access. The architecture of the data server is

service-based. The data server consists of several components, or services. A major

service embedded in the data server is the query processor that acts as the

relational engine for Classic federation.

These services are defined by service information entries in a configuration file. A

service information entry contains a number of fields in which you set values to

define a service and the behavior of that service.

Data servers perform the following functions:

v Accept SQL queries from clients.

v Determine the type of data to access.

v Transform SQL queries into the native file or database access language.

v Optimize queries.

v Create relational result sets from native database records.

v Process post-query result sets as needed.

A data server accepts connection requests from client applications. Client

applications can access a data server using the ODBC, JDBC, or CLI client that IBM

WebSphere Classic Federation Server for z/OS provides.

© Copyright IBM Corp. 2003, 2006 1

The main service that runs within the data server is the region controller. In

addition, the following sub-services run in the data server:

v Connection handlers

v Query processors

v Initialization services

v System exits

v Logger

Region controller

The region controller monitors and controls the other services that run within the

data server.

The region controller directly or indirectly activates each service based on the

configuration parameters that you define in a master configuration member using

service information entry parameters. The region controller starts, stops, and

monitors the other tasks that run within the data server.

The region controller also includes a z/OS MTO (Master Terminal Operator)

interface that you can use to monitor and control a data server address space.

Connection handlers

A connection handler listens for connection requests from client applications and

routes them to the appropriate query processor task.

The connection handler task can load the following communication protocols:

v TCP/IP

v z/OS Cross Memory Services

v WebSphere MQ

A local client application can connect to a data server using any of these methods.

Remote client applications use TCP/IP or WebSphere MQ to communicate with a

remote server.

Query processors

The query processor is the subcomponent of the data server that processes SQL

requests. The SQL requests can access a single database or file system or reference

multiple types of databases or file systems.

There are two types of query processors:

Single-phase commit query processor (CACQP)

Accesses and joins information from multiple data sources and performs

updates to a single data source.

Two-phase commit query processor (CACQPRRS)

Accesses and joins information from multiple data sources and performs

updates to multiple data sources. The two-phase commit query processor

uses z/OS Resource Recovery Services to coordinate the data source

updates. This query processor can participate in distributed transactions by

using a JDBC client and a distributed transaction manager (such as

WebSphere Application Server).

 The two-phase commit query processor supports the CA-Datacom, DB2®

for z/OS, IMS™, and VSAM data sources.

2 Classic Federation Guide and Reference

Generally you cannot mix these two types of query processors within a single data

server.

The data server configuration file must include a service information entry for a

query processor.

The query processor invokes one or more connectors to access the target database

or file system that is referenced in an SQL request. The query processor supports

SQL processing, two-phase commit processing, and calls to stored procedures.

By using native database and file facilities, the query processor maintains the

structural integrity and the performance characteristics of the data source.

Initialization services

Initialization services are special tasks that initialize different types of interfaces to

underlying database management systems and z/OS system components.

Initialization services prepare the data server execution environment. For example,

an initialization service is provided to activate the DRA interface that the IMS DRA

connector uses to access IMS data.

The following table lists the initialization services that provide access to specific

data sources.

 Table 1. Initialization services for specific data sources.

Data source Initialization services

CA-Datacom

CA-Datacom

Initializes the data server for connections to the

CA-Datacom Multi-User Facility (MUF).

DB2 for z/OS

Call Attachment Facility (CAF)

Connects to a DB2 for z/OS subsystem to

access and update DB2 data using the DB2 Call

Attachment Facility.

IMS

IMS DRA

Initializes the DRA interface and connects to an

IMS DBCTL region to access IMS data using the

DRA interface.

IMS BMP/DBB

Initializes the IMS region controller to access

IMS data using the BMP or DBB interface.

VSAM

VSAM Initializes the region controller to access VSAM

data.

The following table lists the initialization services that provide access to z/OS

system components.

Chapter 1. Overview of IBM WebSphere Classic Federation Server for z/OS 3

Table 2. Initialization services that access z/OS system components.

z/OS system components Initialization services

z/OS Workload Manager (WLM)

Workload Manager

Initializes the z/OS Workload Manager

subsystem using the WLM system exit to enable

query processing in WLM goal mode.

Language Environment®

Language Environment

Initializes the Language Environment or

COBOL II, which allows exits to be written in a

high-level language.

System exits

A set of system exits are subcomponents of the data server and the query

processor. The system exits are designed to run in a multi-user environment and

perform security, accounting, and workload management functions to support

large numbers of concurrent users.

The following table lists the system exits.

 Table 3. System exits.

System exit Purpose

SAF security exit Authenticates the user ID and password to the z/OS

system. Following authentication, performs checks to

determine if a user is authorized to access the sequential

or VSAM data sets that are referenced in a query. For

IMS access, the SAF exit determines if the user is

authorized to use the PSBs that access the IMS databases

referenced in a query. The SAF exit also verifies if a user

is authorized to execute a stored procedure program.

You activate the SAF exit with the SAF EXIT

configuration parameter.

SMF accounting exit Generates SMF user records that report the CPU time

and elapsed time that a user is connected to a query

processor service.

You activate the SMF exit with the SMF EXIT

configuration parameter.

CPU resource governor exit Restricts the amount of CPU time that a user can

consume for a unit-of-work.

You activate the CPU resource governor exit with the

CPU GOVERNOR configuration parameter.

Workload Manager (WLM) exit Places queries under the control of the Workload

Manager in WLM goal mode. With WLM goal mode, the

WLM controls the amount of resources that are available

for the query to use. With WLM compatibility mode,

you can use monitoring reports to examine resource

usage in comparison to site-defined goals.

You activate the Workload Manager exit with the WLM

EXIT configuration parameter.

4 Classic Federation Guide and Reference

Table 3. System exits. (continued)

System exit Purpose

DB2 thread management exit Runs under the CAF initialization service to create and

manage CAF connections to DB2 for z/OS.

You activate the DB2 thread management exit by editing

the data server configuration file.

Record processing exit Modifies record characteristics to make it easier to

process VSAM and sequential data.

You activate the record processing exit by defining a

table mapping for a VSAM or sequential file with the

Classic Data Architect.

Logger

The logger service is a task for system monitoring and troubleshooting. A single

logger task can run within a data server. The logger reports data server activities

and is used for error diagnosis.

Data connectors

The query processor dynamically loads one or more data connectors to access the

target database or file system that is referenced in an SQL request.

The data connectors provide access to the following data sources:

Adabas

Provides access to Adabas files.

CA-Datacom

Provides access to CA-Datacom files.

CA-IDMS

Provides access to CA-IDMS files.

DB2 for z/OS

Provides access to DB2 for z/OS tables.

IMS Provides access to IMS data using the IMS DRA interface or the IMS

BMP/DBB interface.

Sequential

Provides access to sequential files or members.

VSAM

Provides access to native VSAM files, VSAM files under the control of

CICS®, and VSAM files under the control of DFSMStvs.

Classic Data Architect

To process SQL data access requests, data definitions must be mapped to logical

tables. The Classic Data Architect is the administrative tool that you use to perform

this mapping.

The Classic Data Architect is the enhanced interface introduced in Version 9 that

replaces the Classic Data Mapper. The purpose of the Classic Data Architect is to

administer the logical table definitions, views, and SQL security information that

are stored in the metadata catalog.

Chapter 1. Overview of IBM WebSphere Classic Federation Server for z/OS 5

The key benefits that the Classic Data Architect tool provides make it easier for

you to perform the following tasks:

v Define tables, columns, primary keys, indexes, stored procedures, and views.

v Specify user authorization for all objects.

v Import existing physical definitions from copybooks, CA-IDMS schemas, and

IMS database descriptors (DBDs).

v Generate DDL for the objects that you create that can be run directly on a server

or saved to a script file.

v Generate DDL script from objects already defined in the catalog and export DDL

scripts to a data set on the server for use with the metadata utility.

v Connect directly to a Classic data source and view the objects in the system

catalog.

Metadata catalog

The information that you generate from the Classic Data Architect is stored in

metadata catalogs. A metadata catalog is a set of relational tables that contain

information about how to convert data from non-relational to relational formats.

The data server accesses the information stored in these catalogs.

Metadata catalogs emulate relational database catalogs. The metadata defines

business-oriented relational mappings.

You can use the catalog initialization and maintenance utility, new in Version 9, to

create or perform operations on a metadata catalog.

In addition, the metadata utility accepts DDL that is generated from the Classic

Data Architect. The Version 9 metadata utility must successfully connect to a

Version 9 data server before running any DDL statements. The utility updates the

system catalogs with the contents of the DDL statements.

Clients

WebSphere Classic Federation Server for z/OS provides the ODBC, JDBC, and CLI

clients. The clients enable client applications or tools to submit SQL queries to the

data server.

The ODBC and CLI clients are based on the ODBC 3.5 standard. The JDBC client is

based on the JDBC 2.1 specification.

The clients use TCP/IP or WebSphere MQ communication protocols to establish a

connection with a target data server. When your application connects to a data

source, the connection handler activates the appropriate communication protocol

based on configuration parameters.

SQL statements can be executed using ODBC, JDBC and CLI APIs to access the

databases and files that the data server supports. The components that support the

APIs include JDBC drivers, ODBC drivers, and CLI drivers.

The ODBC, JDBC, and CLI drivers process function calls, submit SQL requests to a

specific data source, and return results to the application.

v For ODBC, a client application links to the ODBC Driver Manager which loads

the ODBC driver and calls the driver APIs.

6 Classic Federation Guide and Reference

v For CLI, the drivers are multi-threaded applications. 64-bit CLI client

applications are available on the AIX®, Solaris, and HP-UX operating systems.

v The JDBC driver is a type 4 driver that processes JDBC method invocations,

submits data requests to a specific data source, and returns results to the

application.

Chapter 1. Overview of IBM WebSphere Classic Federation Server for z/OS 7

8 Classic Federation Guide and Reference

Chapter 2. Configuring federation

Configuring Classic federation involves planning your configuration, configuring

data servers and the services that run in them, configuring access to data sources,

mapping tables, configuring communications, and configuring clients.

Configuring Classic federation

This section describes the different tasks for configuring Classic federation.

The main configuration tasks that apply to all data sources include:

v Configuring data servers and the services that run in them:

– Configuring connection handlers

– Configuring query processors

– Activating system exits
v Mapping tables to data sources

v Configuring clients

The configuration tasks that apply to specific data sources include:

v Configuring data servers for data source-specific requirements

v Activating initialization services

Overview of configuring Classic federation

The main factors that determine how to configure Classic federation are the type of

data server and the type of client that you use.

The Classic federation data server is designed for continuous operation. You can

add new data sources and services as your use of the Classic federation expands,

without affecting existing applications. You can also perform tuning and

troubleshooting without stopping a data server.

The data server configuration files are text files that contain the configuration

parameters that define services and other operational and tuning parameters.

These configuration files are stored as members in a configuration PDS. The

following classes of configuration members for data servers are stored in the

SCACCONF data set:

v Data server configuration (CACDSCF)

v Query processor configuration (CACQPCF)

v Administrator configuration (CACADMIN)

To configure clients, you define the data sources that your application uses and

you can define additional tuning and debugging parameters. Client configuration

is straightforward. For example, to configure the ODBC client, you use the ODBC

Administrator.

To establish communication, you configure a communication service that each data

source will use to communicate with a data server.

© Copyright IBM Corp. 2003, 2006 9

Basic configurations for Classic federation for all data

sources

This section contains procedures for creating basic configurations that apply to all

data sources. You can follow these procedures step-by-step or use them as aids for

creating more complex configurations.

Configuring data servers

When you configure a data server, you must also configure a query processor data

source and the appropriate communication services so that your client applications

can communicate with the data server.

Procedure

To configure data servers:

v Determine how many servers to define. A data server is designed to support 50

concurrent users in a single address space using 32 megabytes of memory. The

data server might need more memory depending on how many queries are

running concurrently and whether the queries contain an ORDER BY clause or

other predicates that requires sorting. Increasing the amount of memory that the

data server has to work with allows you to increase the number of concurrent

users that a single data server can support.

v Copy the data server JCL, which is in the CACDS member of the SCACSAMP

data set, to your PROCLIB and make the following changes to it:

– a. Customize the JCL for your environment. See the instructions that are

included as comments in the JCL.

– b. In the VHSCONF DD statement, point to the master configuration file in

the CONFIG parameter. The sample configuration file is member CACDSCF

in the SCACSAMP data set.
v Configure a query processor. The two types of query processors that you can

configure are the single phase commit query processor, CACQP, or the

two-phase commit query processor, CACQPRRS. Generally, you must define a

separate data server for each of these query processors because the two types of

query processors cannot coexist in the same data server.

You must create a query processor service information entry definition for each

data source. The service name specified for the query processor must match the

data source name. The sample CACDSCF configuration member contains a

sample query processor definition for a data source named CACSAMP. This data

source name is used for reference purposes throughout the Classic federation

documentation.

1. Identify the query processor service in field 2 of the service information

entry. To configure the service to communicate through a connection handler,

specify a service name. For example:

SERVICE INFO ENTRY=CACQP CACSAMP 2 1 1 2 4 5M 5M CACQPCF

To configure the service to communicate directly over TCP/IP, you do not

need to configure a connection handler. This direct connection capability is

recommended for queries with large result sets only:

– Uncomment the connection handler service, CACINIT.

– Specify an IP address and port in field 2 for asynchronous TCP/IP. For

example:

SERVICE INFO ENTRY=CACQP SKT/9.30.128.126/3820 2 1 1 2 4 5M 5M CACQPCF

10 Classic Federation Guide and Reference

2. Identify the number of query processor tasks and user connections that the

query processor will service in fields 4 through 6 of the Service Info Entry

definition:

– Field 4: Specify how many query processor tasks to start during data

server initialization.

– Field 5: Specify the maximum number of query processor tasks to start.

– Field 6: Specify the number of user connections that the query processor

will service.
3. Optional: Specify the service override member that will contain override

parameters. The override parameters define different configuration

parameters for the data source in field ten of the service information entry

definition.

For example:

SERVICE INFO ENTRY = CACQP CACSAMP 2 1 10 100 4 5M 0M CACQPCF

This example uses the following fields:

– Field 2 (service name) references the data source name:

– Field 10 (service information) must one of the following entries:

- NO_DATA: Signifies that initialization data should not be passed to the

query processor service

- A member of the SCACCONF library. Any parameters contained within

this member override the default value, or the value specified in

CACDSCF.
4. Activate the system exits that you need for security, accounting, and record

processing, and managing DB2 processing. See System exits.
v Configure a connection handler. The master configuration file must include a

service information entry for a connection handler. This service info entry must

specify a compound address in field 10 that identifies the communications

protocol and the address fields. A default TCP/IP connection handler is located

in the sample CACDSCF configuration member.

The sample uses port number 5001 which is configured using the 0.0.0.0 IP

address method that causes TCP/IP to resolve the IP address to the local host

address of the system where the data server is running. Port number 5001 is

used for reference purposes. If this port is assigned to another application at

your site, you need to assign a different port number.

1. For developing remote client applications with a TCP/IP connection handler

you need the host name or IP address where the data server will run and a

unique port number. See Configuring data servers to use TCP/IP to

communicate with client applications.

2. For developing remote client applications with a WebSphere MQ connection

handler, a local queue is required. See Configuring data servers to use

WebSphere MQ to communicate with client applications.

3. For developing client applications on the same z/OS system with a Cross

Memory services communications handler, you define a unique Cross

Memory services data space name and queue name. See Configuring data

servers to use Cross Memory to communicate with local client applications.
v Start the data server. See Starting data servers.

Mapping tables for Classic federation

In the Classic Data Architect, create relational tables that map to the data source

you need to access.

Chapter 2. Configuring federation 11

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigtcpip.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigtcpip.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigwmq.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigwmq.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigxm.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccommconfigxm.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcsopdataserverstart.html

About this task

You create the relational tables and views in a project in Classic Data Architect.

Then, you promote these objects to a data server. You can also create stored

procedures, modify PCB selection for IMS tables or indexes, and define occurs

processing.

Procedure

To create objects that you can use as sources in Classic federation:

1. Configure Classic Data Architect by creating prerequisite objects, creating

connections to data servers, setting preferences, importing reference files, and

granting privileges. See Configuring Classic Data Architect.

2. Create objects for specific data sources. See Mapping data for Classic federation

topics.

Configuring client applications

Before you can run your application, you must configure the client. Client

configuration depends on the operating system and the communication protocol

that you use.

About this task

All clients support TCP/IP. The JDBC and ODBC clients support WebSphere MQ.

Procedure

To configure a client to communicate with the data server, follow the configuration

steps for one of the following clients:

v Configure the JDBC client. See Establishing connections from JDBC client

applications to data servers.

v Configure the ODBC client. See Configuring ODBC data sources.

v Configure a CLI client depending on the operating system that you use.

– Configure the CLI client for UNIX®. See Configuring the UNIX, Linux®, and

Windows® CLI client.

– Configure the CLI client for native z/OS. See Configuring native z/OS CLI

clients.

– Configure the CLI client for USS. See Configuring the USS CLI client.

Configurations for Classic federation for specific data sources

In addition to configuring the basic components required for Classic federation,

setup requirements vary by data source. For example, additional configuration is

required to setup the interface to some data sources, to configure initialization

services, and to update data server JCL, and configuration parameters.

Procedure

The following steps are general guidelines for configuring specific data sources and

for setup steps that are common to all data sources:

1. Follow the configuration steps for the setup requirements that are specific to

the data source that you need to access.

v For Adabas setup, see Setting up access to Adabas.

v For CA-Datacom, see Setting up access to CA-Datacom.

12 Classic Federation Guide and Reference

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcjdbcestablishconn.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcjdbcestablishconn.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcodbcconfig.dita
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccliconfig.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfccliconfig.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcclicfgzos.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcclicfgzos.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.websphere.ii.federation.classic.doc/configuring/iiyfcclicfguss.html

v For CA-IDMS setup, see Setting up access to CA-IDMS.

v For DB2 for z/OS setup, see Setting up access to DB2 for z/OS.

v For IMS setup, see Setting up access to IMS.

v For sequential file setup, see Setting up access to sequential files.

v For VSAM setup, see Setting up access to VSAM.
2. Follow the configuration tasks that are common to all data sources.

a. Optional: Create or upgrade a metadata catalog. A default set of metadata

catalogs is created and initialized as part of the SMP/E installation process.

You need to define a new set of metadata catalogs if you set up a second

data server. See Creating and initializing sequential metadata catalogs.

b. Configure logging for data servers. See Creating temporary data sets for

storing log messages and Defining log streams for storing log messages.

c. Configure a TCP/IP connection handler to communicate with the Classic

Data Architect. See “Configuring TCP/IP connection handlers” on page 40.

d. The basic configuration steps to configure communication for clients, start

the data server, and map tables occur at this stage of configuration. See

“Basic configurations for Classic federation for all data sources” on page 10.

e. Optional: Copy the content of your sequential metadata catalog into a

Version 9.1 linear metadata catalog. See Creating and initializing linear

metadata catalogs.

If you are working with a development system, follow the recommendations for

setting up Classic federation in a development environment versus a production

environment. See Creating data servers.

Configuring access to Classic federation data sources

This section contains procedures for configuring access to the Classic federation

data sources.

Setting up access to Adabas

You need to configure the data server to enable access to Adabas files.

About this task

The SCACLOAD members CACADABS and ADALNK are required to access

Adabas files.

Procedure

To set up access to Adabas:

1. Edit and run SCACSAMP member CACADAL. The CACADAL job creates and

populates the members CACADALN and CACADAL2 in the SCACLOAD data

set with the CACADABS and ADALNK modules that are required for Adabas

access.

2. Modify the data server STEPLIB DD statement to reference the Adabas runtime

libraries, or ensure that the runtime libraries are accessible from the link pack

area.

Setting up access to CA-Datacom

You need to configure the data server to enable access to CA-Datacom data.

Optionally, you can also set up security.

Chapter 2. Configuring federation 13

Procedure

To set up access to CA-Datacom data:

1. Define the CA-Datacom initialization service for the data server. See

“Initialization service for CA-Datacom.”

2. Ensure that the CA-Datacom Multi-User Facility is authorized. See “Multi-User

Facility authorization and CA-Datacom” on page 15.

3. Optional: Set up security for CA-Datacom access. See “CA-Datacom security”

on page 15.

4. Configure the data server for validation. See “CA-Datacom setup for dynamic

discovery from the Classic Data Architect” on page 16.

Initialization service for CA-Datacom

CA-Datacom database connections are created and managed by an initialization

service. You must configure the initialization service for CA-Datacom.

CA-Datacom access requires you to enter a service information entry into the data

server configuration file for the CA-Datacom initialization service.

Initialization service requirements

This service requires the following task and connection counts:

v Minimum task count: 1

v Maximum task count: 1. (Only one instance of this service is required to handle

any number of connections.)

v Maximum connections count: 50

The following example shows the configuration of this service:

 SERVICE INFO ENTRY = CACDCI DCOMIS 2 1 1 50 4 5M 5M 4

Defining task areas:

Field ten of the Service Info Entry contains a numeric value that indicates the total

number of CA-Datacom task areas to be acquired and initialized for the query

processor. This value defines how many concurrent connections can be attained

with CA-Datacom.

 Based on the value 4 in field ten, a maximum of four connections can exist with

the CA-Datacom system at any given time:

 SERVICE INFO ENTRY = CACDCI DCOMIS 2 1 1 50 4 5M 5M 4

An alternate method for configuring field ten is to specify two numeric values

separated by a comma, as in the following service information entry:

 SERVICE INFO ENTRY = CACDCI DCOMIS 2 1 1 50 4 5M 5M 8,3

The first numeric value is the total number of CA-Datacom task areas to acquire

and initialize for the query processor. This value defines how many concurrent

connections CA-Datacom can maintain. The second numeric value is the total

number of CA-Datacom task areas that are reserved for use by modification (insert,

update, or delete) queries. Based on the example definition shown above, a

maximum of eight connections can exist with the CA-Datacom system at any given

time, and three of those connections are reserved for modification-type queries.

Allocating task areas:

14 Classic Federation Guide and Reference

Access to CA-Datacom data is handled by a series of CA-Datacom interface

modules. The actual database connections are provided by using pre-allocated task

areas.

 The query processor manages access to CA-Datacom data. By converting SQL

queries into native CA-Datacom commands, CA-Datacom data can be joined with

other data types.

The query processors in a single data server are restricted to accessing the same

CA-Datacom Multi-User Facility. Accessing a different Multi-User Facility requires

a second data server referencing a different CA-Datacom control library.

Each separate task area represents a TCB communicating between the data server

query processor and the CA-Datacom Multi-User Facility. The number of task areas

for use by the query processor is defined in the service information entry for the

CA-Datacom initialization service, and it limits the number of concurrent

connections to a CA-Datacom Multi-User Facility.

Task areas are shared by all users. Task areas assigned for use by the query

processor can be shared by non-update queries requiring the same

user-requirements table. Read-only queries require task-area access for very short

periods of time throughout the duration of the query, so sharing task areas only

generates a small amount of contention. Modification queries require exclusive

control of a task area for the duration of the query.

For example, assume all queries are non-update, and all queries require a different

user requirements table. The maximum total number of users who are allowed a

connection is the smaller of the following numbers:

v The number of query processor instances times the maximum number of

connections per instance

v The number of task areas that are assigned for use by the query processor

After identifying the workload mix you expect, you can define your task areas to

support that mix of read-only queries and modification-type queries. Properly

allocating task areas reduces resource contention, resulting in an improvement in

overall throughput.

Attempts to connect to either the query processor or to CA-Datacom that exceed

the maximum number of thresholds that you specify in your configuration file are

rejected with an error message.

Multi-User Facility authorization and CA-Datacom

The CA-Datacom load library requires authorization because certain Multi-User

Facility options are operational only when the Multi-User Facility is authorized.

If authorization is not present when the Multi-User Facility is started, the

Multi-User Facility issues the following message: DB00210I - MULTI-USER NOT

RUNNING AUTHORIZED.

CA-Datacom security

Your choices for security include internal CA-Datacom security (less secure),

external security (RACF®, ACF-2, or Top Secret), or no security at all.

About this task

Chapter 2. Configuring federation 15

For an external security package, each user must have a unique identity. Data

servers run as either a z/OS-started task or a batch job. The primary authorization

ID is the user of the started task or batch job. In many installations, the user for

started tasks is specified as plus signs (’++++++++’). Because the data server is a

multiuser system, access to CA-Datacom under the authorization ID of the data

server does not provide adequate security for your installation data.

Therefore, the data server has a mechanism for each user which is identified by the

user ID that is supplied when a user connects to the data server. This user ID and

the associated password must be verified with RACF or the security system at

your site as part of the connection process. All database processing is done under

the particular user ID in the ACEE.

Procedure

To enable security validation:

v Specify SAF exit = CACSX04 in the master configuration file for the data server.

v To extend user-level security checking to each database request, the ACEE that is

created during this security checking must be made available outside the

security exit. Choose one of the following options:

– To enable external security checking at the database level, you must request a

Computer Associates software solution and install that solution on your

CA-Datacom system. To obtain the solution, contact CA-Datacom Technical

Support and request Solution TB10727 (for users of CA-Datacom Version 9.0

only) or TB20202 (for users of CA-Datacom Version 10.0 only).

– If you choose no security at the database level, and the SAF exit is active in

the data server configuration file, you must indicate to the SAF exit that

security information will not be provided for the query processor. Provide a

keyword parameter (EXCLUDE = 2) in the SAF exit configuration file entry to

prevent the ACEE from being provided on the call.

CA-Datacom setup for dynamic discovery from the Classic Data

Architect

When a CREATE TABLE or CREATE INDEX statement that references a

CA-Datacom table is executed, the CA-DATACOM Datadictionary Service Facility

(DSF) is invoked to perform validation processing.

Procedure

To perform validation on the CREATE TABLE or CREATE INDEX statements:

v Ensure that the STEPLIB DD statement of the link-pack area provides access to

the DSF load modules and the DDSRTLM (CA-Datacom System Resource Table).

The required modules are located in the following CA-Datacom load libraries:

– CAI.CAILIB

– CAI.DATACOM.CHLQ.CUSLIB

– CAI.DATACOM.THLQ.CAILIB

Replace CHLQ and THLQ with the applicable high-level qualifier.

v Update the data server JCL to include a DDIDENT DD statement that references

a text-data set or PDS member that contains DSF user ID and password

information. A sample DDIDENT PDS member is located in SCACSAMP

member CACDCID. The file referenced by the DDIDENT DD statement contains

parameters that identify the user ID and password that allow access to DSF:

16 Classic Federation Guide and Reference

USER

Identifies an ENTITY-OCCURRENCE-NAME of a PERSON that is in

production status. If no USER information is supplied, the DSF assumes

there is no authorization.

PASSWORD

Identifies a QUALIFIER attribute that specifies the password for the

PERSON that is identified in the USER parameter.
These access-information parameters are entered free form, in a standard-text

file. You can enter the parameters on the same line, separated by a comma, or

enter each parameter on a separate line. If a single parameter is entered more

than once, the last occurrence of that parameter is used when accessing the

Datadictionary Service Facility. The number of leading and trailing blanks or the

number of spaces before and after the equal sign, is inconsequential. As with

any file containing sensitive information, this access information file must be

secured according to site specifications.

v Ensure that the CA-Datacom initialization service is active in the data server.

v Ensure that the URT load module that is identified on the ACCESS USING URT

clause on the CREATE TABLE statement exists and is loadable by the data

server.

Setting up access to CA-IDMS

You need to configure the data server to communicate with one or more CA-IDMS

central versions to enable access to CA-IDMS data and to process CREATE TABLE

and CREATE INDEX statements.

About this task

The CA-IDMS access component runs under the query processor in the data server.

This component supports multiple users and does not require initialization

services.

The batch access module, IDMS, provides access to CA-IDMS. This module can

access CA-IDMS data in either central version or local mode. By default, all JCL

and examples are configured to access CA-IDMS in central-version mode. If you

have a specific need for local-mode access, see the CA-IDMS documentation about

the necessary JCL changes to allocate and access CA-IDMS databases.

Procedure

To set up access to CA-IDMS data:

1. Verify that the CA-IDMS MAXERUS setting is sufficient to support the data

server access to CA-IDMS. See “Setting the maximum number of run units” on

page 18.

2. Set up APF authorization of the CA-IDMS LOADLIB. See “Setting up APF

authorization” on page 18.

3. Pass the correct user context to CA-IDMS run units. See “Setting up security for

CA-IDMS access” on page 19.

4. Set up access to multiple CA-IDMS central versions. See “Accessing multiple

CA-IDMS central versions from a single data server” on page 19.

5. Update the data server JCL to access any CA-IDMS central versions. See

“Configuring the data server to access CA-IDMS central version” on page 20.

Chapter 2. Configuring federation 17

6. Update the data server JCL to be notified correctly when the CA-IDMS central

version is not available. See “Configuring the data server for notification of

central version shutdown” on page 20.

Setting the maximum number of run units

In central version mode, the CA-IDMS access component in the data server

connects to the CA-IDMS system as an external run unit. The number of external

run units available in a single CA-IDMS central-version region is a CA-IDMS

configurable value.

An external run unit is established when the client issues an SQL OPEN to access a

CA-IDMS-mapped table. An external run unit is also started when processing a

CREATE TABLE or CREATE INDEX statement that references a CA-IDMS mapped

table. The run unit is used to extract schema and subschema information from the

CA-IDMS dictionary which is used to validate the CREATE TABLE and CREATE

INDEX statements.

Each central version has a MAXERUS (maximum external run-units) value that

limits the number of concurrent external connections. This value governs all

external connection sources, such as batch jobs and CICS.

Setup and configuration of the data server requires the analysis of the MAXERUS

value for CA-IDMS central versions accessed. Generally, when the data server

accesses and updates CA-IDMS data, the number of query processor services

running in a data server is the maximum number of concurrent run units that are

active to CA-IDMS at any point in time.

Set the MAXERUS setting high enough to accommodate additional run-units that

are opened due to the following data server processing:

v CREATE TABLE processing

v CREATE INDEX processing

v Select processing

v Update processing

v Delete processing

v Insert processing

v Join processing: each table referenced in the join has a separate run unit.

Setting up APF authorization

Cross memory services and the SAF security exit require the STEPLIB for the data

server to be APF authorized.

About this task

The CA-IDMS.LOADLIB is not usually APF authorized, and some utility programs

in that library fail if they are run from an APF-authorized STEPLIB concatenation.

Procedure

To update APF authorization for CA-IDMS access:

1. Create a separate, authorized copy of the CA-IDMS.LOADLIB.

2. Create a separate, authorized copy of the CA-IDMS.DBA.LOADLIB.

18 Classic Federation Guide and Reference

Setting up security for CA-IDMS access

To establish security for CA-IDMS data, the SAF exit ensures that the user ID and

password combination from the client is an authorized user of the z/OS system. In

addition you need to ensure that the client is passing the correct user context in all

run units that are established with the CA-IDMS central version.

The SAF system exit automatically validates all user IDs and passwords when a

user establishes a connection to the data server. The SAF exit also validates that the

user has read access rights to the catalog when catalog queries are issued.

Establishing the correct user context for CA-IDMS run units:

You must establish the correct user name for each run unit.

 About this task

By default, all batch run units connect with a blank user context. Thus, in

CA-IDMS, there is PUBLIC access to the data. To establish the correct user name

for each run unit that is created under the data server, the CA-IDMS.LOADLIB

module IDMSSTRT must be re-linked with a USRIDXIT module. Only the data

server uses this IDMSSTRT module.

Procedure

To create a new IDMSSTRT module:

1. Assemble the CACIDUXS exit source in the SAMPLIB using the CACIDUXT

sample JCL in the SAMPLIB and link-edit the module into a new IDMSSTRT

module.

2. Link the new module into a library that is only used by the data server. Do not

place the module in the CA-IDMS.LOADLIB. If a separate APF-authorized

LOADLIB exists, you can locate the new IDMSSTRT module in that library.

3. Include this library (linked to in the previous step) in the STEPLIB

concatenation of the startup JCL for the data server before the

CA-IDMS.LOADLIB.

The creation of an IDMSSTRT module only ensures that all run units that are

established with a CA-IDMS central version have the correct user name associated

with them. The security of the CA-IDMS data is not ensured. For data to be secure,

security enforcement must be active for the central version .

Accessing multiple CA-IDMS central versions from a single data

server

You can access multiple central versions from a single data server.

About this task

The SYSCTL data set that is allocated to the data server identifies the default

CA-IDMS central version for communication.

You can allocate multiple SYSCTL data sets with unique DD names and select the

data sets on a table-by-table basis. Use the custom built CA-IDMS ACCESS

LOADMODs that reference the appropriate SYSCTL DD name.

Procedure

Chapter 2. Configuring federation 19

To build and reference a custom-access load module with the name, SYSCTL1:

1. Code an assembler CA-IDMSOPTI module that contains the following

assembler macro statement:

IDMSOPTI CENTRAL=YES,SYSCTL=SYSCTL1

END

2. Assemble and link the CA-IDMSOPTI module using the supplied SAMPLIB

member CACIDACM with the following link-edit control cards:

v INCLUDE IDMSLOAD(IDMS)

v ENTRY IDMS

v NAME new-module-name(R)

Create a new name for the CA-IDMS module, because the default module must

be left as-is for other CA-IDMS batch applications. Also, link the new module

into a library that is accessible to the data server startup JCL.

CA-IDMSOPTI modules can also manage default databases and other CA-IDMS

specific parameters.

Configuring the data server to access CA-IDMS central version

You must make changes to the startup JCL for the data server to access a

CA-IDMS central version.

Procedure

To access a CA-IDMS central version:

1. Add the authorized versions of the CA-IDMS.LOADLIB and the

CA-IDMS.DBA.LOADLIB to the STEPLIB concatenation.

2. Add a SYSCTL DD statement for all central versions to which the data server

will connect.

3. If you do not specify the CA-IDMS database to access with the DBNAME

parameter on the CREATE TABLE statement, you need to set up a default

dbnames mapping in the CA-IDMS dbnames table used by the central version.

For example, the following dbname mapping specifies the DBNAME userdb as

the default DBNAME in the dbnames table:

subschema ???????? maps to ???????? dbname userdb;

The CA-IDMS.LOADLIB is a non-APF authorized library that removes

authorization from STEPLIB if allocated to STEPLIB. If the data server is using any

authorized services (cross memory services and any SAF exits such as CACSX04

and CACSX07), S047 errors occur.

Configuring the data server for notification of central version

shutdown

You must make changes to the data server JCL to ensure that the data server is

notified properly when the CA-IDMS central version is not available.

Procedure

To update JCL when the central version is shut down:

1. Include a SYSIDMS DD statement with the following parameters to ensure that

the data server is notified correctly when the CA-IDMS central version is not

available:

20 Classic Federation Guide and Reference

CVRETRY=OFF

REREAD_SYSCTL=ON

DMCL=<Specify DMCL name that contains the SYSTEM segment>

2. Include the data set for the DDLDCMSG area in the JCL for the batch job.

3. Ensure that the DMCL load module specified in the SYSIDMS parameter is

available in the STEPLIB for the data server.

Setting up access to DB2 for z/OS

You need to configure the data server and configure the CAF initialization service

or the RRS interface to enable access to DB2 for z/OS.

About this task

The setup requirements for access to DB2 for z/OS data also apply to validation

setup for processing CREATE TABLE and CREATE INDEX statements that

reference a DB2 data source.

Procedure

To set up access to DB2 for z/OS data, complete the following steps for each DB2

subsystem that you need to access:

1. Bind an application plan. Before you access data in DB2 UDB for z/OS, you

must bind an application plan for the CAF service. Running the BIND job

requires BINDADD authority.

a. Edit the bind control card CACBCNTL. Edit the CACBCNTL member in the

SCACSAMP data set and change DSN to the appropriate DB2 subsystem ID

for your site. If your site requires plan names to match specific standards,

you can change the plan name from CAC91PLN to a name that fits those

standards.

b. Run the bind job CACBIND. Edit the bind job CACBIND to conform to

your environment. This job uses the provided DBRM (MSLP2EC) to create a

plan CAC91PLN (or the name that you specify in CACBCNTL).

c. Submit the CACBIND job.

d. Grant EXECUTE authority on the plan to the user ID under which the data

server is running, and to individual users of Classic federation if the DB2

thread management exit is active.

2. Configure the Call Attachment Facility (CAF) initialization service or the

Resource Recovery Services (RRS) interface.

v - To access and update DB2 for z/OS data by using CAF initialization

service, define a service information entry. For example:

SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M CACPLAN

Replace DSN with your installation specific DB2 for z/OS subsystem name.

Replace CACPLAN with the DB2 plan name that you specified in the

previous step. The DB2 CAF initialization service connects to the DB2 for

z/OS subsystem to access or update DB2 data using the DB2 Call

Attachment Facility.

v - To use the RRS interface for two-phase commit processing, see Two-phase

commit.

Chapter 2. Configuring federation 21

Setting up access to IMS

You need to configure and enable an IMS interface to access IMS data.

Procedure

To set up access to IMS data:

1. Decide which IMS interface to use for accessing IMS data. See “Overview of

data server setup for IMS access.”

2. Configure an IMS interface.

v To configure the DRA or ODBA interface, see “Setting up the DRA and

ODBA” on page 23.

v To configure the BMP or DBB interface, see “Setting up a BMP or DBB

interface” on page 27.
3. Configure the data server for validation. See “IMS setup for dynamic discovery

from the Classic Data Architect” on page 28.

4. Run the data server. See “Running the data server” on page 29.

Overview of data server setup for IMS access

Three interfaces are available for accessing IMS data. The setup requirements and

required configuration steps differ for each interface. Understanding the differences

enables you to decide which interface to use. Each interface has its own benefits

and drawbacks, depending on your requirements for distributed transactions.

The data server supports the following interfaces that you can use to access and

update IMS data:

v The DRA interface

The database resource adapter (DRA) interface is similar to the interface that

CICS uses. The DRA is the interface to use when your client applications do not

run distributed transactions with two-phase commit. For the DRA interface, you

must configure and activate an IMS DRA initialization service to access your

IMS data. The data server interfaces directly with IMS when you use the DRA

interface.

v The ODBA interface

You must use the open database access (ODBA) interface when your client

applications run distributed transactions with two-phase commit protocols. The

ODBA interface must be used in conjunction with the two-phase commit query

processor (CACQPRRS), and you need to configure and activate an IMS ODBA

initialization service.

The ODBA interface uses the DRA interface to connect to IMS.

v The BMP and DBB programming interfaces

The BMP/DBB programming interface is a non-scalable interface that is

primarily provided for initial development and testing. With this interface, a

single PSB is used, and all access is serialized through that PSB. With the

BMP/DBB interface, you can access IMS data in a BMP or a DBB environment.

In these environments, you must configure and activate an IMS BMP or DBB

initialization service to access your IMS data. When you use any of these

interfaces to access IMS data, the data server JCL requires changes.

There are setup requirements for accessing IMS data by using the DRA or ODBA

interfaces.

22 Classic Federation Guide and Reference

DBCTL

DBCTL is an IMS database manager subsystem that runs in its own address space.

DBCTL must be configured and running to use the IMS DRA or ODBA interface.

v DRA is the interface between the data server and DBCTL or between ODBA and

DBCTL.

v ODBA is RRS-enabled to interface to IMS.

You can use an IMS DB/DC subsystem to access and update IMS data. A DB/DC

subsystem is a superset of DBCTL. The environment includes the elements that the

data server needs to access your IMS data by using either a DRA or ODBA

interface.

If DB/DC or DBCTL is installed at your site, you need to perform the

customization steps required to set up and configure the DRA and ODBA

interfaces to access and update your IMS data.

Differences between DRA and ODBA

You can only use a single IMS interface (DRA, ODBA) within a data server address

space.

The key differences between using the DRA or ODBA interfaces to access IMS data

are described in described in the following table:

 Table 4. DRA and ODBA interface differences

DRA ODBA

In an update transaction, you can schedule

only a single PSB. Scheduling occurs only if

the transaction does not access any other

data source.

The data server can schedule and update

multiple PSBs as part of a single RRS

transaction and changes to other data sources

that are RRS-enabled.

A transaction can access a single IMS

subsystem only.

Multiple PSBs can be scheduled that access

different IMS subsystems located on the

single image (LPAR) where the data server

resides.

The ODBA interface provides greater

flexibility in PSB scheduling options

The ODBA interface should only be used in

conjunction with distributed transactions

Setting up the DRA and ODBA

To enable the DRA and ODBA, you need to make the DRA startup/router routine

accessible to the data server.

Procedure

To enable the DRA interface:

1. Copy the DRA startup/router routine (DFSPRRC0) into the SCACLOAD load

library using either of the following methods:

v Copy the routine from the IMS.SDFSRESL library (built by the IMS definition

process).

v Concatenate the IMS.SDFSRESL library to the ODBA STEPLIB.
2. Put the DRA startup table (DFSPZPxx load module) into a load library.

Chapter 2. Configuring federation 23

Setting up the DRA interface:

The default load module, DFSPZP00, is in the IMS.SDFSRESL library. The

remainder of the DRA modules reside in a load library that is dynamically

allocated by DFSPRRC0 (the startup).

 About this task

The default DDNAME and DSNAME of this load library (IMS.SDFSRESL) are

specified in the default startup table DFSPZP00. DFSPZP00 contains default values

for the DRA initialization parameters.

Procedure

To specify values other than the defaults:

1. Code a new start-up table. Name it, for example, DFSPZP01. You might want

to use DFSPZP00 as an example.

2. Specify the required values.

3. Copy any unchanged values from the default table.

4. Assemble and link the new module into a load library. If the new module is

named DFSPZP01, the IMS DRA initialization, Service Info Entry parameter,

specifies a value of 01 in the DRA startup-table suffix field.

For information about DFSPZP00 and DFSPZP00, see the IMS documentation

about installation and customization. For information about using the DRA

start-up table to control performance, see the CICS documentation about

performance.

Configuring the DRA interface:

You must configure the data server to access IMS data by using the DRA interface.

 Before you begin

You must configure the IMS DRA service information entry parameter in the data

server before you can access IMS data. Only one IMS service information entry

parameter can be active in the data server.

About this task

Sample JCL, configuration files, and sample application programs are located in

the SCACSAMP and SCACCONF libraries.

Procedure

To configure the data server to access the DRA:

1. Edit the data server configuration member, SCACCONF member CACDSCF.

The sample configuration member contains default values for the key

configuration parameters that are required to start or run a data server. The

sample configuration member also contains a set of service information entries

that are commented out. In the following steps you activate the DRA

initialization service that allows you to access IMS data by using a DRA

interface.

2. Activate the DRA initialization service.

24 Classic Federation Guide and Reference

a. Uncomment the service information entry for the IMS DRA initialization

service task. This service information entry can be identified by the

comments in the configuration member.

b. In the task data field of the service information entry parameter, specify

additional information that initializes the DRA interface. Supply the

following information:
v DRA startup table suffix: Modify SF to specify the last two characters of the

load module name that you created. For the default DRA startup table load

module, specify 00.

v DRA user ID: Modify DRAUSER to specify the default DRA user ID that is

used to connect to and register with DBCTL. The DRAUSER is the name by

which the data server is known to DBCTL.

v Default PSB name: Modify DEFPSB to specify the name of a PSB. This PSB

name is used when an IMS table is referenced by a CREATE TABLE

statement that contains no PSB name.

Setting up the ODBA interface:

To use the ODBA interface, make additional modules accessible. Also, you must set

up startup router tables.

 Procedure

To set up the ODBA interface:

1. Make the following modules accessible:

DFSCDLI0

The data server loads this module. DFSCDLI0 also contains the ALIAS

name AERTDLI.

DFSAERG0

DFSCDLI0 loads this module.

DFSAERM0

DFSAERG0 attaches this module in the data server address space.

DFSAERA0

DFSAERM0 attaches this module for initialization to the specified IMS

DB subsystem.

AERTDLI

The data server loads this module DL/I calls by using the ODBA

interface.
2. Follow the procedures described in “Setting up the DRA interface” on page 24

for the DRA startup router table to make these modules available to the data

server.

3. Name the DRA startup router tables that the ODBA interface uses with this

format, DFSxxxx0. The variable xxxx is replaced with the name of the IMS

subsystem identifier of the IMS subsystem that you connect to.

4. Create a DRA startup router table for each unique IMS subsystem. The

subsystems are identified on the ODBA initialization Service Info Entry, or the

SUBSYSTEM parameter in the CREATE TABLE statement for the IMS tables

that you are accessing.

Configuring the ODBA interface:

Chapter 2. Configuring federation 25

You must configure the data server and activate the ODBA initialization service to

access IMS data by using the ODBA interface.

 Before you begin

You must configure the IMS DRA service information entry parameter in the data

server before you can access IMS data. Only one IMS service information entry

parameter can be active.

About this task

Sample JCL, configuration files, and sample application programs are located in

the SCACSAMP and SCACCONF libraries.

Procedure

To configure the data server for ODBA access:

1. Edit the data server configuration member, SCACCONF member CACDSCF.

The sample configuration member contains default values for the key

configuration parameters that are required to start or run a data server. The

sample configuration member also contains a set of service information entries

that are commented out.

2. Activate the IMS ODBA initialization service. Uncomment the service

information entry for the IMS ODBA initialization service task. You can identify

this service information entry by using the comments in the configuration

member. In the task data field of the service information entry parameter, you

need to specify additional information that initializes the ODBA interface.

Supply the following information:

Default subsystem ID

Identifies the 4-character IMS subsystem identifier to connect to when a

SUBSYSTEM parameter is not specified in the IMS USE grammar.

Default PSB name

Modify DEFPSB to specify the name of a PSB to use when an IMS table is

referenced that was created without a PSB name.
3. Save the configuration member.

Customizing JCL for DRA and ODBA:

You can customize the data server JCL to access IMS data by using the DRA

interface.

 Procedure

To customize the JCL to run the data server as a batch job:

1. Edit the IMS DRA data server JCL stream, SCACSAMP member CACDS. This

member runs the data server as a batch job that accesses IMS data by using the

DRA interface.

2. Supply a valid job card.

3. Modify the JCL to conform to site specifications. Specify the following

parameters at the beginning of the in-stream procedure:

v High-level qualifier CAC

v SYSOUT class SOUT

26 Classic Federation Guide and Reference

4. Supply additional IMS information. The high-level qualifier for IMS data sets,

IMS, must be specified.

5. Save the changes.

Setting up a BMP or DBB interface

To use the BMP and DBB interface to access IMS data, you must perform setup

tasks.

Procedure

To set up the BMP and DBB interface:

1. Configure the data server and activate the BMP/DBB initialization service. See

“Configuring the data server for a BMP or DBB interface.”

2. Modify the BMP and DBB data server JCL. See “Modifying BMP and DBB

JCL.”

Configuring the data server for a BMP or DBB interface:

You can configure the data server to access IMS data by using either a BMP or

DBB interface. You must configure the IMS BMP or DBB initialization service in the

data server before you can access data. Only one IMS service information entry

parameter can be active in the data server.

 Procedure

To configure the data server for BMP or DBB access:

1. Edit the data server configuration member, SCACCONF member CACDSCF.

The sample configuration member contains default values for the key

configuration parameters that are required to run a data server. The sample

configuration member also contains a set of service information entries that are

commented out.

2. Activate the BMP or DBB initialization service. Uncomment the service

information entry for the BMP or DBB initialization service task. This service

information entry can be identified by the comments in the configuration

member.

3. Save the configuration member.

Modifying BMP and DBB JCL:

Modify JCL streams to access IMS data with a BMP or DBB interface.

 Procedure

To modify BMP or DBB JCL:

v For IMS BMP JCL only, modify the JCL for BMP access.

1. Edit the BMP data server JCL stream, SCACSAMP member CACBMP. This

member runs the data server as a batch job that is capable of accessing IMS

data by using a BMP interface.

2. Supply a valid job card.

3. Modify the JCL to conform to site specifications and specify the following

parameters at the beginning of the in-stream procedure: the data server

high-level qualifier (CAC) or SYSOUT class (SOUT).

4. Supply additional IMS information:

Chapter 2. Configuring federation 27

a. The high level qualifier for IMS data sets, IMS.

b. A PSB name.
5. Save the changes.

v For IMS DBB JCL only, edit the DBB data server JCL stream, SCACSAMP

member CACDBB. This member runs the data server as a batch job that accesses

IMS data by using a DBB interface.

1. Supply a valid job card.

2. Modify the JCL to conform to site specifications. Specify the following

parameters at the beginning of the in-stream procedure:

– The data server high-level qualifier, CAC

– SYSOUT class, SOUT.
3. Supply additional IMS information:

a. The high-level qualifier for IMS data sets (IMS).

b. A PSB name.

c. The correct ACB library for DBB access.

d. DD statements for the database files, if you are not using dynamic

allocation (databases not defined to IMS).

Required: When you run DBB with IRLM=Y, IMS requires a non-swappable

address space. IMS makes the address space non-swappable at

initialization time automatically when you set the JCL SWAP

parameter to SWAP=N. Otherwise, IMS automatically makes the

region non-swappable when the first DL/I call is issued. This

situation can result in a significant delay in processing the call. In

addition, the IMS batch service definition in the data server

configuration file needs to be placed immediately after the logger

service to ensure the shortest possible timeframe to make the

region non-swappable.

4. Save the changes.

IMS setup for dynamic discovery from the Classic Data Architect

To validate CREATE TABLE and CREATE INDEX statements that reference an IMS

database, you need to update the data server JCL.

Before you begin

The user ID that is associated with the address space requires read permission to

access the files that the DBDLIB DD statement references. The DBD libraries that

the DBDLIB DD statement references do not require APF-authorization.

Procedure

To update data server JCL:

Include a DBDLIB DD statement that references the IMS DBD library. Alternatively,

the DBDLIB DD statement can reference libraries that contain the load module

generated from the IMS DBDGEN. The libraries containing this load module are

created for the databases referenced by the DBD-name in the CREATE TABLE

statement. If the table references an IMS logical database, the physical DBDs

referenced must also be accessible through the DBDLIB DD statement.

28 Classic Federation Guide and Reference

Running the data server

You are now ready to run the data server. Before you submit the JCL, ensure that

the operational environment is set up properly.

Procedure

To run the data server:

1. Ensure that the SCACLOAD library is APF authorized. If the SCACLOAD

library is not APF authorized, you will receive a S047 abend when you attempt

to run the data server. IMS libraries concatenated to SCACLOAD must also be

APF authorized.

2. Ensure that the user ID that the data server runs with has access and execute

authority for the data sets that are referenced in the data server JCL. Contact

your security administrator to verify the authorizations.

3. Start the data server by submitting the data server job.

To verify that the data server is operational, select the job while it is running. Look

for the following message near the top of the listing:

CAC00103I DATA SERVER: V9.1 READY

To shut down the data server, you can use the z/OS MTO interface and issue a

STOP command. If you do not have MTO authority, cancel the data server job.

Setting up access to sequential files

You need to configure the data server to enable access to sequential files.

About this task

The setup requirements for access to sequential files also apply to validation setup

for processing CREATE TABLE statements to map sequential files.

Procedure

To set up access to sequential files referenced by DD name:

Ensure that the corresponding DD statement exists in the server JCL that references

the files. The DSN parameter on the DD statement identifies the physical file to be

accessed.

Setting up access to VSAM

You need to configure the data server to enable access to VSAM files through the

CICS VSAM, native VSAM, and DFSMStvs interfaces.

Setting up access to CICS VSAM

To access VSAM data through CICS, the data server establishes a VTAM® LU 6.2

connection to CICS to initiate a transaction when a query begins and uses this

transaction to communicate with CICS during query processing.

Procedure

To set up access to CICS VSAM:

Chapter 2. Configuring federation 29

1. Configure VTAM resource definitions and CICS resource definitions to establish

the CICS VSAM environment. See “Sample VTAM and CICS definitions for

stored procedures” on page 258.

2. Configure and activate the VSAM initialization service to establish

communications with the target CICS subsystem.

The data server uses the VSAM initialization service to establish a connection

with CICS for validation purposes, based on the information provided on the

CREATE TABLE statement.

To enable the VSAM service, uncomment the service information entry in the

data server configuration file. The following default service information entry

for the VSAM service opens VSAM data sets on first use and closes them on

last use.

SERVICE INFO ENTRY = CACVSMS VSAMSRV 2 1 1 50 4 5M 5M NO_DATA

3. Define one set of session definitions in the CICS target system. The sample

member CACCDEF in the SCACSAMP data set adds the CICS definitions

required for CICS VSAM support. Sample CICS transaction, program,

connection, session, and file definitions are supplied in CACCDEF.

Setting up access to native VSAM

You need to configure the data server to access native VSAM.

Restrictions

You cannot use the VSAM service to access DFSMStvs.

Procedure

To set up access native VSAM:

v Optional: Configure and activate the VSAM initialization service.

To enable the VSAM service, uncomment the Service Info Entry in the data

server configuration file. The following default Service Info Entry for the VSAM

service opens VSAM data sets on first use and closes them on last use.

SERVICE INFO ENTRY = CACVSMS VSAMSRV 2 1 1 50 4 5M 5M NO_DATA

v If you specify a DD name that references a VSAM file in a table definition,

update the data server JCL with the corresponding DD statement.

Setting up access to DFSMStvs

Eligibility to access DFSMStvs files is determined dynamically by the data set

attributes defined in the Integrated Catalog Facility (ICF) catalog.

Before you begin

An RRS query processor is required for access to DFSMStvs.

VSAM Record Level Sharing (RLS) and DFSMStvs with RRS must be installed.

Restrictions

v DFSMStvs does not support the VSAM service (CACVSMS).

v DFSMStvs support is restricted to access performed at the record level.

DFSMStvs does not support the following VSAM functions:

– Linear data sets

– Control interval processing (CNV)

– KSDS addressed access

30 Classic Federation Guide and Reference

– Access to key range data sets

– Access to temporary data sets

– Clusters defined with the IMBED option

– Improved control interval processing

For a complete list of limitations, see the DFSMStvs documentation about

planning.

Procedure

To set up access and define files for DFSMStvs:

1. Ensure that a service information entry is defined for an RRS query processor.

For example:

SERVICE INFO ENTRY = CACQPRRS CACSAMP 2 1 1 2 1 5M 5M NO_DATA

2. Use IDCAMS to define recoverable data sets. Use the DEFINE CLUSTER

command for new data sets or use the IDCAMS ALTER command for existing

data sets. To designate a file as recoverable, you must specify the UNDO or the

ALL parameter. DFSMStvs access does not occur if NONE is specified.

Specify one of the following LOG parameters to assign the recovery attribute

for a data set:

LOG

(NONE | UNDO | ALL)

NONE

Data set is non-recoverable. Undo or redo logging is not performed. NONE

is the default

UNDO

Data set is recoverable. Only undo logging is performed.

ALL

Data set is recoverable. Both undo and forward recovery logging are

performed

If you specify forward recovery with the LOG(ALL) parameter, you must also

define a forward recovery log stream with the LOGSTREAMID parameter.

3. If you specify a DD name that references a VSAM file in a table definition,

update the data server JCL with the corresponding DD statement.

Configuration considerations for development and production

environments

When you set up the infrastructure for Classic federation during initial application

development, you can typically retain development work when you start

deploying your application into production. This section provides

recommendations for deploying applications from development to production

environments.

Creating data servers

When developing applications, you should create a development data server for

each application. If you are creating a group of related applications, you should

create one data server for all of these applications.

Recommendations for creating data servers:

Chapter 2. Configuring federation 31

v Create separate development and production data servers.

You can use the development data server during the refinement process and for

troubleshooting in production.

v Clone one of the supplied data server jobs to create your new data server.

v For initial development, use a batch job-oriented data server. Using a batch job

provides more control over starting and stopping the data server and simplifies

troubleshooting.

v For production, when you set up and configure a data server:

– Clone the production data server JCL that you used for development.

Some changes might be needed to clone a test server.

- If the test and production servers are running on the same LPAR, they will

need unique port addresses for client connections.

- JCL updates to point to production databases instead of test databases.

- Scaling changes such as running more instances of a query processor

service because production servers generally require more resources to

support multiple users.
– Create new data servers based on the sample JCL that was provided for

installation.

– Create a separate development catalog.

You need to change information in tables for production. For example, the

following definitions change from development to production:

- DB2 subsystem names

- IDMS subschema names

- IMS PSB names

- VSAM file names

In addition, catalog security definitions might differ in a production catalog

and a development catalog. During development more users are likely to

have table access than in production when table access privileges are typically

granted on a user by user basis.

Starting data servers

After customizing your data server JCL and completing the configuration process,

start the data server to verify your configuration.

Verify that the following items are configured correctly:

v Customized data server JCL

v Configuration parameters definitions

Use the MTO operator interface to verify that the following items are operational:

v Query processors

v Connection handlers

Mapping your data

You have options for mapping your data and creating metadata catalogs

depending on your system requirements.

In many cases, you can use mapped data from development in production. There

might be exceptions if some mapping information needs to be changed to switch

from a test database to a production database. The DB2 subsystem name or IDMS

32 Classic Federation Guide and Reference

database name are examples of a test mapping that might need to change. Also,

security differences might require mapping changes, especially if user-level security

is required.

Queries will be carried to production as-is if they are tested and considered

production worthy, and column names should not vary between development and

production catalogs.

Recommendations for mapping:

v If the access requirements for your application are well-defined, you can perform

the mapping process in a single operation.

v If the access requirements are fluid, mapping can be an iterative process as you

identify new information to be accessed by your application.

Recommendation for creating metadata catalogs:

v Create a separate catalog for each data server.

v By isolating information for each application in separate catalogs, you can

prevent different versions of an application that share a metadata catalog from

becoming unstable.

Mapping verification

After you map a logical table or set of logical tables, you need run queries to

verify that the data is mapped properly.

Recommendations for mapping verification:

v Issue a query against each logical table and review the result set output to verify

that the data is correct.

You can use the Classic Data Architect for query verification.

v Retrieve a representative sample of your data. You can use the governor

configuration parameters:

– Set the MAX ROWS EXAMINED parameter to the number of records that

you want returned.

– Specify RETURN on the MAX ROWS EXCEEDED ACTION parameter.

Creating sample queries

Early in the development process, you should prototype your queries to identify

the different types of queries that your application uses and verify that the correct

data is being retrieved in the correct sequence.

After you create sample queries, you can concurrently develop the remainder of

your application and start refining your definitions to optimize query performance.

Recommendations for limiting query output:

v When you initially prototype your queries, limit the amount of output returned

for each query.

v Use the same types of governor settings that you used to verify that the data

was mapped correctly. Setting governor limits is especially important when your

queries contain joins and unions.

Recommendations for monitoring query performance:

v Record the elapsed time of each query.

Chapter 2. Configuring federation 33

v Monitor the data server using SDSF for a single user accessing the development

data server.

v Use the SMF system exit to collect CPU and elapsed times for individual users.

v Use the WLM system exit to obtain performance information about elapsed time,

CPU time, service units, I/Os, and other system information.

v Use the LD TEMP SPACE configuration parameter to enable the hiperspace

feature for queries that generate large result sets. This feature takes advantage of

z/OS expanded memory and allows fast access to data stored in temporary

storage.

Completing the development process

As you complete development activities, you typically run unit and system tests

before deploying your application into production.

To accurately assess how your application will perform in a production

environment:

v Remove any governor limits that you were using.

v Reset all trace levels to their default value of 4.

v Activate the system exits required for your application.

Configuring logging for data servers

The logger service (CACLOG) accepts log messages from the services that are

running in a data server and writes those messages either to a temporary or

permanent data set or to an MVS™ log stream. You configure the logger service

with a service information entry in the configuration file for the data server.

Using the CACLOG DD for storing log messages

The logger service (CACLOG) can write log messages to a permanent or

temporary data set, depending on how you define the CACLOG DD statement in

the JCL for the data server in which you run the service.

Restrictions

If you want to use the log print utility to view the log messages, you must stop the

data server. However, you can view log messages by using the DISPLAY keyword

in field 10 of the service information entry for the logger service. The messages are

written to the data set that is specified in the SYSTERM DD statement, which is by

default the SYSOUT data set.

IBM recommends configuring logger services to write to log streams rather than to

data sets. You can read the log without stopping the data server. Using log streams

also limits the CPU usage and storage costs that are required for formatting and

displaying the log messages.

Procedure

To use the CACLOG DD statement of the CACCNTL job step in the data server

JCL to create storage for log messages, perform either of the following steps:

v Create a temporary data set to store log messages from the data server by

specifying a temporary name (for example, &&LOG).

v Create a physical data set by allocating a binary, sequential file with these

attributes:

34 Classic Federation Guide and Reference

RECFM=FBS

LRECL=1

BLKSIZE=4080

Defining log streams for storing log messages

Use the IXCMIAPU Administration Data Utility to define a log stream for storing

log messages from a data server. This utility is a part of z/OS System Logger.

Before you begin

You must have authorization to use the IXCMIAPU Administrative Data Utility if

you want to add or change information about a log stream and to update the

LOGR policy.

If you plan to define a CF-structure log stream, System Logger requires a coupling

facility.

For information about setting up and managing coupling facilities, see z/OS

V1R6.0 MVS Setting Up a Sysplex.

About this task

You can find sample JCL to define DASD-only and CF-structure log streams in

SCACSAMP member CACDEFLS.

It is recommended to use a separate log stream for each data server so that you are

not confused when reading log output. If multiple data servers send log records to

the same log stream, it might not be possible to determine which data server

generated a particular log record.

Procedure

To define an MVS log stream for storing log messages:

1. Decide whether to define the log stream as a DASD-only log stream or as a

CF-structure log stream.

2. In the Administrative Data Utility (IXCMIAPU), define the log stream. The

following parameters are relevant to defining log streams for log records from a

data server:

NAME()

Specify a unique name for the log stream.

 The logger service and the log print utility (CACPRTLG) both require

this name.

DASDONLY()

Possible values:

YES Defines a DASD-only log stream.

NO Defines a CF-structure log stream. NO is the default value for

this parameter.

STRUCTNAME()

If you are defining a CF-structure log stream, specify the CF structure

that you want to use to store log data. The structure must be specified

under the CFRM policy.

Chapter 2. Configuring federation 35

hhttp://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2F151/FIRST?
hhttp://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2F151/FIRST?

STG_DUPLEX()

If you are defining a CF-structure log stream, specify either of these

values:

YES The z/OS System Logger will duplex log records to a staging

data set. If you use a staging data set, the initial write to the

log stream causes the z/OS System Logger to format the

staging data set.

 If you do not use a staging data set and a system outage

occurs, you will lose the log records that are stored in the

coupling facility.

NO The z/OS System Logger will not duplex log records to a

staging data set.

For more information about duplexing, see section 9.2.5 ″Duplexing

Log Data″ in z/OS V1R6.0 MVS Setting Up a Sysplex.

HIGHOFFLOAD()

You can accept the default value of 80. The logger service writes data to

the log stream, but does not retrieve written records. Only the log print

utility retrieves records.

LOWOFFLOAD()

You can accept the default value of 0.

MAXBUFFSIZE()

Specifies the largest possible size for blocks of data that are written to a

DASD-only log stream. The recommended value is 4096.

 If you plan to switch from a DASD-only log stream to a CF-structure

log stream at a later time, this value must be less than or equal to the

MAXBUFSIZE value of the CF structure.

LS_SIZE()

Specifies the size of the offload data sets for the log stream. 1000 4KB

blocks is the recommended size.

 If you set a low trace level, you might need a larger size because the

volume of log messages increases.

STG_SIZE()

Specifies the size of the staging data set for the log stream. 1000 4KB

blocks is the recommended size.

 The larger the size of the staging data set, the more time is required to

format the data set when the logger service first writes to the log

stream.

AUTODELETE() and RETPD()

Set AUTODELETE to YES to allow the z/OS System Logger to delete

log messages.

 For RETPD, specify the number of days before data in the log stream is

eligible for deletion. Set a value that is long enough to maintain enough

records for diagnosing problems but short enough to prevent the log

stream from growing too large.

Logstreams for storing log records from data servers

You can configure the logger service to write log records to a log stream that is

defined in the z/OS System Logger.

36 Classic Federation Guide and Reference

Storing your log records in a log stream allows you to extract and view those

records without stopping the data server. You also do not need to use the DISPLAY

option for the logger service to mirror the log records to SYSOUT. The DISPLAY

option can lead to increasing processing overhead and space for spooling the

output.

For more information about the System Logger, see the IBM Redbook Systems

Programmer’s Guide to: z/OS System Logger.

Components of log streams

System Logger

z/OS System Logger serves as a repository to store log records written by

the data server. The logger service within the data server is the application

program producing the log records.

 You define z/OS System Logger resources through the administrative data

utility IXCMIAPU. You must have authorization to use IXCMIAPU if you

want to add or change information about a log stream and to update the

LOGR policy.

 For information about setting up and managing coupling facilities, see

z/OS V1R6.0 MVS Setting Up a Sysplex.

Log stream

A log stream represents a logical collection of information that is stored

and managed by z/OS System Logger on behalf of an application.

DASD-only log stream

A DASD-only log stream uses storage (a dataspace) within the System

Logger address space (IXGLOGR) and supports concurrent access from

only a single image.

 The following figure shows sample JCL:

CF-structure log stream

A CF-structure log stream uses storage in the coupling facility (CF).

Applications on multiple systems can write to one log at the same time.

This log stream type requires a CF.

 For information about setting up and managing coupling facilities, see

z/OS V1R6.0 MVS Setting Up a Sysplex.

 The following figure shows sample JCL:

//IXCMIAPU JOB (IICF),’CR8 DASD LOG STREAM’,NOTIFY=&SYSUID

//*

//LOGST EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(LOGR) REPORT(NO)

 DEFINE LOGSTREAM NAME(IICF.DASD.LOG)

 DASDONLY(YES)

 MAXBUFSIZE(4096)

 LS_SIZE(1000)

 STG_DATACLAS(DCVSAMLS) STG_SIZE(1000)

 RETPD(7) AUTODELETE(YES)

/*

Figure 1. Sample JCL to define a DASD-only log stream

Chapter 2. Configuring federation 37

hhttp://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2F151/FIRST?
hhttp://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2F151/FIRST?

Staging data set

A data set that is used to duplex log stream data that was not yet

offloaded. If you use a DASD-only log stream, the z/OS System Logger

automatically provides staging, which is also known as duplexing. A

staging data set is optional with a CF-structure log stream.

Coupling facility

On z/OS, a coupling facility (CF) is a special logical partition that provides

high-speed caching, list processing, and locking functions in a parallel

sysplex. The CF has responsibility for management of shared resources,

like CF-structures for log streams.

Performance tips

The best performing log stream will likely be a CF-structure type log stream

without duplexing. A DASD-only log stream automatically duplexes, but a

CF-structure log stream duplexes only on request. The overhead of writing log

records to a staging data set might be significant with high-volume logging, most

notably in the System Logger’s address space. However, if you run without a

staging data set you risk losing log records if the CF fails, because newly written

data is in the CF only.

Under normal production operations, few log records are written to the log stream

and duplexing does not incur a high overhead. In an environment that generates

higher volumes of log information, running without a staging data set might

improve logging performance, though you would need to tolerate loss of log data

if the CF failed.

Options for deleting log records from log streams

The AUTODELETE and RETPD parameters that you set when you define log

streams work in conjunction with the PURGE and PURGEALL options of the log

print utility to delete log message from log streams.

The following table lists the combinations that are possible for the values of

AUTODELETE and RETPD. The Result column explains when log messages

become eligible for deletion and when you must use the PURGE option of the log

print utility to mark the log messages for deletion.

The phrase ″eligible for deletion″ means that z/OS System Logger can delete the

log message during the next period when z/OS System Logger checks for

messages to delete. The phrase does not guarantee that z/OS System Logger will

delete all eligible log messages during the next check. For additional information

about when messages that are eligible for deletion are physically removed, refer to

//IXCMIAPU JOB (IICF),’CR8 CF LOG STREAM’,NOTIFY=&SYSUID

//*

//LOGST EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(LOGR) REPORT(NO)

 DEFINE LOGSTREAM NAME(IICF.CF.LOG) STRUCTNAME(IICF1)

 LS_SIZE(1000)

 STG_DATACLAS(DCVSAMLS)

 STG_SIZE(1000) STG_DUPLEX(YES)

 RETPD(7) AUTODELETE(YES)

/*

Figure 2. Sample JCL to define a CF-structure log stream

38 Classic Federation Guide and Reference

z/OS V1R6.0 MVS Setting Up a Sysplex.

 Table 5. Possible combinations and results of AUTODELETE and RETPD values

Value of

AUTODELETE Value of RETPD Result

YES 0 Log messages are immediately eligible for deletion

by the z/OS System Logger as soon as they are

written.

Recommendation: IBM does not recommend this

combination of values. z/OS System Logger could

remove the messages before you have a chance to

review them in the event of a problem.

NO 0 Log messages are immediately eligible for deletion.

However, you must mark the log messages for

deletion by a utility because the z/OS System

Logger deletes the log records only if they are so

marked. You must periodically empty the log

stream by using either the PURGE or PURGEALL

option of the log print utility.

YES > 0 Log messages are eligible for deletion at either of

these times:

v After the maximum age that is specified in

RETPD

v After the log messages are marked for deletion

by either the PURGE or PURGEALL option of

the log print utility

NO > 0 Log messages are eligible for deletion only after

the maximum age that is specified by RETPD, even

if the log messages are marked for deletion. You

must run the log print utility with the PURGE

option to allow log records that reach the

maximum age to be deleted.

Defining logger services

You define the logger service (CACLOG) by modifying its service information

entry in the configuration file for the data server.

Before you begin

Stop the data server if it is running. See “Stopping data servers” on page 93.

If you want the logger service to write log messages to an z/OS log stream, you

must know the name of the z/OS log stream that you want to use.

About this task

When you modify the service information entry, you can accept the default values

for all of the fields except for fields 7 and 10.

Procedure

To define a logger service:

1. Open for editing the configuration file of the data server in which you plan to

run the logger service.

Chapter 2. Configuring federation 39

hhttp://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2F151/FIRST?

2. In field 10 of the service information entry for the logger service, specify one of

the following options:

NO_DATA

Writes log records to the CACLOG DD and sets the log buffer size to

16 KB.

nK Changes the default size of the log buffer. Values can be between 4K

and 1000K.

DISPLAY

Writes log records to the CACLOG DD, sets the log buffer size to 16

KB, and mirrors the log records to the data set that is specified in the

SYSTERM DD statement. The default data set is SYSOUT.

STREAM=name of log stream

Writes the log records to the specified z/OS log stream and sets the log

buffer size to 16 KB.

DISPLAY,STREAM=name of log stream

Performs both of the actions that are described for the DISPLAY and

STREAM keywords.
3. Optional: Change the default size of the log buffer. After the keyword that you

selected in step 3, type a comma and then type the size in kilobytes for the log

buffer. Values can be between 4K and 1000K.

Configuring TCP/IP connection handlers

Because Classic Data Architect communicates with the data server through a

TCP/IP connection, you must configure a TCP/IP connection handler in the data

server.

Before you begin

Before configuring a TCP/IP connection handler service, contact your network

administrator to obtain the host name or IP address where you will be running the

data server. Also, ask your network administrator for a unique TCP port number

that is not being used by any other applications on that z/OS system.

Restrictions

v The port number or service name must not be in use by any other application.

The port number should be greater than 1024 because numbers 1 through 1024

are often reserved. The default configuration members use the default port

number 5001. If this port is assigned to another application, you need to change

the sample configuration members.

v If your z/OS TCP/IP system is using off-load gateways, ensure that the IP

address that is specified reflects the IP address of the z/OS TCP/IP stack, not

the address of the IP stack of an off-load gateway.

v The sample configuration members use the 0.0.0.0 IP address notation that

requests TCP/IP to resolve the IP address to the local host. When you use this

notation, the sample configuration members should not require changes.

Procedure

To configure the TCP/IP connection handler:

1. Open the data server configuration file for editing. The file is member

CACDSCF in the SCACCONF data set.

40 Classic Federation Guide and Reference

2. Look for the comment * TCP/IP CONNECTION HANDLER.

3. At the end of the service information entry, replace 0.0.0.0/5001 with the IP

address or host name. Replace socket# with the port number or service name.

4. If you are not using the default high-level qualifier for the TCP/IP system data

set:

a. Uncomment the TASK PARAMETERS configuration parameter.

b. Modify the TCPIP_PREFIX and TCPIP_MACH subparameters.
5. Keep the rest of the values in the service information entry as they are.

6. Save the changes to the configuration file.

The service information entry should now look like the following example:

SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M \

TCP/IP_address_or_hostname/port_number_or_service

Mapping tables for Classic federation

Use Classic Data Architect to create relational tables and views that map to data

sources in supported non-relational database management systems. With IBM

WebSphere Classic Federation Server for z/OS, client applications can issue SQL

queries against these tables to access data in the non-relational databases. Client

applications can also issue INSERT, DELETE, and UPDATE requests against the

tables to modify the data in the non-relational databases.

Before you begin

You must perform the following tasks on the data server where the query

processor will run:

v Create and initialize a metadata catalog.

v Set up the configuration file.

v Start the data server.

About this task

You create the relational tables and views in a project in Classic Data Architect.

Then, you promote these objects to a data server.

Procedure

To create tables and views that you can use to query and update data in

non-relational databases:

1. Configure Classic Data Architect by creating prerequisite objects, creating

connections to data servers, setting preferences, importing reference files, and

granting privileges. See “Configuring Classic Data Architect” on page 42.

2. Create tables and views that client applications can issue SQL queries and

updates against. See “Mapping data for Classic federation” on page 48.

3. Optional: Modify your tables or views. See “Viewing and modifying objects for

Classic federation” on page 68.

4. Generate and run DDL to promote your tables, views, indexes, and stored

procedures to a data server. See “Generating DDL” on page 80.

5. Optional: If you choose not to run the DDL from Classic Data Architect but

from the metadata utility, export the DDL to a remote z/OS host. See

“Exporting SQL to remote z/OS hosts” on page 81.

Chapter 2. Configuring federation 41

Configuring Classic Data Architect

Before you or other users can use Classic Data Architect to create objects and

promote them to data servers, you need to perform several configuration tasks.

Before you begin

If you are using Classic Data Architect for Classic event publishing or Classic

replication, you must perform the following tasks on the data server where the

correlation service will run:

v Create and initialize a metadata catalog. Unless a metadata catalog exists in the

data server where the correlation service will run, you cannot promote the tables

and views that you create to that data server.

v Set up the configuration file.

v Customize and run the CACCTRL JCL in the SCACSAMP data set.

v Start the data server.

If you are using Classic Data Architect for Classic federation, you must perform

the following tasks on the data server where the query processor will run:

v Create and initialize a metadata catalog. Unless a metadata catalog exists in the

data server where the correlation service will run, you cannot promote the tables

and views that you create to that data server.

v Set up the configuration file.

v Start the data server.

Procedure

To configure Classic Data Architect:

1. Create objects for organizing your work in Classic Data Architect. See “Creating

objects to organize your work.”

2. Optional: Create a connection to at least one data server. If you are using a

DB2 for z/OS database for Classic federation, create a connection to that

database. See “Creating connections to data servers and to DB2 for z/OS” on

page 45. Connections to data servers are required if you plan to:

v Run DDL on a data server directly from Classic Data Architect. If you do not

want to run the DDL from Classic Data Architect, you can export the DDL in

an SQL file for batch processing.

v Use the discovery process in Classic Data Architect to locate in Adabas or

CA-IDMS databases the data structures that you want to map to.
3. Set various preferences. See “Setting preferences” on page 45.

4. Import Classic reference files into a data design project. See “Importing COBOL

copybooks, schema and subschema reports, and DBDs into projects” on page

43.

5. Grant privileges to users to create objects or to run commands on a data server.

See “Granting privileges and privileges for performing actions on data servers”

on page 45.

Creating objects to organize your work

You organize the tables, views, indexes, and stored procedures that you create in

different containers within Classic Data Architect.

About this task

42 Classic Federation Guide and Reference

Workspaces

When you first open Classic Data Architect, you create a workspace that

will contain your work. All users who work in Classic Data Architect have

their own workspaces and their own projects within those workspaces.

Within a workspace, there are two types of objects that you must create:

data design projects and physical data models.

Data design projects

Within a project, you design the tables and views that you eventually will

create in the metadata catalog on the data server. The type of project that

you create in Classic Data Architect is called a data design project. You can

create any number of data design projects, using them to organize your

physical data models, or you can put all of your physical data models into

one project.

Physical data models

A physical data model is a collection of schemas that contain the tables

that you create to map to the data in your data sources. Schemas can also

contain views on those tables and stored procedures that you might want

to use to perform operations on the result sets for queries. Instead of

creating your tables directly in the metadata catalog on the data server and

modifying them there, you create and modify your tables in the model and

then promote them to a metadata catalog.

 For example, you might have one data server for a test environment and

another for a production environment. In a model, you can create a table

and then run the DDL to create the table in the test data server to test the

table. If you need to modify the table, you can drop the table from the

metadata catalog in the test data server, modify the table in Classic Data

Architect, then re-create the table in the metadata catalog and test it again.

When you have a version of the table that you want to put into

production, you can create the table in the production data server.

Procedure

To set up a work environment:

1. Create a data design project. Open the New Data Design Project wizard by

selecting File > New > Data Design Project from the menu bar at the top of

Classic Data Architect. The data design project appears in the Data Project

Explorer.

2. Create a physical data model with the database type ″Classic Integration.″

Open the New Physical Data Model wizard by right-clicking the data design

project folder and selecting New > Physical Data Model. A new physical data

model appears in the Data Models folder of your project. Close the Diagram1

tab because diagramming is a function in Eclipse but not a function in Classic

Data Architect.

Importing COBOL copybooks, schema and subschema reports,

and DBDs into projects

Before you can create tables with Classic Data Architect, you must import Classic

reference files into a data design project. For CA-Datacom, CICS VSAM, sequential,

native VSAM, and IMS, you import COBOL copybooks and DBDs; For CA-IDMS,

you import schema and subschema reports.

About this task

Chapter 2. Configuring federation 43

If you want to create tables that map to Adabas databases, you do not need to

import files that describe the data structures that you want to map to. When you

create an Adabas table, you provide information that tells Classic Data Architect

how to locate the data structures in the Adabas database that you want to use.

If you want to create tables that map to CA-IDMS databases, you can either import

schema and subschema reports into Classic Data Architect or you can tell Classic

Data Architect how to locate the records and sets that you want to use in the

CA-IDMS database.

When you import files into a project from a local or remote server, the files are

organized into subfolders for that project according to the file types.

v COBOL copybooks are placed into a subfolder that is called COBOL

Copybooks.

v CA-IDMS schema and subschema reports are placed into a subfolder that is

called CA-IDMS Schemas/Subschemas.

– You can also tell Classic Data Architect to discover subschema information

directly from CA-IDMS.
v DBD files are placed into a subfolder called IMS DBDs.

You can then use the files that you import into a project to create one or more

tables in one or more schemas in any project.

To select the files to import, you can browse the local file system for files or

connect to a z/OS server and browse data sets for members to download using

FTP.

When you import a file from your local file system, the file extension is replaced.

For example, a COBOL copybook mycopybook.txt is imported into the project as

mycopybook.cpy. Imported files are given the following extensions:

 Table 6. File types and extensions given when files are imported

File type Extension

COBOL copybook cpy

Schema sch

Subschema sub

DBD dbd

When you import subschemas and schemas, the wizard checks that the subschema

belongs to the specified schema and that the file or data set member exists. No

other validation is done.

Procedure

To import reference files into a project:

1. In the Data Project Explorer, right-click the project folder and select Import.

2. Select Classic Data Architect References and click Next.

3. Use the wizard to select the location and verify the contents of the reference

files that you want to import, select the references, and specify the folder that

you want to import the files into.

4. Optional: If you imported one or more copybooks, you can validate the

copybooks one at a time. In the COBOL Copybooks folder, right-click a

44 Classic Federation Guide and Reference

copybook and select Validate COBOL copybook. If Classic Data Architect

detects errors in the copybook, the copybook will open in an editor. The

Problem page of the Properties view will describe the errors.

Creating connections to data servers and to DB2 for z/OS

Several of the tasks that you perform in Classic Data Architect require connections

to data servers or to DB2 for z/OS databases.

About this task

You must connect to a data server to run SQL DDL to promote your tables, views,

and stored procedures to a metadata catalog.

If you plan to use Classic federation to query or update a DB2 for z/OS database,

you must create a connection to that database from Classic Data Architect.

Procedure

To create connections to data servers and to DB2 for z/OS:

v Create connections to one or more data servers. Open the New Connection

wizard by right-clicking the Connections folder in the Database Explorer and

selecting New Connection.

v If you are using a DB2 for z/OS database, create a connection to that database.

Open the New Connection wizard by right-clicking the Connections folder in the

Database Explorer and selecting New Connection.

Setting preferences

You can set various preferences in Classic Data Architect.

Procedure

To set preferences:

1. Set various global values that Classic Data Architect can use as default values

in its wizards. Open the Preferences window by selecting Window >

Preferences.

2. Under Classic Integration Mapping, you can:

v Set preferences for discovering Adabas files and mapping Adabas fields to

columns in relational tables..

v Set preferences for access to CICS VSAM.

v Set an FTP subcommand for Classic Data Architect to use for DBCS data

when importing Classic Data Architect References or exporting files that

contain SQL statements.

v Specify whether to map PIC9(n) USAGE DISPLAY data to the character or

decimal SQL data type.
3. Specify the locale that the COBOL parser will use when validating COBOL

copybooks that you want to base tables on. Select COBOL in the Preferences

window, and then select the More COBOL options tab. Set the locale in the

Compile time locale name field.

Granting privileges and privileges for performing actions on data

servers

If you want users of Classic Data Architect to perform actions in a metadata

catalog on a data server, such as run SQL scripts or view objects, you must grant

Chapter 2. Configuring federation 45

privileges to those users. You must also grant system-level privileges to any users

who need to run commands on a data server.

About this task

The Privileges page of the Properties view for a database in a data design project

only lists privileges. Adding privileges to the list does not automatically grant

those privileges on a data server.

To grant a privilege, you must create the privilege in the Privileges page, generate

the GRANT statement for that privilege, and then run the GRANT statement on a

data server.

Procedure

To grant privileges for performing actions in a metadata catalog on a data server:

1. Select the database in your data design project.

2. In the Properties view, click the Privileges tab. The table on the Privileges page

lists the users who have one or more privileges.

3. Create a new privilege. Click the yellow icon (

) In the Grant System or

Database Privilege window and specify these values:

Grantee

Type the ID of the user or group that you want to grant the privilege

to, or select PUBLIC to grant the privilege to all users.

Type Select either SYSTEM or one of the following types:

$ADABAS

Allows grantees to create, drop, and view Adabas tables and

views on a data server.

$CFI Allows grantees to create, drop, and view a metadata catalog

on a data server.

$DATACOM

Allows grantees to create, drop, and view CA-Datacom tables

and views on a data server.

$IDMS

Allows grantees to create, drop, and view CA-IDMS tables and

views on a data server.

$IMS Allows grantees to create, drop, and view IMS tables and views

on a data server.

$SEQUENT

Allows grantees to create, drop, and view sequential tables and

views on a data server.

$SP Allows grantees to create, drop, and view stored procedures on

a data server.

$VSAM

Allows grantees to create, drop, and view CICS VSAM and

native VSAM tables and views on a data server.

Privilege

If you selected SYSTEM in the Type field, select one of the following

privileges:

46 Classic Federation Guide and Reference

SYSADM

Grants all privileges on all objects that are in a metadata

catalog. Users with this privilege can grant privileges and

privileges to other users.

SYSOPR

Grants remote operator privileges to display reports for and

manage a data server.

DISPLAY

Grants remote operator privileges for displaying reports for a

data server.
4. When you want to promote the privileges to a data server, right-click the

database and select Generate DDL. In the Generate DDL wizard, follow these

steps:

a. On the Options page of the wizard, deselect all check boxes except Fully

qualified names, Quoted identifiers, and GRANT statements.

b. On the Objects page, deselect all of the check boxes.

c. On the Save and Run DDL page, specify the name of the SQL file that the

will wizard will create. Verify that the GRANT statements are correct. Select

the Run DDL on server check box.

d. On the Select Connection page, select the connection to the data server, or

create a new connection to a data server.

e. On the Summary page, verify the actions that the wizard will perform and

click Finish.

f. In the Data Output view (which is by the Properties view by default), verify

that the SQL statements ran successfully on the data server.

Revoking privileges for performing actions on data servers:

Deleting privileges removes them only from a database in a data design project.

Revoking privileges removes them from a data server.

 About this task

The Privileges page of the Properties view for a database in a data design project

only lists privileges. Deleting a privilege from that list does not automatically

revoke that privilege from a data server.

Procedure

To revoke a privilege that exists on a data server:

1. In the Data Project Explorer, right-click the database in which the privilege is

listed.

2. On the Privileges page of the Properties view, select the Revoke check box for

the privilege that you want to revoke.

3. Right-click the database and select Generate DDL. In the Generate DDL

wizard, follow these steps:

a. On the Options page of the wizard, deselect all check boxes except Fully

qualified names, Quoted identifiers, and GRANT statements.

b. On the Objects page, deselect all of the check boxes.

c. On the Save and Run DDL page, specify the name of the SQL file that the

will wizard will create. Verify that the REVOKE statements are correct.

Select the Run DDL on server check box.

Chapter 2. Configuring federation 47

d. On the Select Connection page, select the connection to the data server.

e. On the Summary page, verify the actions that the wizard will perform and

click Finish.

f. In the Data Output view (which is by the Properties view by default), verify

that the SQL statements ran successfully on the data server.

Mapping data for Classic federation

Classic federation takes places when client applications query or update data

sources by passing SQL requests to a query processor that is running on a data

server.

The following list shows the tasks that you can perform for mapping data for

Classic federation.

Creating Adabas tables and views for Classic federation

To query or update data in an Adabas database, you must create a relational table

that maps to that database. You can also create a view on the table. You use the

New Adabas Table wizard to create a table and a view.

Before you begin

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

v Decide which data structures to map in your database and plan the indexes that

you will need. To ensure optimal performance, you must map the underlying

data correctly. This task includes ensuring that any indexes, keys, or units of

data that are defined in your database are defined to the data server when you

map the data. Almost any column that maps to a field definition table (FDT) or

special descriptor table (SDT) definition can be used for an index.

v Configure a connection between the data server and your Adabas database.

v If you want to use Predict, know the Adabas file number of the Predict

dictionary and the name of the view that you want to map to. If you are not

using Predict, know the number of the Adabas file that you want to map to.

Restrictions

v Each column in the table that you create must be associated with a field in the

file, a superdescriptor, or a subdescriptor.

v If Predict formatting is available, the following Predict formats are supported:

– character (A,AL,AV)

– binary (B) with length of 2 or 4

– date (D, DS, DT)

– floating point (F)

– integer (I)

– logical (L)

– numeric packed and unpacked (N, NS, P, PS, U, US)

– time (T, TS)

If only Adabas field formatting is available, the following formats are supported:

– alphanumeric (A)

– binary (B) with length of 2 or 4

– fixed point (F)

48 Classic Federation Guide and Reference

– floating point (G)

– packed decimal (P) and unpacked decimal (U)

About this task

For more information about creating tables and views that map to Adabas

databases, see the related links for Adabas syntax diagrams and for views.

Procedure

To create an Adabas table and optionally a view for Classic federation:

1. Optional: Use the Adabas page of the Preferences window to set these default

values:

v The name of the Predict dictionary that you want to use.

v The date format that Classic Data Architect should convert dates to.

v The time format that Classic Data Architect should convert times to.

v The maximum length for VARCHAR data.

v The maximum length for LVARCHAR data.

v The maximum number of occurrences for all fields that occur multiple times

in an Adabas file.

v Whether to use the User Synonym field from the Predict Dictionary when

this field is defined.
2. Map your Adabas database to a relational table by using the New Adabas Table

wizard.

a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > Adabas table.

b. Select the model and schema in which you want to create the table.

c. Choose whether or not to create a view on the table.

d. Choose whether to connect to your Adabas database through an existing

connection to a data server or whether you want to create a new connection

to a data server. Either data server must be configured to access the Adabas

database.

e. Specify the format of dates and times, the lengths of VARCHAR and

LVARCHAR data types, and the maximum number of occurs. The default

values that appear are either the global defaults that are set for the Adabas

database or the defaults that are set in the Adabas page of the Preferences

window.

f. Specify whether you plan to use the table (and view, if you are creating one)

for queries, updates, or both.

g. Provide either the Predict or Adabas information that is necessary for the

discovery process.

h. Select the Adabas fields that you want to map to columns in your relational

table.

i. If you are creating a view, specify the criteria for the WHERE clause.

j. Modify the names of columns and provide null values.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, it also appears under the selected schema.

3. Optional: Modify the table properties or add privileges. Select the table, and

make any changes in the Properties view.

Chapter 2. Configuring federation 49

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for tables.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your Adabas database. Be sure that the data

server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, you can generate the DDL for the view now or

later. You can also generate a DDL for all of the objects within the same

schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which you want to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to find out whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your Adabas database. Be sure that the data

server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

Creating CA-Datacom tables and views for Classic federation

To query or update data in a CA-Datacom database, you must create a relational

table that maps to that database. You can also create a view on the table to filter

record types or to filter rows and columns.

Before you begin

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

50 Classic Federation Guide and Reference

v Decide which RECORD entity-occurrence and fields you want to map to.

v Create a URT for accessing the CA-Datacom table.

v Ensure that a COBOL copybook that references the database is in the COBOL

Copybooks folder in your data design project. The CA-Datacom Source

Language Generator (SLG) Facility allows you to generate COBOL copy books

for CA-Datacom tables. You can use member CACDCSLG in the SCACSAMP

data set for help with generating these copybooks. This member invokes the

CA-Datacom DDUTILITY.

If you use the CA-Datacom DDUTILITY to generate COBOL copybooks, edit the

resulting copybooks to remove any $ characters that might be present.

v Configure a connection between the data server and your CA-Datacom database,

if you plan to generate and run the DDL to create the table in the metadata

catalog.

Restrictions

v Fields that use the CA-Datacom null indicator are not supported.

About this task

One or more FIELD entities are associated with a table in a CA-Datacom database.

These FIELD definitions describe the contents of the table. In the CA-Datacom

documentation, FIELD entities are also referred to as columns when the SQL option

is used to access the CA-Datacom table. The online help does not use the term

column to refer to a CA-Datacom FIELD entity.

The table that you map to must have one or more CA-Datacom ELEMENT

definitions associated with it. A CA-Datacom ELEMENT definition refers to one or

more contiguous CA-Datacom FIELD entities and is the unit of data transfer

between Classic federation and a CA-Datacom database.

Use the New CA-Datacom Table wizard to create the table and optionally the view.

For more information about creating tables and views that map to CA-Datacom

databases, see the related links for CA-Datacom syntax diagrams and for views.

Procedure

To create a CA-Datacom table and optionally a view for Classic federation:

1. Map your CA-Datacom database to a relational table and optionally a view by

using the New CA-Datacom Table wizard.

a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > CA-Datacom table.

b. Select the copybook that you want to base the table on.

c. Choose whether to use the table for queries, updates, or both.

d. Choose whether to create a view on the table.

e. Provide information about which record entity you want to map to and the

URT for accessing the corresponding CA-Datacom table.

f. Select the fields that you want to map to columns in your relational table.

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

Chapter 2. Configuring federation 51

2. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on

page 64.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your CA-Datacom database. Be sure that the

data server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, you can generate the DDL for the view now or

later. You can also generate the DDL for all of the objects within the same

schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, you can validate

the view by running a test query against your CA-Datacom database. Be sure

that the data server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

52 Classic Federation Guide and Reference

Creating CA-IDMS tables and views for Classic federation

To query or update data in a CA-IDMS database, you must create a relational table

that maps to that database. You can also create a view on the table to filter record

types or to filter rows and columns. You use the New CA-IDMS Table wizard to

create the table and optionally the view.

Before you begin

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

v Decide which records to map to and the best path through the database to

access the records. The sets that are defined in the subschema for the records

determine the path.

v Configure a connection between the data server and your CA-IDMS database.

The data server must be able to access the CA-IDMS central version that

contains the subschema definitions, schema definitions, and data of the records

that are being mapped.

Restrictions

v The record path in the mapping must be from set owner to set member only.

v The owner DBKEY must be part of each member record that is included in the

path.

About this task

In the New CA-IDMS Table wizard, you can map a single record or a specific path

to as many as 10 records. You define a path by starting with a single record, and

then navigating sets to additional records defined in the subschema. The

subschema information that you use for mapping determines which records and

sets are available. You can import the subschema information from a combination

of CA-IDMS schema and subschema report files or directly from the CA-IDMS

database by using Classic Data Architect’s discovery process.

CA-IDMS schema and subschema reports are produced by running the CA-IDMS

schema and subschema compilers and capturing the punched output into a z/OS

data set. JCL to punch these reports is in the SCACSAMP library with the member

name CACIDPCH.

When the data server returns SQL rows for a logical table that is mapped to a

path, the data server returns an instance of the first record type that is mapped

with each instance of related records down the defined path. See the example

section below.

For more information about creating tables and views that map to CA-IDMS

databases, see the related links for CA-IDMS syntax diagrams and for views.

Procedure

To create a CA-IDMS table and optionally a view for Classic federation:

1. Map your CA-IDMS database to a relational table and optionally a view by

using the New CA-IDMS Table wizard.

a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > CA-IDMS table.

Chapter 2. Configuring federation 53

b. Select the CA-IDMS schema and subschema to base the table on.

c. Choose whether to use the table for queries, updates, or both.

d. Choose whether to create a view on the table.

e. Provide information about how to access the CA-IDMS database.

f. For each record in the path, specify a COBOL copybook, select an 01 level if

there is more than one 01 level, and then select the elements you that want

to map as columns in your relational table.

g. Select the elements that you want to map to columns in your relational

table.

h. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on

page 64.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your CA-IDMS database. Be sure that the data

server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, you can generate the DDL for the view now or

later. You can also generate the DDL for all of the objects within the same

schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

54 Classic Federation Guide and Reference

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your CA-IDMS database. Be sure that the data

server is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

Example

A path of records might look like this:

PATH IS (EMPLOYEE, SET IS EMPL-DEP, DEPENDENT)

The CA-IDMS might contain these records:

EMPLOYEE DEPENDENTS (in EMPL-DEP set)

----------- ---------

BILL SMITH -> MARTHA -> BILLY -> SALLY

JANE WHELAN

SANRA JONES -> ROBERT

The query to retrieve all the rows in the mapped table returns:

EMPL_NAME DEPENDENT NAME

BILL SMITH MARTHA

BILL SMITH BILLY

BILL SMITH SALLY

JANE WHELAN ------

SANDRA JONES ROBERT

Creating CICS VSAM tables and views for Classic federation

To query or update data in a CICS VSAM file, you must create a relational table

that maps to that file. You can also create a view on the table to filter record types

or to filter rows and columns. You use the New CICS VSAM Table wizard to create

the table and optionally the view.

Before you begin

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

v Decide which record elements you want to map in the CICS VSAM file and plan

the indexes that you will need. To optimize performance, you must map the

underlying data correctly. This task includes ensuring that any indexes, keys, or

units of data that are defined in your file are defined to the data server when

you map the data.

v Configure a connection between the data server and your CICS VSAM file.

v In the COBOL Copybooks folder in your project, you must have a copybook that

gives the lists the records that you want to map to columns.

Restrictions

You can map to the following types of VSAM files:

v KSDS, ESDS, and RRDS files

v IAM files

Chapter 2. Configuring federation 55

About this task

For more information about creating tables and views that map to CICS VSAM

files, see the related links for CICS VSAM syntax diagrams and for views.

Procedure

To create a CICS VSAM table and optionally a view for Classic federation:

1. Map your CICS VSAM file to a relational table and optionally a view by using

the New CICS VSAM Table wizard.

a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > CICS VSAM table.

b. Select the copybook to base the table on.

c. Choose whether to use the table for queries, updates, or both.

d. Choose whether to create a view on the table.

e. Provide information about which CICS file control table to use and how to

access the CICS VSAM file.

f. Select the elements that you want to map to columns in your relational

table.

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

2. Optional: Select the table and, in the Properties view, modify any of its

properties or add privileges.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on

page 64.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your CICS VSAM file. Be sure that the data

server is connected to the system where the file is located.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

56 Classic Federation Guide and Reference

6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects

within the same schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which you want to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to find out whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your CICS VSAM file. Be sure that the data

server is connected to the system where the file is located.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to whether the test query ran successfully.

Creating tables and views for DB2 for z/OS databases

To query or update data in a DB2 for z/OS source, you must create a relational

table that maps to that data source. You open a connection to a DB2 for z/OS

subsystem and import the table or view into a physical data model. Then, you can

generate and run the DDL.

Before you begin

In your data design project, you must have at least one physical model.

About this task

You can import DB2 tables, views, materialized query tables, and aliases. All of

these objects become tables in a schema in a physical data model.

Dropping a DB2 object into a schema adds the object to that schema. Dropping a

DB2 object into a data design project that has no schema causes Classic Data

Architect to create a schema and add the DB2 object to it. Dropping an entire DB2

schema into a data design project adds that schema to the project and imports all

of the DB2 objects that are in the DB2 schema.

When objects are created, they are created with DB2 column and, if applicable,

indexes.

Columns that are not supported in Classic federation are not added.

Procedure

To create tables or views for DB2 for z/OS databases:

1. Create a connection to the DB2 for z/OS subsystem. Follow these steps:

a. In the Database Explorer, right-click the Connections folder and select New

Connection.

Chapter 2. Configuring federation 57

b. In the New Connection wizard, under Select a database manager, expand

DB2 zSeries and select the appropriate version.

c. Provide the connection information and click Finish.
2. In the Database Explorer, expand these objects:

a. the database

b. the Schemas folder

c. the schema of the table or view that you want to import

d. the Tables folder or the Views folder for the schema
3. Drag a DB2 object into the Data Project Explorer.

Dropping a DB2 object into a schema adds the object to that schema. Dropping

a DB2 object into a data design project that has no schema causes Classic Data

Architect to create a schema and add the DB2 object to it. Dropping an entire

DB2 schema into a data design project adds that schema to the project and

imports all of the DB2 objects that are in the DB2 schema.

4. In the Available Actions window, ensure that Drop DB2 objects into a Classic

model is selected and click OK.

5. In the Specify DB2 Plan window, specify the name of the plan that contains the

packages for the SQL statements that client applications will make against the

DB2 objects. After you click OK, the DB2 objects appear in the your data

design project.

6. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

7. Optional: Open the Generate DDL wizard and generate the CREATE statement

for the table. With this wizard, you can generate the SQL DDL to define the

tables and views and choose to run the DDL on a data server so that the tables

and views are created in the metadata catalog for that data server. You can also

edit the generated DDL before you run it.

After you run the DDL, the tables appear on the data server in the Database

Explorer. To see the tables, expand the data server and navigate to Schemas >

table schema name > Tables.

The views appear on the data server under Schemas > view schema name >

Views.

If you want to generate and run the DDL for more than one object at a time,

you can right-click a schema and select Generate DDL. The Generate DDL

wizard will generate the DDL for all of the objects in the schema.

8. Optional: If you created the tables and views on the data server, run a test

query on the tables.

a. In the Database Explorer, right-click a table or view and select Data >

Sample Contents.

b. Look in the Data Output view to see the results of the test query.

Creating IMS tables and views for Classic federation

To query or update data in an IMS database, you must create a relational table that

maps to that database. You can also create a view on the table to filter record types

or to filter rows and columns. Use the New IMS Table wizard to create the table

and optionally the view.

Before you begin

v Configure the data server where you plan to run the correlation service that will

process change data from your IMS database.

v Create a metadata catalog.

58 Classic Federation Guide and Reference

v Decide which segment you want to map and the required path for navigating to

the segment from a physical root or index.

v Configure a connection between the data server and your IMS database.

v Ensure that the IMS DBDs folder in your project has a database definition file

(DBD) that lists the segments from which you want to select the fields to map to

columns.

v Ensure that the COBOL Copybooks folder in your project has a copybook for

each of the IMS segments that you want to map to.

Restrictions

If you are creating a table that maps to an IMS database, use the table only for

change capture or only for queries and updates. Typical mappings of an IMS

database for queries contain column definitions for all or most of the data in the

segments that are referenced by the table. For updates, restrictions on what can be

inserted or updated can require you to create custom versions of your tables for

updates only.

About this task

For more information about creating tables and views that map to IMS databases,

see the related links for IMS syntax diagrams and for views.

Procedure

To create a IMS table and optionally a view for Classic federation:

1. Map your IMS database to a relational table and optionally a view by using the

New IMS Table wizard.

a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > IMS table.

b. Select the DBD file that you want to base the table on.

c. Choose whether to use the table for queries, updates, or both.

d. Choose whether to create a view on the table.

e. Provide information about how to access the IMS database.

f. For the each segment that is in the path, specify a COBOL copybook, select

the desired 01 level if there is more than one, and then select the elements

that you want to map as columns.

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on

page 64.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

Chapter 2. Configuring federation 59

2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your IMS database. Be sure that the data server

is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects

within the same schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your IMS database. Be sure that the data server

is connected to that database.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

Creating sequential tables and views for Classic federation

To query or update data in a sequential file, you must create a relational table that

maps to that file. You can also create a view on the table to filter record types or

filter rows and columns. You use the New Sequential Table wizard to create the

table and optionally the view.

Before you begin

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

v Decide on the sequential files that you want to map to.

v Ensure that a COBOL copybook that references the sequential file is in the

COBOL Copybooks folder in your data design project.

60 Classic Federation Guide and Reference

Restrictions

v Sequential data sets cannot be updated.

v Because sequential data sets do not have any native index definitions or keys,

any request to access a sequential data set causes a table scan. You cannot use

Data Architect to create indexes for tables that are mapped to sequential data

sets.

v If you are mapping partitioned sequential data sets, a table must map to a single

member within a partitioned data set.

v SQL access to extended partitioned data sets is not supported.

v When a table references a direct access data set, these data sets are referred to as

BDAM (Basic Direct Access Method) data sets. BDAM data sets can be accessed

using “keys” that consist of track addresses, block numbers, or a combination of

the two. Classic Data Architect does not access a direct access data set using any

of these techniques, but Classic Data Architect can sequentially retrieve the

records that are stored in one of these direct access data sets.

About this task

Classic federation uses two methods to physically access a sequential file:

v The table definition can refer to the data set name. This method requires the

data server to issue dynamic allocation requests before the file is physically

opened. For Classic Federation to use dynamic allocation, the file must be

cataloged.

v The table definition can reference the file by DD (statement) name. Accessing the

file by DD name requires that the file is statically and permanently allocated to

the server address space because the referenced DD statement must be added to

the server JCL, and the DSN parameter on the DD statement identifies the

physical file to be accessed.

The recommended technique is to use dynamic allocation to access a sequential

file. When a file is dynamically allocated, the file disposition is share mode, which

allows other applications to access the file concurrently, if the applications are not

attempting to access the file in exclusive mode.

For more information about creating tables and views that map to sequential files,

see the related links for sequential syntax diagrams and for views.

Procedure

To create a sequential table and optionally a view for Classic federation:

1. Map your sequential file to a relational table and optionally a view by using

the New Sequential Table wizard.

a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > Sequential table.

b. Select the copybook to base the table on.

c. Choose whether to create a view on the table.

d. Provide information about how to access the sequential file.

e. Select the elements to map to columns in your relational table.

f. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

Chapter 2. Configuring federation 61

2. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

3. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for tables.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
4. Optional: If you ran the DDL successfully on a data server, validate the table

by running a test query against your sequential file. Be sure that the data

server is connected to the system where the sequential file is located.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.
5. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects

within the same schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

2) Choose to generate DDL for views.

3) Name the file in which you want to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to find out whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
6. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your sequential file. Be sure that the data

server is connected to the system where the sequential file is located.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to find out whether the test query ran

successfully.

Creating VSAM tables and views for Classic federation

To query or update data in a VSAM file, you must create a relational table that

maps to that file. You can also create a view on the table to filter record types or to

filter rows and columns. Use the New VSAM Table wizard to create the table and

optionally the view.

Before you begin

62 Classic Federation Guide and Reference

v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

v Create a metadata catalog.

v Decide which data structures to map in your data source and plan the indexes

that you will need. To ensure optimal performance, you must map the

underlying data correctly. This task includes ensuring that any indexes, keys, or

units of data that are defined in your file are defined to the data server when

you map the data.

v Ensure that a COBOL copybook that references the file is in the COBOL

Copybooks folder in your data design project.

Restrictions

You can map to the following types of VSAM files:

v KSDS, ESDS, and RRDS files

v IAM files

About this task

For more information about creating tables and views that map to VSAM files, see

the related links for VSAM syntax diagrams and for views.

Procedure

To create a VSAM table and optionally a view for Classic federation:

1. Map your VSAM file to a relational table and optionally a view by using the

New VSAM Table wizard.

a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic

Object > VSAM table.

b. Select the copybook to base the table on.

c. Choose whether to use the table for queries, updates, or both.

d. Choose whether to create a view on the table.

e. Provide information about how to access the VSAM file.

f. Select the elements that you want to map to columns in your relational

table.

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.

If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and

make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on

page 64.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if

you do not want to generate it now. You can also generate the DDL for all of

the objects within the same schema. See “Generating DDL” on page 80.

a. Right-click the table and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

Chapter 2. Configuring federation 63

2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, you can validate

the table by running a test query against your VSAM file. Be sure that the data

server is connected to the system where the file is located.

a. In the Database Explorer, search your data server for the schema that you

created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.

c. Check the Data Output view to find out whether the test query ran

successfully.
6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects

within the same schema. See “Generating DDL” on page 80.

a. Right-click the view and select Generate DDL.

b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.

2) Choose to generate DDL for views.

3) Name the file in which to save the DDL within your project.

4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran

successfully.

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view

by running a test query against your VSAM file. Be sure that the data server is

connected to the system where the file is located.

a. In the Database Explorer, search your data server for the schema that you

created the view in. Expand the schema and expand the Views folder.

b. Right-click the view and select Data > Sample Contents.

c. Check the Data Output view to determine whether the test query ran

successfully.

Creating indexes

After you define a table, you can define indexes on the table to map existing

indexes on the underlying data. An index identifies columns in a table that

correspond to a physical index that is defined against a data source. Indexes are

supported for Classic federation, but not for Classic event publishing or Classic

replication.

Procedure

To create an index:

1. In the Data Project Explorer, right-click the table that you want to define an

index on and select Add Classic Object > Index. The New Index wizard opens.

2. Name the index, specify whether it should be unique, and select the columns to

base the index on.

64 Classic Federation Guide and Reference

3. If the index is for an IMS table, specify the method that Classic federation can

use to select a PCB to access your IMS database.

4. If the index is for a CICS VSAM or native VSAM table, specify the DS or DD

name for the index.

Creating stored procedures

Use the Create Stored Procedure window to define a stored procedure to perform

work that cannot be done with SQL DELETE, INSERT, SELECT, and UPDATE

operations.

Procedure

To define a stored procedure:

1. Open the Create Stored Procedure window by right-clicking either the database

in your data model or a schema and selecting Add Classic Object > Stored

Procedure.

2. On the Stored Procedure Definition page, specify where in your project you

want to define the stored procedure and specify values to be used in the DDL

that is generated for the stored procedure.

3. On the Parameter Definition page, specify at least one parameter. You can use

parameters for input, output, or both.

4. Click Finish to add the stored procedure to your project.

After the stored procedure is listed in your data model, you can select it and edit

any of its properties in the Properties view. You can also set privileges on it.

When the stored procedure is ready, you can generate and run the DDL for

creating the stored procedure in a metadata catalog.

If you need to modify the stored procedure after it exists in a metadata catalog,

you must generate and run the DDL to drop the stored procedure from the

metadata catalog. Then, you can re-create the stored procedure with the modified

settings and generate and run the DDL.

Modifying the PCB selection for IMS tables or indexes

You can modify the PCB selection for an IMS table or IMS index.

Procedure

To modify the PCB selection for an IMS table or IMS index:

1. Open the Modify PCB Selection wizard by right-clicking the IMS table or IMS

index and selecting Modify PCB Selection Method.

2. Select how you want Classic federation to select the PCBs that are needed to

access the table.

Occurs processing

Groups of repeating fields in a record layout that are demarcated by an OCCURS

clause are called record arrays.

If you map a record array into a table, the DDL that is generated for the table

includes the BEGINLEVEL statement to mark the start of a record array and the

ENDLEVEL statement to mark the end of the record array.

The following topics provide guidelines for mapping record arrays:

Chapter 2. Configuring federation 65

Record arrays:

A group of data items in a database that have multiple occurrences within a single

record in the database are referred to as record arrays.

 For example, a record could be defined for an employee to include the employee’s

dependent information (spouse and children) in the record. Because an employee

can have multiple dependents, you can declare an array of dependent information

within the actual employee record by specifying a COBOL OCCURS clause. In the

following example, an array of exactly 20 dependents is declared in the record.

01 EMPLOYEE-RECORD.

05 EMP-LAST-NAME PIC X(20).

05 EMP-FIRST-NAME PIC X(20).

05 EMPSSN PIC 9(9).

......

05 DEPENDENTS-ARRAY OCCURS 20 TIMES

10 DEP-SSN PIC 9(9).

10 DEP-NAME PIC X(20).

10 DEP-DOB PIC 9(6).

10 DEP-RELATIONSHIP-TO-EMPL PIC X.

Another common record array construct defines variably recurring data. In this

example, the record contains up to 20 occurrences of the array data. The actual

number of occurrences is dependent on the value of some other data item. In the

following examples, SSN refers to Social Security Number, a national identifier used

in the United States.

01 EMPLOYEE-RECORD.

05 EMP-LAST-NAME PIC X(20).

05 EMP-FIRST-NAME PIC X(20).

05 EMP-SSN PIC 9(9).

.......

05 NUMBER-OF-DEPENDENTS PIC 9(4) COMP.

05 DEPENDENTS-ARRAY OCCURS 1 TO 20 TIMES

 DEPENDING ON NUMBER-OF-DEPENDENTS.

10 DEP-SSN PIC 9(9).

10 DEP-NAME PIC X(20).

10 DEP-DOB PIC 9(6).

10 DEP-GENDER PIC X.

.......

The following example of metadata grammar maps a subset of the data items in

the preceding COBOL copybook.

CREATE TABLE CAC.EMPL

(

 EMP_SSN SOURCE DEFINITION

 DATAMAP OFFSET 40 LENGTH 9 DATATYPE C

 USE AS CHAR(9),

 NUMBER_OF_DEPENDENTS SOURCE DEFINITION

 DATAMAP OFFSET 49 LENGTH 2 DATATYPE H

 USE AS SMALLINT,

 BEGINLEVEL 1 OFFSET 51 LENGTH 36 OCCURS 20

 DEPENDING ON COLUMN NUMBER_OF_DEPENDENTS,

 DEP_SSN SOURCE DEFINITION

 DATAMAP OFFSET 0 LENGTH 9 DATATYPE C

 USE AS CHAR(9),

 DEP_NAME SOURCE DEFINITION

 DATAMAP OFFSET 9 LENGTH 20 DATATYPE C

 USE AS CHAR(20),

 ENDLEVEL 1

)

66 Classic Federation Guide and Reference

The example only maps the employee’s social security number field, the COBOL

DEPENDING ON variable, the dependent social security number field, and the

dependent name field. The items in the OCCURS clause DEPENDENTS-ARRAY

are contained within a BEGINLEVEL, ENDLEVEL block of statements. The block

of statements identifies a group of data items that repeat. When converting this

mapping from a COBOL record to SQL columns, Classic Federation combines each

occurrence of the DEPENDENT-ARRAY with the non-array data items to create

SQL rows. In this case, each occurrence of the array data items DEP-SSN and

DEP-NAME is combined with the non-array data items EMP-SSN and

NUMBER-OF-DEPENDENTS.

For example, if the record in the database for the employee social security number

’123456789’ contains three dependents, three distinct rows are returned for that

particular record.

The following query returns the following result set:

Query:

SELECT EMP_SSN, NUMBER_OF_DEPENDENTS, DEP_SSN, DEP_NAME FROM

CAC.EMPL WHERE EMP_SSN = ’123456789’;

Result set:

EMP_SSN NUMBER_OF_DEPENDENTS DEP_SSN DEP_NAME

123456789 3 111223333 Depen1

123456789 3 222334444 Depen2

123456789 3 333445555 Depen3

Restrictions

Classic Federation does not support nested OCCURS DEPENDING ON definitions.

You cannot define a table that contains fixed columns after an OCCURS

DEPENDING ON construct.

Record arrays that contain a fixed number of occurrences can include a NULL IS

definition. These array occurrences are skipped as SQL ROW candidates at

runtime. The NULL IS definition identifies a comparison value for the array itself

or a column in the array that identifies an instance of the array as NULL. NULL

instances of a record array are not returned as a row in the result set unless ALL

instances of the array are NULL. If all instances of the array are NULL, then

Classic Federation returns a single row for the non-array information in the record

and sets the array data items to NULL.

Multiple record arrays in a single COBOL copybook:

If the record layout for a database contains multiple record arrays, these arrays can

all be mapped into a single table, if they are not defined as COBOL OCCURS

DEPENDING ON clauses. You should create one table for each record array that

you want to map.

 A single record in result sets will be the Cartesian product of mapping multiple

record arrays in a single table definition. Before you map multiple arrays, be sure

that you understand the effects of multiple arrays on result sets.

For example, assume that EMPLOYEE-RECORD includes two OCCURS clauses:

Chapter 2. Configuring federation 67

01 EMPLOYEE-RECORD.

 ...

 05 DEPENDENTS-ARRAY OCCURS 20 TIMES.

 ...

 05 HOBBIES-ARRAY OCCURS 5 TIMES PIC X(10).

If you use the Classic Data Architect COBOL copybook Import facility to create a

table definition for this record layout, the facility will, by default, map both the

DEPENDENTS-ARRAY and HOBBIES-ARRAY into the same table.

If you map both the DEPENDENTS-ARRAY and HOBBIES-ARRAY into the same

table, the result set for a single record will be the Cartesian product of the

DEPENDENTS-ARRAY and the HOBBIES-ARRAY, which is 100 rows.

If you need information in both arrays, you should create two tables, and include

one of the arrays in each table.

Viewing and modifying objects for Classic federation

You can view and modify the properties of the different objects that you create in

Classic Data Architect for Classic federation. You can also change the selection of

columns in tables and change the path of records for CA-IDMS tables.

View and modify the properties of tables, columns, indexes, views, and stored

procedures

When you click on an object in the Data Project Explorer, pages that

describe the attributes of the object appear in the Properties view.

Change the selection of columns in tables

For all tables, use the Change Column Selection wizard to replace columns

that exist in a table or to append new columns to a table.

 To open this wizard, right-click a table and select Modify Table > Update

Columns.

Change the path of records and sets in a CA-IDMS table and change the name

of the table

Open the Modify CA-IDMS Table wizard by right-clicking a CA-IDMS

table and selecting Modify Table > Modify Table.

Column properties

Column properties are shown in the Properties view. You can use the Properties

view only to view the properties of a column. You cannot modify any of the

properties.

The Properties view for a column contains the following information.

General page

Displays the name of the column.

Type page

Displays the SQL data type that is assigned to the column.

Classic Column Info

Displays the SQL data type that is assigned to the column and the position

and length of the column.

Classic Array Info

If the column participates in an array, this page displays information about

the OCCURS clause that defines the array.

68 Classic Federation Guide and Reference

Documentation

Lets you add comments to a column.

Database properties

Use the Properties view to modify the properties of a database in a data design

project.

General page

This page displays the name of the database, as well as the type of the database

and its version. The type is Classic Integration and the version is V9.

Privileges page

Lists the privileges that

Documentation page

Index properties

Index properties are shown in the Properties view. You can use the Properties view

to view or modify the properties of an index.

If the index already exists in a metadata catalog on a data server and you want

any changes that you make to the index to be reflected in the metadata catalog,

you must follow these steps:

1. Drop the index from the metadata catalog. You can generate the DDL to drop

the index by right-clicking the index and selecting Generate DDL. In the

Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.

3. Make your changes to the index.

4. Generate the DDL to create the index. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.

5. Run the DDL on the data server.

The Properties view for an index contains the following information:

General page

Allows you to change the name of the index.

 If the index is an alternate index for a CICS VSAM table, the FCT name

field displays the name of the CICS table that contains the information

used by CICS file control for accessing the VSAM file.

 In the index is an alternate index for a VSAM table, these controls appear:

DS Specifies that the information from which to create the index is

contained in a data set.

DD Specifies that the information from which to create the index is

contained in a data set with a DD name.

Name Type the name of the data set or DD card in which the information

for the index is located.

Details page

Lists the columns that are in the index. You can modify this list.

Chapter 2. Configuring federation 69

PCB selection page (for IMS only)

Displays the method that Classic federation will use to select PCBs for

accessing the index.

Documentation

Lets you add comments to the index.

Stored procedure properties

Stored procedure properties are shown in the Properties view. You can use the

Properties view to modify the properties of a stored procedure.

If the stored procedure already exists in a metadata catalog on a data server and

you want the changes that you make to the stored procedure to be reflected in the

metadata catalog, you must follow these steps:

1. Drop the stored procedure from the metadata catalog. You can generate the

DDL to drop the stored procedure by right-clicking the stored procedure and

selecting Generate DDL. In the Generate DDL wizard, select the DROP

statements check box.

2. Run the generated DDL on the data server.

3. Make your changes to the stored procedure.

4. Generate the DDL to create the stored procedure. You can generate this DDL by

opening the Generate DDL wizard and selecting the CREATE statements check

box.

5. Run the DDL on the data server.

The Properties view for a stored procedure contains the following information:

70 Classic Federation Guide and Reference

General page

 Property Description

Name Type the name of the stored procedure. The name cannot be a

single asterisk, even if you specify it as a delimited identifier

(″*″).

The name is implicitly or explicitly qualified by a schema. The

name, including the implicit or explicit qualifier, must not

identify an existing stored procedure at the current server.

v The unqualified form of a procedure name is an SQL

identifier. The unqualified name is implicitly qualified with a

schema name according to the following rules:

If the statement is embedded in a program, the schema name

is the authorization ID in the QUALIFIER bind option when

the plan or package was created or last rebound. If

QUALIFIER was not specified, the schema name is the owner

of the plan or package.

If the statement is dynamically prepared, the schema name is

the SQL authorization ID in the CURRENT SQLID special

register.

v The qualified form of the procedure name is an SQL identifier

(the schema name) followed by a period and an SQL

identifier. The schema name can be ’SYSIBM’ or ’SYSPROC’.

It can also be ’SYSTOOLS’ if you have SYSADM or SYSCTRL

privileges. Otherwise, the schema name must not begin with

’SYS’ unless the schema name is ’SYSADM’.

The owner of the procedure is determined by how the CREATE

PROCEDURE statement is invoked:

v If the statement is embedded in a program, the owner is the

authorization ID of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the

SQL authorization ID in the CURRENT SQLID special

register.

Label Type a label. This label is displayed in visual diagrams, if you

use visual diagrams.

Result set Specifies the maximum number of query result sets that the

stored procedure can return. The default is 0, which indicates

that there are no result sets. The value must be 0 or 1.

Language Specify the language interface convention to which the

procedure body is written:

Assembler

indicates that the stored procedure is written in

Assembler.

C indicates that the stored procedure is written in C or

C++.

COBOL

indicates that the stored procedure is written in

COBOL.

Parameter style Specify the convention to use for passing parameters to and

returning the value from procedures.

External name Type the name of the load module that exists on the data server

for loading the stored procedure.

Chapter 2. Configuring federation 71

Property Description

Deterministic Specifies whether the stored procedure is deterministic or

nondeterministic.

Parameters page

Shows the parameters for the stored procedure. You can add or remove

parameters.

Source page

This page is not supported by Classic Data Architect.

Privileges page

Shows the privileges for the stored procedure. You can grant or revoke the

EXECUTE privilege on the stored procedure.

Documentation

Lets you add comments to a stored procedure.

Table properties

Table properties are shown in the Properties view. You can use the Properties view

to modify the properties of a table.

If the table already exists in a metadata catalog on a data server and you want any

changes that you make to the table to be reflected in the metadata catalog, you

must follow these steps:

1. Drop the table from the metadata catalog. You can generate the DDL to drop

the table by right-clicking the table and selecting Generate DDL. In the

Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.

3. Make your changes to the table.

4. Generate the DDL to create the table. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.

5. Run the DDL on the data server.

The Properties view for a table contains the following information:

v General page

v Columns page

v Source information page

v Source columns page

v Path information page

v Source elements page

v Source fields page

v Segments page

v PCB selection page

v Privileges page

v Documentation page

General page

 Property Description

Name Type the name of the table.

Schema Displays the schema in the two-part name for the table.

72 Classic Federation Guide and Reference

Property Description

Source DBMS Displays the type of DBMS in which the source data is located.

Change capture (For all data sources except CA-Datacom and DB2 for z/OS)

Changes

Select this value if you want to use the table for change

capture.

None Select this value if you do not want to use the table for change

capture.

XM URL For a native VSAM table that is being used for change capture, the

name of the data space and the name of the Cross Memory (XM) queue

to use. The change-capture agent that is capturing changes to the native

VSAM table writes change data to this XM queue.

The format of the XM URL is XM1/name_of_data_space/name_of_queue

Columns page

Lists the columns of the table.

Source information page

The Source information page contains source information for:

v Adabas, Table 7

v CA-Datacom, Table 8

v CA-IDMS, Table 9 on page 74

v CICS VSAM, Table 10 on page 75

v DB2 for z/OS, Table 11 on page 75

v IMS, Table 12 on page 76

v sequential files and native VSAM files, Table 13 on page 77

 Table 7. Source information for Adabas

Property Description

File DBID Optional: Type the identifier of the database in which the Adabas file is

stored. This Adabas file is either the file that is identified in the File

number field or the file that is referenced by the Predict view. The

default value is 0. The identifier must be between 1 and 65535.

View name Type the name of the Predict view that describes the contents of an

Adabas file that has fields that you want to map to columns. Classic

Data Architect retrieves the Adabas Field Description Table (FDT)

information for the Adabas file that is referenced by the view. If you

want Classic Data Architect to access an Adabas file’s FDT directly, do

not provide a view name. Instead, provide the number of the Adabas

file in the File number field.

 Table 8. Source information for CA-Datacom

Property Description

Table name Type an identifier of 1 to 32 characters for the CA-Datacom table that

the Classic table definition references. The name follows

CA-Datacom/DB entity naming conventions.

Status/Version Select or type the status and version of the CA-Datacom table that

contains the elements that you want to map to. The status and version

can contain explicit values of TEST, PROD, HIST, or a value that begins

with a T or H followed by a three digit number.

Chapter 2. Configuring federation 73

Table 8. Source information for CA-Datacom (continued)

Property Description

URT name Type the name of the User Requirements Table (URT) that is used to

access the CA-Datacom table that contains the elements that you want

to map to. The name must exist in a data set that is referenced by the

servers STEPLIB DD statement or reside in the link pack area. The

name follows z/OS load module naming conventions.

A URT must be provided on every request for service sent to

CA-Datacom. Every service request is validated against an open User

Requirements Table. This technique provides security (by restricting

access) and efficient allocation of CA-Datacom resources. When you

define your User Requirements Tables, consider the security

implications. You must decide whether you want to have one User

Requirements Table per CA-Datacom table that you map into the

metadata catalog or have only a few User Requirements Tables for all

CA-Datacom tables that you map into the metadata catalog. If you

define only a few User Requirements Tables, you will have more

relaxed security.

 Table 9. Source information for CA-IDMS

Property Description

Subschema name Displays the name of the subschema that was obtained through a

remote connection to the CA-IDMS database or from the local

subschema file that you specified.

Schema name Displays the name of the schema that was obtained through a remote

connection to the CA-IDMS database or from the local schema file that

you specified.

Schema version Type a valid 4-digit integer between 0 and 9999 that, together with the

schema name, uniquely identifies a CA-IDMS schema. The schema

version follows CA-IDMS schema version naming conventions.

Data dictionary Type an identifier of 1 to 8 characters for the CA-IDMS database for the

dictionary that contains the schema and subschema definitions. The

data server binds to this dictionary to gather information from the

schema and subschema when the data server creates the logical table.

The identifier follows CA-IDMS database naming conventions.

Data database Type an identifier of 1 to 8 characters for the CA-IDMS database that

contains the user data that the data server will access at runtime.

Access load

module

Type an identifier of 1 to 8 characters for the CA-IDMS batch access

module to be used to communicate with the CA-IDMS central version

that hosts the user data. The CA-IDMS identifier follows z/OS load

module naming conventions.

VSAM

information

RRDS Specifies that a record in the subschema has a mode of VSAM

and is not a member of a VSAM index set.

KSDS Specifies that a record in the subschema either has a mode of

VSAM and is a member of a VSAM key-sequenced data set, or

has a mode of VSAM CALC.

ESDS Specifies that a record in the subschema either has a mode of

VSAM and is a member of a VSAM entry-sequenced data set,

or has a mode of VSAM CALC.

74 Classic Federation Guide and Reference

Table 10. Source information for CICS VSAM

Property Description

FCT name Type the name of the CICS table that contains the information that is

used by CICS file control for accessing the VSAM file.

Local APPLID Type a short identifier of 1 to 8 characters that designates the VTAM

LU 6.2 definition that a CICS region is listening on for connection

requests. The CICS LUNAME corresponds to the value of the APPLID

parameter that is specified in the system initialization definition

(DFHSIT macro) of the target CICS subsystem where the VSAM file is

located. The CICS LUNAME follows VTAM naming conventions.

CICS APPLID Type an identifier of 1 to 8 characters for the VTAM LU 6.2 definition

that a CICS region is listening on for connection requests. This identifer

corresponds to the value of the APPLID parameter that is specified in

the system initialization definition (DFHSIT macro) of the target CICS

subsystem where the VSAM file is located. This identifier follows

VTAM naming conventions.

Logmode Type a short identifier of 1 to 8 characters for the name of the VTAM

logon mode table that is used to control the session parameters for the

conversation that is established between the local LU and the CICS LU.

The logon mode table name corresponds to a z/OS load module that is

accessible to VTAM. The definition for a Classic supplied logon mode

table is supplied in SASCSAMP member CACCMODE.

Transaction ID Type a short identifier of 1 to 4 characters for the name of the supplied

CICS transaction that is used for data access and validation purposes.

The CICS transaction ID corresponds to the CICS TRANSACTION

definition. Sample CICS transaction, connection, program, and session

definitions are supplied in SCACSAMP member CACCDEF. The

sample CICS transaction ID is EXV1 and can be modified.

Record exit Optional: Type a name for a record processing exit that is invoked to

decompress sequential records when the file is accessed. The exit name

given must exist in a data set that is referenced by the server’s STEPLIB

DD statement or reside in the link pack area. The exit name follows

z/OS load module naming conventions.

Maximum length Type the maximum length (in bytes) of the buffer that is needed by the

record exit to decompress a record.

Network name Type a short identifier of 1 to 8 characters for the name of the network

where the CICS LUNAME resides, which corresponds to the CICS

subsystem that is used to access a VSAM file. The NETWORK VTAM

macro definition on the local image identifies the remote SNA network

where the CICS subsystem resides. The network name follows VTAM

naming conventions.

 Table 11. Source information for DB2 for z/OS

Property Description

Creator Displays the schema of the table.

Table Displays the name of the table.

Subsystem ID Displays the ID of the DB2 subsystem in which the table is located.

Plan Displays the name of the DB2 application plan.

Accessing DB2 data requires binding an application plan for use by the

DB2 Call Attach Facility (CAF) service. You can give the plan whatever

name you want based on site-installation standards.

Chapter 2. Configuring federation 75

Table 11. Source information for DB2 for z/OS (continued)

Property Description

Type Displays the type of object that the new table is mapped to.

When you import a DB2 table into Classic Data Architect, you are

creating a table that you can create in a metadata catalog. This field

shows that the table is mapped to a DB2 table.

 Table 12. Source information for IMS

Property Description

DBD name Displays the name of the IMS DBD (database definition) that the table

references.

DBD type Displays the name of the IMS DBD (database definition) that the table

references.

Leaf segment Displays the name of the leaf segment.

Index root Optional: Type a name for either of these two objects:

v The physical or logical root segment of the IMS database that is

identified by the DBD.

v The perceived root segment of the IMS database of a secondary data

structure that is created by a secondary index definition that exists in

the DBD.

The default index root is the root segment of the physical or logical

database that is referenced by the DBD.

IMS subsystem Optional: Type the 4-character name for the IMS subsystem that is used

by the ODBA interface to access the IMS database that is identified by

the DBD. The IMS subsystem ID is used only when the server is

operating in an RRS two-phase commit environment. The IMS

subsystem ID follows IMS naming conventions for subsystem

identifiers.

The IMS subsystem ID must correspond to the value that is specified on

the IMSID parameter on the IMSCTRL macro in the system definition of

the target online IMS subsystem that is used to access or update the

IMS data.

The IMS subsystem ID value is ignored for other forms of IMS data

access (DRA or BMP/DBB/DLI) and when the table mapping is used

for change capture.

PSB name Optional: Type the name of the PSB that is scheduled to access the IMS

database that is identified by the DBD. This name is used if you are

using a DRA or ODBA interface to access IMS data. The standard PSB

corresponds to a PSB definition that is defined to the IMS online system

that is being accessed. The PSB also corresponds to a PDS member

under the same name in the active ACB library of the source IMS

subsystem. The standard PSB name follows z/OS load module naming

conventions.

76 Classic Federation Guide and Reference

Table 12. Source information for IMS (continued)

Property Description

Join PSB name Optional: Type the name of the PSB that is scheduled to access the IMS

database that is identified by the DBD. The name is used if you are

using a DRA or ODBA interface to access IMS data. The JOIN PSB

corresponds to a PSB definition that is defined to the IMS online system

that is being accessed. The PSB also corresponds to a PDS member

under the same name in the active ACB library of the target IMS

subsystem. The JOIN PSB name follows z/OS load module naming

conventions. The JOIN PSB is scheduled when an SQL SELECT

statement is executed that contains a JOIN predicate that references

multiple IMS tables and this is the first table referenced in the JOIN.

 Table 13. Source information for sequential files and native VSAM files

Property Description

DS Specifies that the information from which to create the table is

contained in a data set.

DD Specifies that the information from which to create the table is

contained in a data set with a DD name.

Name Type the name of the data set or DD card in which the information for

the table is located.

Record exit Type the name of a record processing exit that is invoked to

decompress sequential records when the file is accessed. The exit must

exist in a data set that is referenced by the servers STEPLIB DD

statement or reside in the link pack area. The exit name follows z/OS

load module naming conventions.

Maximum length Type the maximum length (in bytes) of the buffer that is needed by the

record exit to decompress a record.

Source columns page

Lists the columns in the table.

Path information page (for CA-IDMS only)

Lists the records and sets with elements that are mapped to columns in the

table.

Source elements page (for CA-IDMS only)

Lists the elements that are mapped to columns in the table.

Source fields page (for IMS only)

Lists the fields that are mapped to columns in the table.

Segments page (for IMS only)

Lists the segments that contain fields that are mapped to columns in the

table.

PCB selection page (for IMS only)

Displays the method that Classic federation will use to select PCBs for

accessing the table.

Privileges page

Lists that privileges that are granted on the table. Click the add button (

) to add privileges. Click the delete button (

) to remove

privileges.

Chapter 2. Configuring federation 77

Documentation page

Lets you add comments to the table.

View properties

View properties are shown in the Properties view. You can use the Properties view

to display and modify the properties of a view.

If the view already exists in a metadata catalog on a data server and you want any

changes that you make to the view to be reflected in the metadata catalog, you

must follow these steps:

1. Drop the view from the metadata catalog. You can generate the DDL to drop

the view by right-clicking the view and selecting Generate DDL. In the

Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.

3. Make your changes to the view.

4. Generate the DDL to create the view. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.

5. Run the DDL on the data server.

The Properties view for a view contains the following information:

General page

Name Displays the name of the view in an editable field.

Schema

Displays the schema that contains the view.

Change capture

Sets the DATA CAPTURE flag on the view. This field is available

only if the view meets all three of these criteria:

v The view references only one table.

v The view references all of the columns in the base table.

v The view references an Adabas, CA-IDMS, CICS VSAM, IMS, or

native VSAM table.

CHANGES

Specifies to capture changes that are made to the data that

the view references.

NONE

Specifies not to capture changes that are made to the data

that the view references.

Columns page

Lists the columns that are referenced in the view.

SQL page

Displays the SELECT statement for the view in an editable field. Click the

Validate button to check the statement for syntax errors.

Privileges page

Lists that privileges that are granted on the view. Click the add button (

) to add privileges. Click the delete button (

) to remove

privileges.

Documentation page

Lets you add comments to the view.

78 Classic Federation Guide and Reference

Adding or replacing columns in tables based on copybooks

Use the Append Column wizard to add or replace columns in logical tables that

are based on copybooks.

Before you begin

The copybook that contains the columns that you want to use must be listed in the

COBOL Copybooks folder in your project.

About this task

You can use columns from the copybook on which the table is based or you can

use columns from a different copybook.

Procedure

To add or replace columns in a table that is based on a copybook:

1. Right-click the table and select Modify Table > Update Columns.

2. On page one of the wizard, select the copybook that contains the columns that

you want to use.

If the table is for an IMS data source, select the segment for the columns that

you either want to add columns to or that you want to replace with different

columns.

3. On page two of the wizard, select the data that you want to map to new

columns.

4. On the summary page, verify that the table contains the columns that you

want. Click Finish to generate the updated model for the table.

Modifying the selection of records in tables for CA-IDMS

databases

Use the Modify CA-IDMS Table wizard to change the selection of records in an

existing table before the DDL for the table is run on a data server.

Before you begin

The subschema and schema reports that you select must be identical to the reports

that you used when you created the table. However, the names of the files that

contain those reports can be different from the names of the files that you

originally used.

You can provide the information on which to base the logical table in one of two

ways:

v You can import schema and subschema files that were punched from the

CA-IDMS dictionary and transferred via FTP to your workstation. These files

must be located in the CA-IDMS References folder of your data project.

v You can tell Classic Data Architect to obtain the schema information that is

associated with all records, sets, and areas that are listed in the required

subschema directly from the CA-IDMS dictionary.

You produce CA-IDMS schema and subschema reports by running the CA-IDMS

schema and subschema compilers and capturing the punched output into a z/OS

data set. Sample JCL that you can use to punch these reports is in member

CACIDPCH of the SAMPLIB data set.

Chapter 2. Configuring federation 79

Procedure

To modify the selection of records in an existing table for a CA-IDMS database:

1. Open the Modify CA-IDMS Table wizard by right-clicking the logical table that

you want to modify and selecting Modify CA-IDMS table.

2. In the wizard, modify the selection of records:

a. On the first page, verify that Classic Data Architect is getting the schema

and subschema information from the correct location. If you are using local

files that contain the subschema and schema reports and you want to use

different files, browse your CA-IDMS References folder for the new files.

The subschema and schema reports in those files must be identical to the

reports that you used when you created the table.

b. On the second page, you can modify the information that helps the data

server locate the data structures in your database, and you can change the

way that the table will be used.

c. On the third page, you can rename the table. You can also modify the path

of up to ten records and sets from which you want to choose the elements

that will constitute the columns in your table.

d. Complete a separate wizard page for every record and set that you include

in the path to select the elements that you want to map to columns in the

table.

e. On the summary page, verify that the table contains the columns that you

want. Click Finish to generate the model for the table.

Populating metadata catalogs

Classic Data Architect can generate the SQL DDL statements that describe the

tables, views, stored procedures, and other objects that you create.

After the DDL statements are generated, you can run them from Classic Data

Architect, or you can export them to the z/OS system where your data server is

located and run the DDL using the metadata utility.

Generating DDL

When you finish designing your objects, you generate the DDL that you use to

promote those objects to a metadata catalog on a data server.

Before you begin

If you choose to run the DDL after it is generated, you must first do the following

tasks:

v Open a connection to a data server.

v Create a set of metadata catalogs on the data server.

v Set up connectivity from the data server to your data sources.

About this task

When the DDL is generated, you can choose to run it on a data server. You can

also choose to open the DDL in an editor.

If you do not choose to run the DDL immediately after it is generated, you can run

it later by opening the SQL Scripts folder, right-clicking the file with the DDL, and

selecting Run SQL.

80 Classic Federation Guide and Reference

Procedure

To generate DDL for objects in your project:

1. Open the Generate DDL wizard in either of these two ways:

v Right-click the schema in which the objects are located and select Generate

DDL. You can choose which objects in the schema you want to generate

DDL for.

v Right-click the object that you want to generate DDL for and select Generate

DDL.
2. Follow the pages of the wizard to make these selections:

Which DDL statements to generate

You can generate ALTER, COMMENT ON, CREATE, DROP, and

GRANT statements. You can also choose whether to use fully qualified

names and quoted identifers.

Which objects to generate DDL for

The available objects depend on which object you right-clicked to open

the Generate DDL wizard.

Where to create the file, which statement terminator to use, whether to run

the DDL on a data server, and whether to open the DDL file for editing

The page on which you make these choices displays the DDL that will

be generated.
3. After reviewing your settings, click Finish.

Exporting SQL to remote z/OS hosts

The DDL that you generate for your tables, views, and stored procedures is saved

to the SQL Scripts folder of your project. You can export the files that contain those

scripts to the z/OS host where your data server is located.

To export the files that contain your DDL scripts:

1. Open the Export SQL window by right-clicking the file that you want to export

and selecting Export SQL.

2. Provide the connectivity information for connecting to the remote z/OS host,

and provide the location in which you want to save the DDL scripts.

Then, you can use the metadata utility to run the scripts and populate a metadata

catalog.

Chapter 2. Configuring federation 81

82 Classic Federation Guide and Reference

Chapter 3. Administering federation

After you install and configure your Classic federation environment, you typically

perform administration tasks on an ongoing basis.

Administering data servers for Classic federation

Included withWebSphere Classic Federation Server for z/OS is a z/OS MTO

(Master Terminal Operator) interface that you can use to monitor and control data

server and enterprise server operations.

Data servers (and enterprise servers in Classic federation) are designed to run

continuously. With the MTO interface, you can issue commands to display the

different services that are active within a data server or enterprise server, the

number of users that are currently using a data server or enterprise server, and the

amount of memory that is available. You can also issue commands to start and

stop services.

You can run commands in the following format:

F name_of_job,command

v F is the abbreviation for the z/OS MODIFY command.

v name_of_job is the name of the started task to communicate with.

v command is the command to pass to the started task.

In Classic federation, if the started task is a data server that was started for an

enterprise server, specify the fully-qualified task name in the following format:

name_of_data_server.stepname

To send the command to all data servers that are managed by an enterprise server,

you can use an asterisk instead of stepname.

For example, the first of the following commands is issued for the data server

t9396840, and the second command is issued for all of the data servers that were

started by the enterprise server:

F CACDS.t9396840,display,users

F CACDS.*,display,config=master

Starting data servers

When you start a data server, you start all of the services with uncommented

service information entries in the data server’s configuration file.

Procedure

To start a data server, perform either of the following steps:

v Issue a console command to start the data server JCL procedure:

S procname

where procname is the 1-8 character PROCLIB member name to be started. When

you issue commands from the SDSF product, prefix all operator commands with

the forward slash (/) character.

v Submit a batch job.

© Copyright IBM Corp. 2003, 2006 83

Starting services for Classic federation

You can start an instance of a service that is defined by a service information entry

in the master configuration file for a data server.

About this task

You can use this command when you want to start a service without stopping and

restarting the data server.

Procedure

To start a service in a data server:

Issue the following command in an MTO interface, where name_of_job is the name

of the started task for the data server:

F name_of_job,START,SERVICE=name_of_service

Stopping services for Classic federation

You can stop an instance of a service that is defined by a service information entry

in the master configuration file for a data server. You can also stop all services in a

data server and stop the data server.

About this task

The STOP command cancels any user activity in a service and disconnects all

active users from that service.

Procedure

To stop services, issue one of the following three commands in an MTO interface:

v To stop a service by means of its task ID, issue this command:

F server_name,STOP,TASKID=task_ID

server_name

The name of the task or batch job started by the data server. This name

is either CACCS for change capture or CACDS for Classic federation.
v To stop a service by means of its name, issue this command:

F server_name,STOP,SERVICE=name_of_service

server_name

The name of the task or batch job started by the data server. This name

is either CACCS for change capture or CACDS for Classic federation.
v To stop all services that are running in a data server and stop the data server,

issue this command:

F server_name,STOP,ALL

server_name

The name of the task or batch job started by the data server. This name

is either CACCS for change capture or CACDS for Classic federation.
The data server also accepts and converts the MVS STOP command to a STOP,

ALL command. For example, in the MTO interface, you can issue one of the

following commands:

STOP name_of_job

P name_of_job

Both commands are converted into this command:

84 Classic Federation Guide and Reference

F name_of_job,STOP,ALL

Displaying information about data servers in Classic

federation

The DISPLAY command outputs a formatted list of the selected information about

a data server.

Procedure

To display information about a data server, issue one of the following commands

with the MTO interface:

v To display current usage information on services, users, configurations, and the

memory pool, issue this command:

F name,DISPLAY,ALL

name The name of the task or batch job started by the data server.
v To display configuration information from a particular named configuration

member, issue this command:

F name1,DISPLAY,CONFIG=name2

name1 The name of the task or batch job started by the data server.

name2

– MASTER: always active while a data server is running

– CACQPCF: active when a query processor is running and its service

information field contains a configuration override name of

CACQPCF (as shown in the DISPLAY,CONF=MASTER example).

– CACUSCF1: a user currently connected to the data server

– CACUSCF3: a user currently connected to the data server

– CACUSCF5: a user currently connected to the data server

The initial member identified in the VHSCONF DD is known as the

master configuration member. Minimally, there is a master configuration

active in all running data servers.
v To display a list of the configurations that are currently active in the data server,

issue this command:

F name,DISPLAY,CONFIGS

name The name of the task or batch job started by the data server.
When information is requested about active configurations, a WTO display

message is generated for each active configuration in the server. The first WTO

message displays the value ’MASTER’ which represents the master configuration

member that is referenced in the data server JCL by the VHSCONF DD

statement. Additional WTO messages identify the names of QP override or user

override configuration members.

v To display the current use of the memory pool in the data server, issue this

command:

F name,DISPLAY,MEMORY

name The name of the task or batch job started by the data server.
The following information is displayed about overall data server memory usage:

TOTAL MEMORY

The total size in kilobytes of the message pool that was allocated.

USED The amount of memory that is currently being used out of the message

Chapter 3. Administering federation 85

pool. This value is expressed in kilobytes followed by the percentage of

the current message pool that is being used.

MAX USED

The maximum amount of the message pool that was ever used. This

value is expressed in kilobytes followed by the percentage of the

message pool that was ever used.
v To display a list of all running services in the data server, issue this command:

F name,DISPLAY,SERVICES

name The name of the task or batch job started by the data server.
When information is requested about the services that are active within a data

server, a WTO display message is generated for each service that is active. For

each service, the following information is displayed:

SERVICE

First eight characters of field 2 (service name) from the service

information entry definition.

TYPE Load module name of the service - field 3 on the service information

entry.

TASKID

TCB address (in decimal notation) of the service instanced that is

displayed.

TASKNAME

Same as TYPE.

STATUS

One of the values that is displayed in Table 14.

USER The user ID that is currently being serviced. Generally, this value will be

blank.
The following table lists the most common statuses:

 Table 14. States and descriptions

Status Description

QUIESCE Unused.

READY Idle and waiting for requests.

RECEIVING Receiving a request.

RESPONDING Sending a response.

STOP Processing a STOP,ALL request.

Examples

Example for F name,DISPLAY,ALL

 Here is sample output from the command F name,DISPLAY,ALL:

 CAC00200I DISPLAY,ALL

 SERVICE TYPE TASKID TASKNAME STATUS USER

 LOG CACLOG 9206624 CACLOG READY

 IMS CACDRA 9205816 CACDRA READY

 IICF CACQP 8993080 CACQP READY

 IICF CACQP 8992384 CACQP READY

 IICF CACQP 8991440 CACQP READY

 IICF CACQP 8920712 CACQP READY

 IICF CACQP 8920152 CACQP READY

 DCOM CACDCI 8919208 CACDCI READY

86 Classic Federation Guide and Reference

VSAMSRV CACVSMS 8918072 CACVSMS READY

 TCPIP CACINIT 8874696 CACINIT READY

 Total Number of TASKS = 10

 USER SESSIONID HOSTNAME PROCESSID THREADID SERVICE TASKID STMTS MEMORY

 CACUSER 432419840 unknown 1176 2244 IICF 8993080 01/01 134K/135K

 Total Number of USERS (current/maximum) = 1/1

 ACTIVE CONFIGURATIONS

 MASTER

 CACQPCF

 Total Number of CONFIGURATIONS = 2

 CAC00225I TOTAL MEMORY 16384K, USED 1763K (10%), MAX USED 1779K (10%)

Example for F name,DISPLAY,CONFIG=MASTER

 Here is sample output from the F CACDS,DISPLAY,CONFIG=MASTER command.

When the contents of the MASTER configuration member are displayed, a

WTO message is issued for each data server configuration parameter and

for each active service information entry in the master configuration

member. Each WTO output line is identified with a configuration

parameter ordinal number in parentheses. This number is referenced in

SET commands. Ordinal identifiers that start at 101 and above display

service information entry information while ordinal numbers that start at 1

are regular configuration parameters.

 When the MASTER configuration member is displayed, all normal

configuration parameters are listed. The format is keyword = value.

 An * in front of the ordinal number indicates that the parameter is defined

in the master configuration member. A blank in front of an entry indicates

that the data server is using the default value.

 CAC00200I DISPLAY,CONFIG=MASTER

Configuration: MASTER

*(1)MESSAGE POOL SIZE = 16777216

(2)TASK PARAMETERS = NULL

(4)USER CONFIG = 0

*(5)STATIC CATALOGS = 1

*(6)NL = US ENGLISH

*(7)NL CAT = DD:ENGCAT

(8)BTREE BUFFERS = 4

(9)LD TEMP SPACE = ALCUNIT=TRK,SPACE=15,EXTEND=5

(12)SAF EXIT = NULL

(13)SMF EXIT = NULL

(14)MAX ROWS EXAMINED = 0

(15)MAX ROWS RETURNED = 0

(16)MAX ROWS EXCEEDED ACTION = ABORT

(18)STATEMENT RETENTION = SYNCPOINT

(19)JOIN MAX TABLES ANALYZED = 4

(21)CPU GOVERNOR = NULL

(22)LOCALE = NULL

(23)WLM UOW = NULL

(24)PDQ = 0

(25)INTERLEAVE INTERVAL = 100

(26)VSAM AMPARMS = NULL

*(101)SERVICE INFO ENTRY = CACCNTL CNTL 0 1 1 100 4 5M 5M NO_DATA

*(102)SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 1 5M 5M DISPLAY,60K

*(103)SERVICE INFO ENTRY = CACQP IICF 2 5 10 20 4 5M 5M CACQPCF

*(104)SERVICE INFO ENTRY = CACDCI DCOM 2 1 1 50 4 5M 5M 4

*(105)SERVICE INFO ENTRY = CACVSMS VSAMSRV 2 1 1 50 1 5M 5M CLOSE_ON_IDLE

*(106)SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M TCP/9.30.136.90/5026

Lines in the output display prefixed by an asterisk (*) denote configuration

values that were either read in at initialization time or updated by an MTO

operator SET command.

Example for F name,DISPLAY,CONFIG=CACQPCF

Chapter 3. Administering federation 87

Here is sample output from the F CACDS,DISPLAY,CONFIG=CACQPCF

command. When the contents of a QP or user override member are

displayed, service information entry information is not included and only

information about the standard configuration parameters are displayed.

Like the master configuration member, each WTO output line identifies the

parameters ordinal number followed by the keyword = value.

 When the contents of these members are displayed, an * in front of a line

indicates that the parameter value was overridden in the configuration

member. A blank in front of a line indicates that the value either represents

a default value or was inherited from another configuration member.

 CAC00200I DISPLAY,CONFIG=CACQPCF

Configuration: CACQPCF

(1)MESSAGE POOL SIZE = 16777216

(2)TASK PARAMETERS = NULL

(4)USER CONFIG = 0

(5)STATIC CATALOGS = 1

(6)NL = US ENGLISH

(7)NL CAT = DD:ENGCAT

*(8)BTREE BUFFERS = 4

*(9)LD TEMP SPACE = ALCUNIT=CYL,SPACE=5,UNIT=3390,EXTEND=30

(12)SAF EXIT = NULL

(13)SMF EXIT = NULL

*(14)MAX ROWS EXAMINED = 0

*(15)MAX ROWS RETURNED = 0

*(16)MAX ROWS EXCEEDED ACTION = ABORT

*(18)STATEMENT RETENTION = SYNCPOINT

(19)JOIN MAX TABLES ANALYZED = 4

(21)CPU GOVERNOR = NULL

(22)LOCALE = NULL

(23)WLM UOW = NULL

*(24)PDQ = 1

*(25)INTERLEAVE INTERVAL = 100

(26)VSAM AMPARMS = NULL

Displaying users

You can list all of the users that are connected to a data server.

Procedure

To list users, issue this command in an MTO interface:

F name,DISPLAY,USERS

name The name of the data server started task or batch job.

When information is requested about active users, a WTO display message is

generated for each user that is connected to the server. For each user, the following

information is displayed:

USER The user ID that was supplied when the client application connected to the

server.

SESSIONID

The address (in decimal format) of a control block that is used to track the

user.

HOSTNAME

The name of the host computer where the connection originated.

PROCESSID

The process ID on the host computer that the client application is

executing in.

88 Classic Federation Guide and Reference

THREADID

The thread identifier on the host computer that the client application is

executing in.

SERVICE

The first 8 characters of the data source name that the client application

connected to. This value corresponds to one of the names of a query

processor service information entry.

TASKID

The TCB address of the query processor service that the client connected

to.

STMTS

This is a two-part value that is separated by a forward slash (/). The first

value identifies the number of statements that the user currently has active.

The second number identifies the maximum number of statements that

were active.

MEMORY

This is a two-part value that is separated by a forward slash (/). The

values are in kilobytes. The first value identifies the amount of memory

that is currently being used to process the active statement. The second

value identifies the maximum amount of memory that was used to process

all statements that were issued by the user.

Disconnecting users and user sessions for Classic federation

You can cancel particular user sessions or all sessions for particular users.

About this task

You can find out which users are currently connected by issuing the

DISPLAY,USERS command. The output of this command gives you the IDs of

users and the IDs of the user sessions.

The cancel command takes effect when the query processor is not actively

processing a query for the user that is being canceled. Users are notified upon

completion of any action of theirs that follows the issuing of the command. For

maximum effectiveness, you should enable the INTERLEAVE INTERVAL

configuration parameter.

Procedure

To disconnect users and user sessions, issue either of the following commands

using the MTO interface:

v To cancel a particular user session, issue this command:

F CACDS,CANCEL,SESSIONID=session ID

v To cancel all sessions for a particular user, issue this command:

F CACDS,CANCEL,USER=user ID

Displaying queries

You can list all of the queries that the query processors in a data server are

currently processing.

With the information provided in the output, you can issue the CANCEL,QUERY

command to cancel a particular query.

Chapter 3. Administering federation 89

Procedure

To list queries, issue this command in an MTO interface:

F name,DISPLAY,QUERIES

name The name of the data server started task or batch job.

When information is requested about the queries that are being tracked by the data

server, a WTO display message is generated for each query. For each query, the

following information is displayed:

QUERY

The SQL statement name that is assigned by the client application or

JDBC/ODBC Driver to track the query.

USER The user ID that issued the query.

SESSONID

The user control block address (in decimal format) of the user that issued

the query.

SERVICE

The first 8-characters of the service name that is processing the query.

TASKID

The TCB address (in decimal format) of the query processor that is

handling the query.

TYPE One of the following values that indicates the type of query that is being

processed:

XQRY

SELECT statement

XJOI SELECT statement that contains a join condition

XUNI SELECT statement that contains a union

XINS INSERT statement

XUPD

UPDATE statement

XDEL DELETE statement

CALL CALL statement

STATE

One of the following values that indicates the state that the query is in:

INITIAL

Statement is created and not yet prepared.

PREPARED

Statement is prepared.

OPENED

Statement is opened.

EXECUTING

Statement is being executed.

FETCHED

Result sets are being fetched.

90 Classic Federation Guide and Reference

WAITING

Statement is waiting to be executed.

SUSPENDED

Statement is suspended.

CLOSED

Statement is closed.

MEMORY

This is a two-part value that is separated by a forward slash (/). The

values that are displayed are in kilobytes. The first value identifies how

much memory the query is currently using. The second value identifies the

maximum amount of memory that has been allocated to process the

statement.

Canceling queries for Classic federation

You can cancel queries that are running on a data server or enterprise server.

Before you begin

Before issuing this command, issue the DISPLAY,QUERIES command to get the name

and session ID for the query that you want to cancel.

About this task

The cancel command takes effect when the query processor is not actively

processing the query to be canceled. Users are notified upon completion of any

action of theirs that follows the issuing of the command. For maximum

effectiveness, you should enable the INTERLEAVE INTERVAL configuration

parameter.

Procedure

To cancel a query, issue the following command using the MTO interface:

F CACDS,CANCEL,QUERY=name,SESSIONID=session ID

Displaying the values of single configuration parameters

You can use the GET command to display the value of a single configuration

parameter.

Before you begin

Issue the DISPLAY,CONFIG command to list the configuration parameters for the

data server.

Procedure

To display the value of a single configuration parameter:

 F name,GET,NAME=configuration-name,ORD=ordinal-number

name The name of the data server started task or batch job.

NAME

The name of the configuration name of the configuration member from

which to display the value.

Chapter 3. Administering federation 91

ORD The number given for the configuration parameter by the

DISPLAY,CONFIG command.

Modifying configurations while data servers are running

You can modify the settings of the configuration parameters that a data server is

using while that server is running. You can also use this command to create new

service information entries for an active data server or enterprise server.

Before you begin

Do not reset SERVICE INFO ENTRY values that have active instances. Issue the

STOP,SERVICE command to stop all active instances first.

Restrictions

Some of the new settings take effect immediately, and others take effect when the

next query is processed for a particular user (in Classic federation) or the next time

a service is started.

Any changes made to an active configuration remain only for the duration of the

active configuration unless the FLUSH command is issued to commit the change

permanently. You should use the FLUSH command only after your production

system is stable because all comments (including commented-out configuration

parameter definitions) are lost when a configuration member is dynamically saved

to disk

Configuration values that contain embedded spaces and special characters must be

enclosed in either quotation marks (″ ″) or apostrophes (’ ’).

Timing values must be suffixed with either M (minutes), S (seconds), or MS

(milliseconds), for example, 5M, 5S, or 500MS.

About this task

The command to modify a configuration takes this general form:

F name,SET,NAME=name,ORD=number,VALUE=value

name The name of the task or batch job started by the data server.

NAME

The name of the configuration.

ORD The number that is given for the configuration parameter by the

DISPLAY,CONFIG command.

VALUE

Can have either of the following values:

v The value that you want to set for the configuration parameter at the

specified line number.

v The service info entry that you want to create.

Procedure

To modify configurations for running data servers or enterprise servers (in Classic

federation), issue one of the following commands from the MTO interface:

v To modify a configuration parameter, issue this command:

92 Classic Federation Guide and Reference

F name,SET,NAME=name,ORD=number,VALUE=value

v To reset a configuration parameter to the default value, issue this command:

F name,SET,NAME=name,ORD=number,VALUE=NULL

v To create a new service info entry, issue this command with an ordinal value

that is greater than the highest existing service info entry in the configuration:

F name,SET,NAME=name,ORD=number,VALUE=’service_info_entry’

IBM recommends creating new service information entries by stopping the data

server and editing the configuration file.

Saving changes to configuration files

If you modified a configuration file dynamically, you can save your changes with

the FLUSH command.

Before you begin

Back up your initial configuration file. All comments in the initial configuration

will be lost when you issue this command.

Procedure

To save changes that you made dynamically to configuration files, issue the

following command using the MTO interface:

F name,FLUSH,NAME=name

name The name of the task or batch job started by the data server.

NAME

The name of the configuration member from which to display the value.

Stopping data servers

Stopping a data server stops all of the services that are running within it.

Procedure

To stop a data server, issue the following command in an MTO interface:

F name,STOP,ALL

name The name of the data server started task or batch job.

Displaying log messages that are written to SYSTERM DD

You can dynamically modify the logger service (CACLOG) to display on the log

messages from the services that are running in a data server. The logger service

continues to write messages to the location that you specified in field 10 of the

service information entry for that service.

About this task

The output is formatted to text, but the output does not include descriptive text for

error messages.

Procedure

To display log messages, issue the following command in an MTO interface:

F name,MODIFY,LOG,OUTPUT=DISPLAY

Chapter 3. Administering federation 93

name The name of the task or batch job started by the data server.

Note: If you change the name of the logger service from the default name LOG

when you define the logger service, change LOG to the new name.

To stop displaying log messages, issue the following command in an MTO

interface:

F name,MODIFY,LOG,OUTPUT=DEFAULT

name The name of the task or batch job started by the data server.

Note: If you change the name of the logger service from the default name LOG

when you define the logger service, change LOG to the new name.

Viewing log messages with the log print utility (CACPRTLG)

With the log print utility (CACPRTLG), you can format and display messages that

are written to a log. You can also summarize the log messages or filter them.

Before you begin

Set the following configuration parameters in the configuration file for the data

server:

v MESSAGE POOL SIZE

v NL

v NL CAT

Procedure

To view log messages:

1. Configure CACPRTLG. See “Parameters for configuring the log print utility

(CACPRTLG).”

2. Create filters for the output. See “Filters for modifying output from the log

print utility (CACPRTLG)” on page 95.

3. Run CACPRTLG. There are two ways to run this utility:

v Run CACPRTLG as a step in the same job used to run the data server. If you

are using a temporary data set that is defined in the CACLOG DD statement,

you must run CACPRTLG as a subsequent step in the data server job.

v Run CACPRTLG as a separate job from the data server job or started task.

Parameters for configuring the log print utility (CACPRTLG)

You supply values to the PARM parameter of the CACPRTLG EXEC statement to

determine which information CACPRTLG displays and where CACPRTLG extracts

the information from.

The following list shows the possible values for the PARM parameter.

SUMMARY=N

Displays all of the messages that are in the log if you configured the logger

service to write to the CACLOG DD statement.

SUMMARY=Y

Displays a report about the contents of the log if you configured the logger

service to write to the CACLOG DD statement.

94 Classic Federation Guide and Reference

SUMMARY=N STREAM=log_stream

Displays all of the messages that are in the log if you configured the logger

service to write to a log stream. log_stream must be a valid log stream that

contains data that was written by the logger service. If you use the STREAM

keyword, remove the CACLOG DD statement from the JCL for the log print

utility.

SUMMARY=Y STREAM=log_stream

Displays a report about the content of the log, if you configured the logger

service to write to an log stream. log_stream must be a valid log stream that

contains data that was written by the logger service. If you use the STREAM

keyword, remove the CACLOG DD statement from the JCL for the log print

utility.

SUMMARY=N STREAM=log_stream PURGE

Displays the contents of the log, if you configured the logger service to write

to a log stream. Marks for deletion all of the log messages that are in the log

stream and that are older than the value of the STARTTIME filter criterion for

the log print utility. log_stream must be a valid log stream that contains data

that was written by the logger service. If you use the STREAM keyword,

remove the CACLOG DD statement from the JCL for the log print utility.

SUMMARY=N PURGE STREAM=log_stream

This example is identical to the previous example, except for the order of the

PURGE and STREAM keywords.

SUMMARY=Y STREAM=log_stream PURGEALL

Displays a report of the content of the log if you configured the logger service

to write to a log stream. log_stream must be a valid log stream that contains

data that was written by the logger service. If you use the STREAM keyword,

remove the CACLOG DD statement from the JCL for the log print utility.

 This example also marks for deletion all of the log messages that are in the log

stream.

SUMMARY=N STREAM=log_stream PURGEALL

Displays all of the messages that are in the log, if you configured the logger

service to write to a log stream. Also, this option marks for deletion all of the

log messages that are in the log stream.

 log_stream must be a valid log stream that contains data that was written by

the logger service. If you use the STREAM keyword, remove the CACLOG DD

statement from the JCL for the log print utility.

Filters for modifying output from the log print utility

(CACPRTLG)

You can use SYSIN control cards to filter and display only a subset of the log

messages. With these control cards, you can display messages for a specific

time-frame, a specific task, a range of return codes, or any combination of the

elements that are listed in the log summary report.

The format of the SYSIN filtering is exactly the same as the format of the summary

report. So, you can run a summary report, find the criteria that would be relevant

for you to filter on, then submit a SYSIN control card with those criteria. You can

find sample JCL to run a summary report in member CACPRTLS in the

SCACSAMP data set.

Chapter 3. Administering federation 95

The following list presents the available filtering criteria. Although the criteria are

presented in uppercase, you can specify them in mixed case because the log print

utility will fold the characters into uppercase. All filter criteria must be followed by

an equal sign and a value.

STARTTIME=’YYYY/MM/DD HH:MM:SS:thmi’

Specifies the beginning of the duration of time that you want log

information from. When you request the log information for a particular

data server, you might find it helpful to review the JES output for the data

server job to obtain the start time.

v t is tenths of a second

v h is hundredths of a second

v m is milliseconds

v i is ten-thousandths of a second

STOPTIME=’YYYY/MM/DD HH:MM:SS:thmi

Specifies the end of the duration of time that you want log information

from.

v t is tenths of a second

v h is hundredths of a second

v m is milliseconds

v i is ten-thousandths of a second

MINRC

Specifies a numeric value that represents the lowest return code that you

want to be reported.

FILTERS

Specifies tracing filters to use in the report. Use only in conjunction with

IBM support.

EXFILTERS

Specifies tracing filters not to use in the report. Use only in conjunction

with IBM support.

MAXRC

Specifies a numeric value that represents the highest return code that you

want to be reported.

TASKS

Specifies a task number (service) to filter the log information by. Although

this criterion is helpful if you are diagnosing a problem with a specific

task, generally you should not use this criterion. If this criteria is used with

multiple values, each separate line must start with the TASKS keyword, an

equal sign, and the comma-delimited list of task numbers enclosed within

parenthesis.

NODES

Specifies a specific node (address space or data server) for which the log

print utility should return information. This value is a comma-delimited

list enclosed with parentheses. Each line of node filters must be preceded

by the NODES keyword and an equal sign.

SPCRC

Specifies a list of specific return code values for which the log print utility

should return log records. Use only in conjunction with IBM support.

96 Classic Federation Guide and Reference

System exits

System exits are programs that the system calls at predefined processing points to

provide security and accounting functionality for Classic federation.

The data server is a multi-threaded implementation designed to service large

numbers of concurrent users. To optimize performance in the data server’s

multi-tasking environment, all of the system exits are written in Assembler

language, with the exception of the record processing exit. They are assembled as

re-entrant. Additionally the exits are link-edited as AMODE 31 RMODE ANY and

REF, RENT, RU.

Restriction: If you customize an exit, ensure that your version also meets these

criteria.

Security: SAF exit

Use the SAF exit to verify that a user has authority to access a physical file or PSB

referenced in an SQL query. The SAF exit also verifies that a user has authority to

execute a stored procedure program.

You can use the supplied sample exit. When you use the sample exit, you do not

need to re-assemble or re-linkedit the exit.

If you modify the module and you reference the SAFID field as a CL4 field, or if

you reference SAFID with an explicitly declared length of 4, you must correct the

coding to reference SAFID as a 3 byte field, re-assemble, and re-link your exit.

Correcting all length references to SAFID will ensure your existing SAF exit will

execute correctly with the new product. However, the new control block features

will not be implemented. To implement the new features provided by the control

block modifications, review the supplied SAF exit and include the changes in your

SAF exit as required.

Restriction: The SAF exit issues RACROUTE calls and must be run from an

APF-authorized library. In addition, when issuing the RACROUTE

calls, the exit enters key zero supervisor state. The exit reverts back to

user key problem state immediately after each RACROUTE call

returns.

Activating the SAF exit

To activate the SAF exit, you define configuration parameters in the master

configuration file.

Before you begin

1. Install the data server, perform initial configuration, and verify the installation

and configuration using the sample application and data.

2. Include the SAF exit load module (CACSX04) in an APF-authorized library

(SCACLOAD).

3. Ensure that the data server JCL references the APF-authorized library in the

STEPLIB DD statement where the SAF exit is located (SCACLOAD).

4. Ensure that any other data sets referenced in the STEPLIB DD statement are

also APF-authorized.

About this task

Chapter 3. Administering federation 97

Though you can activate the SAF exit from a service configuration member, you

should activate it from the master configuration member. Activating the SAF exit at

the master configuration member level ensures that the data server performs

authorization checks on all users when they log in, before they can access data

from your data sources.

Procedure

To configure the SAF exit and verify that it is working:

1. Edit the data server master configuration member (SCACCONF member

CACDSCF).

a. Uncomment the SAF exit parameter. Parameters are specified using a

keyword=value format and are comma delimited. The following

sub-parameters are supported by the SAF exit:

IMS CLASS=Class Name

Specifies the name of the RACF resource class that is checked to

determine whether the user has authority to schedule or access the

PSBs associated with the tables referenced in a query. The Class

Name can be up to eight characters long. This sub-parameter is

required when accessing IMS data.

PSB PREFIX=Prefix

Specifies a value to prefix to the PSB names before a RACF

authorization call is issued. If specified, the PSB name is appended

to the Prefix value, for example, IMSPPSB1 where the Prefix is IMSP

and the PSB name is PSB1.

 If you are planning to access IMS data, you might need to modify

the IMS CLASS subparameter to define the RACF class where IMS

PSBs are defined at your site.

 To use a PSB, a user ID must have at least CONTROL access to that

PSB’s corresponding RACF profile within the class.

 The combination of the length of the PSB name and the length of

the prefix must be eight characters or less. This is a RACF

restriction. If a larger PSB name or prefix combination is

encountered, an error message is issued.

SPCLASS=Facility

Specifies the name of a class to be used to check for

RACF-authorized use of stored procedure names that are defined in

the metadata catalogs. These names are stored in the

SYSIBM.SYSROUTINES system table. An SPCLASS name can be up

to eight characters in length.

 This example uses the IBM-supplied class of FACILITY. You can

define an installation class specifically for stored procedures to

RACF. Use the FACILITY class as an example and specify the length

of the resource name as 39. Replace FACILITY with the name of the

new class.

 The RACF administrator must define each stored procedure as a

resource in this class and grant ALTER access to each user ID that

will invoke the stored procedure. If the stored procedure is not

defined to RACF or the user ID is not granted access, -5046295 is

returned on the attempt to use a stored procedure, and the

following message is added to the server log:

98 Classic Federation Guide and Reference

Stored Procedure Access Denied

ADACLASS=Facility

Specifies the name of a class to be used to check for

RACF-authorized use of ADABAS view names. An ADACLASS

name can be up to eight characters long. In this example the

IBM-supplied class of FACILITY is used. You can define an

installation class specifically for ADABAS views to RACF. Use the

FACILITY class as an example and specify the length of the resource

name as 32. Replace FACILITY with the name of the new class. The

RACF administrator must define each ADABAS view name as a

resource in the class and grant CONTROL access to each user ID

that uses that view name. If the ADABAS view name is not defined

to RACF, or the user ID is not granted access, the following

message is returned on the attempt to pull data from the ADABAS

table defined with a view name:

 Access Denied

 If the ADABAS table is only defined with a file number (no Predict

view name), you will receive the same error message as shown

above, and the server log contains the following message:

 CACSX04 NO ADABAS VIEW NAME IN USE GRAMMAR

EXCLUDE=n

Indicates the query processor should not provide an ACEE address

in commands sent to CA-Datacom. When the SAF exit is active, the

address of an ACEE is obtained during SAF exit initialization. This

ACEE address is normally passed to CA-Datacom in each database

request and CA-Datacom authenticates the request using

information within the ACEE.

 Whenever the SAF exit is active and you want to avoid database

level security checking in CA-Datacom, you must indicate the query

processor should exclude the ACEE from the database requests that

are sent to CA-Datacom. Set the value of n to 2 (heterogeneous

query processor CA-Datacom connector). This setting will not

provide the ACEE address in the call parameters.

VALIDATE=Y/N

Indicates whether the exit should validate that the user ID has

authority to access the database, file, stored procedure, or PSB name

passed to the exit when called to perform validation processing.

Specifying a value of Y informs the exit that it should issue

RACROUTE validation calls for the resource name passed to the

exit. Specifying a value of N informs the exit that it should not

perform any validation processing for the resource name passed.

The default value for VALIDATE is Y.

 The purpose of this parameter is to allow you to eliminate the

overhead of verifying that the user has authority to access the

resource if you have elected to activate SQL security to control

access to tables and stored procedures.

 Use both SQL security and the SAF exit in conjunction with your

site security package to restrict access to your data.
b. Save your changes.

2. Start the data server.

Chapter 3. Administering federation 99

v If your data server is already running, restart it. This operation can also be

performed using the MTO Operator interface.
3. In the SCACSAMP member CACSQL, uncomment the SELECT statements that

indicate the data source you are using.

a. Ensure that the user ID is authorized to access the table that is referenced in

the query.

b. Save your changes.
4. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to reference

the name of the CACSQL member that you edited previously, and save your

changes.

5. Submit CACCLNT and review the output.

The query should function normally and return the expected result set.

6. Re-edit the SCACSAMP member CACSQL that you updated previously. Update

the user ID (CACUSER) to specify an invalid user ID, or one that is not

authorized to access the referenced file or PSB in the query, and save your

changes.

7. Submit CACCLNT.

The query should not return a result set, and you should see an error message

that reads:

Access denied

8. Re-edit the SCACSAMP member CACSQL that you updated previously.

a. Change the user ID to a valid user ID.

b. Save your changes.

SAF exit: API overview

The parameters passed to the SAF exit are defined by the CACSXPL4 member

found in the SCACMAC library. The SAF exit is called for one of three functions:

initialization, validation, and termination. The SAFFUNC field you define in the

CACSXPL4 member indicates which of the three functions to run.

 Table 15. SAF exit fields and descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether the fields

are generated in the exit’s local storage area.

SAF DSECT DSECT definition that is generated if &DSECT=YES is specified.

SAF DS 0F Label that is generated when &DSECT=YES is not specified.

SAFID DC CL3’SAF’ IDENTIFIER SAF Acronym in EBCDIC - Eye Catcher

SAFVER DS X VERSION

INDICATOR

Format version identifier. This position in the parameter list was a blank (not

used) prior to Version 2.2.1.

SAFORG EQU X’40’ Parameter list formatted by the module prior to Version 2.2.1.

SAF22FC EQU X’F1’ Parameter list formatted by the module beginning with Version 2.2.1.

Modifications in the parameter list format include:

v SAFID changed from CL4 to CL3

v SAFVER field added

v SAFEXCLD field added

v SAFACEE field added

v SAFCGRP field added

100 Classic Federation Guide and Reference

Table 15. SAF exit fields and descriptions (continued)

Field Description

SAFUSER DS A Word available for SAF exit use. If the SAF exit needs to allocate storage for

processing, the address of the storage area should be placed in this field during

initialization processing.

SAFTYPE DS F Validation type.

SAFUSERI DS A Address of the user ID to be validated. The user ID referenced is eight bytes

long, left-justified, upper-case, and padded with blanks.

SAFUSERP DS A Address of the user password to be validated. The user password referenced is

eight bytes long, left justified, upper case and padded with blanks.

SAFNAME DS A Address of the file name/PSB/stored procedure table name to be checked for

access authority. The name is left-justified and terminated with a NULL.

SAFFUNC DS H Function identifier flag.

SAFINIT EQU 0 Initialization.

SAFVAL EQU 4 Validation.

SAFTERM EQU 8 Termination.

SAFEXCLD DS H Exclusion flags. Identifies which query processor should not provide the ACEE

address to CA-Datacom in each command request.

SAFDCHQP EQU 2 The query processor (running a CA-Datacom query) should not supply the

ACEE address to CA-Datacom.

SAFACEE DS A The address of the ACEE created during SAF exit initialization. This ACEE was

created by a RACROUTE ENVIR=CREATE call and is used by CA-Datacom to

authenticate database requests based upon the user ID in the ACEE.

SAFCGRP DS CL8 Allows the exit, when called for initialization processing, to return a user group

name that will subsequently be used for SQL security processing. Using group

names for SQL security processing enables you to simplify the administration of

SQL security because you only need to grant authority to the group name for

the tables, views, and stored procedures that members of the group are allowed

to access.

On the initialization call, this field is set to spaces. On subsequent calls do not

attempt to update this field because, after initialization processing, the contents

of this field are copied into an internal control block for use in SQL security

processing.

SAF exit: initialization:

The initialization function is used to initialize the SAF environment for a user

when the user connects to the query processor.

 The SAFNAME parameter points to an optional input parameter string that can be

passed to the exit. The input parameters are specified on the SAF exit

configuration parameter used to invoke the SAF exit. On the SAF exit parameter

additional sub-parameters can be placed after the name of the exit.

The SAFUSERI and SAFUSERP fields contain the user ID and password of the user

that is connecting to the service.

The exit performs initialization processing and allocates storage or other resources

that are required for validation processing. A pointer to the anchor for these

resources can be placed in the SAFUSER field of the parameter list. This pointer is

preserved and passed to the exit on subsequent invocations.

Chapter 3. Administering federation 101

For example, the SAF exit validates that the user ID and password are valid and

creates an ACEE for the user. The address of the ACEE is returned to the caller in

the SAFACEE field of the parameter list. If the optional input sub-parameter

EXCLUDE= is included in the SAF exit configuration parameter, the specified

value is returned to the caller in the SAFEXCLD field of the parameter list. These

two fields are provided to implement database level security checking within

CA-Datacom. This ACEE is used during validation processing and is destroyed at

exit termination.

Additionally, the SAF exit inspects the ACEEGRPL field in the ACEE. If the length

field is greater than zero, the contents of the ACEEGRPN field is copied to the

SAFCGRP for subsequent use in SQL security processing.

If the exit returns a non-zero return code, query processor initialization for the user

is halted, the user is disconnected, and the return code issued by the exit is

returned to the client application.

SAF exit: validation:

The validation function is used to verify a user’s authority against objects such as

PSBs, Adabas files, and stored procedures.

 The SAFTYPE field identifies the type of validation to be performed.

SAFIMS

For IMS access using a DBB or BMP connector interface the exit is called

immediately before PCB selection logic is invoked. The name of the PSB

that is referenced by the SAFNAME field is the PSB specified in the data

server’s JCL. The exit should verify that the user has authority to use the

specified PSB name identified in the SAFNAME field.

 When you use the DRA interface to access IMS data, the exit can be called

at two different points. The exit is always called immediately before a PSB

is to be scheduled. The exit should validate that the user has authority to

use the PSB referenced by the SAFNAME field.

 If the exit returns a non-zero return code, the PSB is not scheduled,

processing for the query is terminated, any other PSBs that have been

scheduled for the query are unscheduled, and the return code issued by

the exit is returned to the client application. The application can still issue

other SQL requests.

 The exit can also be called when the query contains a join. In this situation,

the DRA interface schedules the JOIN PSB specified in the metadata

grammar for a table referenced in the query. The exit is invoked as

previously described. For subsequent tables in the join, the connector

checks to determine whether the PSBs that have already been scheduled

contain a PCB that can be used to access the table. If a usable PCB is

located, the SAF exit is called with the name of the primary PSB (as

specified in the metadata grammar for the table that is referenced in the

query). This PSB is not scheduled, however, an authorization check is

performed to verify that the user has authority to access the primary PSB

(referenced by the SAFNAME field) associated with the table.

 If the exit returns a non-zero return code, the other PSBs that have been

scheduled for the query are unscheduled and the return code issued by the

exit is returned to the client application. The application can still issue

other SQL requests.

102 Classic Federation Guide and Reference

There is no indication of which of the three processing sequences invoked

the exit.

SAFVSAM and SAFSEQ

When a query references a sequential or local VSAM file, the exit is called

immediately before the file is opened. The exit validates that the user has

authority to access the file name referenced by SAFNAME. When a PDS

member is referenced, the name of the member is not passed to the exit.

 If the exit returns a non-zero return code, the file is not opened, processing

for the query is terminated, and the return code issued by the exit is

returned to the client application. The application can still issue other SQL

requests.

SAFSP

For stored procedures, the SAF exit is invoked immediately before the

application program associated with a stored procedure definition is

loaded for execution. The SAF exit validates that the user has authority to

execute the program. This validation is performed indirectly based on the

stored procedure table name referenced by the SAFNAME.

 If the exit returns a non-zero return code, the program is not loaded or

executed, processing for the stored procedure request is terminated, and

the return code issued by the exit is returned to the client application. The

application can still issue other SQL requests.

SAFADAB

When a query references an ADABAS database, the exit is called

immediately before the database is accessed. The exit validates that a view

name is provided in the SAFNAME field and that the user has authority to

access the identified view.

 If the exit returns a non-zero return code, the database is not accessed,

processing for the query is terminated, and the return code issued by the

exit is returned to the client application. The application can still issue

other SQL requests.

SAF exit: termination:

The termination function is called with a user disconnects from the query

processor. At this time, the exit can perform any termination processing necessary,

and must free any resources it has allocated.

Accounting: SMF exit

The SMF exit is used to report wall-clock time and CPU time for an individual

user session with a query processor task. Additionally, if SQL security is active and

an authorization violation is detected by the query processor, the exit is called to

log the violation.

The SMF exit writes out its data as user SMF records. SMF requires that an

application that writes SMF records be run from an APF-authorized library.

Activating the SMF exit

When you activate the SMF exit, you can maintain elapsed time values used by

SQL statements and log authorization violations.

Before you begin

Chapter 3. Administering federation 103

1. Install the data server, perform initial configuration, and verify the installation

configuration using the sample application and data.

2. Include the SMF exit load module (CACSX02) in an APF-authorized library

(SCACLOAD).

3. Ensure that the data server JCL references the APF-authorized library in the

STEPLIB DD statement where the SMF exit is located (SCACLOAD).

4. Ensure that any other data sets referenced in the STEPLIB DD statement are

also APF-authorized.

About this task

Though you can activate the SMF exit from a service configuration member, you

should activate it from the master configuration member. Activating the SMF exit

at the master configuration member level ensures that you record accounting

information for all users accessing the data server.

Procedure

To activate the SMF exit and verify that it is working:

 1. Edit the data server master configuration member (SCACCONF member

CACDSCF).

 2. Uncomment the SMF EXIT parameter. The SMF exit supports the following

sub-parameters:

RECTYPE=nnn

This is a required parameter that defines the SMF user record type.

This parameter contains a numeric value between 128 and 255.

SYSID=xxxx

This is a required parameter that contains the primary JES subsystem

ID. SYSID can be a maximum of four characters.
 3. Save the master configuration member.

 4. Start the data server.

v If your data server is already running, restart it.

v This operation can also be performed using the MTO Operator Interface.
 5. Uncomment the SELECT statements in SCACSAMP member CACSQL that

reflects the data source you are using.

a. Ensure that the user ID is authorized to access the table that is referenced

in the query.

b. Save the changes after you have completed editing the member.
 6. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to reference

the name of the SCACSAMP member that you edited in the previous step.

Save your changes.

 7. Submit CACCLNT and review the output.

The query should function normally and return the expected result set.

 8. Ensure that the SMF record file exists, for example, SYS1.MAN1.

 9. Dump the SMF records related to Classic federation into a data set. Sample

JCL is shown in the following example.

//*INSERT VALID JOB CARD HERE

//STEP1 EXEC PGM=IFASMFDP

//INDD1 DD DISP=SHR,DSN=SYS1.MAN1

//OUTDD1 DD DISP=(NEW,CATLG),DSN=CAC.SMFDUMP,

// UNIT=SYSDA,VOL=SER=XXXXXX,SPACE=(TRK,(5,5),RLSE),

104 Classic Federation Guide and Reference

// DCB=(LRECL=32760,BLKSIZE=27998,RECFM=VBS,DSORG=PS)

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

INDD(INDD1,OPTIONS(DUMP))

OUTDD(OUTDD1,TYPE(xxx))

Where Type (xxx) is the record type as specified in the RECTYPE= parameter.

10. Run SAS, IDCAMS, or any other tool that processes SMF records. If you run

IDCAMS, specify the following SYSIN:

//STEP2 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

PRINT INDATASET(CAC.SMFDUMP)

Where CAC.SMFDUMP is the name of the dump file.

11. Verify the output.

To verify the output, examine the DSECT fields that map the SMF accounting

routine output data from the SMF exit.

Verifying SMF exit output:

DSECT fields map the output data from the SMF exit accounting routine.

Understanding the field definitions enables you to verify this output data.

 The following tables describe the DSECT fields associated with the SMF exit

accounting routine, and related authorization violation type codes.

 Table 16. SMF accounting file DSECT field definitions

Field Definition

Length (in

bytes)

CACSXSMF

DSECT

Data structure for the SMF record. N/A

RDWLEN DS H Length of the record. 2

RDWSPAN DS H Reserved for system use. 2

FLG DS X Reserved for SMF use. 1

RECTYPE DS AL1 Value specified in the RECTYPE= parameter. This is the

SMF record type.

1

ENTIME DS BL4 Time in BIN format from TIME macro. This is the time the

event ended.

4

ENDATE DS PL4 Date in BIN format from the TIME macro. This is the date

the event ended.

4

SYSID DS CL4 JES subsystem ID from the SYSID= * Parameter. 4

USRTYPE DS BL2

Zero

for CPU time and elapsed time.

Type code

for authorization violation.

2

USERID DS CL8 SQL ID from AXPLSQID. Padded with blanks. 8

STTIME DS BL4 Time in BIN format from the TIME macro. This is the time

the event started.

4

STDATE DS PL4 Date in BIN format from the TIME macro. This is the date

the event started.

4

AGCPU DS BL4 Total CPU time used since the event started. The value is

represented in milliseconds.

4

Chapter 3. Administering federation 105

Table 16. SMF accounting file DSECT field definitions (continued)

Field Definition

Length (in

bytes)

RECLEN EQU

*-CACSXSMF

Length of the standard SMF reporting record.

ORG STTIME Alternate record definition for authorization violation

reporting.

OBJNAME DS

CL27

Name of the object for which the user is not authorized to

access, define, grant, or revoke authority for.

27

TOTLEN EQU

*-CACSXSMF

Length of the authorization violation SMF record.

 Table 17. Authorization violation type codes

Type Code Authorization violation type

101 User is not authorized to issue a DROP TABLE for the requested table.

102 User is not authorized to issue a DROP INDEX for the requested table.

103 User is not authorized to issue a DROP VIEW for the requested view.

104 User is not authorized to issue a DROP PROCEDURE for the requested stored procedure.

200 User is not authorized to create the requested table.

201 User is not authorized to create the requested index

202 User is not authorized to issue the CREATE VIEW statement.

203 User is not authorized to issue the CREATE PROCEDURE statement

300 User is not authorized to issue a SELECT statement for the requested table or view.

301 User is not authorized to issue an UPDATE statement for the requested table.

302 User is not authorized to issue an INSERT statement for the requested table.

303 User is not authorized to CALL the requested stored procedure.

403 User is not authorized to issue a DELETE statement against the requested table.

500 User is not authorized to issue the requested GRANT statement.

501 User is not authorized to issue the requested REVOKE statement.

SMF exit: API overview

The SMF exit parameter list uses an AVA (Access Validation and Accounting)

interface. The macro CACSXPL that is found in the SCACMAC library maps the

parameters.

The AXPLFUNC field indicates the function you are calling:

v Initialization

v Accounting

v Authorization violations

v Termination

 Table 18. SMF exit field definitions

Field Definition

&DSECT=YES Used to control whether a DSECT definition is generated or whether the fields are

generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated if &DSECT=YES is specified.

106 Classic Federation Guide and Reference

Table 18. SMF exit field definitions (continued)

Field Definition

AXPL DS 0H Label that is generated when &DSECT=YES is not specified.

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area of

the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Available for SMF exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub-type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement or the name of the object

for which authorization failed).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Validation and accounting.

AXFNTERM EQU 8 Termination.

SMF exit: initialization:

The SMF exit initialization function is called immediately after the exit is loaded

during initialization of the query processor task when a user connects to the

service.

 The AXPLPENV parameter points to an (optional) input parameter string that can

be passed to the exit. The input parameters are specified on the SMF EXIT

configuration parameter used to invoke the SMF exit. Additional sub-parameters

can be placed on the SMF EXIT parameter after the name of the exit.

The exit performs initialization processing and allocates any storage or other

resources that are required for validation and accounting processing. A pointer to

the anchor for these resources can be placed in the AXPLUSER field of the

parameter list. This pointer is preserved and passed to the exit on subsequent

invocations. Upon initialization, the AXPLSQID parameter contains the user ID of

the user connecting to the query processor. The contents of the other fields in the

parameter list are indeterminate.

If the exit returns a non-zero return code, query processor task initialization is

stopped, the user is disconnected, and the return code issued by the exit is

returned to the client application.

SMF exit: validation and accounting:

Chapter 3. Administering federation 107

This section describes SQL statement types client applications can use, correlations

between SQL statement types and SMF parameters, and validation and accounting

activities the SMF function performs.

 This SMF exit function is called at predetermined processing points. The

AXPLETYP, AXPLESUB, and AXPLESEQ fields uniquely identify each processing

point. The SMF exit is called to process SQL events that are identified by an

AXPLETYP value of 3. The AXPLESUB field identifies the type of SQL statement

that the client application has issued. The client application can issue the following

types of SQL statements:

 Table 19. SQL statement types

AXPLESUB value Equate value Type of SQL statement

1 DYNEXEC Dynamic execute. When called at this point, the AXPLTEXT and

AXPLTXTL fields will be zero.

2 CLOSE Close cursor. When called at this point, the AXPLTEXT and AXPLTXTL

fields will be zero.

3 DESCRIBE Describe. When called at this point, the AXPLTEXT and AXPLTXTL

fields will be zero.

4 EXECIMED Execute immediate. When called at this point, the AXPLTEXT field will

reference the statement being executed, and the AXPLTXTL field will

identify the statement length.

5 EXECUTE Execute. When called at this point, the AXPLTEXT field will reference

the statement being executed, and the AXPLTXTL field will identify the

statement length.

6 FETCH Fetch cursor. When called at this point, the AXPLTEXT and AXPLTXTL

fields will be zero.

7 OPEN Open cursor. When called at this point, the AXPLTEXT field will

reference the statement being executed, and the AXPLTXTL field will

identify the statement length if the client application is using static SQL.

If the application is using dynamic SQL, the AXPLTEXT and

AXPLTXTL fields will be zero.

8 PREPARE Prepare statement. When called at this point, the AXPLTEXT field will

reference the statement being executed and the AXPLTXTL field will

identify the statement length.

9 SLCTINTO Select into. When called at this point, the AXPLTEXT field will reference

the statement being executed and the AXPLTXTL field will identify the

statement length.

The AXPLESEQ field identifies whether the exit is being called before (1)

(AXPLEBEF) or after (2) (AXPLEAFT) the SQL statement has been processed. The

exit is called for each SQL statement issued by the client application. The user has

control of the query processor service for the duration of the SQL statements

execution.

Therefore, when the exit is called before the SQL statement is processed, it should

obtain the TCB time for the current TCB. When called after the SQL statement has

been processed, the exit should obtain the current TCB and compute the difference

between the after and before SQL statement processing times. This value must be

added to an aggregate value that the exits need to maintain for all SQL statements

issued by the client application.

108 Classic Federation Guide and Reference

Example: The following sequence of SQL statements are issued for a dynamic SQL

SELECT query:

v PREPARE

v OPEN

v DESCRIBE

v FETCH (until a SQLCODE of 100 is returned)

v CLOSE

To obtain the correct CPU time for the query, the exit needs to compute the CPU

time used for each of these statements and add them together. Depending on the

type of client application, you can issue different types of SQL statements. In the

case of a client application that has more than one cursor open at a time, the

individual SQL statements that are issued by the client application will be

interleaved.

For this exit, the type of SQL statement being issued is not important unless the

exit captures the text of the SQL statement being issued by the client application.

If the exit returns a non-zero return code, query processor task processing of the

query is stopped and the return code issued by the exit is returned to the client

application.

SMF exit: authorization violations:

This function processes authorization violations when SQL security is active and

the query processor detects an authorization violation.

 The AXPLETYP contains a value of 5. The AXPLESUB field identifies the type of

authorization exception. The AXPLTEXT field identifies the name of the object for

which authorization failed, and the AXPLTXTL field contains the length of the

name in AXPLTEXT.

The exit reports the violation exception, and generates the alternate form of the

SMF record shown in Table 16 on page 105.

SMF exit: termination:

This exit function performs any termination processing necessary and frees any

resources it has allocated when the user disconnects from the service task. The

termination function is called during query processor task termination processing.

 For example, the SMF exit generates the SMF user record to report the CPU time

used in milliseconds. The SMF record also contains the time and date when the

user connected to and disconnected from the query processor task.

CPU resource governor

The CPU resource governor exit restricts the amount of CPU time that a user

consumes for a particular unit of work.

Execution governor limits are based on the number of data rows examined (which

is the number of calls issued to the connector interface) and the number of rows

returned in a result set after all query post-processing is complete. The governors

IBM delivers are fairly coarse. Depending on the query, a large amount of CPU

time can be expended before one of these limits is reached.

Chapter 3. Administering federation 109

On activation, the system passes the CPU resource governor exit the allowed CPU

time for the user. Periodically, the CPU resource governor exit is called to check to

see how much CPU time has been used. After exceeding the allotted time, the exit

returns a return code that stops the query. The system controls the frequency at

which it calls the exit.

The CPU resource governor exit is responsible for determining the unit of work

based upon the series of SQL statements that the client application issues.

For example, the CPU GOVERNOR exit observes the following rules:

v The unit of work is from the first received PREPARE until all cursors have been

closed. For a typical client application that only issues one query at a time, the

unit of work is the duration of a single query. If multiple cursors are opened the

unit of work persists until all cursors have been closed. Any additional SQL

statements issued by the client while a query is active (for example, a SELECT

INTO) are treated as part of the unit of work.

v If no queries are active, the exit treats any other SQL request as a single unit of

work. For example, if no cursors are open, the exit treats requests such as

SELECT INTO and EXECUTE IMMEDIATE as a single unit of work.

Activating the CPU resource governor exit

By configuring, activating, and validating the CPU resource governor exit, you can

restrict the amount of CPU time that a user can consume for a unit of work.

Before you begin

v Install the product, perform initial configuration, and verify the installation

configuration using the sample application and data.

v Include the CPU resource governor exit load module (CACSX03) in the load

library that the data server is using.

Although the CPU resource governor exit does not require APF authorization, the

SAF, SMF, and Workload Manager exits do. If you are running any of the latter

exits, the CPU resource governor exit must also be placed in an APF-authorized

load library.

About this task

Though you can activate the CPU resource governor exit from the master

configuration member, you should do so from service configuration members.

Activating the exit at the service level allows different services (data sources) to

run queries with different performance profiles. For example, if you are running

production queries from one data source, and ad hoc queries that take longer from

another data source, you can set the CPU time limit to one value for the

production queries, and to another (higher) value for the ad hoc queries.

Procedure

To configure, activate, and validate the CPU resource governor exit:

1. Edit the service configuration member for the CACSAMP data source

(SCACCONF member CACQPCF).

a. Specify the CPU resource governor exit name.

b. Specify Maximum CPU Time.

110 Classic Federation Guide and Reference

This field specifies the maximum amount of CPU time that a single query

can take (or a group of queries can take) in a multiple cursor situation. The

following are valid values:

nS The number of seconds, where n = number is a value between 1

and 6000.

nM The number of minutes, where n = number is a value between 1

and 6000.
c. Uncomment the CPU GOVERNOR parameter.

d. Save your changes.
2. Start the data server.

v If the data server is already running, stop and restart the query processor

service for data source CACSAMP. This can be done using the MTO

Interface.
3. Uncomment any SELECT statements in SCACSAMP member CACSQL that

reflect the data source you are using.

a. Ensure that the user ID is authorized to access the table that is referenced in

the query.

b. Save your changes.
4. Edit SCACSAMP member CACCLNT by setting the SQLIN parameter to

reference CACSQL, and save the member.

5. Submit CACCLNT and review the output.

The query should function normally and return the expected result set. You are

ready to validate the CPU resource governor exit.

6. Set the CPU time limit specified in the CPU GOVERNOR parameter artificially

low, to induce a timeout.

a. Re-edit the service configuration member for the CACSAMP data source

(SCACCONF member CACQPCF) by setting the CPU time limit to a low

value, such as 1 second (1S).

Depending on the size of your z/OS, the query might take less than a CPU

second to execute. The exit has a minimum limit of one CPU second.

b. Save your changes.
7. Stop and restart the data server, then submit CACCLNT.

v Alternatively, you can restart the query processor service for data source

CACSAMP using the MTO interface.
The query should not return a result set, and the following error message

should appear:

CPU time exceeded.

If the time limit is not exceeded you will see the normal result set.

8. Increase the CPU limit specified on the CPU GOVERNOR parameter or

comment out the CPU GOVERNOR parameter, so you can run normal queries.

a. Re-edit the service configuration member for the CACSAMP data source

(SCACCONF member CACQPCF).

b. Save your changes.
9. Stop the data server and restart it.

v Alternatively, you can stop and restart the query processor service for data

source CACSAMP using the MTO interface.

Chapter 3. Administering federation 111

CPU resource governor exit: API overview

This API passes field values in a parameter list to the CPU resource governor exit.

The table lists and describes the fields.

The parameter list uses an AVA (Access Validation and Accounting) interface and

is mapped by the macro CACSXPL, which is found in the SCACMAC library. The

AXPLFUNC field indicates the function you are calling:

v Initialization

v Accounting

v Termination

 Table 20. CPU resource governor exit fields and descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether the fields are

generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area of

the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Words available for CPU resource governor exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Validation and accounting.

AXFNTERM EQU 8 Termination.

CPU resource governor exit: initialization:

This function performs initialization processing and allocates any storage or other

resources that are required for validation processing. The initialization function is

called when a user connects to the service, immediately after the exit is loaded

during initialization of the query processor task.

 The AXPLPENV parameter points to an optional input parameter string that can

be passed to the exit. The input parameters are specified on the CPU GOVERNOR

configuration parameter that is used to invoke the CPU resource governor exit. On

the CPU GOVERNOR parameter additional sub-parameters can be placed after the

name of the exit.

112 Classic Federation Guide and Reference

A pointer to the anchor for required resources can be placed in the AXPLUSER

field of the parameter list. This pointer is preserved and passed to the exit on

subsequent invocations. Upon initialization, the AXPLSQID field contains the user

ID connecting to the query processor. The contents of the other fields in the

parameter list are indeterminate.

If the exit returns a non-zero return code, query processor task initialization is

halted, the user is disconnected, and the return code issued by the exit is returned

to the client application.

CPU resource governor exit: validation and accounting:

The validation and accounting function captures and computes aggregated CPU

time and stops query processing when queries have exceeded the time limit for the

prescribed unit of work.

 The function is called at predetermined processing points. The AXPLETYP,

AXPLESUB, and AXPLESEQ fields uniquely identify each processing point. The

exit is called for each SQL statement issued by the client application. These events

are identified by an AXPLETYP of 3. The different types of SQL statements are

identified in the AXPLESUB field. The AXPLESEQ field identifies whether the exit

is called before (1) or after (2) the SQL statement has been processed.

Exits that are called for SQL events must determine (based on the SQL statement

type) whether the client application is beginning a unit of work, ending a unit of

work, or is in the middle of a unit of work.

The exit performs the following actions:

v Start unit of work: Reset aggregate CPU time, capture current CPU time, and

enter the middle of the unit of work.

v End unit of work: Reset aggregate CPU time and prepare to start the next unit

of work.

v Middle of unit of work: After the exit determines that it is in the middle of a

unit of work, the current CPU time should be obtained before the SQL statement

is issued . After the SQL statement has been executed, the exit is called and

captures the current CPU time and computes the amount of time taken by that

SQL statement. The exit maintains an aggregate CPU time for the unit of work,

which represents the sum of the individual SQL statement execution times. The

exit checks this aggregate time after an SQL statement has been processed to

determine whether the CPU time limit has been exceeded.

When called to process SQL statements, the exit behaves in the following ways:

v If the exit has already generated a CPU time exceeded error when it was called

during machine execution (described below), it does not generate another error.

The exit will still be called to perform after SQL statement processing and sets a

flag that indicates an error has been reported.

v If, after an SQL OPEN statement has been processed, the AXPLSQLC field

contains a non-zero value indicating that an error was detected, the system does

not call the exit to close the cursor associated with the statement that failed.

Typically this will be a –204 or –206 error, or might be an error generated by any

system exit. In these situations the exit must check to see what state the unit of

work is in to determine whether it should reset its unit-of-work state. If there are

no other cursors open, the exit needs to perform end unit-of-work processing.

Chapter 3. Administering federation 113

The exit will also be called while the SQL program (that was generated for the

query) is executing. The AXPLETYP field will contain a 4 in these situations.

Currently, the exit is called at the two points where the MAX ROWS EXAMINED

and MAX ROWS RETURNED governor checks are performed. The AXPLESUB

field contains the machine instruction number that identifies the instruction being

executed, and the AXPLESEQ contains a 1.

The exit does not consider the instruction type being executed. When called with

an AXPLETYP value of 4, the exit should capture the current CPU time and

compute how much time has elapsed since processing of the SQL statement

started. This value should be (temporarily) added to the aggregate CPU time for

the current unit of work. If the time limit is exceeded, the exit issues a return code

to halt query processing.

The CPU resource governor exit uses an AVA interface, which is more complex

than a custom interface like the SAF interface. An AVA interface accommodates

additional call points.

If the exit returns a non-zero return code, the query processor task terminates

execution of the current query, and the return code issued by the exit is returned to

the client application.

CPU resource governor exit: termination:

The termination function performs any termination processing necessary, and frees

any resources it has allocated. The termination function is called during query

processor task termination processing when the user disconnects from the service

task.

Workload Manager exit

The WLM exit tracks units of work and manages that work in goal or

compatibility mode.

The Workload Manager (WLM) exit is used to interface with the z/OS Workload

Manager.

A unit of work is the execution of an SQL statement that a client application issues.

Table 19 on page 108 identifies the different types of SQL statements that a client

application can issue. When the client issues one of these SQL statements, that user

has control of the query processor service thread for the period that the query

processor takes to service that SQL statement.

The WLM exit supports most of the parameters accepted by the IWMCLSFY macro

in order to identify the service class that will be used to manage and/or report on

the individual units of work. The WLM exit classifies these units of work based on

the query processor service information entry during query processor TCB

initialization processing. Therefore, all users being serviced for a data source are

managed in the same service class. Exit points are available at the user connection

level that enable a customized exit to manage individual users of a query

processor service, but the WLM exit performs no processing at these exit points.

Required: The WLM macros require that you execute the WLM exit from an

APF-authorized load library. Therefore, the data server and all

associated load modules must also reside in an APF-authorized load

library.

114 Classic Federation Guide and Reference

Activating the WLM exit

The Workload Manager exit reports unit-of-work activities and manages queries in

WLM goal mode.

Before you begin

v Install the product, perform initial configuration, and verify the installation and

configuration using the sample application and data.

v Include the WLM exit load module (CACSX06) in the load library that the data

server is using. Based on the previous examples, the WLM exit must be in an

APF-authorized library (SCACLOAD).

v Ensure that the data server JCL references the APF-authorized library in the

STEPLIB DD statement where the WLM exit is located (SCACLOAD). Ensure

that any other data sets referenced in the STEPLIB DD statement are also

APF-authorized.

About this task

The WLM exit is activated using a service information entry parameter to initialize

the exit once after the address space is initialized. The WLM exit must be able to

handle all of the users accessing the data server concurrently.

Though you can supply WLM unit-of-work information from the master

configuration member, you should supply unit-of-work information from the

service configuration members. Supplying this information at the service level

allows different services (data sources) to run queries with different performance

profiles. For example, if you are running short queries you can give them more

resources. For longer-running queries you can use period switching to reduce the

rate that these types of queries use resources.

Procedure

To activate the WLM exit:

 1. Edit the data server master configuration member (SCACCONF member

CACDSCF).

a. Uncomment the WLM service information entry parameter and supply the

following sub parameters in the task data field. Parameters are specified

using a keyword=value format and are comma delimited.

Exit name

Specifies the name of the WLM exit to be invoked. The WLM exit

name is CACSX06. Any parameters that the exit needs can be

specified in the task data field (after the exit name) on the WLM

service information entry parameter. The exit name and its input

parameters must be separated by a space or comma.

SUBSYS=xxxx

Specifies the generic subsystem type under which the unit of work

is reported in WLM. It is preferable to define a subsystem type to

WLM. The SUBSYS type can be up to four bytes in length and

must conform to WLM subsystem types. Modify the subsystem

type to a type that is valid on your system. Examples are: IMS,

CICS, JES, and STC. If the address space of the query processor is

a started task, STC might be a good choice.

SUBSYSNM=xxxxxxxx

Specifies the name of the subsystem that the unit of work is

Chapter 3. Administering federation 115

reported under in WLM. The SUBSYSNM name can be up to eight

bytes in length. This name and SUBSYS (subsystem type) are used

to connect to WLM and classify work received. Using IMS as an

example:

 SUBSYS=IMS SUBSYSNM=IMSA

 The WLM service information entry definition must come before

any query processor service information entries. Failure to do so

will result in a S0C4 abend when the data server is stopped.

Additionally, the WLM service information entry cannot be

stopped if any query processor services are active. If the WLM

service information entry is stopped and a query processor service

(task) is active, a S0C4 abend occurs when the query processor

task is stopped. These abends occur when the WLM exit is called

during WLM service initialization processing, which allocates and

references an address space-level control block when the WLM exit

is called from a query processor task. When the WLM service is

terminated, the address space-level control block is freed. During

normal shutdown, the data server terminates tasks in LIFO (last-in,

first-out) sequence. The WLM service information entry must be

defined before any query processor service information entries to

allow the WLM service to terminate after all query processor tasks

have completed termination processing.
b. Save your changes.

 2. Edit the service configuration member for the CACSAMP data source

(SCACCONF member CACQPCF).

a. Uncomment the WLM UOW parameter and specify any desired

subparameters. Subparameters are specified using a keyword = value format

and are comma delimited. The following optional subparameters are

supported by the WLM exit:

ACCTINFO=xxx...

Specifies accounting information. A maximum of 143 characters of

accounting information can be supplied. The default is

NO_ACCTINFO.

COLLECTION=xxx...

Specifies a customer-defined name for a group of associated

packages. The maximum collection name that is supported is 64

characters long. The default is NO_COLLECTION.

CORRELATION=xxx...

Specifies the name associated with the user or program creating

the work request, which resides within the network. The

maximum correlation name that is supported is 64 characters long.

The default is NO_CORRELATION.

LUNAME=xxxxxxxx

Specifies the name of the local LU name associated with the

requestor. The maximum LU name is 8 characters long. The

default is NO_LUNAME.

NETID=xxxxxxxx

Specifies the network identifier associated with the requestor. The

maximum identifier is 8 characters long. The default is

NO_NETID.

116 Classic Federation Guide and Reference

PACKAGE=xxxxxxx

Specifies the package name for a set of associated SQL statements.

The maximum package name is 8 characters long. The default is

NO_PACKAGE.

PERFORM=xxxxxxxx

Specifies the performance group number (PGN) associated with

the work request. If specified, the performance group number

value must be within the range of 1-999, represented as character

data, left-justified, and padded with blanks. The default is

NO_PERFORM.

PLAN=xxxxxxxx

Specifies the name of an access plan for a set of associated SQL

statements. The maximum plan name is 8 characters long. The

default is NO_PLAN.

PRCNAME=xxxxxxxxxxxxxxxxxx

Specifies the name of a DB2 stored procedure associated with the

work request. The maximum name that can be supplied is 18

characters long. The default is NO_PRCNAME.

PRIORITY=nnnnnnnnnn

Specifies the priority associated with the work request. The

priority is specified as a decimal number. The maximum permitted

value is 2147483647. The default is NO_PRIORITY (x80000000).

SUBSYSPM=xxx...

Specifies character data related to the work request. This

information is passed to the workload manager for use in

classification. A maximum of 64 characters of information can be

supplied. The default is NO_SUBSYSPM.

TRXCLASS=xxxxxxxx

Specifies a class name within the subsystem that the workload

manager recognizes. The maximum transaction class name that can

be supplied is 8 characters long. The default is NO_TRXCLASS.

TRXNAME=xxxxxxxx

Specifies a transaction name for the work request that the

workload manager recognizes. The maximum transaction name

that can be supplied is 8 characters long. The default is

NO_TRXNAME.
b. Save the service configuration member.

Restriction: In WLM goal mode, a maximum of 254 characters of input

parameters can be specified on the WLM UOW configuration

parameter. The priority for units of work should be less than

VTAM and IMS. The discretionary goal might result in very

slow response times. Performance periods allow you to define

a high number of service units for short transactions and a

smaller number for long-running transactions.

See the z/OS documentation about workload management for information

about how to define service classes and classification rules.
 3. Start the data server.

v If the data server is already running start the WLM service, restart the

query processor service for data source CACSAMP using the MTO

interface.

Chapter 3. Administering federation 117

4. Uncomment the SELECT statements in SCACSAMP member CACSQL that

reflect the data source you are using.

a. Ensure that the user ID is authorized to access the table that is referenced

in the query.

b. Save your changes.
 5. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to reference

the SCACSAMP member CACSQL, and save your changes.

 6. Start RMF™ data gathering if it is not already active.

a. Enter START RMF from the system console.

See z/OS documentation for information on using RMF.

b. Start data gathering with Monitor III ISPF panel from TSO.
 7. Start the RMF Monitor III report before you start the sample query. This

report processes data written to VSAM data sets by RMF.

a. Access RMF Monitor III interactively from an ISPF panel.

The SYSRTD report option reports response time distribution by service

class and period. You should see the query response time in this report by

the service class you selected.
 8. Submit CACCLNT and review the output.

The query should function normally and return the expected result set.

A snapshot of how WLM is managing this workload can be obtained by

running the RMF postprocessor workload activity report during execution

while the sample is running.

 9. Run the RMF Monitor II interactive report.

a. Enter RMF from a TSO session.

b. Select option 2 for RMF Monitor II from the menu.

This report displays the activity only as it occurs, so the query must be a

long one to see its activity.
10. Optional: Run the SYSSUM Sysplex summary report.

This report shows goals versus actual for service class periods when the

system is in goal mode.

WLM exit: API overview

This API passes fields in a parameter list to the Workload Manager exit. The table

lists and describes the fields.

The parameter list passed to the WLM exit uses an AVA (Access Validation and

Accounting) interface and is mapped by the macro CACSXPL, which is found in

the SCACMAC library. The AXPLFUNC field indicates the function you are

calling:

v Initialization

v Management and reporting

v Termination

 Table 21. WLM exit fields and descriptions

Field Description

&DSECT=YES Controls whether a DSECT definition is generated or whether the fields are

generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

118 Classic Federation Guide and Reference

Table 21. WLM exit fields and descriptions (continued)

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area

of the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Words available for CPU Resource Governor exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is

completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Management and Reporting.

AXFNTERM EQU 8 Termination.

WLM exit: initialization

This function performs initialization processing and allocates any storage or other

resources that are required for subsequent processing. The initialization function is

called by the WLM initialization service during data server address space

initialization.

The AXPLTEXT parameter points to any additional parameters that were specified

in the task parameter field on the WLM initialization services SERVICE INFO

ENTRY after the exit name. The AXPLTXTL parameter identifies the length of the

input parameters. If no parameters are supplied, the AXPLTEXT and AXPLTXTL

field values are zero.

The WLM exit might be called multiple times to perform initialization and

termination processing, if the WLM initialization service is stopped and then

restarted using the MTO Interface.

The exit also registers itself with WLM and receives a WLM token that the exit

passes on subsequent calls. You can place a pointer to the anchor for these

resources in the AXPLUSER field of the parameter list. This pointer is preserved

and passed to the exit on subsequent invocations. Upon initialization, the contents

of the other fields in the parameter list are indeterminate.

The AXPLUSER field consists of three fullwords that the exit can store anchor

blocks in. The intent is to allow the exit to store an anchor for address-space-level

storage acquired during initialization processing. The second fullword should be

used to store an anchor block for storage that was acquired during query processor

service initialization. This storage is TCB-level storage and should be allocated for

each instance of a query processor service. The third fullword is available if the

exit needs to allocate additional storage to manage an individual user.

Chapter 3. Administering federation 119

When the exit is called to perform TCB initialization the AXPL storage area passed

for initialization processing is cloned and the new copy is passed to the exit. If the

exit stores an anchor block in one of the AXPLUSER fullwords, that address is

local to the TCB being serviced. Similarly, when the exit is called to service a

connection request, a copy of the TCB-level AXPL storage area is cloned and the

new copy is passed to the exit. This copy is passed on subsequent calls to the exit

to service individual SQL statements issued by the client application.

If the exit returns a non-zero return code, the WLM initialization service is

terminated and a message written to the log. No additional call will be made to

the WLM exit.

WLM exit: management and reporting

This overview lists the processing points where WLM exit management and

reporting functions can be called and the type of processing they perform.

The WLM exit is called at predetermined AXPLETYP, AXPLESUB and AXPLESEQ

processing points.

TCB initialization and termination:

The WLM exit initialization and termination functions perform TCB-level

initialization and termination processing.

 The WLM exit is called with an AXPLETYP value of 1 (AVAETCB) during query

processor initialization and termination for each query processor TCB.

The AXPLESUB field identifies whether the exit is being called for:

1. Initialization processing (TCBINIT) or

2. Termination (TCBTERM).

The AXPLTEXT field contains a pointer to the WLM UOW configuration parameter

value. The AXPLTXTL field contains the length of the configuration parameter

input. The AXPLPENV field contains a point to the data source name of the query

processor being activated. The AXPLSQID is blank.

For example, on TCB initialization the WLM exit runs the WLM classify macro

(IWMCLSFY) using the Workload Manager unit of work (WLM UOW) parameters

supplied (if any). The WLM exit then runs the macro IWMECREA to create an

enclave TCB environment. On the IWMECREA macro the FUNCTION_NAME

parameter is set to the first eight characters of the data source name. At TCB

termination the exit issues an IWMEDELE to delete the enclave.

If the exit allocates a TCB-level control block and stores it in the AXPLUSER area

on initialization processing, then this storage must be freed when the exit is called

to perform TCB termination processing.

On initialization processing, if the exit issues a non-zero return code, service

initialization is stopped and the service is not started. On termination processing,

the return code is ignored and normal termination process is continued. In either

case, the return code value is logged.

The TCB initialization call is actually deferred until the first user connects to a

query processor task. This allows the exit to perform the IWMCLSFY and

IWMECREA calls and not violate the WLM recommendation that these two calls

should be issued in rapid succession followed by an IWMEJOIN call to associate a

120 Classic Federation Guide and Reference

unit of work with the enclave. Because these calls are not issued when a query

processor task is physically started (only when the first user connects), the user

typically issues an SQL request immediately, which causes an IWMEJOIN call to be

issued.

The exit might defer creating an enclave environment until a user connect call is

issued (discussed next). However, if the query processor is running in multi-user

mode (Max. Users greater than 1) the exit has to manage context switches between

users when the client application issues SQL statements.

User connect and disconnect:

The WLM exit functions described in this document perform user-level processing

when you connect or disconnect from a query processor service.

 The WLM exit is called with an AXPLETYP value of 2 (AVAEUSR) when a user

connects or disconnects from a query processor service. The AXPLESUB field

identifies whether the exit is being called for connect processing (CONNECT) or

disconnect processing (DISC).

The AXPLTEXT field contains a pointer to the WLM UOW configuration parameter

value. The AXPLTXTL field contains the length of the configuration parameter

input. The AXPLPENV field has a value of zero. The AXPLSQID contains the user

ID of the user connecting to or disconnecting from the service.

The sample exit does not perform any processing for these call points.

If the exit issues a non-zero return code on initialization processing, the user is

disconnected from the service and the return code is returned to the client

application. On disconnect, the return code is ignored and all user related

resources are freed, however, the return code is returned to the client application.

In either situation, the WLM-generated return code is logged.

SQL statement processing:

The WLM exit performs any required actions to manage the unit of work that the

SQL statement represents. For example, the WLM exit treats each SQL statement as

a single unit of work and joins the enclave before the SQL statement is processed,

then leaves the enclave after the statement has completed processing.

 The AXPLESEQ field identifies whether the exit was called before (AXPLEBEF) or

after (AXPLEAFT) the query processor has processed the SQL statement. The user

has control of the query processor TCB (thread) for the duration of the SQL

request. If running in multi-user mode, another user can be serviced on the next

SQL statement received by the query processor. The WLM exit is called with an

AXPLETYP value of 3 (AVAESQL) when a client application issues an SQL

statement. The AXPLSQID field contains the user ID of the client issuing the SQL

statement.

The duration of an SQL statement varies based on the type of SQL statement being

issued and other configuration parameter values. The configuration parameter that

has the most impact is PDQ. When PDQ is not active or when a query cannot be

processed in PDQ mode, then the OPEN SQL statement will execute the longest

because the entire result set is staged for fetch processing. In these instances any

describe, fetch, and close cursor requests will execute very quickly. When running

Chapter 3. Administering federation 121

in PDQ mode the work is more evenly distributed between the open and the

fetches because the result set is incrementally built based on the number of rows

that can fit into the result set buffer.

If the exit issues a non-zero return code, processing for the query is stopped and

the return code is returned to the client application. The application can still issue

another SQL request. There are situations where the exit-generated return code will

not be reported to the client. This occurs when the exit is called to perform after

processing, but an error code has been reported by another exit or generated by

the system. In these cases the original error code takes precedence. In either case,

the WLM-generated return code is logged.

WLM exit: termination

The WLM exit termination function performs any required termination processing

and frees allocated resources. The function is called during WLM termination

processing, before the data server address space is shut down.

If the exit allocated an address space level control block and stored it in the

AXPLUSER area, that storage must be freed.

The WLM exit can be called multiple times to perform initialization and

termination processing, if the WLM initialization service is stopped and then

restarted using the MTO Interface.

DB2 thread management exit

The DB2 thread management exit enables you to validate clients before you

establish connections to DB2 using CAF and control the duration of these CAF

connections.

The DB2 thread management and security exit modifies the default behavior of

connecting to and disconnecting from DB2. In addition, the thread management

exit performs SAF calls to validate the user ID of the client and establishes the

correct primary authorization ID for the client in DB2.

The DB2 thread management exit issues RACROUTE calls and must be run from

an APF-authorized library. Additionally, when issuing the RACROUTE calls, the

exit enters key zero supervisor state. The exit reverts back to user key problem

state immediately after each RACROUTE call returns.

The DB2 thread management exit runs under the DB2 Call Attachment Facility

(CAF) service in the data server. The CAF service runs as a z/OS subtask under

the data server, whose sole responsibility is to create and manage CAF connections

to DB2. One instance of the subtask is required for each concurrent DB2 user.

Required: A minor modification to the DB2-supplied authorization exit

DSN3SATH is required to establish the correct primary authorization ID

in DB2.

By default, connections to DB2 itself using CAF are created when a client connects

to DB2 and remains active until the data server is shut down. While this

maximizes re-usability of the DB2 connections, the DB2 primary authorization ID

for all connections is based on the data server’s started task or job name. In many

cases, this level of security checking will not be adequate for your particular

installation.

122 Classic Federation Guide and Reference

After activation, the DB2 thread management and security exit is invoked to

perform the following functions:

v Initialization is called once at initial subtask start up.

v Client Connection is called each time a new client has acquired the CAF subtask.

v Another Connection to DB2 is called after each attempt is made to connect to

DB2.

v Client Disconnection is called each time a client has released its connection to

the CAF subtask.

v Termination is called once at subtask termination.

The exit CACSX07 performs the following functions at each of these invocation

points:

v Initialization requires no processing. The exit returns a successful return code.

v Client Connection validates that the user ID and password for the incoming

client are valid using a SAF call and establishes an ACEE control block for the

TCB so the DB2 identified authorization exit can establish the correct primary

authorization ID prior to requesting a connection to DB2.

v After Connection to DB2, the exit deletes the ACEE that was established when

the client connection request was issued.

v Termination requires no processing. The exit returns a successful return code.

Activating the DB2 thread management exit

When you configure the DB2 thread management exit you can validate clients

prior to connecting to DB2 using CAF and control the duration of the connections.

Before you begin

v Install the data server, perform initial configuration, and verify the installation

and configuration.

v Ensure that the DB2 thread management exit load module CACSX07 is in an

APF-authorized library (SCACLOAD).

v Ensure the data server JCL references the APF-authorized library in the STEPLIB

DD statement where the DB2 thread management exit is located (SCACLOAD).

Also ensure that any other data sets referenced in the STEPLIB DD statement are

also APF-authorized.

Procedure

To activate and verify the DB2 thread management exit:

1. Edit the data server master configuration member (SCACCONF member

CACDSCF).

a. Find the service information entry for the DB2 CAF service and add the

value CACSX07 after the PLAN name located in the task data field of the

entry. The following examples show before and after definitions of the DB2

CAF service information entry.

SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M CACPLAN

SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M CACPLAN,CACSXO7

b. Save your changes.
2. Update the DB2-supplied sample identify authorization exit DSN3SATH and

insert the assembler logic, found immediately before the label SATH019 in the

SCACSAMP member CACSXDSN.

3. Reassemble the identity authorization exit DSN3SATH.

Chapter 3. Administering federation 123

//*DSN3ADD PROVIDE VALID JOB CARD

//*

//DSN3ADD PROC CAC=’CAC’, CAC HIGH-LEVEL QUAL

// DB2=’DB2’ DB2 HIGH-LEVEL QUAL

//ASSEMBLE EXEC PGM=ASMA90,PARM=’LIST,NODECK,RENT’

//SYSLIB DD DISP=SHR,DSN=&DB2..MACLIB

// DD DISP=SHR,DSN=&DB2..ADSNMACS

// DD DISP=SHR,DSN=&DB2..AMODGEN

// DD DISP=SHR,DSN=&CAC..SCACMAC

//SYSLIN DD DISP=SHR,DSN=&&TEMP

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(1700,(2000),,,ROUND)

//SYSPRINT DD SYSOUT=*

//SYSIN DD DISP=SHR,DSN=&DB2..ASM(DSN3SATH)

//*

//LINK EXEC PGM=IEWL,COND=(4,LT),

// PARM=’LIST,OL,RENT,REUS,AMODE=31,RMODE=ANY’

//SYSLIN DD DISP=SHR,DSN=&&TEMP

// DD *

 NAME DSN@SATH(R)

//SYSLMOD DD DISP=SHR,DSN=&DB2..SDSNEXIT(DSN@SATH)

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(120,120),,,ROUNT),DCB=BUFNO=1

//SYSPRINT DD SYSOUT=*

//

4. If your DB2 SDSNEXIT library is in the z/OS linklist, refresh the linklist with

the z/OS F LLA,REFRESH command.

5. Start the data server.

v If the data server is already running, restart it.
6. Verify the exit is working correctly by running a client that issues DB2 queries.

v While the client is active, you can view the client’s connection to DB2 by

issuing the DB2 command -DIS THD (*) from a z/OS console or SDSF.

The z/OS LOG output from the command should display the data server as

the ID of the thread owner and the client-supplied user ID as the primary

authorization ID.

Customizing the DB2 thread management exit

Customizing the DB2 thread management exit enables you to validate clients and

control the duration of CAF connections.

If your installation has special processing requirements that can be addressed by a

DB2 thread management exit, you can update the exit IBM delivers or create a

custom exit of your own. The following table describes the DB2 thread

management parameter list and processing options for developing your own

custom DB2 thread management exit.

The DB2 thread management exit is called to perform the following functions:

v Initialization: Each time a new DB2 CAF service is started from the region

controller, an initialization call is made to perform any one-time initialization

processing for the started task. If your exit must allocate any storage for use

throughout the life of the task, your exit can allocate the storage in this call and

place the address of that storage in the user field DB2TUSRW supplied in the

exit parameter structure.

v Client Connection: Called each time a new client has acquired a CAF subtask.

Typically, this call is made immediately before connecting to DB2 on behalf of

the client. The one exception is when the exit is set to leave connections to DB2

active even when clients disconnect.

124 Classic Federation Guide and Reference

v After Connection to DB2: Called after each attempt is made to connect to DB2.

This call is made regardless of whether the connect was successful. The

parameters field DB2STAT indicates whether the connection attempt was

successful.

v Client Disconnection: Called each time a client has released its connection to the

CAF subtask.

v Termination: Called once at subtask termination. If you allocated any exit

memory at initialization, this is when it needs to be freed.

The parameters listed in the following table are located in the PDS member

CACSXPL7 of the SCACMAC library:

 Table 22. DB2 thread management exit parameters

Field Description

DB2TUSRW Initialized to binary zeros prior to the

initialization call and left unchanged after

that point in processing. Use of this field is

determined by the user exit.

DB2TUSRP Points to a NULL terminated user parameter

as defined on the service information entry

for the DB2 CAF task. This parameter

includes any text included after the exit

name itself in the task data field. For

example, to pass the string USERPARM to

the exit from the service information entry,

the task data for the exit in the Master

Configuration is:

CACPLAN,CACSX07 USERPARM

DB2TSSN Points to the four-character subsystem name

as defined in the Service Name field of the

service information entry for the task. In

most cases, this field is for informational

purposes only. However, the exit can change

this field on client connection calls to

designate a new subsystem to connect to, if

necessary. If this field is updated, it will

remain updated until the thread disconnects

from DB2. At that point, it will be changed

back to its original service information entry

value.

DB2TPLAN Points to the 8-character DB2 PLAN name as

defined in the Task Data field of the service

information entry for the task. In most cases,

this field is for informational purposes only.

However, the exit can change this field on

client connection calls to designate a new

DB2 PLAN to open a DB2 connection. If this

field is updated, it remains updated until the

thread disconnects from DB2. At that point, it

is changed back to its original service

information entry value.

Chapter 3. Administering federation 125

Table 22. DB2 thread management exit parameters (continued)

Field Description

DB2TUID Points to the user ID provided by the client

when the client connected to the data server.

This field is binary zeros on initialization and

termination calls, as no user is available

when these calls are issued. This field is for

reference purposes only and must not be

changed by the exit.

DB2UPWD The DB2UPWD field points to the user

password provided by the client when it

connected to the data server. This field is

binary zeros on initialization and termination

calls, as no user is available when these calls

are issued. This field is used for reference

purposes only and must not be changed by

the exit.

DB2TSTAT The DB2TSTAT field identifies whether a

current CAF connection exists to DB2. This

field is used for reference purposes only.

DB2TFUNC The DB2TFUNC field identifies the function

of the call as described previously. Defined

values for this field are:

v DB2TINIT: Initialization function

v DB2TCCON: Client Connection function

v DB2TDB2C: DB2 Post Connection/Plan

Open function

v DB2TCDIS: Client Disconnect function

v DB2TTERM: Termination function

126 Classic Federation Guide and Reference

Table 22. DB2 thread management exit parameters (continued)

Field Description

DB2TRFNC The DB2TRFNC field can be used by the exit

to:

v Explicitly request connection or

reconnection to the DB2 subsystem.

v Explicitly request disconnection from the

DB2 subsystem.

v Notify the system that a user ID or

password validation error has occurred.

The field is used to alter the default DB2

subsystem connection and disconnection

behavior in the DB2 CAF service. The

default behavior is to connect to DB2

when the first user requests DB2 access

and disconnect from DB2 at data server

shutdown. The exit should set this field on

each call to one of the following values:

v DB2TRDFL: Do default connection

processing

v DB2TRCON: Connect to DB2. If a

connection already exists, terminate that

connection and create a new connection

using the subsystem and plan name in the

fields DB2TSSN and DB2TPLAN. This

value is valid for Initialization and Client

Connection functions.

v DB2TRDIS: Disconnect from DB2 if a

connection exists. This value is valid for

the Client Disconnect function.

v DB2TRUER: User or password information

is invalid. This value can be returned on

the Client Connection function to return an

Access Denied error to the requesting

client.

The return code (register 15 value) for successful completion of the user exit

should always be set to 0. Any other value causes an error message to be returned

to the requesting client.

Activating a customized exit

You can follow the instructions for activating the DB2 thread management exit to

activate your customized exit with the following modifications:

v Replace the system default exit name CACSX07 with the name of your

customized exit.

v If your exit does not create a TCB level ACEE for the DB2 primary authorization

ID setting, skip the instructions for updating and reassembling DSN3SATH.

Record processing exit

Use the record processing exit to modify the characteristics of a record to meet

specific processing requirements. These requirements include the modification of

record data and the ability to filter query results.

Chapter 3. Administering federation 127

The record processing exit supports VSAM and sequential files. A sample exit,

CACSX08, is supplied in the sample library.

The exit must be re-entrant, AMODE(31), RMODE(ANY). Registers must be saved on

entry and restored on exit. The exit performs initialization, processing, and

termination functions. Any errors in the exit routine might affect the operation of

the product as a whole.

The exit can be written in any language, but because the exit is called on every

record, consider the performance of the chosen language.

Register contents at entry to the exit routine:

v R1 contains a pointer to a parameter list

v R13 points to a register save area in standard format

v R14 contains the return address

v R15 contains the entry point of the routine

All other registers must be restored upon return from exit.

Address pointers to the parameters listed in the following table are passed to the

exit.

 Table 23. Record processing exit input parameters

Field Description Length

Function INIT, UPDATE, PROCESS, or TERM. These

values are padded on the right with spaces.

7 bytes

Table description Name of the table being processed. 18 bytes

Input record Record that was read.

Input record length Length of the input record. Binary fullword

Output record Record that the application is to process.

Output record length Length of the output area. Binary fullword

User word A word passed to the exit that can be used

to anchor additional information.

Binary fullword

Return code Completion code of the exit call. A return

code set to zero indicates processing

completed normally. A return code less than

zero terminates the query. A return code

greater than zero skips processing of the

current record and reads the next record.

Binary fullword

Record processing exit: initialization

When a table is opened, the initialization function acquires resources the system

needs for later processing.

Record processing exit: process

The process function is called after the query processor reads a record. The query

processor passes the record to the exit, which then modifies the record and

rebuilds it in the output record area. The metadata grammar should be based on

the format of the output record.

128 Classic Federation Guide and Reference

Record processing exit: termination

The system calls the termination function when the system closes a table. The exit

releases acquired resources and performs any other clean up tasks.

Verifying the record processing exit

Use the supplied record processing exit source and load module CACSX08 to

verify that the record processing exit installation is operational. The procedure uses

the sample databases from the data server.

Before you begin

1. Install the data server.

2. Perform initial configuration.

3. Verify the installation and configuration using the sample application and data.

About this task

The SCACSAMP library contains a sample record processing exit source CACSX08.

It is an example of how you can change a VSAM file record before returning to the

user. The program accesses the sample VSAM employee data that was delivered

with the original implementation.

A sample load module CACSX08 is provided in SCACLOAD, so you do not have

to assemble and link-edit in order to make the sample work.

Tip: The delivered sample was developed specifically for a VSAM data file. If your

Classic federation environment supports sequential files, you should review

and modify the source code to comply.

Procedure

To verify that your record processing exit installation is operational:

1. Use the Classic Data Architect to enter the record processing exit name and the

maximum length of the desired table.

2. The LE initialization service is uncommented in master configuration member

CACDSCF by default. This service is not necessary if you use the Assembler

sample exit CACSX08.

3. Start the data server.

4. Submit the client job CACCLNT and verify the return results.

If you use the member CACSQL as the input for the client job CACCLNT,

review CACSQL and comment out other queries. Use the VSAM SQL statement

to verify the record processing exit.

The record is filtered out if the column NAME starts with M. For those records

that pass filtering, the SALARY is changed to zero.

To recover the original data in the catalog table after completing this sample

exit verification, use the Classic Data Architect to remove the record exit

specification.

Record processing exit: performance considerations

If you write the record processing exit in a language other than Assembler, use the

Language Environment initialization service to reduce the overhead of initializing

and terminating the environment on each call.

Chapter 3. Administering federation 129

The initialization service enables you to maintain constant program storage

between calls and keep files open on exit.

For exits written using Language Environment, uncomment the following service

information entry in the master configuration file:

SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 100 4 5M 5M CEEPIPI

SQL updates to application data

When you update application data in a secure transaction environment, changes to

data can be aggregated and committed as a single logical unit of work and can

also be rolled back under application control or in the event of unexpected

application errors.

You can use a set of SQL statements to update data and manage transactions. How

each data source processes transactions varies based on the capabilities of the data

source.

Transaction processing

A transaction is a sequence of one or more SQL statements that together form a

logical unit of work. A transaction automatically begins with the first SQL

statement that is run within a client connection to the data server.

Transactions continue through subsequent SQL statements until one of the

following conditions occur:

v A client COMMIT statement ends the transaction and makes any database

changes permanent.

v A client ROLLBACK statement aborts the transaction and backs out any

database changes.

v A client disconnect occurs that results in a transaction commit.

v An unexpected client disconnect occurs that results in a transaction rollback. In

addition to committing or rolling back changes, all open cursors that are

associated with the transaction are closed and any prepared statements are freed.

After a transaction is completed by a commit or a rollback, a new transaction starts

with the next SQL statement that the SQL client issues.

Some clients support an autocommit mode of processing that makes each SQL

statement its own transaction by automatically issuing an explicit COMMIT

statement after each SQL statement. In applications that require bundling multiple

updates in the same transaction, this feature must be deactivated.

Transaction processing depends on the capabilities of the underlying connectors. In

some cases, the connector does not allow an update because the data source does

not support a method of committing or rolling back database changes.

The CA-Datacom, DB2 for z/OS, and IMS data sources support two-phase commit

capabilities.

In general, it is good practice to issue a ROLLBACK statement when the data

server returns a negative SQLCODE.

130 Classic Federation Guide and Reference

Attention: Database transactions automatically lock database resources and

prevent concurrent access to other database users. Applications that issue updates

must keep update transactions as short as possible to avoid contention for database

resources.

SQL update statements

This topic describes the SQL statements used to update application data and

manage transactions in the data server. Each of these statements can be

dynamically prepared and executed or executed immediately by client applications.

With the exception of COMMIT and ROLLBACK, you can run prepared update

statements multiple times within the same transaction.

INSERT

The INSERT statement inserts one or more rows in an application

database.

INSERT statement syntax

��

�

 INSERT INTO table-name

,

(

column-name

)

 �

�

�

 ,

VALUES

(

constant

)

host-variable

NULL

special-register

subselect

��

If you omit the column names from the statement, the values or subselect

list must include data for all columns of the inserted table.

UPDATE

The UPDATE statement updates one or more rows in an application

database.

UPDATE statement syntax

�� UPDATE table-name

correlation-name
 �

�

�

 ,

SET

column-name

=

expression

NULL

WHERE

search-condition

��

DELETE

The DELETE statement deletes one or more rows in an application

database.

Chapter 3. Administering federation 131

DELETE statement syntax

�� DELETE FROM table-name

WHERE

search-condition
 ��

COMMIT

The COMMIT statement commits a transaction and makes any pending

database changes permanent. In addition, all open cursors associated with

the transaction are closed and all prepared statements are freed.

COMMIT statement syntax

�� COMMIT

WORK
 ��

ROLLBACK

The ROLLBACK statement rolls back a transaction and backs out any

pending database changes. In addition, all open cursors associated with the

transaction are closed and all prepared statements are freed.

ROLLBACK statement syntax

�� ROLLBACK

WORK
 ��

SQL updates and mapped tables

Tables that are mapped from nonrelational and relational databases to the metadata

catalog contain some mapping constructs with special meaning that you need to be

aware of when you update mapped tables.

Mappings that contain multiple records

With some connectors, such as IMS and CA-IDMS, you can map multiple records

or segments in a database path to a single logical table in the metadata catalog.

When you update these mappings with SQL update statements, updates are

applied to only the last record that is mapped in the path.

Example: This mapping involves two different record types: EMPLOYEE and

PAYCHECK.

EMPLOYEE RECORD:

 SSN CHAR(9)

 LAST_NAME CHAR(20)

 FIRST_NAME CHAR(20)

PAYCHECK RECORD:

 PAY_DATE DECIMAL(8,0)

 GROSS_PAY DECIMAL(15,2)

 NET_PAY DECIMAL(15,2)

 FED_TAX DECIMAL(7,2)

 STATE_TAX DECIMAL(7,2)

 FICA DECIMAL(7,2)

In this example, an EMPLOYEE_PAY table maps the EMPLOYEE database path to

PAYCHECK. The table also returns each employee record combined with each of

the paycheck records for each employee in a standard SQL query. In the case of an

update call, the updates apply to only the PAYCHECK record.

The following SQL statement inserts a new paycheck record:

132 Classic Federation Guide and Reference

INSERT INTO EMPLOYEE_PAY (SSN, PAY_DATE, GROSS_PAY, NET_PAY,

 FED_TAX, STATE_TAX, FICA)

 VALUES(’012339920’, 10311999, 4200.00, 3300.00,

 800.00, 75.00, 25.00);

In this case, a value is provided for SSN even though the EMPLOYEE record itself

is not updated. For INSERT statements, values that are provided for any records

other than the last record in the mapping are used to qualify the parent or owner

record under which the values are inserted.

These values are treated like foreign keys in a relational database. For example, if

the employee with SSN 012339920 does not exist in a record in the database,

SQLCODE -530 is returned because a nonvalid foreign (positioning) key is

supplied.

Restriction: Inserts with subselects are not supported for multiple-record mapping.

The same concepts apply to UPDATE and DELETE statements. However, because

both UPDATE and DELETE support WHERE clauses, foreign key qualification is

placed in the WHERE clause itself.

For updates, SET statements must not include columns from any record other than

the last record in the mapping. Otherwise, SQLCODE -4903 is returned.

Positions of inserted records

The position of inserted records is determined by any values that are supplied for

records other than the last record in a mapped database path.

In single record mappings and multiple record mappings where no path

information is supplied, the position of new records is determined by the

underlying database system. Before you permit insert access on a mapped table,

consider the underlying insert behavior to ensure that unqualified insert

positioning by the database produces the desired results.

Record inserts with full and partial mapping

Database record mappings can include columns for all or only part of the

underlying database record. When you insert records that contain partial

mappings, the areas of the database record that are not mapped are initialized to

binary zeros.

In cases where mapped columns from a target database record are omitted from an

INSERT statement, the underlying data in the record is initialized as follows:

v NULL IS specification (if supplied)

v One of the following data type values:

– SPACES for underlying character types

– ZERO for numeric data types

– Binary zeroes for VARCHAR data types

Updates and deletions of database records

The UPDATE and DELETE statements apply changes to all database records that

meet the WHERE clause criteria specified. You need to specify WHERE criteria

correctly, because unqualified updates and deletes change all instances of the target

record in the database.

Updates and NULL records

UPDATE statements only update existing records in the database.

Chapter 3. Administering federation 133

When you retrieve rows for tables that are mapped to multiple database records,

SQL rows are returned even when the last record that is mapped in the table does

not exist in the database within the mapped path. UPDATE statements are not

applied to rows in which the last record is returned as all NULLs due to the lack

of a database record in the database.

Mappings that contain record arrays

SQL updates are not supported on tables that contain record array mappings of

OCCURS clauses. If you need to update records that contain multiple occurrences

of data items, each occurrence must be mapped as a separate column to allow

updates.

Group items and overlapping fields

Do not issue INSERT statements on table mappings that contain group items or

overlapping fields. Inserts on tables that map group items or overlapping fields

can produce unpredictable results due to initialization of unspecified columns in

the underlying database record.

A group item refers to a single data item that is broken down into sub-items. For

example, the group item ZIP-CODE can be subdivided into ZIP-FIRST-5 and

ZIP-LAST-4 with the following COBOL definition:

05 ZIP-CODE.

10 ZIP-FIRST-5 PIC X(5).

10 ZIP-LAST-4 PIC X(4).

Unpredictable results are likely to occur when overlapped columns are defined

with different SQL data types.

Update processing recommendations

When you set up update processing, consider using separate table mappings to

define security and using the NULL IS parameter to define the string length for a

column.

Usually, separate table mappings for update purposes are better than general

mappings for both query and update. You should secure non-update mappings to

prevent accidental use of those mappings for update.

When specifying NULL IS on columns in an update table, the NULL IS value

should be the same length as the underlying database field to ensure proper

initialization on INSERT.

Adabas updates

When you make SQL updates to Adabas data sources, use NISNHQ for large

transactions.

If a single query updates a large number of records, ensure that the Adabas

parameter NISNHQ is large enough to handle the number of records.

DB2 for z/OS updates

When you make SQL updates to DB2 for z/OS data sources, ensure you set up the

appropriate authorization.

If you run the DB2 thread management exit, you must grant DB2 table update

authority to each user ID that connects to the data server. Otherwise, you need to

grant update authority to the data server task.

134 Classic Federation Guide and Reference

If an authorization problem causes DB2 to return an error, SQLCODE-9999 is

returned with a message that the DB2 error is in the SQLEXT field. The SQLEXT

field contains the value E551 that indicates a -551 error.

CA-Datacom updates

For CA-Datacom to support the rollback of transactions that update your source

data, you need to configure your CA-Datacom data source.

About this task

You can specify INSERT, DELETE, or UPDATE statements to update CA-Datacom

tables. To modify a table, the User Requirements Table in use when the update

occurs must allow modifications to the specified table. You need to include the

parameter UPDATE=YES on the DBURTBL macro for the table being modified.

SQL modification subsequently requires either a commit or rollback to delineate a

unit of recovery. The commit or rollback can be explicit or implicit. The program or

script that is run can issue an explicit COMMIT or ROLLBACK. The database

generates an implicit COMMIT at the normal end of the process. The database

generates an implicit ROLLBACK at the abnormal end of the process.

Enabling the rollback requires several additional steps.

Procedure

To enable rollback in CA-Datacom:

1. Enable the CA-Datacom logging system.

2. Identify the tables that are candidates for transaction backout. Transaction

backout requires logging of all update (INSERT, DELETE, and UPDATE)

transactions that affect a specific table.

3. Specify LOGGING=YES in the CA-Datacom Data Dictionary for all tables

identified in the previous step, and catalog the definitions to the CA-Datacom

Directory (CXX).

4. Specify TXNUNDO=YES in the DBURSTR macro for all User Requirements

Tables used by programs that require transaction backout.

5. Assemble and link-edit all affected User Requirements Tables.

To verify the that the rollback is successful, you must issue an SQL statement to

modify (INSERT, DELETE, or UPDATE) a CA-Datacom table, and then issue an

explicit ROLLBACK statement. The ROLLBACK process issues message DB00103I

that contains a return code value on the system log. Return code RC=Y indicates

that the rollback completed successfully after backing out modified data.

Another way to verify the rollback is to query (SELECT) the row before

modifications and after the ROLLBACK and compare the results. The rows should

be identical.

CA-IDMS updates

With the CA-IDMS data connector, you can update CA-IDMS data by issuing

standard SQL update statements to the data server.

Updates that are issued to CA-IDMS mapped tables apply to only the last record

that is mapped in the database path.

Chapter 3. Administering federation 135

Navigating CA-IDMS records requires the data server to issue the CA-IDMS

@READY command for all database areas needed to access the CA-IDMS records

mapped in the table. The CA-IDMS records mapped in the table and the system

indexes defined for the first and last CA-IDMS records in the mapping determine

the areas readied for processing a mapped table.

Updates of CA-IDMS data

An update to a CA-IDMS table results in an @MODIFY of the last record type

mapped in the table. CA-IDMS processes a modify by implicitly updating any set

connections for the modified record.

Inserts of CA-IDMS data

An insert to a CA-IDMS table results in an @STORE of the last record type that is

mapped in the table. CA-IDMS processes a store operation by implicitly connecting

the stored record to all sets in which the record is defined as an automatic member.

To automatically connect stored records, a record position for each owner record

type must be established for each automatic set to which the stored record belongs.

If more than one record is mapped in the path, and if the last record is a member

of multiple automatic set relationships (common in junction records), every

OWNER record of the last record must be mapped in the defined path. In

addition, define the set names among all records in the path as _NONE_ so that

positioning occurs for each OWNER record independent of whether the record

belongs to any particular set.

Owner records are positioned by searching for the first owner record that matches

insert values provided for columns defined in the owner record. You must be

careful about providing enough qualification information to uniquely identify the

correct owner of the record to be inserted. Otherwise, the resulting owner assigned

might not be the owner intended.

When mapping owner records, elements that make up the CALC key of each

owner record must be mapped for positioning purposes. Specify CALC KEY

mapped elements in the INSERT clause to prevent area scans from occurring when

you position owner records. Other elements can also be mapped for positioning

qualification purposes, if necessary.

The order of owner records in a table mapped for insert purposes is not relevant.

However, if an owner record lacks a CALC key and has a usable system index for

positioning purposes, that owner should be the first record in the mapping. The

use of system indexes is supported in the first record of a mapping only.

Attempts to insert records without establishing required automatic owner positions

results in SQLCODE 0x005700F7.

Before you attempt to issue an INSERT statement to insert CA-IDMS records,

review the CA-IDMS schema definition of the candidate record to determine the

sets for which the record is an automatic member.

Important: You should use tables mapped with a set relationship of _NONE_ for

SQL INSERT only. Querying these tables produces a Cartesian product

of every instance of the owner record type with every instance of the

member record type. You can use SQL security to prevent accidental

use of these tables for purposes other than inserts.

136 Classic Federation Guide and Reference

Delete considerations

A delete from an CA-IDMS table results in an @ERASE PERMANENT of the last

record type that is mapped in the table. CA-IDMS automatically cascades the

ERASE statement to members of mandatory sets and disconnects members of

optional sets when CA-IDMS issues this type of ERASE.

You might not be able to delete some records in the schema due to the number of

set relationships they participate in and the amount of cascading that is needed to

accomplish the delete.

IMS updates

The IMS connector supports updates to IMS data by issuing standard SQL update

statements to the data server. Updates that are issued to IMS-mapped tables apply

to only the leaf segment that is mapped in the database path.

IMS updates are supported in both the DRA (DBCTL) and DBB/BMP access

modes. However, in DBB/BMP mode, you must manage updates. DBB/BMP mode

requires update management because:

v Client connections attempting an update enqueue the whole PSB for update

purposes.

v The same client connections lock out IMS access for all other users.

Users that are locked out of the PSB receive SQLCODE -9999 and the error

message: ALL PCBS are in use. To avoid lock outs, use DRA mode for updating

IMS data.

If you plan to update IMS databases in DBB mode, the data server requires these

configurations:

v An IMS database log (IEFRDER) that is allocated to disk storage

v The IMS BKO parameter set to Y in the data server JCL

These configurations allow database changes to be backed out in the event of a

client rollback request. If a DBB is started without database backout support,

attempts to update the database fail with SQLCODE -5701659 and the message:

Update not supported by connector.

IMS can change the JOBSTEP name for a data server when the data server runs

IMS access with an IMS log file. In this case, operator console commands to the

data server must be issued to the JOBSTEP name that is created by IMS. Because

the DBB data server allocates the databases, the user ID that is associated with the

data server requires CONTROL authority in RACF.

 Attention: Do not update an IMS database that accesses the DBD through a

secondary index, especially in the case of an inverted hierarchy.

IMS and PSB

To create PSBs for use with data servers, you must complete planning that is

similar to PSB definitions for any IMS batch or online applications.

Unlike batch or online programs in which database and segment sensitivity and

access options are based on a specific application program, the following factors

determine PSB requirements for a data server:

v DBB versus DRA access

v Table mappings (segment sensitivity)

Chapter 3. Administering federation 137

v Join requirements for one or more databases

v Query and update requirements within a data server transaction (PCB

PROCOPT)

If you plan to access IMS data by using DBB or BMP access, the access PSB must

have enough PCBs to support all users of the data server who access the database

at a single point-in-time. In general, the number of PCBs required for each

database must minimally equal the maximum number of query processor services

that run in the data server at any point in time.

IMS single transactions and PSBs

If your application needs to issue both query and update requests to IMS

databases in a single transaction, all mapped tables must be accessible through a

single PSB.

Queries that occur after an update request automatically use the scheduled update

PSB to access the IMS data. If a PCB that is needed to satisfy the query request is

not found, SQLCODE -9999 is returned with the message: Cannot access a PCB

for the database requested.

PCB processing options for IMS data

When you map tables for IMS updates, verify that all PSBs that are defined in the

mapping include the correct PCB processing options to insert, update, and delete

IMS segments. Failure to do so results in -9999 errors and the message: Unexpected

IMS status code received.

VSAM updates

The same database functions are performed to access and modify CICS VSAM and

native VSAM data. Like direct access to VSAM data sources, you can select, insert,

update, and delete from a CICS VSAM data source.

The supported VSAM file types are ESDS, KSDS, and RRDS.

Native VSAM provides transactional capabilities using the Data Facility Storage

Management Subsystem Transactional VSAM (DFSMStvs). DFSMStvs supports the

same VSAM file types and supports alternate indexes with path access. VSAM

limitations also apply to VSAM files opened using DFSMStvs.

Native VSAM also supports update access without the transactional capabilities

provided by commit and rollback.

Restriction: Because DFSMStvs and CICS use different sync point managers, a

single transaction must not combine both CICS and DFSMStvs

operations. Commits and backouts cannot be coordinated between the

two environments.

CICS provides logging, which provides support for transactional capabilities. CICS

VSAM files need to be recoverable to participate in logging. With CICS support for

transactions, you can perform commit and rollback operations.

VSAM limitations apply to CICS VSAM:

v Deletes are not supported on ESDS VSAM files due to the flat file format of

ESDS.

138 Classic Federation Guide and Reference

v Rollbacks are not supported on the ESDS file, because deletes are performed on

insert.

v Inserts on RRDS files are not supported, because an exit is not provided that

generates a relative record number.

CICS also uses alternate indexes that are defined against a VSAM ESDS or KSDS

data set. You can issue SELECT statements to the alternate index for both ESDS

and KSDS data sets. You can issue UPDATE and DELETE statements to the

alternate index when it is defined for a KSDS data set. UPDATE and DELETE

statements that reference an alternate index on an ESDS data set are not supported.

Transport protocol for CICS VSAM transactions

Classic federation uses LU6.2 to transmit and return data between the data

connector and the provided CICS transaction, EXV1.

Starting CICS transactions

The data server starts a CICS EXV1 transaction and sends the transaction a file

name. The EXV1 CICS transaction issues an EXEC CICS INQUIRE FILE. If the file

is not opened, it issues an EXEC CICS SET FILE OPEN and reissues the EXEC

CICS INQUIRE FILE. Information such as MaxRecLen, KeyLen, KeyOff, and file

type is returned.

The data server also starts an EXV1 CICS transaction for each table open. The data

server sends an Open command to the EXV1 transaction, which gets information

about the file. Depending on the query, commands such as Seek, Search, Read

Next, Insert, Update, Delete, Commit, and Rollback are sent to the EXV1

transaction and the EXV1 transaction issues the EXEC CICS native calls.

Two-phase commit

Two-phase commit enables you to update multiple, disparate databases within a

single transaction, and commit or roll back changes as a single unit-of-work.

As a transaction manager, IBM WebSphere Classic Federation Server for z/OS

prohibits updates to more than one database system in a single unit-of-work. There

is no guarantee that changes to all databases will be committed or rolled back

together. Without two-phase commit, a successful commit to one database followed

by a failed commit (and thus a rollback) to another database would create a partial

update, and therefore cause the databases to be out-of-sync.

In general, all database systems that support transactions act as a syncpoint

manager for changes made to application data. As a syncpoint manager, these

databases maintain a log of changes and can roll back one or more changes to data

if the application requests a rollback. In two-phase commit processing, the role of

syncpoint manager is moved to an external agent, and each database manager acts

as a participant in the two-phase commit process. In two-phase commit processing,

applications request commit or rollback processing from the external syncpoint

manager instead of the database system itself.

To ensure database integrity, external syncpoint managers must keep a separate log

of database activity so that database transactions can be committed or rolled back

in the event of a system failure. Because failures can occur at any point during

Chapter 3. Administering federation 139

two-phase commit processing, the syncpoint manager must be able to restart at

any future point-in-time and know exactly where the two-phase process ended at

the time of the failure.

In some cases, the state of a transaction might be classified as in-doubt and require

a manual decision to determine if the transaction should be committed or rolled

back. This is particularly true if the failure occurred somewhere in the middle of

phase one processing. In this case, the transaction is in a state where a commit

might still be able to proceed, but the application has the option of rolling back.

Recoverable Resource Manager Services (RRS) support

Recoverable Resource Manager Services (RRS) is a syncpoint manager for

two-phase commit processing across multiple database management systems.

Using RRS, you can ensure that changes to all databases will commit or roll back

together.

Classic federation supports the Recoverable Resource Manager Services (RRS) in

the z/OS environment. RRS support is implemented for the following databases:

v DB2 for z/OS

v IMS

v CA-Datacom

v VSAM DFSMStvs

As a syncpoint manager, RRS maintains a log of all transactions. Application

commit and rollback requests are issued to RRS instead of the native database

systems. RRS, in turn, issues commit requests in two phases to all database

participants in each transaction.

RRS-enabled query processors

A query processor enabled for RRS functions differently than a standard query

processor.

Each query processor task running in a data server processes requests for one or

more user connections. When a client or user connects to the server, a specific

query processor task is assigned to the connection until the client disconnects from

the server. For each client connection, the query processor also maintains a

separate transaction. A new transaction is implicitly started whenever the client

issues a data access call after either connecting to the server, or ending a previous

transaction with a syncpoint (commit or rollback) request.

Tip: Consider the following factors when determining if an RRS-enabled query

processor is needed at your site:

v When you use an RRS-enabled query processor, all transactions are sent

through RRS, not just updates.

v RRS-enabled query processors are not as fast as non-RRS-enabled query

processors.

Configuring query processors for RRS

To enable a query processor for two-phase commit processing in an RRS

environment, you need to configure the query processor for RRS.

About this task

140 Classic Federation Guide and Reference

In the RRS environment, each transaction is assigned to an RRS context for

two-phase commit processing. The query processor creates and maintains an RRS

context for each transaction associated with a client connection.

At startup, the CACQPRRS module automatically registers itself with RRS, using

the name XDI.RRSWMN.CAC.jjjjjjjj,’ where jjjjjjjj is the 1-8 character job or started

task name (such as XDIPROD).

The RRS query processor dynamically loads the RRS interface modules.

Recommendation: Within a given data server, use RRS-enabled query processors

only or use non-RRS-enabled query processors only. Avoid

combining both types of query processors within the same data

server which might lead to unpredictable results.

Procedure

To configure a RRS query processor:

1. Specify CACQPRRS as the load module on the service information entry for the

query processor in the data server configuration file CACDSCF.

2. Ensure that you can access the library that contains the RRS interface modules

(usually SYS1.CSSLIB) from either the link-list or from the STEPLIB JCL

statement for the data server.

For more information about the RRS environment, see the z/OS MVS

documentation about programming resource recovery.

Performance impact of RRS-enabled query processors

RSS-enabled query processors can slow performance, because the transactions are

single-threaded.

To prevent deadlocks in a query processor task, all transactions are single-threaded

when running with RRS. Performance with an RRS-enabled query processor will

be slower than with a non-RRS-enabled query processor. The difference in

performance depends on the type and volume of transactions. If possible, you

should run a query processor without RRS support.

Single-threaded transactions do not prevent additional user connections to the

query processor. However, single threaded transactions automatically cause data

requests to be queued on the internal pending queue until an in-flight transaction

for another client is committed. The performance impact is significant, particularly

in applications that mix SQL requests that return medium to large result sets with

update transactions.

DB2 for z/OS two-phase commit considerations

DB2 for z/OS uses the RRSAF interface.

When you use an RRS-enabled query processor, you do not use the DB2 Call

Attach Facility (CAF), as you do with a standard query processor.

Important: Do not combine DB2 access from an RRS-enabled query processor and

a non-RRS-enabled query processor within the same data server.

The CAF provided two pieces of information to the standard query processor that

you need to provide to the RRS-enables query processor:

Chapter 3. Administering federation 141

v The plan name to open when connecting to DB2 for z/OS

v The DB2 thread management exit

For more information about RRSAF, see the DB2 for z/OS documentation about

application programming.

Creating the plan name

An RRS-enabled query processor uses the plan name stored in the system catalog.

The plan name is set based on the plan used to import DB2 tables for a particular

subsystem. You can create a plan named CACPLAN in DB2. CACPLAN is the

default plan name used for pre-existing tables in the system catalog that do not

have a plan name.

RRS and system exits

The RRS interface works with the security exit to establish DB2 connections.

The RRS DB2 connector automatically connects with information from CACSX04 if

CACSX04 is active in the RACF environment. The connector uses the authorization

ID of the data server job name or the started task name.

IMS two-phase commit considerations

To set up two-phase commit processing for IMS, you need to initialize the IMS

RRS environment, define IMS tables for the RRS environment, and define IMS

subsystems.

Initializing the RRS environment

The CACRRSI service initializes the IMS RRS environment.

Restrictions

Only one IMS environment service is allowed when you configure the data server

for IMS access. Combining RRS and non-RRS access in a single data server is not

supported.

Procedure

To initialize the RRS environment for IMS:

v Include the CACRRSI module (in the load library) as a service information entry

definition in the data server configuration as shown in this example:

SERVICE INFO ENTRY = CACRRSI IMSRRS 2 1 1 1 4 1M 5M IMS3,PBONLOG

The fields in this entry is similar to the IMS DRA service information entry, with

the following exceptions:

– Field 1: The module name must be CACRRSI, instead of CACDRA.

– Field 10: The user data parameter is in the form SSSS,PPPPPPPP where:

- SSSS is the default IMS subsystem to which to connect.

- PPPPPPPP is the default PSB name to schedule for tables defined without a

SCHEDULEPSB specification.

The data server then defines the CACRRSI service, which initializes the IMS RRS

environment.

v Define the IMS RRS service before any query processors in the configuration file

to ensure that the RRS service is started before any query processor tasks, and

stopped after all query processor tasks.

142 Classic Federation Guide and Reference

v Ensure that the AERTDLI is available from either the link-list or from the

STEPLIB JCL statement for the data server. Both the IMS data connector and the

IMS RRS initialization service dynamically load AERTDLI.

Defining tables for the RRS environment

The IMS connector uses the Open Database Access (ODBA) callable interface to

IMS. ODBA uses the IMS AIB interface. All tables mapped for the RRS

environment must include a PCBPREFIX or PCBNAME definition for named PCB

lookup.

Ensure that all of your IMS mapped tables define a PCBPREFIX before using an

RRS-enabled query processor. Accessing a table through an RRS-enabled query

processor that does not have a PCBPREFIX defined results in the error

IMS_ERR_STATUS (0x00570047) and AIB return and reason codes 0x0104 and

0x0108 which are written to the data server log.

Specifying IMS subsystems for communication with multiple IMS

subsystems

The IMS RRS interface supports communication with more than one IMS

subsystem. To support this capability, the CREATE TABLE and CREATE INDEX

statements include an optional SUBSYSTEM parameter for identifying the name of

the subsystem to connect to.

If a subsystem is defined for a non-RRS-enabled query processor, the information

is ignored. If not specified, the subsystem defined on the CACRRSI service

information entry in the data server configuration file is used when scheduling the

IMS PSB.

CA-Datacom two-phase commit considerations

Support for two-phase commit using RRS facilities is implemented in CA-Datacom

Version 10.0 SP02 (Service Pack 2) and later.

When deciding whether to use RRS for two-phase commit processing and

determining how to enable RRS, consider the following factors:

v Existing CA-Datacom facilities fully protect CA-Datacom database-only jobs.

Therefore, two-phase commit protection is not needed for these jobs.

v Within a single data server, you must use either an RRS-enabled query processor

or a non-RRS-enabled query processor. Combining both types of query

processors within the same data server might lead to unpredictable results.

For additional information about the two-phase commit functionality that

CA-Datacom supports, see the CA-Datacom documentation about database and

system administration.

Enabling CA-Datacom for two-phase commit

The startup parameters supplied at the time the Multi-User Facility (MUF) is

started enable CA-Datacom for two-phase commit processing.

Restrictions

User requirements tables must link to CA-Datacom macros in Version 10 or later.

Attempting to link a user requirements table to an earlier CA-Datacom Version

results in error message 00570115.

Procedure

Chapter 3. Administering federation 143

To enable CA-Datacom for two-phase commit processing:

1. Specify the required parameters and data set definition when you start the

MUF. For information about setup requirements, see the CA-Datacom

documentation about two-phase commit processing.

2. Assemble and link-edit all user requirements tables used in two-phase commit

processing with the appropriate CA-Datacom macro library. The CA-Datacom

macros generate a new version identifier and new table definitions.

VSAM DFSMStvs two-phase commit considerations

VSAM DFSMStvs uses RRS as the syncpoint manager for two-phase commit

processing for VSAM files accessed through DFSMStvs.

VSAM DFSMStvs access runs in the RRS environment which requires an RRS

query processor.

For DFSMStvs access, use of the VSAM service is not valid.

A single transaction should not combine both CICS operations and DFSMStvs

operations. DFSMStvs and CICS use different syncpoint managers. As a result,

commits and rollbacks cannot be coordinated between the two environments.

Stored procedures

A stored procedure is an application program that performs work that SQL

SELECT, INSERT, UPDATE, and DELETE operations cannot perform. A client

application invokes a stored procedure application by issuing an SQL CALL

statement.

Stored procedures are written in C, COBOL, or Assembler.

This section provides an overview of stored procedure processing, the

environments in which a stored procedure runs, and the interfaces and support

routines that the stored procedure can call to perform specific tasks during

execution.

Overview of stored procedure processing

A stored procedure is a form of a remote procedure call that operates in a

client-server environment. The application program associated with the stored

procedure that is referenced on the CALL statement runs in the address space of

the server.

When a CALL statement is issued, the query processor verifies that the following

requirements are met:

v The stored procedure identified in the CALL statement exists in the metadata

catalog.

v The correct number of parameters and all required parameters are supplied.

v For each parameter for which data was supplied, the data type supplied by the

client application is compatible with its defined data type.

The query processor forwards the CALL request to the stored procedure connector

for processing. When the stored procedure is defined, you specify the name of a

z/OS load module that the stored procedure connector executes when a CALL

statement for that stored procedure is received.

144 Classic Federation Guide and Reference

The stored procedure connector determines if an executable copy of the stored

procedure is already loaded in memory. If not, the connector loads the requested

program in the server address space. The stored procedure connector then

branch-enters the stored procedure application program, passing a standard

parameter list that contains the data values that were sent from the client

application. The stored procedure performs any requested processing, and on

completion, returns control to the stored procedure connector.

If the stored procedure updates any databases, the application should explicitly

issue a commit to apply any changes made by the application before control is

returned to the stored procedure connector. Alternately, if the stored procedure

detects an error during processing, it should issue a rollback to ensure that any

changes that have been made are backed out. If the stored procedure accesses or

updates a file (for example, a VSAM file) it must open the file upon entry and

ensure that it is closed when control is returned to the stored procedure connector.

When defining the parameters that are passed to the stored procedure application

program, you identify the SQL data type for each parameter. You also define if the

parameter will be used as an input parameter, an output parameter, or both.

These parameters are passed to the stored procedure in a standard SQLDA format.

The stored procedure extracts these parameters from the SQLDA. Based on the

parameter values, it performs the processing that the stored procedure application

is designed to perform.

While executing, the stored procedure can update the contents of output and

input-output parameters that were passed to the application. After control has

returned from the stored procedure, the query processor accesses the parameter list

passed to the stored procedure application program, extracts the contents of any

non-null output and input-output parameters. All of the original input parameters

Query Processor

Stored Procedure
Application Program

Stored Procedure Connector

WebSphere Classic
Federation Server for z/OS

Mainframe

SQL CALL Statement

Client Application

Client

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

Data Server Configuration File

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

Client Configuration File

Figure 3. Stored procedure execution flow

Chapter 3. Administering federation 145

and the original or updated output and input-output parameters are then returned

to the client application that issued the CALL statement.

In addition to passing the parameters supplied by the client application, the stored

procedure is also passed an SQLCA structure that the stored procedure can update

with an error SQLCODE that the query processor will return to the client

application. Alternatively, if the stored procedure returns a non-zero return code to

the stored procedure connector, the return code will be returned as the SQLCODE

of the CALL statement to the client application. The SQLCODE from the SQLCA

takes precedence over the stored procedure return code.

Stored procedures can also return an SQL result set in addition to returning input

and output parameters. A callable interface supports creation of a result set and the

insertion of data rows into a result set. The columns in a result set are defined in

the processing logic of the stored procedure and can vary from one client

invocation to the next if necessary.

Stored procedure execution environment

A stored procedure runs in the address space of the data server and competes with

the data server and other stored procedure applications for resources in the

address space.

At the time that the stored procedure runs, the data server has already allocated

the memory it needs for the message pool. Any memory that the stored procedure

allocates is therefore memory that the data server does not manage. Any allocated

memory needs to be freed before the stored procedure returns control to the stored

procedure connector.

The load module for the stored procedure also uses memory that the data server

does not manage. Because it is likely that you execute multiple copies of the stored

procedure simultaneously, these applications must be written as re-entrant and

should be link-edited as re-entrant, reusable, and refreshable (RENT,REUS,REFR).

Resident and non-resident stored procedure programs:

Before running the stored procedure, the stored procedure connector determines if

a copy of the stored procedure application program needs to be loaded. You can

use the STAY RESIDENT parameter to control this processing behavior when you

define the stored procedure. The behavior is referred to as residency.

 You can specify the following values for the STAY RESIDENT parameter.

v STAY RESIDENT = NO: The stored procedure is non-resident. Each time a CALL

statement is issued, the stored procedure connector loads a copy of the stored

procedure and when control is returned an unload is issued.

v STAY RESIDENT = YES: The stored procedure is resident.

For resident-stored procedures, the stored procedure connector maintains a list of

currently-loaded stored procedure application programs. When a CALL statement

is issued, the stored procedure connector checks the list of currently loaded

applications. A stored procedure application program that is not on the list is

loaded and added to the list before it is called.

Resident stored procedures remain loaded until the query processor is terminated.

Each active query processor instance maintains its own list of resident stored

procedures. If the stored procedure application program is re-entrant, one copy of

the stored procedure application program can be loaded. However, its use count

146 Classic Federation Guide and Reference

can be greater than one (if multiple query processor instances are executing). In

these situations, the stored procedure is not physically unloaded from memory

until all query processor instances that issued a load for the stored procedure

application program terminate processing.

In addition, the stored procedure connector loads multiple copies of the stored

procedure if the stored procedure (for example, the load module name) is

associated with multiple stored procedure definitions. Currently, there is no

method to determine how many stored procedure applications programs are

loaded within the server or how many have been loaded by a particular query

processor or stored procedure connector.

When you develop a stored procedure you need to define the stored procedure as

non-resident. After testing is completed, change the stored procedure to be resident

for performance purposes.

Recommendation: While testing a stored procedure application program defined

as resident, if you run the stored procedure once and then

modify it, you need to shut down the query processor instance

to re-test it. By stopping the query processor instance that ran

the stored procedure application program the first time, you

can load the updated copy of the stored procedure application

program Because this situation occurs frequently, display a

version identifier during initial development so that you can

easily ascertain which version of your stored procedure the

stored procedure connector is running.

LE execution environment:

Generally, a stored procedure is developed using a high-level language, such as

COBOL. The IBM-supplied high-level languages use the z/OS Language

Environment (LE). Language Environment provides common memory allocation,

error reporting, and other services the high-level languages or Assembler Language

programs can use.

 If your stored procedure is written in a high-level language, when the program is

entered, the run-time environment for that language is initialized before your

actual application code is executed. By default, this run-time initialization

processing is performed each time a CALL statement is issued for that stored

procedure.

However, if you activate the LE initialization service within the data server, this

behavior changes. When the LE initialization service is active, the LE

pre-initialization service routine (CEEPIPI) is loaded into the servers address space.

CEEPIPI is an IBM-supplied routine that provides services for environment

initialization, application invocation, and environment termination.

In addition, while the LE initialization service is active, the stored procedure

connector no longer branches directly (branch-enters) to your stored procedure

application program. Instead, the connector uses CEEPIPI services to invoke your

application program. Specifically, the stored procedure is executed as a dependent

subroutine.

A dependent subroutine performs the following actions:

v Creates and initializes a new Language Environment process and enclave to

allow the execution of the stored procedure multiple times

Chapter 3. Administering federation 147

v Sets the environment dormant so that exceptions are percolated out of it

v Ensures that when the environment is dormant, it is immune to other Language

Environment enclaves that are created or terminated

When executing in an LE environment, after the stored procedure connector loads

the stored procedure, it calls CEEPIPI to initialize the environment and to execute

the stored procedure as a subroutine. Before the stored procedure connector

unloads the stored procedure application program, CEEPIPI is called to terminate

the environment. The following figure depicts the execution environment when the

LE initialization service is active.

If you activate the LE initialization service it must be defined in the master

configuration member before the query processor service information entries.

Services are unloaded in first-in-last-out order. If any resident stored procedures

ran using LE, the CEEPIPI interface must still be loaded when the stored

procedure connector attempts to terminate the LE environment.

In addition, when you define the stored procedure you can use the RUN OPTIONS

parameter to specify custom run-time information. This parameter allows you to

tailor the execution environment for your stored procedure application program. If

you do not specify RUN OPTIONS information, the default of ALL31(OFF) is used.

If your stored procedure is written in a high-level language, activate the LE

initialization service and run the stored procedure application program in resident

mode. In this configuration, the overhead of loading the stored procedure and

Client

SQL CALL Statement Query Processor

Stored Procedure Connector

Stored Procedure
Application Program

CEEPIPI

LE Init Service

Mainframe

Client Application

Client Configuration File

Data Server Configuration File

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

WebSphere Classic
Federation Server for z/OS

Init Call Term

Call

Load Unload

Figure 4. LE execution environment

148 Classic Federation Guide and Reference

establishing the run-time environment is incurred the first time the stored

procedure is invoked. On subsequent invocations performance improves.

You can specify NO_LE to inform the stored procedure connector that the stored

procedure is not LE-enabled and the application is called in branch-entry mode.

Overview of CICS interface for stored procedures

With the CICS interface, stored procedures can open CICS conversations, execute a

CICS application program, and update VSAM files.

If you need to create a stored procedure that updates a VSAM file, you might find

that CICS has exclusive control of the file and that it cannot be updated from the

data server address space. For these situations, and potentially others, facilities are

provided that enable you to invoke a CICS application program.

The client application that issued the CALL statement passes a copy of the data to

the CICS application program. Like a stored procedure application running within

the address space of the data server, the CICS application program can update the

values for output and input-output parameters for return to the client application.

Unlike stored procedures running in the address space of the data server, the CICS

application program does not have accessibility to an SQLCA structure for error

reporting. Instead, it has addressability to an application return code that is

returned to the stored procedure application program running in the data server

address space and is automatically returned to the client application. If a CICS

abend is detected it is sent back to the stored procedure, and by default, to the

client application.

Overview of IMS interface for stored procedures

With the IMS interface, stored procedure programs can access IMS data, schedule

and unschedule PSBs, and issue a series of standard DL/I calls.

The CACTDRA interface module allows a stored procedure to access IMS data

locally (within the data server address space) using the DRA interface. The

CACTDRA interface allows a stored procedure application program to schedule a

PSB, issue a series of standard DL/I calls, and then unschedule the PSB. The

CACTDRA interface allows access and updates to full function IMS databases such

as HDAM or HIDAM, and Fast Path DEDB databases.

Using the CACTDRA interface allows the stored procedure to safely access and

update IMS data and supports transaction isolation from other stored procedures

that might also be accessing IMS data. Using the CACTDRA interface, the stored

procedure can perform in a similar way to an IMS/DC online transaction program.

Overview of CA-Datacom interface for stored procedures

With the CA-Datacom interface, stored procedure programs can use native

CA-Datacom commands and control blocks to access CA-Datacom data within the

data server address space.

If your stored procedure needs to access or update CA-Datacom data, you can use

the CACTDCOM interface load module. The CACTDCOM interface module allows

a stored procedure to access CA-Datacom data within the server address space.

Using the CACTDCOM interface allows the stored procedure to safely access and

update CA-Datacom data, and supports transaction isolation from other stored

procedure application programs that might also be accessing CA-Datacom data.

Chapter 3. Administering federation 149

The CACTDCOM interface requires a stored procedure to open a User

Requirements Table (URT). After the URT is open, any series of CA-Datacom

commands can be issued. When the stored procedure application program

completes processing, the URT must be closed.

Support routines

In addition to the CICS, CA-Datacom, and IMS interfaces, your stored procedure

application program can call the support routines CACSPGRO, CACSPGPW, and

CACSPGUI to copy parameters and values to the application storage area. You can

retrieve RUN OPTIONS values and the user ID and password of the logged-on

user.

The following table identifies the name and the purpose of each subroutine.

 Table 24. Support routines

Routine name Purpose

CACSPGRO Copies the value of the RUN OPTIONS parameter into an application storage area.

CACSPGPW Copies the value of the user password into an application storage area. The user password

was captured when the client application connected to the server.

CACSPGUI Copies the value of the user ID into an application storage area. The user ID was captured

when the client application connected to the server.

Unlike the CICS, CA-Datacom, and IMS interfaces that are distributed as load

modules, these support routines are supplied in object-module form for direct

inclusion in your stored procedure. These routines are written in Assembler

Language and use standard OS linkage conventions. All routines are passed two

parameters. The first parameter must be the address of the SQLDA parameter

passed to the stored procedure. The second parameter is an address where the

value is copied.

Stored procedure samples

You can use sample stored procedures to help you develop your own process.

The stored procedure samples are located in the SCACSAMP library. Most of the

samples are written in COBOL. For each sample, the following table identifies the

member name and provides a short description.

 Table 25. Stored procedure samples

Member name Description

CACSPCCC Sample compile and link deck for stored procedure applications calling CACSPBR.

CACSPCCL Sample compile and link deck for sample local stored procedure.

CACSPCCR Sample compile and link deck for the sample CICS stored procedure.

CACSPCOM Generic stored procedure to invoke a CICS application program.

CACSPCP Sample stored procedure definitions containing a parameter definition for each

supported data type.

CACSPCPY COBOL definitions for the argument data passed to the stored procedure. This should be

included in your stored procedure application. Sample local stored procedure application

using the IMS DRA interface.

CACSPDC1 Sample local stored procedure using the interface module CACTDCOM to access

CA-Datacom. Statically link module CACTDCOM with CACSPDC1.

CACSPLCL Sample local stored procedure application.

CACSPREM Sample remote stored procedure application executing in CICS.

150 Classic Federation Guide and Reference

Table 25. Stored procedure samples (continued)

Member name Description

CACSPDFH COBOL version of the CICS communications area passed to a CICS application invoked

by CACSP62.

CACSPGRO Get RUN OPTIONS support routine object module.

CACSPGPW Get Password support routine object module.

CACSPGUI Get User ID support routine object module.

CACSPSCA COBOL SQLCA structure for inclusion in your stored procedure application program.

CACSPSDA COBOL SQLDA structure for inclusion in your stored procedure application program

and/or CICS application program.

CACSPVTM COBOL APPC function and data structures for interfacing with CACSPBR.

CACSPRSS Sample COBOL stored procedure that creates a result set.

Defining stored procedures

You can use the Classic Data Architect to define stored procedures. You specify the

stored procedure definition by using the CREATE PROCEDURE statement and

RUN OPTIONS parameters.

General stored procedure information is stored in the SYSIBM.SYSROUTINES

system table. The parameters that are supplied by the client application and passed

to the stored procedure are stored in the SYSIBM.SYSPARMS system table.

When the stored procedure is run in an LE environment, you can use the RUN

OPTIONS parameter on the CREATE PROCEDURE statement to supply custom LE

runtime options during environment initialization. In addition, extended use of the

RUN OPTIONS parameter enables you to deactivate the LE environment for a

particular stored procedure. The RUN OPTIONS parameter also allows you to

specify CICS transaction scheduling information for CICS interfacing or

CA-Datacom resource information for CA-Datacom interfacing.

CREATE PROCEDURE

Using the Classic Data Architect, you can create a stored procedure definition with

the CREATE PROCEDURE statement.

After the stored procedure is defined, you can generate and run the DDL for

creating the stored procedure in a metadata catalog.

CREATE PROCEDURE

��

CREATE PROCEDURE

procedure-name

�

 ,

(

parameter-declaration

)

�

� option-list ��

Chapter 3. Administering federation 151

parameter-declaration:

 IN

OUT

INOUT

parameter-name

parameter-type

option-list:

 RESULT SET 0

RESULT

SET

integer

SETS

EXTERNAL

NAME

’string’

identifier

LANGUAGE

�

� ASSEMBLE

C

COBOL

STAY RESIDENT

YES

NO

 �

�
RUN OPTIONS

’run-time-options’

The table that follows describes each of the parameters you can specify using the

CREATE PROCEDURE statement.

 Table 26. CREATE PROCEDURE parameters and descriptions

Parameter Description

CREATE PROCEDURE procedure-name A required keyword phrase that defines a stored procedure. procedure-name

names the stored procedure. The name is implicitly or explicitly qualified

by an owner. The name, including the implicit or explicit qualifier, must

not identify an existing stored procedure at the current server. To explicitly

specify an owner, use the syntax owner-name.procedure-name. The

owner-name can be 1-to-8 characters long and the procedure-name can be

1-to-18 characters long. If an owner-name is not specified, the implicit

owner-name is the TSO user ID of the person that runs the metadata utility

to define the stored procedure.

parameter-declaration Specifies the parameters that are passed to the stored procedure application

program and that must be supplied by the client application when the

stored procedure is invoked. At least one parameter must be defined for a

stored procedure. There is no fixed upper limit on the number of

parameters that can be defined for a stored procedure. The maximum

number of parameters that can be defined is dependent on the size of the

resultant SQLDA. The maximum data size for all data and indicator

variables is 32767-bytes. You can use a stored procedure parameter for

input, output or both input and output. The options are:

v IN: The default. It identifies the parameter as an input parameter to the

stored procedure. The parameter contains its original value when the

stored procedure returns control to the client application.

v OUT: Identifies the parameter as an output parameter. The stored

procedure application program returns a value to the client application

or a null-indicator that indicates no value is being returned.

v INOUT: Identifies the parameter as both an input and an output

parameter. The client application must supply a value for an INOUT

parameter, because upon return the stored procedure might have

changed this value.

152 Classic Federation Guide and Reference

Table 26. CREATE PROCEDURE parameters and descriptions (continued)

Parameter Description

parameter-name The parameter-name specifies the name of the parameter in the

parameter-declaration. The name can be up to 30 characters long, must be

unique within the stored procedure definition and cannot be IN, OUT, or

INOUT. Parameter names are optional, but specifying a parameter-name is

highly recommended. When initially testing your stored procedure your

client application might receive various SQL codes indicating that an

incompatible data type was passed, a NULL parameter is not allowed, or

other similar codes. To resolve these problems you can activate tracing in

the data server. When activated, a log message is generated for the

parameter in error and the information identifies the parameter-name, its

data type, and length. Naming your parameters, therefore, makes problem

resolution easier in these situations.

parameter-type Required keyword that identifies the SQL data type of the parameter.

option-list List of options to be used for the stored procedure.

RESULT SET(S) integer The value of integer represents the number of result sets that can be

returned by the stored procedure. Currently, this value can be set to 0 or 1.

EXTERNAL NAME ‘string’ or identifier Specifies the z/OS load module of the application program that the Server

should load to satisfy a call for the stored procedure. If you do not specify

the NAME clause, NAME procedure-name is implicit. The procedure-name

is limited to 8 characters. When an explicit name is specified it can be from

1-to-8 characters long and can be supplied either as a quoted string or as

an identifier. A quoted string is required if the application program name

matches any of the keywords supplied on the CREATE PROCEDURE

statement.

LANGUAGE Required parameter that identifies the programming language in which the

stored procedure was written. All programs should be designed to run in

IBM’s Language Environment (LE). Valid values are:

v ASSEMBLE: Assembler Language

v COBOL: IBM COBOL

v C: IBM or SAS/C C Language

STAY RESIDENT Identifies whether the stored procedure connector should unload the stored

procedure after it has been executed. Options are:

v NO: Unload the program after each execution. When initially testing

your stored procedure you should use this option. This allows you to

modify your stored procedure and re-test it without having to shutdown

the query processor that received the client application request to

execute your stored procedure.

v YES: Do not unload the stored procedure after it has completed

execution. For performance purposes, YES should be specified after your

stored procedure has been tested.

Chapter 3. Administering federation 153

Table 26. CREATE PROCEDURE parameters and descriptions (continued)

Parameter Description

RUN OPTIONS run-time-options Specifies the Language Environment run-time options to be used for the

stored procedure. You must specify run-time-options as a character string

no longer than 254 bytes. If you do not specify RUN OPTIONS or pass an

empty string, the stored procedure connector passes a value of

ALL31(OFF).

Additionally, the product has extended the use of the RUN OPTIONS

parameter to disable executing a stored procedure in an LE environment

and to supply CICS transaction scheduling information or CA-Datacom

resource information.

RUN OPTIONS information must be supplied on a single input line. To

specify a RUN OPTIONS string that exceeds 80 characters, use a variable

length file.

A stored procedure parameter can be defined as one of the types listed in the

following table.

 Table 27. Stored procedure supported data types

Supported data types Description (n is always a decimal integer)

INTEGER Fullword signed hexadecimal, 32-bits, no decimal point.

SMALLINT Halfword signed hexadecimal, 16-bits, no decimal point.

DECIMAL(p[,s]) Packed decimal 1≤p≤31 and 0<s<p where:

v p is the precision (total number of digits) and

v s is the total number of digits to the right of the decimal point.

FLOAT 4-byte single precision floating point number.

DOUBLE 8-byte double precision floating point number.

CHAR (n) Fixed-length character string of length n where 1<n<254.

VARCHAR (n) Variable-length character string where 1≤n≤32704.

GRAPHIC (n) Fixed-length, double-byte character set (DBCS) string where 1<n<127.

The value of n specifies the number of DBCS characters. For example,

GRAPHIC(10) specifies a parameter that occupies 20 bytes of storage.

VARGRAPHIC (n) Variable-length, DBCS string where 1≤n≤16351. The value of n

specifies the number of DBCS characters. For example,

VARGRAPHIC(10) specifies a parameter that occupies 20 bytes of

storage.

DROP PROCEDURE

Use the DROP PROCEDURE statement to remove an existing stored procedure

from a metadata catalog. The DROP PROCEDURE statement is also required when

you replace an existing stored procedure with a stored procedure of the same

name.

DROP PROCEDURE

�� DROP PROCEDURE procedure-name ��

The following table describes the supplied parameters of the DROP PROCEDURE

statement.

154 Classic Federation Guide and Reference

Table 28. DROP PROCEDURE parameters and descriptions

Parameter Description

DROP PROCEDURE Statement that removes an existing stored procedure from the

metadata catalogs.

procedure-name Identifies the stored procedure to be dropped. The name must

identify a stored procedure that has been defined with the

CREATE PROCEDURE statement at the current server. When a

procedure is dropped, all privileges on the procedure are also

dropped.

Deactivating the Language Environment

If your stored procedure cannot run in a Language Environment (LE), deactivate it.

For example, if a stored procedure is written in Assembler, and not using LE

services, specify NO_LE on the RUN OPTIONS parameter. When you specify NO_LE

and the stored procedure connector runs, the stored procedure is branch-entered

regardless of whether the LE initialization service is active or not.

If you are also using the RUN OPTIONS parameter to specify CICS transaction

scheduling information or CA-Datacom resource information, NO_LE must be

specified at the beginning of the RUN OPTIONS parameter, followed by the CICS

transaction scheduling information or CA-Datacom resource information.

Important: If your stored procedure cannot run in an LE environment, specify

NO_LE even if the data service does not use an LE initialization service. This

prevents your stored procedure application program from abending at a later time,

if another team develops an LE-enabled application and decides to activate the LE

initialization service for performance reasons.

Writing stored procedures

When you create your own stored procedures, consider programming language,

passed parameters, and SQL data types. Passed parameters enable you to specify

SQLCA structures and SQLDA structures, including SQLVAR structures associated

with the SQLDA.

A stored procedure is invoked using standard Assembler Language linkage

conventions. You can write stored procedures in C, COBOL or Assembler

Language. The stored procedure is always passed two parameters: an SQLDA

structure and an SQLCA structure. The following figure shows how these

parameters are passed. All parameters and the data and indicator values contained

in the SQLDA are 31-bit addresses.

Chapter 3. Administering federation 155

Upon return from the stored procedure, Register 15 is assumed to contain a return

code value. If a non-zero value is found in Register 15, it will be returned to the

client application unless there is a non-zero value in the SQLCODE field in the

SQLCA.

Required: Your stored procedure must be coded as a subroutine and must not

issue a function call that causes the run-time environment to be

terminated. For example, a COBOL stored procedure must not issue

STOP RUN and must instead return control using the GOBACK

statement. If you terminate the run-time environment (for example,

using STOP RUN in COBOL), this causes the query processor task to

also be terminated.

The SQLDA structure consists of a 16-byte header followed by a variably-occurring

array of SQLVAR structures. Each SQLVAR represents a parameter-declaration from

the CREATE PROCEDURE statement. The SQLVARs are passed in the sequence

defined on the CREATE PROCEDURE statement. Each SQLVAR structure is

44-bytes long.

The sample member CACSPSDA is a COBOL copybook that shows the structure

and contents of the SQLDA structure. The following figure shows the contents of

the SQLDA header.

The SQLDA structure is as follows:

01 ARG-DATA.

 05 ARG-SQLDAID PIC X(8).

 05 ARG-SQLDABC PIC 9(8) COMP.

 05 ARG-SQLN PIC 9(4) COMP.

 05 ARG-SQLD PIC 9(4) COMP.

 05 ARG-SQLVAR OCCURS 1 TO 2000 TIMES

 DEPENDING ON ARG-SQLN.

 10 ARG-SQLTYPE PIC 9(4) COMP.

 88 ARG-SQL-VARCHAR VALUE 449.

 88 ARG-SQL-CHAR VALUE 453.

 88 ARG-SQL-VARGRAPHIC VALUE 465.

 88 ARG-SQL-GRAPHIC VALUE 469.

 88 ARG-SQL-FLOAT VALUE 481.

 88 ARG-SQL-DECIMAL VALUE 485.

 88 ARG-SQL-INTEGER VALUE 497.

 88 ARG-SQL-SMALLINT VALUE 501.

 10 ARG-SQLLEN PIC 9(4) COMP.

 10 ARG-SQLDATA POINTER.

 10 ARG-SQLIND POINTER.

 10 ARG-SQLNAME.

 20 ARG-NAME-LEN PIC 9(4) COMP.

 20 ARG-NAME-LABEL PIC X(30).

Parameter 1

Address ofRegister

SQLDA

Parameter 2 SQLCA

Figure 5. Parameters passed to the stored procedure

156 Classic Federation Guide and Reference

The following table describes the format and contents of the SQLDA header.

 Table 29. SQLDA header contents

COBOL name SQL data type Description

ARG-SQLDAID CHAR(8) Signature that identifies the structure as an SQLDA. Always

contains the value “SQLDA” followed by three spaces.

ARG-SQLDABC INTEGER Identifies the length of the SQLDA structure and is computed as

16 + (SQLN * 44).

ARG-SQLN SMALLINT Identifies the number of SQLVAR entries contained in the SQLDA.

ARG-SQLD SMALLINT Identifies the number of SQLVAR entries contained in the SQLDA.

Same as ARG-SQLN.

The following table describes the format and contents of the SQLVAR structure.

 Table 30. SQLVAR contents

COBOL name SQL data type Description

ARG-SQLTYPE SMALLINT Identifies the type of data that is referenced by field

ARG-SQLDATA.

ARG-SQLLEN SMALLINT Identifies the length of the data that is referenced by field

ARG-SQLDATA.

ARG-SQLDATA INTEGER Pointer to the argument data. Before using this pointer value

you must check the 2-byte data value referenced by

ARG-SQLIND to determine whether the argument data is null

(for example, a value was not supplied by the client

application). If the argument data is null, the data referenced is

low-values and should not be referenced. If the data is not null,

the size of the data referenced is identified by ARG-SQLLEN.

ARG-SQLIND INTEGER Pointer to a 2-byte (half-word - SMALLINT) indicator field that

identifies whether ARG-SQLDATA is null or not. If the indicator

field contains zeros, the data referenced by ARG-SQLDATA is

not null and contains valid data matching the SQL data type

identified in ARG-SQLTYPE. If the indicator field contains -1

(x’ffff’) then the data referenced by ARG-SQLDATA is binary

zeros and should not be referenced.

ARG-SQLNAME VARCHAR(30) The parameter-name specified in the CREATE PROCEDURE

statement for this parameter. If no parameter-name was specified,

ARG-NAME-LEN is zeros and ARG-NAME-LABEL is

low-values. If a parameter-name was specified, ARG-NAME-LEN

identifies how long parameter-name is and ARG-NAME-LABEL

contains the parameter-name left justified and padded with

blanks.

The following table describes the SQL data types that can be passed to the stored

procedure and the length of the data referenced by ARG-SQLDATA for each data

type.

 Table 31. SQL data type descriptions

COBOL name Value

Value in ARG-SQLLEN and corresponding length of data

referenced by ARG-SQLDATA

ARG-SQL-VARCHAR 449 Identifies that ARG-SQLDATA references a variable length

character field. ARG-SQLLEN identifies the maximum length

of the variable length character field, excluding the 2-byte

length field. The actual size of the data is identified in the

2-byte length field.

Chapter 3. Administering federation 157

Table 31. SQL data type descriptions (continued)

COBOL name Value

Value in ARG-SQLLEN and corresponding length of data

referenced by ARG-SQLDATA

ARG-SQL-CHAR 453 Identifies that ARG-SQLDATA references a fixed length

character field. ARG-SQLLEN identifies the length of the

character field.

ARG-SQL-VARGRAPHIC 465 Identifies that ARG-SQLDATA references a variable length

graphic field. ARG-SQLLEN identifies the maximum length (in

DBCS characters) that the variable length graphic field can be,

excluding the 2-byte length field. The actual size of the data (in

DBCS characters) is identified in the 2-byte length field.

ARG-SQL-GRAPHIC 469 Identifies that ARG-SQLDATA references a fixed length graphic

field. ARG-SQLLEN identifies the length of the graphic field in

DBCS characters.

ARG-SQL-FLOAT 481 Identifies that ARG-SQLDATA references a floating point

number. The field is a single precision floating point number

that is 4-bytes long if FLOAT was specified on the

parameter-declaration on the CREATE PROCEDURE statement.

If DOUBLE was specified, then the field is a double-precision

floating point number that is 8-bytes long.

ARG-SQL-DECIMAL 485 Identifies that ARG-SQL-DATA references a signed packed

decimal field. The first byte of ARG-SQL-LEN identifies the

scale (number of digits) in the decimal field. The second byte

of ARG-SQL-LEN identifies the precision (implied decimal

point) of the decimal data. If the scale is an even number, the

physical length of the decimal data is scale / 2. If the scale is

an odd number, the physical length of the data is (scale +1)/2.

ARG-SQL-INTEGER 497 Identifies that ARG-SQL-DATA references a signed full-word

field that is 4-bytes long.

ARG-SQL-SMALLINT 501 Identifies that ARG-SQL-DATA references a signed half-word

field that is 2-bytes long.

The SQLCA structure is much simpler than the SQLDA. Sample member

CACSPSCA is a COBOL copybook that shows the structure and contents of the

SQLCA structure. The following sample code shows the contents of this copy book.

The SQLCA structure is as follows:

01 ARG-SQLCA

 05 ARG-SQLCAID PIC X(8).

 05 ARG-SQLCABC PIC 9(8) COMP.

 05 ARG-SQLCODE PIC 9(8) COMP.

 Table 32. SQLCA contents

COBOL name SQL data type

ARG-SQLCAID CHAR(8) Signature that identifies the structure as an SQLCA. Always

contains the value “SQLCA” followed by three spaces.

ARG-SQLCABC INTEGER Identifies the length of the SQLCA structure.

ARG-SQLCODE INTEGER Full-word 32-bit signed integer that is returned to the client

application when SQLCODE contains a non-zero value.

The ARG-SQLCABC field reports a length that is longer than the structure’s

contents identified above. A full DB2-style SQLCA is passed to your stored

158 Classic Federation Guide and Reference

procedure. These additional fields are not being documented, as they are not

inspected by the stored procedure connector or the query processor and are not

returned to the client application.

Sample member CACSPCP provides a sample stored procedure definition that

contains parameter definitions for the different SQL data types that can be passed

to a stored procedure. Its contents are shown in the following sample DROP and

CREATE PROCEDURE definition:

DROP PROCEDURE CAC.DATA_TYPES;

CREATE PROCEDURE CAC.DATA_TYPES

(IN DT_SMALLINT SMALLINT,

IN DT_INTEGER INTEGER,

IN DT_CHAR CHAR(10),

IN DT_VARCHAR VARCHAR(20),

IN DT_FLOAT FLOAT,

IN DT_DOUBLE DOUBLE,

IN DT_DECIMAL DECIMAL(9,2),

IN DT_GRAPHIC GRAPHIC(10),

IN DT_VARGRAPHIC VARGRAPHIC(20))

EXTERNAL NAME CACSPDAT

LANGUAGE COBOL

STAY RESIDENT NO;

This sample shows that the stored procedure name is CACSPDAT and it is written

in COBOL. For a COBOL program, the field definitions for the actual data values

and their associated indicator variables must be defined in the LINKAGE

SECTION.

While the COBOL field names do not have to match the parameter names

specified on the stored procedure CREATE PROCEDURE definition statement, it is

a good practice. Establish a standard for naming null indicator variables.

In COBOL, addressability to the data associated with a parameter and its null

indicator field is established by using the SET ADDRESS OF statement.

You should also establish addressability to a parameter’s null indicator and test to

see whether the value is not null before establishing addressability to its data

value. Likewise, after addressability is established before referencing a data value,

check its associated null indicator before attempting to manipulate a data value.

This practice should be done even if you know that a value does not contain a null

value. This practice prevents abends at a later date, if another team performs

maintenance on the client application and does not follow the rules.

The following section contains sample COBOL data and indicator definitions:

LINKAGE SECTION.

COPY CACSPSDA.

COPY CACSPSCA.

01 DT-SMALLINT PIC S9(4) COMP.

01 DT-=SMALLINT-IND PIC S9(4) COMP.

01 DT-INTEGER PIC S9(9) COMP.

01 DT-INTEGER-IND PIC S9(4) COMP.

01 DT-CHAR PIC X(10).

01 DT-CHAR-IND PIC S9(4) COMP.

01 DT-VARCHAR.

 05 DT-VARCHAR-LEN PIC 9(4) COMP.

Chapter 3. Administering federation 159

05 DT-VARCHAR-DATA PIC X(1)

 OCCURS 20 TIMES

 DEPENDING ON DT-VARCHAR-LEN.

01 DT-VARCHAR-IND PIC S9(4) COMP.

01 DT-FLOAT COMP-1.

01 DT-FLOAT-IND PIC S9(4) COMP.

01 DT-DOUBLE COMP-2.

01 DT-DOUBLE-IND PIC S9(4) COMP.

01 DT-DECIMAL PIC S9(7)V99 COMP-3

01 DT-DECIMAL-IND PIC S9(4) COMP.

01 DT-GRAPHIC PIC G(10)

 USAGE DISPLAY-1.

01 DT-GRAPHIC-IND PIC S9(4) COMP.

01 DT-VARGRAPHIC.

 05 DT-VARGRAPHIC-LEN PIC 9(4) COMP.

 05 DT-VARGRAPHIC-DATA PIC G(1)

 USAGE DISPLAY-1

 OCCURS 20 TIMES

 DEPENDING ON DT-VARGRAPHIC-LEN.

01 DT-VARGRAPHIC-IND PIC S9(4) COMP.

Establishing addressability

The following shows how to establish addressability:

PROCEDURE DIVISION USING ARG-DATA, ARG-SQLCA.

 SET ADDRESS OF DT-SMALLINT-IND TO ARG-SQLIND(1).

 IF DT-SMALLINT-IND = ZEROS

 SET ADDRESS OF DT-SMALLINT TO ARG-SQLDATA(1).

 SET ADDRESS OF DT-INTEGER-IND TO ARG-SQLIND(2).

 IF DT-INTEGER-IND = ZEROS

 SET ADDRESS OF DT-INTEGER TO ARG-SQLDATA(2).

 SET ADDRESS OF DT-CHAR-IND TO ARG-SQLIND(3).

 IF DT-CHAR-IND = ZEROS

 SET ADDRESS OF DT-CHAR TO ARG-SQLDATA(3).

 SET ADDRESS OF DT-VARCHAR-IND TO ARG-SQLIND(4).

 IF DT-VARCHAR-IND = ZEROS

 SET ADDRESS OF DT-VARCHAR TO ARG-SQLDATA(4).

 SET ADDRESS OF DT-FLOAT-IND TO ARG-SQLIND(5).

 IF DT-FLOAT-IND = ZEROS

 SET ADDRESS OF DT-FLOAT TO ARG-SQLDATA(5).

 SET ADDRESS OF DT-DOUBLE-IND TO ARG-SQLIND(6).

 IF DT-DOUBLE-IND = ZEROS

 SET ADDRESS OF DT-DOUBLE TO ARG-SQLDATA(6).

 SET ADDRESS OF DT-DECIMAL-IND TO ARG-SQLIND(7).

 IF DT-DECIMAL-IND = ZEROS

 SET ADDRESS OF DT-DECIMAL TO ARG-SQLDATA(7).

 SET ADDRESS OF DT-GRAPHIC-IND TO ARG-SQLIND(8).

 IF DT-GRAPHIC-IND = ZEROS

 SET ADDRESS OF DT-GRAPHIC TO ARG-SQLDATA(8).

 SET ADDRESS OF DT-VARGRAPHIC-IND TO ARG-SQLIND(9).

 IF DT-VARGRAPHIC-IND = ZEROS

 SET ADDRESS OF DT-VARGRAPHIC TO ARG-SQLDATA(9).

160 Classic Federation Guide and Reference

Your stored procedure must not modify the contents of the SQLDA structure. Your

program can modify the contents of the data referenced by ARG-SQLDATA and

ARG-SQLIND fields. Data that is modified for output or input-output fields is

returned to the client application.

When your application modifies an SQLIND indicator field to indicate that the

corresponding data is null, then any modifications to the corresponding data field

are not returned to the client application. Additionally, your application should not

modify an SQLIND indicator field that identifies the corresponding data field as

being null to indicate that the data field (upon return from your stored procedure)

now contains valid data. Such a modification is likely to cause problems in the

client application because the client application is not expecting to receive data for

a parameter that it knows is null.

Your stored procedure can call other stored procedure application programs or one

or more of your existing application programs. However, if you call existing

applications ensure that these are written as subroutines.

If you are not using the supplied CICS, CA-Datacom, IMS, or result set creation

interfaces, compile and link your stored procedure application program using the

standard procedures for the language that the application program is written in. If

you are using the CICS, CA-Datacom, IMS, and/or result set creation interfaces,

the procedures are slightly modified so that the interface load modules are

included in the link step.

After you have linked an executable copy of your stored procedure, either copy it

into one of the load libraries referenced in the data server JCL or update the data

server JCL to include the library that your application resides in on the STEPLIB

DD statement. Also, add any additional DD statements to the Server JCL that your

stored procedure references.

Start the data server after you have performed these modifications. You are now

ready to start testing your stored procedure. You will need to do this from a client

application. Descriptions of the techniques that you can use to invoke a stored

procedure are provided in related topics.

Invoking stored procedures

The client connectors invoke your stored procedure application program. All client

connectors support the SQL CALL statement.

This section describes the CALL statement syntax that you use to invoke a stored

procedure, how to obtain metadata about stored procedures, and the

connector-specific APIs that you can use to issue the CALL statement.

CALL statement

This topic provides information about the syntax and usage of the CALL

statement.

Important: Client applications using ODBC or JDBC clients cannot use the USING

DESCRIPTOR form of this statement and cannot use indicator host-variables. They

use parameter markers instead.

CALL statement

Chapter 3. Administering federation 161

�� CALL procedure-name

host-variable
 (,)

host-variable

constant

null

USING DESCRIPTOR

descriptor-name

 ��

The following table describes the CALL statement parameters.

 Table 33. CALL statement parameters

Parameter Description

procedure-name or host-variable Identifies the name of the stored procedure to be executed. The name should

generally be specified in the form owner.name. If an owner is not specified, the

connected user’s user ID is used for the owner. If a user ID is not supplied on

connect the owner is PUBLIC. You can either specify the name of the stored

procedure explicitly as an identifier procedure-name, or you can use a

host-variable reference, where host-variable contains the name of the stored

procedure to be executed.

host-variable The name of a host-variable that, for input or input-output parameters contains

the data that is passed to the stored procedure application program. For output

parameters, the host-variable identifies a storage location that will be updated

with the value supplied by the stored procedure application program upon

return from the CALL statement.

The host variables data type must be compatible with the data type defined for

the parameter.

If a null indicator variable is specified it can only contain a -1 for an output

parameter.

constant A numeric or string constant that is passed to the stored procedure application

program. Constants can only be specified for input parameters. Additionally,

the constant must match the data-type for the parameter. That is, a numeric

constant of the appropriate scale and precision must be supplied for INTEGER,

SMALLINT, DECIMAL, FLOAT and DOUBLE parameter types. For CHAR or

VARCHAR parameters, the constant must be in single quotes. Constants cannot

be specified for GRAPHIC or VARGRAPHIC data types.

NULL Identifies that no value is being supplied for the parameter. NULL can only be

specified for input parameters.

This causes the parameter’s associated null indicator to be set to -1 when the

stored procedure application program is called.

USING DESCRIPTOR

descriptor-name

Identifies that the parameters to be passed to the stored procedure application

program are contained in the SQLDA structure referenced by descriptor-name.

The correct number and types of parameters must be contained in the SQLDA.

Additionally, SQLN must identify the number of parameters being passed and

SQLDABC must contain the correct value - (SQLN * 44) + 16.

ODBC stored procedure support

The ODBC client implements the standard ODBC API interfaces used to invoke

and obtain metadata information about the stored procedures defined for the data

source that the ODBC client is connected to.

Some differences exist between the implementation of the ODBC client and the

ODBC standard.

Using the SQLProcedures call, you can obtain the list of stored procedures that are

defined for a data source in the metadata catalogs. To retrieve parameter

162 Classic Federation Guide and Reference

information about one or more stored procedure definitions, you use the

SQLColumnProcedures call. The ODBC client implementation supports the

following syntax and options for these calls:

v Qualifier names are not supported. szProcQualifier should always be null and

cbProcQualifier should always be zero.

v When retrieving the result sets from these calls, TABLE_QUALIFIER is always

null.

v The REMARKS field is always spaces.

v For SQLProcedure calls, PROCEDURE_TYPE is always SQL_PT_UNKNOWN.

v When retrieving the result set from the SQLProcedureColumns call, the

COLUMN_TYPE will only be one of the following values:

– SQL_PARAM_INPUT

– SQL_PARAM_INPUT_OUTPUT

– SQL_PARAM_OUTPUT
v RADIX is always 10.

v NULLABLE is always set to SQL_NULLABLE_UNKOWN.

To invoke a stored procedure use the SQLExecDirect call. The ODBC client

supports the following two formats of the CALL statement that can be supplied on

the SQLExecDirect call:

v The shorthand syntax: “{[?=]call procedure-name(parameter,[parameter],...)}”

v “CALL procedure-name(parameter,[parameter],...)”

Before issuing the SQLExecDirect call you might have to issue one or more

SQLBindParameter calls for any parameter markers that are contained in the CALL

statement.

The following rules apply to parameter markers:

v For output or input-output parameters, parameter must be a parameter marker.

v For input parameters, parameter can be a literal, a parameter marker or NULL.

v For the short format, the return value must be a parameter marker.

v For procedure-name, you can supply an identifier or a parameter marker.

Unlike the ODBC standard, all parameters defined for the stored procedure must

be supplied on the CALL statement.

If you use the second format of the CALL statement or the shorthand format

without a return value and your stored procedure application returns a non-zero

return code (or the stored procedure sets a non-zero value for SQLCODE in the

SQLCA) then:

v The RETCODE will either be set to SQL_ERROR or

SQL_SUCCESS_WITH_INFO, depending on the return code (or SQLCODE)

value, or you will need to

v Issue the SQLError call and inspect the pfNativeError parameter to obtain the

return code (or SQLCODE) value.

If you want to use the shorthand version of the CALL and specify a return code

value, follow these rules when you define the stored procedure:

v The first parameter-declaration must be OUT.

v The first parameter-declaration parameter-name must be RC.

v The first parameter-declaration parameter-type must be INTEGER.

Chapter 3. Administering federation 163

Required: If your stored procedure application program uses non-zero return code

values to report warning conditions that are not errors, you must use

the shorthand format specifying an RC value if you want to inspect any

data returned from the stored procedure application program. When a

non-zero return code is encountered, the query processor will not

update the SQLDA returned to the client with any updated output or

input-output parameters that the stored procedure modified. If you

specify an RC parameter and a non-zero return code is encountered, the

stored procedure connector updates the RC parameter with the return

code value and returns zeros to the query processor. This enables the

stored procedure to return any updated values to the client and the

SQLExecDirect call to report SQL_SUCCESS.

For more information about the SQLExecDirect and SQLBindParameter calls, see

the Microsoft® information about ODBC APIs..

Creating result sets in stored procedures

Result sets extend the capability of output parameters by allowing multiple rows

of data to be returned in a single invocation of a stored procedure. The creation of

result sets does not preclude the use of output parameters. You can build

procedures that return both output parameters and results sets.

When a stored procedure returns a result set, the result set is automatically in an

open state after a successful call to the procedure. This means the application can

immediately begin fetching the result set rows, just as it does after opening a

prepared cursor. The main difference between opening a cursor and executing a

stored procedure that returns a result set is that the description of the result set

cannot be determined until the procedure is successfully called.

Stored procedures can return only one result set per application call. The number,

names, and SQL types of the columns in a result set are determined by the stored

procedure itself, and can vary from call to call if there is an application reason to

do so.

To create a result set, the stored procedure must be defined in the system catalog

as capable of returning a result set. To do this, the procedure must be specified

with RESULT SETS 1 in the CREATE PROCEDURE statement that defines it.

The interface routines CACRSCR, CACRSIN, and CACSADDR enable your stored

procedure to create result sets. The routines are callable by any language used to

implement a stored procedure.

CACRSCR interface routine

The CACRSCR interface routine enables your stored procedure to create result sets.

The routine creates an empty result set using an SQLDA that describes the

columns in the result set.

With this routine, the developer of the stored procedure can optionally designate

ascending or descending columns to order by. The routine is callable by any

language used to implement a stored procedure.

Parameters

The parameters for the routine CACRSCR are:

164 Classic Federation Guide and Reference

v The SQLDA passed to the stored procedure on invocation. This SQLDA

describes the original parameters passed to the procedure.

Important: Failure to pass this parameter first can result in an abend in the

result set processing logic.

v An SQLDA that describes the columns in the result set. Read this topic and

related topics for more information on defining a result set SQLDA.

v A list of sorting criteria. This list is an array of halfword subscripts for SQLVAR

entries in the SQLDA to be sorted. The list is terminated with an entry

containing the value 0.

Example: To sort on the first column in ascending sequence, the array contains

the entries 1 and 0. Descending sorting is specified with a negative

subscript value. To sort on the third column in descending sequence,

the array contains the values -3 and 0.

Return codes

CACRSCR returns the following return codes:

0 An empty result set was successfully created.

1 The SQLDAID field does not contain the literal string ‘SQLDA.’

2 The count field SQLD is invalid. It is either less than or equal to 0 or does

not match the value in the SQLN field.

3 The stored procedure is not defined in the System Catalog as returning a

result set. The grammar defining the stored procedure must specify

RESULT SETS 1.

4 A result set has already been created in the current invocation of the stored

procedure. Only one result set is allowed per invocation.

5 The stored procedure was called by a client EXEC IMMEDIATE request. A

result set cannot be returned when EXEC IMMEDIATE is used.

6 The sorting list passed is invalid. One of the values in the list exceeds the

number of columns in the result set.

101-199

An invalid name was passed for sqlvar rc-100.

201-299

An invalid sqltype was specified for sqlvar rc-200.

301-399

An invalid sqllen was specified for sqlvar rc-300

>1000 Internal error. Contact IBM Technical Support

Sample

Sample COBOL usage of CACRSCR.

WORKING-STORAGE SECTION.

 * DEFINE THE RESULT SET SQLDA

 01 RESULT-SET-SQLDA.

 05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.

 * SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)

 05 RS-SQLDABC PIC 9(08) COMP VALUE 60.

 * SQLN AND SQLD ARE THE NUMBER OF COLUMNS

Chapter 3. Administering federation 165

05 RS-SQLN PIC 9(04) COMP VALUE 1.

 05 RS-SQLD PIC 9(04) COMP VALUE 1.

 05 RS-SQLVAR1.

 10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.

 10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.

 10 RS-SQLDATA1 PIC S9(8) COMP.

 10 RS-SQLIND1 PIC S9(8) COMP.

 10 RS-SQLNAME1.

 20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.

 20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

 * DO AN ASCENDING SORT ON THE CHAR8 COLUMN

 01 SORTING-LIST.

 05 SORT-FIRST-ASCENDING PIC S9(4) COMP VALUE 1.

 05 END-OF-SORTING-LIST PIC S9(4) COMP VALUE 0.

 LINKAGE SECTION.

 01 ARG-SQLDA.

 .

 .

 .

 PROCEDURE DIVISION USING ARG-SQLDA, ARG-SQLCA

 .

 .

 .

 * CREATE THE RETURN RESULT SET

 CALL ’CACRSCR’ USING ARG-SQLDA, RESULT-SQLDA, SORTING-LIST.

 .

 .

 .

CACRSIN interface routine

The CACRSIN interface routine Inserts a single row into a previously-created result

set. Like CACRSCR, this routine receives the column information in the form of an

SQLDA structure.

Parameters

The parameters for the routine CACRSIN are:

v The SQLDA passed to the stored procedure on invocation. This SQLDA

describes the parameters passed to the procedure.

Tip: Failure to pass this parameter first can result in an abend in the result set

processing logic.

v An SQLDA describing the columns and data to be inserted into the result set.

When inserting rows in the result set, the sqldata and sqlind variables for each

column must be set to the address of the column data to insert. This SQLDA

must be the same SQLDA structure used to create the result set.

Return codes

CACRSIN returns the following return codes:

0 A new row was successfully inserted into the result set.

1 The SQLDAID field does not contain the literal string SQLDA.

2 The count field SQLD is invalid. It is either less than or equal to 0 or does

not match the value in the SQLN field.

3 The SQLDA address passed is not the same as the SQLDA used to create

the result set.

166 Classic Federation Guide and Reference

4 The number of sqlvars in the SQLDA passed is not the same as the

number passed when the result set was created.

201-299

An invalid sqltype was specified for sqlvar rc-200.

301-399

An invalid sqllen was specified for sqlvar rc-300.

401-499

The data passed in sqldata is invalid for sqlvar rc-400.

501-599

The indicator passed in sqlind is invalid for sqlvar rc-500.

>1000 Internal error. Contact IBM Technical Support.

Sample

Sample COBOL usage of CACRSIN.

 WORKING-STORAGE SECTION.

 * DEFINE THE RESULT SET SQLDA

 01 RESULT-SET-SQLDA.

 05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.

 * SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)

 05 RS-SQLDABC PIC 9(08) COMP VALUE 60.

 * SQLN AND SQLD ARE THE NUMBER OF COLUMNS

 05 RS-SQLN PIC 9(04) COMP VALUE 1.

 05 RS-SQLD PIC 9(04) COMP VALUE 1.

 05 RS-SQLVAR1.

 10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.

 10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.

 10 RS-SQLDATA1 PIC S9(8) COMP.

 10 RS-SQLIND1 PIC S9(8) COMP.

 10 RS-SQLNAME1.

 20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.

 20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

 * DO AN ASCENDING SORT ON THE CHAR8 COLUMN

 01 SORTING-LIST.

 05 SORT-FIRST-ASCENDING PIC S9(4) COMP VALUE 1.

 05 END-OF-SORTING-LIST PIC S9(4) COMP VALUE 0.

 01 CHAR8-COLUMN-DATA PIC X(8).

 01 CHAR8-NULL-IND PIC S9(4) COMP VALUE 0.

 LINKAGE SECTION.

 .

 .

 .

 PROCEDURE DIVISION USING ARG-SQLDA, ARG-SQLCA

 .

 .

 .

 * CREATE THE RETURN RESULT SET

 CALL ’CACRSCR’ USING ARG-SQLDA, RESULT-SQLDA, SORTING-LIST.

 * SET THE SQLDATA AND SQLIND POINTERS IN THE RESULT SET

 * SQLDA

 CALL ’CACSADDR’ USING RS-SQLDATA1, CHAR8-COLUMN-DATA,

 RS-NULL-IND.

 * INSERT 2 ROWS INTO THE RESULT SET

Chapter 3. Administering federation 167

MOVE ’ROW 1’ TO CHAR8-COLUMN-DATA.

 CALL ’CACRSIN’ USING ARG-SQLDA, RESULT-SQLDA.

 MOVE ’ROW 2’ TO CHAR8-COLUMN-DATA.

 CALL ’CACRSIN’ USING ARG-SQLDA, RESULT-SQLDA.

 .

 .

 .

CACSADDR interface routine

The CACSADDR interface routine is used by COBOL programs to set the

addresses of sqldata and sqlind data items in an SQLVAR.

Parameters

The parameters for the routine CACSADDR are:

v The address of an sqldata variable to be set.

v The address of the column data to be placed in sqldata.

v The address of and indicator variable to be placed in the sqlind variable that

immediately follows sqldata. This parameter is optional if an sqlind variable is

not needed.

Sample

Sample COBOL usage of CACSADDR:

 * SET RS-SQLDATA1 TO THE ADDRESS OF CHAR8-COLUMN-DATA AND

 * RS-SQLIND1 TO THE ADDRESS OF RS-NULL-IND

 CALL ’CACSADDR’ USING RS-SQLDATA1, CHAR8-COLUMN-DATA,

 RS-NULL-IND.

 * SET RS-SQLDATA2 TO THE ADDRESS OF INTEGER-DATA

 CALL ’CACSADDR’ USING RS-SQLDATA2, INTEGER-DATA.

Modifying a COBOL stored procedure to return a result set

To create a result set in a COBOL stored procedure, define an SQLDA and pass the

result set that the SQLDA creates to the CACRSCR routine.

The application logic that is necessary to create a result set is relatively

straightforward. The stored procedure program first defines an SQLDA that

describes the result set and passes the result set to the CACRSCR routine. A

sample SQLDA for a three column result set is shown in the following code

sample:

Table 5x Sample COBOL SQLDA.

 01 RESULT-SET-SQLDA.

 05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.

 * SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)

 05 RS-SQLDABC PIC 9(08) COMP VALUE 148.

 * SQLN AND SQLD ARE THE NUMBER OF COLUMNS

 05 RS-SQLN PIC 9(04) COMP VALUE 3.

 05 RS-SQLD PIC 9(04) COMP VALUE 3.

 05 RS-SQLVAR1.

 10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.

 10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.

 10 RS-SQLDATA1 PIC S9(8) COMP.

 10 RS-SQLIND1 PIC S9(8) COMP.

 10 RS-SQLNAME1.

 20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.

 20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

 05 RS-SQLVAR2.

 10 RS-SQLTYPE2 PIC 9(04) COMP VALUE 497.

168 Classic Federation Guide and Reference

10 RS-SQLLEN2 PIC 9(04) COMP VALUE 4.

 10 RS-SQLDATA2 PIC S9(8) COMP.

 10 RS-SQLIND2 PIC S9(8) COMP.

 10 RS-SQLNAME2.

 20 RS-SQLNAME2-LEN PIC 9(4) COMP VALUE 8.

 20 RS-SQLNAME2-NAME PIC X(30) VALUE ’LARGEINT’.

 05 RS-SQLVAR3.

 10 RS-SQLTYPE3 PIC 9(04) COMP VALUE 501.

 10 RS-SQLLEN3 PIC 9(04) COMP VALUE 2.

 10 RS-SQLDATA3 PIC S9(8) COMP.

 10 RS-SQLIND2 PIC S9(8) COMP.

 10 RS-SQLNAME3.

 20 RS-SQLNAME3-LEN PIC 9(4) COMP VALUE 8.

 20 RS-SQLNAME3-NAME PIC X(30) VALUE ’SMALLINT’.

In addition to defining the result set SQLDA, the stored procedure must define a

sorting list to pass to the result set creation entry CACRSCR. If no sorting is

necessary, the list needs only one variable as shown below:

 01 NO-SORTING.

 05 END-OF-LIST PIC S9(4) COMP VALUE 0.

After you define the result set and sorting list, the stored procedure calls

CACRSCR to create the result set, and makes one call to CACRSIN for each row of

data to be added to the result set.

Linking the result set interface into a z/OS load module

When you dynamically call or statically link interface modules that define result

sets into your stored procedure load module, you can then return a result set to

your calling application. You can also use static calls.

If you use static calls, you must include the load module CACSPRS in the link step

of a stored procedure compile and link job. This module is delivered in the

SCACLOAD distribution library.

Defining the stored procedure to the metadata catalog

To return a result set to your calling application, you must include a RESULT SETS

specification in the CREATE PROCEDURE statement for your stored procedure

that enables your stored procedure to return a result set.

Stored procedures defined with a RESULT SETS specification other than 0 are not

required to return result sets, but have the option of creating a result set when

necessary. A sample definition of a stored procedure that is enabled for result sets

follows:

 CREATE PROCEDURE CAC.SP001

 (IN INPUT_PARM CHAR(8),

 OUT OUTPUT_PARM CHAR(8))

 RESULT SETS 1

 EXTERNAL NAME ’SP001’

 LANGUAGE COBOL

 STAY RESIDENT YES;

Pass the CREATE PROCEDURE statement as input to the metadata utility to add

the definition to the metadata catalog.

Client application and result set interaction

The ODBC, CLI, and JDBC clients can check for result sets. The client program is

responsible for closing any result set that is opened by a stored procedure call.

Chapter 3. Administering federation 169

Client applications that call stored procedures must be aware of the procedures

that return result sets. ODBC and CLI clients can check for the existence of a result

set by calling the ODBC function SQLNumResultCols after executing a stored

procedure. If SQLNumResultCols returns any number other than 0, then a result

set is open and ready for fetching.

JDBC clients can invoke the CallableStatement method ExecuteQuery when the

stored procedure always returns one and only one result set. If there is any doubt,

clients must call the Execute method. The Execute method returns true if a

procedure returns a result set, and the client retrieves the result set by calling the

getResultSet method.

Support routines for stored procedures

You can use support routines in your stored procedures to fetch user IDs,

passwords, and run option values.

The Classic federation implementation passes more information to your stored

procedure than the SQLDA structure. A hidden area precedes the SQLDA that the

product uses to establish and maintain communications with other Classic

federation components.

The support routines enable you to get a copy of the connected user ID and

password, and a copy of the RUN OPTIONS parameter in the CREATE

PROCEDURE statement. Unlike the CICS and IMS DRA interface, these support

routines are in object form for direct inclusion in your stored procedure. These

support routines are written in assembler language and accept the following

parameters:

v The SQLDA structure

v The address of an output field where the requested information is moved

Unlike the CICS, CA-Datacom, and IMS interfaces that are distributed as load

modules, these support routines are supplied in object-module form for direct

inclusion in your stored procedure. These routines are written in Assembler

Language and use standard linkage conventions. All routines are passed two

parameters.

v The first parameter must be the address of the SQLDA parameter passed to the

stored procedure.

v The second parameter is an address where the value is copied.

Exception: Like the CICS and IMS DRA interface, these support routines are

written to accept 31-bit addresses. However, unlike the CICS and IMS

DRA interfaces, these support routines do not perform validation

checks to confirm that the first parameter is a pointer to the SQLDA.

Failure to pass the SQLDA as the first parameter generally results in

some form of addressing exception abend.

Get RUN OPTIONS (CACSPGRO) calling conventions

The support routine CACSPGRO copies the RUN OPTIONS parameter specified

on the CREATE PROCEDURE statement into a 254-byte work area that your stored

procedure application program supplies.

The following figure shows the calling conventions used to invoke CACSPGRO.

170 Classic Federation Guide and Reference

CACSPGRO always issues a return code of zeros. Upon return, the area that

parameter 2 references contains a copy of the RUN OPTIONS parameter padded

with blanks.

To link-edit CACSPGRO into your stored procedure application, concatenate the

SCACSAMP library into the SYSLIB DD statement on the link step and include the

following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGRO)

Get user ID (CACSPGUI) calling conventions

The CACSPGUI support routine copies the user ID of the connected user into an

8-byte work area that your stored procedure supplies.

The following figure shows the calling conventions that are required to invoke

CACSPGUI.

CACSPGUI always issues a return code of zeros. Upon return, the area that

parameter 2 references contains a copy of the user ID padded with blanks. If no

user ID is supplied, the output area contains spaces.

To link-edit CACSPGUI into your stored procedure application, concatenate library

SCACSAMP into the SYSLIB DD statement on the link step and include the

following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGUI)

Register 1

Address of

Parameter 1 SQLDA

Parameter 2 254-Byte Work Area

Figure 6. CACSPGRO calling conventions

Register Address of

Parameter 1

Parameter 2 8-Byte Work Area

SQLDA

Figure 7. CACSPGUI calling conventions

Chapter 3. Administering federation 171

Get user password (CACSPGPW) calling conventions

The CACSPGPW support routine copies the connected user password into an

8-byte work area that your stored procedure supplies.

The following figure shows the calling conventions that are required to invoke

CACSPGPW.

CACSPGPW always issues a return code of zeros. Upon return, the area referenced

by parameter 2 contains a copy of the user password padded with blanks. If no

password is supplied, the output area contains spaces.

To link-edit CACSPGPW into your stored procedure application, concatenate

library SCACSAMP into the SYSLIB DD statement on the link step and include the

following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGPW)

CICS interface for stored procedures

The CICS interface enables stored procedures that run in the data server address

space to communicate with CICS and execute a CICS application program.

The stored procedure CACSPVCM is supplied for basic operations. CACSPVCM

uses the CICS interface bridge CACSPBR to initiate an APPC conversation with

CICS. The RUN OPTIONS parameter for CACSPVCM links to a user-written CICS

application that performs the actual processing. The following operations take

place:

v CACSPVCM sends the SQLDA that is supplied by the client application to the

CICS application.

v The CICS application sends CACSPVCM an updated version of the SQLDA.

v CACSPVCM deallocates the APPC conversation and returns the SQLDA to the

client application.

In most situations, CACSPVCM is a sufficient stored procedure application

program. If CACSPVCM does not meet your needs, you can use the CACSPVTM

copybook which is provided for writing your own stored procedure application

program. CACSPVCM, uses this interface to communicate with CACSPBR. Writing

your own stored procedure to interface with CICS is required in the following

situations:

v You need to invoke two or more CICS applications.

v You need to run programs in the data server address space and then run a CICS

application.

Register Address of

Parameter 1

Parameter 2 8-Byte Work Area

SQLDA

Figure 8. CACSPGPW calling conventions

172 Classic Federation Guide and Reference

CACSPVCM is written in assembler, and source code is not available. To help you

understand how to interface with CACSPBR, a COBOL version of CACSPVCM is

provided in the sample library SCACSAMP (CACSPCOM).

Specifying CICS transaction scheduling information

For the CACSPVCM stored procedure to communicate with CICS, you need to use

the RUN OPTIONS parameter to specify the information that CACSPVCM needs

to communicate with CICS and invoke the CICS transaction.

If you are writing your own stored procedure to communicate with CICS, then you

should specify the CICS communication information using the RUN OPTIONS

parameter instead of hard coding it in your stored procedure. Doing so allows you

to drop the stored procedure definition, update the CREATE PROCEDURE

statement, and redefine the stored procedure when your environment changes,

without requiring program changes.

CICS transaction scheduling information is identified by the _CICS keyword in the

RUN OPTIONS parameter. The format of the _CICS keyword is:

_CICS(Local-LU-Name,CICS-Applid,Logmode-Table-Name,Transaction-ID,Program-
Name)

All subparameters must be supplied, comma delimited as shown, and must not

contain any spaces.

Restriction: If you are specifying CICS transaction scheduling information for use

by CACSPVCM, then you must also specify NO_LE on the RUN

OPTIONS parameter.

The following table describes the size and purpose of each sub-parameter.

 Table 34. CICS transaction scheduling subparameters

Subparameter name

Maximum

length Description

Local-LU-Name 8 Identifies the name of a pool of VTAM logical units that can be used by

CACSPBR to communicate with CICS, such as CACPPC0*.

In the above example, CACSPBR initially attempts to open an ACB for

LU name CACPPC00. If an ACB open error is returned, or a CNOS

negotiation error is reported by CICS, then CACSPBR attempts to open

an ACB named CACPPC01. If that fails LU names CACPPC02-
CACPPC09 are tried until no errors are reported or all names have been

attempted.

Only one set of wildcard characters can be specified (for example,

CAC*PC0* is invalid). Up to seven wild card characters can be supplied

(not recommended).

CICS-Applid 8 Identifies the APPLID of the CICS target subsystem.

Logmode-Table-Name 8 Identifies the VTAM logmode table entry to be used. This name must

identify an entry in the Logon Mode Table definition, in the Local LU

Name APPL definitions and in the CICS SESSIONS definitions.

Transaction-ID 4 Identifies the name of the CICS transaction that has been defined for

CACSP62 to allow communications between the Server and CICS. This

name must be 4 characters long.

Program-Name 8 Identifies the name of the CICS program that CACSP62 is to LINK to.

This name must be defined as a PROGRAM to CICS.

Chapter 3. Administering federation 173

Stored procedure and CICS communication

Communications with CICS is performed using VTAM LU 6.2 with the VTAM

connection handler.

An API interface load module, CACSPBR, is provided. A stored procedure

application running in the data server address space that communicates with the

VTAM connection handler can call CACSPBR to perform these tasks:

v Establish a session with CICS

v Send data

v Receive data

v Perform address translation for the updated parameter list returned from the

CICS application program

v End the session

The system also supplies a CICS LU 6.2 application, CACSP62, which is the

partner for CACSPBR. This application is responsible for these tasks:

v Performing address translation for the parameter list being passed to the CICS

transaction

v Invoking the specified CICS application program via an exec CICS link

v Sending return code or CICS abend codes back to the server

v Deallocating the session in the case of a CICS abend

The CACSPBR interface allows a stored procedure to send and receive multiple

transmissions between itself and CICS. In normal situations, only a single send and

receive is required. For these situations, the system supplies an Assembler

Language stored procedure (CACSPVCM) that sends the client parameter list to

CICS and receives (a possibly) updated parameter list from CICS. For most

situations, using CACSPVCM eliminates the need for you to develop your own

stored procedure to invoke a CICS application program.

The following figure shows the processing flow when the stored procedure

application program interfaces with CICS.

174 Classic Federation Guide and Reference

In addition, extensions to the RUN OPTIONS parameter enable you to specify the

required CICS transaction scheduling information to invoke your user-defined

CICS application program.

Important: If you write your own stored procedure application program and

specify CICS transaction scheduling information on the RUN OPTIONS

parameter, the information you supply overrides values that might be

set in your stored procedure application.

CACSPBR interface

The API interface to the CICS interface bridge enables stored procedures to open

CICS conversations and execute a CICS application program.

The CICS interface bridge (CACSPBR) is distributed as a separate load module that

you can dynamically call or statically link to from your stored procedure.

The CACSPBR interface uses standard assembler linkage conventions. Stored

procedures pass CACSPBR three parameters:

Windows/UNIX

Client Application

SQL CALL Statement

Mainframe

Data Server

Query Processor

Stored Procedure
Data Connector

Stored Procedure
Application Program

CACSPBR

VTAM Connection Holder

CACSP62

User-Written CICS Transaction

CICS

Figure 9. CICS processing flow

Chapter 3. Administering federation 175

v An APPC function structure

v An APPC data structure

v The SQLDA that is passed to the stored procedure

Figure 10 shows how your stored procedure must pass parameters to CACSPBR.

Additionally, your stored procedure must call CACSPBR by using

variable-argument list calling conventions. Variable-argument list calling

conventions are standard for most high-level languages, such as COBOL. Set the

high-order bit of the SQLDA to a value of 1.

Additionally, CACSPBR is linked as an AMODE(31) RMODE(ANY) application.

Stored procedures must pass all addresses to CACSPBR in 31-bit addressing mode.

Upon return from CACSPBR, Register 15 contains a return code value that

indicates whether the requested function completed successfully or not.

Sample member CACSPVTM is a COBOL copybook that shows the structure and

contents of both the APPC function and APPC data structures.

 01 APPC-FUNCTION.

 05 APPC-REQUEST PIC X(8).

 01 APPC-DATA.

 05 APPC-DATA-IDENTIFIER PIC X(8).

 05 LOCAL-LU-NAME PIC X(8).

 05 CICS-SYSTEM-APPLID PIC X(8).

 05 APPC-MODE-ENTRY-NAME PIC X(8).

 05 CICS-TRANSACTION-ID PIC X(4).

 05 CICS-SP-PROGRAM-NAME PIC X(8).

 05 CICS-SP-RETCODE PIC 9(8) COMP.

 05 CICS-SP-ABENDCODE

 REDEFINES CICS-SP-RETCODE PIC X(4).

 05 COMM-RETCODE PIC S9(8) COMP.

The following table describes the contents of the APPC function structure.

Parameter 1

Address ofRegister

APPC Function

Parameter 2 APPC Data

Parameter 3 SQLDA

Figure 10. Parameters passed to CACSPBR

176 Classic Federation Guide and Reference

Table 35. APPC function structure contents

COBOL name SQL data type Description

APPC-REQUEST CHAR(8) Identifies the function that CACSPBR needs to perform. Valid

functions are:

v OPEN - Start a conversation with CICS

v SEND - Send the SQLDA to CICS

v RECEIVE - Receive an updated copy of the SQLDA from

CICS

v CLOSE - Deallocate the CICS conversation

The following table describes the contents of the APPC data structure.

 Table 36. APPC data structure contents

COBOL name SQL data type Description

APPC-DATA-IDENTIFIER CHAR(8) Signature field that identifies the structure as the

APPC data structure. Must contain the value

“APPCDATA”.

LOCAL-LU-NAME CHAR(8) Identifies the name of a pool of VTAM logical units

(LUs) that can be used by CACSPBR to

communicate with CICS, for example, CACPPC0*.

In Figure 10 on page 176, CACSPBR initially

attempts to open an ACB for LU name CACPPC00.

If an ACB open error is returned, or a CNOS

negotiation error is reported by CICS, then

CACSPBR attempts to open an ACB named

CACPPC01. If that fails LU names

CACPPC02-CACPPC09 are tried until no errors are

reported or all names have been attempted.

You can specify only one set of wildcard characters.

(For example, CAC*PC0* is invalid.) You can use up

to seven wild card characters, but supplying

multiple wild cards is not a recommended practice.

CICS-SYSTEM-APPLID CHAR(8) Identifies the APPLID of the CICS target subsystem.

APPC-MODE-ENTRY-NAME CHAR(8) Identifies the VTAM logmode table entry. This name

must identify an entry in the Logon Mode Table

definition, in the Local LU Name APPL definitions

and in the CICS SESSIONS definitions.

CICS-TRANSACTION-ID CHAR(4) Identifies the name of the CICS transaction that is

defined for CACVT62 to allow communications

between the server and CICS. This name must be

4-characters long.

CICS-SP-PROGRAM-NAME CHAR(8) Identifies the name of the CICS program that

CACVT62 links to. This name must be defined as a

PROGRAM to CICS.

CICS-SP-RETCODE INTEGER CICS error return code. The value is zero if no CICS

errors are reported. If CICS-SP-RETCODE is less

than zero, then a CICS error has occurred. The

stored procedure should then inspect

CICS-SP-ABENDCODE for the error code.

CICS-SP-ABENDCODE CHAR(4) Abend code that CICS returns.

Chapter 3. Administering federation 177

Table 36. APPC data structure contents (continued)

COBOL name SQL data type Description

COMM-RETCODE INTEGER When CACSPBR detects a communications error,

COMM-RETCODE contains a return code.

Typically, you can supply a value of spaces for the LOCAL-LU-NAME,

CICS-SYSTEM-APPLID, APPC-MODE-ENTRY-NAME, CICS-TRANSACTION-ID,

and CICS-SP-PROGRAM-NAME fields. Define the information associated with

these parameters in the RUN OPTIONS parameter of the CREATE PROCEDURE

statement instead. CACSPBR gives precedence to information you supply in RUN

OPTIONS over information supplied in the APPC data fields.

Each time your stored procedure calls CACSPBR, the CICS-SP-RETCODE and

COMM-RETCODE must contain zeros. Upon return from CACSPBR, your stored

procedure must perform the following checks:

v Is the RETURN-CODE (Register 15) non-zero? If so, COMM-RETURN code

might contain a data server communications return code.

v Inspect CICS-SP-RETCODE for a non-zero value. If the value is less than zero,

inspect CICS-SP-ABENDCODE to determine the error code that CICS reports.

If your stored procedure receives a non-zero CICS-SP-RETCODE or

COMM-RETURN, CACSPBR reports it to the client application. You can

suppress sending these return codes to the client application by setting the

SQLCODE field in the SQLCA structure to a non-zero value.

Call CACSPBR with the APPC-REQUEST field values set in the following

sequence.

1. OPEN

2. SEND

3. RECEIVE

4. CLOSE

The call can issue multiple sends and receives, but should do so only when you

need to run multiple CICS applications. The stored procedure must pass to

CACSPBR the SQLDA structure that the client application passed to the stored

procedure. Additionally, you cannot alter the SQLDA structure contents. You can

change only the data referenced by ARG-SQLDATA and the associated null

indicators referenced by ARG-SQLIND. The following table provides an overview

of the processing that CACSPBR and its counterpart CACSP62 perform for each

APPC-REQUEST function.

178 Classic Federation Guide and Reference

Table 37. Processing overview by function

FUNCTION CACSPBR actions CACVT62 actions

OPEN Attempts to open a VTAM ACB based on the

information supplied in the following fields:

v LOCAL-LU-NAME

v CICS-SYSTEM-APPLID

v APPC-MODE-ENTRY-NAME

v CICS-TRANSACTION-ID

If the ACB open fails and LU pooling

information was supplied in the field

LOCAL-LU-NAME, the OPEN function

generates a new name and makes another

attempt until the OPEN function has tried all

available LU names.

In addition, the OPEN function passes the user

ID and password to CICS for security

checking. If the connected user that is running

the stored procedure supplied no user ID, the

OPEN function sends the value NO_USER and

a blank password to CICS.

Saves the conversation ID supplied by CICS and

allocates work buffers.

SEND Sends the CICS-SP-PROGRAM-NAME and the

SQLDA to CICS.

Receives a copy of the SQLDA and performs

address translation so that the CICS application

program can access the contents of the SQLDA

ARG-SQLDATA and ARG-SQLIND fields that are

referenced in the SQLDA.

Issues a LINK for the program name that is

contained in CICS-SP-PROGRAM-NAME, waits

for control to return, and sends the copy of the

SQLDA back to CACSPBR.

If CICS reports an abend, the abend code is sent

back to CACSPBR.

RECEIVE Receives a copy of the SQLDA from CICS and

performs address translation so that the new

copy is referenced by the stored procedure

application program.

CLOSE Closes the VTAM ACB, which terminates the

conversation with CICS.

Receives a deallocation request and frees resources

that are allocated when the conversation begins.

Parameters passed to the CICS application program

When you execute CICS application programs, use the parameters that CACSP62

passes to a CICS application program to establish communication.

CACSP62 passes three parameters that are found in the communications area to

CICS application programs. Sample member CACSPDFH is a COBOL copybook

that defines the communications area. The following example shows the contents

of that copybook:

01 DFHCOMMAREA.

 05 APP-RETURN-CODE PIC 9(8) COMP.

 05 ARG-DATA-POINTER POINTER.

 05 ARG-DATA-LENGTH PIC 9(8) COMP.

Chapter 3. Administering federation 179

The following table describes the contents of each of the fields in the

communications area. Your application program must establish addressability to

the SQLDA before inspecting or updating its contents.

For example, in COBOL you issue:

SET ARG-DATA TO ARG-DATA-POINTER .

The above example assumes that you included a copy of SCACSAMP member

CACSPSDA in the linkage section of your CICS application program.

 Table 38. Communication area contents

COBOL name SQL data type Description

APP-RETURN-CODE INTEGER The fullword return code value that the CICS application

uses to report whether processing was successful or not.

The contents of this field are placed in the

CICS-SP-RETCODE field in the APPC data area for

inspection by your stored procedure running in the data

server’s address space. This return code percolates to the

client application program, unless your stored procedure

overrides this code by using the SQLCODE in the SQLCA.

ARG-DATA-POINTER INTEGER The address of the copy of the SQLDA that was sent to

CICS. Your CICS application program must not modify this

field.

ARG-DATA-LENGTH INTEGER The length of the SQLDA passed to your CICS application

program. Your CICS application program must not modify

this field.

After your CICS application program establishes addressability to the SQLDA, the

CICS program establishes addressability to the data and null indicator values in

the SQLDA.

Compiling and linking applications that use CACSPBR

Use the following sample job stream to guide you when you use a supplied JCL to

compile and link applications that use CACSPBR.

The member CACSPCCC in the SCACSAMP library is a sample job stream that

demonstrates how to compile and link CACSPCOM including CACSPBR. The

following example is a copy of CACSPCCC.

To compile and link CACSPCOM by using the supplied Job Control Language

(JCL):

1. Supply an appropriate job card.

2. Modify the PROC parameters (LE, COBOL, SOUT, and so on) to specify correct

values for your site.

3. Modify the COMPILE step SYSIN DD statement to specify the correct source

library.

4. Modify the LKED step OBJ DD statement to specify the correct object library.

5. Modify the LKED step SYSLMOD DD statement to specify the correct load

library.

6. Modify the PROC statement to specify the correct high level name of the

application libraries.

180 Classic Federation Guide and Reference

CACSPBR return codes

If CACSPBR detects an error, or an error is reported by the VTAM LU 6.2

communication handler, CACSPBR returns a negative return code.

The following table provides a brief description of each return code, possible

methods to resolve the problem, and whether a more detailed explanation of the

error condition can be found in the server’s output log.

 Table 39. CACSPBR return codes

Return code Description Logged

-102 Invalid buffer version identifier. Either your stored procedure did not pass the

SQLDA that was passed to your application as the third parameter to

CACSPBR, or the SQLDA was corrupted. Verify that your stored procedure

passed SQLDA to CACSPBR as the third parameter. If you are passing the

SQLDA as the third parameter, then contact IBM Technical Support.

No

-116 Invalid stored procedure internal identifier. See the description of return code

-102 for problem resolution information.

No

-117 Invalid sqln value in the SQLDA. See the description of return code -102 for

problem resolution information.

No

-121 Your stored procedure passed an incorrect number of parameters to CACSPBR.

Verify that your program is passing the correct number of parameters to

CACSPBR. If the correct number of parameters are passed, contact IBM

Technical Support.

No

-122 Invalid APPC function was passed. Valid functions are OPEN, SEND,

RECEIVE, and CLOSE.

No

-123 Invalid local LU name was passed to CACSPBR. Probable cause is that the LU

name contains multiple sets of LU pooling wildcard characters or that too

many wildcard characters were supplied. Verify that a correct local LU name

was passed.

No

-131 CACSPBR’s attempt to register itself with the VTAM LU 6.2 connection handler

failed. Review the data server output log for the error that is reported.

Yes

-132 Error reported by the VTAM LU 6.2 connection handler while processing the

OPEN function. Review the data server output log for the error that is

reported.

Yes

-141 Error reported by the VTAM LU 6.2 connection handler while processing the

SEND function. Review the data server output log for the error that is reported.

Yes

-151 Error reported by the VTAM LU 6.2 connection handler while processing a

RECEIVE function. Review the data server output log for the error that is

reported.

Yes

-152 Disconnect reported when processing the RECEIVE function. If the disconnect

is reported due to an error condition, then the error condition is logged in the

data server output. If the disconnect occurred because CACSP62 decided to

deallocate the conversation, then no error is logged.

For some cases.

-162 Error reported by the VTAM LU 6.2 connection handler while processing the

CLOSE function. Review the data server output log for the error that is

reported.

Yes

CACSP62 abend codes

When a user-defined stored procedure requests communication with a CICS

system, CACSP62 abend codes can occur.

The stored procedure implementation provides a CICS- based LU6.2

communication program, CACSP62. This program is needed when a user-defined

Chapter 3. Administering federation 181

stored procedure program requests communication with a CICS system by using

the data server. The communication functions that this program performs are

specialized, and designed to support the stored procedure implementation.

This CICS program executes as a transaction. The transaction is initiated when the

user-defined stored procedure program tells the data server to OPEN a

communication session with a specific CICS system, identifying this program by

transaction name. You assign the transaction name when the software is installed

in the CICS system.

Certain failures might occur within this communication process. The user is

notified of failures in this communication processor with standard CICS abends.

Each error is assigned a specific abend code for easier problem determination.

Normal CICS abend handling is allowed to produce diagnostic materials as

defined by the user site. The abend code format is SPnn, where nn is replaced by

alphanumeric characters. The abend code prefix SP™ is fixed and not

user-configurable. The following table describes abends that can occur and the

causes of these abends.

 Table 40. CACSP62 abend codes

Code Description

SP01 The transaction was initiated by a means other than an ALLOCATE from the data server. The

transaction is designed to execute as a communications server using a specific protocol that the

stored procedure implementation uses. Do not attempt to initiate the transaction by any other

means.

SP02 An error condition has occurred during an LU6.2 RECEIVE operation. The data server that sent

the message terminated. CICS resources are freed and this abend is issued to generate a

transaction dump. EIB error information from the failing RECEIVE is captured for diagnostic

purposes. If the cause of the failure cannot be independently determined by reviewing the reason

the data server terminated, contact IBM Technical Support. IBM Technical Support will ask you for

the transaction dump and associated output, including data server output.

SP03 An error condition has occurred during an LU6.2 RECEIVE operation. The data server was

notified of the error and the data server issued a DEALLOCATE, effectively terminating the

communication session. CICS resources are freed and this abend is issued to generate a transaction

dump. EIB error information from the failing receive is captured for diagnostic purposes. Contact

IBM Technical Support. IBM Technical Support will ask you for the transaction dump and

associated output, including data server output.

SP04 An error condition has occurred during an LU6.2 RECEIVE operation. The data server was

notified of the error and the data server issued an ISSUE ERROR, effectively indicating the

communication session should be terminated. The data server was sent an ISSUE ABEND. CICS

resources are freed and this abend is issued to generate a transaction dump. EIB error information

from the failing receive is captured for diagnostic purposes. Contact IBM Technical Support. IBM

Technical Support will ask you for the transaction dump and associated output, including data

server output.

SP05 An error condition occurred during an LU6.2 RECEIVE operation. The data server was notified of

the error and it asked for additional information. The attempt to SEND EIB error information to

the data server also failed. The data server sent an ISSUE ABEND. CICS resources are freed and

this abend is issued to generate a transaction dump. EIB error information from both the failing

RECEIVE and the failing SEND is captured for diagnostic purposes. Contact IBM Technical

Support. IBM Technical Support will ask you for the transaction dump and associated output,

including data server output.

SP06 An LU6.2 SYNCPOINT request was detected. The stored procedure LU6.2 communications

program does not support SYNCPOINT processing. The communication partner was sent an

ISSUE ABEND. Verify the communication partner is a data server. If the cause of the failure

cannot be resolved, contact IBM Technical Support. IBM Technical Support will ask you for the

transaction dump and associated output, including data server output.

182 Classic Federation Guide and Reference

Table 40. CACSP62 abend codes (continued)

Code Description

SP07 An LU6.2 SYNCPOINT ROLLBACK request was detected. The stored procedure LU6.2

communications program does not support SYNCPOINT ROLLBACK processing. The

communication partner was sent an ISSUE ABEND. Verify the communication partner is a data

server. If the cause of the failure cannot be resolved, contact IBM Technical Support. IBM Technical

Support will ask you for the transaction dump and associated output, including data server

output.

SP08 An LU6.2 ISSUE SIGNAL request was detected. The stored procedure LU6.2 communications

implementation does not support ISSUE SIGNAL processing. The communication partner was sent

an ISSUE ABEND. The stored procedure LU6.2 connection handler program is designed to

support the product’s stored procedure communications with a data server. Verify the

communication partner is a data server. If the cause of the failure cannot be resolved, contact IBM

Technical Support. IBM Technical Support will ask you for the transaction dump and associated

output, including data server output.

SP09 An error condition occurred during an LU6.2 RECEIVE operation. An illogical condition between

incomplete data received and no data received was detected. The data server was sent an ISSUE

ABEND. CICS resources are freed and this abend is issued to generate a transaction dump. EIB

error information from the failing receive is captured for diagnostic purposes. Contact IBM

Technical Support. IBM Technical Support will ask you for the transaction dump and associated

output.

SP10 An LU6.2 RECEIVE operation completed normally but was accompanied by a DEALLOCATE

indicator. This means the data server is not in RECEIVE mode, thereby preventing the CICS

component from returning (SENDing) any processed information to the data server. The CICS

resources have been freed and this abend is issued to generate a transaction dump. EIB error

information is captured for diagnostic purposes. If the reason the data server issued a

DEALLOCATE cannot be independently determined, contact IBM Technical Support. IBM

Technical Support will ask you for the transaction dump and associated output, including data

server output.

SP11 An LU6.2 RECEIVE operation completed normally, but no data was received and the data server

issued a DEALLOCATE. This means the data server is not in RECEIVE mode, which prevents the

CICS component from returning (SENDing) any processed information to the server. The CICS

resources are freed and this abend is issued to generate a transaction dump. EIB error information

is captured for diagnostic purposes. If the reason the data server issued a DEALLOCATE cannot

be independently determined, contact IBM Technical Support. IBM Technical Support will ask you

for the transaction dump and associated output, including data server output.

SP12 The user-defined stored procedure program that executes in CICS receives a COMMAREA that

contains the address of a pointer to the argument data buffer and the length of that buffer. The

buffer cannot be moved or lengthened. The user-defined stored procedure program can specify a

shorter argument data buffer for return to the data server by changing the buffer length field in

the COMMAREA. This abend is issued to generate a transaction dump. You must request CLOSE

to terminate the communication session and release the CICS resources. Modify the user-defined

stored procedure program to prevent moving the argument data buffer.

SP13 An error condition has occurred during an LU6.2 SEND operation. The data server was sent an

ISSUE ABEND. CICS resources have been freed and this abend was issued to generate a

transaction dump. EIB error information from the failing send is captured for diagnostic purposes.

If the cause of the failure cannot be independently determined, contact IBM Technical Support.

You will be asked for the transaction dump and associated output. You will also be asked for data

server output.

SP14 An LU6.2 RECEIVE operation completed normally. The data received is not the expected

argument data buffer. The format and content of the data is unknown. No further processing can

be performed. This abend was issued to generate a transaction dump. You must request CLOSE to

terminate the communication session and release the CICS resources. If the reason incorrect data

was received cannot be independently determined, contact IBM Technical Support. IBM Technical

Support will ask you for the transaction dump and associated output, including data server

output.

Chapter 3. Administering federation 183

Table 40. CACSP62 abend codes (continued)

Code Description

SP15 An LU6.2 RECEIVE operation completed normally. The argument data buffer received was not

identified correctly. Either the buffer storage was corrupted or a data server did not create this

buffer. The format and content of the data are suspect. No further processing can be performed.

This abend is issued to generate a transaction dump. You must request CLOSE to terminate the

communication session and release the CICS resources. If the reason the buffer is incorrectly

identified cannot be independently determined, contact IBM Technical Support. IBM Technical

Support will ask you for the transaction dump and associated output, including data server

output.

SP16 An LU6.2 RECEIVE operation completed normally. The argument data buffer is not compatible

with the connection handler transaction program that issued this abend. No further processing can

be performed. This abend is issued to generate a transaction dump. You must request CLOSE to

terminate the communication session and release the CICS resources. If you have recently

upgraded your product suite, verify all components have been correctly installed. If the reason the

buffer is incompatible cannot be independently determined, contact IBM Technical Support. IBM

Technical Support will ask you for the transaction dump and associated output, including data

server output.

CA-Datacom interface for stored procedures

The CACTDCOM interface enables you to perform CA-Datacom database

operations within the local data server address space. The interface provides

equivalent functionality to batch programs that access or update CA-Datacom

systems.

The User Requirements Table (URT) name is available from the RUN OPTIONS

statement in your stored procedure definition rather than from the LOADNAM=

parameter in the DBURINF macro. (The interface macro DBURINF is not included

when generating a User Requirements Table.) The stored procedure application

program requirement to open and close the URT is the same as coding the

OPEN=USER parameter in the DBURINF macro for your batch application.

The CACTDCOM interface requires that the CA-Datacom initialization service is

active on the data server. CACTDCOM interfaces with the CA-Datacom

initialization service to connect to and communicate with the CA-Datacom

Multi-User Facility, which enables CACTDCOM to log errors. If the CA-Datacom

initialization service trace level is set to a value less than three, additional

diagnostic information is also available when an error occurs.

The CACTDCOM interface module allows you to open your URT from within the

data server address space and issue CA-Datacom calls to the database. Before

exiting your stored procedure application, you must call the CACTDCOM interface

module one last time to close the URT.

By default, when you close the URT, any changes that your stored procedure

application program made are committed to the database. Otherwise, the stored

procedure should issue a ROLLBACK call before closing the URT.

Specifying CA-Datacom resource information

When you provide CA-Datacom resource information by defining a User

Requirements Table (URT), you enable your stored procedure to communicate

effectively with CA-Datacom. A URT provides security by restricting database

access. A URT is also needed for efficient allocation of CA-Datacom resources.

184 Classic Federation Guide and Reference

When writing your own stored procedure to communicate with CA-Datacom, you

should specify the User Requirements Table name using the RUN OPTIONS

parameter instead of hard coding it in your stored procedure application program.

Doing so allows you to simply drop the stored procedure definition (DROP

PROCEDURE), update the stored procedure definition and then re-catalog the

stored procedure definition (CREATE PROCEDURE) when your environment

changes, without requiring any changes to your stored procedure application

program.

You can also supply the User Requirements Table name programmatically. The

sample stored procedure for CA-Datacom demonstrates how this can be done.

CA-Datacom resource information is identified by the _DATACOM keyword in the

RUN OPTIONS parameter. The complete format of CA-Datacom resource

information entry is:

_DATACOM(urt-name)

The CA-Datacom resource information entry is separated from preceding keyword

entries by a comma. Order of the keyword entries is not mandated except that if

you are using the NO_LE keyword in the RUN OPTIONS statement, it must be the

first keyword specified. The following examples show RUN OPTIONS statements

with keyword entries specified in differing order. Regardless of the order, the

resultant stored procedure processing is identical.

Example 1:

RUN OPTIONS ’NO_LE,_DATACOM(urt-name),_CICS(transaction-scheduling-info)’

RUN OPTIONS ’NO_LE,_CICS(transaction-scheduling-info),_DATACOM(urt-name)’

Example 2:

RUN OPTIONS ’_DATACOM(urt-name),_CICS(transaction-scheduling-info)’

RUN OPTIONS ’_CICS(transaction-scheduling-info),_DATACOM(urt-name)’

Stored procedure and CA-Datacom communication

The CACTDCOM interface load module communicates with the CA-Datacom

initialization service to connect with CA-Datacom for opening and closing your

URT and issuing your application calls.

The following figure shows the processing flow when your stored procedure

application program needs to access CA-Datacom data.

Chapter 3. Administering federation 185

To make using the CACTDCOM interface module easier, the CA-Datacom call

formats are identical to the call syntax used by native CA-Datacom. An exception

is that the first parameter in the parameter list passed to the CACTDCOM interface

module must be the address of the SQLDA parameter passed to your stored

procedure application program by the stored procedure data connector. Calls to

CA-Datacom are performed as if the program were written for direct access to

CA-Datacom.

For example, processing can occur as follows:

v To open a URT you must provide:

– A properly formatted User Information Block (UIB)

Windows / UNIX

Client Application

SQL CALL Statement

Mainframe

WebSphere Classic
Federation Server for z/OS

CACQP Query Processor

Stored Procedure Connector

Stored Procedure
Application Program

CACTDCOM

CACDCI Init Service

Multi-User Facility
(MUF)

CA-Datacom

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

Client Configuration File

Data Server Configuration File

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

Figure 11. CA-Datacom processing flow

186 Classic Federation Guide and Reference

– A Request Area containing the command OPEN
v To begin reading records using Set At A Time commands, you must provide:

– A properly formatted User Information Block (UIB)

– A Request Area containing the command SELFR along with the table name

and DBID if required

– A work area to receive the retrieved data

– An element list describing the data to be retrieved

– A Request Qualification Area containing selection criteria and other

parameters
v To close a URT you must provide:

– A properly formatted User Information Block (UIB)

– A Request Area containing the command CLOSE

Success or failure of every command is returned in the Request Area Return Code

and Internal Return Code.

CACTDCOM interface

You can use the supplied CACTDCOM interface with your stored procedures to

perform CA-Datacom database operations within the local server’s address space.

The CACTDCOM interface is distributed as a separate load module that you can

dynamically call or statically link into your stored procedure.

You call the CACTDCOM interface by using a parameter list. The first parameter

that you pass is the SQLDA argument that you pass to the stored procedure. The

remaining entries in the parameter list are the normal parameters you use to access

CA-Datacom data. Each database operation requires from two to five parameters.

For a description of the required parameters, an explanation of how parameters are

used, and what information they contain for the call or upon return, see the

CA-Datacom documentation about commands.

You must call CACTDCOM by using variable-argument list calling conventions.

That is, you must set the high-order bit of the last parameter to one.

Variable-argument list is the standard calling convention for most high-level

languages, including COBOL. CACTDCOM is linked as an AMODE(31)

RMODE(ANY) application. You pass all addresses to CACTDCOM in 31-bit

addressing mode.

Chapter 3. Administering federation 187

As indicated by the diagram above, parameters 4, 5, and 6 are conditional, based

upon the type of CA-Datacom command specified in the Request Area.

The first call that any stored procedure issues must be to OPEN the User

Requirements Table. Opening the URT enables you to access any table the URT

specifies, and you can also update those tables defined with UPDATE=YES. The

following code example shows how to issue the OPEN command in a COBOL

stored procedure. Included below is the portion of the stored procedures DATA

DIVISION and the LINKAGE SECTION that is referenced in the executable code

and the executable code to prepare for and issue the OPEN command.

All code examples shown here are hard-coded to process the table

DEMO-DEM-POH. The CA-Datacom installation process provides this table. In

this example, the stored procedure opens the User Requirements Table that you

specified in the RUN OPTIONS of the cataloged stored procedure, because you

supply no override _DATACOM keyword.

WORKING-STORAGE SECTION.

01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.

 02 POH-REQ-COMMAND PIC X(5).

 02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".

 02 FILLER PIC X(5).

 02 POH-REQ-RETURN-CODE PIC X(2).

 02 POH-REQ-INTRNL-RTNCD PIC X(1).

LINKAGE SECTION.

01 SQLDA-DATA.

 05 ARG-SQLDAID PIC X(8).

 05 ARG-SQLDABC PIC 9(8) COMP.

 05 ARG-SQLN PIC 9(4) COMP.

Register 1

Address of Parameter List

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

SQLDA

User Information Block

Request Area

Command Specific - Work Area

Command Specific - Element List

Command Specific - Request Qualification Area

Figure 12. Parameters passed to CACTDCOM

188 Classic Federation Guide and Reference

* BUILD REQUEST AREA AND OPEN URT

9300-OPEN-URT.

 MOVE "MYPROGID" TO USER-INFO-BLOCK.

 MOVE "OPEN" TO POH-REQ-COMMAND.

 MOVE SPACES TO POH-REQ-RETURN-CODE.

 MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* IF YOUR URT CONTAINS MULTIPLE "POH" TABLES, SUPPLY THE

* DATABASE ID WHERE TABLE "DEMO-DEM-POH" IS INSTALLED.

* THIS IS NORMALLY DATABASE 1 (DBID=00001).

* MOVE 1 TO POH-REQ-DATABASE-ID.

* TO OVERRIDE THE URT IN THE METADATA "RUN OPTIONS",

* SUPPLY A URT NAME IN THE WORK AREA AND PASS THE WORK AREA

* ADDRESS AS THE FOURTH PARAMETER ON THE CALL THAT FOLLOWS.

* MOVE "_DATACOM(URTNAME)" TO POH-WORK-AREA.

DISPLAY "CACSPDC1 CALLING CACTDCOM TO OPEN URT."

 UPON CONSOLE.

CALL "CACTDCOM" USING SQLDA-DATA,

 USER-INFO-BLOCK,

 POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES

 PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS

 DISPLAY "CACSPDC1 OPEN URT ERROR. RC=" RETURN-CODE

 UPON CONSOLE

 GOBACK

END-IF.

After the URT opens, the stored procedure can issue any CA-Datacom command

against the database. The following sample code shows how to issue the ADDIT

command for the table DEMO-DEM-POH in a COBOL stored procedure. The code

sample shows a portion of the stored procedure’s DATA DIVISION, the LINKAGE

SECTION that is referenced in the executable code, and the executable code to

prepare and issue the ADDIT command:

WORKING-STORAGE SECTION.

01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.

 02 POH-REQ-COMMAND PIC X(5).

 02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".

 02 FILLER PIC X(5).

 02 POH-REQ-RETURN-CODE PIC X(2).

 02 POH-REQ-INTRNL-RTNCD PIC X(1).

01 POH-WORK-AREA PIC X(20).

01 POH-RECORD REDEFINES POH-WORK-AREA.

 02 POH-PO PIC X(5).

 02 POH-LI PIC X(3).

 02 POH-RECORD-UPDATE.

 03 POH-VENDR PIC X(3).

 03 POH-TPVAL PIC X(8).

 03 POH-LATE PIC X.

01 POH-ELEMENT-LIST.

 02 POH-ELM1 PIC X(5) VALUE "PO".

 02 POH-SEC-CD1 PIC X VALUE " ".

 02 POH-ELM2 PIC X(5) VALUE "LI".

 02 POH-SEC-CD2 PIC X VALUE " ".

 02 POH-ELEMENT-LIST-UPDATE.

Chapter 3. Administering federation 189

03 POH-ELM3 PIC X(5) VALUE "VENDR".

 03 POH-SEC-CD3 PIC X VALUE " ".

 03 POH-ELM4 PIC X(5) VALUE "TPVAL".

 03 POH-SEC-CD4 PIC X VALUE " ".

 03 POH-ELM5 PIC X(5) VALUE "LATE".

 03 POH-SEC-CD5 PIC X VALUE " ".

 03 END-OF-ELEMENTS PIC X(5) VALUE SPACES.

LINKAGE SECTION.

01 SQLDA-DATA.

 05 ARG-SQLDAID PIC X(8).

 05 ARG-SQLDABC PIC 9(8) COMP.

 05 ARG-SQLN PIC 9(4) COMP.

* BUILD CONTROL BLOCKS AND ISSUE ADDIT COMMAND TO INSERT RECORD

2200-ISSUE-ADDIT.

 MOVE "ADDIT" TO POH-REQ-COMMAND.

 MOVE SPACES TO POH-REQ-RETURN-CODE.

 MOVE 0 TO POH-REQ-INTRNL-RTNCD.

 DISPLAY "CACSPDC1 CALLING CACTDCOM TO ADDIT." UPON CONSOLE.

 CALL "CACTDCOM" USING SQLDA-DATA,

 USER-INFO-BLOCK,

 POH-REQUEST-AREA,

 POH-RECORD,

 POH-ELEMENT-LIST.

 IF POH-REQ-RETURN-CODE NOT EQUAL SPACES

 PERFORM 9900-DISPLAY-RC

 END-IF.

 IF RETURN-CODE NOT EQUAL ZEROS

 PERFORM 10000-ERROR-CLOSE-URT

 DISPLAY "CACSPDC1 ADDIT ERROR. RC=" RETURN-CODE

 UPON CONSOLE

 GOBACK

 END-IF.

After the database is modified, issue a COMIT command. If the database

modification is determined to be unsuccessful or incorrect, issue a ROLBK

command to reverse all database modifications done after the last COMIT or

ROLBK command. If the stored procedure has issued neither COMIT nor ROLBK,

all database modifications done after the OPEN command are reversed. Issuing a

CLOSE command executes an implied COMIT, so the actual COMIT command can

be bypassed. Follow your site standards and procedures regarding the use of

explicit or implicit COMIT processing.

When the processing completes, the last call that the stored procedure issues must

be to CLOSE the User Requirements Table. The following code sample shows how

to issue the CLOSE command in a COBOL stored procedure. The sample shows a

portion of the stored procedure’s DATA DIVISION, the LINKAGE SECTION that is

referenced in the executable code, and the executable code that prepares and issues

the CLOSE command:

WORKING-STORAGE SECTION.

01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.

 02 POH-REQ-COMMAND PIC X(5).

 02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".

 02 FILLER PIC X(5).

 02 POH-REQ-RETURN-CODE PIC X(2).

 02 POH-REQ-INTRNL-RTNCD PIC X(1).

190 Classic Federation Guide and Reference

.

LINKAGE SECTION.

02 SQLDA-DATA.

 05 ARG-SQLDAID PIC X(8).

 05 ARG-SQLDABC PIC 9(8) COMP.

 05 ARG-SQLN PIC 9(4) COMP.

* BUILD REQUEST AREA AND CLOSE URT

9500-CLOSE-URT.

 MOVE "CLOSE" TO POH-REQ-COMMAND.

 MOVE SPACES TO POH-REQ-RETURN-CODE.

 MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* NO NEED FOR URT NAME HERE. IT IS REMEMBERED FROM THE OPEN.

 DISPLAY "CACSPDC1 CALLING CACTDCOM TO CLOSE URT."

 UPON CONSOLE.

 CALL "CACTDCOM" USING SQLDA-DATA,

 USER-INFO-BLOCK,

 POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES

 PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS

 DISPLAY "CACSPDC1 CLOSE URT ERROR. RC=" RETURN-CODE

 UPON CONSOLE

 GOBACK

END-IF.

Compiling and linking applications that use CACTDCOM

Sample JCL is not provided for compiling and linking a stored procedure that uses

the CACTDCOM interface. Your stored procedure is compiled (or assembled) by

using your site standard procedures.

Include the following control statement in your link edit input stream to link the

CACTDCOM interface by using your site standard procedures:

INCLUDE LOAD(CACTDCOM)

where LOAD is the name of a DD statement supplied in your link edit JCL to

identify the location of the CACTDCOM load module. Typically, this DD statement

identifies your installation load library.

CACTDCOM return codes

CACTDCOM returns return code 0 in normal situations. If CACTDCOM detects an

error, a non-zero return code is returned. Database errors that CA-Datacom reports

are returned directly to the stored procedure application in the Request Area and

are not intercepted or interpreted by the CACTDCOM interface.

The following table identifies the possible return code values and information you

can find in the output log for the server when one of these errors is detected.

Recommendation: The CACTDCOM interface uses return code values between

101 and 199. To eliminate any confusion regarding the source of

an error code, the stored procedure can use return codes

starting at the number 200.

Chapter 3. Administering federation 191

Table 41. CACTDCOM return code information

Value Description Log information

101 An invalid number of parameters were passed to CACTDCOM. Additional

calls can be issued to CACTDCOM. This error should occur during

development of the stored procedure.

Message 5701813

(0x005700B5) is generated.

102 The first parameter passed to CACTDCOM cannot be identified as an

SQLDA or no parameter was passed to CACTDCOM. Additional calls to

CACTDCOM should not be issued. This error should occur only during

development of the stored procedure.

None. The information

necessary to issue log calls

is not available.

103 The identifier in the internal control block used to manage stored procedure

processing by the CACTDCOM interface has been corrupted. Additional

calls to CACTDCOM should not be issued. This is an internal error. Contact

IBM Technical Support.

None. The information

necessary to issue log calls

is not available.

104 The length in the internal control block used to manage stored procedure

processing by the CACTDCOM interface is corrupted. Additional calls to

CACTDCOM should not be issued. This is an internal error. Contact IBM

Technical Support.

None. The information

necessary to issue log calls

is not available.

105 The buffer version in the internal control block that is used to manage

stored procedure processing by the CACTDCOM interface is not correct.

Additional calls to CACTDCOM should not be issued. This error indicates

that stored procedures of a prior release are installed with the current

release of the product. Any prior stored procedure applications must be

re-linked by using the new CACTDCOM interface.

None. The information

necessary to issue log calls

is not available.

106 CACTDCOM environment not properly initialized. Either the Stored

Procedure Data Connector control block pointer is zero or the CA-Datacom

Service anchor pointer is corrupted. Additional calls to CACTDCOM should

not be issued. This is an internal error. Contact IBM Technical Support.

1. None. The information

necessary to issue log calls

is not available if the

control block pointer is 0

or 2. Message 5701890

(0x00570102) is generated if

the anchor pointer is

corrupted.

107 CACTDCOM environment not initialized. Either the global system anchor

pointer is zero or the CA-Datacom Service anchor pointer is zero. Additional

calls to CACTDCOM should not be issued. This is an internal error. Contact

IBM Technical Support.

1. None. The information

necessary to issue log calls

is not available if the

global system anchor

pointer is zero, or 2.

Message 5701889

(0x00570101) is generated if

the CA-Datacom Service

anchor pointer is zero.

108 The stored procedure is attempting to issue a second OPEN command. Only

one User Requirements Table can be open at a time. Additional calls can be

issued to CACTDCOM. This error should occur only during development of

the stored procedure.

Message 5701816

(0x005700B8) is generated.

109 CACTDCOM was unable to allocate memory for internal control blocks.

Additional calls to CACTDCOM should not be issued. This error should

only occur when the server is not configured properly.

Message 5701793

(0x005700A1) is generated.

110 No User Requirements Table name was provided to CACTDCOM. Either the

RUN OPTIONS statement from the catalog or the programmatic override

did not contain the keyword _DATACOM, or the _DATACOM keyword was

not followed immediately by a (urtname) clause. Additional calls to

CACTDCOM should not be issued. This error should occur only during

development of the stored procedure.

Message 5701814

(0x005700B6) is generated.

192 Classic Federation Guide and Reference

Table 41. CACTDCOM return code information (continued)

Value Description Log information

111 The User Requirements Table name provided to CACTDCOM was less than

one character or greater than eight characters in length. Additional calls to

CACTDCOM should not be issued. This error should occur only during

development of the stored procedure.

Message 5701815

(0x005700B7) is generated.

112 The User Requirements Table program could not be loaded. Additional calls

to CACTDCOM should not be issued. The URT program must be in a load

library that is included in the STEPLIB concatenation of the server.

Message 5701817

(0x005700B9) is generated.

113 The User Requirements Table program that was loaded does not appear to

be a known format. Additional calls to CACTDCOM should not be issued.

A portion of the URT is dumped in binary to the server log when the trace

level is set to 4 or less. Review the URT content and determine if it is valid.

Changes in the format of User Requirement Tables require code changes in

CACTDCOM. Contact IBM Technical Support if you believe that the

CACTDCOM interface requires code changes.

Message 5701818

(0x005700BA) is generated.

114 An attempt to connect with the CA-Datacom initialization service has failed.

One of the error messages shown in the column to the right has been

logged. Additional calls to CACTDCOM should not be issued. This probably

indicates the CA-Datacom initialization service module is not active.

1.Message 5701897

(0x00570109) is generated

2. Message 5701903

(0x0057010F) is generated

3. Message 5701905

(0x00570111) is generated

115 An error has occurred while attempting to send an OPEN command to

CA-Datacom. Additional calls to CACTDCOM should not be issued. The

User Information Block (UIB) and the Request Area (RA) passed to

CACTDCOM are dumped in binary to the server log when the trace level is

set to 2 or less. Review the control blocks and determine if they contain

valid data. Depending upon the return code information that is logged, this

might be an internal error that should not occur, or it might be an error that

can occur only during development of the stored procedure.

Raw system return code

information is logged.

116 Resources required to communicate with CA-Datacom are not available. All

retries have been exhausted. Additional calls to CACTDCOM should not be

issued. The CA-Datacom control blocks passed to CACTDCOM are dumped

in binary to the server log when the trace level is set to 2 or less. This is an

internal error. Contact IBM Technical Support.

Message 5701819

(0x005700BB) is generated

117 The stored procedure has called CACTDCOM with a database command

without first OPENing the URT. Additional calls can be issued to

CACTDCOM. This error should occur only during development of the

stored procedure.

Message 5701820

(0x005700BC) is generated

118 A CACTDCOM interface environment pointer is zero. Additional calls to

CACTDCOM should not be issued. This is an internal error. Contact IBM

Technical Support.

Message 5701821

(0x005700BD) is generated

119 An error has occurred while attempting to send a CLOSE command to

CA-Datacom. Additional calls to CACTDCOM should not be issued. The

User Information Block (UIB) and the Request Area (RA) passed to

CACTDCOM are dumped in binary to the server log when the trace level is

set to 2 or less. Review the control blocks and determine if they contain

valid data. Depending upon the return code information that is logged, this

might be an internal error that should not occur, or it might be an error that

can occur only during development of the stored procedure.

Raw system return code

information is logged.

120 The CACTDCOM interface was processing a command other than OPEN or

CLOSE when it received a signal from the query processor to immediately

terminate processing. The query processor is probably being stopped.

Message 5701894

(0x00570106) is generated

Chapter 3. Administering federation 193

Table 41. CACTDCOM return code information (continued)

Value Description Log information

121 An error has occurred while attempting to send a command other than

OPEN or CLOSE to CA-Datacom. Additional calls to CACTDCOM can be

attempted to COMIT or ROLBK as required by the stored procedure

application program. Success of any subsequent call is dependent upon the

type of error that occurred previously. The CA-Datacom control blocks

passed to CACTDCOM are dumped in binary to the server log when the

trace level is set to 2 or less.

This is an internal error. Contact IBM Technical Support.

Raw system return code

information is logged.

122 The User Requirements Table contains at least one table enabled for update

processing. When the OPEN command was sent by the stored procedure

application program, the Internal Return Code field in the Request Area was

coded with the letter N, indicating no update processing was to be allowed.

The stored procedure has sent an ADDIT, DELET or UPDAT command

which has been rejected. Additional calls can be issued to CACTDCOM.

This error should occur only during development of the stored procedure.

Message 5701822

(0x005700BE) is generated

IMS interface for stored procedures

The CACTDRA interface enables your stored procedures to perform database

operations on IMS databases.

Stored procedures cannot use DL/I calls to access or update IMS data. A stored

procedure does not have addressability to a PSB and the list of PCBs that a PSB

contains.

The CACTDRA interface allows you to schedule a PSB and returns a pointer to the

list of PCBs in the PSB. You can then establish addressability to one or more of

these PCBs and issue ISRT, GU, GHU, and REPL DL/I calls against the PCB.

Before exiting your stored procedure you call CACTDRA one last time to

unschedule the PSB.

By default, when you unschedule the PSB any changes your stored procedure

application program made are committed to IMS.

Recommendation: You should not issue a ROLLBACK call from your stored

procedure unless it is necessary. Issuing a ROLLBACK causes an abend in the data

server.

The CACTDRA interface uses the IMS DRA initialization service to request PSB

scheduling, issue DL/I calls and finally unschedule the PSB. The IMS DRA

initialization service must be active within the data server. The service allows

CACTDRA to log errors and, if the trace level for the IMS DRA initialization

service is set to a value less than three, to log the DL/I calls that are issued by the

stored procedure that calls CACTDRA.

The following figure shows the processing flow when your stored procedure

application program needs to access IMS data.

194 Classic Federation Guide and Reference

To make using the CACTDRA easier, the DL/I call formats are identical to

CBLTDLI call syntax with the exception that the first parameter in the parameter

list must be the address of the SQLDA parameter passed to your stored procedure.

Additionally, CACTDRA uses two other DL/I function codes:

v SCHD: Identifies the name of a PSB to be scheduled.

v TERM: Unschedules the PSB.

CACTDRA interface

The CACTDRA interface enables you to perform IMS database operations within

the local server address space. The functionality of this interface is equivalent to

using DL/I functions.

The CACTDRA interface is distributed as a separate load module that you can

dynamically call or statically link into your stored procedure.

IMS

PSB

DBCTL

IMS DRA Init Service

CACTDRA

Stored Procedure
Application Program

Stored Procedure Connector

Query Processor

WebSphere Classic
Federation Server for z/OS

Mainframe

SQL CALL Statement

Client Application

Windows/UNIX

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

Data Server Configuration File

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

Client Configuration File

Figure 13. IMS DRA processing flow

Chapter 3. Administering federation 195

The CACTDRA interface uses calling conventions that resemble the way a standard

program accesses IMS data. The primary difference is that the first parameter that

is passed to CACTDRA must be the SQLDA argument list that is passed to the

stored procedure.

The CACTDRA interface must be called using variable-argument list calling

conventions. The high-order bit of the last parameter must be set to 1.

Variable-argument list is the standard calling convention for most high-level

languages, for example COBOL. Additionally, CACTDRA is linked as an

AMODE(31) RMODE(ANY) application. All addresses passed to the CACTDRA

interface must be passed in 31-bit addressing mode.

The actual number of parameters that need to be passed to the CACTDRA

interface depends on the type of DL/I function being issued and the structure of

the database being accessed. The first call that is issued to the CACTDRA interface

is a CICS-like SCHD call that schedules a PSB. This call differs slightly from a

standard DL/I call because:

v The name of the PSB is passed in the I/O area

v The CACTDRA interface returns the address of the list of PCBs that are defined

within the PSB.

One of these PCBs is passed on subsequent calls to the CACTDRA interface to

access or update IMS data. You can also pass the I/O PCB to issue checkpoint or

rollback calls.

The following example shows how to issue the SCHD call in a COBOL stored

procedure. The example shows the stored procedure’s DATA DIVISION, part of the

Parameter 1

Address ofRegister

SQLDA

Parameter 2 DLI Function Code

Parameter 3 PCB or PCB List

Parameter 4 IO Area

Parameter 5 SSA 1

Parameter 19 SSA 15

Figure 14. Parameters passed to CACTDRA

196 Classic Federation Guide and Reference

LINKAGE section, and how to prepare for and issue the SCHD call. In the

following examples, the SQLDA is named ARG-DATA.

WORKING-STORAGE SECTION.

01 PSB-NAME PIC X(8) PROCEDURE DIVISION

 VALUE "DFSSAM09". USING ARG-DATA, ARG-SQLCA.

01 DLI-FUNC-CODE PIC X(4). MOVE "SCHD" TO DLI-FUNC-CODE.

01 DRA-PCB-LIST POINTER. CALL "CACTDRA" USING ARG-DATA,

01 DRA-PCB-LIST POINTER. DLI FUNC CODE,

 10 SSA-SEG-NAME PIC X(9) DRA-PCB-LIST

 VALUE "PARTROOT". PSB-NAME.

01 IO-AREA. IF RETURN-CODE NOT EQUAL ZEROS

 10 PART-KEY PIC X(17). ERROR OCCURED

 10 DESCRIPT PIC X(20). GOBACK

 10 FILLER PIC X(13). ELSE

LINKAGE SECTION. SET ADDRESS OF PCB-LIST

COPY CACSPSDA. TO DRA-PCB-LIST

COPY CACSPSCA. SET ADDRESS OF RET-PCB

01 PCB-LIST. TO DB-PCB1.

 05 IO-PCB POINTER.

 05 DB-PCB1 POINTER.

 05 DB-PCB2 POINTER.

01 RET-PCB.

 10 PCB-DBD PIC X(8).

 10 PCB-SEG-LVL PIC 99.

 10 PCB-STATUS-CODE PIC XX.

 10 PCB-PROCOPT PIC X(4).

 10 FILLER PIC X(4).

 10 PCB-SEG-NAME PIC X(8).

 10 PCB-KFBA-LEN PIC 9(8) COMP.

 10 PCB-SENSEGS PIC 9(8) COMP.

 10 PCB-KFBA PIC X(33).

In the preceding example, the DFSSAM09 IMS sample PSB is scheduled. This PSB

allows updates on all segments of the DI21PART IMS sample database. After the

PSB is successfully scheduled, the stored procedure can obtain addressability to

one or more of the PCBs in the PSB and issue standard DL/I calls against any of

the PCBs that are available.

The following sample is a singlet of code from a COBOL program that shows how

to insert a new root segment in the DI21PART database in a COBOL program.

Like normal DL/I calls, up to 15 SSAs can be passed to CACTDRA. In the same

manner, DL/I calls must be issued in the proper sequence. For example, to update

a segment a GHU call must be issued first, followed by a REPL call.

After all of the access and update DL/I calls are issued, a CHKP call is not

required. When the PSB is unscheduled, a CHKP call is automatically issued. If the

stored procedure decides that any updates should not be applied a ROLLBACK

call can be issued. The stored procedure should not issue a ROLLBACK call that

causes an abend. If such a ROLLBACK call is issued, the query processor task

servicing the stored procedure becomes unusable.

The following sample code is for an ISRT call:

 SET ADDRESS OF RET-PCB TO DB-PCB1.

 MOVE SPACES TO IO-AREA.

* GET ADDRESSABILITY TO SQLDA PARAMETERS AND INITIALIZE

* IO-AREA FOR INSERT

 MOVE "ISRT" TO DLI-FUNC-CODE.

 CALL "CACTDRA" USING ARG-DATA,

 DLI-FUNC-CODE,

Chapter 3. Administering federation 197

RET-PCB,

 IO-AREA,

 SSA.

 IF RETURN-CODE NOT EQUAL ZEROS

 MOVE RETURN-CODE TO ORIG-RC

 ERROR HAS OCCURED

 ELSE

 IF PCB-STATUS-CODE NOT = SPACES

 ERROR REPORTED BY IMS.

After the final DL/I call is issued, the CACTDRA interface must be called a final

time to unschedule the PSB by using a CICS-like TERM call. The following sample

code shows how to unschedule the DFSSAM09 PSB in a COBOL program:

MOVE "TERM" TO DLI-FUNC-CODE.

 CALL "CACTDRA" USING ARG-DATA,

 DLI-FUNC-CODE.

 IF RETURN-CODE NOT EQUAL ZEROS

 DISPLAY "TERM CALL RC " RETURN-CODE.

 GOBACK.

Compiling and linking applications that use CACTDRA

To compile and link your stored procedure to use the CACTDRA interface, modify

the CICS CACSPCCC sample to compile and link JCL so that the ICCS

CACSPCCC sample includes the CACTDRA interface instead of CACSPBR.

Compile and link CACSPCOM using the supplied member CACSPCCC in the

SCACSAMP library. (Sample JCL to compile and link a stored procedure that uses

the CACTDRA interface is not supplied.) Before submitting the job, modify the

statement:

INCLUDE LOAD(CACSPBR)

to:

INCLUDE LOAD(CACTDRA)

If your stored procedure needs to both access and update IMS data and invoke a

CICS application program, include both of the above statements in the link step.

CACTDRA return codes

CACTDRA returns a zero return code in normal situations. If CACTDRA detects

an error, or an error is reported by DRA, a non-zero return code is returned.

CACTDRA issues 11 error return codes. Return code values between 1 and 100 are

reserved for use by the CACTDRA interface. Application return codes must be

higher than the reserved error return codes.

The application should also check DL/I status codes in addition to any errors that

might be reported by the standard DL/I status codes placed in an IMS PCB.

The following table identifies the return code values and the information you can

find in the output log for the data server when the system detects an error.

198 Classic Federation Guide and Reference

Table 42. CACTDRA return code information

Value Description Log information

1 An invalid number of parameters were passed to CACTDRA.

You can issue additional calls to CACTDRA. This error

should only be received during development of the stored

procedure.

Message 5701825 (0x005700C1) is

generated.

2 CACTDRA was unable to allocate memory for internal

control blocks. Additional calls to CACTDRA should not be

issued. This error should be received only when the data

server is not properly configured.

Message 5701793 (0x005700A1) is

generated.

3 IMS DRA initialization service not active. Additional calls to

CACTDRA should not be issued. This error should be

received only when the data server is not properly

configured.

Message 5701717 (0x00570055) is

generated.

4 CACTDRA environment not properly initialized. Additional

calls to CACTDRA should not be issued. This is an internal

error that should never occur.

None. The information necessary to issue

log calls is not available.

5 The requested PSB could not be scheduled. The stored

procedure application program can try to schedule another

PSB. This error can occur during development of the stored

procedure, in production situations when the data server has

not been properly configured (for example, not enough DRA

threads), and when the IMS Stage 1 gen. was not set up

properly for the scheduled PSB.

Message 5701708 (0x0057004C) is

generated.

6 DL/I call failed. You can issue additional calls to CACTDRA.

This error should be received only during development of the

stored procedure.

Message 5701715 (0x00570053) is

generated.

7 An error occurred during TERM processing. Additional calls

to CACTDRA should not be issued. This error should

generally only be received if something has happened to IMS.

Message 5701711 (0x0057004F) is

generated.

8 The first parameter passed to CACTDRA is not the SQLDA

or the SQLDA has been corrupted. Additional calls to

CACTDRA should not be issued. This error should only be

received during development of the stored procedure

application program.

None. The information necessary to issue

log calls is not available.

9 The SQLDA is corrupted. Additional calls to CACTDRA

should not be issued. This is an internal error that you

should never encounter.

None. The information necessary to issue

log calls is not available.

10 The application issued a SCHD call, but a PSB had already

been scheduled. This error should be received only during

development of the stored procedure.

Message 5701826 (0x005700C2) is

generated.

11 The application issued a standard DL/I or a TERM call, but

no PSB was scheduled. This error should be received only

during development of the stored procedure.

Message 5701827 (0x005700C3) is

generated.

Invoking existing IMS transactions from a stored procedure

To execute existing IMS transactions from a stored procedure, the stored procedure

uses an APPC/MVS interface instead of the CACTDRA interface.

APPC/MVS communicates with APPC/IMS. APPC/IMS schedules the requested

IMS transaction and returns the output messages that the IMS transaction

generates and sends to the calling APPC/MVS application program (the stored

procedure).

Chapter 3. Administering federation 199

APPC/IMS overview:

The APPC/IMS interface communicates with Standard DL/I applications, modified

standard DL/I applications, and CPI communication-driven applications.

 The IMS Transaction Manager is normally implemented as an IMS DB/DC

subsystem, but it can be implemented as an IMS DC subsystem.

APPC/IMS supports interfacing with the following types of IMS application

programs:

Standard DL/I applications

Existing IMS applications that are unaware that they are not

communicating with an LU 2 terminal. APPC/IMS converts the APPC data

streams into the appropriate input messages, sends them to the IMS

transaction, waits for an output message from the IMS application, and

sends the output message to the invoking application as an LU 6.2 data

stream. In most instances, the existing IMS transaction requires no

modifications.

Modified standard DL/I applications

Existing IMS application that have been modified to issue CPI

Communications calls, as well as normal DL/I calls that the application

initially issued.

CPI communication-driven applications

IMS applications that use CPI communications calls to communicate with

the partner program. They participate in the two-phase commit process by

issuing SSRCMIT or SSRBACK CPI calls. These types of applications can

issue database-related DL/I calls to access and update full-function, DEDB,

MSDB, and DB2 databases.

For information about how these types of application are designed, see the IMS

documentation about application programming. For information about message

flows and using sync-point conversations, see LU 6.2 documentation about partner

program design.

APPC/MVS overview: The APPC/MVS interface is an extension to APPC/VTAM

that allows MVS/ESA™ applications to use the full capabilities of LU 6.2.

APPC/MVS provides a set of high-level language callable services that allows

applications that use these APIs to communicate with other applications through

the communications protocols provided by the SNA network.

The APPC/MVS API combines several CPI calls into single APPC/MVS API calls,

and allows for state transitions that normally require individual CPI calls.

APPC/MVS allows applications to be abstracted from the network definitions by

using such things as symbolic destination names and selection of default outbound

LUs.

Depending on the version of APPC/MVS installed, some of these APIs have

different names and parameter lists. For information about writing APPC/MVS

applications and the APPC/MVS APIs, see the z/OS documentation about

APPC/MVS.

Configuring APPC/IMS and APPC/MVS:

When you set up an environment for a stored procedure you need to configure

changes to IMS, create VTAM definitions, and install and configure APPC/MVS.

200 Classic Federation Guide and Reference

For information about installing and configuring APPC/MVS, see the z/OS

documentation about APPC/MVS.

Application design requirements:

When you design your stored procedure application to invoke existing IMS

transactions, define input and output message formats to enable your stored

procedure to exchange messages with IMS.

 To design a stored procedure that invokes an existing IMS transaction, you do not

need to know the business logic that is implemented by the IMS transaction, but

you do need to know the message flow and input and output message formats

that the IMS transaction expects to receive.

Typically, the IMS transaction uses Message Format Service (MFS), so you should

use the message input descriptor (MID) and message output descriptor (MOD)

definitions to determine the input and output message formats. If the IMS

transaction is implemented in COBOL, the COBOL program contains copy books

or data structures that the IMS transaction uses.

If you use MFS MID and MOD definitions to identify the input and output

messages formats that the transaction uses, you need to define a parameter for

each unique input and output field defined in the MID and the MOD. The

parameter length is for the length of the MID or MOD field, and the data type is

usually CHAR. Use the following guidelines to determine what type of parameter

to use in the CREATE PROCEDURE definitions:

v Identify fields that only appear in the MID as INPUT parameters.

v Identify fields that only appear in the MOD as OUTPUT parameters.

v Identify fields that occur in both the MID and the MOD as INOUT parameters.

When you develop stored procedures, consider that the input and output message

formats that are sent to APPC/IMS do not exactly match the formats that the IMS

transaction is expecting. The standard format for an IMS input message is:

v LL: Length of the message, including LL and ZZ

v ZZ: Zeros

v Data: The input fields that the transactions expect

APPC communications use unmapped conversations, so the send message format

is:

v APPC LL

v IMS LL

v Data

The output messages generated by an IMS transaction have the same format as the

input messages. However, APPC/IMS strips off the LL and ZZ fields, so these do

not need to be defined in the received (output message) definition—just the APPC

LL field.

Restriction: APPC/IMS automatically inserts the IMS transaction code at the

beginning of the data portion of the message. As a result, invoking

IMS transactions that do not expect the transaction code at the

beginning of the input message require modifications to the existing

Chapter 3. Administering federation 201

IMS transaction. This problem should not occur if the transaction

design specifies that all input messages begin with the 8-byte

transaction code.

Stored procedure limitations for IMS transactions:

When you develop a stored procedure application that invokes an IMS

conversational transaction, you need to define the conversation ID in hexadecimal

format.

 You can develop a stored procedure that invokes an IMS conversational transaction

that returns multiple screens of data. When you allocate a conversation, an 8-byte

conversation ID is returned. You must use this ID in subsequent APPC/MVS calls.

The conversation ID is associated with the address space and can be used by any

TCB in the address space until the system deallocates the conversation.

Therefore, if you add an additional input or output parameter to the stored

procedure definition for a given conversation ID, it is possible to write a stored

procedure that is called multiple times, each time returning one or more screens of

data. If you take this approach, define the input or output conversation ID

parameter as CHAR(16). Then the system converts the conversation ID to

hexadecimal format for data exchanges with the client application.

Recommendation: Because stored procedures can only return a limited amount of

information, create stored procedures by invoking IMS

transactions to perform updates or to return a single screen of

data.

Testing APPC/MVS stored procedures:

When you test your APPC/MVS stored procedure, you can activate IMS tracing

and get trace output to verify that you are formatting input messages correctly.

 About this task

Testing an APPC/MVS stored procedure is not difficult because APPC/MVS

returns useful information from the APPC/MVS Error_Extract API. The API

includes the message text that is usually displayed on the console, including error

message numbers, which help you diagnose and debug APPC/MVS-related errors.

APPC/MVS supports very good tracing and debugging facilities, which enable

you to get message flows and contents to help you determine whether the input

messages are formatted correctly.

Recommendation: Tracing the actual APPC/MVS message flows and content is

generally not necessary, unless the stored procedure is

attempting to interface with a very complicated IMS

transaction.

An alternate approach is to use the IMS trace facilities. With this approach, IMS

logs the DL/I calls that are generated by the transaction. By inspecting the SSAs

that are generated and the data returned, you can determine whether the input

messages are formatted correctly. However, you need some knowledge about the

IMS transaction to determine whether the call patterns and returned information is

correct.

202 Classic Federation Guide and Reference

Procedure

To activate IMS tracing and get trace output:

1. Activate IMS tracing by issuing the command:

/TRACE SET ON PSB (PSB-Name)

where PSB-Name is the name of the PSB associated with the IMS transaction

being tested.

2. For each test run, perform the following steps:

a. Run a client application that invokes the stored procedure.

b. After the stored procedure completes, issue the IMS /CHECKPOINT command

to flush the IMS log buffers to disk.

c. Run the IMS trace log print utility DFSERA10. Reference the online logs for

your IMS system.

d. Review the output from DFSERA10 to see if the DL/I calls look

appropriate.

Sample stored procedures for IMS transactions:

You can use stored procedure samples to test conversational and

non-conversational transactions with IMS.

 The following sample stored procedures interface with two of the IMS IVP sample

transactions. The stored procedures are located in the SCACSAMP library:

v CACSPTNO—Interfaces with the IMS IVTNO non-conversational transaction

v CACSPTCV—Interfaces with the IMS IVTCV conversational transaction

In addition, member CACSPMPP contains the CREATE PROCEDURE syntax for

these two sample stored procedures.

The sample IMS transactions are very simple, and provide QUERY, INSERT,

UPDATE and DELETE functions to a sample employee database. IVTNO expects a

single message with a command code, and the database is immediately updated

and a single message is returned. IVTCV performs the same operation, but the

changes are not committed until you send an END message to IVTCV.

The sample stored procedures are simplified, in that they do not use security or

sync-point control. The processing flow for the CACSPTNO stored procedure is as

follows:

1. Establish addressability to the input/output parameters it was passed

2. Allocate the conversation using hard-coded values.

3. Format the input message buffer.

4. Send the message to IMS.

5. Wait for the output message from IMS.

6. Update any output or input/output parameters.

7. De-allocate the conversation.

The CACSPTCV stored procedure is similar to the CACSPTNO stored procedure,

and includes additional send and receive steps to send the END message and wait

for the response.

Both samples contain limited error detection and reporting. If an error is reported,

the APPC/MVS Error_Extract service (API) is called to obtain detailed information

Chapter 3. Administering federation 203

about the error condition. The error information is displayed on the console and a

general error return code is returned to the calling application. This approach was

taken because after the stored procedure is tested, errors should not occur in

production operations. Another reason is that end-users probably will not know

what to do with the detailed information that is provided when an APPC/MVS

error is reported.

Adding transaction security:

You can use supplied subroutines to secure the sample stored procedures that test

IMS transactions.

 The sample stored procedures that test IMS transactions are unsecured

transactions, and do not pass a user ID or password in the allocate call. To use

secured transactions, the stored procedure can use the CACSPGUI (Get User ID)

and CACSPGPW (Get Password) subroutines to obtain the ID and password of the

current user for inclusion in the allocate call.

Sync-point conversations:

You can issue calls that use LU 6.2 sync-point protocols to communicate with

APPC/IMS.

 These calls are less complex than the ones that the sample stored procedures

contain to allocate the conversation, send and receive messages, de-allocate the

conversation, and obtain error information. For information about sync-point

control flows and the formats of the calls that you need to issue, see the IMS

documentation about application programming design.

204 Classic Federation Guide and Reference

Chapter 4. Tuning Classic federation

Table definition techniques and query writing techniques can help ensure optimal

performance.

When you map data, the indexes, keys, and columns for the database or file

system must be defined to the data server. All other optimization built into the

data server depends on these mappings.

Performance varies based on the type of data accessed and how the data is

accessed. Query optimization also varies based on how the data servers and client

applications are tuned. Another important factor is how the service information

entries for the query processor are defined.

Query optimization techniques

The query processor optimizes queries that are written on the databases. However,

this optimization is limited to the information that the query processor knows

about in the databases and the organization of the databases.

Write effective queries and define logical tables to maximize query performance.

Query optimization is based on the extent to which the database or file system

performs the filtering that is required to obtain the final result set.

Example: A three-segment IMS HIDAM DBD contains 10,000 instances of the

lowest level segment (also called the leaf segment).

v If the query processor can build a segment search argument (SSA), which contains

a search argument for every segment, a single access is required. In this case, the

query processor retrieves the final result set, and the connector or the query

processor does not need to perform additional filtering.

v If the query processor cannot build an SSA, 10,000 IMS GET commands are

issued. In this case, the connector or the query processor must filter the

intermediate result set to obtain a single row result set.

The full retrieval of the mapped segments (or an entire VSAM file) is called a full

table scan. The IMS retrieval of the single row is faster if the SSA contains primary

or secondary index fields. The scenario is the same for VSAM access that involves

primary and alternate indexes rather than SSAs.

If the trace level field of the query processor service information entry is set to 2,

the filtering information that obtains the final result set is written to the log. For

IMS, you use the IMS service information entry.

Keys to optimize queries

Use keys in your queries when possible to optimize query performance.

To identify keys, include index definitions on logical tables. When you define index

information, front-end tools access the data server to create optimized queries.

These queries are based on the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS

information in the metadata catalogs. These index definitions do no actually index

the data. Instead, the definitions describe the existing physical indexes on the data.

© Copyright IBM Corp. 2003, 2006 205

The entire logical table is scanned in these instances:

v Queries without qualifying WHERE clause information on indexes

v Queries without qualifying information on non-indexed columns

To perform these scans, the query processor must read the entire portion of the

database or file that the table defines. The scanning process can result in poor

performance on large databases, particularly when an SQL join is performed and

an inner table must be scanned multiple times.

When a new application uses existing data, add additional indexes to your data to

meet the needs of Classic federation queries. Review your queries to determine

whether new indexes can improve performance without impact to another

application that needs to use the data.

Join operations to optimize queries

Join processing uses the nested-loop access method for all queries that contain

joined columns.

Nested-loop processing for a two-table join involves reading an outer table and, for

each row selected in that table, reading the inner table to join with that row, based

on the join columns.

Join processing applies to every row of the inner table where the value of its join

columns satisfies the specified relational conditions with the correlating join

columns of the selected row of the outer table. This processing involves these

actions:

v Creates a row in the result table with the requested columns of both the inner

and outer tables.

v Selects the next row of the outer table and repeats this process until there are no

more rows to select from the outer table.

Example 1. Join query to avoid:

SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B

The query processor reads all rows in TABLE1 by default. The query processor

then reads all rows in TABLE2 to join every row in TABLE1 with every row in

TABLE2. If TABLE1 has 100 rows and TABLE2 has 100 rows, the result set contains

10,000 rows for this query.

The number of rows is calculated as follows:

(number of rows in TABLE1) x (number of rows in TABLE2)

100 x 100 = 10,000

The actual number of database reads is 10,100. 100 reads are for the outer table and

10,000 (100 x 100) reads are for the inner table. While this type of Cartesian join is

not commonly performed in SQL queries, it demonstrates the type of join queries

to avoid.

Example 2. Change the previous query as follows:

SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B

WHERE A.COL_A1 = B.COL_B1

This query might return a small number of rows. However, because there are no

other qualifications for TABLE1 or TABLE2, nested-loop join processing might

206 Classic Federation Guide and Reference

require reading every row from TABLE1 and matching it with every row of

TABLE2 (10,100 reads). This is especially true if the join column in the inner table

(COL_B1 in TABLE2) is not indexed.

If COL_B1 in TABLE2 is a uniquely indexed column, the number of necessary

reads is reduced from 10,100 to 200. Each row in the outer table (TABLE1) is read

once and a single indexed read is performed on the inner table (TABLE2).

Example 3. A unique index is defined on COL_B1 in TABLE2, and the outer and

inner tables are switched as follows:

SELECT B.COL_B1, A.COL_A1 FROM TABLE2 B, TABLE1 A

WHERE B.COL_B1 = A.COL_A1

The column COL_A1 in TABLE1 is not indexed. 10,100 rows are read because the

inner table, which is now TABLE1, must be scanned for each row in the outer table

TABLE2. Again, COL_A1 is not an indexed column in TABLE1, whereas COL_B1

in TABLE2 is indexed.

When a query includes a join table, the query optimizer determines ordering

optimization that is based on information in the WHERE clause. This optimization

is attempted in phases:

1. The optimizer checks if the default outer table in the join contains any WHERE

clause information that is not part of a join condition with a column in another

table. If there is no non-join WHERE information, the optimizer checks the

remaining tables in the query and uses the first table with non-join WHERE

information as the outer table in the join.

2. The optimizer runs additional optimization if the first phase reorders the

default outer-inner table processing of the join and more than two tables are

referenced in the join. The optimizer attempts to order all of the inner tables of

the join such that each processed inner table contains a column that is joined

with a table that precedes it in the outer to inner order. Filtering of rows from

outer-to-inner table processing is maximized to keep the number of access

reads to a minimum.

Query processor optimization

The query processor optimizes SQL queries based on information in the WHERE

clause, index information, and configuration parameters that activate optimization.

Connectors and query processor interaction

During query processing, the query processor runs SQL queries, accesses the

metadata catalogs, and calls connectors.

A connector uses the information in the WHERE clause of a query to attempt to

access the database or file with optimum performance. The query processor

inspects the data that the connector returns to determine if the data meets the

WHERE qualification, if specified. The data that remains is then staged so that

query results are not returned to the client until the complete result set is built.

After all the data is read and staged, the required post-processing is performed,

and those results are staged. Post processing includes sorting when an ORDER BY

clause is specified and when evaluating rows for aggregate functions. After the

query processor finishes processing the staged results, the final result set is

returned to the client application.

Chapter 4. Tuning Classic federation 207

The connectors optimize query processor performance using index information. If

the connector cannot optimize access to the database or file, the connector attempts

another optimization method. The connector filters the number of records returned

to the query processor by analyzing the WHERE clause on the data that is

returned from the database or file system. If the connector can successfully filter

the records that are returned, the connector notifies the query processor not to run

the corresponding filtering instructions at the query processor level.

Configuration parameters for optimization

Use the configuration parameters to improve query processing performance.

Use the configuration parameters to activate the following optimization strategies:

v PDQ for immediate return of data

v STATIC CATALOGS for static catalog access

v BTREE BUFFERS, FETCH BUFFER SIZE, and LD TEMP SPACE for result set

staging

The success of these optimization strategies depends on the query that is issued

and on the size of the expected result set.

Immediate return of data

The immediate return of data strategy attempts to eliminate the staging process

that the query processor uses for intermediate result sets. You can activate the

immediate return of data option with the PDQ parameter.

The immediate return of data strategy improves query performance for medium to

large result sets. For small result sets that are less than a single fetch buffer, this

strategy does not significantly improve query performance.

When the PDQ parameter is active, a row of the result set is returned to the client

application when the connector returns the row. The query is inspected to

determine if post processing is required. The ORDER BY clause and aggregate

functions like MIN, MAX, AVG, COUNT and SUM require the rows to be staged,

therefore using these SQL features prevents the immediate return of data. If

staging is not required, the query processor invokes the immediate return of data.

Static catalogs

You can identify the metadata catalogs that the query processor accesses as static

to optimize the compiler process. You can activate static catalog processing with

the STATIC CATALOGS parameter.

Typically, the query processor opens and closes the metadata catalogs for each

logical table that a query references during the compile process. Locks must be

established to prevent updates when a query processor is processing a request

from the Classic Data Architect or the metadata utility. A lock prevents one query

processor instance from updating catalog data that another query processor

instance is using. All locks are requested by a query processor.

When the catalogs are static, the metadata catalog files are opened once when you

first issue a query and closed when you disconnect from the query processor. After

catalogs are defined as static, updates are not permitted from another source while

the data server is active.

208 Classic Federation Guide and Reference

Static catalog processing improves query performance when client applications

issue several queries that return small result sets. You can also create linear

versions of the metadata catalog files to optimize the compiler process.

Creating a linear catalog:

You create and access linear catalogs in memory rather than on disk. The sample

JCL member, CACLCAT, contains JCL to allocate a linear version of the system

catalog. CACLCAT is located in the SCACSAMP data set.

 About this task

You can populate a linear system catalog by copying the contents from a

previously populated sequential or linear catalog. The INIT operation of the

catalog initialization and maintenance utility is not used to initialize a linear

system catalog.

Procedure

To initialize and populate linear catalogs:

1. Allocate a sequential catalog.

2. Use the INIT function to initialize and populate the catalog.

3. Start the data server using the sequential catalog.

4. Populate the sequential catalog with the necessary table mappings using the

metadata utility or the Classic Data Architect.

5. Shut down the server.

6. Allocate the linear catalog.

7. Use the COPY function to populate the linear catalog.

8. Update the data server configuration to set STATIC CATALOGS = 1.

9. Start the data server using the linear catalog.

Result set staging

A set of configuration parameters help you to make choices between virtual

storage and disk resources to stage data. You can tune the space for staged result

sets with the BTREE BUFFERS, FETCH BUFFER SIZE, and LD TEMP SPACE

parameters.

If you do not activate immediate return of data processing, or if this processing

cannot be applied to a query, the result set is staged before it is returned to the

client application. Most of the columns in a result set row are written to a B-tree

file. If you activate immediate return of data processing, staging occurs but the

staged result set size is reduced because data is being read and deleted as new

data is added.

This set of parameters control the number of B-tree buffer caches in use and the

physical type, size, and temporary storage in use after all memory in the cache is

exhausted. The temporary storage can be hiperspace or disk storage.

Recommendation: Use hiperspace space to avoid physical I/Os. If you configure

LD TEMP SPACE to use hiperspace, the number of btree buffers (in-core buffers)

has less effect on optimization. When hiperspace is enabled, you should use the

BTREE BUFFERS default.

Chapter 4. Tuning Classic federation 209

IMS access optimization

You can optimize access to IMS data with optimizing methods for queries,

Program Communication Block (PCB) selection options, and Program Specification

Block (PSB) scheduling.

Keyed access techniques, SSA, and IMS optimization

You can optimize native access to your IMS databases by using the keyed access

techniques that IMS provides.

Optimized access to the database relies on the IMS index and Segment Search

Argument (SSA). You can use primary indexes, secondary indexes, and search

fields.

For optimum performance, the columns that a WHERE clause references need to

supply a key value or multiple key values. Similarly, in join operations, the inner

tables in a join need to include key information so that a qualified SSA call can

optimize access. A qualified SSA is only generated for either condition when index

information is available in the catalogs for the logical tables that an SQL statement

references.

Primary indexes for IMS optimization

Define columns that map to the primary index field in an IMS database. This

technique optimizes queries that contain the WHERE and JOIN qualification on

those columns.

Qualified SSAs are created when a query meets the following criteria:

v The WHERE clause of the query contains the key values.

v Tables from the outer loops in a join operation supply a unique key for the

subqueries in the inner loop.

Optimizing HDAM databases

Hierarchical Direct Access Method (HDAM) databases do not contain a primary

index. Instead, they use a key-hashing technique to gain fast access to data. Logical

tables mapped to an HDAM database might not be retrieved in ascending key

sequence, because the key sequence is a function of the HDAM randomizer, which

is an IMS user exit. You can order keys in an HDAM database either by specifying

an ORDER BY clause in the SELECT statement or by specifying the name of a

column that maps an XDFLD statement that contains the HDAM primary key as

its source.

Tip: An XDFLD statement is associated with the target segment. XDFLD specifies

the name of an indexed field, the name of the source segment, and the field

used to create the secondary index from the source segment. You can use

XDFLD statements only when a secondary index exists.

Secondary indexes for IMS optimization

When you define secondary indexes for a table with the CREATE INDEX

statement, the query optimizer uses secondary indexes to optimize each query

based on information in the WHERE clause.

If both a primary sequence field and a secondary index are available when the

query accesses IMS data, the primary sequence field is given precedence.

210 Classic Federation Guide and Reference

Required: If you define an IMS secondary index with a CREATE INDEX

statement, the PSB used to access the target table must contain one or

more PCBs with the correct processing sequence (PROCSEQ). If the PSB

does not contain one or more PCBs, a runtime error occurs when the

query processor selects the mapped index for keyed processing.

CREATE INDEX statement for IMS optimization

You can use the CREATE INDEX statement to define IMS indexes, with certain

processing requirements and restrictions.

You can use the CREATE INDEX statement to define the primary sequence field on

a Hierarchical Indexed Direct Access Method (HIDAM) database. You cannot use

the CREATE INDEX statement to define the sequence field on a Hierarchical Direct

Access Method (HDAM) database. You can use XDFLD statements for either

HIDAM or HDAM databases. Specific limitations on keyed access in HDAM can

mislead optimization algorithms if the primary sequence field is defined as an

index. However, HDAM keyed access is used when possible.

When you define an IMS index, the columns in the CREATE INDEX statement

must match either the sequence field for a HIDAM root segment or the SRCH

fields for an XDFLD statement in the DBD. The metadata utility validates all

CREATE INDEX statements on the DBD by matching column offset and length

information with the offset and length information for sequence and SRCH fields

within the DBD. This matching is only performed on the root segment for the

defined table. The validation is based on the INDEXROOT clause in the CREATE

TABLE statement. If the INDEXROOT value is not specified, the physical ROOT

default is used.

The order of the columns in a CREATE INDEX statement is significant during the

matching process. The validation flags as an error columns that match sequence or

SRCH fields, but are not in the CREATE INDEX order.

The columns in a CREATE INDEX statement can sub-define sequence or SRCH

fields in the DBD. For example, you can map a primary HIDAM sequence field

defined as 8 bytes as two 4-character columns.

Search fields for IMS optimization

You can use an IMS search field to optimize access to your IMS data. If you define

a search field as a column in the metadata grammar and then reference that

column in a WHERE clause, a Segment Search Argument (SSA) is generated that

contains the WHERE qualification for the search field.

The WHERE clause in a query needs to refer to the columns that are associated

with the root segment primary index or to a secondary index that maps to the root

segment of the database. When using a secondary index, the DBD hierarchy might

be inverted. For optimum performance, include a WHERE qualification on

subordinate segment key fields or normal search fields in the root or subordinate

segments.

Include a WHERE qualification to build a single SSA. As a result, IMS returns only

the segments that match the qualification in the WHERE clause, which eliminates

or minimizes any query processor and connector filtering required.

Partial keys for IMS optimization

The partial key information in a WHERE clause helps optimize access to IMS data.

Chapter 4. Tuning Classic federation 211

You can map multiple columns to an IMS field. The columns can be the primary

key or a secondary index (XDFLD). When you map multiple columns to a single

IMS field and a WHERE clause references a subset of those columns, the resulting

condition is known as a partial key.

Optimization is accomplished by generating a key range based on the parts of the

key in the WHERE clause. The key range specifies the lowest and highest key

values of the columns in the WHERE clause. To optimize the query and generate

SSAs, specify partial keys in the sequence in which they map to the IMS field.

Example: An IMS field named FIELD1 is 10 bytes long. You map three columns to

the IMS field in the following sequence:

v COLUMN1 = bytes 1-3

v COLUMN2 = bytes 4-5

v COLUMN3 = bytes 6-10

You then issue the following query:

WHERE COLUMN1 = ‘abc’ and COLUMN2 = ‘00’

The following SSA is generated:

FIELD1 >= abc00(low values) & FIELD1 =< abc00(high values).

In this example, IMS only returns the segments that match the WHERE

qualification. However, if you specify a WHERE clause that only references

COLUMN2 or COLUMN3, the query processor cannot generate an SSA. Instead,

the query processor or connector must retrieve all of the mapped segments and

perform all filtering logic.

Restriction: Multiple part field mapping applies to IMS root segment sequence

fields and secondary index keys only. Partial field mapping is not

recognized for ordinary IMS segment fields that are not part of a key.

Path calls for IMS optimization

Path calls access data sources when WHERE qualification criteria exists for

segments at levels other than the root of the hierarchy.

Path calls can significantly reduce the number of Data Language Interface (DL/I)

calls required in such cases. To use path calls, PSBs that access IMS databases must

contain PCBs that are defined with a PROCOPT value that includes the value P.

Example:

PCB DBDNAME=dbdname,PROCOPT=GOTP

If you are not certain whether your specific PSBs support path calls, review the

PSBs in question with your IMS database administrator.

IMS optimization for HIDAM, HDAM, and DEBD

Optimizing access to IMS data involves considerations that are specific to the

HIDAM, HDAM, and DEBD databases.

HDAM and HIDAM optimization

Optimizing access to IMS data with HDAM and HIDAM databases primarily

focuses on DBDs. In addition, optimization differs when accessing HIDAM and

HDAM databases and HDAM databases impose some limitations.

212 Classic Federation Guide and Reference

With HIDAM databases, SSAs are built when the following conditions are met:

v WHERE clauses contain columns that map to fields.

v Reads on fields contain the EQ, LT, LE, GT, or GE operators with any

combination of AND and OR conditions against any combination of mapped

segments in the database.

With HDAM database, queries are optimized under the following conditions:

v Simple keyed reads with the EQ operator and no AND or OR conditions for the

key field

v AND and OR conditions for other fields in any mapped segment as described

for HIDAM databases

HDAM restrictions

SSA support for HDAM databases is restrictive due to IMS restrictions. For

optimization to occur, the WHERE clause cannot result in the request for a range

of HDAM keys.

A limitation of IMS HDAM processing affects full table scans. For many HDAM

queries, full table scans can occur. The default HDAM RANDOMIZER might not

store keys in sequenced order. For example, a segment with a key field of 4 is not

necessarily ordered in sequence following a segment with a key field of 3. While

IMS allows OR conditions on an HDAM key qualification in the SSA, IMS might

not return the correct result set. IMS might not return rows that satisfy the WHERE

clause.

Result set processing

Classic federation ensure that the correct result set is returned by taking one of the

following actions:

v Not including qualification information in generated SSAs, thus forcing a full

table scan.

v Accessing the database through a secondary index on the primary root key. The

secondary index provides direct access to the correct result set, and is subject to

the same optimization rules as a HIDAM secondary index.

For further information on HDAM processing, see the IMS documentation about

application programming.

DEDB optimization

You can access IMS Fast Path DEDB databases by using a Bean-Managed

Persistence (BMP) service or by using the Database Resource Adapter (DRA)

interface.

Disabling high-speed sequential processing:

When accessing DEDBs as a Bean-Managed Persistence (BMP) service, you must

disable high-speed sequential processing (HSSP) to successfully process databases.

 About this task

PCBs are defined as HSSP when the PROCOPT keyword parameter includes the

value H.

Procedure

Chapter 4. Tuning Classic federation 213

To disable HSSP in a BMP:

Include a DFSCTL JCL statement in the data server startup JCL with a SETO

control statement.

Example SETO statement:

//DFSCTL DD *

SETO DB=IVPDB3,PCB=HSSP,NOPROCH

Failure to disable PROCOPT=H PCBs results in an FY status call when you access

the DEDB, and in an unexpected DLI status error message.

Setting Fast Path buffers:

Fast Path buffers must be available to process DEDB databases.

 About this task

If IMS runs out of buffers during a query, an FR status code is returned when it

processes a Data Language Interface (DL/I) call. The client returns an unexpected

status code error message.

Procedure

To set the Fast Path buffers:

v BMP environment: Set the NBA and OBA keyword parameters in the data server

JCL to pass to IMS at BMP startup time.

v DRA environment: Define the CNBA and FPBxx parameters in the DFSPRP

macro when you generate the DRA startup table that the data server uses.

PCB selection options for IMS optimization

The query processor selects a PCB to access the segments that are mapped by a

logical table or column. To optimize performance, you can perform IMS PCB

selection by using an explicitly named PCB or by using ordinal PCB numbers.

Otherwise, the query processor uses the PCB by verification method.

The PCBPREFIX is an optional clause on the CREATE TABLE and CREATE INDEX

statements that you can use to specify a set of candidate PCB names and sets and

ranges of PCB numbers that are eligible to use for accessing the IMS database. If a

PCBPREFIX is specified on an IMS table definition, you should also specify the

PCBPREFIX clause on the CREATE INDEX statement.

You can use the Classic Data Architect to modify the PCB selection for IMS tables

or indexes.

PCB selection by name

When you use PCB selection by name, you need to carefully coordinate the PCB

definitions and the related table definitions.

PCB selection by name selects the PCB by using a partial or full PCB name that is

associated with a logical table or index. Specifying PCB names is useful when you

use the AIBTDL/I interface to select the PCB used to access the IMS database but

the PCB names do not match the naming conventions required for selection using

the PCBPREFIX option.

214 Classic Federation Guide and Reference

Important: Ensure that the named PCB can access the defined tables. Use the same

PCB prefix name for all logical tables that access the same logical or physical DBD

by using the same primary or secondary index.

If the PCB selected does not have the correct IMS path access for the table

(SENSEGs), an error is returned from the query.

PCB selection by number

PCB selection by number requires knowledge about the PSB being used to access

the IMS database and can be impacted by changes to the contents of a PSB.

Specifying PCB numbers is useful when you want to eliminate any IMS call before

the database is accessed to process the SQL statement.

When using PCBNUM, you specify the actual number of the PCB that you want to

use to access the IMS database. You can also specify ranges of PCBs that are

eligible for use and specify multiple ranges of PCB numbers for use when the

same PSB is used in SQL queries that contain references to multiple tables that use

the same PSB to access the IMS database. The first PCB in the PSB is numbered

one.

PCB selection by verification

PCB selection by verification is the default method that the query processor uses to

select a PCB for processing.

With this method, the query processor issues DL/I calls to verify that the PCB

selected can successfully access the database path that the logical table will access.

The correct PROCSEQ must be specified if a column that maps to an XDFLD is

specified in a WHERE clause.

PSB scheduling for IMS optimization

PSBs contain PCBs. A program specification block (PSB) is the unit of access that a

given program uses to interface with IMS. The process of interfacing with IMS is

known as PSB scheduling.

You can use the ASMTDLI interface or the DRA interface for PSB scheduling.

Depending on which IMS interface is used, the processes involved in scheduling a

PSB for a data server and how you specify which PSB a data server uses differ.

Use the DRA interface to access IMS data when possible.

BMP and DBB interfaces for PSB scheduling

The BMP and DBB interfaces enable the data server instance to access IMS as a

BMP, DBB, or DL/I region. But, this interface can require significant use of IMS

resources.

Use the DRA interface to access IMS data when possible. If you cannot use the

DRA interface, then configure data servers with the BMP or DBB interface as

single-user servers. A smaller number of PCBs are required to be defined within

the PSB. A smaller PSB requires significantly less resources for the data server

instance.

The BMP and DBB interfaces limit access to IMS data to a single PSB for a data

server instance. The IMS region controller only permits a single PSB to be

scheduled and has a limit of one instance of an IMS region controller per z/OS

address space.

Chapter 4. Tuning Classic federation 215

The PSB scheduled in this environment must contain enough PCBs to support all

concurrent user access to the IMS data if you plan on take any of the following

actions:

v Access multiple DBDs

v Perform joins of IMS data

v Support multiple users

Very large PSBs require significant use of IMS resources.

DRA interface for PSB scheduling

With DRA, you can schedule multiple PSBs from a single data server. DRA also

can support multiple user connections at the same time.

The ability to schedule multiple PSBs enables the PSBs to be small in size. Small

PSBs reduce the IMS resources that are required for a query of IMS data.

With the CREATE TABLE statement for an IMS logical table, you can use

SCHEDULEPSB parameter to associate two PSBs with each logical table. The first

PSB that you specify is referred to as the standard PSB. The second PSB that you

specify is the join PSB.

Standard PSB

The standard PSB is scheduled to service queries between two or more

IMS logical tables that do not contain a join operation. This PSB only needs

to contain a single PCB. The PCB is sensitive to the segments that make up

the IMS path to which the IMS logical table maps.

Join PSB

The join PSB is scheduled for queries where the query contains a join

between two or more IMS logical tables. A join PSB is specified for the first

table in the join. The join PSB typically contains multiple PCBs, at least one

for each IMS logical table that the join references.

 Before subsequent PSBs are scheduled, the currently scheduled PSBs are

inspected to determine if they contain a PCB that can be used to service

the query.

v If a PCB is available, another PSB is not scheduled. Instead, the available

PCB issues IMS calls for access to the referenced table.

v If a PCB is not available and a join PSB is specified for this table, that

join PSB is scheduled.

v If a PCB is not available and a join PSB is not specified, the standard

PSB that is associated with that logical table is scheduled.

Default PSB

You can use the service information entry that initializes the DRA interface

to specify a default PSB. If a standard PSB is not defined for an IMS logical

table, the default PSB is scheduled. The default PSB is inspected to

determine if a PCB exists that can be used to service the query. If a default

PSB is scheduled, it contains PCBs for all IMS databases, segment paths,

and secondary indexes that need to be accessed. The default PSB for the

DRA interface is similar to the PSB for the BMP and DBB interfaces.

 To set up the DRA interface:

v Create standard PSBs for all IMS logical tables if you plan to use the DRA

interface and join IMS data with composite join PSBs. The need to schedule

multiple PSBs for join operations is eliminated.

216 Classic Federation Guide and Reference

v You do not need to create individual PSBs for each logical table. You can share

the same standard PSB or join PSB among multiple logical tables. In addition, if

you use multiple logical tables to access multiple paths in the same IMS

database, you can create a single PSB that contains one or more PCBs that map

all paths in the DBD to be accessed. You can then associate this PSB with all of

the logical tables that are mapped to that database. Similarly, share the PSB for

all of the logical tables that map to a DBD that uses the same secondary index.

VSAM access optimization

You can optimize access to VSAM data by using keyed access techniques,

configuration parameters, and the VSAM service.

The techniques that you can use to optimize access to VSAM data only apply to

VSAM KSDS data sets.

With ESDS and RRDS data sets, the entire contents of the files must be read to

process a query. You cannot access the data directly, with the exception of accessing

an ESDS data set through an alternate index.

Keyed access techniques for VSAM optimization

You can use a primary index, an alternate index, or partial keys to optimize access

to VSAM data.

Primary and alternate indexes for VSAM optimization

The query processor supports both primary and alternate indexes when it

processes SQL requests of VSAM data. You can use the Classic Data Architect to

define a primary VSAM index or an alternate VSAM index.

Although these indexes are usually transparent, the performance of queries that

use primary or alternate indexes improves when you retrieve data from large

VSAM files. Performance particularly improves during join processing.

Primary indexes:

The query processor determines the use of primary indexes at run time.

 The query processor identifies primary indexes that are based on the following

criteria:

v Existence of index information that defines the columns that contain the key

v Key values that are supplied in the SQL WHERE clause

The query processor automatically performs keyed reads of the data set, if

possible.

Alternate indexes:

The query processor can use alternate indexes. The use of an alternate index refers

to ESDS or KSDS alternate indexes.

 An alternate index is used to satisfy an SQL query if the following conditions are

met:

v A column in the WHERE clause maps to an alternate index field.

v The data server can access the VSAM alternate index path data set or DD name

that was supplied in the CREATE INDEX definition.

Chapter 4. Tuning Classic federation 217

Partial keys for VSAM optimization

When you map multiple columns to an index, and a WHERE clause references a

subset of those columns, the resulting condition is known as a partial key. The

query processor attempts to optimize VSAM access by using the partial key

information supplied in the WHERE clause.

The query processor generates a key range that is based on the parts of the key in

the WHERE clause. The key range specifies the lowest and the highest key values

based on the values for those columns in the WHERE clause. The query processor

can only perform this optimization when the columns of the partial key are

specified in the sequence in which they are mapped to the index.

Example: A primary index is 10 bytes long. You map three columns to the index in

the following sequence:

v COLUMN1 = bytes 1-3

v COLUMN2 = bytes 4-5

v COLUMN3 = bytes 6-10

You then issue the following query:

WHERE COLUMN1 = ‘abc’ and COLUMN2 = ‘00’

As a result, the following key is generated: ’abc00x’ that is padded to the right

with low values (X’00’) for the key length. This key is used for the initial read of

the VSAM file. Processing of the VSAM file then continues sequentially. The key of

each returned record is compared to a high key value that is generated. In this

example, the high key value is ’abc00x’ padded to the right with high values

(X’FF’) for the length of the key. The records are read until the key of the returned

record exceeds this generated value or until the end of the file is reached.

Assume that you specify a WHERE clause that only references COLUMN2 or

COLUMN3, or both, and does not reference COLUMN1. In this case, a key range

cannot be generated. Instead, the entire VSAM file must be processed sequentially,

and any record filtering is performed within the connector or the query processor.

Configuration parameters for VSAM optimization

You can use the VSAM AMPARMS parameter to optimize access to your VSAM

files.

With VSAM AMPARMS, you can specify the number of in-core buffers to cache

VSAM index and data components and the overall amount of memory that VSAM

can use for buffer caching.

If a large number of records will be read, increase the size of the VSAM data buffer

pool to substantially improve query performance because more of the VSAM data

can be cached in core.

VSAM service for optimization

The VSAM service enables multiple concurrent users to share opened files with

either the local VSAM or CICS VSAM.

This service reduces overhead because files are opened and closed less often. The

VSAM service is particularly useful in join situations where a VSAM file is joined

to itself.

218 Classic Federation Guide and Reference

Data server optimization

You can improve query performance with the dispatching priority of the data

server and the Workload Manager (WLM) exit.

The dispatching priority at which the data server runs can have a strong affect on

query performance. In addition, you can use the WLM system exit to place

individual queries in WLM goal mode to control query resources.

Dispatching priority for query optimization

The dispatching priority set for a data server can significantly improve

performance.

The data server runs most efficiently at lower dispatching priorities. In general,

you can follow these guidelines to set the dispatching priority:

v For the data server, set the dispatching priority greater than the TCP/IP

subsystems that communicate with remote clients.

v Set the dispatching priority at or above the dispatching priorities of the CICS,

IMS, or DB2 subsystems that run at your z/OS site.

Consult your data center administrator to select an appropriate dispatching

priority that does not adversely affect the other applications that run at your z/OS

site.

WLM exit for query optimization

You can use the goal mode and the service class of the Workload Manager (WLM)

exit to improve query performance.

With the sample WLM exit, you can place individual queries in WLM goal mode.

In goal mode, WLM controls the amount of resources that are available for the

query to use.

With the WLM exit, you can also use service classes. Each service class can have

different rules for the amount of resources that z/OS assigns to run the query.

With a service class, z/OS applies period switching rules for each query that is

run. Typically, in goal mode with period switching, the longer a query runs the

less resources it uses.

Small queries

You can set up a service class for small queries that need to run quickly

and therefore be given more resources.

Longer running queries

You can assign different DATASOURCE names to longer running queries.

You can also assign these queries to a different service class. With different

service classes, z/OS reduces the amount of resources that these queries

use as they run longer, without impacts to the small high-performance

queries.

Chapter 4. Tuning Classic federation 219

220 Classic Federation Guide and Reference

Chapter 5. Reference for Classic federation

Reference information for Classic federation includes descriptions of the

configuration parameters for the data server, query processor, and clients;

programming information about the drivers; and technical details about

multilingual data; sample VTAM and CICS definitions for stored procedures; and

field procedures.

Configuration parameters for data server, query processor, and clients

The configuration parameters define settings for the data server, the query

processor, and the JDBC, ODBC, and Call Level Interface (CLI) clients.

When you do not specify a parameter to define settings for the data server, query

processor, or clients, the default parameter is used. If you specify a parameter that

is not valid, the file is ignored.

The following table lists the parameter, the configuration member type in which

the parameter is specified, and whether the parameter is required, optional, or not

applicable (left blank).

 Table 43. Classifications of configuration parameters

Parameter

Data server

master Query processor

Client

configuration

member override Client

BTREE BUFFERS Optional Optional Optional

CLIENT CODEPAGE Optional

CLOSE TRACE ON WRITE Optional

CPU GOVERNOR Optional Optional Optional

DATA CONVERSION ERROR

ACTION

Optional Optional Optional

DATASOURCE Required

DECODE BUFFER SIZE Optional

DEFLOC Optional

ENABLE TRACE Optional

FETCH BUFFER SIZE Optional

INTERLEAVE INTERVAL Optional Optional Optional

JOIN MAX TABLES ANALYZED Optional Optional Optional

LD TEMP SPACE Optional Optional Optional

MAX ROWS EXAMINED Optional Optional Optional

MAX ROWS EXCEEDED ACTION Optional Optional Optional

MAX ROWS RETURNED Optional Optional Optional

MESSAGE POOL SIZE Optional Optional

NL Required Optional

NL CAT Required Required

OVERRIDE EXISTING LOG Optional

© Copyright IBM Corp. 2003, 2006 221

Table 43. Classifications of configuration parameters (continued)

Parameter

Data server

master Query processor

Client

configuration

member override Client

PDQ Optional Optional

RESPONSE TIME OUT Optional

SAF EXIT Optional

SERVER CODEPAGE Optional

service information entry Required

SHAPING Optional

SMF EXIT Optional Optional

STATEMENT RETENTION Optional Optional

STATIC CATALOGS Optional

SYMMETRIC SWAPPING Optional

TASK PARAMETERS Optional Optional

TEXT ORIENTATION Optional

TEXT PRESENTATION Optional

TRACE LEVEL Optional

USER CONFIG Optional Optional

USERID Optional

USERPASSWORD Optional

VSAM AMPARMS Optional Optional Optional

WLM UOW Optional Optional Optional

Configuration parameter format

Configuration parameters consist of fixed length 80-byte records that contain either

a parameter that starts in column 1 or a comment that begins with an asterisk (*)

in column 1.

The format of a configuration parameter is as follows:

parameter name = value

In the format:

v Parameter name is one or more keywords beginning in the first column of the

record.

v One blank is required on either side of the equal sign.

v Value is any number of characters up to the end of the record.

v String values are not surrounded by delimiters.

v Comments after the value are not allowed.

The maximum parameter length is 255 characters, but you can continue parameters

across 80-byte records by using the backslash (\) as a continuation character. Some

parameters have a shorter maximum length, which you can determine by reading

the parameter description. You cannot use the continuation character until after the

equal sign, and it must be the last non-blank character of the record. The backslash

character is discarded, as are leading blanks on the continued record. You can

insert comment lines between the continued records.

222 Classic Federation Guide and Reference

Example: The following example contains continuation lines:

DATASOURCE = \

* data source name

CACSAMP \

* protocol address

tcp/111.111.111.11/2222

The result of this continuation line is the same as the following DATASOURCE

parameter:

DATASOURCE = CACSAMP tcp/111.111.111.11/2222

BTREE BUFFERS

BTREE BUFFERS is an optional parameter that determines the number of B-tree

buffer caches in memory that are used before spooling the staged result set to data

spaces or to physical files.

Description

The BTREE BUFFERS parameter overrides the default value of four. If sufficient

memory is available in the MESSAGE POOL SIZE memory pool, this parameter

can be increased, and performance might improve, depending on the size of the

result set and whether the result set is ordered or grouped.

Specification

Maximum value: 214730

Minimum value: 4

Default: 4

Use: Data server, query processor

Example

BTREE BUFFERS = 4

CLIENT CODEPAGE

CLIENT CODEPAGE is an optional parameter that specifies the client code page

value so that ICU4C can translate between the code pages for the server and client.

Description

This parameter corresponds to the code page converter names and aliases for the

CCSID that are used on the client and on the server. ICU4C provides conversion

between code pages.

Specifications

Use: UNIX CLI client

Example

CLIENT CODEPAGE = IBM-970

Chapter 5. Reference for Classic federation 223

CPU GOVERNOR

CPU GOVERNOR is an optional parameter that specifies the name and the time

limit of the exit to implement a CPU resource governor. If this parameter is

omitted, there is no limit to the amount of CPU time for query processing.

Specifications

Maximum value: 255M

Minimum value: 1S

Default: None

Use: Data server, query processor, client configuration member override

Example

CPU GOVERNOR = CACSX03 5M

DATASOURCE

DATASOURCE is a required parameter for clients that specifies the name of the

data source that a client attempts to connect to.

Description

v Field 1: The name of the remote data source that matches the service name (field

2) of the service information entry parameter in the query processor task on the

data server.

v Field 2: The address field by which this client connects to the named data

source. This field consists of three parts separated by the forward slash (/)

character. Field 2 must match the service information field (field 10) of the

service information entry parameter in the connection handler task on the data

server.

Specification

Maximum value: 18 characters for data source name, 64 characters for address field

Minimum value: 1 character for data source name, address field depends on the

protocol

Default: None

Use: UNIX CLI client

Example: Address field for TCP/IP protocol

DATASOURCE = CACSAMP tcp/111.111.111.11/2222

This example defines an address field for TCP/IP protocol that uses the data

source name CACSAMP. Field 2 contains the following parts:

v The first part of the field must be set to tcp.

v The second part of the field is the host name (string) of the server or the IP

address of the server. If an IP address is specified, it must be defined in dot

notation (123.456.789.10).

224 Classic Federation Guide and Reference

v The third part of the field is the port number (decimal value) or service name on

which the server is listening for connection requests.

Example: Address field for WebSphere MQ protocol

DATASOURCE = CACSAMP MQI/SCQ1/CAC.CLIENT/SCQ1/CAC.SERVER

This example defines an address field for the WebSphere MQ protocol that uses the

data source name CACSAMP. Field 2 contains these parts:

v The first part of the field specifies that the controller should invoke the IBM

WebSphere MQ Transport Module, MQI.

v The second part of the field identifies the name of the WebSphere MQ queue

manager to which you want to connect, SCQ1.

v The third part of the field identifies the name of the model queue on which the

client receives SQL responses from the data server, CAC.CLIENT.

v The fourth part of the field identifies the name of the WebSphere MQ queue

manager. This must the be the same as the first queue manager name, SCQ7.

v The fifth part of the field identifies the name of the local queue that the server is

listening on for connection requests. The name can be a remote queue definition

that is associated with the local queue that the server is listening on for

connection requests, such as CAC.SERVER.

Example: Address field for cross memory protocol

DATASOURCE = CACSAMP XM1/CAC/CAC

This example defines an address field for the cross memory protocol that uses the

data source name CACSAMP. field 2 contains these parts:

v The first part of the field must be set to XM1.

v The second part of the field is the data space name, CAC. The maximum length is

four characters. This name must be the same as the data space name on the

service information entry of the data server.

v The third part of the field is the queue name, CAC. The maximum length is four

characters. This name must be the same as the queue name on the service

information entry of the data server.

DATA CONVERSION ERROR ACTION

DATA CONVERSION ERROR ACTION is an optional parameter that identifies the

action for the data server to take if a conversion error occurs when it converts

numeric data between zoned and packed decimal formats and between binary and

packed decimal formats.

Specification

Valid values:

ABORT

Specifies that the query ends with a -4908 return code that indicates

nonvalid mapped data. This is the default behavior if the DATA

CONVERSION ERROR ACTION parameter is omitted.

REPAIR

The data server changes nonvalid data to -99...99’s, and the SQL statement

ends successfully with a SQL_SUCCESS_WITH_INFO return code. One or

more 002f0002 warning messages are also returned to the client

application. A 002f0002 warning message is returned for each column on

Chapter 5. Reference for Classic federation 225

each row that is changed to a value of -99..999’s. The data server does not

write any log messages to indicate that conversion errors occurred.

 Example: The server changes nonvalid data to the highest possible

negative value for the column precision. A column with a

precision of DECIMAL(3,0) changes to a value of -999, and a

column with a precision of DEC(3,2) changes to a value of -9.99.

If you sort the result set, rows with nonvalid data appear last.

REPAIR REPORT

The data server processes the conversion error as the REPAIR option

describes. The data server also writes the data conversion error message

x’002f0001’ to the server log for each row that contains one or more

conversion errors.

Default: ABORT

Use: Data server, query processor, client configuration member override

Example

DATA CONVERSION ERROR ACTION = REPAIR REPORT

DECODE BUFFER SIZE

DECODE BUFFER SIZE is an optional parameter that defines the size of the

DECODE buffer. This buffer is a staging area that decodes data from the network

format into the host local data format.

Description

Data is taken from the FETCH buffer in pieces that are the size that is specified for

the DECODE buffer. The data is converted until a single row of data is completely

processed and returned to the application. For optimum use, set the DECODE

buffer to a size that is at least equivalent to a single row of data.

The DECODE BUFFER SIZE and FETCH BUFFER SIZE parameters work together.

If the DECODE BUFFER SIZE is omitted, its value is set to the value of FETCH

BUFFER SIZE. If a value higher than the FETCH BUFFER SIZE is used, the value

of DECODE BUFFER SIZE is set to the FETCH BUFFER SIZE. Thus, coordinate the

settings of the DECODE BUFFER SIZE and FETCH BUFFER SIZE parameters.

Specifications

Maximum value: 64000

Minimum value: 4096

Default: 8192

Use: Client

DEFLOC

DEFLOC is an optional parameter that specifies the default data source if a

SELECT statement or a CONNECT statement does not specify where the data

resides.

226 Classic Federation Guide and Reference

Specification

Maximum value: 18 characters

Minimum value: 1 character

Default: None

Use: Client

Example

DEFLOC = CACSAMP

FETCH BUFFER SIZE

FETCH BUFFER SIZE is an optional parameter that specifies the size of the result

set buffer that is returned to a client application. You specify this parameter in the

configuration file for the client application.

Description

Regardless of the specified size of the fetch buffer, federation always returns a

complete row of data in this buffer. When you set the fetch buffer size to 1, single

rows of data are returned to the client application.

An appropriate FETCH BUFFER SIZE depends upon the average size of the result

set rows that are sent to the client application and the optimum communication

packet size. To improve performance, pack as many rows as possible into a fetch

buffer. The default fetch buffer size is generally adequate for most queries.

If FETCH BUFFER SIZE is set smaller than a single result set row, the size of the

actual fetch buffer that is transmitted is based on the result set row size. The size

of a single result set row in the fetch buffer depends on the number of columns in

the result set and the size of the data that is returned for each column.

You can use the following calculations to determine the size of a result set row in

the buffer:

fetch buffer row size = (number of data bytes returned) x

(number of columns * 6)

Each fetch buffer has a fixed overhead. You can compute the overhead as follows:

fetch buffer overhead = 100 + (number of columns * 8)

If your applications routinely retrieve large result sets, contact your network

administrator to determine the optimum communication packet size. Then, set the

FETCH BUFFER SIZE to a size that accommodates large result sets.

Specifications

Maximum value: 524288

Minimum value: 1

Default: 32000

Use: Windows and UNIX CLI client

Chapter 5. Reference for Classic federation 227

Example

FETCH BUFFER SIZE = 64000

INTERLEAVE INTERVAL

INTERLEAVE INTERVAL is an optional parameter that sets the interleaving

interval in result set rows. When the same query instance is processing multiple

results sets, the interleaving interval controls context switching between users and

result sets.

Description

If INTERLEAVE INTERVAL is set to 100 (default) then the query processor will

switch context among active users on the query processor instance for every 100

rows the query produces.

Specification

Maximum value: 4294967295

Minimum value: 0

Tip: Setting INTERLEAVE INTERVAL TO 0 disables context switching and has the

same effect as setting Parallel Database Query (PDQ) to zero.

Default: 100

Use: Data server, query processor, client override

Example

INTERLEAVE INTERVAL = 100

JOIN MAX TABLES ANALYZED

JOIN MAX TABLES ANALYZED is an optional parameter that determines the

optimization method in queries that contain joins.

Description

The estimated reads analysis evaluates all possible combinations of table

processing order. The number of possible combinations for analysis is a factorial of

the number of tables in a join.

Recommendation: To optimize performance, it is best practice to use a value no

greater than 4. For a value of 4, the count is factorial 4, or 24 (1

* 2 * 3 * 4). For a value of 5, the count is factorial 5, or 120 (1 *

2 * 3 * 4 * 5). The latter value specifies that the estimated reads

analysis evaluate 120 table combinations.

Join queries that include more than the specified number of tables automatically

use the simple optimization method. The maximum value is 15 because the

maximum number of tables in a SQL statement is 15. While the parameter has no

fixed limit on the value, the query processor treats any higher value as equivalent

to 15.

228 Classic Federation Guide and Reference

Specification

Maximum value: 15

Minimum value: 0

Values and results:

0 Bypasses the join optimization method and the query is processed as is.

1 Indicates that the simple join optimization method is applied to all joins.

Greater than 1

Identifies the maximum number of tables in the join that are evaluated by the

estimated reads analysis.

Default: 4

Use: Data server, query processor, client configuration member override

LD TEMP SPACE

LD TEMP SPACE is an optional parameter that defines a temporary data set that is

dynamically allocated by a data server to store the intermediate result set.

Description

Temporary data set information is a set of parameters separated by commas.

Parameters not specified are set to the defaults. Set this parameter so that the

resulting file is large enough to hold any intermediate result sets that are generated

from a typical query that runs on a particular data server. If your site has a storage

unit name for VIO storage, specify VIO.

Hiperspace™ places temporary data files, such as spill files, in expanded storage.

Hiperspace improves performance and mainly affects complex queries, for

example, queries that contain the ORDER BY clause. Hiperspace requires

Authorized Program Facility (APF) authorization.

Specification for DASD

Valid values:

ALCUNIT = BLOCK|TRK|CYL

Specifies a unit of space allocation in block, track, or cylinder units. The

default value is TRK.

SPACE = bytes

Specifies the primary amount of space to allocate. The default value is 15.

EXTEND = bytes

secondary amount of space to allocate. The default value is 5.

VOL = VOLSER

Specifies the volume serial number. The default is the z/OS default for your

site.

UNIT = unit name

Specifies a DASD allocation group name or the VIO group name, if it exists.

The default unit name is the z/OS default for your site.

Chapter 5. Reference for Classic federation 229

RECFM = F|V|U

Specifies the record format to allocate that corresponds to a z/OS Record

Format (RECFM) of FB, VB, or U. The default is V.

RECLEN = nnn

Specifies the record length. For variable format records, z/OS LRECL

(maximum record length) is set to the fixed record length RECLEN +4. Default

is 255.

BLKSIZE = nnn

Specifies the block size. The default is 6144.

Example: DASD

Here are example entries for DASD:

LD TEMP SPACE = ALCUNIT=TRK,SPACE=15,VOL=CACVOL

LD TEMP SPACE = ALCUNIT=CYL,SPACE=2

LD TEMP SPACE = ALCUNIT=CYL,SPACE=2,EXTEND=1,UNIT=VIO

Specification for hiperspace

Valid values:

INIT

Initial region size for the hiperspace

MAX

Maximum region size for the hiperspace

EXTEND

Unit of growth when INIT is exceeded

The estimate for determining these values is related to system installation limits

and expected query types. Roughly, make the maximum size equivalent to that of

the regular temporary space file as described for the non-hiperspace LD TEMP

SPACE setting.

Use: Data server, query processor

Example: hiperspace

To specify hiperspace, specify the LD TEMP SPACE parameter as follows:

LD TEMP SPACE = HIPERSPACE,INIT=16M,MAX=24M,EXTEND=8M

MAX ROWS EXAMINED

MAX ROWS EXAMINED is an optional parameter that implements the governor.

Description

This parameter provides protection from excessive resource use that inefficient or

erroneous queries cause. The governor limits the number of examined rows. In the

examination phase, a restriction on the number of examined rows is put into effect

after native retrieval is performed and before additional filtering takes place to

satisfy any WHERE clause specifications.

230 Classic Federation Guide and Reference

Specification

Max value: 2147483647

Minimum value: 0

Recommended value: 10000

Default: 0 (unlimited rows)

Use: Data server, query processor, client configuration member override

MAX ROWS EXCEEDED ACTION

MAX ROWS EXCEEDED ACTION is an optional parameter that determines the

behavior of the governor when the MAX ROWS EXAMINED or the MAX ROWS

RETURNED governor limits are reached.

Description

The MAX ROWS EXCEEDED ACTION parameter tests a query to ensure that the

query returns the correct result set and does not expend large amounts of

resources. This test is performed before the full query is run.

Specification

Valid values and results:

ABORT

Stops the query when a governor limit for MAX ROWS EXAMINED or MAX

ROWS RETURNED is reached. The -9999 return code is issued, and no result

set is returned.

RETURN

Returns a normal result set when a governor limit is reached. A truncated

result set is returned to the client. The result might not be complete, and there

is no indication that the governor limit is reached.

Default: ABORT

Use: Data server, query processor, client configuration member override

MAX ROWS RETURNED

MAX ROWS RETURNED is an optional parameter that specifies the maximum

number of rows a query can return to the client. The governor imposes the

restriction you specify after any WHERE clause is fully processed, but before the

result table is returned to the application.

Description

This parameter provides protection from excessive resource use that inefficient or

erroneous queries cause.

Chapter 5. Reference for Classic federation 231

Specifications

Maximum value: 2147483647

Minimum value: 0

Recommended value: 10000

Default: 0 (unlimited rows)

Use: Data server, query processor, client configuration member override

MESSAGE POOL SIZE

MESSAGE POOL SIZE is an optional parameter for ODBC and CLI clients that

specifies the size of the memory region in bytes for all memory allocation.

Description

Set the actual workable maximum value to 2 MB less than the region size. If the

specified value is less than 1 MB, 1 MB is used. If the amount of storage that can

be obtained is less than the specified value, the maximum amount available is

obtained.

Specification

Maximum value: 1 GB or more, depending on operating system.

Minimum value: 1048576 (1 MB)

Default value: 1048575 (1 MB)

Use: Data server, ODBC and UNIX CLI clients

Example

MESSAGE POOL SIZE = 16777216

NL

NL is a required parameter for the data server and an optional parameter for

clients that specifies the language for text messages: errors, warnings, and

informational messages.

Specification

Default value: US ENGLISH

Use: Data server, clients

Example

NL = US ENGLISH

NL CAT

NL CAT is a required parameter for the data server and client that points to a

language catalog that contains messages in a specified language and encoding.

232 Classic Federation Guide and Reference

Description

You typically define NL CAT on the data server and the native z/OS client by

using a data definition (DD) statement in startup procedures. You can also define

NL CAT on the client by specifying one of the following:

v A path

v A data set name

On a USS client, you typically specify a data set name.

The following table describes the location of the NL CAT statement in supported

environments.

 Table 44. Location of NL CAT statement by environment

Environment Location of NL CAT statement

Linux and UNIX /opt/IBM/WSClassic91/CLI/lib/cac.ini

Windows The Windows registry. Do not specify NL

CAT on Windows.

z/OS CACINIZ in SCACCONF

USS CACINIU in SCACCONF

Localization functions native to the operating system supply a localization code

that identifies the language locale to the database driver. The driver accesses the

language catalog based on the locale. If the functions do not return a code that the

driver recognizes, the driver accesses the US English version of the language

catalog. The following table describes supported language locales and localization

codes.

 Table 45. Language locales and localization codes

Language locale Localization codes returned (Linux, UNIX,

Windows)

English (United States) us

us_EN

us_EN.UTF-8

Japanese ja

ja_JP

ja_JP.UTF-8

Korean ko

ko_KR

ko_KR.UTF-8

Simplified Chinese zh

zh_CN

zh_CN.UTF-8

zh_SG

zh_SG.UTF-8

Chapter 5. Reference for Classic federation 233

Table 45. Language locales and localization codes (continued)

Language locale Localization codes returned (Linux, UNIX,

Windows)

Traditional Chinese zh

zh_TW

zh_TW.UTF-8

zh_MO

zh_MO.UTF-8

zh_HK

zh_HK.UTF-8

The database drivers access the message catalogs for your locale and encoding by

referencing a fixed filename you cannot change. In some cases, you can have more

than one version of the message catalog, each supporting a different encoding. If

you are using CLI or ODBC drivers and have multiple choices of encoding for

your locale, you must rename the message catalog for the encoding you are using

to the fixed filename.

Example: The Japanese message catalog file is cacmsg_ja_JP.cat. The Japanese

catalogs are distributed in SJIS and eucJP encodings. If you are running

Shift-JIS, rename cacmsg_ja_SJISJP.cat to cacmsg_ja_JP.cat. If you are

running eucJP, rename cacmsg_ja_eucJP.cat to cacmsg_ja_JP.cat. In a

UNIX environment, you can create a link to the appropriate file that

uses the fixed filename.

The following table describes supported encodings and related filenames.

 Table 46. Encodings and language catalogs

Language Encoding Encoded filename Fixed filename

English Latin Not applicable cacmsg_us_EN.cat

UTF-81 cacmsg_UTF8.cat cacmsg_us_EN_UTF8.cat

Japanese Shift-JIS cacmsg_ja_JP.cat cacmsg_ja_JP.cat

EUCJP cacmsg_ja_eucJP.cat cacmsg_ja_JP.cat

UTF-81 Driver loads fixed filename

directly

cacmsg_ja_JP_UTF8.cat

Korean Not applicable Not applicable cacmsg_ko_KR.cat

UTF-81 Driver loads fixed filename

directly

cacmsg_ko_KR_UTF8.cat

Simplified

Chinese

EUC-CN Not applicable cacmsg_zh_CN.cat

UTF-81 Driver loads fixed filename

directly

cacmsg_zh_CN_UTF8.cat

Traditional

Chinese

Big-5 cacmsg_zh_BIG5TW.cat cacmsg_zh_TW.cat

EUC-TW cacmsg_zh_eucTW.cat cacmsg_zh_TW.cat

UTF-81 Driver loads fixed filename

directly

cacmsg_zh_TW_UTF8.cat

234 Classic Federation Guide and Reference

1 UTF-8 is supported on only Linux and UNIX.

Exception: If you are using JDBC drivers, you do not need to rename message

catalog files. The JAR file contains all messages.

Specification

Valid values:

/Path

Where Path is the path of the language catalog file (Linux, UNIX, Windows).

DD:DDName

Where DDName is the name of a data definition, typically ENGCAT (data server,

native z/OS client).

//dsn:DatasetName

Where DatasetName is the name of the message catalog dataset SCACMENU

(data server, USS client).

Examples

Linux, UNIX, Windows

NL CAT = /opt/IBM/WSClassic91/CLI/lib

Note: The preceding example displays a UNIX path.

Data server, native z/OS client

NL CAT = DD:ENGCAT

USS client

NL CAT = //dsn:CAC.V9R1M00.ENGCAT

PDQ

PDQ is an optional parameter that activates the immediate return of processed

data.

Description

When Parallel Database Query (PDQ) processing is activated, the data server

inspects each query and determines whether the result set output requires

additional post-processing:

v If post-processing is required, the result set is handled as if PDQ processing is

not activated.

v If no post-processing is required, the result set is immediately returned to the

client.

Specification

Valid values and results:

0 Do not analyze queries. The result set is staged in the B-trees for all queries

that are processed by the data server.

Chapter 5. Reference for Classic federation 235

1 Analyze each query to determine whether data can be returned immediately.

The value 1 has no affect unless the INTERLEAVE INTERVAL parameter is set

to a value other than 0.

Default: 0

Use: Query processor

RESPONSE TIME OUT

RESPONSE TIME OUT is an optional parameter that specifies the maximum

amount of time that the ODBC client waits for an expected response before the

client terminates a connection.

Specification

Maximum value: 1000MS, 60S, and 60M respectively

Minimum value: 0MS

Default: 6M

Use: ODBC client

Formats

Valid formats:

nMS Number of milliseconds

nS Number of seconds

nM Number of minutes

Example

RESPONSE TIME OUT = 10M

SAF EXIT

SAF EXIT is an optional parameter that specifies the System Authorization Facility

(SAF) system exit that performs authorization checks for the connector that is

associated with a data server or runs a stored procedure application program.

Specification

Default: None

Use: Data server

Example

SAF EXIT = CACSX04 IMS CLASS=IMSP,PSB PREFIX=IMSP

SERVER CODEPAGE

SERVER CODEPAGE is an optional parameter that specifies the server code page.

ICU4C uses this parameter to translate between code pages for the client and

server.

236 Classic Federation Guide and Reference

Description

This parameter corresponds to the code page converter names and aliases for the

CCSID that is used on the client and on the server. ICU4C provides conversion

between code pages.

Specification

Use: UNIX CLI client

Example

SERVER CODEPAGE = IBM-933

SERVICE INFO ENTRY

A service information entry is a required parameter that informs the region

controller task that a service must be activated and how that service is controlled.

Description

Multiple service information entry parameters are required to activate multiple

instances of a given service if different subparameter values are needed. A single

service information entry parameter is used if only a single instance is needed or if

multiple instances use the same subparameter values.

Specification

The service information entry parameter consists of subparameters that are each

delimited by at least one space. The format for the tenth subfield, and valid values

of all ten fields, are service dependent.

 Table 47. Service information entry fields

Field Label

1 Task name

2 Service name

3 Service start class

4 Minimum tasks

5 Maximum tasks

6 Max connections per task

7 Tracing output level

8 Response time out

9 Idle time out

10 Service specific information

Use: Data server

Example

SERVICE INFO ENTRY = CACQP CACSAMP 2 3 5 100 4 / 5M 5M NO_DATA

SERVICE INFO ENTRY: Field 1

Field 1 identifies the task name, which is the name of the executable module to

invoke for the service.

Chapter 5. Reference for Classic federation 237

Specification

Valid values:

CACCNTL

Region controller

CACLOG

Logger service

CACQP

Query processor service

CACINIT

Connection handler service

CACIMSIF

IMS BMP/DBB interface

CACDRA

IMS DRA interface

CACCAF

DB2 CAF service

CACOPER

Command operator

CACWLM

Workload Manager initialization service for system exits

CACDSH

Data source handler service on the federated server only

CACLE

Language environment initialization service

CACDCI

CA-Datacom initialization service

CACVSMS

VSAM service

SERVICE INFO ENTRY: Field 2

Field 2 identifies the service name.

Description

This value must be unique within the configuration file for a given data server.

Some services require a specific value. Those services that do not require this value

can be referenced in another parameter. This value in Master Terminal Operator

(MTO) commands identifies a specific service, for example, in a START command.

Specification

Valid values: Point to service specific descriptions.

Maximum value: 18 characters, no spaces.

Although the field name can be longer than 18 characters, only the first 8

characters display when the MTO DISPLAY command is issued.

238 Classic Federation Guide and Reference

SERVICE INFO ENTRY: Field 3

Field 3 identifies the service start class that indicates to the region controller which

server initialization phase a given service must be started in.

Specification

Valid values:

0 CACCNTL service

1 CACLOG service

2 or 3

CACDSH service

4 All other services

SERVICE INFO ENTRY: Field 4

Field 4 identifies minimum tasks. This is a required field.

Description

This value specifies the number of instances of this server that the region controller

starts during data server initialization. You can use the MTO START command to

start an occurrence when needed.

Specification

Valid values:

1 If a service must be limited to a single occurrence, field 4 and field 5 must be

set to 1.

0 Indicates to the region controller that occurrences of this service must not be

started at data server initialization.

SERVICE INFO ENTRY: Field 5

Field 5 identifies maximum tasks that are the maximum number of instances of

this service that the region controller is allowed to start.

Specification

Valid values:

0 Each instance uses the same subparameter values.

1 If a service must be limited to a single instance, field 4 and field 5 must be set

to 1.

SERVICE INFO ENTRY: Field 6

Field 6 identifies the maximum connections per task. This value is the maximum

number of user connections that are allowed per instance of this service that is

activated by this service information entry parameter.

Description

Set this field to 1 to disable multi-tasking for all instances of this service. Some

services require this field be set to 1.

Chapter 5. Reference for Classic federation 239

Specification

Maximum permitted value: 65535

Minimum permitted value: 0

SERVICE INFO ENTRY: Field 7

Field 7 identifies the tracing output level. This value specifies the level of tracing

messages that a service passes to the logger service.

Description

This value is a minimum filtering level. For example, a value of 4 causes messages

of category 4 or higher to be passed.

For the logger service, this field specifies the trigger value. When a tracing

message of this level or higher is passed to the logger service, the trace buffer and

all subsequent trace messages are written to the log file.

Specification

Valid values:

1 Full tracing

2 Message buffers

3 Procedural and query processor instructions

4 Informational and warning messages

8 Fatal error messages

20 No tracing

SERVICE INFO ENTRY: Field 8

Field 8 indicates response time out. This value represents the maximum amount of

time that a service waits for an expected response before it ends a connection.

Description

This is a reserved field.

SERVICE INFO ENTRY: Field 9

Field 9 indicates idle time out. This value specifies the amount of time that a

service remains idle before it polls the local message queue for messages that are

to be processed.

Description

For a data source handler for an enterprise server, this field specifies the amount of

time that the service remains idle before it ends.

Specification

Valid formats include:

nMS

n milliseconds

240 Classic Federation Guide and Reference

nS n seconds

nM

n minutes

nH

n hours

Maximum value: 1000MS, 60S, 60M, 24H

Minimum value: 0MS, 0S, 0M, 0H indicating no time out

SERVICE INFO ENTRY: Field 10

Field 10 identifies service-specific information. This value encompasses all

remaining information in a service information entry parameter that follows Field

9.

Description

The values in this field are passed to an instance of this service when it is

activated. If a service does not require or accept values from this subparameter

when the service is activated, the string “NO_DATA” must be specified. The

format and valid values of this field are service-dependent.

Specification

Valid value type: Numeric or string

Default: None

Use: Data server

SHAPING

SHAPING is an optional parameter for bidirectional language transformation that

indicates if text shaping is required when text is rendered.

Description

The SHAPING option is for the server code page IBM-420, which encodes

characters in their shaped forms. When Arabic text contains these kinds of

characters in shaped forms, the shaping API is called to replace them with abstract

characters when the server converts to the client code page or to replace them with

shaped forms when converting from the client to the server.

If the text on the server contains Arabic letters in abstract form, set the SHAPING

option to OFF to improve performance.

Specification

Valid values: ON and OFF

Default: ON

Use: ODBC and CLI clients

Chapter 5. Reference for Classic federation 241

SMF EXIT

SMF EXIT is an optional parameter that reports clock time and CPU time for an

individual user session with a query processor task.

Specification

Default: None

Use: Data server, client configuration member override

Example

SMF EXIT = CACSX02 RECTYPE=255,SYSID=JES2

STATEMENT RETENTION

STATEMENT RETENTION is an optional parameter that defines the behavior of a

prepared statement when a commit or rollback operation occurs.

Specification

Default: SYNCPOINT

Valid values:

SYNCPOINT

Release the statement whenever a COMMIT or ROLLBACK is issued. This

behavior is consistent with DB2 Version 4 and earlier.

ROLLBACK

Release the statement only when a ROLLBACK syncpoint is issued. This

behavior is equivalent with the DYNAMICKEEP option in DB2 version 5.

DISCONNECT

Release the statement only when the user disconnects from the data server. All

prepared statements are retained across both COMMIT and ROLLBACK calls.

Use: SYNCPOINT unless there are specific application requirements for re-running

a prepared statement after a syncpoint is issued.

Use: Data server, query processor

STATIC CATALOGS

STATIC CATALOGS is an optional parameter that activates static catalog

processing for the system catalog data sets that are referenced by the data server.

Description

With static catalog processing, the system catalog files are opened once for a query

processor task. The system catalog files remain open until that server is shut down.

In normal operating mode, the system catalogs are closed after the required table

and column information is retrieved in order to process a query, for each query

that is processed by the query processor.

Activate static catalog processing to substantially improve query performance in

outer cursor and inner cursor situations when a large number of queries are issued

serially.

242 Classic Federation Guide and Reference

Close the static catalog when the system catalogs that are referenced by the

connector are not updated when the connector runs. Use this parameter when the

data server operates in production mode, and the system catalogs are static.

Specification

Valid values and results:

0 Close system catalog files and establish read locks for each query.

1 Close system catalog files when the server is shut down.

Default value: 0

Use: Data server

SYMMETRIC SWAPPING

SYMMETRIC SWAPPING is an optional parameter for bidirectional language

transformation that ensures text is preserved in a logical order.

Description

Some characters, such as the greater-than sign or a left parenthesis, have an

implied directional meaning. Within a text segment that is presented from right to

left, these characters must be replaced to ensure that the correct meaning is

preserved. This replacement is called symmetrical swapping. When SYMMETRIC

SWAPPING is set to ON, these characters are replaced by their mirror image.

Symmetric swapping is not performed for text that is in logical order.

Specifications

Valid values: ON and OFF

Default: ON

Use: ODBC and CLI clients

TASK PARAMETERS

TASK PARAMETERS is an optional parameter that specifies SAS/C runtime

options that are passed to system child tasks through the z/OS ATTACH macro.

Description

One common use of this parameter is to pass TCP/IP information to the

Communications Interface task.

Specifications

Default: None

Use: Data server

Valid values:

You can specify as values any valid variables that are preceded by the equal (=)

sign.

Chapter 5. Reference for Classic federation 243

TCPIP_PREFIX

This variable sets the high-level qualifier (hlq) for finding the TCP/IP system

data sets. It can be set to use the installation-defined data sets or a

user-defined data set.

 The default value is TCPIP.

TCPIP_MACH

This variable sets the address space name/subsystem name of the TCPIP stack

for Interlink. For IBM’s TCP/IP system utilizing the Berkeley Socket interface,

this parameter can also be specified in the hlq.TCPIP.DATA file under the

parameter TCPIPUSERID.

 The default value is TCPIP.

TZ

The Time Zone environment variable must be set for each job on z/OS. The

variable sets the time zone in which the task will start, for example Pacific

Standard Time (PST).

 For information about other valid TZ settings, see the SAS/C compiler

documentation.

Examples

TASK PARAMETERS= =TCPIP_PREFIX=TCPIP =TCPIP_MACH=TCPIP

TASK PARAMETERS = =MI =TZ=PST8PDT

This example sets the time zone to PST plus 8 hours from Greenwich mean time

(8) and Pacific daylight time (PDT).

Using the same example for Eastern standard time (EST), enter the following

information:

TASK PARAMETERS = =MI =TZ=EST5EDT

TEXT ORIENTATION

TEXT ORIENTATION is an optional parameter for bidirectional language

transformation that specifies where bidirectional text begins.

Description

When data moves from the client to the server, text in SQL statements is always

marked as Left-To-Right (LTR). To ensure that text is processed correctly, encode

text into a host variable by binding parameters with the SQLBindParameter API.

The following example shows a statement with a bound parameter:

SELECT * FROM BIDITAB WHERE NAME = ?;

Specifications

Valid values:

LTR

Marks the text as left-to-right.

RTL

Marks the text as right-to-left.

DLTR

The direction of the paragraph is set to the direction of the first strong

character found. If no strong character exists, the direction is set to LTR.

244 Classic Federation Guide and Reference

DRTL

The direction of the paragraph is set to the direction of the first strong

character found. If no strong character exists, the direction is set to RTL.

Default: LTR

Use: ODBC and CLI clients

TEXT PRESENTATION

TEXT PRESENTATION is an optional parameter for bidirectional language

transformation that determines the text type on the server.

Specification

Valid values:

LOGICAL

No reordering occurs when this option is set. The values of TEXT

ORIENTATION and SYMMETRIC SWAPPING are ignored. LOGICAL is the

default setting for bidirectional code pages.

VISUAL

Text that is stored in visual order is the same as text that displays on a screen.

Visual text is transformed in logical order by setting the TEXT

PRESENTATION parameter to the VISUAL attribute. The output depends on

the TEXT ORIENTATION parameter that must be set to the DLTR value.

VISUALLTR

Transforms text in visual typing order from left to right. The output depends

on the TEXT ORIENTATION parameter that must be set to the DRTL or the

DLTR value. DRTL is the default. In addition, the SYMMETRIC SWAPPING

parameter must be set to ON.

Default: LOGICAL

Use: ODBC and CLI clients

TRACE LEVEL

TRACE LEVEL is an optional parameter that regulates the amount of information

that data server tasks record in the trace log.

Specification

Valid values and results:

20 No trace information generated

16 Identify fatal error conditions

8 Identify all recoverable error conditions

4 Generate warning messages

3 Generate debugging information

1 Generate function call information

0 Trace all

Default: 4

Chapter 5. Reference for Classic federation 245

Use: ODBC client

Important: Change this parameter only at the request of IBM Software Support.

Settings lower than 4 cause response time degradation.

USER CONFIG

USER CONFIG is an optional parameter that allows individual users to override

the standard settings of configuration parameters on a data server for a query

processor task.

Description

A user ID can override client configurations. A member must exist in the

VHSCONF data set for each user ID that accesses the data server. The USERID

must be passed from the client application to federation.

If a member is not found in the VHSCONF data set for an individual user ID or if

the USERID is not passed through the client application, no error is issued, and the

data server level configuration parameters are used. If a member name is found

under the user ID, the parameters become active after the user connects to the data

server.

You can override the following parameters in a user-level configuration file:

v BTREE BUFFERS

v CPU GOVERNOR

v LD TEMP SPACE

v JOIN MAX TABLES ANALYZED

v MAX ROWS EXAMINED

v MAX ROWS EXCEEDED ACTION

v MAX ROWS RETURNED

v PDQ

v SMF EXIT

v VSAM AMPARMS

v WLM UOW

Specification

Valid values and results:

0 Do not activate user-level configuration overrides.

1 Activate user-level configuration overrides.

Default: 0

Use: Data server, query processor

USERID

USERID is an optional parameter that is the default SQL ID. The default SQL ID is

needed if no ID is present on a CONNECT statement or if a dynamic CONNECT

statement is issued because the client application does not issue a CONNECT

statement.

246 Classic Federation Guide and Reference

Description

The USERID value is used when the first line in the SQL input file is blank.

Specification

Maximum value: 7 characters with no spaces. If more than 7 characters are

specified, only the first 7 are used.

Default: None

Use: UNIX CLI client configuration

Example

USERID = CACUSER

USERPASSWORD

USERPASSWORD is an optional parameter that is the default SQL ID password.

The default SQL ID password is needed if no password is present on a CONNECT

statement or if a dynamic CONNECT statement is issued because the client

application did not issue a CONNECT statement.

Description

The USERPASSWORD value is used when the first line in the SQL input file is

blank.

Specification

Maximum value: 8 characters with no spaces

Default: None

Use: UNIX CLI client configuration

Example

USERPASSWORD = CACPWD

VSAM AMPARMS

VSAM AMPARMS is an optional parameter string that supplies CICS VSAM buffer

and memory-tuning parameters when a VSAM file is opened. The VSAM

AMPARMS parameter specifies tuning parameters that are applied to all VSAM

files that are opened when a single cursor is open.

Description

The VSAM AMPARMS parameter takes the form of a string of comma delimited

parameters that are passed to the SAS/C afopen call that accesses VSAM files.

Valid values:

BUFND

Specifies the number of data I/O buffers that VSAM uses. This parameter is

equivalent to coding the BUFND value on a DD statement. A data buffer is the

size of a control interval in the data component of a VSAM cluster. The default

Chapter 5. Reference for Classic federation 247

number of data buffers is the number of strings plus one. If you use the VSAM

service, the default number of buffers is 11. If you do not use the VSAM

service, the default number of buffers is two.

 Generally with sequential access, the optimum value for the data buffers is six

buffers or the size of the control area, whichever is less. When skip-sequential

processing (random keyed read access) is performed, specifying two buffers is

optimum. Specify a larger BUFND value when the VSAM file is scanned

during query processing. The larger value generally yields performance

improvements. In keyed access situations, specifying a larger BUFND might

not show performance improvements or might degrade query performance by

tying up large amounts of virtual storage and causing excessive paging.

BUFNI

Specifies the number of index I/O buffers that VSAM uses. This parameter is

equivalent to coding the BUFNI value on a DD statement. An index buffer is

the size of a control interval in the index component of a keyed VSAM cluster.

If you use the VSAM service, the default number of index buffers is 10. If you

do not use the VSAM service, the default number of index buffers is 1.

 For keyed access, the optimum BUFNI specification is the number of high-level

(non-sequence set) index buffers + 1. You can determine this number by

subtracting the number of data control areas from the total number of index

control intervals within the data set. You can accommodate most VSAM files

having reasonable index control interval and data control area sizes using an

upper bound BUFNI specification of 32. This BUFNI setting can accommodate

cylinder-allocated data component sizes up to the 4 GB maximum. A large

BUFNI value incurs little or no performance penalty, unless the value is

excessively large.

BUFSP

Specifies the maximum number of bytes of storage that VSAM uses for file

data and index I/O buffers. This parameter is equivalent to coding the BUFSP

value on a DD statement. A data or index buffer is the size of a control interval

in the data or index component.

 A valid BUFSP specification generally overrides any BUFND or BUFNI

specification. However, the VSAM rules for specifying an optimum BUFSP

value are fairly complex. Consult the information about the ACB macro to

determine the rules for specifying a BUFSP value.

Specification

Default: None

Use: Data server, query processor, client configuration member override

Example

VSAM AMPARMS = BUFND=20,BUFNI=15

WLM UOW

WLM UOW is an optional parameter that specifies the Workload Manager (WLM)

unit-of-work activities and manages queries in WLM goal mode.

248 Classic Federation Guide and Reference

Description

The WLM exit is activated by using a service information entry parameter to

initialize the exit once when the address space is initialized. The WLM exit must

be able to handle all of the users that access the data server concurrently.

You can supply WLM unit-of-work information from the master configuration

member. However, there are advantages to supplying unit-of-work information

from the service configuration members. Different services (data sources) can run

queries with different performance profiles. For example, if you run short queries,

you can provide them with more resources. For longer running queries, you can

use period switching to reduce the rate at which these types of queries uses

resources.

Specification

Both of these parameters are optional. If supplied, they are passed to the WLM to

classify the work into a service or report class. Otherwise, the default class for this

subsystem type is used.

Define a subsystem type and classification rules for the workload that is processed

by the query processor. For an existing subsystem type, select which of these

parameters fits that subtype. For example, the z/OS Started Task Control (STC)

type supports user ID and TRANNAME. Job Entry Subsystem (JES) supports user

ID, TRANNAME, and TRANCLASS.

For information about how to define service classes and classification rules, see

z/OS Planning: Workload Management for WLM goal mode. The priority for units of

work need to be less than VTAM and IMS. The discretionary goal might result in

very slow response times. Performance periods allow you to define a high number

of service units for short transactions and a smaller number for long running

transactions.

Default: None

Use: Data server, query processor, client configuration member override

Example

SERVICE INFO ENTRY = CACWLM WLM 1 1 1 20 0M 0M 500000/

 CACSX06 SUBSYS=xxx SUBSYSID=xxxx

Example: WLM UOW in the master configuration file

WLM UOW = TRXNAME=XXXXXX

v Field 1: TRXNAME=xxxxxxxx

v Field 2: TRXCLASS=xxxxxxxx

National language support

You can access non-English data, including double byte character set (DBCS) data

for some data sources.

DBCS support is provided for CA-IDMS, IMS, Sequential, and VSAM. National

language support is implemented in the clients and the query processor.

Chapter 5. Reference for Classic federation 249

For clients, you use a set of configuration parameters that define the local code

pages for the client and the server code pages. For Chinese, Korean, and Japanese,

mixed-mode, a mixture of SBCS and DBCS data, code pages perform all data

conversions. When you access pure DBCS data (the GRAPHIC, VARGRAPHIC,

and LONG VARGRAPHIC data types), federation automatically performs the

required conversions to use this data with the mixed-mode code page converters.

For most U.S. and European customers, conversion parameters that define code

pages are not required. By default, federation performs the appropriate ASCII and

EBCDIC conversions for you.

The query processor also 2supports mixed-mode and DBCS comparison operations.

These special comparison functions are activated by using the data server LOCALE

configuration parameter.

SBCS, DBCS, and database objects

Understanding the data types and objects that you can use with the SBCS and

DBCS enables you to configure Classic federation support for multilingual data.

You can use the following database objects:

v DBCS data in GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC data types

These data types are expected to contain pure DBCS data. For these data types,

the DBCS-related code page conversions are performed.

v SBCS and DBCS mixed data in CHAR, VARCHAR, and LONG VARCHAR data

types

v DBCS column names in the AS clause

v DBCS correlation names

The CHAR, VARCHAR, and LONG VARCHAR data types can contain SBCS data

or mixed-mode data. Classic federation inspects the contents of these data types

and performs the appropriate conversions by using the code page information in

the SBCS-related configuration parameters. When the query processor manipulates

mixed-mode data, you must delimit the DBCS data with DBCS shift codes.

DBCS data is not supported in metadata. Specifically table, view, and column

names in Classic Data Architect and USE grammar cannot contain DBCS data.

Code page conversion for ODBC and CLI

You can specify code page conversion information that the Windows ODBC driver

or the UNIX and Linux CLI client use to transfer data. For bidirectional server and

client code pages, you can set bidirectional language options.

Windows ODBC driver support

On Windows, use the Code Pages tab of the ODBC Administrator to specify code

page converter information. The converter information that you specify applies

globally to all data source definitions.

In the converter tables, the ODBC Name column identifies the converter name that

displays in the dialog.

250 Classic Federation Guide and Reference

CLI client for UNIX and Linux

On UNIX and Linux, you define the code page converter information for the CLI

client in the cac.ini configuration file with the CLIENT CODEPAGE and SERVER

CODEPAGE parameters. Specify the name in the Converter name column in the

converter tables. Converter names are case sensitive.

You can override the default code page converter information by specifying a pair

of converter names on the DATASOURCE definition after the connection string

information. The syntax is as follows:

DATASOURCE = Data-Source-Name TCP-IP-Connection-Information

Server-Code-Page/Client-Code-Page

Code page converters

Use the tables in this topic to identify the appropriate code page converters for

your single byte or double byte locale. You can then specify the converters for the

Windows ODBC driver in the Windows ODBC Administrator, or the converters for

the UNIX and Linux CLI client interface in the UNIX and Linux cac.ini

configuration file.

Multilingual data conversion

Depending on whether you are setting up an SBCS or DBCS locale, select a code

page converter from the pair of tables related to that locale. Refer to the z/OS table

for the server code page, and the Windows and Unix table for the client code page.

1. Find the language you require in the Character set column or the code page

number in the Code page column.

2. Scan across the row and confirm the ODBC name (Windows) or the Converter

name (UNIX and Linux).

3. Specify the ODBC name in the Windows ODBC Administrator or the Converter

name in the cac.ini configuration file.

SBCS locales

For SBCS (non-graphic) locales, the following tables identify the available code

page converters for single byte character sets:

v Table 48 on page 252

v Table 49 on page 254

DBCS Locales

For DBCS (graphic) locales such as Chinese, Korean, or Japanese, the following

tables identify the available code page converters for double byte character sets:

v Table 50 on page 256

v Table 51 on page 257

Chapter 5. Reference for Classic federation 251

Code page converters

 Table 48. z/OS EBCDIC SBCS converter support

Converter

name (UNIX

and Linux)

Code page ODBC name (Windows) Character set

ibm-37 37 ibm-37_P100-1995,swaplfnl CECP (Country Extended

Code Page), USA, Canada

(ESA*), Netherlands,

Portugal, Brazil, Australia,

New Zealand

ibm-273 273 ibm-273_P100-1995 CECP, Austria, Germany

ibm-277 277 ibm-277_P100-1995 CECP, Denmark, Norway

ibm-278 278 ibm-278_P100-1995 CECP, Finland, Sweden

ibm-280 280 ibm-280_P100-1995 CECP, Finland, Sweden

ibm-284 284 ibm-284_P100-1995 CECP, Spain, Latin America,

Spanish

ibm-285 285 ibm-285_P100-1995 CECP, United Kingdom

ibm-290 290 ibm-290_P100-1995 Japanese Katakana host

extended SBCS

ibm-297 297 ibm-297_P100-1995 CECP, France

ibm-420 420 ibm-420_X120-1999 Arabic, all presentation

shapes string type 4

ibm-424 424 ibm-424_P100-1995 Hebrew|, legacy IDs: CS

941/2, CP 424/2, string

type 4

ibm-500 500 ibm-500_P100-1995 CECP, Belgium, Canada

(AS/400*), Switzerland,

International Latin-1

ibm-803 803 ibm-803_P100-1999 Hebrew Set A, legacy code,

string type 4

ibm-838 838 ibm-838_P100-1995 Thai host extended SBCS

ibm-870 870 ibm-870_P100-1995 Latin-2 - EBCDIC

multilingual

ibm-871 871 ibm-871_P100-1995 CECP, Iceland

ibm-875 875 ibm-875_P100-1995 Greek

ibm-1025 1025 ibm-1025_P100-1995 Cyrillic, Multilingual

ibm-1026 1026 ibm-1026_P100-1995 Turkey Latin-5

ibm-1047 1047 ibm-1047_P100-1995,swaplfnl Latin-1 and Open Systems

ibm-1097 1097 ibm-1097_P100-1995 Farsi

ibm-1112 1112 ibm-1112_P100-1995 Baltic, multilingual

ibm-1122 1122 ibm-1122_P100-1999 Estonia

ibm-1123 1123 ibm-1123_P100–1995 Cyrillic Ukraine

ibm-1130 1130 ibm-1130_P100-1997 Vietnamese

ibm-1132 1132 ibm-1132_P100-1998 Lao

ibm-1137 1137 ibm-1137_P100-1999 Devanagari EBCDIC, based

on Unicode character set

252 Classic Federation Guide and Reference

Table 48. z/OS EBCDIC SBCS converter support (continued)

Converter

name (UNIX

and Linux)

Code page ODBC name (Windows) Character set

ibm-1140 1140 ibm-1140_P100-1997,swaplfnl ECECP, USA, Canada,

Netherlands, Portugal,

Brazil, Australia, New

Zealand

ibm-1141 1141 ibm-1141_P100-1997 ECECP, Austria, Germany

ibm-1142 1142 ibm-1142_P100-1997,swaplfnl ECECP, Denmark, Norway

ibm-1143 1143 ibm-1143_P100-1997,swaplfnl ECECP, Finland, Sweden

ibm-1144 1144 ibm-1144_P100-1997,swaplfnl ECECP, Italy

ibm-1145 1145 ibm-1145_P100-1997,swaplfnl ECECP, Spain, Latin

America, Spanish

ibm-1146 1146 ibm-1146_P100-1997,swaplfnl ECECP, United Kingdom

ibm-1147 1147 ibm-1147_P100-1997,swaplfnl ECECP, France

ibm-1148 1148 ibm-1148_P100-1997,swaplfnl ECECP, International 1

ibm-1149 1149 ibm-1149_P100-1997,swaplfnl ECECP, Iceland

ibm-1153 1153 ibm-1153_P100-1999,swaplfnl Latin-2 - EBCDIC,

multilingual with euro

ibm-1154 1154 ibm-1154_P100-1999 Cyrillic Multilingual with

euro

ibm-1155 1155 ibm-1155_P100-1999 Turkey, Latin-5 with euro

ibm-1156 1156 ibm-1156_P100-1999 Baltic, multilingual with

euro

ibm-1157 1157 ibm-1157_P100-1999 Estonia, EBCDIC with euro

ibm-1158 1158 ibm-1158_P100-1999 Cyrillic Ukraine, EBCDIC

with euro

ibm-1160 1160 ibm-1160_P100-1999 Thai host with euro

ibm-1164 1164 ibm-1164_P100-1999 Vietnamese with euro

ibm-4899 4899 ibm-4899_P100-1998 Hebrew Set A, legacy code,

maximal set with euro and

new sheqel, string type 4

ibm-4971 4971 ibm-4971_P100-1999 Greek, with euro

ibm-5123 5123 ibm-5123_P100-1999 Japanese Latin host extended

SBCS, with euro

ibm-8482 8482 ibm-8482_P100-1999 Japanese Katakana, with

euro, growing CS

ibm-12712 12712 ibm-12712_P100-1998,swaplfnl Hebrew, max set with euro

and new sheqel, string

type 10

ibm-16804 16804 ibm-16804_X110-1999,swaplfnl Arabic, all presentation

shapes, string type 4, with

euro

Chapter 5. Reference for Classic federation 253

Table 49. Windows and UNIX SBCS converter support

Converter

name

Code page ODBC name Description

ibm-367 367 ibm-367_P100-1995 ANSI X3.4 ASCII standard;

USA

ibm-437 437 ibm-437_P100-1995 USA, many other countries

and regions, PC base PC data

ibm-737 737 ibm-737_P100-1997 MS-DOS Greek, PC data

ibm-775 775 ibm-775_P100-1996 MS-DOS Baltic, PC data

ibm-813 813 ibm-813_P100-1995 ISO 8859-7, Greek and Latin

ISO-8559–1 819 ISO-8859-1 ISO 8859-1, Latin-1 countries

and regions

ibm-850 850 ibm-850_P100-1995 LP 222, Latin-1 countries and

regions, PC data

ibm-851 851 ibm-851_P100-1995 Greek, PC data

ibm-852 852 ibm-852_P100-1995 Latin-2 multilingual, PC data

ibm-855 855 ibm-855_P100-1995 Cyrillic, PC data

ibm-856 856 ibm-856_P100-1995 Hebrew, string type 5, PC

data

ibm-857 857 ibm-857_P100-1995 Turkey Latin-5, PC data

ibm-858 858 ibm-858_P100-1997 MLP 222, Latin-1 with euro,

Latin-1 countries and regions,

PC data

ibm-860 860 ibm-860_P100-1995 Portugal, PC data

ibm-861 861 ibm-861_P100-1995 Iceland, PC data

ibm-862 862 ibm-862_P100-1995 Hebrew, migration, string

type 4, PC data

ibm-863 863 ibm-863_P100-1995 Canada, PC data

ibm-864 864 ibm-864_X110-1999 Arabic, string type 5, PC data

ibm-865 865 ibm-865_P100-1995 Denmark, Norway, PC data

ibm-866 866 ibm-866_P100-1995 Cyrillic, Russian, PC data

ibm-867 867 ibm-867_P100-1998 Hebrew, a modification of

code page 862, string type 4,

PC data

ibm-868 868 ibm-868_P100-1995 Urdu, PC data

ibm-869 869 ibm-869_P100-1995 Greek, PC data

ibm-874 874 ibm-874_P100-1995 Thai PC data extended SBCS

ibm-878 878 ibm-878_P100-1996 Russian Internet koi8-r

ibm-897 897 ibm-897_P100-1995 Japanese PC data single byte.

ibm-901 901 ibm-901_P100-1999 Baltic, 8-bit with euro

ibm-902 902 ibm-902_P100-1999 Estonia, 8-bit with euro

ibm-912 912 ibm-912_P100-1995 Latin-2 - ISO 8859-2

ibm-913 913 ibm-913_P100-2000 ISO Latin-3 - 8859-3

ibm-914 914 ibm-914_P100-1995 Latin-4 - ISO 8859-4

254 Classic Federation Guide and Reference

Table 49. Windows and UNIX SBCS converter support (continued)

Converter

name

Code page ODBC name Description

ibm-915 915 ibm-915_P100-1995 Cyrillic, 8-bit, ISO 8859-5

ibm-916 916 ibm-916_P100-1995 ISO 8859-8, Hebrew, string

type 5

ibm-920 920 ibm-920_P100-1995 ISO 8859-9 Latin-5,

ECMA-128, Turkey TS-5881

ibm-921 921 ibm-921_P100-1995 Baltic, 8-bit, ISO 8859-13

ibm-922 922 ibm-922_P100-1999 Estonia, 8-bit

ibm-923 923 ibm-923_P100-1998 ISO 8859-15, Latin-9 with

euro, total of 8 characters

replaced from 819

ibm-1006 1006 ibm-1006_P100-1995 Urdu, 8-bit

ibm-1051 1051 ibm-1051_P100-1995 HP emulation, for use with

Latin-1. GCGID SF150000 is

mapped to a control X’7F’

ibm-1089 1089 ibm-1089_P100-1995 ISO 8859-6, Arabic, string

type 5

ibm-1098 1098 ibm-1098_P100-1995 Farsi, personal computer

ibm-1124 1124 ibm-1124_P100-1996 Cyrillic Ukraine, 8-Bit

ibm-1125 1125 ibm-1125_P100-1997 Cyrillic Ukraine, PC data

Windows, Cyrillic

ibm-1129 1129 ibm-1129_P100-1997 ISO-8 Vietnamese

ibm-1131 1131 ibm-1131_P100-1997 Cyrillic Belarus, PC data

ibm-1133 1133 ibm-1133_P100-1997 ISO-8 Lao

ibm-1162 1162 ibm-1162_P100-1999 Thai Windows, with euro

ibm-1168 1168 ibm-1168_P100-2002 Ukrainian KOI8-U

ibm-1250 1250 ibm-1250_P100-1995 Windows Latin-2

ibm-1251 1251 ibm-1251_P100-1995 Windows, Cyrillic

ibm-1252 1252 ibm-1252_P100-2000 Windows, Latin-1

ibm-1253 1253 ibm-1253_P100-1995 Windows, Greek

ibm-1254 1254 ibm-1254_P100-1995 Windows, Turkey

ibm-1255 1255 ibm-1255_P100-1995 Windows, Hebrew, string

type 5

ibm-1256 1256 ibm-1256_P110-1997 Windows, Arabic, string

type 5

ibm-1257 1257 ibm-1257_P100-1995 Windows, Baltic Rim

ibm-1258 1258 ibm-1258_P100-1997 Windows, Vietnamese

ibm-1276 1276 ibm-1276_P100-1995 Adobe PostScript standard

encoding

ibm-4909 4909 ibm-4909_P100-1999 ISO-8, Greek and Latin with

euro

ibm-5346 5346 ibm-5346_P100-1998 Windows Latin-2, version 2

with euro

Chapter 5. Reference for Classic federation 255

Table 49. Windows and UNIX SBCS converter support (continued)

Converter

name

Code page ODBC name Description

ibm-5347 5347 ibm-5347_P100-1998 Windows, Cyrillic version 2

with euro

ibm-5348 5348 ibm-5348_P100-1997 Windows, Latin-1, Version 2

with euro)

ibm-5349 5349 ibm-5349_P100-1998 Windows, Greek version 2

with euro

ibm-5350 5350 ibm-5350_P100-1998 Windows, Turkey version 2

with euro

ibm-5351 5351 ibm-5351_P100-1998 Windows, Hebrew version 2

with euro, string type 5

ibm-5352 5352 ibm-5352_P100-1998 Windows, Arabic version 2

with euro, string type 5

ibm-5353 5353 ibm-5353_P100-1998 Windows, Baltic Rim

version 2 with euro

ibm-5354 5354 ibm-5354_P100-1998 Windows, Vietnamese

version 2 with euro

ibm-9005 9005 ibm-9005_X100-2005 Greek ISO 8859-7,2003

ibm-9447 9447 ibm-9447_P100-2002 Windows, Hebrew, Windows

1255-12/2001, string type 5

ibm-9449 9449 ibm-9449_P100-2002 Windows, Baltic Rim with

euro and 7 additional

characters

 Table 50. z/OS EBCDIC mixed-mode (DBCS) converter support

Converter

Nname

Code page ODBC name Description

ibm-930 930 ibm-930_P120-1999 Japanese Katakana-Kanji host

mixed including 4370 UDC

(User Defined Character),

extended SBCS

ibm-933 933 ibm-933_P110-1995 Korean host mixed including

1880 UDC, Extended SBCS

ibm-935 935 ibm-935_P110-1999 Simplified Chinese host

mixed including 1880 UDC,

extended SBCS

ibm-937 937 ibm-937_P110-1999 Traditional Chinese host

mixed including 6204 UDC,

extended SBCS

ibm-939 939 ibm-939_P120-1999 Japanese Latin-Kanji host

mixed including 4370 UDC,

extended SBCS

ibm-1364 1364 ibm-1364_P110-1997 Korean host mixed extended

including 11,172 full Hangul

256 Classic Federation Guide and Reference

Table 50. z/OS EBCDIC mixed-mode (DBCS) converter support (continued)

Converter

Nname

Code page ODBC name Description

ibm-1371 1371 ibm-1371_P100-1999 Traditional Chinese host

mixed including:

6204 UDC,Extended SBCS

including SBCS and DBCS

euro

ibm-1388 1388 ibm-1388_P103-2001 Simplified Chinese DBCS- GB

18030 host with UDCs and

Uygur extension.

ibm-1390 1390 ibm-1390 Extended Japanese

Katakana-Kanji host mixed

for JIS X0213 (Japanese

Industrial Standards),

including:

6205 UDC,extended SBCS,

includes SBCS & DBCS euro

ibm-1399 1399 ibm-1399 Extended Japanese

Latin-Kanji host mixed for JIS

X0213 including:

6205 UDC,extended SBCS,

includes SBCS & DBCS euro

 Table 51. Windows and UNIX mixed-mode (DBCS) converter support

Converter

name

Code page ODBC name Description

ibm-942 942 ibm-942_P12A-1999 Japanese PC data mixed

including 1880 UDC, extended

SBCS

ibm-
943_P130

943 ibm-943_P130-1999 Japanese PC data mixed for

open environment

multi-vendor code, 6878 JIS X

0208-1990 chars, 386 IBM

selected DBCS chars, 1880

UDC (X’F040’ to X’F9FC’)

ibm-
943_P15A

943 ibm-943-P15A-2003 Japanese, PC data mixed for

open environment

multi-vendor code:

6878 JIS X 0208-1990 chars,386

IBM selected DBCS chars,

1880 UDC (X’F040’ to X’F9FC’)

ibm-
949_P110

949 ibm-949_P110-1999 IBM KS code - PC data mixed

including 1880 UDC

ibm-
949_P11A

949 ibm-949_P11A-1999 IBM KS code - PC data mixed

including 1880 UDC

ibm-950 950 ibm-950_P110-1999 Traditional Chinese PC data

mixed for IBM BIG-5

Chapter 5. Reference for Classic federation 257

Table 51. Windows and UNIX mixed-mode (DBCS) converter support (continued)

Converter

name

Code page ODBC name Description

ibm-954 954 ibm-954_P101-2000 Japanese EUC (Extended Unix

Code),

G0 - JIS X201 Roman set 00895,

G1 - JIS X208-1990 set 00952,

G2 - JIS X201 Katakana set

04992,

G3 - JIS X212 set 00953

ibm-964 964 ibm-964_P110-1999 Traditional Chinese EUC;

G1 - CNS 11643 plane 1 00960;

G2 - CNS 11643 plane 2 00961

ibm-970 970 ibm-970_P110-1995 Korean EUC; G0 - ASCII; G1 -

KS C5601-1989, with 188 UDC

ibm-
1363_P110

1363 ibm-1363_P110-1997 Windows Korean PC Mixed,

including 11,172 full Hangul

ibm-
1363_P11B

1363 ibm-1363-P11B-1998 Windows Korean PC Mixed,

including 11,172 full Hangul

ibm-1375 1375 ibm-1375_P100-2003 Mixed big-5 extension for

HKSCS (Hong Kong

Supplementary Character Set)

ibm-1383 1383 ibm-1383_P110-1999 Simplified Chinese EUC; G0

set, ASCII; G1 set, GB 2312-80

set 1382

ibm-1386 1386 ibm-1386_P100-2002 Simplified Chinese PC data

GBK

(Guojia Biaozhun Kuozhan)

mixed,

all GBK character set and other

growing characters

ibm-33722 33722 ibm-33722_P120-1999 Japanese EUC (IBMeucJP);

G1 - JIS X208-1990 set 00952;

G2 - JIS X201 Katakana set

04992;

G3 - JIS X212 set 09145

Sample VTAM and CICS definitions for stored procedures

You use two sets of VTAM and CICS resource definitions to activate a

CICS-enabled stored procedure implementation.

v VTAM definitions and CICS definitions are required for communications

between the data server and the CICS system.

v CICS definitions are also required to identify files, programs, and transactions.

258 Classic Federation Guide and Reference

VTAM resource definitions

VTAM resource definitions require an APPL definition on the server to provide a

local Logical Unit (LU) name for the communication session.

Multiple local LU names, APPL definitions, might be required depending upon the

number of procedure users on the data server that you allow to be active

concurrently. Allow one local LU name per active server-stored procedure user to

eliminate the possibility of communication failures because the local LU name is

busy. However, a one-to-one relationship between local LU names and active

server-stored procedure users is not usually required. In general, a relatively small

number of local LU names is adequate for most sites. The required number of local

LU names is the number of expected concurrent requests that the server handles.

Set the maximum tasks specification (field 5) of the service information entry for

the query processor to the number of local LU names that are defined.

You assign the Application Control Block (ACB) name in the APPL definition. The

ACB name is specified on the OPEN request. This request is issued by the

user-written stored procedure that runs in the data server address space. In the

sample communication programs CACSPCOM or CACSPVCM, a pool of APPL

definitions must be created by assigning sequentially ascending ACB names like

CACAPPC0, CACAPPC1, CACAPPC2, and so on. To use this pool of ACB names,

the OPEN request must then specify the local LU name as CACAPPC*. The

communications processor attempts to open the specified ACB name after

replacing the asterisk position with a sequentially ascending value beginning at

zero.

If a pool of 10 ACB names is insufficient, the APPL definitions can use names that

end in two digits, for example, CACPPC00, CACPPC01, CACPPC02, and so on. To

use this pool of ACB names, the OPEN request must then specify the local LU

name as CACPPC**. You can specify up to seven suffix asterisk characters (*).

Important: You need to carefully control the size of the APPL definition pool. If an

OPEN request fails, the next ACB name is generated, and the stored procedure

attempts another OPEN request. If each subsequent OPEN request fails, the stored

procedure attempts the entire pool of ACB names before the communications

processor reports an OPEN failure. To use only a specific ACB name, the OPEN

request specifies the exact name without an asterisk suffix.

VTAM APPL definition and mode table entry definition

The following examples demonstrate how to create an APPL definition and a

VTAM mode table entry definition.

VTAM APPL definition

VTAM APPL Definition

CACCAPPL VBUILD TYPE=APPL

CACCICS1 APPL ACBNAME=CACCICS1, X

 APPC=YES, X

 AUTOSES=1, X

 MODETAB=CACCMODE, X

 DLOGMOD=MTLU62, X

 AUTH=(ACQ), X

 EAS=100,PARSESS=YES, X

 SONSCIP=YES, X

 DMINWNL=0, X

 DMINWNR=1, X

 DSESLIM=100

CACCICS2 APPL ACBNAME=CACCICS2, X

Chapter 5. Reference for Classic federation 259

APPC=YES, X

 AUTOSES=1, X

 MODETAB=CACCMODE, X

 DLOGMOD=MTLU62, X

 AUTH=(ACQ), X

 EAS=1,PARSESS=YES, X

 SONSCIP=YES, X

 DMINWNL=0, X

 DMINWNR=1, X

 DSESLIM=1

The example shows APPL definitions to be used by the example program

CACSPCOM or CACSPVCM. Your actual APPL definitions can vary based upon

site standards. The OPEN request issued by CACSPCOM specifies the local LU

name CACPPC0*, thereby using the APPL definitions as a pool of up to 10 entries.

The definitions in the example are complete. Thus, the pool actually consists of

only two entries. CACMODE is defined as the Logon Mode Table name, and

MTLU62 is defined as the Logon Mode Table entry name. The Logon Mode Table

entry must be in either the specified Logon Mode Table or in ISTINCLM, an

IBM-supplied Logon Mode Table. The OPEN request issued by CACSPCOM also

specifies the Logon Mode Table entry (DLOGMOD) name.

If you plan to run the example program CACSPCOM and changes were made to

the ACB name or DLOGMOD, you must correct CACSPCOM to specify the

modified values, recompile, and link-edit the program before you run the example.

You can make changes to MODETAB to identify your correct Mode Table Name

without affecting the example program, CACSPCOM.

VTAM mode table entry definition

VTAM Mode Table Entry Definition

CACCMODE MODEENT LOGMODE=CACCMODE, *

 TYPE=0, *

 FMPROF=X’13’, *

 TSPROF=X’07’, *

 PRIPROT=X’B0’, *

 SECPROT=X’B0’, *

 COMPROT=X’D0B1’, *

 RUSIZES=X’8585’, *

 PSERVIC=X’060200000000000000000300’

The example above shows a Mode Table entry definition that is used by the

example program CACSPCOM or CACSPVCM. Your actual Mode Table entry

definition can vary based upon site standards. As stated earlier, the OPEN request

issued by CACSPCOM specifies Logon Mode Table entry MTLU62. If you plan to

run the example program CACSPCOM and changes were made to LOGMODE,

you must correct CACSPCOM to specify the new name, recompile, and link-edit

the program before attempting to run the example. The CICS system must have

access to a Logon Mode Table entry with an identical name.

CICS resource definitions

To complete specific resource definitions in CICS, you need to review several

definitions within your CICS or VTAM system.

The CICS Application Identifier (APPLID) becomes the remote LU name for the

communication session. The CICS APPLID can handle multiple sessions from

stored procedure processors on the data server. You need to specify the following

parameters to ensure that your system operates efficiently:

260 Classic Federation Guide and Reference

v The CICS system initialization table (DFHSIT) definition or initialization

overrides must include ISC=YES to enable intercommunication programs.

v The ACF/VTAM application definition for your CICS system must include the

following options on the VTAM APPL statement:

AUTH=(ACQ,VPACE,......)

Allows CICS to acquire LUTYPE6 sessions and to allow pacing of

intersystem flows.

VPACING=n

Specifies the pacing rate.

EAS=n

Specifies the maximum number of network addressable units with which

CICS can establish sessions.

PARSESS=YES

Enables LUTYPE6 parallel session support.

SONSCIP=YES

Enables session outage notification support.
v APPC=YES must not be coded on the APPL statement.

For more information about CICS resource definitions and intersystem connectivity,

see IBM documentation on CICS/ESA® intercommunications.

Install resource definitions for the required LU6.2 connection handler. Your stored

procedure implementation includes the following definitions:

v The program definition. This program is load member CACSP62. The name of

this program is used only in the transaction definition. This load module must

be in a library that is included in the DFHRPL concatenation for your CICS

system.

v The transaction definition. You need to assign the transaction name. This

transaction is referenced as XASP. The OPEN request that is issued by the

sample program CACSPCOM specifies transaction name XASP. If you plan to

run the supplied sample program CACSPCOM and you define a different

transaction name, you must correct CACSPCOM to specify the new transaction,

recompile, and link-edit the program before attempting to run the example.

CEDA definitions

The following examples show online resource definitions, called CEDA panels, that

define required CICS resources so you can use stored procedures.

CEDA panels that define CICS resources

The fields that you must describe for a successful definition are shown in

underlined bold type, for example, xxxx. Your site must define the fields that

contain only lowercase characters. Fields that are mixed case must be entered

exactly as shown.

PROGRAM DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine PROGram(pppppppp)

 PROGram : CACSP62

 Group : gggg

 DEscription ==>

 Language ==> Assembler CObol | Assembler | Le370 | C |Pli

 | Rpg

 RELoad ==> No No | Yes

Chapter 5. Reference for Classic federation 261

RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USElpacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Below Below | Any

 EXECKey ==> User User | Cics

REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

 EXECUtionset ==> Fullapi Fullapi | Dplsubset

 TRANSACTION DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine TRANSaction(tttt)

 TRANSaction : XASP

 Group : gggg

 DEscription ==>

 PROGram ==> CACSP62

 TWasize ==> 00000 0-32767

 PROFile ==> DFHCICST

 PArtitionset ==>

 STAtus ==> Enabled Enabled | Disabled

 PRIMedsize : 00000 0-65520

 TASKDATALoc ==> Below Below | Any

 TASKDATAKey ==> User User | Cics

 STOrageclear ==> No No | Yes

 RUnaway ==> System System | 0-2700000

 SHutdown ==> Disabled Disabled | Enabled

 ISolate ==> Yes Yes | No

REMOTE ATTRIBUTES

 DYnamic ==> No No | Yes

 REMOTESystem ==>

 REMOTEName ==>

 TRProf ==>

 Localq ==> No | Yes

SCHEDULING

 PRIOrity ==> 001 0-255

 TClass : No No | 1-10

 TRANClass ==>

ALIASES

 Alias ==>

 TASKReq ==>

 XTRanid ==>

 TPName ==>

 ==>

 XTPname ==>

 ==>

 ==>

RECOVERY

 DTimout ==> No No | 1-6800

 INdoubt ==> Backout Backout | Commit | Wait

 RESTart ==> No No | Yes

 SPurge ==> No No | Yes

 TPUrge ==> No No | Yes

 DUmp ==> Yes Yes | No

 TRACe ==> Yes Yes | No

 COnfdata ==> No No | Yes

SECURITY

 RESSec ==> No No | Yes

 CMdsec ==> No No | Yes

 Extsec : No

 TRANSec : 01 1-64

 RSl : 00 0-24 | Public

262 Classic Federation Guide and Reference

Optionally, install the example program environments for stored procedures. The

resource definitions you need to install the example program environments

include:

v The program definition for the example program CACSPREM.

v The file definition for the sample VSAM Employee file CACIVP.

v The CONNECTION/SESSION definition is required for each LU name that

might be used to communicate with CICS from a data server. For purposes of

this example, two LU NAMEs are defined for VTAM, CACPPC00 and

CACPPC01. The sample program, CACSPCOM, that runs in the data server

address space, uses one of these local LU names when it requests an OPEN for

the LU6.2 conversation.

The following entries show the online CEDA panels that are used to define the

optional CICS resources. The fields that you must describe for a successful

definition are shown in underlined bold type, for example, xxxx. Your site must

define fields that contain only lower case characters. Fields that are mixed case

must be entered exactly as shown.

PROGRAM Definition

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine PROGram(CACSPREM)

 PROGram : CACSPREM

 Group : gggg

 DEscription ==>

 Language ==> Le370 CObol | Assembler | Le370 | C | Pli

 | Rpg

 RELoad ==> No No | Yes

 RESident ==> No No | Yes

 USAge ==> Normal Normal | Transient

 USElpacopy ==> No No | Yes

 Status ==> Enabled Enabled | Disabled

 RSl : 00 0-24 | Public

 Cedf ==> Yes Yes | No

 DAtalocation ==> Below Below | Any

 EXECKey ==> User User | Cics

 REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 Transid ==>

 EXECUtionset ==> Fullapi Fullapi | Dplsubset

The CACSPREM example program is a COBOL II program. The program, as

supplied, does not use Language Environment/370 facilities. However, if you

compile the program using an SAA® AD/Cycle® COBOL/370™ Version 1 Release 1

or later, the attribute LANGUAGE ==>Le370 must remain as shown in the

previous example. If the program is not compiled by a Language Environment/370

enabled compiler, change the attribute to LANGUAGE==>CObol.

If the LANGUAGE attribute specifies Le370, you must have Language

Environment/370 support installed in your CICS system. If the LANGUAGE

attribute specifies COBOL, you must install the VS COBOL II interface in your

CICS system. If CICS is not enabled to support the LANGUAGE attribute specified

for this program, see the CICS documentation about system definitions.

FILE DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine File(CACIVP)

 File : CACIVP

 Group : gggg

 DEScription ==>

Chapter 5. Reference for Classic federation 263

VSAM PARAMETERS

 DSNAme ==> your.vsam.cluster.name.here

 Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 1 1-8 | None

 DSNSharing ==> Allreqs Allreqs | Modifyreqs

 STRings ==> 001 1-255

 Nsrgroup ==>

 REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 RECORDSize ==> 1-32767

 Keylength ==> 1-255

 INITIAL STATUS

 STAtus ==> Enabled Enabled | Disabled | Unenabled

 Opentime ==> Firstref Firstref | Startup

 DIsposition ==> Share Share | Old

 BUFFERS

 DAtabuffers ==> 00002 2-32767

 Indexbuffers ==> 00001 1-32767

 DATATABLE PARAMETERS

 Table ==> No No | Cics | User

 Maxnumrecs ==> 16-16777215

 DATA FORMAT

 RECORDFormat ==> F V | F

 OPERATIONS

 Add ==> Yes No | Yes

 BRowse ==> No No | Yes

 DELete ==> Yes No | Yes

 REAd ==> Yes Yes | No

 Update ==> Yes No | Yes

 AUTO JOURNALLING

 JOurnal ==> No No | 1-99

 JNLRead ==> None None | Updateonly | Readonly | All

 JNLSYNCRead ==> No No | Yes

 JNLUpdate ==> No No | Yes

 JNLAdd ==> None None | Before | AFter | ALl

 JNLSYNCWrite ==> Yes Yes | No

 RECOVERY PARAMETERS

 RECOVery ==> None None | Backoutonly | All

 Fwdrecovlog ==> No No | 1-99

 BAckuptype ==> Static Static | Dynamic

 SECURITY

 RESsecnum : 00 0-24 | Public

CONNECTION DEFINITION (1 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine Connection(ccc1)

 Connection : ccc1

 Group : gggg

 DEscription ==>

 CONNECTION IDENTIFIERS

 Netname ==> CACPPC00

 INDsys ==>

 REMOTE ATTRIBUTES

 REMOTESYSTem ==>

 REMOTEName ==>

 REMOTESYSNet ==>

 CONNECTION PROPERTIES

 ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm

 PRotocol ==> Appc Appc | Lu61 | Exci

 Conntype ==> Generic | Specific

 SInglesess ==> No No | Yes

 DAtastream ==> User User | 3270 | SCs | STrfield | Lms

 RECordformat ==> U U | Vb

 Queuelimit ==> No No | 0-9999

 Maxqtime ==> No No | 0-9999

 OPERATIONAL PROPERTIES

264 Classic Federation Guide and Reference

AUtoconnect ==> No No | Yes | All

 INService ==> Yes Yes | No

 SECURITY

 SEcurityname ==>

 ATtachsec ==> Local Local | Identify | Verify | Persistent

 | Mixidpe

 BINDPassword : PASSWORD NOT SPECIFIED

 BINDSecurity ==> No No | Yes

 Usedfltuser ==> No No | Yes

 RECOVERY

 PSrecovery ==> Sysdefault Sysdefault | None

CONNECTION DEFINITION (2 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine Connection(ccc2)

 Connection : ccc2

 Group : gggg

 DEscription ==>

 CONNECTION IDENTIFIERS

 Netname ==> CACPPC01

 INDsys ==>

 REMOTE ATTRIBUTES

 REMOTESYSTem ==>

 REMOTEName ==>

 REMOTESYSNet ==>

 CONNECTION PROPERTIES

 ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm

 PRotocol ==> Appc Appc | Lu61 | Exci

 Conntype ==> Generic | Specific

 SInglesess ==> No No | Yes

 DAtastream ==> User User | 3270 | SCs | STrfield

 | Lms

 RECordformat ==> U U | Vb

 Queuelimit ==> No No | 0-9999

 Maxqtime ==> No No | 0-9999

 OPERATIONAL PROPERTIES

 AUtoconnect ==> No No | Yes | All

 INService ==> Yes Yes | No

 SECURITY

 SEcurityname ==>

 ATtachsec ==> Local Local | Identify | Verify

 | Persistent| Mixidpe

 BINDPassword : PASSWORD NOT SPECIFIED

 BINDSecurity ==> No No | Yes

 Usedfltuser ==> No No | Yes

 RECOVERY

 PSrecovery ==> Sysdefault Sysdefault | None

Tip: If you want CICS to verify user IDs and passwords as valid CICS users, set

the ATTACHSEC parameter to Verify.
SESSIONS DEFINITION (1 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine Sessions(sssssss1)

 Sessions : sssssss1

 Group : gggg

 DEscription ==>

 SESSION IDENTIFIERS

 Connection ==> ccc1

 SESSName ==>

 NETnameq ==>

 MOdename ==> MTLU62

 SESSION PROPERTIES

 Protocol ==> Appc Appc | Lu61 | Exci

 MAximum ==> 001 , 000 0-999

 RECEIVEPfx ==>

Chapter 5. Reference for Classic federation 265

RECEIVECount ==> 1-999

 SENDPfx ==>

 SENDCount ==> 1-999

 SENDSize ==> 00256 1-30720

 RECEIVESize ==> 00256 1-30720

 SESSPriority ==> 000 0-255

 Transaction :

 OPERATOR DEFAULTS

 OPERId :

 OPERPriority : 000 0-255

 OPERRsl : 0 0-24,...

 OPERSecurity : 1 1-64,...

 PRESET SECURITY

 USERId ==>

 OPERATIONAL PROPERTIES

 Autoconnect ==> No No | Yes | All

 INservice :

 Buildchain ==> Yes Yes | No

 USERArealen ==> 000 0-255

 IOarealen ==> 00000 , 00000 0-32767

 RELreq ==> No No | Yes

 DIscreq ==> No No | Yes

 NEPclass ==> 000 0-255

 RECOVERY

 RECOVOption ==> Sysdefault Sysdefault | Clearconv

 | Releasesess| Uncondrel | None

 RECOVNotify : None None | Message | Transaction

SESSIONS DEFINITION (2 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410

 CEDA DEFine Sessions(sssssss2)

 Sessions : sssssss2

 Group : gggg

 DEscription ==>

 SESSION IDENTIFIERS

 Connection ==> ccc2

 ESSName ==>

 NETnameq ==>

 MOdename ==> MTLU62

 SESSION PROPERTIES

 Protocol ==> Appc Appc | Lu61 | Exci

 MAximum ==> 001 , 000 0-999

 RECEIVEPfx ==>

 RECEIVECount ==> 1-999

 SENDPfx ==>

 SENDCount ==> 1-999

 SENDSize ==> 00256 1-30720

 RECEIVESize ==> 00256 1-30720

 SESSPriority ==> 000 0-255

 Transaction :

 OPERATOR DEFAULTS

 OPERId :

 OPERPriority : 000 0-255

 OPERRsl : 0 0-24,...

 OPERSecurity : 1 1-64,...

 PRESET SECURITY

 USERId ==>

 OPERATIONAL PROPERTIES

 Autoconnect ==> No No | Yes | All

 INservice :

 Buildchain ==> Yes Yes | No

 USERArealen ==> 000 0-255

 IOarealen ==> 00000 , 00000 0-32767

 RELreq ==> No No | Yes

266 Classic Federation Guide and Reference

DIscreq ==> No No | Yes

 NEPclass ==> 000 0-255

 RECOVERY

 RECOVOption ==> Sysdefault Sysdefault | Clearconv

 | Releasesess| Uncondrel | None

 RECOVNotify : None None | Message | Transaction

After you complete and verify the CEDA definitions, install the group by using the

online command CEDA INSTALL GROUP(gggg)ALL. When you install the group,

the definitions are immediately available for use. The group must also be added to

the startup group list, so the stored procedure group is automatically installed

during each subsequent startup of the CICS system. To add the group to the

startup group list, locate the GRPLIST parameter on the system initialization table

(DFHSIT) or in the SIT overrides used to start the CICS system. When the

GRPLIST=xxxxxxx parameter is determined, that name is used in the online

command CEDA ADD GROUP(gggg) LIST(xxxxxxx) to permanently add the stored

procedure processing group to the CICS system startup.

Field procedures

You use field procedures to transform data values from one format to another.

Field procedures are assigned to columns as conversion exits in the Classic Data

Architect and metadata utility. The specified field procedure is invoked each time

that the column is referenced.

The transformation that the field procedure performs on a value in a WHERE

clause is called field-encoding. The same routine undoes the transformation when

values are retrieved; that operation is called field-decoding. You can also use the

Classic Data Architect to specify the SQL data types that describe column values.

You can use the sample field procedures that are provided in SCACSAMP to assist

you.

Restriction: The field-decoding function must be the exact inverse of the

field-encoding function. For example, if a routine encodes HYDROGEN to

01, it must decode 01 to HYDROGEN.

Field procedure setup

You define field procedures to convert data values from one format to another

when SQL requests reference a column.

To create a field procedure for a column, use the Classic Data Architect. In the

column properties view, you can define a conversion exit in the column

information. The conversion exit is included in the DDL that creates the metadata

catalog.

Alternatively, you can specify a field procedure in a column definition by using the

WITH CONVERSION parameter.

After you define a field procedure, place the load module in a library that is

referenced by the server STEPLIB DD statement. The field procedure routine must

be written and linked as AMODE 31, RMODE ANY. Any storage or other resources that

the field procedure allocates must be freed each time that the field procedure is

called.

Chapter 5. Reference for Classic federation 267

Field procedures and data transformations

With basic knowledge about how to use field procedures, you can perform data

transformations during query processing.

Field procedures are conversion routines that translate between data items in a

database record and their corresponding SQL data types. These procedures are

used when the underlying data type in a record does not match the SQL data type

to be returned in SQL requests. These examples of situations show how to use field

procedures:

v Database fields that are transformed to reverse or change sorting order.

For example, decimal date fields are often stored in nines compliment format in

order to reverse the sorting order of dates such that the most recent date comes

first. The nines complement is the amount necessary to complete a number up to

the highest number in the number system. In the decimal system, this is the

difference between a given number and all 9s. The nines complement of 254 is

999 minus 254, or 745.

v Abbreviations or coded tables. Abbreviations or codes for application data items

can be used to save space in database records. For example, the value 01 can be

stored in place of the element name hydrogen.

v Encryption. For security purposes, password fields can be stored in a database

record in an encrypted format.

A query invokes a field procedure to either encode or decode the data value of a

column. Field encoding takes place when either of these actions occur:

v The field is compared to a value in the WHERE clause by using the equal or not

equal comparison operators.

v A column is assigned a value with an SQL INSERT or UPDATE statement.

Field-decoding takes place when:

v A stored value is to be compared to any operator other than equal or not equal.

v A query retrieves the contents of a field in a select list. The value is

field-decoded back into its original string value.

A field procedure is never invoked to determine if the field is NULL or NOT

NULL.

Exception: The use of a key column with a field procedure in a WHERE clause

can cause the data connector to scan the database. This situation can

happen if the column is the beginning of the key and the comparison

operator is not the equal comparison operator.

Control blocks for field procedures

You use control blocks to communicate parameters to a field procedure and

provide information about working storage, operations, errors, addresses, data

types, and other value attributes.

Field procedure parameter list (FPPL)

The field procedure parameter list points to the addresses of these areas: the work

area, the field procedure information block, the column value descriptor, and the

field descriptor.

Register 1 points to the field procedure parameter list on entry to a field

procedure. The parameter list, in turn, contains the addresses of other areas, as

268 Classic Federation Guide and Reference

shown in the following figure. The mapping macro DSNDFPPBFPPL describes the

areas that the FPPL points to.

Work area

The work area is 512 bytes of contiguous, uninitialized storage that a field

procedure can use as working storage.

If 512 bytes is sufficient for your operations, your field-definition operation does

not need to change the value that is supplied by the query processor. If less than

512 bytes is required, the field-definition can return a smaller value. If your

program requires more than 512 bytes, the field procedure must acquire the

necessary storage.

Field procedure information block (FPIB)

The field procedure information block communicates general information to a field

procedure, including the operation that is performed, the size of the work area,

and error message addressing.

The following table displays the format of the field procedure information block:

 Table 52. Format of FPIB

Value description Hex offset Integer type Contents

FPBFCODE 0 Signed 2-byte integer Function code:

v 0 (field-encoding)

v 4 (field-decoding)

FPBWKLN 2 Signed 2-byte integer 512, length of work area in

bytes

FPBSORC 4 Signed 2-byte integer Reserved

FPBRTNC 6 Character, 2 bytes Return code that is set by the

field procedure

FPBRSNC 8 Character, 4 bytes Reason code that is set by

the field procedure

FPBTOKP C Address Address of a 40-byte area in

which to return an error

message

Register 1
FPPL

Work Area

Field procedure information block (FPIB)

Column value descriptor (CVD)

Field value descriptor (FVD)

Figure 15. Field procedure parameter list

Chapter 5. Reference for Classic federation 269

Error messages in the FPBTOKP are not returned to the client application when a

field procedure reports an error. Error messages are, however, logged in the server

log for debugging purposes.

Value descriptors

Value descriptors describe the data type and other attributes of a column value or

field value.

During field-encoding and field-decoding, the decoded column value and the

encoded field value are described by the column value descriptor (CVD) and the

field value descriptor (FVD):

Column value descriptor (CVD)

Contains a description of a column value and, if appropriate, the value

itself. During field-encoding, the CVD describes the value to be encoded.

During field-decoding, the CVD describes the decoded value to be

supplied by the field procedure.

Field value descriptor (FVD)

Contains a description of a field value and, if appropriate, the value itself.

During field-encoding, the FVD describes the encoded value to be supplied

by the field procedure. During field-decoding, the FVD describes the value

to be decoded.

The value descriptors have the format shown in the following table:

 Table 53. Format of value descriptors

Value descriptor

Hex

offset Integer type Contents

FPVDTYP 0 Signed 2-byte

integer

Data type of the value:

v 0 (INTEGER)

v 4 (SMALLINT)

v 8 (FLOAT)

v 12 (DECIMAL)

v 16 (CHAR)

v 20 (VARCHAR)

v 24 (GRAPHIC)

v 28 (VARGRAPHIC)

FPVDVLEN 2 Signed 2-byte

integer

v For a varying-length string value, its maximum length

v For a decimal number value, its precision (byte 1) and

scale (byte 2)

v For any other value, its length

For GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC

data types, the length is specified in bytes.

FPVDVALE 4 None The value of the column or field. If the value is a

varying-length string, the first halfword is the actual

length of the value in bytes. This field is not present in a

CVD, or in an FVD that is used as input to the

field-definition operation. An empty varying-length string

has a length of zero with no data following.

270 Classic Federation Guide and Reference

Field-encoding (function code 0)

Your field procedure performs encoding operations when you specify

field-encoding function code 0 in the FPBFCODE field of the field procedure

information block. The information that follows describes the input and required

output of field-encoding operations.

On ENTRY, the registers contain the following information:

 Table 54. Field encoding on entry

Register Contents

1 Address of the field procedure parameter list (FPPL)

0, 2 through 12 Values that must be restored on exit

13 Address of the calling program save area that must be restored on exit

14 Return address

15 Address of entry point of exit routine

The work area is uninitialized.

The FPIB contains the following information:

 Table 55. FPIB fields and contents

Field Contents

FPBFCODE 0, the function code

FPBWKLN 512, the length of the work area in bytes

The CVD contains the following information:

 Table 56. CVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value.

FPVDVLEN The length of the column value.

FPVDVALE The column value; if the value is a varying-length string, the first halfword contains its length.

The FVD contains the following information:

 Table 57. FVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value

FPVDVLEN The length of the field value

FPVDVALE Uninitialized area with a value of FPVDVLEN

On EXIT, the registers contain the following information:

 Table 58. EXIT registers and contents

Register Contents

1 Address of the field procedure parameter list (FPPL).

0, 2 through 14 The values that they contained on entry.

15 The integer zero. An error in processing is indicated by the value in FPBRTNC.

Chapter 5. Reference for Classic federation 271

The FVD must contain the encoded field value in field FPVDVALE. If the value is

a varying-length string, the first halfword must contain its length.

The FPIB can contain the following information:

 Table 59. FPIB fields and contents

Field Contents

FPBRTNC Return code. The character “0” that is followed by a space indicates success. Anything other than

“0” indicates an error.

FPBRSNC An optional, 4-byte character reason code, which is defined by the field procedure, blanks if no

reason code is provided.

FPBTOKP Address of a 40-byte area that contains an error message when an error message is detected.

Errors that are signaled by a field procedure result in SQLCODE -681 and are

written to the error log, which is set in the SQL Communications Area (SQLCA).

FPBRTNC is the return code; FPBRSNCD is the reason code; and a 40-byte error

field for the specific error message is FPBTOKP.

Field-decoding (function code 4)

Your field procedure performs decoding operations when you specify

field-encoding function code 4 in the FPBFCODE field of the field procedure

information block. The information that follows describes the input and required

output of field-decoding operations.

On ENTRY, the registers contain the following information:

 Table 60. ENTRY registers and fields

Register Contents

1 Address of the field procedure parameter list (FPPL)

0, 2 through 12 Values that must be restored on exit

13 Address of the calling program save area that must be restored on exit

14 Return address

15 Address of entry point of the exit routine

The work area is uninitialized.

The FPIB contains the following information:

 Table 61. FPIB fields and contents

Field Contents

FPBFCODE 4, the function code

FPBWKLN 512, the length of the work area in bytes.

The CVD contains the following information:

 Table 62. CVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value

FPVDVLEN The length of the column value

FPVDVALE Uninitialized area with a value of FPVDVLEN

272 Classic Federation Guide and Reference

The FVD contains the following information:

 Table 63. FVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value

FPVDVLEN The length of the field value

FPVDVALE The field value; if the value is a varying-length string, the first halfword contains its length

On EXIT, the registers contain the following information:

 Table 64. EXIT registers and contents

Register Contents

1 Address of the field procedure parameter list (FPPL).

0, 2 through 14 The values that they contained on entry.

15 The integer zero. An error in processing is indicated by the value in FPBRTNC.

The CVD must contain the decoded column value in field FPVDVALE. If the value

is a varying-length string, the first halfword must contain its length.

The FPIB can contain the following information:

 Table 65. FPIB fields and contents

Field Contents

FPBRTNC Return code. The character “0” that is followed by a space indicates success. Anything other than

“0” indicates an error.

FPBRSNC An optional, 4-byte character reason code, defined by the field procedure; blanks if no reason code

is provided.

FPBTOKP Address of a 40-byte area in which to return an error message.

Errors that are signaled by a field procedure result in SQLCODE -681. The errors

are written to the error log, which is set in the SQL Communications Area

(SQLCA). FPBRTNC is the return code; FPBRSNCD is the reason code; and a

40-byte error field for the specific error message is FPBTOKP.

Sample field procedures

Use the sample field procedures that are provided in SCACSAMP to guide you

when you create your own field procedures.

The following table lists each member and its description:

 Table 66. SCACSAMP members and descriptions

SCACSAMP member name Description

CACFP001 A nines complement field procedure that converts decimal or zoned decimal

data

CACFP999 Creates site-specific field procedures

CACFP001 - Sample field procedure

Use this nines complement field procedure with decimal or zoned decimal data to

force decimal date fields into descending sort order.

The following mapping combinations are supported:

Chapter 5. Reference for Classic federation 273

v DATATYPE P|UP USE AS DECIMAL(p,s) in which decimal fields are mapped

as SQL DECIMAL

v DATATYPE C|UC USE AS CHAR(n) in which zoned decimal fields are mapped

as SQL CHAR

v DATATYPE C|UC USE AS DECIMAL(p,s) in which zoned decimal fields are

mapped as SQL DECIMAL

CACFP999 - Sample field procedure

Use this generic field procedure to create your own site-specific field procedures

and transform supported data types.

This field procedure copies field data directly to column data as-is and supports

the following data types:

v SMALLINIT

v INTEGER

v DECIMAL

v FLOAT

v CHARACTER

This field procedure does not perform any data conversion.

The catalog initialization and maintenance utility (CACCATUT)

The catalog initialization and maintenance utility (CACCATUT) is a z/OS batch job

that creates or performs operations on an offline metadata catalog. Offline means

that no services can reference the metadata catalog while CACCATUT is running.

You can configure CACCATUT to perform one of the following operations when it

executes:

v Create and initialize a version 9.1 sequential metadata catalog

v Create and initialize a version 9.1 linear metadata catalog

v Upgrade an existing pre-version 9.1 sequential metadata catalog to a version 9.1

sequential metadata catalog.

v Upgrade an existing pre-version 9.1 linear metadata catalog to a version 9.1

sequential metadata catalog.

v Report on space utilization, the contents of a sequential metadata catalog, and

any corruptions that might exist within the sequential metadata catalog.

v Reorganize the contents of a sequential metadata catalog to reclaim unused

space and, where possible, correct any corruptions that might exist.

v Create a version 9.1 sequential copy of a version 9.1 sequential or linear

metadata catalog.

The catalog initialization and maintenance utility is distributed in library

SCACLOAD as member name CACCATUT.

Creating and initializing sequential metadata catalogs

The INIT operation of the catalog initialization and maintenance utility

(CACCATUT) initializes data sets for a version 9.1 sequential metadata catalog and

creates the SYSIBM and SYSCAC system tables that make up the metadata catalog.

About this task

274 Classic Federation Guide and Reference

Member CACCATLG in the SCACSAMP data set contains JCL to run CACCATUT

with the INIT option.

Procedure

To create and initialize a version 9.1 sequential metadata catalog:

Customize and run member CACCATLG in the SCACSAMP data set for a

sequential metadata catalog.

1. Provide a job card that is valid for your site.

2. Change the value of the CAC parameter to your own high level qualifier.

3. Change the value of the DISKU parameter to a valid DASD unit type for your

site.

4. Change the value of the DISKVOL parameter to identify the volume where you

want the system catalog located.

Creating and initializing linear metadata catalogs

To use a version 9.1 linear metadata catalog, you first create a sequential metadata

catalog, populate it with the tables and other objects that you create with Classic

Data Architect or the metadata utility, and then copy the content to a version 9.1

linear metadata catalog.

Before you begin

A version 9.1 sequential metadata catalog must exist on the z/OS LPAR where the

data server is located. In Classic event publishing and replication, this data server

is where the correlation service is configured. To create a version 9.1 sequential

metadata catalog, see “Creating and initializing sequential metadata catalogs” on

page 274.

The version 9.1 sequential metadata catalog must contain the final versions of all of

the mapped tables and other objects that you plan to use for Classic federation,

event publishing, or replication. You cannot directly update the content of a linear

metadata catalog. To modify a mapped table or any other object in a linear

metadata catalog, you must update the object in a sequential metadata catalog and

then copy the content of the sequential metadata catalog into your linear metadata

catalog.

Procedure

To create and initialize a version 9.1 linear metadata catalog:

1. Stop the data server. See “Stopping data servers” on page 93.

2. Customize and run member CACLCAT in the SCACSAMP data set.

a. Provide a job card that is valid for your site.

b. Change the data set names and volsers in the IDCAMS definition to match

your requirements.
3. Copy the content of your version 9.1 sequential metadata catalog into the

version 9.1 linear metadata catalog. See “Copying metadata catalogs” on page

276.

4. In the configuration file for the data server, set the value of the configuration

parameter STATIC CATALOGS to 1.

5. Update the data server JCL to point to the linear metadata catalog.

Chapter 5. Reference for Classic federation 275

6. Start the data server. See “Starting data servers” on page 83.

Upgrading metadata catalogs

You can upgrade a version 8.2 sequential metadata catalog to a version 9.1

sequential metadata catalog.

About this task

The UPGRADE operation copies an existing metadata catalog to a new version of

the metadata catalog. For an UPGRADE operation, the CACCAT and CACINDX

DD statements refer to the new metadata catalog data sets. These data sets are

referred to as the target metadata catalog. The INCAT and ININDX DD statements

refer to the old version of the metadata catalog.

During the UPGRADE operation, the user objects in the source metadata catalog

are copied to the target metadata catalog. All user tables, indexes, views, and

stored procedure definitions are copied to the target metadata catalog. Also, all

security authorizations that exist in the source metadata catalog, including all

security authorizations that apply to the system tables, are copied to the target

metadata catalog.

After the UPGRADE operation completes, the CACCATUT utility generates a

summary analysis report that identifies the contents of the metadata catalog and

current space utilization.

Note: When you upgrade a metadata catalog that contains table mappings for

CA-IDMS that are flagged for data capture, CACCATUP verifies that these

tables have an explicit database name defined. If such a table does not have

a database name defined, CACCATUP changes the value of the DATA

CAPTURE flag to a space and issues warning message 0x00760022.

Procedure

To upgrade a version 8.2 sequential metadata catalog to a version 9.1 sequential

metadata catalog:

1. Customize and run member CACCATUP of the SCACSAMP data set.

a. Provide a job card that is valid for your site.

b. Change the CAC parameter to installed high level qualifier.

c. Change the OLDCAT parameter to identify the high level qualifier of the

input metadata catalogs.

d. Change the NEWCAT parameter to identify the high level qualifier of the

output metadata catalogs.

e. Change the DISKU parameter to a valid DASD unit type for your site.

f. Change the VOLSER parameter to identify the volume where you want the

metadata catalog located.
2. Update the JCL for the data server to point to the new metadata catalog.

Copying metadata catalogs

You can create a copy of a metadata catalog.

About this task

276 Classic Federation Guide and Reference

The COPY operation copies the contents of an existing metadata catalog into a new

version of that metadata catalog.

The INCAT and ININDX DD statements are required and identify the metadata

catalog that is to be copied into the target metadata catalog identified by the

CACCAT and CACINDX DD statements. The INCAT and ININDX DD statements

cannot refer to the same data sets names that CACCAT and CACINDX DD

statements refer to.

During the COPY operation, you can modify the size and organization of the

target metadata catalog so that it differs from that of the input metadata catalog.

For example, you can change the data set organization from sequential to linear or

vice versa. You can also increase or decrease the size of the target metadata catalog.

After processing finishes, a summary report is generated. This report identifies the

contents of the metadata catalog and current space utilization of the created

metadata catalog.

 Table 67. Supported COPY operations.

v S = Sequential

v L = Linear

To V9.1 S To V9.1 L To V8.2 S To V8.2 L

From V9.1 S Yes Yes No No

From V9.1 L Yes Yes No No

From V8.2 S No No Yes Yes

From V8.2 L No No Yes Yes

Procedure

To copy a metadata catalog:

1. Customize and run member CACCATUT of the SCACSAMP data set.

a. Provide a job card that is valid for your site.

b. Change the CAC parameter to installed high level qualifier.

c. Change the OLDCAT parameter to identify the high level qualifier of the

input system catalogs.

d. Change the NEWCAT parameter to identify the high level qualifier of the

output system catalogs.

e. For the PARM keyword of the EXEC statement, specify COPY.
2. Update the JCL for the data server to point to the target metadata catalog.

Reorganizing metadata catalogs

You can reorganize a version 9.1 sequential metadata catalog to reclaim wasted

disk space.

Restrictions

You can reorganize sequential metadata catalogs only. You cannot reorganize linear

metadata catalogs.

About this task

Chapter 5. Reference for Classic federation 277

The REORG operation compresses the contents of an existing sequential metadata

catalog by moving the metadata catalog. The new version of the sequential

metadata catalog does not contain the fragmented space that occurs as tables and

other objects are dropped from the metadata catalog.

In this operation, the INCAT and ININDX DD statements reference the metadata

catalog that is being reorganized and the CACCAT and CACINDX DD statements

refer to the new metadata catalog that the REORG operation will create. If these

statements reference an existing metadata catalog, the REORG operation replaces

the content of this catalog.

If corruptions are detected in the source metadata catalog, the REORG operation

attempts to minimize the loss of data when transferring the corrupted definitions

from the source metadata catalog into the target metadata catalog.

After processing finishes, a summary analysis report is generated. This report

identifies the contents of and the current space utilization of the new metadata

catalog.

Procedure

To reorganize a sequential metadata catalog:

1. Customize and run member CACCATUT of the SCACSAMP data set.

a. Provide a job card that is valid for your site.

b. Change the CAC parameter to installed high level qualifier.

c. Change the OLDCAT parameter to identify the high level qualifier of the

input metadata catalogs.

d. Change the NEWCAT parameter to identify the high level qualifier of the

output metadata catalogs.

e. For the PARM keyword of the EXEC statement, specify REORG.
2. Update the JCL for the data server to point to the new metadata catalog.

Generating reports about metadata catalogs

Use member CACCATRP in the SCACSAMP data set to generate an analysis

report that identifies the contents of a sequential metadata catalog that is

referenced by the CACCAT and CACINDX DD statements. You can specify an

additional command line parameter that identifies the level of detail to include in

the report and the amount of validation to be performed on the contents of the

metadata catalog.

About this task

These options are available for the reports that you generate:

SUMMARY

Generates a summary report that identifies general information about the

metadata catalogs, space usage within the metadata catalog and summary

information about the number and types of objects stored in the metadata

catalog. This is the default type of report.

DETAIL

Generates a summary report and produces a detail report that identifies all

objects stored in the metadata catalog and identifies the structural linkages

between the different metadata catalog objects.

278 Classic Federation Guide and Reference

VALIDATE

Generates a detail report and validates the structural linkages for each

metadata catalog object.
v For more information on summary reports, see “Summary reports.”

v For more information on detail reports, see “Object detail reports” on page 283.

Procedure

To generate a report

Customize and run member CACCATRP in the SCACSAMP data set.

For the PARM keyword of the EXEC statement, specify either SUMMARY,

DETAIL, or VALIDATE.

Summary reports

After the catalog initialization and maintenance utility (CACCATUT) performs

UPGRADE, REORG, REPORT, and COPY operations, it generates system catalog

analysis reports. All such reports include a summary report.

Summary information is printed on a single page. The following example shows

the contents of the summary report that is written to SYSPRINT when an

UPGRADE, REORG or COPY operation is performed, or when any kind of

REPORT is requested.

Date: yyyy/mm/dd metadata catalog Analysis Report Page 1

Time: hh:mm:ss Summary

Index Component Information

 Dataset name: Data-Set-Name

 Version identifier: Version

 Date created: yyyy/mm/dd hh:mm:ss

 Last updated: yyyy/mm/dd hh:mm:ss

 Last copied: yyyy/mm/dd hh:mm:ss

 Space used: number-of-bytes

 Maximum node ID: number

 Deleted objects: number

 Data file size used: number

Data Component Information

 Dataset name: Data-Set-Name

 Version identifier: Version

 Catalog identifier: Identifier

 Date created: yyyy/mm/dd hh:mm:ss

 Last updated: yyyy/mm/dd hh:mm:ss

 Last copied: yyyy/mm/dd hh:mm:ss

 End-of-file: number-of-bytes

 Highest valid RID: number

 Space Utilization Summary Information

 Object Type Records Space

 Tables 189 314496

 Columns 5245 4028160

 Fragments 282 134144

 Indexes 447 457728

 Keys 552 141312

 Views 2 768

 View dependents 2 512

 Routines 32 32768

 Parameters 127 32512

 DB authorizations 10 1280

 Table authorizations 183 46848

 Routine authorizations 32 8192

Chapter 5. Reference for Classic federation 279

User authorizations 15 1920

 Indexing 33 135168

 Catalog identifier 1 128

 Free space 2 14976

 Total 7134 5350912

The summary report has two main categories:

v Information about the index component of the metadata catalog.

v Information about the data component and the different kinds of objects that are

stored in the data component.

The following fields give information about the index component of the metadata

catalog:

Dataset name

The name of the data set for the index component.

Version identifier

The version of the metadata catalog. For a V9.1 metadata catalog, the

version identifier is reported as 09.01.00. For a V8.x metadata catalog the

value that is displayed is V8.x.

Date created

The date and time that the index component of the metadata catalog was

created. The date and time are displayed in US English format. The

creation date and time displayed for the data component should match the

date and time that the index component was created.

Last updated

The date and time the index component was last updated, which

corresponds to the date and time the last DDL statement was successfully

executed for this metadata catalog. The date and time are displayed in US

English format. The last update date and time displayed for the data

component should match the date and time that the index component was

last updated.

Last copied

The date and time that the index components contents was last replaced by

a copy operation, or N/A if the metadata catalog has never been the target

of a copy operation. The date and time are displayed in US English format.

The value displayed for the data component should match the value

displayed for the index component.

Space used

Identifies how much of the index component has been used, in bytes. The

number is not related to the data set allocation size or the current physical

size of the index component (that is, primary space allocation and extents).

The space used is computed based on the number of logical records that

exist within the index component. Each logical record is 64-bytes long, so

that total spaced used should be divisible by 64.

Maximum node ID

The maximum node ID value identifies how many logical records exist in

the index component. Each logical record is referred to as a node.

Deleted objects

The index component is used to track the number of metadata catalog

objects (tables, views, indexes, and so on) that have been deleted from the

metadata catalog. The deleted objects count identifies how many deleted

280 Classic Federation Guide and Reference

metadata catalogs objects exist in the metadata catalog. You can use the

REORG function to physically reclaim this unused space.

Data file size used

The data file size used number identifies how many bytes in the data

component are currently being used. Used in this context means the space

is either being actively used for an existing object, or represents “free

space” because the object has been deleted. Like the space used value, the

data file size used value has no relationship to the current physical DASD

allocation size of the data component.

The following fields give information about the data component of the metadata

catalog:

Dataset name

The name of the data set for the data component.

Version identifier

The version of the metadata catalog. For a V9.1 metadata catalog, the

version identifier is reported as 09.01.00. For a V8.x metadata catalog the

value that is displayed is V8.x.

Catalog identifier

A string value that is stored in the first logical record of the data

component that identifies which version of the software was used to create

the metadata catalog.

 The following values can appear:

v V9.1 metadata catalog – IBM WebSphere Classic V9.1 build-date

v V8.2 metadata catalog - eXadas Release V8.2 build-date

v V8.1 metadata catalog - eXadas Release V3.0 build-date

The build-date takes the form mmddyyyy and is updated for major releases

and roll-up PTFs.

Date created

The date and time that the date component of the metadata catalog was

created. The date and time are displayed in US English format. The

creation date and time displayed for the data component should match the

date and time that the index component was created.

Last updated

The date and time the data component was last updated, which

corresponds to the date and time the last DDL statement was successfully

executed for this metadata catalog. The date and time are displayed in US

English format. The last update date and time displayed for the data

component should match the date and time that the index component was

last updated.

Last copied

The date and time that the data components contents was last replaced by

a copy operation, or N/A if the metadata catalog has never been the target

of a copy operation. The date and time are displayed in US English format.

The value displayed for the data component should match the value

displayed for the index component.

End-of-file

Number of physical bytes stored in the data component. For V9.1 system

catalogs this value should match the Data file size used value displayed in

the index component section of the report. If it does not this implies the

Chapter 5. Reference for Classic federation 281

catalog has been corrupted. For a V8.x version of the metadata catalog the

end-of-file value must not match the value for Data file size used. The

End-of-file value is used to compute the value of the highest valid RID

value.

Highest valid RID

Identifies the highest valid record identifier (RID) that can be used to

reference a record in the metadata catalog. RIDs are used to establish

inter-record relationships within the metadata catalog. When a RID

reference value is larger than the Highest valid RID number that RID is

identified as being corrupted. It is not valid because it references a record

that does not exist in the metadata catalog.

Space Utilization Summary Information

The space utilization summary information section of the report displays a

table listing the different kinds of objects that are stored in the system

catalog. For each object type, this section displays the number of records

that exist and the total space used for each object type. A summary line is

also printed that identifies the number of records that exist in the data

component and the total space that is currently being used in the data

component. The total size should match the Data file size used number

printed in the index component section of the summary report.

 Table 68.

Object type Description Code

Tables System tables and user tables created by a CREATE

TABLE statement.

TAB

Columns Columns associated with a table or view definition. COL

Fragments Objects that exist within a table to manage record

arrays; or for CA-IDMS tables the record(s)

referenced by the table and for IMS tables the

segment(s) referenced by the table definition.

FRG

Indexes Indexes automatically created for the system tables

and user indexes created by a CREATE INDEX

statement.

IDX

Keys SYSIBM.SYSKEYS rows created when a column is

referenced in a CREATE INDEX statement.

KEY

Views View definitions created using the CREATE VIEW

statement.

VEW

View dependents SYSIBM.SYSVIEWDEP rows created to manage a

CREATE VIEW statement.

VDP

Routines System stored procedure definitions automatically

created in the metadata catalog and user stored

procedure definitions created by a CREATE

PROCEDURE statement.

RTN

Parameters SYSIBM.SYSPARMS rows created when a

parameter is defined in a CREATE PROCEDURE

statement.

PRM

DB authorizations SYSIBM.SYSDBAUTH rows that were created due

to DBMS GRANT/REVOKE statements.

ADB

Table authorizations SYSIBM.SYSTABAUTH rows that were created due

to table GRANT/REVOKE statements.

ATB

282 Classic Federation Guide and Reference

Table 68. (continued)

Object type Description Code

Routine

authorizations

SYSIBM.SYSROUTINEAUTH rows that were

created due to routine GRANT/REVOKE

statements.

ART

User authorizations SYSIBM.SYSUSERAUTH rows that were created

due to user GRANT/REVOKE statements.

AUS

Indexing Internally created index records used to optimize

access to the contents of the metadata catalog.

SIX

Catalog identifier Catalog identifier record. This is the first record in

the data component and is used to record creation

and last updated information.

IRD

Free space Free space records that are available for reuse. FRE

Object detail reports

When you run a REPORT operation and add to the PARM parameter the DETAIL,

VALIDATE, or DEBUG keywords, the metadata catalog analysis report also

includes an object detail report.

The report lists two lines of information for each logical record that is stored in the

data component of the metadata catalog. Page breaks occur after 50 lines of

information corresponding to about 25 metadata catalog objects.

The following example shows the format of the object details report:

Date: yyyy/mm/dd metadata catalog Analysis Report Page 2

Time: hh:mm:ss Object Detail

 Authorization Column Table Frag.

 Next Prev Start End / Parm Index Other

 ------ ------ ------ ------ ------ ------ ------

 Record RID Size Type Name

 1 0 128 IRD IBM Websphere II Classic V9.1

 N/A N/A N/A N/A N/A N/A N/A

 2 1 1664 TAB SYSIBM.SYSTABLES

 200 41135 0 0 14 2596 0

 3 14 768 COL SYSIBM.SYSTABLES.NAME

 20 1 N/A N/A 1 N/A N/A

 4 20 768 COL SYSIBM.SYSTABLES.CREATOR

 26 14 N/A N/A 1 N/A N/A

 5 26 768 COL SYSIBM.SYSTABLES.TYPE

 32 20 N/A N/A 1 N/A N/A

 6 32 768 COL SYSIBM.SYSTABLES.DBNAME

 38 26 N/A N/A 1 N/A N/A

The data component of the metadata catalog is organized as a set of logical

records. Each logical record has a record ID (RID) associated with it and a logical

record number. The minimum logical record size is 128-bytes and all logical

records are an integral multiple of 128. RIDs start at zero and represent 128-byte

increments in the data file. Internally, for inter-object relationships the RID is used

to identify the “source” or “target” record. Therefore, given a RID the physical

starting offset and the logical record can be computed in the data component.

For each logical record two lines of information are displayed. The following

information is displayed on the first line:

Record

Identifies the logical record number for the data component object.

Chapter 5. Reference for Classic federation 283

RID Identifies the logical records computed record identifier (RID.) A ‘C’ can be

appended after the RID to indicate that corruption has been detected in the

metadata catalog for the record being listed.

Size Identifies the length of the logical record in bytes. This value must be an

integral multiple of 128.

Type Identifies the type of logical record. One of the values shown in the Detail

Type column above in Table 4.12-7.

Name Identifies the external or internal name of the object. The following table

identifies the different types of object names that can be displayed and

their formats.

 Table 69.

Object type Name

TAB Qualified table name: owner-name.table-name

COL Qualified column name: owner-name.table-name.column-name

FRG Depends on the type of fragment, as follows:

v Record Array Fragment Definitions – Fragment ID and level number

v CA-IDMS tables – record name

v IMS tables – segment name

v Table-level fragments for tables other than CA-IDMS or IMS –

Fragment ID and level number

v System fragments – ‘SYSTEM’

IDX Qualified index name: owner-name.index-name

KEY Qualified key name: owner-name.index-name.column-name

VEW Qualified view name: owner-name.view-name

VDP Qualified view name and view dependent number: owner-name.view-
name(number)

RTN Qualified stored procedure name: owner-name.routine-name

PRM Qualified parameter name: owner-name.routine-name.parameter-name

ADB User and database class: user-name.database-class

ATB Qualified table name and user: owner-name.table-name.authorization-ID

ART Qualified stored procedure name and user: owner-name.routine-
name.authorization-ID

AUS Qualified object name and user: owner-name.table-name.authorization-ID

SIX Internal information

IRD Catalog identifier display in Summary section of the report

FRE N/A

The second line of information displayed for a metadata catalog object consists of

structural RID information that is stored in the record. The report lists RID

information that is associated with most types of catalog objects. When there is no

corresponding RID information for the object, the value N/A is displayed. A ‘C’

can be appended to the end of a RID to indicate that the RID value is invalid or a

corruption has been detected in the referenced object.

This information is primarily for use by support personnel. The following RID

information is displayed for each logical record:

284 Classic Federation Guide and Reference

Next The next logical RID number that that the logical record points to. Most of

the metadata catalog objects are maintained as some form of linked list

structure.

Prev The previous logical RID number that that the logical record points to.

Most of the metadata catalog objects are maintained as some form of

linked list structure.

Authorization Start & End

Identifies the first and last authorization record RIDs that are used to

manage access to the object.

Column / Parm

Identifies the first RID of the list of columns, keys, or parameters that

make up the owning object.

Table or Index

Identifies the RID of a related object. For example, the first index

associated with a table or the first view dependent record associated with a

view.

Frag or Other

Identifies the RID of a related object. For example, the first fragment

definition associated with a table, or the first indexing record (SIX)

associated with a system index definition.

The metadata utility

The metadata utility is a z/OS CLI-based application that connects to a data server

and updates the metadata catalogs with the contents of DDL statements that are

read from a SYSIN input stream.

The metadata utility accepts as input USE grammar that was created by the Data

Mapper prior to V9.1 or the DDL that is generated by Classic Data Architect.

Running the metadata utility

The metadata utility executes as a z/OS batch job. Sample JCL to execute the

metadata utility is distributed as member name CACMETAU in the SCACSAMP

library. The name of the load module for the metadata utility is CACMETA.

Before you begin

You must know the name of the query processor that you want the metadata

utility to connect to. You must also know the user ID and password required for a

connection.

The query processor that you want to connect to must be running.

About this task

The sample JCL and load module name distributed in V9.1 are the same names

used by V8.x of the metadata utility. The V8.x metadata utility JCL cannot be used

to execute V9.1 of the utility without modification to supply the ENGCAT

statement.

ENGCAT DD

The metadata utility JCL must contain an ENGCAT DD statement that

references the message catalog. The message catalog is accessed by the CLI

Chapter 5. Reference for Classic federation 285

component and the metadata utility to retrieve the text for error messages

reported by the data server and error conditions detected by CLI or by the

metadata utility.

SYSTERM DD

The SYSTERM DD statement is used to record a summary of the

processing performed by the metadata utility.

SYSPRINT DD

As the metadata utility reads input records and executes each statement,

the metadata utility echoes each statement and the execution status of each

statement out to the SYSPRINT DD.

SYSIN DD

The sample JCL uses data set concatenation on the SYSIN DD statement to

provide the CONNECT TO SERVER statement. The metadata utility uses

the statement to configure the run-time environment so that the CLI

interface can connect to the proper server to process the DDL statements.

The DDL statements are referenced in the second data set referenced by the

SYSIN DD statement and referenced by the DDLIN substitution variable. A

sample CONNECT TO SERVER statement is provided in SCACCONF

sample member CACMUCON.

 The file referenced by the SYSIN DD statement is treated as a text input

stream, and can be in fixed length or variable length format. There is no

restriction on the record length.

Procedure

To run the metadata utility:

1. Open for editing member CACMETAU in the SCACSAMP data set and make

these changes:

a. Provide a job card that is valid for your site.

b. Change the CAC parameter to the installed high-level qualifier.

c. If you are importing DB2 definitions, uncomment the DB2 parameter and

change the parameter to the correct high-level qualifer.

d. Customize the connection statement in member CACMUCON to point to

the data server with the metadata catalog that you want to update. See

“CONNECT TO SERVER statement for the metadata utility” on page 291.

e. Change the DDLIN parameter to the member that contains the DDL

statements to process.

f. If you need to process large DDL statements, change the RGN parameter to

change the region size. Increase the region size in increments of two

megabytes.
2. Submit the job.

As the metadata utility reads input records, it echoes them out to the SYSPRINT

DD statement.

A header is printed for each statement in the SYSIN input file. Each input record

read from SYSIN is echoed in the SYSPRINT file. The line number appears in front

of the statement text. The line numbers increase monotonically. When the SYSIN

data set has a record length that is greater than 80-bytes, the SYSIN input is

wrapped in 80-character increments. Wrapped lines do not have line numbers.

286 Classic Federation Guide and Reference

After the statements, the output specifies whether the statements ran successfully

or failed. Next, any error, warning, or information messages associated with the

execution of the statements appear.

The following example shows sample SYSPRINT output:

The sample output shows that the metadata utility ran three statements. These

three statements existed in the SYSIN input stream. The metadata utility generated

a fourth statement, which was a DISCONNECT statement. Generated

DISCONNECT statements do not go to SYSPRINT; they go only to SYSTERM.

Summary reports that are generated by the metadata utility

The metadata utility writes error and summary information to the SYSTERM data

set.

During normal processing, the output written to SYSTERM consists of a two line

“header” that identifies the format of the information displayed. For each

statement processed by the metadata utility, the starting and ending line numbers

from the SYSIN file are reported. The starting line number identifies the actual line

on which the statement started and does not include any comments that might

have been encountered before the statement. The last line of the statement is the

line where the ; is detected and does not take into account any comment lines that

might exist after the statement. Therefore, it is possible to see “jumps” between

ending and starting line numbers.

LINE NO. STATEMENT

 1 CONNECT TO SERVER CACSAMP TCP/0.0.0.0/5026

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 2 DROP TABLE CAC.EMPLOYEE;

 CACM0002I SQLCODE = -204, ERROR: CAC.EMPLOYEE is an undefined name.

 LINE NO. STATEMENT

 3 USE TABLE CAC.EMPLOYEE DBTYPE VSAM

 4 DS ’UPTONG.V8R2M00.VSAM.EMPLOYEE’

 5 (

 6 /* COBOL NAME EMPNAME */

 7 EMPNAME SOURCE DEFINITION

 8 DATAMAP OFFSET 0 LENGTH 20 DATATYPE C

 9 USE AS CHAR(20),

 10 /* COBOL NAME SALARY */

 11 SALARY SOURCE DEFINITION

 12 DATAMAP OFFSET 20 LENGTH 4 DATATYPE F

 13 USE AS INTEGER,

 14 /* COBOL NAME EMPNO */

 15 EMPNO SOURCE DEFINITION

 16 DATAMAP OFFSET 24 LENGTH 6 DATATYPE C

 17 USE AS CHAR(6),

 18 /* COBOL NAME COMMISSION */

 19 COMMISSION SOURCE DEFINITION

 20 DATAMAP OFFSET 30 LENGTH 2 DATATYPE P

 21 USE AS DECIMAL(3,1)

 22);

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

Figure 16. Sample SYSPRINT output

Chapter 5. Reference for Classic federation 287

The third column in the summary report output identifies the statements

processing status. For example, in the SYSPRINT output, the processing status is 0

if no errors were reported, a negative SQL error code value or a hexadecimal form

of a system error message. Additionally, N/A is displayed for generated statements

that were not part of the SYSIN input stream, such as DISCONNECT statements.

After the processing status is the name of the statement that was encountered

followed by the object name that the statement is referencing. Table 70 identifies

the statement types that are supported by the metadata utility. For each entry in

the table, the statement name is followed by the type of object name that is

extracted from the statement. For each entry the statement class is also identified,

which determines how the statement is processed by the metadata utility.

 Table 70. Statement types that are supported by the metadata utility

Types of statement Names of objects Class

CREATE TABLE Table name DDL

CREATE INDEX Index name DDL

CREATE PROCEDURE Procedure name DDL

CREATE VIEW View name DDL

COMMENT ON Table name, index name,

column name, or stored

procedure name

DDL

ALTER TABLE Table name DDL

DROP INDEX Index name DDL

DROP TABLE Table name DDL

DROP PROCEDURE Procedure name DDL

DROP VIEW View name DDL

GRANT N/A DDL

REVOKE N/A DDL

CONNECT TO CICS N/A Connect

CONNECT TO DB2 DB2 subsystem name Connect

CONNECT TO SERVER Data source name Connect

IMPORT DB2 TABLE DB2 table name Import

IMPORT DB2 VIEW DB2 view name Import

IMPORT DB2 INDEX DB2 index name Import

DISCONNECT FROM DB2 DB2 subsystem name Connect

DISCONNECT FROM

SERVER

Data source name Connect

The V8.x USE TABLE and USE INDEX statements are also accepted and converted

to CREATE statements.

DB2 object names can be longer than Classic object names. The SYSTERM output is

designed to display in 80-column format. If the object name is greater than an

80-character line, the name is wrapped to the next line of output until the entire

contents of the name displays. For these continued object name lines, the

Processing Status contains a + (plus) sign. The DISCONNECT FROM statement is

a pseudo statement generated by the metadata utility. The DISCONNECT FROM

statement is automatically generated during the metadata termination process

288 Classic Federation Guide and Reference

when a connection exists with DB2 or a data server, or when the SYSIN input

stream contains multiple CONNECT TO DB2 or data server statements.

If a statement is encountered that is not in Table 70 on page 288, then the metadata

utility issues error 0x00760002 (Unsupported statement encountered by the

metadata utility: start-of-statement). The first 25 characters of the statement are

displayed in the summary report, and the object name is set to UNKNOWN. The

line numbers that display for this unknown/unsupported statement start with the

first line of the statement. The ending line number is where a ; is encountered or

end-of-file is reached. The contents of this statement are also echoed in SYSPRINT

followed by the 0x00760008 error message text and the first 70 characters of the

statement.

For supported statements, a single line is generated in the SYSTERM summary

report for each statement that was identified in the SYSIN input stream. A single

line is also generated in the SYSTERM summary report for any DISCONNECT or

COMMENT ON statements generated by the metadata utility. For generated

statements, the starting and ending line numbers are identified as N/A. Following

each statement summary line, for statements that either reported errors when they

were executed or if the statement reported one or more warning messages,

information messages, or both, the SYSTERM output echoes the same error,

warning, and information messages that display in the SYSPRINT output stream.

Note: COMMENT ON statements are generated when processing DB2 IMPORT

statements

Return codes for the metadata utility

The metadata utility uses the z/OS return code to identify the overall success or

failure of its execution.

The following table identifies the return codes that the metadata utility can issue.

 Table 71. List of return codes for the metadata utility

Return code Meaning

20 Environmental setup error detected. Processing is not attempted.

16 Errors detected in the configuration member or while initializing the

run-time environment. Processing is not attempted.

12 Error reported connecting to the data server. Processing is not attempted.

8 Error reported by the server, CLI, or metadata utility while processing a

statement. Processing continues with the next statement in the SYSIN input

stream.

 Start End Processing

 Line # Line # Status Statement Object

 1 1 0 CONNECT TO SERVER CACSAMP

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 2 2 -204 DROP TABLE CAC.EMPLOYEE

 CACM0002I SQLCODE = -204, ERROR: CAC.EMPLOYEE is an undefined name.

 3 22 0 CREATE TABLE CAC.EMPLOYEE

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 N/A N/A 0 DISCONNECT FROM SERVER CACSAMP

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

Figure 17. Sample SYSTERM summary report

Chapter 5. Reference for Classic federation 289

Table 71. List of return codes for the metadata utility (continued)

Return code Meaning

4 Warning messages issued by the server or metadata utility. Statements were

processed successfully.

0 No errors were reported.

CONNECT statements for the metadata utility

The metadata utility supports two different types of CONNECT statements.

The CONNECT TO CICS statement is deprecated in version 9.1 and is ignored by

the metadata utility.

The metadata utility does not check that CICS connection statements are valid.

When it encountered one of these statements, the metadata utility echoes the

statement in the SYSTERM output and displays message CACM010I with the

following information:

0x00760200 - CONNECT TO CICS statement no longer used.

CONNECT TO DB2 statement for the metadata utility

The CONNECT TO DB2 statement for the metadata utility uses the following

syntax:

�� CONNECT TO DB2 SUBSYSTEM subsystem-name USING PLAN plan-name �

�
ACCESS CATALOG PREFIX

prefix
 ; ��

CONNECT TO DB2

These keywords identify the statement. All subsequent parameters describe

the DB2 system and table owner name that the metadata utility queries for

information during an IMPORT operation. The identified DB2 system and

catalog are used until it is explicitly changed by another CONNECT TO

DB2 statement or until the metadata utility terminates.

SUBSYSTEM subsystem-name

This clause identifies the DB2 subsystem where the DB2 objects which are

referenced in subsequent DB2 IMPORT statements, exist. The subsystem

name identifies the DB2 subsystem to which the connection will be made.

The name cannot exceed 4 characters in length. The characters permitted in

the subsystem name vary with the version of DB2.

USING PLAN plan-name

This clause identifies the DB2 application plan that is used to access the

target DB2 subsystem identified by subsystem-name. plan-name. It cannot

exceed 8 characters in length, and the first character must be alphabetic.

There is no default value.

 Accessing DB2 data requires binding an application plan for use by the

DB2 Call Attach Facility (CAF) that is used by the metadata utility to

access DB2 data. IBM WebSphere Classic Federation Server for z/OS

includes the DB2 database request module (DBRM) that is required for

binding the necessary plan. SAMPLIB member CACBCNTL contains a

sample DB2 bind statement. SAMPLIB member CACBIND contains sample

JCL to process the CACBCNTL input and bind the plan to the Classic

290 Classic Federation Guide and Reference

supplied DBRM. The Classic DBRM is supplied in SAMPLIB member

CACP2EC.

To bind a plan, follow these steps:

1. Edit CACBCNTL to change the plan name and DB2 DSN name.

2. Edit CACBIND by making the following changes:

v Provide a valid job card.

v Change the CAC variable to the high-level qualifier of your Classic

installation.

v Change the DB2 variable to the high-level qualifier of your DB2

installation.

v Run the CACBIND JCL.

ACCESS CATALOG PREFIX prefix

This optional clause identifies the prefix of the DB2 catalog. Do not enter

this keyword phrase if you want to accept the default value SYSIBM as the

prefix. If importing a table, view, or alias, the metadata utility uses the

prefix to access the DB2 catalog tables ‘prefix.SYSTABLES’ and

‘prefix.SYSCOLUMNS’. If importing an index, the metadata utility uses the

prefix to access the DB2 catalog tables ‘prefix.SYSINDEXES’ and

‘prefix.SYSKEYS’.

CONNECT TO SERVER statement for the metadata utility

The metadata utility uses the information in this statement to connect to a query

processor and update the content of a metadata catalog.

The CONNECT TO SERVER statement uses the following syntax:

�� CONNECT TO SERVER datasource-name connection-URL ;

USERID

user-ID

PASSWORD

password
 ��

Parameters

datasource-name

A 1- to 16-character native identifier that names the query processor (data

source) to connect to in the data server identified by connection-URL.

datasource-name is used until it is explicitly changed by another CONNECT

TO SERVER statement or until the metadata utility terminates.

connection-URL

A native identifier that provides information used to connect to a data

server. The URL must be delimited and match the connection information

of an active TCP/IP or WebSphere MQ connection handler in the data

server.

USERID user-ID

This optional clause specifies the user ID for connecting to the data server.

The default value is the TSO user ID associated with the metadata utility

job. The user ID is a 1- to 7-character short-native identifier.

PASSWORD password

This clause is required when the data server has the SAF exit active.

password provides authentication information when the connection with the

data server is established. By default, the connection is established without

a password.

Chapter 5. Reference for Classic federation 291

If the PASSWORD clause is specified, the password is a 16-character DES

encrypted character string specified in hexadecimal format. This password

needs to be generated using the Windows-based password generator

utility.

IMPORT DB2 statements for the metadata utility in Classic

federation

The metadata utility uses the IMPORT DB2 statements to extract the definition of

one or more DB2 objects from a DB2 system, which is identified by a preceding

CONNECT TO DB2 statement. Based on the information that it retrieves, the

metadata utility builds a CREATE TABLE or CREATE INDEX statement that

defines the DB2 object in a metadata catalog.

For each table or index that is created, the metadata utility generates a single

COMMENT ON statement that identifies the name of the DB2 source object.

Individual column level comment information is not created because the DB2 and

Classic column names are identical.

IMPORT DB2 TABLE or VIEW statement for the metadata utility

Use this statement for importing alias, table, materialized query tables, or view

definitions.

The IMPORT DB2 TABLE or VIEW statement uses the following syntax:

�� IMPORT DB2 TABLE [DB2-owner-name .] DB2-table-name

VIEW
 �

�
[

RENAME AS

owner-name

.]

table-name

WITH INDEXES
 ��

Parameters

[DB2-owner-name.]DB2-table-name

After identifying the type of DB2 object to import, you specify the name of

that DB2 object. You can specify the name with or without delimiters.

 You can qualify the DB2 object with DB2-owner-name. If you do not qualify

the object, the default qualifier is the TSO user ID associated with the

metadata utility job.

 DB2-owner-name and DB2-table-name can each be 128-characters long

because the metadata utility supports DB2 Version 8 “long” names.

However, if the DB2 subsystem identified in the CONNECT TO DB2

statement is a version prior to V8, the maximum length that you can

specify for DB2-owner-name is 8 characters. The maximum length you can

specify for DB2-table-name 18 characters. If you supply a long name but are

using a DB2 subsystem earlier than V8, the IMPORT operation returns no

information for the DB2 object and fails.

RENAME AS [owner-name.]table-name

The RENAME AS clause specifies the name of the table to define in the

metadata catalog for the DB2 object. The name can be up to 18 characters

long. You can specify table-name as a delimited or undelimited identifier.

 You can also qualify the name or leave it unqualified. The qualifier can be

up to 8-characters long. The default qualifier is the user ID obtained from

the CONNECT TO SERVER statement that was used to establish the

292 Classic Federation Guide and Reference

connection with the server. If you do not specify the user ID, the default

value is the TSO user ID that is associated with the metadata utility job.

Because the DB2 default owner is based on the TSO user ID that executes

the metadata utility, it is possible for the owner name in this clause to

differ from the DB2 default owner name.

 The owner name cannot be SYSIBM or SYSCAC.

 You must use the RENAME AS clause when either of the two following

conditions is true:

v The name of the DB2 object already exists in the metadata catalog and

does not refer to a DB2 object, or refers to a different DB2 object.

v The IMPORT DB2 statement refers to a DB2 object with a long name.

The metadata catalog does not support long names.

WITH INDEXES

This clause requests that DB2 index definitions automatically be defined

for the DB2 table in the metadata catalog. Indexes are defined with the

DB2 index name. They are associated with the table name that was

specified in the RENAME AS clause or the DB2 table name, if a RENAME

AS clause was not specified. The automatic creation of indexes is

attempted only if the execution of the CREATE TABLE statement is

successful.

 If execution of the CREATE TABLE statement is successful, the metadata

utility internally generates a DB2 IMPORT INDEX statement for each DB2

index that is defined.

If the INDEXES that are associated with the DB2 table contain long names,

you cannot use the WITH INDEXES clause. You must use a separate

IMPORT DB2 INDEX statement with a RENAME clause to import indexes

with long names.

When processing a DB2 IMPORT table statement, the metadata utility access the

DB2 catalog and reads the SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS tables

to gather information for the table to be imported. It also reads the

SYSIBM.SYSINDEXES table if the WITH INDEXES option is specified. From this

information, the metadata utility generates a CREATE TABLE statement and

submits that to the data server to be processed. If the processing is successful, the

metadata utility generates a COMMENT ON statement to document the original

DB2 table name and submits that statement to the data server for processing.

If the WITH INDEXES option is specified, the metadata utility generates an

IMPORT DB2 INDEX statement for each index that is defined on the original DB2

table. Generating this statement results in a CREATE INDEX and COMMENT ON

statement being generated for each index that is defined on the original table.

Sample table import SYSPRINT output using a table named DNS8710.EMP:

LINE NO. STATEMENT

 1 CONNECT TO SERVER CACSAMP TCP/0.0.0.0/5026

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 2 CONNECT TO DB2 SUBSYSTEM DSN1 USING PLAN CACPLAN;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

Chapter 5. Reference for Classic federation 293

3 IMPORT DB2 TABLE DNS8710.EMP RENAME AS CAC_DB2.EMP WITH INDEXES;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 CREATE TABLE "CAC_DB2"."EMP" TABLE "DNS8710"."EMP"

 SUBSYSTEM "DSN1" USING PLAN "CACPLAN"

 ("EMPNO" SOURCE DEFINITION COLUMN "EMPNO"

 COLTYPE CHAR(6) USE AS CHAR(6) NOT NULL,

 "FIRSTNAME" SOURCE DEFINITION COLUMN "FIRSTNAME"

 COLTYPE VARCHAR(12) USE AS VARCHAR(12) NOT NULL,

 "MIDINIT" SOURCE DEFINITION COLUMN "MIDINIT"

 COLTYPE CHAR(1) USE AS CHAR(1) NOT NULL,

 "LASTNAME" SOURCE DEFINITION COLUMN "LASTNAME"

 COLTYPE VARCHAR(15) USE AS VARCHAR(15) NOT NULL,

 "WORKDEPT" SOURCE DEFINITION COLUMN "WORKDEPT"

 COLTYPE CHAR(3) USE AS CHAR(3),

 "PHONENO" SOURCE DEFINITION COLUMN "PHONENO"

 COLTYPE CHAR(4) USE AS CHAR(4),

 "HIREDATE" SOURCE DEFINITION COLUMN "HIREDATE"

 COLTYPE DATE USE AS DATE,

 "JOB" SOURCE DEFINITION COLUMN "JOB"

 COLTYPE CHAR(8) USE AS CHAR(8),

 "EDLEVEL" SOURCE DEFINITION COLUMN "EDLEVEL"

 COLTYPE SMALLINT USE AS SMALLINT,

 "SEX" SOURCE COLUMN DEFINITION "SEX"

 COLTYPE CHAR(1) USE AS CHAR(1),

 "BIRTHDATE" SOURCE COLUMN DEFINITION "BIRTHDATE"

 COLTYPE DATE USE AS DATE,

 "SALARY" SOURCE COLUMN DEFINITION "SALARY"

 COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),

 "BONUS" SOURCE COLUMN DEFINITION "BONUS"

 COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),

 "COMM" SOURCE COLUMN DEFINITION "COMM"

 COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),

 PRIMARY KEY("EMPNO"));

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 COMMENT ON TABLE "CAC_DB2"."EMP"

 IS "Source DB2 table is DSN8710.EMP’;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 IMPORT DB2 INDEX DSN8710.XEMP1 DEFINED ON TABLE CAC_DB2.EMP;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

 CREATE UNIQUE INDEX “DSN8710”.”XEMP1”

 ON “CAC_DB2”.”EMP”

 (“EMPNO” ASC);

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

 COMMENT ON INDEX “DSN8710”.”XEMP1”

 IS ‘Source DB2 index is DSN8170.XEMP1’;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 IMPORT DB2 INDEX DSN8710.XEMP2 DEFINED ON TABLE CAC_DB2.EMP;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

294 Classic Federation Guide and Reference

CREATE INDEX “DSN8710”.”XEMP2”

 ON “CAC_DB2”.”EMP”

 (“WORKDEPT” ASC);

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 COMMENT ON INDEX “DSN8710”.”XEMP2”

 IS ‘Source DB2 index is DSN8170.XEMP2’;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 DISCONNECT FROM DB2 DSN1

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

 LINE NO. STATEMENT

 DISCONNECT FROM SERVER CACSAMP;

 CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

IMPORT DB2 INDEX statement for the metadata utility

When you import a DB2 table definition, you can use this statement to request that

the indexes defined on the table in DB2 also be defined within a metadata catalog.

The IMPORT DB2 INDEX statement uses the following syntax:

�� IMPORT DB2 INDEX [DB2-owner-name .] DB2-index-name �

�
RENAME AS

index-name
 DEFINED ON TABLE table-name ��

Parameters

[DB2-owner-name.]DB2-index-name

You can specify the name of that DB2 index with or without delimiters.

 You can also qualify the DB2 index with DB2-owner-name. If you do not

qualify the object, the default qualifier is the TSO user ID associated with

the metadata utility job.

 DB2-owner-name and DB2-table-name can each be 128-characters long

because the metadata utility supports DB2 Version 8 “long” names.

However, if the DB2 subsystem identified in the CONNECT TO DB2

statement is a version prior to V8, the maximum length that you can

specify for DB2-owner-name is 8 characters. The maximum length that you

can specify for DB2-table-name is 18 characters. If you supply a long name

but are using a DB2 subsystem earlier than V8, the IMPORT operation

returns no information for the DB2 index and fails.

RENAME AS index-name

This clause specifies the name of the index to define in the metadata

catalog. The name can be up to 18-characters long. You can specify

index-name as a delimited or undelimited identifier.

 You can also qualify the name or leave it unqualified. The qualifier can be

up to 8-characters long. The default qualifier is the user ID obtained from

the CONNECT TO SERVER statement that was used to establish the

connection with the server. If you do not specify the user ID, the default

value is the TSO user ID that is associated with the metadata utility job.

Chapter 5. Reference for Classic federation 295

Because the DB2 default owner is based on the TSO user ID that executes

the metadata utility, the owner name in this clause can differ from the DB2

default owner name.

 The owner name cannot be SYSIBM or SYSCAC.

 You must use the RENAME AS clause when either of the following

conditions is true:

v The name of the DB2 index already exists in the metadata catalog and

does not refer to a DB2 index, or refers to a different DB2 index.

v The IMPORT DB2 INDEX statement refers to a DB2 index with a long

name. The metadata catalog does not support long names.

DEFINED ON TABLE [owner-name.]table-name

This clause specifies the name of the logical table that is referenced in the

CREATE INDEX statement. You can specify the table name as a delimited

or undelimited identifier.

 You can also qualify the name or leave it unqualified. The qualifier can be

up to 8-characters long. The default qualifier is the user ID obtained from

the CONNECT TO SERVER statement that was used to establish the

connection with the server. If you do not specify the user ID, the default

value is the TSO user ID that is associated with the metadata utility job.

Because the DB2 default owner is based on the TSO user ID that executes

the metadata utility, the owner name in this clause can differ from the DB2

default owner name.

Encrypting passwords for connecting to data servers when

the SAF exit is active

If the data server that the metadata utility communicates with has an SAF exit

active, the CONNECT TO SERVER statement used by the metadata utility must

include both a USERID and PASSWORD clause. The password must be encrypted

according to the Data Encryption Standard (DES). Use the password encryption

utility to encrypt the password according to this standard.

About this task

The password generator utility (cacencr.exe) is a Windows-based command-line

utility that is installed in the ODBC\bin directory. This directory is where the

Classic ODBC client is installed.

Procedure

To encrypt a password:

1. In a Windows command window, navigate to the ODBC\bin directory.

2. Type cacencr and press Enter.

3. At the prompt, type the password that you want to encrypt. The password

encryption utility creates a file named password.txt that contains the password

in hexadecimal format.

4. Open password.txt in a file editor and copy the content to the Windows

clipboard.

5. In a mainframe session, edit the data set that contains the CONNECT TO

SERVER statement.

6. Paste the encrypted password after the PASSWORD keyword.

296 Classic Federation Guide and Reference

Accessing information about IBM

IBM has several methods for you to learn about products and services.

You can find the latest information on the Web at www.ibm.com/software/data/
sw-bycategory/subcategory/SWB50.html

v Product documentation in PDF and online information centers

v Product downloads and fix packs

v Release notes and other support documentation

v Web resources, such as white papers and IBM Redbooks™

v Newsgroups and user groups

v Book orders

To access product documentation, go to this site:

publib.boulder.ibm.com/infocenter/iisclzos/v9r1/

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Contacting IBM

You can contact IBM by telephone for customer support, software services, and

general information.

Customer support

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

Software services

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

General information

To find general information in the United States, call 1-800-IBM-CALL

(1-800-426-2255).

Go to www.ibm.com for a list of numbers outside of the United States.

© Copyright IBM Corp. 2003, 2006 297

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/
http://www.ibm.com/planetwide
http://www.ibm.com

Accessible documentation

Documentation is provided in XHTML format, which is viewable in most Web

browsers.

XHTML allows you to view documentation according to the display preferences

that you set in your browser. It also allows you to use screen readers and other

assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen reader.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

298 Classic Federation Guide and Reference

http://www.ibm.com/software/awdtools/rcf/

Notices and trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 299

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

300 Classic Federation Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. (C) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names might be trademarks or service marks of

others.

Notices and trademarks 301

http://www.ibm.com/legal/copytrade.shtml

302 Classic Federation Guide and Reference

Index

A
ACCESS LOADMODs 19

accessibility 298

accounting
SMF exit 103

accounting routine
DSECT field definitions 105

SMF exit 105

Adabas
data sources 134

SAF exit validation 102

SQL updates 134

alternate indexes
VSAM 217

APPC/IMS interface
configuring 201

overview 200

APPC/MVS interface
configuring 201

overview 200

application components 6

applications
compiling and linking using

CACTDCOM 191

deploying 31, 34

development 34

optimization 205, 219

ASMTDLI programming interface 215

Authorization violations 109

B
BEGINLEVEL statements 65

BMP interface 215

BMP programming interface 22

BTREE BUFFERS 208

BTREE BUFFERS parameter 209, 223

C
CA-Datacom

data, preparing servers to access 3

enable rollback 135

interface description 184, 187

Multi-User Facility 3

specifying resource information 185

SQL updates 135

stored procedures 185

support for two-phase commit 143

CA-IDMS 18, 19

central version 20

configuring data server to access 20

data connector 135

notification of central version

shutdown 20

SQL updates 135

CA-IDMS tables
changing selection of records 79

modifying selection of records 79

CA-IDMS update 137

CACADMIN configuration member 9

CACDSCF configuration member 9

CACFP001
data type mapping combinations 273

sample field procedure 273

CACFP999
data type conversions 274

sample field procedure 274

CACLCAT 209

CACMETAU
editing 285

CACQPCF configuration member 9

CACQPRRS 140

CACSPCOM
mode table entry definition 259

sample APPL definition 259

CACSPGPW
using to get user password 172

CACSPGRO 170

CACSPGUI
using to get user ID 171

CACSPVCM
mode table entry definition 259

sample APPL definition 259

CACSX04 97

CACSXPL
mapping SMF exit parameters 106

CACTDCOM
compiling and linking

applications 191

interface description 184, 187

return codes 191

CACTDOM interface load module 185

CACTDRA
compiling and linking applications

that use 198

interface description 195

return codes 198

CAF
access 141

DB2 3

restriction on mixing with RRS

access 141

CALL statement 161

catalog initialization and maintenance

utility 274

copying metadata catalogs 276

creating linear metadata catalogs 275

creating sequential metadata

catalogs 274

generating reports 278

object detail reports 283

reorganizing sequential metadata

catalogs 277

summary reports 279

upgrading sequential metadata

catalogs 276

CEDA definitions 261

change capture
creating Adabas tables and views 48

change capture (continued)
creating CA-Datacom tables and

views 50

creating CA-IDMS tables and

views 53

creating CICS VSAM tables and

views 55

creating DB2 for z/OS tables and

views 57

creating IMS tables and views 58

creating native VSAM tables and

views 62

creating sequential tables and

views 60

changing objects for Classic

federation 68

CICS
communication with 174

definitions for stored procedures 258

resource definitions 260, 261

stored procedures 260

CICS interface
communication with stored

procedures 174

Classic Data Architect 1, 5

Classic federation
configuring 9

creating Adabas tables and views 48

creating CA-Datacom tables and

views 50

creating CA-IDMS tables and

views 53

creating CICS VSAM tables and

views 55

creating DB2 for z/OS tables and

views 57

creating IMS tables and views 58

creating indexes 64

creating native VSAM tables and

views 62

creating sequential tables and

views 60

creating stored procedures 65

mapping data 48

client applications
stored procedure result sets 164, 170

CLIENT CODEPAGE parameter 223

clients 6

connection requests, listening for 2

loading 6

COBOL II 3

codes
return, metadata utility 289

column value descriptor (CVD) 270

columns
adding to tables 79

properties 68

replacing 79

comments on documentation 298

configuration parameters
format 222

© Copyright IBM Corp. 2003, 2006 303

CONNECT statements
supported by the metadata

utility 290

CONNECT TO DB2 statement

syntax 290

CONNECT TO SERVER statement,

syntax 291

connection handlers 2

connectors
query optimization 207

contacting IBM 297

CPU GOVERNOR parameter 224

CPU resource governor exit 109

activation 110

API overview 112

initialization 112

termination 114

validation 113

CPU time
limiting 109, 114

CREATE INDEX statement
defining IMS indexes

HDAM databases 211

HIDAM databases 211

primary sequence fields 211

IMS
defining indexes 211

indexes
CREATE INDEX statement 211

CREATE PROCEDURE statement 151

creating tables
Adabas 48

CA-Datacom 50

CA-IDMS 53

CICS VSAM 55

DB2 for z/OS 57

IMS 58

native VSAM 62

sequential 60

creating views
Adabas 48

CA-Datacom 50

CA-IDMS 53

CICS VSAM 55

DB2 for z/OS 57

IMS 58

native VSAM 62

sequential 60

CVD (column value descriptor) 270

D
data connectors 5

query optimization 207

stored procedures 144

DATA CONVERSION ERROR ACTION

parameter 225

data defaulting
in database records on INSERT 133

Data Mapper
field procedures 267

data server
overview 1

data servers
configuring 10

creating 31

starting 32

data sets
language catalogs 233

NL CAT parameter 233

data transformations 268

databases
properties 69

Datacom 3

DATASOURCE parameter 224

DB2
CAF 3

connection with, using CACSX04 142

data, preparing servers to access 3

SQL updates 134

subsystem, connecting to 3

tables
import plan for RRS 142

two-phase commit 141

DB2 data sources
SQL updates 134

DB2 thread management exit 122

activating 123

developing a custom 124

DBB interface 215

DBB programming interface 22

DBCS
and database objects 250

DBCTL DBM subsystem 22

DDL
generating 80

DECODE BUFFER SIZE parameter 226

DEDB databases 213

Fast Path buffers 214

defining indexes
IMS 211

DEFLOC parameter 227

DELETE
SQL DELETE 137

delete behavior 133

DELETE statement 133

dispatching priority 219

DL/I
calls, reducing 212

documentation
accessible 298

ordering 297

Web site 297

DRA interface
IMS stored procedures 149, 194, 198

initializing 3

interfacing with IMS stored

procedures 194

optimizing data access 216

DRA programming interface
compared with ODBA 22

DROP PROCEDURE statement 154

DSECT field definitions 105

E
Encrypting passwords for connecting to

data servers when the SAF exit is

active 296

ENDLEVEL statements 65

EXEC IMMEDIATE 164

exporting SQL scripts 81

F
Fast Path

buffers 214

FETCH BUFFER SIZE
LD TEMP SPACE 208

FETCH BUFFER SIZE parameter 209,

227

field encoding 267

field procedures 267, 268

execution environment 268

field procedure information block

(FPIB) 269

FPPL (field procedure parameter

list) 268

samples 273

setup 267

value descriptors 270

work area 269

field value descriptor (FVD) 270

field-decoding
input 272

output 272

field-encoding
input 271

output 271

FPIB (field procedure information

block) 269

FPPL (field procedure parameter

list) 268

FVD (field value descriptor) 270

G
general CA-IDMS update 136

generating DDL 80

group items 134

H
HDAM databases 210, 213

HIDAM databases 213

high-level language environments
initializing 3

high-speed sequential processing 213

hiperspace, improving performance 33

HSSP 213

I
immediate return of data 208

IMPORT DB2 INDEX statement 295

IMPORT DB2 statements for the metadata

utility 292

IMPORT DB2 TABLE, syntax 292

import plan for RRS
DB2 tables 142

IMS
adding security to transactions 204

data, preparing servers to access 3

DBCTL region, connecting to 3

Fast Path buffers 214

Fastpath DEDB databases 213

interfaces 22

native access 210

optimization 210

304 Classic Federation Guide and Reference

IMS (continued)
partial keys 212

path calls 212

preparing servers to access data 3

primary indexes 210

SAF exit validation 102

search fields 211

secondary indexes 210

set up access 22

stored procedures
accessing and updating with 149

stored procedures, accessing and

updating with 194

two-phase commit 142

IMS connector 142

IMS PSB considerations 137

IMS tracing
testing APPC/MVS stored

procedures 202

IMS transactions
invoking 199, 202

testing 203

IMS updates
SQL updates 137

indexes 217

alternate 217

creating 64

modifying PCB selection for views on

IMS tables 65

optimizing IMS 210

properties 69

initialization services 3

DRA 194

interfaces
APPC/IMS 200, 201

APPC/MVS 201

ASMTDLI 215

BMP 22, 215

CA-Datacom description 184, 187

CACSPBR interface bridge 175

DBB 22, 215

DRA 22

ODBA 22

VSAM access 175

INTERLEAVE INTERVAL parameter 228

J
JDBC client 1

JOIN MAX TABLES ANALYZED

parameter 228

joins
data sources to result sets 1

optimizing 206

K
keys 217

optimizing queries 205

partial
IMS 212

VSAM 218

L
Language Environment

deactivating 155

stored procedures 147

LD TEMP SPACE 208

LD TEMP SPACE parameter 209, 229

LE
see Language Environment 147, 155

legal notices 299

linear catalogs 209

linear metadata catalogs
creating 275

localization codes
language catalogs 233

NL CAT parameter 233

logging 5

logical tables
defining 5

M
mapped tables

SQL updates 132

mapping data 32

mappings
and record arrays 134

containing multiple records 132

MAX ROWS EXAMINED parameter 33,

230

MAX ROWS EXCEEDED ACTION

parameter 33, 231

MAX ROWS RETURNED parameter 231

MAXERUS value 18

memory
used in stored procedures 146

MESSAGE POOL SIZE parameter 232

metadata catalog
catalog initialization and maintenance

utility 274

create 274

reorganize 274

upgrade 274

metadata catalogs 6

copying 276

creating 32

generating reports 278

object detail reports 283

populating 80

reducing reads 208

summary reports 279

metadata utility 6

CONNECT statements

supported 290

description of 285

explanation of sample JCL 285

IMPORT DB2 statements 292

return codes 289

running 285

SAF exit 296

mode table entry definitions
CACSPCOM 259

CACSPVCM 259

modifying objects for Classic

federation 68

MTO 2

multilingual data
DBCS data and types 250

SBCS data and types 250

multiple records
mappings containing 132

N
NL CAT parameter 233

NLS
language catalogs 233

NL CAT parameter 233

NULL IS
using to define string length for a

column 134

NULL IS definitions in record arrays 66

NULL records 134

O
OCCURS clauses 65

ODBA programming interface
compared with DRA 22

ODBC
stored procedure support 162

ODBC client 1

ODBC Driver Manager
loading clients 6

optimization 205, 219

data connectors 207

DRA interface 216

joins 206

keys 205

queries 1, 205

query processors 207, 209, 218

result sets 209

server dispatching priority
data servers 219

VSAM data access 217, 218

ORDER BY sorting 1

overlapping fields 134

P
partial keys

IMS 212

VSAM 218

passwords, encrypting for connecting to

data servers when the SAF exit is

active 296

path calls
IMS 212

PCB
AIBRDL/I interface 214

modifying selection 65

processing options 137

selection by name 214

selection by number 214, 215

selection by verification 214, 215

PCBPREFIX
IMS two-phase commit 143

PDQ 208

PDQ parameter 235

performance 33

high-speed sequential processing 213

hiperspace 33

Index 305

performance (continued)
monitoring 33

record processing exit 130

populating metadata catalogs 80

post-query processing 1

primary indexes
IMS 210

VSAM 217

programming interfaces
ASMTDLI 215

BMP 22

DBB 22

DRA 22

ODBA 22

properties
columns 68

databases 69

indexes 69

stored procedures 70

tables 72

views 78

protocol, transport 138

PSB
CACTDRA interface 195

PSB scheduling 215

Q
queries

creating 33

optimizing 205

query processors 2

configuring
for two-phase commit 140

optimizing 207, 209, 218

VSAM 218

R
readers’ comment form 298

record arrays
and mappings 134

mapping 66

mapping for Classic federation 65

multiple in one COBOL copybook 67

NULL IS definitions 66

record processing exit 128, 129

initialization 128

performance 130

Record processing exit 129

verifying 129

records
positioning inserted 133

Recoverable Resource Manager

Services 140

region controller 2, 3

resource definitions
CICS 258, 260, 261

VTAM 258

resource governor exit
see CPU resource governor exit 114

See CPU resource governor exit 109

RESPONSE TIME OUT parameter 236

result sets
linking interface into a z/OS load

module 169

result sets (continued)
staging 209

translating to relational formats 1

RETURN 33

return codes
metadata utility 289

RRS
access 141

CACSX04
connection with DB2 142

in RACF environment 142

configuring query processors 140

DB2 connector 142

initializing for IMS two-phase

commit 142

restriction on mixing with CAF

access 141

support in z/OS 140

RUN OPTIONS
getting parameter data using

CACSPGRO 170

S
S047 abend 20

SAF exit 97, 103, 296

activation 97

API overview 100

initialization 101

load module 97

parameters 100

termination 103

validation 102

SAF EXIT parameter 236

SBCS
and database objects 250

SCACCONF data set 9

SCACLOAD library 97

SCACSAMP
sample field procedures 273

screen readers 298

search fields 211

secondary indexes
IMS 210

security
adding to IMS transactions 204

SAF exit 97

initialization 101

validation 102

Security
SAF exit 103

sequential
SAF exit validation 102

sequential metadata catalogs
creating 274

reorganizing 277

upgrading 276

SERVER CODEPAGE parameter 237

servers 1, 3

dispatching priority 219

service information entry parameter
field 1 238

field 10 241

field 2 238

field 3 239

field 4 239

field 5 239

service information entry parameter

(continued)
field 6 239

field 7 240

field 8 240

field 9 240

SHAPING parameter 241

SMF exit
accounting 103

accounting routine
DSECT field definitions 105

API overview 106

authorization violations 109

initialization 107

reporting 33

termination 109

validation and accounting 108

SMF EXIT parameter 242

SQL
limiting result sets 33

optimizing queries 205

performance monitoring 33

queries 1

optimizing 1

result sets 144

rewriting
into native file/database access

language 1

updates 130

validating 1

SQL DELETE 137

SQL INSERT considerations 136

SQL query and update request in a single

transaction 137

SQL scripts
exporting 81

SQL update statements 131

SQL updates
Adabas data sources 134

CA-Datacom 135

CA-IDMS 135

DB2 data sources 134

mapped tables 132

SQL statements 131

to IMS data sources 137

to VSAM data sources 138

transaction processing 130

staging immediate return of data 208

statement
CONNECT TO SERVER, syntax 291

IMPORT DB2 INDEX, syntax 295

IMPORT DB2 TABLE, syntax 292

IMPORT DB2, for the metadata

utility 292

VIEW, syntax 292

STATEMENT RETENTION

parameter 242

STATIC CATALOGS 208

STAY RESIDENT parameter 146

stored procedures
APPC/MVS 202

CA-Datacom, accessing and

updating 149

CICS
CACSP62 abend codes 181

compiling 180

communication with CICS 174

306 Classic Federation Guide and Reference

stored procedures (continued)
creating 65

defining 151

defining to the metadata catalog 169

DRA initialization service 194

examples 150

IMS, accessing and updating 149,

194

IMS, application design

requirements 201

invoking 161, 162

limitations 202

loading multiple copies 146

memory use 146

modifying COBOL to return a result

set 168

ODBC support 162

overview 144

parameters 151

processing 144

properties 70

residency and language

requirement 146

result sets 164

SAF exit validation 102

samples 203

scheduling CICS transactions 173

specifying CA-Datacom resource

information 185

STAY RESIDENT parameter 146

support routines 150, 170, 171, 172

VSAM, access through CICS 149, 172

VTAM resource definitions 259

writing 155

Stored procedures
CICS

CACSPBR interface 175

CACSPBR return codes 181

parameters 179

SUBSYSTEM parameter
IMS two-phase commit 143

summary report, SYSTERM, sample 287

SYMMETRIC SWAPPING

parameter 243

sync-point conversations 204

syncpoint manager
external, using two-phase

commit 139

syntax
CONNECT TO DB2 statement 290

CONNECT TO SERVER

statement 291

IMPORT DB2 INDEX statement 295

IMPORT DB2 TABLE 292

statement
CONNECT TO DB2, syntax 290

VIEW statement 292

system exits 97

SYSTERM summary report, sample 287

T
table mappingsusing to secure access

rights 134

tables
adding or replacing columns 79

tables (continued)
DB2

import plan for RRS 142

mapping
to CICS VSAM files 55

to native VSAM files 62

mapping to Adabas databases 48

mapping to CA-Datacom

databases 50

mapping to CA-IDMS databases 53

mapping to DB2 for z/OS

databases 57

mapping to IMS databases 58

mapping to sequential files 60

modifying PCB selection for IMS

tables 65

properties 72

tasks, monitoring 2

TEXT ORIENTATION parameter 244

TEXT PRESENTATION parameter 245

TRACE LEVEL parameter 245

trademarks 301

transaction processing
SQL updates 130

transactions
IMS 199, 201, 202, 203

secured in IMS 204

translations
result sets to relational formats 1

transport protocol 138

troubleshooting
changes made to stored procedure not

appearing 146

data server access of CA-IDMS 20

FY status call 213

IMS abend during ROLLBACK

call 194

query processor terminating

unexpectedly 155

stored procedures abending in LE

environment 155

tuning
see optimization 205, 219

two-phase commit 139

DB2 141

IMS 142

performance impact 141

VSAM DFSMStvs 144

U
UIB 185

update behavior 133

UPDATE statement 133

USER CONFIG parameter 246

USERID parameter 247

USERPASSWORD parameter 247

utilities
catalog initialization and maintenance

utility 274

utility, metadata 285

V
validation and accounting

SMF exit 108

VIEW statement, syntax 292

viewing objects for Classic federation 68

views
properties 78

VSAM
alternate indexes 217

optimization 217

primary indexes 217

SAF exit validation 102

SQL updates 138

VSAM AMPARMS 218

VSAM DFSMStvs
two-phase commit 144

VSAM service 218

VSAM, access through CICS
stored procedures 149, 172

CACSP62 abend codes 181

CACSPBR interface 175

CACSPBR return codes 181

compiling 180

parameters 179

transaction scheduling for 173

VTAM
definitions for stored procedures 258

mode table entry definition 259

resource definitions 259

sample APPL definition 259

W
WITH CONVERSION

specifying a field procedure 267

WLM exit 114

activating 115

API overview 118

initialization 119

management 120

SQL statement processing 121

TCB initialization and

termination 120

termination 122

user connect and disconnect 121

WLM goal mode 3

support 33

WLM goal mode optimization 219

WLM UOW parameter 249

work area
field procedures 269

Workload Manager subsystem 3

Z
z/OS

MTO 2

Workload Manager subsystem 3

Index 307

308 Classic Federation Guide and Reference

����

Printed in USA

SC19-1122-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

at
io

n
In

te
gr

at
io

n
Ve

rs
io

n
9.

1
Cl

as
si

c
Fe

de
ra

tio
n

Gu
id

e
an

d
Re

fe
re

nc
e

�
�

�

	Contents
	Chapter 1. Overview of IBM WebSphere Classic Federation Server for z/OS
	Data server
	Region controller
	Connection handlers
	Query processors
	Initialization services
	System exits
	Logger

	Data connectors
	Classic Data Architect
	Metadata catalog
	Clients

	Chapter 2. Configuring federation
	Configuring Classic federation
	Overview of configuring Classic federation
	Basic configurations for Classic federation for all data sources
	Configuring data servers
	Mapping tables for Classic federation
	Configuring client applications

	Configurations for Classic federation for specific data sources

	Configuring access to Classic federation data sources
	Setting up access to Adabas
	Setting up access to CA-Datacom
	Initialization service for CA-Datacom
	Multi-User Facility authorization and CA-Datacom
	CA-Datacom security
	CA-Datacom setup for dynamic discovery from the Classic Data Architect

	Setting up access to CA-IDMS
	Setting the maximum number of run units
	Setting up APF authorization
	Setting up security for CA-IDMS access
	Accessing multiple CA-IDMS central versions from a single data server
	Configuring the data server to access CA-IDMS central version
	Configuring the data server for notification of central version shutdown

	Setting up access to DB2 for z/OS
	Setting up access to IMS
	Overview of data server setup for IMS access
	Setting up the DRA and ODBA
	Setting up a BMP or DBB interface
	IMS setup for dynamic discovery from the Classic Data Architect
	Running the data server

	Setting up access to sequential files
	Setting up access to VSAM
	Setting up access to CICS VSAM
	Setting up access to native VSAM
	Setting up access to DFSMStvs

	Configuration considerations for development and production environments
	Creating data servers
	Starting data servers
	Mapping your data
	Mapping verification
	Creating sample queries
	Completing the development process

	Configuring logging for data servers
	Using the CACLOG DD for storing log messages
	Defining log streams for storing log messages
	Logstreams for storing log records from data servers
	Options for deleting log records from log streams

	Defining logger services

	Configuring TCP/IP connection handlers
	Mapping tables for Classic federation
	Configuring Classic Data Architect
	Creating objects to organize your work
	Importing COBOL copybooks, schema and subschema reports, and DBDs into projects
	Creating connections to data servers and to DB2 for z/OS
	Setting preferences
	Granting privileges and privileges for performing actions on data servers

	Mapping data for Classic federation
	Creating Adabas tables and views for Classic federation
	Creating CA-Datacom tables and views for Classic federation
	Creating CA-IDMS tables and views for Classic federation
	Creating CICS VSAM tables and views for Classic federation
	Creating tables and views for DB2 for z/OS databases
	Creating IMS tables and views for Classic federation
	Creating sequential tables and views for Classic federation
	Creating VSAM tables and views for Classic federation
	Creating indexes
	Creating stored procedures
	Modifying the PCB selection for IMS tables or indexes
	Occurs processing

	Viewing and modifying objects for Classic federation
	Column properties
	Database properties
	Index properties
	Stored procedure properties
	Table properties
	View properties
	Adding or replacing columns in tables based on copybooks
	Modifying the selection of records in tables for CA-IDMS databases

	Populating metadata catalogs
	Generating DDL
	Exporting SQL to remote z/OS hosts

	Chapter 3. Administering federation
	Administering data servers for Classic federation
	Starting data servers
	Starting services for Classic federation
	Stopping services for Classic federation
	Displaying information about data servers in Classic federation
	Displaying users
	Disconnecting users and user sessions for Classic federation
	Displaying queries
	Canceling queries for Classic federation
	Displaying the values of single configuration parameters
	Modifying configurations while data servers are running
	Saving changes to configuration files
	Stopping data servers
	Displaying log messages that are written to SYSTERM DD
	Viewing log messages with the log print utility (CACPRTLG)
	Parameters for configuring the log print utility (CACPRTLG)
	Filters for modifying output from the log print utility (CACPRTLG)

	System exits
	Security: SAF exit
	Activating the SAF exit
	SAF exit: API overview

	Accounting: SMF exit
	Activating the SMF exit
	SMF exit: API overview

	CPU resource governor
	Activating the CPU resource governor exit
	CPU resource governor exit: API overview

	Workload Manager exit
	Activating the WLM exit
	WLM exit: API overview
	WLM exit: initialization
	WLM exit: management and reporting
	WLM exit: termination

	DB2 thread management exit
	Activating the DB2 thread management exit
	Customizing the DB2 thread management exit

	Record processing exit
	Record processing exit: initialization
	Record processing exit: process
	Record processing exit: termination
	Verifying the record processing exit
	Record processing exit: performance considerations

	SQL updates to application data
	Transaction processing
	SQL update statements
	SQL updates and mapped tables
	Mappings that contain multiple records
	Positions of inserted records
	Record inserts with full and partial mapping
	Updates and deletions of database records
	Updates and NULL records
	Mappings that contain record arrays
	Group items and overlapping fields
	Update processing recommendations

	Adabas updates
	DB2 for z/OS updates
	CA-Datacom updates
	CA-IDMS updates
	Updates of CA-IDMS data
	Inserts of CA-IDMS data
	Delete considerations

	IMS updates
	IMS and PSB

	VSAM updates

	Two-phase commit
	Recoverable Resource Manager Services (RRS) support
	RRS-enabled query processors
	Configuring query processors for RRS
	Performance impact of RRS-enabled query processors

	DB2 for z/OS two-phase commit considerations
	Creating the plan name
	RRS and system exits

	IMS two-phase commit considerations
	Initializing the RRS environment
	Defining tables for the RRS environment
	Specifying IMS subsystems for communication with multiple IMS subsystems

	CA-Datacom two-phase commit considerations
	Enabling CA-Datacom for two-phase commit

	VSAM DFSMStvs two-phase commit considerations

	Stored procedures
	Overview of stored procedure processing
	Stored procedure execution environment
	Overview of CICS interface for stored procedures
	Overview of IMS interface for stored procedures
	Overview of CA-Datacom interface for stored procedures
	Support routines
	Stored procedure samples

	Defining stored procedures
	CREATE PROCEDURE
	DROP PROCEDURE
	Deactivating the Language Environment

	Writing stored procedures
	Invoking stored procedures
	CALL statement
	ODBC stored procedure support

	Creating result sets in stored procedures
	CACRSCR interface routine
	CACRSIN interface routine
	CACSADDR interface routine
	Modifying a COBOL stored procedure to return a result set
	Linking the result set interface into a z/OS load module
	Defining the stored procedure to the metadata catalog
	Client application and result set interaction

	Support routines for stored procedures
	Get RUN OPTIONS (CACSPGRO) calling conventions
	Get user ID (CACSPGUI) calling conventions
	Get user password (CACSPGPW) calling conventions

	CICS interface for stored procedures
	Specifying CICS transaction scheduling information
	Stored procedure and CICS communication
	CACSPBR interface
	Parameters passed to the CICS application program
	Compiling and linking applications that use CACSPBR
	CACSPBR return codes
	CACSP62 abend codes

	CA-Datacom interface for stored procedures
	Specifying CA-Datacom resource information
	Stored procedure and CA-Datacom communication
	CACTDCOM interface
	Compiling and linking applications that use CACTDCOM
	CACTDCOM return codes

	IMS interface for stored procedures
	CACTDRA interface
	Compiling and linking applications that use CACTDRA
	CACTDRA return codes
	Invoking existing IMS transactions from a stored procedure

	Chapter 4. Tuning Classic federation
	Query optimization techniques
	Keys to optimize queries
	Join operations to optimize queries

	Query processor optimization
	Connectors and query processor interaction
	Configuration parameters for optimization
	Immediate return of data
	Static catalogs
	Result set staging

	IMS access optimization
	Keyed access techniques, SSA, and IMS optimization
	Primary indexes for IMS optimization
	Secondary indexes for IMS optimization
	CREATE INDEX statement for IMS optimization
	Search fields for IMS optimization
	Partial keys for IMS optimization
	Path calls for IMS optimization

	IMS optimization for HIDAM, HDAM, and DEBD
	HDAM and HIDAM optimization
	DEDB optimization

	PCB selection options for IMS optimization
	PCB selection by name
	PCB selection by number
	PCB selection by verification

	PSB scheduling for IMS optimization
	BMP and DBB interfaces for PSB scheduling
	DRA interface for PSB scheduling

	VSAM access optimization
	Keyed access techniques for VSAM optimization
	Primary and alternate indexes for VSAM optimization
	Partial keys for VSAM optimization

	Configuration parameters for VSAM optimization
	VSAM service for optimization

	Data server optimization
	Dispatching priority for query optimization
	WLM exit for query optimization

	Chapter 5. Reference for Classic federation
	Configuration parameters for data server, query processor, and clients
	Configuration parameter format
	BTREE BUFFERS
	CLIENT CODEPAGE
	CPU GOVERNOR
	DATASOURCE
	DATA CONVERSION ERROR ACTION
	DECODE BUFFER SIZE
	DEFLOC
	FETCH BUFFER SIZE
	INTERLEAVE INTERVAL
	JOIN MAX TABLES ANALYZED
	LD TEMP SPACE
	MAX ROWS EXAMINED
	MAX ROWS EXCEEDED ACTION
	MAX ROWS RETURNED
	MESSAGE POOL SIZE
	NL
	NL CAT
	PDQ
	RESPONSE TIME OUT
	SAF EXIT
	SERVER CODEPAGE
	SERVICE INFO ENTRY
	SERVICE INFO ENTRY: Field 1
	SERVICE INFO ENTRY: Field 2
	SERVICE INFO ENTRY: Field 3
	SERVICE INFO ENTRY: Field 4
	SERVICE INFO ENTRY: Field 5
	SERVICE INFO ENTRY: Field 6
	SERVICE INFO ENTRY: Field 7
	SERVICE INFO ENTRY: Field 8
	SERVICE INFO ENTRY: Field 9
	SERVICE INFO ENTRY: Field 10

	SHAPING
	SMF EXIT
	STATEMENT RETENTION
	STATIC CATALOGS
	SYMMETRIC SWAPPING
	TASK PARAMETERS
	TEXT ORIENTATION
	TEXT PRESENTATION
	TRACE LEVEL
	USER CONFIG
	USERID
	USERPASSWORD
	VSAM AMPARMS
	WLM UOW

	National language support
	SBCS, DBCS, and database objects
	Code page conversion for ODBC and CLI
	Code page converters

	Sample VTAM and CICS definitions for stored procedures
	VTAM resource definitions
	VTAM APPL definition and mode table entry definition

	CICS resource definitions
	CEDA definitions

	Field procedures
	Field procedure setup
	Field procedures and data transformations
	Control blocks for field procedures
	Field procedure parameter list (FPPL)
	Work area
	Field procedure information block (FPIB)
	Value descriptors

	Field-encoding (function code 0)
	Field-decoding (function code 4)
	Sample field procedures
	CACFP001 - Sample field procedure
	CACFP999 - Sample field procedure

	The catalog initialization and maintenance utility (CACCATUT)
	Creating and initializing sequential metadata catalogs
	Creating and initializing linear metadata catalogs
	Upgrading metadata catalogs
	Copying metadata catalogs
	Reorganizing metadata catalogs
	Generating reports about metadata catalogs
	Summary reports
	Object detail reports

	The metadata utility
	Running the metadata utility
	Summary reports that are generated by the metadata utility
	Return codes for the metadata utility

	CONNECT statements for the metadata utility
	CONNECT TO DB2 statement for the metadata utility
	CONNECT TO SERVER statement for the metadata utility

	IMPORT DB2 statements for the metadata utility in Classic federation
	IMPORT DB2 TABLE or VIEW statement for the metadata utility
	IMPORT DB2 INDEX statement for the metadata utility

	Encrypting passwords for connecting to data servers when the SAF exit is active

	Accessing information about IBM
	Contacting IBM
	Accessible documentation
	Providing comments on the documentation

	Notices and trademarks
	Notices
	Trademarks

	Index

